
POLITECNICO DI TORINO
Master degree course in Digital Skills for Sustainable Societal

Transitions

Master Degree Thesis

Integration and exploitation of AI
tools for designing and operating

modern website

Relatori
Urgese Gianvito
Fanuli Giuseppe

Candidato
Tannaz Jamshidi

July 2025

Abstract

This thesis explores how AI-assisted tools can support the design and development
of modern websites, especially for individuals with little formal experience in web
development. The main objective is to understand how these tools can simplify
the creation process, making it faster and more accessible, while still allowing for
high-quality, professional outcomes.

The focus is particularly on front-end development, where AI tools proved most
helpful in the early stages. By providing immediate visual feedback and enabling
quick prototyping, these tools encouraged a hands-on, trial-and-error approach
that made the learning process more intuitive. Instead of building everything
from scratch, users could experiment, observe changes in real time, and iterate
quickly—an approach that helped them grasp front-end concepts more effectively.

In addition to visual AI design tools, the use of conversational agents like Chat-
GPT added another layer of support. Acting as an on-demand assistant, Chat-
GPT provided explanations, suggested solutions, and helped troubleshoot problems
throughout the development process, making it easier for beginners to stay engaged
and solve challenges independently.

While AI tools offered clear advantages in terms of speed, creativity, and ac-
cessibility, the thesis also highlights their limitations. Tasks that required more
complex logic, custom interactions, or polished refinements still needed human in-
tervention and critical thinking. This underlines the importance of combining AI
tools with human oversight and problem-solving skills.

Alongside the technical work, the thesis also emphasizes the value of thoughtful
user interface (UI) and user experience (UX) design. Careful attention was paid
to color schemes, typography, layout, and visual elements, all treated as part of a
coherent design system. Creating a visually consistent, accessible, and user-friendly
experience was essential to meet both aesthetic and functional goals.

This methodology was applied in a real-world case, the design and development

3

of the official website for the inNuCE Lab (Neuromorphic Computing and Engi-
neering Lab) at Politecnico di Torino. The project demonstrates how AI-powered
tools, when used alongside design best practices and human creativity, can lower
the barrier to entry in web development while delivering professional results.

4

Contents

List of Figures 7

1 Introduction 9

2 Background 11
2.1 Web Design . 11

2.1.1 Design Principals . 12
2.1.2 UI/UX Design . 13

2.2 Software Engineering . 14
2.2.1 Introduction to the Software Engineering Process 14
2.2.2 Functional and Non-Functional Requirements 14

2.3 Introducing inNuCE Lab . 14
2.3.1 The inNuCE Lab . 14

2.4 Artificial Intelligence Tools . 15
2.4.1 ChatGPT . 16
2.4.2 Uizard . 16
2.4.3 CodeParrot . 17
2.4.4 Vercel . 19

2.5 Pipeline Tools . 20
2.5.1 Figma . 20
2.5.2 Adobe illustrator, Adobe photoshop 21
2.5.3 Online Editing Tools (Supporting Resources) 21
2.5.4 Visual Studio Code . 21
2.5.5 Builder.io . 22
2.5.6 React framework . 23
2.5.7 tsParticles . 24

3 Materials and Methods 25
3.1 Design and Learning Process . 25

3.1.1 Planning and Goal Definition 25
3.1.2 Visual Design . 26

3.2 Functional Requirements . 26

5

3.3 Non-Functional Requirements . 28
3.4 Logo Design . 29

3.4.1 Alternative Logos . 29
3.4.2 Final Logos . 31

3.5 Development Workflow . 32
3.5.1 Front-End Development . 32
3.5.2 Back-End Development . 35

3.6 Website Structure and Design . 36
3.6.1 Homepage . 36
3.6.2 Services – Infrastructure . 40
3.6.3 Services – Use Cases . 41
3.6.4 Research . 45
3.6.5 About Us . 47

3.7 Builder.io Output vs Final Output 48

4 Results and discussion 53
4.1 Overview of the Final Website . 53
4.2 Comparison Between Design and Implementation 53
4.3 Evaluation of AI-Enhanced Features 57
4.4 Future Works . 58

Bibliography 59

6

List of Figures

2.1 Core concepts and use cases of neuromorphic computing at inNuCE
Lab . 15

2.2 Turn Hand-Drawn Wireframes into Editable Mockups with Uizard . 17
2.3 From selecting Figma component to code generation — CodeParrot 18
2.4 creating laboratory website in prompt-Vercel’s 19
2.5 result-Vercel’s . 20
2.6 code generation in Vercel . 20
2.7 builderio plugin . 23

3.1 Ebrain-Italy Logo . 30
3.2 Alternative Logo Designs for inNuCE, two-color version 30
3.3 Alternative Logo Designs for inNuCE,multicolor version 30
3.4 Alternative Logo Designs for inNuCE, Monochrome version-1 31
3.5 Alternative Logo Designs for inNuCE, Monochrome version-2 31
3.6 Final inNuCE Logo Design-black 32
3.7 Final inNuCE Logo Design-white 32
3.8 Particles Configuration (TypeScript) for Visual Effects 35
3.9 Home Page . 37
3.10 Preview of the Access App page (feature under development) 39
3.11 Services/Infrastructure Page . 41
3.12 Services/Use Cases Page . 42
3.13 Use Cases Layout . 44
3.14 Services/Use Cases/Use Case Detail Page 45
3.15 Research Page . 46
3.16 About Us Page . 47
3.17 codes generated in builder.io - use cases 49
3.18 corrected codes for matching the Figma Design - usecases 50
3.19 Example of folder structure generated by Builder.io for InNuCE tools

section in service/infrastructure section 51

7

8

Chapter 1

Introduction

Having a website in this day and age has a massive impact on success. One of the
main reasons is that a website can increase an organization’s credibility, helping
to communicate trust and professionalism to consumers. It also enhances the first
impression of your business and showcases your brand effectively [1].

Prebuilt website solutions offer notable convenience and cost-effectiveness, mak-
ing them especially appealing to small businesses or individuals with limited bud-
gets and technical expertise. These platforms are quick to deploy and typically
easy to use. However, they come with significant limitations, particularly in terms
of flexibility and customization. Prebuilt solutions may not meet the needs of more
complex or unique business requirements and can present challenges related to scal-
ability and integration with other systems [2].

On the other hand, professional web development provides a high degree of cus-
tomization, allowing businesses to create websites tailored to their specific needs
and branding. This approach is ideal for organizations with distinct requirements
or those looking to stand out in a competitive market [4]. Nonetheless, this method
requires a greater investment of time and money. The success of such projects also
depends heavily on clear and consistent communication between stakeholders and
developers to ensure the final product meets expectations.

AI has significantly advanced the development of web interfaces through the
generation of AI-powered automated code. It has the potential to transform the
entire design process, from AI-driven design solutions to sophisticated image-to-
code translation methods. Modern AI models are capable of converting various
design inputs into coherent, usable code, thereby shortening development cycles
and enhancing the quality, consistency, and efficiency of online interfaces.

In this thesis, I aim to demonstrate that with the help of AI-based tools, it is

9

Introduction

possible to learn both the design and development processes involved in creating
websites, while also supporting the automation of various development tasks. These
tools not only facilitate the understanding of professional web design workflows but
also streamline and accelerate the development process by automating repetitive
or complex steps, ultimately making web creation more accessible and efficient.

10

Chapter 2

Background

This project builds on the integration of effective web design principles, AI-powered
tools, and a structured development pipeline to create a modern and user-friendly
website for the inNuCE - Nuromorphic Computing and Engineering Lab.
At the core of the design process were fundamental principles, which guided the vi-
sual structure and improved the overall user experience. The inNuCE Lab, known
for its focus on neuromorphic computing and interdisciplinary research, needed a
platform that reflected its identity and mission.
To support this, various AI tools were explored and utilized for different purposes.
Alongside these, a set of design and development tools including Figma, Adobe Illus-
trator, Visual Studio Code, and the React framework played a key role in translating
ideas into a functional and polished website. This combination of thoughtful design,
intelligent tools, and a collaborative workflow helped deliver a visually coherent and
technically robust web presence for the laboratory.

In this chapter, I will introduce the technologies and concepts adopted for the
development of the platform, which will be further discussed in the next chapter in
terms of how they were integrated to achieve the objectives of this thesis project.

2.1 Web Design
The use of design principles in website design is highly effective, as it enhances user
navigation and overall experience. These principles help users find information ef-
ficiently, navigate between pages smoothly, and feel more satisfied when reaching
their goals. Additionally, consistent use of visual elements like layout, color, and ty-
pography strengthens brand recognition and shapes user perception. For designers,
these principles also provide a clear structure, making it easier to organize content
in a way that is both visually appealing and user-friendly [3].

11

Background

2.1.1 Design Principals
. Design principles form the foundation of effective visual communication. Without
them, a design may lack clarity, structure, and usability. These principles guide
how content is organized and perceived, ensuring that the intended message is
communicated clearly and efficiently to the user [4].

Line

The line is one of the most fundamental elements in design. It connects two or
more points and can take various forms—straight, curved, or wavy. Lines are
commonly used to organize content, create separation, emphasize elements, or guide
the viewer’s attention throughout a layout.

Shape and Form

Shapes are defined as two-dimensional areas with clear boundaries and can be ei-
ther geometric or organic. They help structure visual content, build illustrations,
and attract attention. When shapes take on a three-dimensional quality—either
physically or through visual techniques such as shading and perspective—they be-
come forms. Understanding form enables designers to create depth and realism in
flat compositions.

Texture

Texture refers to the surface quality of a design element, either actual or implied.
It adds depth and interest to a design by suggesting materials such as smoothness,
roughness, or softness. Texture should be applied thoughtfully to enhance rather
than distract from the overall composition.

Balance

Balance is the equal distribution of visual weight across a design. It contributes
to stability and harmony, making layouts more pleasing and readable. Designers
often use tools like the rule of thirds and grid systems to achieve balance through
the careful placement of elements, color, and space.

Typography

Typography refers to the style, arrangement, and appearance of text. It plays a
critical role in readability and user engagement. Effective typography uses consis-
tent font styles and sizes, with an emphasis on simplicity and hierarchy, to create
a coherent and accessible visual language.

12

2.1 – Web Design

Hierarchy

Hierarchy helps establish a visual order, guiding users to the most important con-
tent first. This can be achieved through size, contrast, font weight, or spatial
placement. A well-defined hierarchy improves comprehension and ensures that the
user’s attention is directed effectively.

Images

Images enhance visual appeal and can communicate information quickly. High-
quality, relevant visuals help reinforce the message and create emotional connec-
tions. Designers should select images that are contextually appropriate, visually
sharp, and stylistically consistent with the overall design.

Color

Color significantly influences mood and user perception. Understanding hue, sat-
uration, and value—as well as color theory principles such as complementary and
analogous schemes—allows designers to create visually engaging and accessible com-
positions. Color is also vital for contrast, emphasis, and brand identity.

Layout and Composition

Layout and composition provide structure and flow to a design. Effective layouts
utilize key principles such as proximity, alignment, contrast, repetition, and whites-
pace. These principles ensure that elements are logically organized, easy to read,
and aesthetically balanced, enhancing both usability and visual harmony.

2.1.2 UI/UX Design
User Interface (UI) and User Experience (UX) design are fundamental com-
ponents in the development of digital products, particularly websites and appli-
cations. UI design focuses on the visual aspects of a product—such as layout,
typography, color schemes, and interactive elements—ensuring the interface is aes-
thetically pleasing and intuitive. In contrast, UX design addresses the overall
experience a user has while interacting with a system, including usability, acces-
sibility, and satisfaction. A well-crafted UI contributes to a positive UX, but the
two disciplines, while closely related, involve distinct processes and goals. Effective
UI/UX design plays a crucial role in reducing user frustration, enhancing engage-
ment, and improving the overall functionality of web platforms [5].

13

Background

2.2 Software Engineering

2.2.1 Introduction to the Software Engineering Process
The software engineering process is a structured approach to designing, develop-
ing, testing, and maintaining software systems. It provides a disciplined framework
that ensures software is built systematically, meeting both user needs and techni-
cal standards. The process typically includes stages such as requirements analysis,
system design, implementation, testing, deployment, and maintenance. A crucial
early step in this process is the definition of software requirements, which sets the
foundation for all subsequent phases [6].

2.2.2 Functional and Non-Functional Requirements
Functional requirements describe what the system must do. They define the spe-
cific functions, features, and interactions that the software should support, such as
login functionality, data entry, search operations, or report generation. These re-
quirements are essential for shaping the system’s behavior and ensuring it delivers
the expected services to users [7].
Non-functional requirements define how the system should perform its functions.
They address attributes such as performance, usability, security, scalability, and
maintainability. Although they don’t describe specific behaviors, they are criti-
cal for delivering a quality system that meets user expectations and operational
constraints [7].

2.3 Introducing inNuCE Lab

2.3.1 The inNuCE Lab
The inNuCE Laboratory, part of the EDA Group at Politecnico di Torino, is ded-
icated to advancing neuromorphic computing—a revolutionary paradigm inspired
by the structure and functioning of the biological brain. By emulating neural
processes, neuromorphic systems enable AI applications that are more adaptive,
energy-efficient, and scalable.

inNuCE focuses on developing transformative applications in areas such as au-
tonomous systems, health monitoring, edge computing, and smart environments.
Their mission is to bridge the gap between neuroscience and artificial intelligence by
creating innovative tools, computational models, and neuromorphic architectures.
These solutions are designed to enhance the performance and energy efficiency of
intelligent technologies, particularly in robotics and intelligent automation. An
overview of the lab’s core research themes and real-world use cases is illustrated in
Figure 2.1.

14

2.4 – Artificial Intelligence Tools

A key outcome of their work is the Cloud-Based Heterogeneous Prototyping Plat-
form, which provides an integrated environment for designing, building, and testing
brain-inspired systems. The laboratory is funded by EBRAINS-Italy [8], a na-
tional research infrastructure that supports cutting-edge neuroscience and neuro-
inspired technologies as part of the European EBRAINS initiative. This collab-
oration empowers inNuCE to contribute to shaping the future of intelligent, au-
tonomous systems grounded in biological inspiration.

Figure 2.1: Core concepts and use cases of neuromorphic computing at inNuCE
Lab

2.4 Artificial Intelligence Tools
The integration of Artificial Intelligence (AI) into web development presents
significant opportunities for businesses and developers by enabling the creation
web applications, AI helps companies better respond to user needs and behav-
iors—ultimately enhancing their competitiveness in the digital marketplace. AI
technologies automate many routine development tasks such as code generation,
layout design, and content creation. This not only accelerates the development
process but also frees developers to focus on more complex and creative challenges,
leading to increased productivity and innovation in the workflow [9].

In the following section, I will describe some of the most commonly used AI
tools in modern web development.

15

Background

2.4.1 ChatGPT
ChatGPT is an Artificial Intelligence (AI) conversational agent developed
by OpenAI, based on Generative Pretrained Transformer (GPT) models.
Leveraging deep learning techniques, it processes natural language prompts and
generates contextually relevant, coherent responses. In the domain of web develop-
ment, ChatGPT supports a wide range of tasks, including content generation, code
writing and debugging, ideation, and technical documentation.

As of 2025, ChatGPT integrates multiple GPT models, each with varying levels
of accessibility and performance [10]:

• GPT-3.5: This model is freely available to all users. It is capable of han-
dling general conversational tasks, basic writing, and simple programming
assistance.

• GPT-4.5 (also known internally as o4 or o4-mini): Accessible through
a paid ChatGPT Plus or Pro subscription, this model demonstrates sig-
nificantly improved capabilities in reasoning, structured writing, and under-
standing complex prompts.

• GPT-4.1: Available exclusively via the OpenAI API, this variant is op-
timized for advanced programming tasks and offers robust logical process-
ing, making it well-suited for backend development and algorithmic problem-
solving.

.

2.4.2 Uizard
Uizard represents a significant advancement in user interface design tools by offer-
ing an intuitive, AI-assisted platform that streamlines the transition from concept
to interactive prototype. Particularly notable is its Wireframe Scanner feature,
which allows users to upload hand-drawn interface sketches and automatically con-
vert them into digital wireframes as shown in Figure 2.2. This functionality
greatly accelerates the early stages of the design process, enabling rapid iteration
and reducing the need for manual reproduction of initial ideas.

Uizard’s user-friendly editor further supports high-fidelity mockup creation with-
out requiring prior design or coding experience, making it an accessible tool for
both technical and non-technical stakeholders involved in the development of digital
products. Although Uizard was not used in this project, its existence demonstrates
how AI enables more accessible design practices in web development [11].

16

2.4 – Artificial Intelligence Tools

Figure 2.2: Turn Hand-Drawn Wireframes into Editable Mockups with Uizard

2.4.3 CodeParrot
CodeParrot is an AI-powered developer tool developed by the startup CodePar-
rot AI, founded in 2022 by Vedant Agarwala and Royal Jain [12]. Unlike tra-
ditional code generation models trained on GitHub repositories, CodeParrot fo-
cuses on transforming design elements—such as Figma components or even screen-
shots—into clean, production-ready front-end code. It acts as a design-to-code
copilot, preserving component structure and aligning with the developer’s existing
UI libraries and codebase.

CodeParrot is fully integrated with Visual Studio Code (VSCode), allowing
developers to use it seamlessly within their existing workflow. This tight integration
makes it easy to invoke the tool directly while coding, reducing context-switching
and increasing efficiency.

Available as a VSCode plugin, CodeParrot enables teams to accelerate the front-
end development process by automating UI implementation and reducing manual
handoff work between designers and developers. As illustrated in Figure 2.3, the
tool supports rapid prototyping by intelligently parsing design components and
generating semantic, editable code blocks.

17

Background

Figure 2.3: From selecting Figma component to code generation — CodeParrot

18

2.4 – Artificial Intelligence Tools

2.4.4 Vercel
Vercel was used in this thesis as the primary platform for hosting the frontend of
the website. It provided a streamlined and efficient deployment pipeline, enabling
automatic previews and updates directly from the connected GitHub reposi-
tory. This continuous integration and delivery setup allowed for rapid iteration
and real-time collaboration throughout the development process. Although Vercel
itself was not the subject of experimentation, its use contributed significantly to
the workflow by simplifying deployment and ensuring optimal performance. As a
developer-oriented platform, Vercel exemplifies current trends in web development
infrastructure that emphasize speed, scalability, and ease of use [13].

Figures 2.4, 2.5, and 2.6 demonstrate the process of creating a laboratory
website on Vercel, illustrating respectively the stages of prompting, the resulting
output, and the generated code.

Figure 2.4: creating laboratory website in prompt-Vercel’s

19

Background

Figure 2.5: result-Vercel’s

Figure 2.6: code generation in Vercel

2.5 Pipeline Tools
This project followed a structured development pipeline using a combination of
design, development, and deployment tools. Each tool played a specific role in
transforming initial ideas into a functional and interactive website.

2.5.1 Figma
Figma is a web-based UX design tool that enables teams to collaborate in real
time by accessing a single, live URL. As a key part of UX design, focuses on creating

20

2.5 – Pipeline Tools

meaningful and user-friendly experiences by understanding user needs, researching
case studies, and testing designs—Figma allows designers to build wireframes and
create interactive prototypes without coding. Additionally, Figma’s prototyping
tool helps developers understand how the user experience should look and feel [14].

2.5.2 Adobe illustrator, Adobe photoshop
Adobe Illustrator was primarily used for creating scalable vector graphics
(SVGs), such as icons, diagrams, and illustrations. These assets were particularly
important in sections of the website that needed visual explanations of research
topics or technical concepts. Because vector graphics are resolution-independent,
they ensured visual clarity on both desktop and mobile displays [15].

Adobe Photoshop was used for image editing and optimization. This in-
cluded tasks such as cropping, resizing, background removal, color correction, and
compressing image files for web performance. Photoshop helped prepare high-
quality JPEG or PNG images while keeping their size optimized for faster loading
times—an important aspect of user experience and SEO [16].

Together, these tools enabled the integration of custom, polished visual elements
into the web interface. While Figma was central for layout and UI structure,
Illustrator and Photoshop added a layer of visual identity and branding to the final
product, especially in image-heavy or illustrative sections of the website.

2.5.3 Online Editing Tools (Supporting Resources)
In addition to professional design and development tools, several online editing
platforms were used throughout the process for specific quick tasks. For example,
background removal tools like remove.bg [17] were employed to isolate subjects
from images without manual masking, which helped prepare cleaner visuals for the
site. Tools such as Convertio [18] was used for image compression and format
conversion, ensuring that assets were web-optimized and loaded quickly. These
tools, while simple, significantly improved workflow efficiency and reduced manual
effort in the content preparation phase.

2.5.4 Visual Studio Code
Visual Studio Code (VSCode) is a lightweight, open-source source code editor de-
veloped by Microsoft, widely adopted by developers for its flexibility, performance,
and extensive extension ecosystem. It supports multiple programming languages,
including JavaScript, TypeScript, Python, and C++, and provides features such
as syntax highlighting, IntelliSense (code completion and suggestions), integrated

21

Background

terminal, Git version control, and debugging tools. Its broad compatibility and
user-friendly interface make it a popular choice for both front-end and back-end
development workflows. In the context of this project, VS Code was used as the
primary development environment due to its seamless integration with React and
other modern web technologies [19].

2.5.5 Builder.io
Builder.io is a visual Content Management System (CMS) that enables
developers and designers to collaboratively build websites through a visual interface.
More specifically, it is a headless CMS, meaning the content and the presentation
layer are decoupled, offering greater flexibility for modern front-end frameworks
such as React.

One of Builder.io’s key features is its ability to convert Figma designs into clean
React components as shown in Figure 2.7, streamlining the handoff between design
and development. Additionally, its built-in AI integrations assist in generating
content and layout suggestions, enhancing both productivity and creativity during
the development process.

Serving as a bridge between UI/UX design and front-end implementation, Builder.io
empowers non-developers—such as marketers and designers—to update and man-
age front-end content dynamically without writing code. This functionality is es-
pecially valuable for teams aiming to accelerate development cycles and reduce de-
pendency on engineering resources. Brands like Everlane [20] and Gymshark [21]
utilize Builder.io’s visual CMS and AI-powered tools to maintain agility in their
digital content workflows [22].

22

2.5 – Pipeline Tools

Figure 2.7: builderio plugin

2.5.6 React framework
React is a JavaScript library for building user interfaces that simplifies the cre-
ation of interactive UIs through a declarative approach, where developers design
views for each state in the application, and React efficiently updates and renders
the right components when the data changes. Its component-based architecture al-
lows for building encapsulated components that manage their own state, enabling
the composition of complex UIs. Since component logic is written in JavaScript
instead of templates, passing rich data and keeping the state out of the DOM [23]
becomes easier. Additionally, React’s Learn Once, Write Anywhere philosophy al-
lows developers to create new features without rewriting existing code, and it can
be used to render on the server with Node or build mobile apps through React
Native [24].

To initiate the development of the React-based web application, the Vite build
tool was used as an alternative to the traditional Create React App setup. Vite is
a modern frontend build tool that offers significantly faster startup and hot module
replacement by leveraging native ES modules and a highly optimized development
server. It is particularly well-suited for modern JavaScript frameworks like React.
The React project was initialized using the command npm create vite@latest,
followed by selecting React and TypeScript as the desired template. This command
scaffolds a minimal and efficient project structure, enabling faster build times and

23

Background

improved developer experience. Once the setup was complete, the project depen-
dencies were installed using npm install, and the development server was launched
with npm run dev. Vite’s integration with modern tools like TypeScript, JSX, and
environment variables made it an ideal choice for building a high-performance,
scalable front-end application.

2.5.7 tsParticles
To enhance the visual appeal and interactivity of the website, tsParticles was
used—a lightweight, customizable JavaScript library that integrates seamlessly with
React. tsParticles enables the creation of dynamic particle effects such as animated
backgrounds, bubbles, floating shapes, and more. These effects were implemented
to improve the user experience on landing sections and key visual areas of the site.

The library supports a wide range of configurations through simple JSON, al-
lowing for full control over properties like particle speed, size, shape, color, and
interaction (e.g., particles responding to mouse movement). By using the react-
tsparticles wrapper, the animations could be embedded directly into React compo-
nents without performance issues [25].

24

Chapter 3

Materials and Methods

This section presents the practical steps followed during the development of the
website for the Neuromorphic Computing Laboratory at Politecnico di Torino. It
explains the learning process to gain the necessary skills and knowledge, and the
detailed pipeline that describes each phase of the website’s design and implemen-
tation.

3.1 Design and Learning Process

3.1.1 Planning and Goal Definition
The development process began with a clear definition of the website’s purpose and
its intended audience. The objective was to create a platform for the Neuromor-
phic Computing Laboratory at Politecnico di Torino that could serve both experts
in the field and individuals with no technical background. To guide this process,
a comparative analysis was carried out on websites of similar research laborato-
ries, particularly those affiliated with other universities. This analysis informed the
foundational structure of the site, helping us identify which sections were necessary
and how users would navigate between them. Based on this, a sitemap was created
that outlined the required pages and ensured a logical, coherent flow across the
entire website. The aim was to provide an accessible yet informative platform with
an intuitive user journey.

Apart from the general pages—such as the Home Page, the About Us section,
and those that provide information about the facilities and services—we decided
to make the Research section of the website more interactive and accessible to a
wider audience beyond just researchers. In the Research section, instead of simply
providing a link to each paper, users will also have access to a clear and concise
explanation of each paper. Additionally, a short vocal summary, similar to a pod-
cast, will be available to enhance accessibility and engagement.

25

Materials and Methods

3.1.2 Visual Design
Color Palette

After the planning phase, the next step was to establish the website’s visual iden-
tity. The design was developed using Figma 2.5.1, a collaborative interface design
tool that allowed for precise layout control and efficient prototyping. The color
palette was carefully chosen based on Politecnico di Torino’s graphic guidelines
[26], ensuring consistency with the institution’s branding. The primary colors used
were #002B49, a dark blue representing PoliTo’s official website, and #F48124 , the
university’s signature orange. These colors were maintained throughout the design
to create coherence while incorporating a dynamic visual language typical of mod-
ern technological platforms [26].

Typography

Typography was unified using the Poppins font, aligning with the university’s of-
ficial branding guidelines. Titles for each section were set at 48px with a weight
of 500, while other text sizes varied between 16px and 32px, adjusting in weight
based on aesthetic and readability considerations [26].

Icons

Icons and illustrations were either sourced from design platforms or custom-edited
using Adobe Illustrator to align with the desired aesthetic, maintaining consis-
tency with the color scheme and overall design approach. The sources of these
graphical elements are acknowledged in the credits section of the page, listing icons
provided by Flaticon [27], WordArt [28], and Freepik [29]. This ensures proper
attribution and transparency regarding the visual assets used in the website’s de-
sign.

3.2 Functional Requirements
The first type of requirements considered are the Functional Requirements, which
are typically the easiest to understand because of their clear and practical nature.
They outline the essential features and operations that the application must deliver
to support the organization’s needs. While they form the foundation of the system,
they can still involve complex technical implementation. These requirements are

26

3.2 – Functional Requirements

usually prioritized by the organization and initially provided as a basic list, which
the engineer then organizes and refines [30].
Functional requirements have been further categorized into three classes described
below.

High Priority Functional Requirements
The high priority functional requirements represent the essential features that en-
sure the core functionality and structure of the website. These are necessary for
the system to fulfill its primary purpose and enable users to navigate and interact
with key content effectively.

FRN Name Description
Navigation Bar Display a fixed, consistent navigation bar across all pages

for seamless user navigation.
Homepage
Overview

Provide a summary of the lab’s mission, application
domains, and facilities.

Use Case Cards Present each use case as a clickable card that opens a
dedicated details page.

Use Case
Filtering

Enable filtering of use cases based on category or
technology to enhance discoverability.

Research Page
Listing

List publications by year with summaries and links to
external resources.

Common Footer Display a consistent footer across all pages to support
navigation and accessibility.

Medium Priority Functional Requirements
The medium priority requirements enhance usability and provide additional value
to users. While not critical for basic operation, they improve the overall experience
and help users access more detailed or organized information.

FRN Name Description
Infrastructure
Infographic

Display an infographic explaining technologies and
workflows used in the prototyping platform.

Tool Information
Cards

Display software/hardware tools as clickable cards
linking to external documentation.

Team Member
Profiles

Show team members with profile pictures in the “Meet
Our Team” section.

27

Materials and Methods

Low Priority Functional Requirements
The low priority requirements include non-essential enhancements that contribute
to the visual appeal and interactivity of the website. These features are optional
and can be implemented if time and resources allow, without impacting the system’s
fundamental performance.

FRN Name Description
Hover-Linked
Team Profiles

On the About Us page, hovering over a team member’s
photo reveals a LinkedIn profile link.

Dynamic Visual
Effects

Use of animations and transitions (like particle
animation) for visual appeal, not affecting core usability.

Informational
Design Elements

Use of infographics and visual design elements (e.g., in
Infrastructure page) to support content presentation.

3.3 Non-Functional Requirements
The Non-Functional requirements define the overall quality, performance, and us-
ability of the website rather than the specific features it offers. These requirements
ensure that the website not only functions correctly but also delivers a professional,
smooth, and user-friendly experience aligned with the lab’s identity and communi-
cation goals.

Usability

The website is designed to be intuitive and accessible. Features such as a fixed
navigation bar, a consistent footer across pages, and organized content sections (e.g.,
Homepage, Services, Research, About Us) aim to ensure users can easily understand
and explore the site. The visual hierarchy and layout support clear information
delivery, especially for new visitors and stakeholders.

Performance

The presence of interactive elements like particle animations, filtering systems,
and media content (e.g., images, links, cards) implies the need for fast load times
and smooth transitions. These elements should perform efficiently across modern
browsers without affecting responsiveness or navigation.

Responsiveness and Compatibility

The website must adapt well to various screen sizes and devices (desktops, tablets,
smartphones), ensuring a consistent experience regardless of how users access it.

28

3.4 – Logo Design

The layout, images, cards, and hover effects should scale appropriately to maintain
visual clarity and usability.

Accessibility

While not directly mentioned, accessibility can be inferred as a requirement for a
public research lab website. This includes clear navigation, readable text, alt text
for images, and keyboard navigability to support diverse user needs.

Maintainability

The site should be easy to update as research projects evolve, team members change,
or new infrastructure is added. Using modular components like cards and filter
systems supports future scalability and content management.

Reliability

The website should be consistently available and stable, without broken links or
errors—especially important when directing users to external documentation or
showcasing research credibility.

3.4 Logo Design

3.4.1 Alternative Logos
To design the logo, we began by considering the core concept of neuromorphic
computing, which draws inspiration from the structure and function of the human
brain. To reflect this, we decided to incorporate a brain-like element as a central
visual component, representing both the biological roots and the intelligent process-
ing capabilities of the field. Since our project is closely aligned with Ebrains-Italy
[8], a major platform in the neuromorphic research ecosystem, we chose to main-
tain a similar visual format to the Ebrains-Italy logo ,shown in Figure 3.1. This
alignment supports visual continuity and conveys relevance within the broader re-
search community. Additionally, we integrated the Fibonacci pattern, symbolizing
the natural growth of complex systems from simple beginnings. This not only high-
lights the organic inspiration behind neuromorphic architectures but also reflects
the gradual and structured evolution of intelligence within such systems.

29

Materials and Methods

Figure 3.1: Ebrain-Italy Logo

In the following figures, various alternative logo designs for Innuce are presented
in Figures 3.2 ,3.3 ,3.4 ,3.5 .

Figure 3.2: Alternative Logo Designs for inNuCE, two-color version

Figure 3.3: Alternative Logo Designs for inNuCE,multicolor version

30

3.4 – Logo Design

Figure 3.4: Alternative Logo Designs for inNuCE, Monochrome version-1

Figure 3.5: Alternative Logo Designs for inNuCE, Monochrome version-2

3.4.2 Final Logos
In the final stage of the logo design, we chose to preserve the brain-like structure
reminiscent of the Ebrains-Italy logo to maintain visual consistency within the
neuromorphic research landscape. While we initially explored incorporating the
Fibonacci pattern directly, we eventually opted for a background element that
subtly evokes the form of a galaxy—a natural spiral structure that reflects the
spirit of Fibonacci-inspired growth without replicating the exact mathematical pat-
tern. This design choice supports the idea of gradual, organic complexity emerging
from a central core, much like neuromorphic systems evolve. To ensure adaptability
across various platforms and contexts, we developed three different logo variations,
each optimized for different sizes and usage scenarios.As illustrated in Figure 3.6,
the black version of the logo is shown, while Figure 3.7 presents the white version.
The choice between the two depends on the background color to ensure optimal
visibility and contrast.

31

Materials and Methods

Figure 3.6: Final inNuCE Logo Design-black

Figure 3.7: Final inNuCE Logo Design-white

3.5 Development Workflow

3.5.1 Front-End Development
With the visual framework in place, the implementation phase began by setting
up the front end using the React framework. React was selected for its modular
component-based architecture and flexibility in handling dynamic content. The
initial focus was on translating the Figma design into working code.

To support this, Builder.io was integrated into the workflow. The Builder.io
Figma plugin was installed by opening Figma, navigating to the Plugins section,
and searching for Builder.io under the Plugins and Widgets tab. Once found, it
was added via the Save button. Alternatively, the plugin could be installed directly
from the Builder.io Figma Plugin page.

To import a design, selected Figma frames were exported using the Builder.io
plugin. After opening the plugin from the Figma toolbar and clicking the Export
Design button, the plugin processed and analyzed the frames. Once completed, dif-
ferent AI-generated code versions were presented. The TypeScript with CSS option
was selected, enabling direct conversion of static components into React-compatible
code.

This integration significantly accelerated the development of static parts of the

32

3.5 – Development Workflow

website and provided insight into how UI elements are structured within React.
While Builder.io was especially helpful for a beginner working with React, the
generated output often required refinement. Interactive components or those re-
quiring complex state management—such as the navigation bar or dynamic content
blocks—were manually coded, with support from online learning resources and AI
assistance from ChatGPT(GPT-4o model).

To further enhance the user experience with dynamic and engaging visuals, the
tsParticles library was also integrated into the React environment. The installation
was done via the terminal using the command npm install @tsparticles/react.
Since tsParticles needs to be initialized only once per application lifecycle, the en-
gine was loaded using the loadFull function in the main entry point (typically
App.tsx). Additionally, the loadPolygonMaskPlugin was imported to enable
polygon-shaped particle constraints defined by SVG files.

This polygon masking technique was applied on the Use Cases page, where par-
ticles were restricted to animate within a user-defined polygon shape. This created
a visually striking animation that aligned perfectly with the SVG layout, adding
interactivity and enhancing aesthetic appeal.

In contrast, more traditional background particle effects were used on the Home
page and Coming Soon sections (e.g., the Access App page). These simpler anima-
tions did not involve polygon masks and were rendered using the <Particles />
component with tailored configurations defined in modular .ts files (e.g., homePar-
ticlesOptions.ts).
These configuration files allowed customization of properties such as particle color,
speed, interactivity, and background opacity, and were imported into the corre-
sponding React components as shown in Figures 3.1 3.8 This modular structure
ensured that particle configurations remained reusable and easy to maintain across
different sections of the site. While polygon-masked animations emphasized creativ-
ity on content-heavy pages, the subtler background effects contributed a modern
visual layer without overwhelming the user interface.

This combination of automated tools and manual coding made development
faster and helped build a better understanding of front-end technologies.

Listing 3.1: UsecasesHeader.tsx - Implementation of tsparticles in Usecase Header

import "../ UseCases / UsecaseHeader .css ";
import React , { useMemo } from "react ";
import Particles from " @tsparticles /react ";
import { type Container , type ISourceOptions } from " @tsparticles /

engine ";

33

Materials and Methods

import { BACKGROUND } from "./ constantUc ";

const UsecasesHeader = () => {
const options : ISourceOptions = useMemo (() => BACKGROUND , []);

return (
< section className =" UsecasesHeader ">

<div className =" UcHeaderContainer ">
<h1> Discover our Use Cases</h1>
<h3>

InNuce labs offer a complete , easy to use Prototyping
Platform for

all Neuromorphic needs.

from the development ,with the most updated and

innovative tools and
libraries , to the development , done on the most popular

and
cutting -edge hardware .

Just bring your own idea : the computer power , the
tools and the

hardware is on us.

</h3>
< button onClick ={() => {}} tabIndex ={0} aria -label="

Discover Use Cases">
Discover Use Cases

</ button >
</div>

< Particles className =" particleUc " options ={ options } />
</ section >

);
};

export default UsecasesHeader ;

34

3.5 – Development Workflow

Figure 3.8: Particles Configuration (TypeScript) for Visual Effects

3.5.2 Back-End Development
Simultaneously with front-end development, the back-end was designed to handle
the dynamic aspects of the site and manage content efficiently. Express.js [31]
was chosen as the runtime environment for server-side development due to its scal-
ability, performance, and seamless integration with JavaScript-based front ends. A
suitable database management system was selected based on project needs — such
as storing publication metadata, research summaries, and team member profiles —
ensuring that the site could serve dynamic content reliably. Integration between
the database and front-end ensured that any updates to data would be reflected in

35

Materials and Methods

real-time on the user interface, enabling efficient content management.

3.6 Website Structure and Design
The website was designed in Figma to create a modern, accessible, and visually
consistent experience that reflects the identity and research focus of the inNuCE
Laboratory. Each page was designed with clarity, modularity, and user engagement
in mind. This section breaks down each page and its components.

3.6.1 Homepage
The homepage, Figure 3.9, serves as the user’s first point of contact with Innuce
Lab’s digital identity. In Figma, the homepage was crafted to immediately convey
innovation and interactivity.

36

3.6 – Website Structure and Design

Figure 3.9: Home Page

37

Materials and Methods

Landing Section

Intent: Create a strong first impression through a visually engaging hero section.
Design Elements:

• A lightweight particle animation background (tsParticles in React) sym-
bolizes neural activity. Initial versions used a large GIF file and later an MP4
video as backgrounds, but both caused slow loading times and high memory
usage due to their size.

• Title and subtitle are center-aligned with ample spacing to draw focus.

• A call-to-action button (Discover More) guides users down the page.

• The Politos font was selected to balance modernity with academic profes-
sionalism.

Application Domains Section

Design Features:

• This section is designed using horizontal cards or blocks, each representing a
research or application domain (e.g., Neuromorphic, AIOT, Bioinformatics).

• Each block uses iconography and short text, making the section scannable
and intuitive.

Quote Section

Design Features:

• Designed as a quote section from the inNuCE group, paired with a represen-
tative image of Politecnico di Torino’s Valentino campus, where the lab is
based. .

Facilities Overview

Design Features:

• Arranged using a layout grid of four cards, each featuring relevant graphical
visuals representing the lab’s software modules and prototyping platform.

• This layout was designed in Figma to ensure scalability, visual balance, and
clarity , enhancing both readability and responsiveness.

38

3.6 – Website Structure and Design

Navigation Bar

Design Features:

• A sticky top navigation ensures persistent access to key pages.

• The bar includes hover effects and a logo placed in the top-left corner.

• Emphasis was placed on a clean design with minimal items to avoid over-
whelming the user.

• On specific pages—such as the Homepage and Services subpages—the naviga-
tion bar incorporates a scroll-triggered visual effect, it starts with a transpar-
ent background and transitions into a solid background once the user begins
scrolling.

• On pages where this design element is unnecessary, a standard solid back-
ground is used for consistency and simplicity.

• A button labeled Access App,Figure 3.10, currently under development,
directs users to a dedicated page displaying a "Coming Soon" message over a
dynamic particles background.

Figure 3.10: Preview of the Access App page (feature under development)

Footer

Design Features:

• Designed to mirror the navigation bar in simplicity.

39

Materials and Methods

• Includes contact information, logos of affiliations (e.g., Ebrains-Italy), and
external links.

• Maintains the brand color palette and contributes to a cohesive end-of-page
experience.

3.6.2 Services – Infrastructure
This page, Figure 3.11, introduces the lab’s prototyping infrastructure and avail-
able technical resources. The design focuses on clarity, interactivity, and accessi-
bility for both researchers and visitors.

Infographic Section

Design: A custom-designed linear infographic is positioned at the top of the page.

• Purpose: To visually summarize the lab’s research pipeline — from initial
idea conception to testing and eventual deployment.

• Created in Figma using vector shapes and smooth gradient flows, the info-
graphic symbolically represents each process stage in a continuous, visually
engaging format.

Tool Cards Section

Design: Positioned below the infographic, a responsive card layout displays the
lab’s key hardware and software tools.

• Each card includes:

– A clear title,
– A concise description,
– clicking the title of each card directly navigates the user to the external

documentation or detailed resource page.

• The cards were designed in Figma with careful attention to spacing and depth.
Subtle shadow effects were applied to ensure visual separation between ele-
ments.

Design Intent

• Allow researchers and external visitors to quickly identify and access detailed
information about the lab’s technological resources.

40

3.6 – Website Structure and Design

Figure 3.11: Services/Infrastructure Page

3.6.3 Services – Use Cases
This page,Figure 3.12, was designed as an interactive showcase of the lab’s past
and ongoing projects. It highlights a dynamic interface that supports exploration
through filtering and modular layouts.

41

Materials and Methods

Figure 3.12: Services/Use Cases Page

Filtering System

A vertical filter bar is positioned on the left side of the use case grid, allowing
users to refine their exploration based on technology used, application categories,
and associated hashtags. These filters are implemented as checkable options, en-
abling multi-selection and easy toggling. Designed in Figma, the filter interface
ensures high accessibility through strong contrast, generous spacing, and clear la-
beling. This layout also improves usability by keeping the filter controls visible

42

3.6 – Website Structure and Design

while scrolling through projects on larger screens.

Use Case Cards

Rather than using a repetitive uniform grid, the layout is inspired by the golden
ratio. This creates visual rhythm by placing two smaller cards side-by-side with the
combined width equivalent to a larger card placed beside or beneath them. The
resulting variation provides a more engaging and aesthetic structure compared to
equal-sized cards in a traditional grid.

The background behind the cards features a unified linear vector graphic de-
signed in Illustrator. This vector design subtly echoes the lab’s logo and the linear
layout seen in the Infrastructure page’s infographic and other sections. Trans-
parency is applied selectively within the vector pattern, adding visual depth and
playful layering without distracting from the content.

Each project is presented as a clickable card component. The cards include:

• A clear project title

• A concise description

• A button navigating to the use case details page

The overall arrangement and visual style of these cards can be seen in Fig-
ure 3.13, which illustrates the golden ratio–inspired layout and background vector
design.

43

Materials and Methods

Figure 3.13: Use Cases Layout

Use Case Detail Page

Upon selecting a card, users are directed to a dedicated detail page for that specific
project. This page, Figure 3.14, includes the following elements.

44

3.6 – Website Structure and Design

Figure 3.14: Services/Use Cases/Use Case Detail Page

• A prominent hero image related to the project (e.g., a photograph, chart, or
rendered visualization)

• A clear project title and subtitle

• Paragraphs of descriptive content, often organized using a two-column layout
for improved readability

• A list of hashtags related to the project, such as the technologies used, appli-
cation domains, and research themes,etc; these serve as interactive filters on
the previous page

3.6.4 Research
This page ,Figure 3.15, serves as a dynamic hub for the lab’s publications and
AI-enhanced summaries. The design focuses on clarity, interactivity, and intelligent
content presentation.

45

Materials and Methods

Figure 3.15: Research Page

Year-Based Grouping

Publications are grouped by year using collapsible accordion sections, allowing users
to efficiently navigate a large number of entries.

Publication Cards

Each publication is presented as a structured card, containing:

• Title

• Authors

• DOI or external link (typically pointing to IRIS)

• Two interactive features:

– In a Nutshell button: Opens a modal or expands a collapsible section
with an AI-generated summary presented in four concise parts. (intro-
duction, methods, results, conclusion)

46

3.6 – Website Structure and Design

– Play icon: Triggers a podcast version of the summary, enabling users to
listen instead of read.

3.6.5 About Us
The About Us page, Figure 3.16, provides background information about the lab
and introduces the team. The content is presented in a clear and accessible way.

Figure 3.16: About Us Page

47

Materials and Methods

Mission and History

The first section shows a group picture of the Innuce team, edited to match the
website’s graphic style. It then explains the lab’s mission, goals, and where it is
located.

Meet Our Team Section

This section presents individual team members through profile cards, each includ-
ing:

• A professional photo displayed in a layout inspired by the Innuce logo

• Full name and title for easy identification

• A LinkedIn icon that appears on hover, allowing users to quickly access the
person’s professional profile if interested

In Figma, the hover effect was simulated using overlay states, making it possible
to prototype and preview the interactive behavior of the final implementation.

Design Focus

• The visual style was designed to create a personal connection with visitors,
highlighting the people behind the research.

• A friendly yet professional tone was used — in line with the rest of the site,
but slightly warmer to emphasize human presence and collaboration.

• The profile card layout helps users recognize team members at a glance, while
the hover interaction adds a simple and intuitive way to connect.

3.7 Builder.io Output vs Final Output
As previously mentioned, Builder.io proved to be a useful starting point, partic-
ularly for someone with limited coding experience. It facilitated the creation of
basic components and offered a quick way to begin the implementation process.
However, the tool shows clear limitations when dealing with more complex compo-
nents, especially those designed in Figma. In such cases, the auto-generated code
often becomes either overly complex or structurally incoherent, requiring significant
manual intervention.

This is clearly illustrated in Figure 3.17, which shows the React code auto-
matically generated by Builder.io for the use case cards section. While the layout

48

3.7 – Builder.io Output vs Final Output

roughly matches the original design, the code lacks semantic structure and in-
troduces unnecessary nesting and inline styles. In contrast, the manually refined
version—shown in Figure 3.18—demonstrates a cleaner component hierarchy, im-
proved readability, and adherence to best practices, resulting in a final implemen-
tation that more accurately reflects the Figma design.

Additionally, Figure 3.19 presents the folder structure generated by Builder.io
for the InNuCE tools section located in the Services/Infrastructure area. This
structure served as a foundation but was later reorganized to support maintain-
ability, modularity, and scalability as the project evolved.

Figure 3.17: codes generated in builder.io - use cases

49

Materials and Methods

Figure 3.18: corrected codes for matching the Figma Design - usecases

50

3.7 – Builder.io Output vs Final Output

Figure 3.19: Example of folder structure generated by Builder.io for InNuCE tools
section in service/infrastructure section

51

52

Chapter 4

Results and discussion

4.1 Overview of the Final Website
The final version of the website is a modern, visually cohesive platform designed
to present the research, publications, and ongoing activities of the neuromorphic
computing lab. It includes several key pages: the Home page introduces the lab
with animated elements and a clear visual hierarchy; the About page outlines the
mission and presents the team; and the Research page, which is the only dynamic
section, lists publications by year and integrates advanced features such as a direct
link to each paper on the IRIS [32] database, an AI-generated summary titled In
a Nutshell and a podcast generation button to convert the summary into audio.
Hosted at https://innuce.polito.it, the website is intended for both academic
and general audiences, with a focus on usability, clarity, and scalability for future
developments.

4.2 Comparison Between Design and Implemen-
tation

While the initial designs created in Figma provided a clear visual and structural
blueprint for the website, the transition from static design to functional imple-
mentation revealed several challenges and necessary adaptations. Using Builder.io
allowed for a rapid transformation of the Figma components into React code, pre-
serving much of the layout and styling. However, the generated code often lacked
clean structure and semantic HTML. As a result, manual adjustments were re-
quired to refine component hierarchy, correct spacing inconsistencies, and ensure
accessibility standards. For example, components such as the Navigation Bar and
the Hero Section were carefully reviewed and rewritten in React (see Listing4.2
and 4.1), improving the overall maintainability and responsiveness of the layout.

53

Results and discussion

Furthermore, certain interactive features—such as the dynamic rendering of
publications and AI-generated content—could not be fully designed in Figma and
had to be implemented programmatically. These are illustrated in the dynamic Re-
search page, where advanced features like summary generation and podcast play-
back are integrated . Despite these limitations, the overall visual fidelity between
the design and the final implementation remained high, demonstrating the useful-
ness of AI-assisted tools in bridging the gap between design and development while
highlighting the continued importance of manual intervention for quality and func-
tionality.

Listing 4.1: Navigation.tsx - React Navigation Bar

import "./ Navbar .css ";
import { NavItem } from "./ NavItem ";
import { useLocation } from "react -router -dom ";
import { useNavigate } from "react -router -dom ";
import logoW from "../../ assets / inNuceWhite .svg ";
import logoB from "../../ assets / inNuceBW .svg ";

import { useState , useEffect } from "react ";

const navigationItems = [
{ label: "HOME", to: "/" },
{

label: " SERVICES ",
hasDropdown : true ,
parentTo : "/ services ",
dropdownLinks : [

{ label: " INFRASTRUCTURES ", to: "/ infrastructures " },
{ label: "USE CASES", to: "/ usecases " },

],
},
{ label: " RESEARCH ", to: "/ research " },
{ label: "ABOUT US", to: "/ aboutus " },

];

export const Navigation : React.FC = () => {
const location = useLocation ();
const navigate = useNavigate ();
const [menuOpen , setMenuOpen] = useState (false);
const [scrolled , setScrolled] = useState (false);

const toggleMenu = () => {
setMenuOpen (! menuOpen);

};

const handleScroll = () => {
if (

54

4.2 – Comparison Between Design and Implementation

location . pathname !== "/ aboutus " &&
location . pathname !== "/ accessapp " &&
location . pathname !== "/ research " &&
window . scrollY > 50

) {
setScrolled (true);

} else if (
location . pathname !== "/ aboutus " &&
location . pathname !== "/ accessapp " &&
location . pathname !== "/ research "

) {
setScrolled (false);

}
};

useEffect (() => {
if (

location . pathname === "/ aboutus " ||
location . pathname === "/ accessapp " ||
location . pathname === "/ research "

) {
setScrolled (true);

} else {
setScrolled (false);

}

window . addEventListener (" scroll ", handleScroll);
return () => {

window . removeEventListener (" scroll ", handleScroll);
};

}, [location . pathname]);

const handleAccessButtonClick = () => {
navigate ("/ accessapp ");

};

return (
<nav className ={’ navbar ’ + (scrolled ? ’scrolled ’ : ’’)}>

<img
loading ="lazy"
src={ scrolled ? logoW : logoB}
className ="logo"
alt=" InNUCE Logo"

/>
<div className ={’ LinksContainer ’ + (menuOpen ? ’show ’ : ’’)}

>
{ navigationItems .map ((item , index) => {

const isActive =
location . pathname === item.to ||
item. dropdownLinks ?. some ((link) =>

55

Results and discussion

location . pathname . startsWith (link.to)
) ||
(item. parentTo && location . pathname . startsWith (item.

parentTo));

return < NavItem key={index} {... item} isActive ={!!
isActive } />;

})}
</div>

<div className =" hamburger " onClick ={ toggleMenu }>
<div className ={ menuOpen ? "bar open" : "bar "}></div>
<div className ={ menuOpen ? "bar open" : "bar "}></div>
<div className ={ menuOpen ? "bar open" : "bar "}></div>

</div>

< button className =" accessButton " onClick ={
handleAccessButtonClick }>

ACCESS APP
</ button >

</nav>
);

};

Listing 4.2: HeroSection.tsx - React Component

import React , { useMemo } from "react ";
import "./ HeroSection .css ";
import { BACKGROUND } from "./ constants ";
import Particles from " @tsparticles /react ";
import { type Container , type ISourceOptions } from " @tsparticles /

engine ";

const HeroSection : React.FC = () => {
const particlesLoaded = async (container ?: Container): Promise <

void> => {
console .log(container);

};

const options : ISourceOptions = useMemo (() => BACKGROUND , []);

return (
< section className ="hero">

< Particles
id=" tsparticles "
particlesLoaded ={ particlesLoaded }
options ={ options }

/>
<div className =" herocontainer ">

<h5>
inN

56

4.3 – Evaluation of AI-Enhanced Features

uCE Lab
</h5>
<h4>

The Neuromorphic Computing Research Infrastructure @
Politecnico di

Torino
</h4>
<h3>

Bring your brain - inspired projects to life with our own
Cloud -Based

 Neuromorphic Prototyping Platform .
</br> Know
more about

our
 software tools, discover our development

services or
just take a look at our use cases.

</h3>
<div className =" buttons ">

< button onClick ={() => {}} tabIndex ={0}>
KNOW MORE

</ button >
< button onClick ={() => {}} tabIndex ={0}>

FOLLOW US
</ button >

</div>
</div>

</ section >
);

};

export default HeroSection ;

4.3 Evaluation of AI-Enhanced Features
The AI-enhanced features integrated into the website, namely the automatic gen-
eration of publication summaries In a Nutshell and the conversion of these sum-
maries into audio podcasts, were evaluated based on their accuracy, usability, and
contribution to user engagement. The summarization tool provided concise and
relevant overviews of complex research papers, making technical content more ac-
cessible to a broader audience. However, occasional inaccuracies and omissions in
the generated summaries highlighted the necessity for human oversight and refine-
ment. Similarly, the podcast feature improved accessibility for users who prefer
audio formats or have visual impairments, though the synthetic voice quality and
pacing sometimes affected listener experience. Despite these limitations, the AI-
driven functionalities successfully enriched the website by offering diverse content
consumption options and demonstrated the practical potential of AI in enhancing

57

Results and discussion

academic dissemination. Future improvements could focus on increasing summary
precision and enhancing naturalness in speech synthesis to further elevate the user
experience.

4.4 Future Works
The current project focused primarily on the design and development of the front
end of the inNuCE website, with the goal of creating a visually engaging, user-
friendly interface that effectively communicates the lab’s research and values. While
the front end is fully implemented, the back end remains to be developed.

The intended back-end architecture was conceptualized in parallel with the
front-end design. It includes dynamic content handling and efficient data man-
agement. Express.js was identified as the preferred runtime environment for server-
side development, chosen for its scalability, high performance, and compatibility
with JavaScript-based front ends. A suitable database management system will
be selected to store and manage publication metadata, research summaries, team
profiles, and other relevant content.

Once implemented, the back end will enable seamless integration between the
database and the user interface, allowing updates to be reflected in real time and
supporting a more dynamic and interactive user experience. This future devel-
opment will complete the system’s functionality and ensure maintainability and
scalability.

The project also demonstrated how the development barriers of modern websites
can be reduced thanks to the availability of AI-based tools. These tools proved
valuable in supporting developers during the design and implementation process,
accelerating prototyping, and providing learning opportunities throughout. By
integrating AI-assisted platforms into the workflow, the project highlighted how
such technologies can streamline development and make modern web creation more
accessible and efficient.

58

Bibliography

[1] Sagar Gholve Sonali Suryakant. «The Impact of AI on Web Development».
In: International Journal of Scientific Research in Modern Science and Tech-
nology (2024).

[2] Venkata Krishna Reddy Tummeti. «Website developer: Web application». In:
(2003).

[3] R. Carina Tobias Warbung N. Soedarso. «Website design using design prin-
ciples to increase user satisfaction». In: (2023).

[4] Oluwatoyosi F. The importance of Design Principles and how they impact
good designs. 2022. url: https://uxdesign.cc/the- importance- of-
design-principles-and-how-they-impact-good-designs-93b58b723918
(visited on June 11, 2025).

[5] Jesse James Garrett. The Elements of User Experience: User-Centered Design
for the Web and Beyond. New Riders, 2010. isbn: 9780321683687.

[6] Ian Sommerville. Software Engineering. Pearson Education, 2015.
[7] Roger S. Pressman and Bruce R. Maxim. Software Engineering: A Practi-

tioner’s Approach. 8th. McGraw-Hill Education, 2014.
[8] EBRAINS-Italy. EBRAINS-Italy Official Website. Accessed 2025-06-19. 2025.

url: https://www.ebrains-italy.eu/.
[9] Aibek Mamadalievich Toktorbaev. «The Role of Artificial Intelligence in Web-

site Creation». In: Publishing Center Science and Practice (2025).
[10] OpenAI. GPT models in ChatGPT. 2024. url: https://help.openai.com/

en/articles/6825453-chatgpt-release-notes (visited on June 19, 2025).
[11] uizard. AI-powered UI Design. 2025. url: https://uizard.io (visited on

May 7, 2025).
[12] CodeParrot AI. Why CodeParrot? Accessed 2025-06-19. 2025. url: https:

//codeparrot.ai/blogs/why-codeparrot.
[13] vercel. The AI code generator for web UI. 2025. url: https : / / v0 . dev

(visited on May 27, 2025).

59

https://uxdesign.cc/the-importance-of-design-principles-and-how-they-impact-good-designs-93b58b723918
https://uxdesign.cc/the-importance-of-design-principles-and-how-they-impact-good-designs-93b58b723918
https://www.ebrains-italy.eu/
https://help.openai.com/en/articles/6825453-chatgpt-release-notes
https://help.openai.com/en/articles/6825453-chatgpt-release-notes
https://uizard.io
https://codeparrot.ai/blogs/why-codeparrot
https://codeparrot.ai/blogs/why-codeparrot
https://v0.dev

BIBLIOGRAPHY

[14] Figma. What is Figma. 2025. url: https://help.figma.com/hc/en-
us/articles/14563969806359-What-is-Figma (visited on Apr. 2, 2025).

[15] adobe. adobeillustrator. 2020. url: https://www.adobe.com/products/
illustrator.html.

[16] adobe. adobephotoshop. 2018. url: https://www.adobe.com/products/
photoshop.html.

[17] remove.bg. remove background. 2025. url: https://www.remove.bg/.
[18] convertio. converio. 2024. url: https://convertio.co/it/.
[19] microsoft. visual studio code. 2023. url: https://code.visualstudio.com/

(visited on Apr. 2, 2025).
[20] Everlane. Everlane Official Website. Accessed: 2025-06-19. 2025. url: https:

//www.everlane.com/.
[21] Gymshark. Gymshark Official Website. Accessed: 2025-06-19. 2025. url: https:

//www.gymshark.com/.
[22] builder.io. Builder’s Visual Development. 2025. url: https://www.builder.

io/m/explainers/visual-development-platform#main (visited on Apr. 2,
2025).

[23] MDN Web Docs. Document Object Model (DOM). https://developer.
mozilla.org/en-US/docs/Web/API/Document_Object_Model. Accessed:
2025-06-23. n.d.

[24] React. React. 2025. url: https://github.com/facebook/react (visited on
Apr. 3, 2025).

[25] tsparticles. tsparticles. 2025. url: https://particles.js.org/ (visited on
May 1, 2025).

[26] Polito. «LINEE GUIDA PER LE AZIONI DI INFORMAZIONE E COMU-
NICAZIONE A CURA DEI SOGGETTI ATTUATORI». In: (2022).

[27] Flaticon. Free vector icons and stickers. https://www.flaticon.com. Ac-
cessed: 2025-06-21.

[28] WordArt.com. Create Word Art Online. https://wordart.com. Accessed:
2025-06-21.

[29] Freepik. Graphic Resources for Everyone. https://www.freepik.com. Ac-
cessed: 2025-06-21.

[30] Elia Ferraro. «Studying and Redesigning a Web Application: User-Centered
Analysis and Process Optimization». MA thesis. polito, 2024.

[31] Express.js contributors. Express - Node.js web application framework. https:
//expressjs.com/. Accessed: June 2025. 2024.

60

https://help.figma.com/hc/en-us/articles/14563969806359-What-is-Figma
https://help.figma.com/hc/en-us/articles/14563969806359-What-is-Figma
https://www.adobe.com/products/illustrator.html
https://www.adobe.com/products/illustrator.html
https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html
https://www.remove.bg/
https://convertio.co/it/
https://code.visualstudio.com/
https://www.everlane.com/
https://www.everlane.com/
https://www.gymshark.com/
https://www.gymshark.com/
https://www.builder.io/m/explainers/visual-development-platform#main
https://www.builder.io/m/explainers/visual-development-platform#main
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://github.com/facebook/react
https://particles.js.org/
https://www.flaticon.com
https://wordart.com
https://www.freepik.com
https://expressjs.com/
https://expressjs.com/

BIBLIOGRAPHY

[32] Politecnico di Torino. IRIS Institutional Repository. Accessed: 2025-06-19.
2025. url: https://iris.polito.it/.

61

https://iris.polito.it/

	List of Figures
	Introduction
	Background
	Web Design
	Design Principals
	UI/UX Design

	Software Engineering
	Introduction to the Software Engineering Process
	Functional and Non-Functional Requirements

	Introducing inNuCE Lab
	The inNuCE Lab

	 Artificial Intelligence Tools
	ChatGPT
	Uizard
	CodeParrot
	Vercel

	Pipeline Tools
	Figma
	Adobe illustrator, Adobe photoshop
	Online Editing Tools (Supporting Resources)
	Visual Studio Code
	Builder.io
	React framework
	tsParticles

	Materials and Methods
	Design and Learning Process
	Planning and Goal Definition
	Visual Design

	Functional Requirements
	Non-Functional Requirements
	Logo Design
	Alternative Logos
	Final Logos

	Development Workflow
	Front-End Development
	Back-End Development

	Website Structure and Design
	Homepage
	Services – Infrastructure
	Services – Use Cases
	Research
	About Us

	Builder.io Output vs Final Output

	Results and discussion
	Overview of the Final Website
	Comparison Between Design and Implementation
	Evaluation of AI-Enhanced Features
	Future Works

	Bibliography

