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Introduction

Cardiovascular diseases are the first cause of death, globally [22]. In 2019 there
has been more than 18 million people that died due to disease of this kind, and
that more than half of them (around ten millions) had high-blood pressure, which
causes human hearth to pump blood in a different and irregular way: this last
phenomenon is called arrhythmia.

Despite that death rates for this kind of diseases have dramatically decreased
in the last decades due to the technology advancement, and a very popular and
effective improvement is tied to the use of computational tools to try and find
different classes of arrhythmias. Cardiologist are formed for around ten years of
their life in order to understand and be able to distinguish one type of arrhythmia
from another just by reading the electrocardiogram (ECG) of the hearth-beat
considered. ECG is a pivotal technique in medicine, which allows for a graphical
representation of an hearth-beat in the domain of time. Each point describes
the electric potential of the cardiac muscle. The signal is sampled by a certain
frequency, so that each point represent one single instant; for example, if the signal
is sampled at 360 Hz, it means that each point represents ﬁ ~ 0.0028 seconds,
so that we need 360 sample points in the graph in order to have the graphic
representation of one second of said heart-beat.

It is clear from this description that through ECG it is possible to have access
for an unbelievable amount of data describing just a minute of an heart beating;
consequently, working on big amount of data con become very strenuous even
for the hardest-working cardiologist, and due to human nature, this increases the
probability of mistakes in a field where even the smallest one can cause irreparable
damage. This has been clear as the sheer computational power of calculators
improved over the decades, with the realization that using a calculator would
have increased the accuracy of the prediction, with a percentage error very small
with respect to the one we could have had from the doctors not because of their
faulty formation, but because of other exogenous motives (tiredness, distractions,
etcetera).

This represents a classic supervised classification problem: a mathematical clas-
sifier has to label correctly data that hasn’t seen after having been trained on
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labelled data. This process rarely can be carried out with raw data, because some
features needs to be extracted: this is the reason why in a lot of similar works a
data transformation is used, and this is no exception. However, in order to achieve
this objective, it is necessary to go one step at the time.

Part I of this work is all about that: transformation of signals using a math-
ematical transform in order to effectively extract features. It is a derivation of
Fourier transform (so it is useful in order to work on the frequency-domain of the
signal), but has a lot of good mathematical properties which allow the signal to be
invariant to translations and scaling: its name is Wavelet Scattering Transform,
and all its components will be analysed piece by piece. Fourier transform will be
taken as the starting point in chapter 1, and from that a new transform, based
on wavelet, will be not only defined, but deeply analysed in order to search for
all its mathematical features and properties: all of that in chapter 2. In chapter
3 another integral operator will be considered: the scattering propagator, which
will become scattering transform: that is the key that will allow, in chapter 4, to
create the Wavelet Scattering Transform, with all its good mathematical proper-
ties proved. Finally, in chapter 5, all mathematical transform will be confronted,
in order to assure WST superiority in this field.

Another problem when analysing cardiac data is the dramatic shortage of it,
especially when treating abnormal beats with some kind of arrhythmia. Acquiring
heart-beats is very expensive both economically and computationally, so it would
be ideal to find a new way that allow to produce great amounts of abnormal beats in
a relatively short amount of time. The idea is then to use a very known technique,
time-series forecasting, and create beats by using it. Time-series forecasting is
usually used to predict what is going to happen in the future, assuming that all
previous hypothesis remain true. Since heart-beats are pretty regular for a certain
person, the idea is to use this technique in order to create new type of a certain
beat, recreating abnormalities and features of that kind of cardiac disease; at the
same type these beats have to be original, in order that no privacy concerns emerge.

This is possible because every kind of signal can be seen as a time series, and
ECGs represent no exception. As a consequence, it is possible to train a mathe-
matical model on some data, learning the characteristics of each kind of heart-beat,
and after that, it is possible to test it on data that wasn’t used in the training, so
that the model has to label each heart-beat itself. In the end we can compute the
percentage error of the model using the real labels of the test part of the dataset:
this is, in short, a statistical learning process.

Part II of this work analyses every important aspect of time-series and time-
series forecasting: to be more precise, these matters are tackled in chapter 6 and 7,
respectively. In the latter classic forecasting techniques will be described, such as
ETS and ARIMA: they will be used to create new heart-beats. Then, in chapter
8 new models are examinated, that permit to enter the world of machine learning
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and deep learning: in particular, two famous and very popular neural models,
Long-Short Term Memory (LSTM) and Recurrent Neural Network (RNN), will be
used as an attempt to improve results, and show how effective and powerful they
can be in such complex tasks.

Finally, in part III the experiment is described in all its detail, especially in
chapter 9, while in chapter 10 all results obtained are gathered, rearranged and
showed through tables and images.

Code used for this work is available at the following link: https://github.
com/MatteoScanuPolito/WST_Classification_Forecasting ECG_Generation.


https://github.com/MatteoScanuPolito/WST_Classification_Forecasting_ECG_Generation
https://github.com/MatteoScanuPolito/WST_Classification_Forecasting_ECG_Generation

Part 1

Wavelet Scattering
Transform



The main core of this thesis work is discussing a tool that is becoming more and
more popular in signal processing tasks: it is called Wavelet Scattering Transform
(WST). The name comes from the fusion of the ideas of wavelet transform and
scattering propagator, and it has a number of very good properties that allows
for an excellent feature extraction when working on time-dependent data, like
ECG. The idea of wavelet transform is definitely not new, and has been formally
introduced by Grossman and Morlet in 1984 [33]. Morlet was working on the
research of hydrocarbons through reflection seismology, when he realized that the
modulated pulses sent underground have such a long duration high frequencies that
it is impossible to separate the returns of close layers. Instead of emitting pulses
of equal duration, he thought of sending shorter waveforms at high frequencies.
Such waveforms are simply obtained by scaling a single function called mother
wavelet. Grossmann noticed how close Morlet’s idea was to his own work, and
they started collaborating with each-other, triggering a cascade of scientists that
started working on it too.

This part is organized as follows. The main point is to show all the properties of
WST, in particular the fact that it is one of the few transform that can represent
a signal in the frequency domain and that is invariant for translations and defor-
mations; note that it is not necessary to be invariant to all kind of deformations,
but only to certain ones, which allow a transform to be Lipschitz continuous; more
on that later.

In order to do that, it was decided to take a long and winding road from the
beginning of signal analysis, starting with a short recap on Fourier transform in
chapter 1. Note that only stuff strictly related to this work was considered, so there
is no consideration of Fourier series or the discrete version of Fourier transform;
a lot of other books treat those sections in a deepened fashion. Besides the only
focus of this work is to consider the case if signal f is continuous on its temporal
and frequency domain.

At the end of the chapter there is a proof that show some of the problems of
Fourier transform when it comes to modify the original signal by translating it or
by deform it in any way, but some interesting alternatives start to be proposed,
like Fourier transform with a modulus. The idea results too weak, but it is an
interesting idea that will be recovered later on.

Chapter number 2 is the one which introduce and study a very unique type of
functions, called wavelets because of the affinity of their graph to a little wave.
They are created by translating and deforming one function which is positive,
zero-average and respects another existence condition.

Its convolution with the signal gives the Wavelet transform, which solves one
of our problems, as it is invariant to deformations, but not to translations; it has
a similar property, as it is shift-invariant, which does not resolve the problem still.
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More analysis was considered to be important, as wavelets can create orthonor-
mal basis which yield the existence of a scaling function, that will become fun-
damental in later chapters; for this reason it was decided to comment on some
properties for wavelet basis, as it is also the main tool that allow to approximate
the signal when transformation is on.

Finally, some comments were made on its regularity and on its behaviour when
interval considered were very small. This was decided because when signal are
analysed, most of the informations are concentrated in singularity points with
irregular structures; from this point of view, ECG are a hugely important example,
and it has to be contemplated.

In chapter 3 a new landmark is defined: the scattering propagator, introduced
by Mallat in [43], is the main tool that allows to define wavelet scattering trans-
form. It is basically just a cascade of convolutions and modulus, and by itself is
neither translation invariant nor Lipschitz-continuous. However, by adding the in-
tegral on its domain and averaging with a scaling function, both of those properties
are respected, so that the WST can be defined and its properties demonstrated in
chapter 4.

Chapter 5 is just a short recap on the properties of each transform analysed,
with table 5.1 to keep everything clear.



Chapter 1

Fourier transform

1.1 Definition and properties

Wavelet Scattering Transforms find their roots from the Fourier transform, prob-
ably the most important concept in time-series analysis. It allows to convert a

o~

time-domain function f(t) into its corresponding frequency-domain one f(w); in
other words, while the first one give information on the value of f in each time
instant, the second one measures how much oscillations at each frequency w there
isin f.

Definition 1.1.1. The Fourier transform of a time-domain function f(t) is:

fw)= [ " F et (1.1)

— o
Before going ahead, let’s list some of the main properties of Fourier transform,

as it will be widely used throughout this work.

1.1.1 Base properties
Property 1.1.2. Consider a function f € L?*(R). Then the following are valid:

1. scaling (or dilation) property:

flay = =7 (2) a0, (1.2)

lal

2. time shift, which yields frequency modulation:

f(t—b) = e fw); (1.3)
10



Fourier transform

3. exponential modulation, which yields frequency shift:

— ~

e f(E) = Flw — a). (L4)

Proof. These properties are quite easy to prove.
1. Putting u = at :

~ +o0 .
Flat) = /_  flatye e
- ;| /_:o f(u)exp (—in) du
1 ~/w

=/ (%)
2. Putting t — b =w:

fe—b)= [ " p = b td

+o00 .
_ / f(u)e—zw(u—i-b) du
+o0 . b
= flu)e e ™qt

. 400 .
e—zwb / f(u)e—zwtdt

= e b f(w).
3. We just have to compute the integral explicitly to show that:

eﬁf(t) = /+Oo f(t)e e tdt

= _m f(t)e = atgy
~ flw-a)

O

In the context of our analysis it’s important to deeply analyse this transform,
as it will be fundamental to understand and to explain why it was necessary to
introduce the scattering transform and why does the latter improves the results
obtained with Fourier. For this reasons, it has to be determined if Fourier trans-
form is a bounded operator, because that would mean that it is continuous too.
These two concepts are equivalent for operators, as stated by equation (A.1.4),
whose proof and statement are in appendix A.

Now it is clear, because of the properties of integrals, that Fourier transform is
a linear operator: but is it bounded? In order to show this, it is necessary to state
a massively important results in functional analysis.
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Fourier transform

1.1.2 Generalized Riemann-Lebesgue Lemma and its va-
lidity for Fourier transform

Lemma 1.1.3. Consider a function f € L'a,b],—cc < a < b < 400 and a
bounded function A defined on R; if the following averaging condition holds

lim 1/06h(t)dt:0, (1.5)

le] =400 C

then the generalized Riemann-Lebesgue Lemma states that:
b
lim f(t)h(wt)dt = 0. (1.6)

w—+00 Jq

Proof. Consider f(t) = 1;,4 the indicator function of set [¢,d] C [0, 400); then:
+o0 b
/0 1o h(wt)dt = / h(wt)dt

and after substituting x = wt we have:

/ab h(wt)dt = i (/Obw h(z)dz — ./OW h(a:)da:) .

Because of the averaging condition this quantity goes to 0 if w — 400, which
means that for linearity the following holds for any step function g:
+o0o
lim g(t)h(wt)dt = 0.

w—+00 Jo

Since step function are dense in L'(R), if |h| < C, then for every f € L'(R) and
V e € RT, then exists a step function g such that

3

L7180 = gl <17 = glh < o

If w is sufficiently large the following is obtained

Ji o g(t)h(wt)dt‘ <t

which yields:

'/OJFOO f(t)h(wt)dt’ < /0+oo lf (&) = g@®)||h(wt)| + ‘/;oo g(t)h(wt)dt

€ €
< — — = €.
_2C0+2 €

The same can be applied if integration is done in the set (—oo, 0]. O
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Fourier transform

Considering our case, since:

1 e _, 1 .
lim f/ e dt = lim —(1—e),
0

le] =400 C le] =400 C

from which it is possible to have an estimate of the modulus:

: 1 _ . 1 _
lim —[1—e"= lim —|1+e"
le|—+o0 || le|—+o0 |c ]

< lim (1] + e )

because e~ is a point in the circumference of radius r = 1 in the complex plane

V t € R, which means that |e~®| = 1, so our point is proven.
That means that the Fourier transform is bounded, and so it is continuous.
This will be a very useful fact in the continuation of this work.

1.1.3 Invertibility of Fourier transform

Observation 1.1.4. If f € L'(R):

—~ +o0o
F@l < [ If@ldt < +oc, (1.7)
which means that f € L'(R), too.

Definition 1.1.5. Since it will be widely used in this work, let’s remind of the
concept of convolution of two function f,g € L*(R) :

+oo

frot)= [ = wgtpde = [ fa)glt - o)

—0o0

Because of linearity of the integral, convolutions of functions are linear, too.

Observation 1.1.6. Thanks to Fubini’s theorem, if f,g € L}'(R) = fxg € L'(R).
This is easy to prove:

5%l = [ 1 g @lar

_/+OO’/+OO (t —x) (x)dx’dt

+00 +oo
< / / f(t —x)g(x)|dzdt

—/ lg(x |/ f(t —x)|dtdz

= llglll[flly < +o0.
13



Fourier transform

Theorem 1.1.7. If f, f € L'(R), then the inverse Fourier theorem affirms the

following:
£ = o= [ Flo)ed (18)
= — w)edw. .
21 J o0
Equivalently, it can be said that if hypothesis are verified, then Fourier transfor-
mation is invertible, and the inverse is continuous.

Proof. Given t > 0, € R", ¢(w) = exp(iwz — mt*|w|?), its Fourier transform is the
following;:
—7lz —y|”

dly) = e (7

)=4Mx—m,

with g,(z) =t™" eXp(M). Then thanks to a lemma in [31]:

[t fuydo = [ Foo= [ 15 = = o).

Since

/e’”‘””lex =1

and because f is bounded and uniformly continuous, then f * g, PV f. Meanwhile
_>

f € L', and for the dominated convergence theorem:

lim efwt2|w|2eiwz A(w)dw _ /ei‘”f(w)dw — f(f<f))7

t—0
with F(f) = f being another notation to denote the Fourier transform. So it

was proved that f = F(F(f)), and they are both continuous: so the proof is
complete. n

1.2 Sensitivity to translations and deformations

One of the main points in signal analysis is predicting the behaviour of its trans-
formed version; for example, in this work it will be fundamentally important to
understand if a certain transform is able to make a certain signal invariant to
translation.

Definition 1.2.1. Let’s define L.f(t) as a translation operator, which means
simply that L.f(t) = f(t—c),c € R. Then, an operator ¢ € L*(R") is translation
invariant if

¢(Lef) = ¢(f), ¥V f € L*(R"). (1.9)
14



Fourier transform

Fourier transform are not translation invariant (it’s trivial), but if one adds a
modulus to it, then it is: more on that on chapter 3. In fact, if Z(w) is the Fourier
transform of a signal z(t) € L?(R?), then:

2(w)] = |Lex(w)], ¥ c € R; (1.10)

this will be one of the tools that will be used in order to introduce scattering
transform in 3.

At the same time, it is quite clear that Fourier transform, despite being fun-
damental for opening a new field of mathematical study, have another very big
downside: they are not invariant to deformations (even the smaller one) at high
frequencies.

To show it, consider the following linear operator 7(x(t)) = sx(t),|s| < 1 and
then consider z(t) = ¢“'6(t), which is the modulated version of a low-pass filter
0(t). Then, if we consider the dilation x,(t) := x(t—ts), frequencies are moved from
w to (1 — s)w; in other words, the frequency center of the transform is translated.

Then, if we define:

o = [ wl?0(w) P

as the frequency spread of function #, then the following is valid:

02 = [l = €Pl[a(w)Pdw = o}
9 1

%:s—l)/( (1= 9y f(lis)
—/\r—sw )P (w) dw

=(1-s)%0?

x?

and
2

dw

which yields that the distances between the central frequencies of x and x,, equal
to s&, is large compared to their frequency spread; this means that  and Z, have
disjoint supports and that

l1Z+ =[]l = ll=[l = |sll¢[161],

which can be arbitrarily big because of £, which means that Fourier transform are
not Lipschitz continuous (i.e. stable) to deformation, as said before.

The importance of Fourier transform can not be underestimated: most of the
modern techniques for analysing signals and performing feature extraction comes
from that idea, and the wavelet scattering transform is no exception.

Despite that, it is clear that in order to work precisely with signals, it is neces-
sary that another mathematical operator is introduced: this is one of the reasons
wavelet transforms were first introduced.
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Chapter 2

Wavelet transform

2.1 Definition and existence conditions

First of all: what is a wavelet? In order to define it, let’s consider a zero-average
function ¢ € L*(R), called the mother wavelet; so a function such that

/+Oow(t)dt — 0. (2.1)

Definition 2.1.1. Starting from it, we call wavelets all the function obtained by
translating and scaling of the mother wavelet ;

1 (t=b
Yap(t) = ]a\_;w <a> ,p>0, a,beR, a+#0. (2.2)
Note that in this work only one case will be covered, with p = 2.
Observation 2.1.2. The mother function is normalized, so ||¢|| = 1; this yields
that each function generated from that is normalized as well: |[¢,,] = 1.

Definition 2.1.3. If f € L?(R), its wavelet transform is defined as follows:

W o) = i) = [ 50 S () an 23

where 1*(t) is the conjugate complex of 1) (t).

Basically the wavelet transform take as input a function f(t¢) and filters it with
a scaled and translated function t,(t). The above definition can be interpreted
as a convolutions of two functions, since W f(a,b) = f % 1,(b), with:



Wavelet transform

So it is clear that Fourier transform and the wavelet transform have a lot in
common, and have both the same aim: measuring the time evolution of each
frequency. This is accomplished by using a complex analytic wavelet, that is
able to separate amplitude and phase components, while real wavelets W f(a, b)
measure the variation of f near a point b, and can be used to isolate peaks or
discontinuities; the size of the neighbourhood is proportional to a.

In particular, the bigger the value of a the bigger the time interval that is anal-
ysed; this comes at the cost that high-frequencies are basically not considered. On
the other hand, when a — 0 the time interval is very small, and higher frequencies
can be seen by the filter: this case will be analysed in section 2.4.

Not every function in L?*(R) with zero average can be used to define a family of
wavelets; there has to be at least one more condition, thanks to which the following
theorem is proven right.

Theorem 2.1.4. Let ¢ € L*(R) be a real function such that the following condi-
tion, called the wavelet admissibility condition,

oo |} 2
Co= | " W:’)'dw < 400 (2.4)

is valid. Then any f € L*(R) satisfies the following equation:

1 ptoo too ] 1 t—>
=g ( [ 2w () db) d(25)
Proof. Let us define

1 o 1
wi):= g [ W e, ) x a(t)da:

o A SRR Y
= Y a a a
CyJo a?
to prove our point it is sufficient to show that w = f by showing that their Fourier
transform are equal (since each function has its unique Fourier transform).
So:

D) = o [ 5 ) Val (w)Vag (w)da

b @

1 4 too ]l A
=@ [ L) Pa

Changing variable to £ = aw gives:

1o, e ()2 R
ifw) = g fo) [ — ),
so the thesis has been proven. O]
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Wavelet transform

Theorem 2.5 has a very important meaning; it guarantees that, if W f is know,
it is possible (even if very hard from an analytic point of view) to recover the
original function f from it. In other words, wavelet transform is invertible, a fact
that can be very exciting for the future prospect of research in signal analysis and
generation.

__ Imposition for mother wavelet to be a zero average function was done so that

¥(0) = 0 in order to guarantee that this integral is finite. Besides, if ¥(0) = 0 and
¥ (w) is continuously differentiable then the admissibility condition is satisfied.

Theorem 2.1.5. If f,g € L'(R) N L*(R), then the Parseval formula affirms
that:

oo * 1 too o %
| twgwdt= - [ fw) @) (2.6
Observation 2.1.6. Because equation (2.6) holds, the following is also valid:
Feo * 1 oo e
Wiab)= [ e md =5 [ feinwde, @27)

so the same coefficient can be obtained through time or frequency integration.
If f =g, (2.6) changes into the Plancharel formula.

Theorem 2.1.7. If f € L'(R)N L*(R), then the Plancherel formula affirms the
following:

[T Vrord = o [T 1) Pa. 2.

The scaling function ¢ can be seen as the response of a low-pass filter. The
low-frequency approximation of f at the scale a is:

(1020 (V1)) = 7+ 2.9

That is basically the main operation that is made when transforming a signal, and
results may vary a lot dependently to the scaling function: for example we are
using the Gabor wavelets, which uses a Gaussian function as the low-pass filter
(which is the scaling function).

2.2 Core properties

The whole point of introducing wavelet transform is to take advantage of the good
mathematical features of it, which allows, in signal analysis, to extract information
in a more efficient and effective way, improving classification results while taking
less time doing it. We are now going to talk about them, using the same notation

18



Wavelet transform

as in [63]: from now on consider a wavelet transform W f(a,b) of a time-domain
function f(t).

First of all, W f(a, b) is linear, and the proof is trivial, because the inner product
between two functions is linear. Besides that, it is useful to compute now the
Fourier transform of a wavelet, since it will be used later in some proofs.

Property 2.2.1. Consider a wavelet ¢,,(t). Then its Fourier transform is equal
to:

Pap(w) = e /arh(aw), (2.10)
with of course 1 being the Fourier transform of the mother wavelet .

Property 2.2.2. Consider a function f'(t) defined as a translation of f(t), i.e.
f'(t) = f(t =V),b €R; then

W f'(a,b) = W f(a,b—1) (2.11)
This is called the shift property. Proving it is quite simple because:

W f'(a,b) = \1[/%0 £ (t;b) dt
f/ Ft— ) (@b)dt

It is important to note that this property is not equal and does not imply
translation invariance for any operator; in fact it is clear that when translating
a signal f(t) by a certain amount ¥, its wavelet transform does change (in fact
parameter b changes to b—0"). This will be the most important reason that brought
to the introduction of scattering transform.

Property 2.2.3. Consider this time a function f’(¢) defined as dilation of f;
mathematically f'(t) = % f (ﬁ) In that case, the scaling property is true:

W0, b) = Wf(“ b) (212)

S S

W) =5 [ (t‘b> it
LI (e
o o ()= (35)-
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Wavelet transform

The two properties above are the fundamental ones, and they basically allow
wavelet transform (and WST too) to be so interesting when analysing data because
it means that the transform of a signal will be the same even if it was scaled or
shifted beforehand. These are the first big advantages that WST holds versus
Fourier transform, since the latter are very sensible to any kind of deformation, as
explained in chapter 1.

Wavelet transform also has an energy conservation property, which will be
enounced with the following proposition.

Proposition 2.2.4. Given f € L*(R) and its wavelet transform W f(a,b), the
following holds:

+oo B 1 +oo oo ]Wf(a,b)|2
/_OO |f(t)|2dt_cw/0 /_Oo LS da db. (2.13)

Proof. Let’s start by applying Parseval formula to Wavelet transform, and by this
is what we obtain:
d
db) =

/. a12|Wf(a,b)\2dadb = /_:O (/_;OO .

By calling

+oo A .
VO Ryt (aw)e™du

2T —00

P) = Fw)biy(aw), o) = o [ Plo)e™ds

T )
we obtain that:

/]1@2 a12|Wf(a, b)|*dadb = /_+OO (/_+OO ‘p(b)\2db) da

o0 o) |a|
oo /1 ftoo da
= — P(w)|?d )
/,oo <27r /,oo [Plw)fdw ) 2
since |e™| = 1, as already stated.

By using Parseval formula once again, we have:
too /] oo oo da 1 jtoo +o0 |¢(aw)|2
— soldw | — = —/ 2/ ————dadw.
[ (G [ T@Ptn) = o [ 1P [ dade

Evidently from (2.4),

(2.14)

[y,

—00 ]a\
So:
1 +oo  ptoo Wf(a’b) 1 C’w +oo . 5
— ————~dadb = —— d
Cd) /—oo /—oo CL2 ¢ CT/’ 2T —00 |f(w)‘ “
+o0 9
= [ ClswPa,

which proves the theorem. O
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It was already stated that working on sharp time structures was one of the
main goals of wavelet transforms, since it can help on time localization of signal.
In that sense, it is useful to compute the continuous transform of a Dirac’s delta
centered in tg is:

W&wm:V2/¢<tf>ap%@ﬁ:\2¢(“;ﬂ (2.15)

It is clear that for small values of a, wavelet transforms allows for a very good
localization.

2.3 Wavelet basis

Wavelet transform is a two dimensional representation of a one dimensional signal
f(t). This could lead to some redundancy as values for both parameters are
modified; consider only a sample of values might be a solution, and completely
eliminating redundancy is equivalent to build a basis of the space where signal has
to be represented; for more info, check appendix B.

In a certain sense wavelets already form a basis, because starting from the
mother wavelet and through all its possible dilations and translation, it is possible
to obtain every other function in L?(R); there are surely alternatives anyway,
since wavelets do not guarantee orthogonality (they all have unitary norm; so if
orthogonality holds, then the basis is surely orthonormal).

In order to define wavelet basis in general, it is necessary to define what a
multiresolution analysis is; reasons for this definition will be given afterwards.

Definition 2.3.1. Consider a sequence of closed subspaces (V}),ez s.t. V; C
L*(R) V j € Z; this is called multiresolution analysis (MRA) if the follow-
ing properties hold:

1. ...cVi,cCcVWywcCcWVicC...;
2. Ujez Vi = L*(R);

3. UjeZVj = {0}§

4. f(t) e Vi f(2t) € Vins

5. 3 ¢ € Vj such that the set of the functions obtained by integer translations of
it {¢(t—n) | n € Z} are an orthonormal base for Vp; ¢ is the scaling function
we already talked about.

Theorem 2.3.2. Consider an MRA (V}, ¢). It generates the following:
21
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a. a direct sum decomposition of L?(R) through orthogonal spaces of V};

b. a mother wavelet t(¢) such that its wavelets {1;x(t) = 272 (27t — k)}jxez
compose an orthonormal basis for L*(R).

Proof. Starting with point a., thanks to theorem C.2.1 and because V; C Vi, then
Vi = Vo @ V5. Analogously

Ve=VieVi = (Ve Vi) eV

and so it is possible to generalize everything:

Vin=VeoVi=.=eVje oV neN

All these subspaces are orthogonal with each other by construction, which
means that their orthogonal direct sum is L?(R) :

Vo ® (@ v,j) = L[*(R). (2.16)

n=0

Let’s try to write V in another way. Thanks again to theorem C.2.1,
Vo=V,oVi, Vo=V, Vy, (2.17)
so we have

Vo=V, VJ‘Q) D Vj‘l,

and generalizing:

Vo=Vio---oVi.

At this point the main goal is to see that

+oo
Vo=@V, (2.18)
n=1

n=1

Supposing g € Vp = { i V}nr = g € (VL)*+ Vn eN, which yields that:

1
In order to do that it is needed to show that [ i V}n} = {0}.

+00
ge () Vo
n=0

So, since V; are increasing, for property 3. of 2.3.1:
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ﬁov _ {0},

which proves that (2.18) is valid.
Finally, thanks to that, considering (2.16) we have that:

L*R) =PV, (2.19)

ne”

proving point a.

For point b., let’s consider a mother wavelet ¢ for MRA (V},, ¢); in this context
it means that all possible integer translations of ¢ are an orthonormal basis for
Vit

Considering the same isomorphism defined in C.2, since

I(f() = V2f(20),  I(¥(1)) = V29(2t),

and

/+ FODE—n)dt = ;/+ FOPEE—n)dt = 0,n € Z, f € Vi
then from property 4. in 2.3.1 ¥(2¢t — n) € Vi* V n € Z which yields that
{V2¢(2t—n) | n € Z} is an orthonormal basis for V;-. Following the same reasoning
we have that in general {27/2¢)(2/t —n) | n € Z} is an orthonormal basis for the
generic Vf, Jj € Z. It means that, because of (2.19), wavelets generated from

mother wavelet ¢ form an orthonormal basis for L*(R).
O]

A very famous example of orthonormal basis of space L?(R) built with wavelets
is the one realized by Haar in 1910:

1 t—27

where

1 ifo<t<
Yt)=3-1 if5<t<

0 otherwise

(2.21)

So dilations and translations of ¢/ generate an orthonormal basis of function
space L*(R).
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Wavelet transform

Using function basis to work on a signal is a very important and appreciated
technique, since it allows for a linear approximation of the signal itself. In fact,
given a signal f(t) and an orthonormal basis of functions B = {gm}men, it is
possible to project this signal over M given functions chosen from the orthonormal
basis, so that the following:

M-1

fur = Z <f7 gm>gm (2'22>

m=0

represents the linear approximation of signal f using M functions from basis B.

Of course this type of operations have to be smart: one doesn’t want to build
an approximation too far from the original one (maybe cause of a low value of
M) and at the same time using M too large will lead to an ineffective use of this
approximation, since it will be too large to compute it in a efficient way. The main
point is to minimize the approximation error, which can be computed as the sum
of the remaining squared:

+oo
elM] = IIf = full®> = X [{f.gm)l”.
m=M

This approximation can be improved making it non-linear if one considers ran-
dom functions and doesn’t choose them a priori; in that case we have:

v = Z <fagm>gm7 (2'23>

melns
and the approximation error is simply computed as:

M=\ = full®> = D° [{f, 9m)]*.

mée Iy
2.4 Wavelet regularity

2.4.1 o-Lipschitz functions and vanishing moments

In this section the main point will be to analyse what happens when the interval
considered becomes very small (so s — 0). It is a known fact that singularity
points or irregular structures carry more informations when analysing signals, so
in those cases it becomes very important to know what happens from an analytical
point of view.

Definition 2.4.1. A function f is said to be pointwise a-Lipschitz, with o > 0
in point v if 3 K € R* such that:

‘f(t) _pu<t)’ §K|t_y|o" VtERa (224>
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where p, is the Taylor approximation of f in v of degree m = |« :

p(t) = mi fR)w) (t — )k (2.25)

= K
It is important to remember that:
o for the existence of p,, f € C™;
« at each point v, p, is uniquely defined.

Of course, if f is pointwise a-Lipschitz V v € [a,b],a,b € R, then f is said to
be uniformly «a-Lipschitz over [a, b].

Observation 2.4.2. From definitions above, we have the following:

e if 0 < a < 1 then equation (2.24) becomes:

()~ fW) < Kt —v], ¥t € R; (2.26)

o for each function f approximated in v by its Taylor representation p,, it is
possible to define the approximation error as:

e (t) == f(t) — pu(t). (2.27)
This error is always bounded following this relation:

le,(t)| < K|t —v|*; (2.28)

o if f is bounded but discontinuous in v then it means that a = 0;
o if « < 1in v, then f is not differentiable in v.

In order to enunciate properties related to local regularity of a signal, it’s of
capital importance to use wavelets with vanishing moments; this characteristic of
them yield a first relation between differentiability of f and decay of its wavelet
transform.

Definition 2.4.3. A wavelet 1) has n > a vanishing moments if:
+00 i
/ thp(t)dt = 0,0 < k < n. (2.29)

In this case, « is referred to equation (2.27).

Observation 2.4.4. The followings derives from the above definition:
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1. a wavelet with n vanishing moments is orthogonal to every possible polynomial
of degree n — 1;

2. since v < n, then degree of p, is at most equal to n — 1.
As a consequence of point 1. in 2.4.4, we have:
Wp,(u,s) =0 (2.30)
and since f = p, + e,, for linearity of wavelet transform:
Wf(u,s) =We,(u,s). (2.31)

Definition 2.4.5. Consider a wavelet v € C™ with n vanishing moments; then
it is said to have a fast decay of order n if V. m € N 3 C,, € R such that the
following is true with:

C
< —"_ VieR0<k< 2.32
OO < o YEEROS k<. (2:32)

This definition means that if wavelet 1) has n vanishing moments, not only itself
but also its first n derivatives has a fast decay. This hypothesis will be taken for
granted in the next two theorems, as it will be important for their demonstration.

2.4.2 Regularity theorems
Definition 2.4.5 is really important, as it allow to enounce the following theorem.

Theorem 2.4.6. Consider a function f € L*(R) which is a@ < n-Lipschitz in point
v; then the Jaffard theorem affirms that exists A € R such that

u—vl*

W f ()] < A7 (14|

. ) , ¥V (u,s) € R x RT. (2.33)

Proof. Since f is a-Lipschitz in v, it means that its Taylor approximation in v
allows for (2.24) to be valid. Since 1) has n vanishing moments, it has been already
stated that Wp,(u, s) = 0, so:

W st =| [ 7 a0 o () a
=|/:O(f(t)—py w( “Yai
= /m!f( — ( )’dt

</ K]t—u\“\/_w<t >’dt
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Let’s change the variable x = t’T“:

WS, s)| < V5 [ Klsetu—vlfo@)lde,

In order to conclude our proof, consider that |a+b|* < |a|*+ |b|* < 2%(|a|* + |b]*)
and that [*2° |z|*|y(z)|dx = C, so:

WA s)| < K205 (50 [ el + fu— vl [ p@ldr)
[ )i

u—v

1 +0o0
< K2%st ( |l gl +

Finally, putting
“+o00 “+o00
A= K2° max {/ 2l (@), [ |¢(.¢E)\dm}

proof is completed. n

The latter is useful per se, but it is very helpful with as it allows to prove the
following, which is similar but a little bit stronger.

Theorem 2.4.7. If f € L*(R) is a-Lipschitz (a < n) over [a,b], then it exists
A € RT so that:

(W f(u,s)| < As®T2, ¥ (u,s) € [a,b] x R (2.34)

Proof will not be reported because it is trivial after having proved theorem 2.33:
only difference is to put u = v, since v € [a, b].

This closes this section and this chapter, as behaviour of wavelet transform when
s — 0 have been studied: thanks to the fast decay of wavelets and their derivatives,
it was demonstrated that modulus of wavelet transform is always controlled by a
power of s.

Still, problem has not been solved, as this transform is not invariant to trans-
lation. In the next chapter some fundamental tools will be defined, and they will
improve chances of succeeding.
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Chapter 3

Finite scattering paths

3.1 Aim and reasoning behind

Despite wavelets being regular and localized function, they are not invariant to
translation; in section 2.2 it was proved that wavelet transform is a mathemati-
cal operator invariant to shift of the function taken in input, but it is not itself
translation invariant.

On the other hand, in chapter 1 it was discussed how Fourier transform is not
translation invariant, but adding a modulus to the integral would make it so; since
it became clear that properties given by wavelet transform were too convenient
to come back to Fourier transform, in 2012 Stéphane Mallat introduced a new
concept called scattering transform [43]: its work was then expanded with one of
his PhD students, Joan Bruna [9], [10], [11].

This is the situation right now:

e Fourier transform is not invariant to neither translations nor deformations;

e Fourier transform with a modulus is invariant to translations, but not to
deformations;

o wavelet transform is not invariant to translations, but it invariant to defor-
mations.

The goal now is to create a mathematical transform both translations and defor-
mations invariant, bounding together wavelet transform and modulus.

Before doing that, it is necessary to be more precise about deformations invari-
ance: from now on, a new definition, more formal, will be used.

Definition 3.1.1. Denote with L, f(z) the following C?-diffeomorphism:
L.f(x) = f(z —7(x)),z € RY, f € L*(R), (3.1)
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with 7(z) € R? called displacement field. Then the following distance can be
defined over any 2 C R%:

do(1,1 —7) := sup |7 (x)]|2 + sup \V7(z)| + sup |H7(z)], (3.2)
re e

e
with:
1 notation for the unitary vector;
o |I7(2)]]2 is the euclidean norm in R? of 7;
o V7(x) is its Jacobian matrix;
o Hrt(z) is its Hessian matrix.

Thanks to that, it is possible to define precisely what type of deformations we
want transforms to be invariant to.

Definition 3.1.2. A translation-invariant operator ¢ defined over an Hilbert space
H is said to be Lipschitz-continuous to the action of a C?-diffeomorphism if,
VQCR!IC eRsuch that V f € L2(RY) with support in Q and V 7 € C?(R?),
the following holds:

16(7) — 6(L+ )l < CILF| (S;g; V()| + sup |H¢<a:>|> (39

Another way to say that for any operator equation (3.3) is valid is that it does not
commutes with the action of a diffeomorphism.

Now, obviously, if ¢ is Lipschitz-continuous, not only that operator is translation
invariant, but it would also be deformation invariant in such a way that even high-
frequency instabilities can be avoided; this can be obtained by using a wavelet
transform, but at this moment this is not possible, since it is not invariant to
translation.

As already stated, it’s time to modify it so that (1.9) holds for a modified
version of wavelet transform.

In general, given Q € L?(R) an operator non-invariant for translations, it yields

that
/ Qz(u)du (3.4)

is translation invariant. Then it is possible to define a simple operator invariant
to translations, like Qx = x % ¥, which yields:

/x*lm(u)du =0, (3.5)
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because

[ vatwydu =o. (3.6)

This is a problem for our aim, as any linear transformation of Qx would be
equal to zero. So it is necessary to add another pooling operator which has to be
nonlinear, since a linear one would make the integral vanish still [11].

The operator chosen is a modulus:

My(u) = ly(u)| = /ly(w)]2 + ys(w)[2, (3.7)

where y,(u) and y;(u) are respectively the real and complex part of signal y(u) =
yr(u) +iy;(u): this allows to remove the complex phase of the signal. Operator M
has the following properties:

e it is non-expansive, in order to preserve stability, which means that [|[Mz —
My|| < ||z — yl||. This is trivial and will not be proved,

« as proved in [9], if ® € L*(R") is a non-expansive operator and commutes
with the action of diffeomorphism, then M is a pointwise operator which
means that My(u) only depends on the value of y(u) itself.

Finally we obtained the following:

[ M) = [ foxwn()lde = |z x s,

which means that the resulting translation invariant coefficients are L'(R?) norms.

3.2 Definition of scattering transform and basic
properties

3.2.1 Definition of scattering propagator

It is important to state that from now on a different notation will be used for
wavelets; for any A € RT, ¢, (t) = A\p(At) and so its Fourier transform is ¢, (w) =
P (%) . This means that energy of 1 is concentrated in t = 0, while w = X\ rep-

resents the center frequency of @Z, and it is the point where most of its energy is
concentrated as well.
Scattering coefficients will be commented later on; for this moment, just con-
sider that if ¢ is the number of wavelets per octave, then A = ﬁ, k € Z.
Changing the value for A would allow to obtain a first order of scattering coef-
ficients:

{lz *4al}a, (3.8)
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|z * 1y, |

Sz(t,\1) = |z *1y, | * ¢
[
”‘I" * YPx, | * '(f';')\-zl

Sx(t, A1, A2) = ||z xPn, | xPr,| * @

x| 000000000 0OOOOO00O000000000

Figure 3.1. What a cascade of modulus and convolutions really mean: each
node represents a coefficient. Note how the number of coefficients increases
when increasing the order, one of the reasons why usually coefficients after the
second order are not computed.

[l % x| * ¥,

which measures the sparsity of wavelet coefficients, at the cost of a loss of infor-
mation due to integration (and not because of the presence of modulus): to be
precise, all non zero frequencies are lost. In order to recover part of the informa-
tions lost in the process, it is possible to reiterate the process, and compute the
second order coefficients as follows:

{|‘T*¢>\1| *¢X2}>\2' (39)

It basically means that we are computing the wavelet coefficients for |z x 1y, |, so
that we have a much larger family of invariant coefficients.
This process can be iterated further, allowing for a more general definition.

Definition 3.2.1. Consider a finite list of numbers p = (A1,..., \,); it is called
scattering path. All the possible scattering paths of length n are denoted as
P... The set of all admissible scattering paths of non finite length is P. It is a
sequence of frequencies, and the output of the scattering transform will basically
be a function of it.

Definition 3.2.2. Given p € P,, the following operator is called scattering
propagator:
Upr :=U,,...Uyx
:| |l’*’¢))\1| cte | *¢A7l|’

It means that operator U, is basically a cascade of convolutions and modulus
that allows to compute scattering coefficients up to order n; each U, maps the
frequencies covered by 1, to lower frequencies with modulus; if p = ) = U,x = .
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3.2.2 Basic properties

This operator is well-defined and continuous in L*(R?) since ||Uyf]| < [[aall1 | f]]
for any choice of \.

Property 3.2.3. Consider two scattering paths
p=,.., ), 0 =\, .\,
with n # m in general. Then, denoted a new scattering path
p+p = AN, A,

the following holds:
Uptp = UpUy (3.11)

If needed the scattering propagator can be defined for "negative" frequencies
too, analogously to what happens with Fourier transform.

Property 3.2.4. Consider a scattering propagator Uy. Then, V f € RY the
following is valid:

U_xf=Uf, (3.12)
and denoting —p = (—Aq,...,—\,) as a negative path, it is possible to generalize
(3.12) as follows:

U_,f =Uyf. (3.13)

Now, sets of function v, not necessarily have to be wavelets in general; this
means that a scattering propagator (which yields a scattering transform) for an-
other set of function can be built. However, in the original formulation of scattering
transform the only type of function used was wavelets, so the general case will not
be explained (also because it would fall outside the scope of this work).

In any case, the fact that 1 are wavelets is really important for the definition
of scattering propagator; for example 3.2.4 would not be valid if other functions
would have been used; in fact, since f is a real function, W f(A,-) = Wf(=A,-),
which yields (3.12), proving the point. So for simplicity only real functions with
positive paths (i.e. paths with all positive values) will be considered, as the same
properties holds for complex functions and scattering propagators that use paths
including negative values.
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Chapter 4

From scattering transform
to Wavelet Scattering
Transform

4.1 Localized Scattering Transform

Scattering propagator was the last tool needed to define the scattering transform.

Definition 4.1.1. Consider a function f € L'(R?), then the following is defined
as the scattering transform of function f along the path p € P.:

1
SIw) = [ U (@) (4.1)
1
= [T xonl e )l (42)
where
Ly = /Upé(u)du, (4.3)

and () is a Dirac delta distribution.

It’s immediate to note that this new integral operator has two properties inher-
ited by the scattering propagator.

Property 4.1.2. Consider a scattering path p and its associated scattering trans-
form S,; then the following are valid:

1. if f is a real function, then Sf(—p) = Sf(p);
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2. if f is a complex function, Sf can be defined for negative paths, but not in
such a way that property 1. holds;

3. extending this idea we get that Suf(p) = |u|Sf(p),V n € R;

One last step to be done before introducing WST is to consider a localized
version of the scattering transform called windowed scattering transform, which
will be used to show that scattering transforms have all the properties required
(translation invariance, diffeomorphism stability). Most importantly, it will be
showed that its limit for J — 400 defines the wavelet scattering transform, and
it will be showed explicitly that it is exactly coincident to one operator that has
been already defined.

Definition 4.1.3. Let J € Z and p = (\1,...,\,) a scattering path, with |\;| =
27% > 277 Then a windowed scattering transform of a function f € L'(R?) is
defined for all admissible paths p as the following:

Syf(p) = Upf x ¢os(x)
= |f x| x| [ *r,| * Par(x) (4.4)

 fentiooate— o

with ¢qs(z) = 27 ¢(277x) being the scaling function, one of the key points of
this operator; for now it localizes scattering transforms over spatial domains of
size proportional to 27.

We now have two goals:

« defining the scattering transform as a generalization of (4.4) when J — +o0;
o expanding the amount of functions admissible from L! to L%

These two goals are both accomplished thanks to the following theorem.

Theorem 4.1.4. If f € L*(R?), then
Jim S, 7(p) = SF(p) = : [ Utz (4.5)

for any admissible path p.

Proof. Let’s prove that

Jim VIS, )l = 0] [ Upf (). (46)
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Now, since S;f(p) = U,f * ¢ps, then for the Plancherel formula we have the
following;:

2|5, ()12 = 24 (2m) 7 [ 10, () 2162 w) P (4.7)
Now, thanks to the following:
« ¢ € LY(RY), and so are its derivatives, so ¢(w) = O((1 + |w|)™"), and then
(2m) 2" |6(27w)* = [|¢]%8(w); (4.8)

lim
J—4o00
e if fe L'(RY) = U,f € L'(R?) = U,f(w) is continuous in w = 0,
it is possible to affirm that (4.7) can be re-written as:

. dJ 2 _ 7T ¢ 2 2
Jim 2%Ssf ()7 = [UpFO)7 ]

which proves that (4.6) is true. Coming up to the conclusion, thanks to proposition
3.11in [43], U,6 # 0, so from (4.6) we have:

i IS @I _ [ U (@)

im = ) 4.9
R 8,000~ [T 0()d )
and that means (4.5) has been proved. O

The only thing that is missing to have the complete definition of a Wavelet
Scattering Transform is the scaling function; in fact it is present in (4.4), but
seems to be missing in (4.1); does it mean that scattering transform and wavelet
scattering transform are that different?

As a matter of fact, it is just a consequence of the notation used by Mallat; in
fact scaling function is already there in (4.1), it just hasn’t been explicated. In
order to do that (and to finally define Wavelet Scattering Transform) it is needed
to start from (4.4), remembering that ¢ys(z) = 27 ¢(27/2). At this point it is
basically done, because thanks to (4.7) and (4.8):

Upf *¢2J Jjoo Upf
which implies thanks to Plancherel formula
Upf 021 — Upf:

this proof can be found in [31].

It is important to note that Folland does that for parameter t — 0, but gggj has
the same asymptotic behaviour when J — +o0.

So this means that in (4.1) the convolution with a scaling function was already
considered, it just wasn’t explicit because ||¢|| = 1 for definition.
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4.2 Definition of Wavelet Scattering Transform

Now it is possible to define the Wavelet Scattering Transform.

Definition 4.2.1. Considering a scattering path p = (A1,...,\,) and a scaling
function ¢, the wavelet scattering transform of the generic signal f is defined
as the following integral operator:

WSf(p): = 1/Upf*¢(u)du
g (4.10)
- Mp/| f x| | % o, | d(w)du.

In order to close this part of the work, it is necessary to show that WST is
an operator that preserves the norm (so it is non-expansive), translation-invariant
and does not commute to the action of a diffeomorphism.

4.3 Properties of WST

Before starting, it is important to note that everything we have seen for scattering
transform and WST is valid for functions in L'(R"); this is true, but fortunately
everything can be expanded for L?(R™). This will not be demonstrated in this
work, but can be found in [43].

Most of these properties will be proven starting from the windowed scattering
transform S; this is a little easier and in any case the wavelet scattering transform
inherits all properties of it, representing its limit when J — 4+00. When necessary,
some properties of scattering propagator U, will be stated as well.

4.3.1 Non-expansion
Proposition 4.3.1. WST is a non-expansive operator, which means that:
WS f(p) = WSh(p)| < |If =hll, ¥ p Py, Vf.he L*RY). (4.11)

Proof. Let’s denote
Usf ={Asf, (Uzf)rez},

with A;f = fx ¢os and Uyf = |f = 1, the classic scattering propagator, with 1)
a generic mother wavelet. This is a non-expansive operator since we are working
with wavelets, and we know that wavelet transform is unitary; besides the modulus
is non-expansive. In fact:

Usf = Ushl* = [|Asf = Ashl* + 3 _MIUAS] = [UARI?
A
< |[Wf—=Whl* < [If = h|*
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Since:
o U U, = Uy, because of 3.2.3;
o A;U, = S;(p), for the definition of S;(p) itself;

then:
UsUpf = {S:f(0), Upsrf)rez}, p € Py. (4.12)

Now, since U is non-expansive, the following is valid:
||Upf - Uth2 = ||UJUpf - UJUth2
= 1S1£(p) = Ssh@)I* + |Unspf — Uniphl®

and summing those for all admissible paths p:

ST ISsf () = Ssh(p)|* < |If — R

PEPx

Since S is non expansive, WST is non expansive as well when J — 400, so proof
is done. O]

4.3.2 Translation invariance

In order to prove that WST is a translation-invariant, it is necessary to enounce
the following.

Theorem 4.3.2. Consider the translation operator L.f(x) = f(z — ¢); then for
every f € L*(R%),V c€ R? and V p € P

lim [[S;(p)f — SsLef(p)|| = 0. (4.13)

J—+o00

Proof. Since S;L.f(p) = LSy f(p), we can easily prove that
Jim [[LeSf(p) = S1f ()| =0V f € LA(RY). (4.14)

This is because every f € L?(R?) can be written as a limit for the sequence
{fn}nen; since S; is non-expansive as seen before, and L. is unitary by definition,
it is possible to verify to:

ILeSsf(p) = Saf(P) SILeSsfa(p) = Sfa®)l +2If = full
— MLef = FI+1f = fll =0

n—-+00
Which proves our point. O]
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4.3.3 Lipschitz-continuous

Theorem 4.3.3. Consider f € L?*(R") with ||U,f]|1 < +oo and 7 € C?*(R") with
V7]l < 5. Then the following relation holds:

1SsL-f(p) = Ssf(p)Il < ClULfI[1 K (7), (4.15)
with
K(7) =277 ||7]|s0 + ||V 7|0 max {log <HAT”°O> ,1} + | HT|| 05 (4.16)
V7 loc

where [|AT|[og := sUp, yepa [T(2) — 7(u)].
Demonstration is really long: should I prove it?
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Chapter 5

Final considerations

5.1 Recap on Fourier, Wavelet and Wavelet Scat-
tering Transform

Fourier transform is considered as one of the main landmarks in signal analysis, as
it was one of the first transform that allow to represent functions in their respective
frequency domain, as opposed to the classic time domain representations. Because
of that, it became extremely popular. It is defined as:

“+00

flw)= _ f@®)emdt

Unfortunately some disadvantages of it have become quite clear as signal anal-
ysis tools were getting better and better; in fact Fourier transform is not:

« translation-invariant;
¢ invariant for deformation.

More on that on chapter 1.

These two properties are fundamental for an effective and efficient signal anal-
ysis, especially today: while performing Machine Learning and Deep Learning you
want models to be able to transform signals without losing its original meaning or
properties: this is something Fourier transform is not good at.

Despite that, it is clear that putting the modulus to the Fourier transform

Fel=| [ rtear

makes it translation invariant; this is due to basic properties of the integral, as
the area under a graph does not change if function is translated. This will be
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H Transform \ Non-expansive \ Translation \ Lipschitz H
Fourier v X X
Fourier with modulus v 4 X
Wavelet v X v
Scattering propagator v X X
Wavelet Scattering v v v

Table 5.1. Recap on the properties for the main transforms analysed.

very important later on, and will be one of the main ideas that allowed to go from
wavelet transform to the wavelet scattering transform.

In order to solve the deformation-invariance problem, wavelet transform was
introduced, and it allowed to have a non-expansive operator invariant to defor-
mation; the main disadvantage of it is that it is not invariant to translations, so
despite a good step in the right direction, main goal is not reached yet.

Let’s remind ourself of the definition. Given a mother wavelet ¢ , wavelet
transform is defined as:

Wit = [ - ()
a,b) = — :
—00 \/a a
Main properties for wavelet transform can be found in chapter 2.
Ideas were put down, so it was just a matter of putting them together. For now
we have:

o Fourier transform, which is sensible to translations and deformations;

o Fourier transform with modulus, which is only invariant to translations but
not to deformations;

« wavelet transform, which is sufficiently invariant to deformations (that con-
dition is called Lipschitz-continuous; it is defined in chapter 3) but not to
translations.

Now it is time to put those two together.

In order to do that, a new idea opened a new chapter in this field of knowledge:
not only putting the modulus to the convolution, but using a cascade of modulus
and convolutions in order to recover more information on the signal. To do that
it was necessary to define a new operator, called scattering propagator:

Uyt = | %[ %t |
p is a sequence of frequencies called scattering path. More on that on 3.2.
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Thanks to that it was possible to define a non-expansive, translation-invariant
and Lipschitz-continuous integral operator. It is the Wavelet Scattering Transform:

WSH(p) = - [ Uf = o(uiu

At the end of the day it just is a scattering propagator averaged by a scaling
function ¢; the latter is yield by the same MRA that itself was used to define the
family of wavelets generated by the mother wavelet v, as seen in 2.3.

In this work it was also proved explicitly that equation (4.10) is perfectly equal
to (4.1): missing of scaling function was only due to the notations used by Mallat
in [43]. This was done in section 4.

Finally, in order to close this chapter and this part of the work altogether, all
properties studied for each mathematical operator defined are summarised in table
5.1.
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Part 11

Time-series analysis and
forecasting
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Transforming the signal in order to study its spectrum is undoubtedly an in-
credible achievement from a mathematical perspective, which probably allowed
science as a whole to come as far as it did.

But that is not the only point of this work.

In this second part theoretical bases and properties for time-series will be taken
on, analysed deeply, and demonstrated if necessary. The need of doing that is
evident in the structure itself of ECGs, as they are modelled as time-series.

Time-series is one of the most important concepts in data analysis, since it
allows to model in a simple and intuitive way a lot of different processes, related
to health, economy, chemistry, and so on. Besides that, it can help in forecasting
the future, especially when talking about processes that repeat themselves in a
redundant way as time goes on.

This is probably the main feature of time-series: it allows to take a certain
quantity that change with time (for example the number of passengers that travel
with a certain airplane company), values taken with regular intervals, and extract
some information about them; the airplane example is very didactic and will be
widely used while explaining all the basis of time-series and its analysis.

This part serves as a theoretical foundation for the second aim of this work.
In a modern world where everything can be saved and written in some kind of
tabular data, these informations become at the same time very important, as they
describe basically everything about us, and also very fragile, as they can be stolen
very easily and very frequently, too: in the last few years news of data robbery
can be the main focus for a couple of days.

It becomes particularly delicate when talking about data regarding personal
health, as clinical reports or ECGs, since a lot of personal and private information
are hidden in there: all these issues makes collecting ECGs so much harder because
of all the privacy issues that were listed before and because of the time needed to
collect a sufficient amount of data.

These problems would be overcome if only a new technique allowed to create
realistic human beats, without actually having to use an electrocardiograph: this
aim will be achieved thanks to the time-series forecasting and new methods of
performing it, including some neural methods: besides, a comparison between
them and some classical methods (like ETS and ARIMA) will be performed.

This part will be organized in a fairly simple way. Chapter 6 will talk about
everything that is needed to be known when computing time series: its definition,
its properties, its characteristics and a little bit of theory behind its concept too.
As mentioned beforehand, a very known dataset (called airline) will be introduced
and used in order to show some of the properties in a very intuitive way.

Forecasting is the most interesting thing about this part, and it will be divided
in two chapters. Chapter 7 will be about all things regarding forecast for time-
series using classic time-series techniques, in particular ETS and ARIMA: they
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don’t require any training model, that will be used later on. Forecasting is the
main core of time-series applications: in fact it is possible to use them in order to
forecast behaviours of a lot of different processes for a period which represent the
future, with a certain degree of certainty. Of course, the furthest the time of the
prediction, the bigger the uncertainty.

After having introduced this issue, all the forecasting method will be analysed
and described in a deepened fashion, and each one of them will be used in order to
create artificial beats, which will be used for train a classifier that will be able to
distinguish regular beats from irregular ones: of course results will be compared.

Finally, in chapter 8 the last frontier of time-series forecasting will be taken on,
as time-series forecasting models based on deep-learning neural neural network will
be analysed. These models are becoming more and more popular as time goes by,
and their potential is far to be reached yet.

Despite being quite heavy from a computational point of view, their training
process (i.e. the research of the optimal values for all their parameters) become
feasible thanks to new hardware technologies such as GPUs: the expectation are
high, as it is expected from them to dramatically reduce mistakes and creating
very realistic human beats: thanks to it scores for the classification process will
be far more solid than a lot of other research works.
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Chapter 6

Time-series analysis

6.1 Theoretical foundation

Time-series analysis is one of the main derivation of one of the main breach of
mathematics: probability and statistics. All of its theoretical foundation will come
from it, and the main features will be listed here.

Let’s start reminding some of the basic definitions.

Definition 6.1.1. In this work a time-series will be defined as a sequence of
random variables (X, );ez, Z a generic set of indexes, T set of instants and ¢; € T
time instant in which value X;, has been taken; remember that this happens with
regularity (so each time interval is the same, i.e. t;11 —t; = ¢,i € Z,c € R constant
value).

Consider that in this work every time-series will be of finite length, so from now
on I ={1...,n} C Nand if we have to consider the distribution function of it we
have the following notation:

Fy, ox, (@1, 7)) = P(Xy, < 2,0, X, <),

which is basically the same notation as the one used for indicating the cumulative
distribution function of a random vector of n random variables.

Definition 6.1.2. A time-series is said to be first-order stationary if the fol-

lowing holds:
Fxti(.ﬂﬁ):FxtiJrk(iL'), VJ'GQ, Vti,kET, (61)

with € being the set for every possible value admissible for z.
Definition 6.1.3. A time-series is said to be strongly stationary if

Fth,...th (1’1, . ,:L’n) = FthJrkw-thJrk(‘rl? Ce ,l’n), A x; € Q, W ti, kel (62)
Equation (6.2) is also known as strong stationarity condition.
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Definition 6.1.4. A time-series is said to be weakly stationary of order s € N
if

E(th A th) = E(th_;,_h .. th+h) < +OO, YV k s.t. tz + ke T, Viel. (63)

It basically means that the first s moments, which are defined as:

ms = /:Usf(a:)da:, (6.4)

with f(x) probability density function of random variable considered, are the same
for each random variable forming the time-series.

Observation 6.1.5. In case of a weakly stationary time-series of order one it
means that each random variable has the same mean as all the others, i.e.:

E(th) = E(Xti-i-k)?v ti, ke T>Z el
If the time series is weakly stationary of order two the following is true:

]E(th) = ]E(Xti-i-k‘)a
]E(Xtith) - E(Xti+kth+k),v ti, t], k' E T, Z,j 6 [,

which means that not only the mean, but also the variance remains the same for all
random variables. In that case, if X; ~ N (u,0?) Vi € Z = considered time-series
is also strongly stationary.

Concepts, definitions and properties for mean and variance of a random variable
and of a time-series will be taken for granted; more importance will be put on
correlation function, since it will be necessary in order to talk about autocorrelation
of elements of a time-series, as from its value a lot of properties are deducted.

Definition 6.1.6. Consider two time-series X, and X;,, which have means y; and

p; and variances o7 and 0]2. respectively; the following value is called covariance

between random variables:
V(ti ty) = E[(Xi — i) (X5 — )] - (6.5)
The definition above is useful in order to define the following.

Definition 6.1.7. Consider the same random variables as above. The following
function is called correlation between X;, and X :

p(tivtj> = (6.6)
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These quantities can be defined for strongly stationary time series. Let’s con-
sider a time-series (X, );cz, which has to be strongly stationary; among all other
things, it implies that all variables have the same mean and the same variance.
Then, for any ¢;,t;, k we have:

’Y(Zfl + k,tj + k)
p(tz + k,tj + /{3)

7<ti7tj)
p<ti7tj)

If we also put t; =t — k,t; =t we have:

p(ti ;) = p(t —k,t) = p(t.t + k) = pr,

which means that for these kind of processes covariance and correlation functions
only depends on lag k.
These allows for the following definitions.

Definition 6.1.8. Consider a strongly stationary time-series (X3, )icz. Then the
following is called autocovariance function

e = Cov(Xy, Xisn) (6.7)
and the following is called autocorrelation function (ACF)

o = COV(Xt, Xt+k) _ E
VVXOV(X, + k) 0

They both depend only on lag k.

In some cases considering each variable can be not really useful: in those cases
the following is defined.

Definition 6.1.9. The partial autocorrelation function (PACF) is defined,
for a stationary time-series (X;)en as:

Dp = COV(Xm Xt+k|Xt+17 e aXt+k—1)
k= .
V(Xt|Xt+17 SR 7Xt+k71)

(6.9)

It can be defined, in a different way, for non stationary time-series.

As the standard autocorrelation function, it is dependent only on value of lag
k and it is represents the autocorrelation between a generic X; and X;.x, but
without the effect of the variables between them (X i1,..., Xi1x-1).
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Figure 6.1. Correlograms for white noise process (above) and raw airline dataset
(below). It can be noted how the first just rely on elements of lag k = 1, while
for the second also elements with lag £ = 12 is more relevant then its neighbours,
as expected because of the seasonality component.

Note that autocovariance of lag £ = 0 is just variance of random variable X,
which is the same for each random variable; mathematically,

Yo = V(Xt) = V(X¢1a).

Autocorrelation is a very important part of time-series analysis, as it gives a
lot of informations on just how much each elements depend on all the other. For
example, if autocorrelation is very high for £ = 1 and very low for all the others,
we can think of that process like it’s a white noise; on the other hand, if it is very
low for every element and very high for £ =4 or k = 12, it means that a seasonal
component is very strong, and it has to be considered.
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The best way to visualize autocorrelation is to use a graph where on the x-
axis lags are put, while on the y-axis values of ACF for the corresponding lag are
being put; these values are represented by little bars, and these graphs are called
correlograms. Correlograms on figures 6.1 allow to visualize some of the properties
that were listed before.

6.2 Time-series elements

Thanks to time series it is possible to study the changing of processes that can
be described numerically as time passes. They carry an incredible amount of
informations that needs to be extracted, in order to understand what is happening.
For this reason it is mandatory to model time-series in such a way that allow to
decompose them: each component will carry some kind of information, and each
of them will be necessary in order to understand the whole model.

Usually, when decomposing time-series, three components are found and used:

o the first one is called trend (b), and it is used to denote a constant change of
the value independent to every other components. It is often described with
just a linear increase or decrease, as it is sufficient for most of the times;

o when a certain pattern repeat itself periodically it is described as a seasonal
component (s;), and it is probably the most telling component; while in
some subjects, like macro-economics, it can be used a lot less, it is absolutely
fundamental when talking about processes related to tourism or climate. A
very interesting example of those two component bounded together is the
airplane dataset, shown in figure 6.2. More on that later;

o any other effect that can not be described as a trend effect or a seasonal
component is generically labelled as an error or residual component (7).

It is important to put some assumption on residual particularly, since it is a
random component and as such needs to be modelled adequately:

 residuals need to be uncorrelated with each other, and their average needs to
be zero;

o usually residuals are assumed to have constant variance and normal distribu-
tion. So basically:

re ~ N(0,0%), (6.10)
0? dependent from the model used. It might as time passes on.

49



Time-series analysis
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Figure 6.2. Time-series components for famous dataset Airline: this decompo-
sition has been evaluated using STL.

The most popular decomposition method for time-series is the additive one,
where:
Ty =a+ bt + s + 1y, (6.11)

with a,b € R constant obtained by estimating the time series by using a linear
model. In this case the seasonal effect is obtained as

Sy = xp —a — bt + e (6.12)
If the seasonal effect grows as trend value increases, then a multiplicative model
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might be more appropriate:
Ty =a -+ tht + 7. (613)

Sometimes a more precise estimation of the trend is required; a popular choice
is the moving average, which considers some elements before z;, some elements
after and compute an average among all of them. If for example [ € N elements
before and after time ¢ has to be considered, we obtain the following:

N 1 A
by=— > Ty, N=21+1 (6.14)
Nk:—l

In cases like this, seasonal component is computed as:
St = Xy — gt + €. (615)

Decomposing a time-series is one of the main operations that needs to be done
when analysing them, before making any kind of forecast. In fact it is usual to
have some phenomenon masked behind a trend or a seasonal component, and it
underlines the importance of separating them.

There lots of example available: the unemployment rate is one of the most
studied seasonal adjusted series, since there are some periods of the year where it
goes up and down that are only due to the season: this however can masks some
interesting considerations or trending components, that might have nothing to do
with any seasonal component.

On the other hand, considering only the trend might not be enough in order
to understand some seasonal phenomenon, like in figure 6.2. It is clear that the
number of airplane passengers is increasing significantly every year, but this new
peak value is reached approximately every summer, while the amount of passengers
remain relatively low during the winter holidays, even if it grows every year as well.
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Chapter 7

Classic time-series
forecasting

Time-series are an exquisitely useful tool when analysing particular phenomenon,
especially if a trend or seasonal component is present. In those cases time-series
can be utilized in order to try and predict the future, as long as the conditions
considered do not change. This is what this chapter will be all about: forecasting
with time-series. There is a big quantity of models one can choose from, and all of
them can be useful depending what process modelled by a time-series is considered.

This chapter will consider two different classes of forecasters: classic ones (es-
pecially ETS and ARIMA, used in this work) and neural ones (LSTM and RNN:
there will be some comments about neural networks in general and those two in
particular), as they yield some significant improvements with respect to older fore-
caster thanks to the raw computational power granted by the training process and
the notable flexibility of the structure of a neural network.

7.1 Basic notions of the forecasting problem

Model fitting and model forecasting are two faces of the same medal: once a fitting
model for a certain database has been found, using it to forecast the future is a
natural consequence.

In order to understand that, let’s make an example. Consider a dataset formed
by couples: (xy,y)i=1,..7; the simplest way to fit those data is to use a linear
model, generically described by the following equation:

U = o+ By, (7.1)

and the main point of the regression problem is to find parameters of a and § that
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allows for the minimization of the mean square error

T

1 _
t=1

where y; is the real value and 7, is its approximation computed with the linear
model.

Once a and [ have been found, then it is possible to use them in order to find
values of yr.1 = a+ Sxr,1 and in general to find values for y;,t > T that were not
studied yet or that are not available yet, since those instants represent the future.
When this procedure is put in place, it is called forecasting with time-series.

Of course there are lots of different models that can be used in order to do that,
and a few were implemented in this work; they will be described with no shortage
of details.

7.2 Forecasting with Exponential Time Smooth-
ing

Linear regression model can be very useful in order to understand the idea behind
forecasting, but it is not as powerful when fitting an actual model; this is because,
factually, it can only manage to model a trend, but it becomes useless when any
seasonal component comes into play.

For this reason it is urgent to introduce new and more complicated models, in
order to increase the degrees of freedom and manage to fit better the data from
the considered phenomenon.

The first model analysed is called exponential time smoothing (ETS), which
rests on a recursive procedure that allows to compute forecasting value as time
instant advances.

The model itself is pretty simple. In order to find the predicted value for
yr+1 a weighted average between true value yr and predicted value yr is taken in
consideration, obtaining the following equation:

?/J\T—i-l = QYr + (]. — Oé):/y\T, (73)

with a smoothing parameter. Of course the predicted value 37 is computed con-
sidering the true and the predicted value of y in time instant 7' — 1, and so on.
Iterating this process would give the following equation:

:/y\t-i—l = Yy + (1 — a)@t (74)

It is important to note that, in those cases, 7y has to be taken in an arbitrary
way, since it is the very first value and can not be computed by using this recursive
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method. A very popular choice is to take the average of all known values:

1 T
Yo = T Z Y- (7-5)
t=0

This method is a good start, but it appears to be very naive, and it does not
take in consideration any trend nor seasonal components.

This is possible, and this version of the ETS model is called the Holt-Winters’
additive model, that will be used in this work. Lots of other versions have been

developed, especially some multiplicative versions: to know them better, check on
[37].

Definition 7.2.1. Considering a time-series {(x, y¢) }te7, the Holt-Winters’ ad-
ditive method can be described by the following equations:

Ypen = b + by + S0, (7.6)
I = oy — St—m) + (1 + @) (li—1 + br—1) (7.7)
by = Bl — lima) + (1 = B)bi— (7.8)
se=" —limi —b—1) + (L —)si—m, (7.9)

where:

e Yiin is the predicted value with lag A to actual time ¢;

l; is called the level component of the smoothing model and it is a more useful
version of (7.3). Its smoothing parameter is 0 < a < 1;

b; represents the trend component, with smoothing parameter 0 < g < 1;

s¢ is the seasonal component with smoothing parameter 0 < v < 1;

m is the seasonality period (for example m = 12 for monthly data).

This model represent a good improvement from the linear model, and the
amount of components that has to be managed represent a good indicator: as
a matter of facts this model has a trend and a seasonality component, and besides
that every element is computed considering the previous one, so that it has the
same logic of the time-series itself.

Of course this is a quite simple model, and it still has its difficulties when, for
example, trend value changes or when contribution from residuals is higher. For
this reason another model has been implemented: it is very famous because it
has into them three simple models, that will be analysed in depth, considering
conditions of their existence and some interesting properties about how each of
them works and has to be used together with the others.
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7.3 Forecasting with ARIMA models

ARIMA models are by far some of the most popular and studied models in statis-
tics, thanks to their simplicity from a theoretical point of view and their imple-
mentation too.

They are the result of the bounding of three different models, each of them very
basic and intuitive:

« the autoregressive part, denoted with AR(p);
 the moving average part, denoted with MA(q);
« the differencing process, denoted with I(d),

where p, g are called order of the autoregressive and moving average parts and ¢
is the degree of differencing.

Before analysing everything, define the following random variable w; ~ A (0, 02)
and call it white noise; besides, it is important to define a new operator that will
be fundamental in this context.

Definition 7.3.1. Consider a time-series {x;}ic7. Then the backshift operator
is defined as follows:
Bl’t = Tt_1, Bpxt = Tt—p- (710)

It will be very important in order to study properties of these models.
Now it is possible to analyse each one of them.

7.3.1 Autoregressive model

Consider a time series {x;}1<;<7 and a parameter p < 7. The main idea of the
autoregressive model of order p is to write value of z in instant ¢ as a weighted
average of all previous p values for x; in this way the following definition can be
explicited.

Definition 7.3.2. The autoregressive model of order p is defined as:

Ty = ¥ Tp—1 + -+ QpTt—p -+ wy

P (7.11)
= Z e —i.
i=1
It is possible to write this model using the backshift operator:
= (1 B+ -+ ,BP )z + wy
(7.12)

p .
= (Z OéiBz> Ty + Wy.
=1
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Another way to write it is to isolate the white noise:
(1—ayB—--—a,B)x; = wy, (7.13)
and thanks to this notation it is possible to introduce the following operator:
0,(B)=1—ayB—---—a,B", (7.14)

such that
Qp(B)xt = Wt. (715)

It will be very important in order to have a lighter notation when the final
ARIMA model will be introduced, but even right now it results very useful indeed.
In fact one can consider the characteristic polynomial of this model 6,(B), with B
treated as a real or complex number and find its roots, i.e. values for B such that:

6,(B) = 0. (7.16)
Then the following can be stated.

Property 7.3.3. Consider an autoregressive process of order p, described by the
following characteristic polynomial 8,(B). Then consider its roots z; if |z| > 1 for
each one of them, then the autoregressive model is stationary of the second order.
This means that its mean and its average are constant.

This helps a lot when using these models, because in those cases they are very
stochastically very stable and allow to model lots of different phenomenon: a very
common example is a random walk, which is basically an AR(1) model with o = 1;
in fact it is described by the following equation:

Ty = Tp—1 + Wy. (717)

For what concerns forecasting using an autoregressive model, the following
holds:

P
Tepr ~ N (Z aixt+1_i,02> ) (7.18)

=1

This comes as an obvious consequence of the fact that, when arrived at time
t, the only stochastic component is given by white noise w;, which is a random
normal variable with null mean and variance equal to 0. Since at time ¢ value of
SP | @iryyq_; is deterministic, then ;.1 can be modelled as in equation (7.18).
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7.3.2 Moving average and differencing models

The second part of the ARIMA model is the moving average, denoted with MA(q).

Definition 7.3.4. Consider a time-series {z;};c7. Then the following is defined
as the moving average model of order ¢:

Ty = Wy + Prwe—q + - - + Bewi—g
=14+ 6B+ -+ B, BY)w,

. (7.19)
= (1 + ; @‘BZ) Wy.
Defining the characteristic polynomial as
¢q(B) = (1+/B+---+ 5,87, (7.20)
then the moving average model can be written with the following notation:
xy = ¢q(B)wy. (7.21)

The most important condition of existence for this model is the following.

Proposition 7.3.5. Consider a moving average model MA(q) and its characteris-
tic polynomial ¢,(B). Then the model is identifiable if ¢,(B) is invertible, which
happens if and only if every root z of ¢,(B) satisfy the following condition:

2] > 1. (7.22)

The last ingredient missing in order to define an actual ARIMA model is the
so called integrated or differencing model.

Definition 7.3.6. Consider a time-series {x; };e7. The integrated or differenc-
ing model or order d is defined as:

(1-B)*2,=(1—B)...(1 - B)x, = w. (7.23)

d times

So basically an integrated model is used in order to consider a differentiation of
order d such that the time-series itself collapses and becomes at best a sequence
of white noises (so ultimately a white noise). It is a very useful tool, especially if
any trend component is found while working on the time-series considered.
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7.3.3 Adding a seasonal element and bounding everything
together: SARIMA models

After having defined every component of the model, it is possible to give the
following.

Definition 7.3.7. Consider a time-series z;, an autoregressive model AR(p), a
moving average model MA(q) and a differencing model I(d). Then it is possible
to define a model called ARIMA (p, d, q) as the following:

0,(B)(1 — B)z; = ¢,(B)w. (7.24)

It is important to note that before apply the moving average and the autore-
gressive parts, it is necessary to differentiate: so it can be said that an ARIMA
model is just an ARMA on the differences.

As already saw, time-series are very useful not only to analyse phenomenons
with a constant growth (so with a trending), but also to fit seasonal data: ARIMA
models can be used to do that too, and in this work is it of capital importance
that a seasonal component is considered, because of the characteristics of ECGs.

Definition 7.3.8. Consider the same time-series and the same ARIMA model as
before. If a seasonal component can be found, then we can define a SARIMA
model by applying a very subtle change to equation (7.24):

0,(B°)(1 — B*)x; = ¢4(B*)uwy, (7.25)

where s represents the seasonal parameter. For example, for data repeating them-
selves each twelve periods of time, we have s = 12: this can be the case for monthly
data with annual seasonality.

These models have been fundamental when they were developed, and to this
day are very important not only for forecasting itself, but also in order to easily
learn about how to apply these principles.

However, now new techniques have been available for some time now, and they
are pushing the boundaries of performances in ways that were not considered
before: form now on deep-learning methods for forecasting will be considering,
especially recurrent neural networks, which are, from both a practical and philo-
sophical point of view, the ideal tool in that sense.
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Chapter 8

Forecasting with neural
methods

The methods seen until now are classic mathematical methods, which fit data and
then can be used in order to forecasting. However in the last few years neural
networks have entered the scene, and are showing unbelievable potential in a lot
of fields, and forecasting with time-series makes no exceptions: one of the aims of
this work is to compare average performances and average computational time for
forecasting using classic methods and neural techniques.

Before talking in detail about that, it is necessary to introduce neural network,
and understand their structure: in particular recurrent neural network will be
considered, as they will be used in every method that will be seen in generation of
beats.

8.1 Neural networks

Neural networks are, in this moment of time, one of the most exciting prospects
in science: comparing with classic mathematical methods, they are able to use a
way bigger amount of data and produce results that, on average, are a lot more
effective. However using them has a very big cost, as they need to be trained in
a recurrent way for a very long time: this increases computational costs in such
a dramatic way that it results to be feasible by only using a more efficient and
expensive hardware component, called GPU.

8.1.1 Basic structures

The name used to indicate them seems a little bit off from a neurological point of
view, but it does make more sense considering its logical structure: let’s take some
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Input layer Hidden layer Output layer

e

Figure 8.1. A neural network with an hidden layer composed by one single
neuron, with A = f(zw + b) and o = h.

input data x, usually a vector but it can also be just a number. If the considered
neural network just had one neuron, we would have a classic equation:

o= f(wz+Db), (8.1)

where:

e w is the value used to multiply the input data. It is called weight and it
usually is a matrix;

e b is usually a vector, it is added to wx and is called bias;

o function f is needed in order to introduce some sort of non-linearity. Popular

(w1,b1)

(wnfl’bnfl)

Figure 8.2. Neural network with n neurons in the hidden layer. It can be noted
how any neuron has its own values of weight w; and b;.
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RelLU Activation Function

10 7 —— RelU(x)

ReLU(x)

T T T T T T T T
-10.0 =7.5 =5.0 —-2.5 0.0 25 5.0 7.5 10.0

Figure 8.3. Plot for ReLLU function.

choices are tanh and function ReLU(z) = max{0, 2}, that can be seen plotted
in image 8.3;

e 0 is just the output of the operation.

This simple idea of neural network can be seen in image 8.1.

Having cleared that, now it results easier to understand the case with more
than one neuron and more than one hidden layer. In fact one of the main pros
of these structures is their complexity, given by the very high amount of neurons
which usually composes a neural network.

Considering a neural network with an hidden layer with n neurons, each of
them with weight w; and bias b;, input data x will be given to all those neurons
and then processed differently depending on the values of the weight and the bias
for each neuron; then the output can be obtained as a weighted average of all the
values obtained in each neuron. A similar model can be seen in image 8.2

8.1.2 From input to output: forward process and loss func-
tion

This process can be iterated, creating neural networks with more than one hidden
layer, each of them with a certain amount of neurons. Besides input layer and
output layer can have more than one neuron each.

The process that allow data to flow from input to output is called forward
propagation, and it is fundamentally important for neural network to work. The
point is that if only forward propagation is used, the whole process might be
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quite static; besides that, weights and biases might be far from their optimal
values, and this would basically mean that the whole network is useless. Since it
is impossible to find a priori the optimal values for w; and b;, it is necessary to
change them dynamically as new data flows inside the network: this process is
called training and it represents one of the main differences when talking about
classic mathematical methods and Al-based techniques.

Consider for simplicity a neural network like the one in image 8.1: the same
reasoning can be iterated when using more neurons and more layers. Main aim of
this training part is to find ideal values for biases and weights in order that when
new data are taken into the neural network, the value in output y will be as close
as possible to the real value y.

First thing needed is a measure that assumes low values when y and ¥ are close,
and very high values if those two quantities are very different: this is called loss
function and it can be defined in lots of different ways depending on the task
taken on. For example, for regression task two very popular choices are mean
absolute error and mean squared error:

MAE(=y—7),  MSE=(y—7), (8.2)

while for classification tasks like the one tackled in this work a 0-1 loss function is
usually deployed:

L(y,y) = Leysiny- (8.3)

8.1.3 Improving the results: back-propagation and opti-
mization algorithms

Having defined that, it is now necessary to understand how the new values for the
hyper-parameters of the neural network (weights and biases) are computed. Every
algorithm of this type is composed by two main operations:

« the backward or back-propagation process, during which the value that
will be used to update actual weights is computed;

e the optimization process, when the value computed in the backward process
is used to update the hyper-parameters of the neural networks.

In this work only one was used: the Adam optimizer [38]. It is one of the most
efficient, effective and famous optimization algorithms, and it will be analysed in
depth in the following pages. There are lots of other possible algorithms, depending
on the structure of the neural network and the assignment considered: if interested
in studying some of them, check [32].

The algorithm is based on the computations of two moment vectors myg, vy,
initialized with null vectors, and it is basically composed of the following steps.
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After having initialized parameters (31, 82, €, the learning rate a and the stochastic
objective function f with hyper-parameters 6:

» backward process: compute the gradient with respect to 0 : g, = Vo fi(0;-1);

o update moments:

my Bimi—i+ (1= B)g, v Bami—1 + (1 — Ba)gr; (8.4)

T8 T8

o update parameter vector:

(8.5)

my
;=01 —a———.
t t—1 \/U_t+5

The last two steps make the optimization process.
An interesting topic is regarding possible choices for learning rate. For simple
algorithms a fixed value is preferred, but there are lots of methods that allow

to change it adaptively: in this work a fixed value (standard choice for Adam
algorithm implemented in sktime) for learning rate is used.

8.2 Forecasting with Recurrent Neural Networks

A general knowledge of neural networks and how they work have now been exposed,
and it is necessary in order to understand how forecasting with those actually work.
There are lots of different possible models that can be used in order to achieve
success in a task like that, but one in particular seems to be perfect not only in
its physical structure, but in its concept too: the Recurrent Neural Network (in
short, RNN).

They are a particular type of structure that allow to make us of sequential infor-
mation. As a matter of fact, in original neural networks every input is considered
to be independent for each other, but when considering tasks like generating words
to compose phrases or forecasting with time-series you have to consider what has
come before in order to predict what is coming next.

What differentiate them from all other neural network is that they are time-
driven, so basically everything (inputs, outputs and hidden states) are labelled
with the time instant during which that value has been computed. So basically
one can think of RNNs as memory-equipped neural networks that not only takes
in consideration new inputs as time goes on, but 'remembers" the hidden state
computed before and uses it as in order to compute a new output, and so on.

From a mathematical point of view, these are the operations that characterize
them:
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Figure 8.4. A schematic summary on how a recurrent neural network works.

x; is the input taken at time t. In the context of this work, it can be seen as
an element of a time-series;

s; is the hidden state value computed at time step ¢, and it represent the part
that is memorized and re-used. Considering for each neuron weights U, W
and ignoring biases value, in general it is computed as follows:

sp = f(Uzxy + Wsy_q), (8.6)

with f activation function. If this process is not clear enough, refer to image
8.4;

o; is the output at time ¢. Usually is strongly related to the hidden state s;
but not always exactly equal: a popular choice is to put

0y = a(Vsy), (8.7)

where V' is a vector weight and the o is known as the softmax function, defined
as:

K Zi
o:RE {zER”|zi >O,Zzi:1}, a(z)i:;;. (8.8)
i=1 Dy €7

So the latter is a multi-dimensional function; in fact hidden state s; can easily
be a vector: in this work everything is far easier as only numerical values will
be considered.

It is important to note that RNNs are more efficient than most of other neural

networks; this is due to the fact that basically no training is necessary as time
goes on, as the values of the weights U,V and W are fixed for all the steps.
This dramatically reduces the number of parameters learned and allow the whole
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process to be way faster. However, this does not mean that any training process
is required: more on that later.

One last thing that needs to be considered is the loss function. This is obvious,
since one has to consider that the whole optimization process have one very im-
portant aim: find the ideal values for hyper-parameters in order that the value for
loss function is as low as possible. In a RNN structure this part of the process is
defined through another algorithm that allow to train the neural network: it will
be analysed in this next section.

8.2.1 Training a Recurrent Neural Network

Despite what was written above, training for a RNN is necessary as it is for all
other neural network: this process is however a little bit different from the one
studied until now, and it is perpetrated with a different algorithm, called Back-
Propagation Through Time (BPTT). This is the algorithm that is used by RNNs
to compute gradients, which is one of the most important parts when training a
neural network. Besides that, this algorithm is very important in order to avoid
the vanishing gradient problem, discovered in 1991 [35] and soon become one of
the main problems to solve when approaching any deep learning model.

Considering the process described before, as already stated only the optimiza-
tion process for the loss function £ is missing: this is important in order to compute
the gradient and to optimize the parameters. It has to be remembered that the
optimization process means that gradient for £ with respect to parameters U, V'
and W has to be computed, and then summed up for each time-step (remember
to check image 8.4.

Consider from now on £, := L(y, ;). Mathematically all of that means:

oL 0L
ow ;aW'

(8.9)

By using the chain rule we obtain, for any time j:
oL;  OL; Oy
oW 9g; OW

_ 9L, 0y, 0s,

N 8@\3 0sj oW’

with S = f(UIt + Wsj—l)‘

This has a very big consequence: it is needed to unroll the RNN in order to
complete the training process, and to do that it is necessary to go back to time
t=20: ,

8£j . i 8£J 8@ 8sj 83,5
OW = 0y; 0s; Dsy OW
65
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So in the end the training process for a RNN is the same as a normal training
process for a classic neural network. The only differences are that:

o RNN needs to be unrolled before proceeding, so that it can be treated as a
normal neural network;

» values for weights U, V, W do not change as ¢ changes, but they are modified
globally, making the process itself not as efficient as it may first appeared.

Despite everything, the fact that updating weights requires a back-propagation
through time should not surprise as a concept: in fact this is due to the fact that
for time-series, in order to predict the next step, you need to know time-step you
are in, even more if you have to consider a seasonal process.

8.2.2 The Vanishing Gradient Problem

Equation (8.10) defined before might not be enough to understand the amount of
computations needed in order to compute the gradient. Rewriting it as:

8Sj ] 881' aSk
=25 (1] il 11
J aSk ( 851»_1) 8W (81 )

i=k+1

gives a better idea of the huge amount of computation one needs to tackle in order
to compute matrix J.
Fortunately, in [52] it was proved that

1] <1, (8.12)

and this is obvious considering that —1 < tanh(z) <1V x € R.

This becomes a big problem as x — £o0, because in those cases tanh(z) — 0
and so the whole gradient vanishes: this means that gradient contribution from
far away steps vanishes, becoming zero and not allowing the system to learn any
long-range dependencies.

This was a very big problem when RNNs were discovered and started to be
popular (they are not the only deep learning models that have this problem: any
deep feed-forward NN has it), but now there are lots of ways to tackle it: a very
popular one is to use ReLLU function as activation, which allows to better control
gradient value at each instant, since derivative can only be 0 or 1. This will allow to
use a recurrent neural network as described in this section when creating artificial
heart beats.

Another idea that had important results is the application of a Long Short-Term
Memory (usually called with their acronym LSTM) architecture. It is another
recurrent neural network, but it allows to partly remember informations taken a
long time ago.
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8.2.3 Forecasting with Long Short-Term Memory

It should now be clear how neural networks can be very complicated just consid-
ering their structure alone. Then one has to analyse what is happening in each
neuron, adding to the complexity of the whole process. This is what make these ar-
chitectures quite complex, but it also allow them to be very effective when tackling
certain tasks.

What happens inside each neuron is the main difference between RNNs and
LSTMs: the main goal of the latter is in fact to combat vanishing gradients and
try to keep memory of long term informations. This idea was developed thanks
to a sort of gating system that can be found in each neuron. Considering o as
the sigmoid function and the ® element-wise matrix product (also known as the
Hadamard product), we have the following set of equations:

= o(xU; + si-1W5)
=o(z,Up + 5,1 Wy)
0=o0(xUy~+ s41W,)

g = tanh(x,U, + 5,1 W)
= 10f+g9g®i

s; = tanh(¢) ® o.

~.

~

Here we have:

« 4, f and o that represents the input, forget and output gates for each neuron.
They are called gates because thanks to function o all elements these vectors
are compressed between [0,1] C R, defining how much of each one will be
considered. In particular, ¢ defines the part of the new input that will be
taken, f defines the part ¢;_; that will be remembered and o how much the
output will be affected by the newly computed c¢y;

e g can be seen as a candidate hidden state that will be multiplied with input
state 7 and then summed with ¢;_; © f;

e ¢; represents memory state of the architecture at time ¢, and it represents
a combination of what we want to remember from previous states and the
newly computed one;

e s is the output hidden state.

Through this procedure we have a newly architecture which allow to remember
(partly) what was happening even a long time ago, solving for the major part the
vanishing gradient problem.
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Experiment and results
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Chapter 9

Experimental experience

9.1 Pipeline description

In this experiment we wanted to classify beats using the k-nearest neighbours
classifiers in order to state if a patient has some sort of arrhythmia. To improve
results, WST are used, so that dimensionality can be reduced and features can
be extracted; in that way the classification process is more efficient and effective.
Due to privacy issues and the limited amount of data available, two different data
augmentation processes were implemented and results among them compared. The
pipeline will now be explained in a more detailed way:

firstly the MIT-BIH dataset was considered: all its characteristics will be
talked in depth in section 9.2;

we will consider only the lead that allows us to extract more information,
which means the one with the higher peaks: in our case, it will be lead
number one. Signals are centred on the R-peak, with 99 sample points taken
before it and 100 after. Since data is sampled at 360 Hz and that each signal
is 200 sample points long, it means that each beat represent 0.56 seconds: in
figure 9.1 an example of ECGs that are going to be considered.

raw data was used to train a model able to classify each beat to its class;

the original split class is displayed in table 9.1. It is clear that the amount
of beats classified as Normal (N) is way higher than the number of beats for
all the other classes, even combined. This a very known in statistical and
machine learning: an imbalanced dataset can in fact lead, in training phase,
to a biased classifier, which will tend to wrongly classify elements of other
classes as elements of the most represented class (in our case, we are talking
about class N).
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In order to sort this out it is needed to make a data augmentation process,
in order to balance the classes out: before that, as in [26], beats classified as
unrecognizable (Q) were dropped. The number of beats classified as Q, as
shown in 9.1, is in fact so low that the class itself is not suitable for any data
augmentation process; also a number of beats of class N was dropped.

The first process of data augmentation implemented a very naive data aug-
mentation process: each data point of signals for classes S, V and F was
perturbed with random white noise w; ~ N (0,0.05); distribution of classes
after data augmentation is shown in 9.2. Having done that, it was decided to
implement a more advanced data augmentation process, using known signals
to train models that were able to generate, through time series forecasting,
new realistic beats. Many methods were implemented, with different results;
all beats creation process has been evaluated using different metrics, in order
to show that these new techniques allowed to have beats that still had the
same features as the real ones, while being original. This topic is discussed
in section 9.4;

o we made classification using only KNN classifier without transforming data
using WST to have a comparison;

» data was passed to WST in order to extract features;

o another classification process is then performed, in order to observe the im-
provements made after having transformed the dataset.

9.2 MIT-BIH Dataset

The impact of the MIT-BIH dataset can not be underestimated: it was in fact the
first dataset available for everyone who wanted to train a model of for evaluation
of arrhythmia detectors, and since the first release back in 1980 it has been used
for this purpose by at least 500 universities [50]. This dataset is the result of an
unbelievable work done by researchers George B. Moody and Roger G. Mark: both
of them spent four years, from 1975 to 1979, not only acquiring and digitizing the
data, but also annotating every information that could be extracted by each beat.
Their work arrived to this kind of completeness because they wanted to make the
recordings available for everyone, in order to stimulate the research in this field.

Each row of the dataset represent an half-hour record of an ECG taken to
different patients in the Arrhythmia Laboratory of Boston’s Beth Israel Hospital
(BIH): there are 48 records, taken from 47 different patients (which means that
two records are from the same patient), distributed as follows:
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Figure 9.1. Third beat of file 100

e the first 23 were chosen randomly from a collection of 4000 patients with no
notable cardiac problems;

o the last 25 were selected in order to include uncommon but clinically im-
portant type of arrhythmias: among them, there were four patients with
pacemaker, so their beats were artificially paced. These kind of beats are not
well represented because pacemakers usually work at frequencies in the kilo-
hertz range, far above the passband of the recorders, which was set between
0.1 to 100 Hz, which worked really well for the major part of the recordings.

For each record, two leads were saved: one channel is usually the modified limb
lead II (MLII), obtainable by placing the electrodes on the chest, while V1 is
usually saved on the other channel (also V2, V4 and V5 are used, depending on
the patient.

The recordings were digitized at 360 Hz (samples per second in this context; it
means that each record is 650000 sample points long) with an 11-bit resolution over
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a 10 mV range. This stage took the longest time by far, due to the tools available
at the time, and it had to be done with some compromises: for example, the
digitization rate was chosen to be 360 H z because data could not be written faster,
as the RAM available at that time was just 24 kilobyte, which made impossible
the possibility of storing the data.

Once everything was done, each half-hour tape was printed in a 46 meters paper
chart, which included both leads. Each chart was then given by two cardiologist,
who began annotating each beat independently and then worked together in order
to resolving discrepancies by consensus: only 33 beats (concentrated in six files)
remained unclassified because an agreement could not be found in those cases.

By the end of this monumental work, approximately 109 000 beats were saved
and annotated, originally divided in 21 classes. In the entirety of the registrations,
a loss of signal so significant that both channels could not be recorded happened
only only seven times, and all these cases combined have a total duration of ten
seconds: so it can be stated that the impact of these episodes was absolutely
negligible.

9.3 The Wavelet Toolbox™ in MATLAB®

Parameters tuning for WST is absolutely fundamental in order to maximize feature
extraction and, with that, the effectiveness of the classification scores. The Wavelet
Toolbox™ [61] implemented in MATLAB® (version 2018b) was used to effectively
transform the data using Wavelet Scattering Transform.

The main reason why this toolbox was chosen is because it allows the user to
choose parameters that other packages just compute automatically: so this toolbox
can be a little more complicated to set up than others, but way more precise, and
especially way less unpredictable and more adjustable by an expert user. The
most important function is the one that physically creates the transform, which
depends on the following parameters:

o signal length L: simply the length of the signal in sample points. In our case
obviously L = 200 sample points was used;

o sampling frequency f: frequency of the signal, which is the number of sample
points needed in order to cover one second. As already stated, data is sampled
at f =360 Hz, so that value is passed to the function;

» quality factors : represents the amount of wavelet per octave. The maximum
amount acceptable is 32, and of course this value must be greater than one
and has to be a integer. This can also be a vector, used in case there is
filter with more than one order: in that case, number of wavelet has to be
decreasing. Standard choice is @) = [8, 1], which means that eight wavelet are
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Figure 9.2. Plot for scaling and real and imaginary first order functions

used for the first order filter, and just one for the second order: their plots
are displayed in 9.2 and 77,

« invariance scale I: specifies the translation invariance of the scattering trans-
form and it is measured in units of seconds. It is particularly important
because the network is constructed to be invariant to translations (the main
property of the wavelet transformations, as already stated multiple times) up
to the invariance scale; in 9.2 the invariance window is represented by the
two black-traced vertical lines. This value has an upper-bound dependently
to the sampling frequency f and the length of the signal processed L: both
these values have to be passed in order to compute this upper-bound, which
is: I < % In our case [ = 0.5 s < % = 5:29— ~ 0.56 s so the upper bound is

satisfied.

Natively the Wavelet Toolbox™ implements the Gabor wavelet, defined in 1947
by physicist Dennis Gabor [44]. The idea is quite simple: in place of considering the

73



Experimental experience

0.2 1

015F 1

0051

-0.05 1

015} 1

0 10 20 30 40 50 60 70 80

015} &

0.05

-0.05

-0.1

-0.15

0 10 20 30 40 50 60 70 80

Figure 9.3. Plot for a transformed beat of type N (above) and F (below).
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entire domain of the function, its transformation is computed only in an interval
of size oy (it depends on the invariance window) centred in a certain point u. So
we don’t consider just the function g but:

ug(t) = g(t —u)e™, (9.1)
where £ is the frequency of the signal. Therefore, its Fourier transform is defined
as followed:

Gug(w) = glw — e~ (9.2)
At this point it is possible to define the window Fourier transform defined by
Gabor:

+o0 .

Sfw&) = [ F(Bglt = we . (9.3)
Finally, if we put
(t) = 1 _i (9.4)
= (WJQ)i P\ To02 ) '
it is possible to define the Gabor wavelet:
U(t) = g(t)e™ (9.5)
1 2 :
= 1 e_ﬁe_lgt_ (96)
(mo?)%

It is important to note that in general it is not particularly clever to consider any
order of scattering coefficients after the second: this is due to the fast decay of
these coefficients. In fact, as said in [10], more than 98% of the energy of a wavelet
is carried by coefficients of order zero, one and two: in order to improve efficiency
of the computation process, Wavelet Toolbox™ automatically computes only these
orders for wavelet coefficients.

After transforming the beats a new decomposed signal has been obtained: it is
composed by 7 time windows and 75 paths each, as it can be seen in image 9.3,
so that from a computational point of view it needs to be represented as a three
order tensor (which is a three-dimension matrix) of dimension: number of beats
considered, number of path, number of time windows.

In order to apply some data reduction and also make KNN useful in this sce-
nario, only one time window has been considered: for each experiment only the
time window that guaranteed on average the highest maximum among all was
considered, and for all cases it was time window number four.

9.4 Data augmentation and the sktime package

For every machine learning task, data preprocessing is the real key in order to
compute it successfully, and to do it well a deep investigation on the data that is
going to be used is necessary.
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Figure 9.4. Filter-banks for first and second order with @ = [8,1]

The MIT-BIH dataset has a relative shortcoming: it is very much unbalanced,
and almost 75% of all the beats in the original classes distribution are labelled as
normal (N). Following indication in [26], it was decided to group together a lot
of the original classes, since all of them had a number of elements negligible with
respect to the number of elements of class N. So it was decided to work with five
classes: F, N, V, S and Q, following the ANSI/AAMI ECCE:1998 standard [58];

however, as shown in 9.1, the amount of unclassifiable beats (Q) is very low, so it
was decided to drop them altogether.

After that, now almost 90% of all the beats saved are labelled as normal; this
huge skewness make the dataset unusable, since a model fitted with these data
would be so used to see normal beats that it would label abnormal beats as normal
ones when it sees them. This is a very well known problem in the machine learning
community, and there are ways to solve it: one of them is data augmentation. Two
different concept of data augmentation will be described and confronted, stating
also the difference between a more naive approach and a more complex but effective
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Class | Number of beats | Percentage
F 802 0.7964%
N 90097 89.4681%
Q 15 0.0149%
S 2781 2.7616%
\Y 7008 6.9590%

Table 9.1.

Distribution of beats classes before data augmentation.

one.

The first process implemented is pretty simple: each point of a certain beat
is perturbed with a random noise, modelled as a random normal variable w ~
N(0,0.05). This process was repeated for classes V, F and S until each category
could count as much as 90 000 beats, as shown in table 9.2; in order to have a more
robust model, beats were chosen randomly and uniformly before being perturbed,
so that there were no bias on our side during this phase: in figure 9.5 a natural
beat and its perturbed version are shown.

Class | Number of beats | Percentage
F 90000 25.0000%
N 90000 25.0000%
S 90000 25.0000%
\Y 90000 25.0000%

Table 9.2. Distribution of beats classes after the naive and ETS data augmentation.

The second process is very different, and far more complex: it is based on the
idea of time series forecasting. ECGs and signals in general can be seen as time
series; for each sample point (which are basically moments in time) it is possible
to find a value describing electrical activity for cardiac muscles. This opens up
a very interesting possibility: using a certain number of beats to train a model
capable of creating a new, artificial beat very similar to the natural ones, thanks
to the properties of the forecasting methods for time series. Reasons for that are
very heterogenous:

o first of all, having more realistic beats in place of simple perturbations of the
original one allow us to train a more robust model, and it will be way more
used to work with realistic ECGs. Even if scores for the classifier with this
data augmentation process would be lower, results would probably be a lot
more significant just because model training is done with a realistic dataset,
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Figure 9.5. A real beat of class S and the one obtained by adding a noise
wy ~ N(0,0?),0% = 0.05.

giving a lot more robustness to the model itself when different data were
tested there;

« in secundis, and this is another general motivation for this data augmentation
process, there are a lot of concerns about privacy. We are talking about very
sensible data, that even if taken anonymously are subject to risk of theft from
databases of hospitals: this is a very widespread practice alreadys;

o finally, there is a enormous lack of data in this field. For lots of reasons, one
of them being the second point of this dotted list, collecting this kind of data
is not only difficult, but also very time-consuming both for the collecting part
but also because it is necessary to digitalize it, as explained in 9.2. It is out
of question that now this process is definitely more feasible than in 1980, but
a lot of concerns and difficulties are still there.

For all these reasons, having the possibility to create easily and in relative short
time great quantities of artificial but realistic beats can surely help in this very
unique context. Just to clear things up, beats obtained with the first method
will be called augmented, while the ones obtained with the second method will be
called created.

In order to implement some useful forecasting methods for time series, it was
decided to use the sktime library, which is an open source Python framework for
machine learning and artificial intelligence with time series.

The need of creating a new Python package for time series was created because
of the lack of an unified framework that grouped all functions and methods that
are unbelievably useful when working with all types of time series: we are not
talking only about forecasting, but also for analysis of the series, like its seasonality,
stationarity and its autocorrelated function. The framework can also be used in
order to solve classification and regression problems with time series.

The framework was used to successfully implement some forecasting techniques,
not only among the classic ones but also using modern approaches, based on deep
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Figure 9.6. A real beat of class S with one generated with ETS (above)
and with ARIMA (below).

learning: they were described in chapters 7 and 8. The entire list of used methods
follows, together with the ideal parameters for each of them:

 exponential time smoothing (ETS) is implemented in sktime in such a way
that all ideal parameters are automatically computed after having passed
the training set. Eventually the AutoETS function can be set up manually:
particularly, it was specified that the model would have been the additive
one. Moreover, for the nature itself of ECGs, no trend has been added on the
model;

o ARIMA is another classic forecasting technique that is implemented by using
an automated function that allows to compute the ideal parameters in order
to fit the beats that form the training set;

e neural forecaster LSTM and RNN were considered and used to create new
beats, too.

It is necessary to specify that in time-series forecasting one of the main tasks
is to recover a distribution for the data in the training-set, in order to evaluate
an estimation for the test-set. Doing that for ECGs proved to be difficult, since
one can divide beats in two different moments: peaks and the rest. These two
moments are very different from a mathematical point of view, and they give very
different informations.
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Figure 9.7. A real beat of class V generated with LSTM.
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Figure 9.8. A real beat of class F generated with RNN.

For this reason, in all the models considered, it was decided to create only the
peaks for each beat; for what concerns the rest of the beat, it was decided to just
perturb it with a Gaussian noise with a far smaller variance then the one used in
the augmented beats: in particular in this case w; ~ N(0,0.005).

This process is very successful for both classic and neural forecaster, and it can
be seen in figures 9.6, 7?7 and 9.8. All beats created are not only realistic, but
they are original too. This is a very important goal of this whole work, since it
is now possible to create a great amount of realistic beats using a relatively small
quantity of resources, and without any risk of breaching patients privacy.

From an efficiency point of view, there is a wide spread of results:

o ETS model is the fastest of them all, as it manages to create a beat in less than
a second: to be more precise, on average, ETS model needed 0.656 seconds
in order to create one single beat: this result can be improved using a more
efficient processor as the one inside my PC. For this reason it was decided to
create 90 000 beats per class, for a grand total of 270 000 beats;

o ARIMA model is the slowest since it needs almost a minute to create each
beat: to be precise, 46.491 seconds are needed on average per beat. As a
consequence only 1 400 beats per class have been considered;
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o« LSTM and RNN are very similar in terms of performances, since the both
need two to five seconds in order to create a beat: to be more precise, the
average creation time resulted to be equal to 4.93 seconds for LSTM and 2.727
seconds for RNN. Thanks to HPC staff in PoliTo, it was possible for me to
have access to one A40 GPU with an incredibly high computational power,
which allowed the training of these models to be so efficient.

9.5 Classification

Finally, it is necessary to remember that this experiment is basically a supervised
classification problem; from a mathematical point of view it means that each signal
can be represented as a point in a space R", n equal to the length of the signal (so
in this case n = 200). A group of points relatively close to each other creates a
cluster and, usually, they have the same label, which is known in the dataset: in
those cases the problem is said to be supervised.

The point of this task is to train a model with a portion of the data, called the
training set, that is able to recognize the right label for data that the model has
not been trained on and without knowing labels: the latter is called the test set.
There are many different popular models that get this task done, some of them
are conceptually very simple, like KNN, which is the only one that was used in
this work. Of course other choices. usually more complicated but sometimes also
more effective, are available, like SVM or neural classifiers.

For what concerns k-Nearest Neighbors (KNN), it is a popular and very simple
method to implement for classification tasks. Each signal is represented as a point
in a space R", and when points of the test set are given to the model, label is given
only depending on the label of the k-nearest points: when more than one label is
present, label is chosen with a majority voting system, with each vote having an
inverse weight with respect of distance to the point considered. This means that
the further the point, the less its vote will count; in our case, k = 4 was chosen.
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Chapter 10

Results and discussion

10.1 Beats creation

10.1.1 Metrics used

First of all different metrics have been used in order to show how the new beats
were very different from the original ones, while preserving the main features for
each class of beats. In particular, for each beat created, it was compared with one
real beat, that at that moment composed the test set for that creation process.
Here the entire list.

Definition 10.1.1. Consider a metric space S, two curves A, B and a parametriza-
tion of them «a,f : [0,1] — [0,1] such that these are both continuous, non-
decreasing, surjective. Then the Fréchet distance between A and B, which
we can denote as F'(A, B), is defined as:

F(A, B) := inf max {d (A(«(t)), B(5(t)))}, (10.1)

a,B t€[0,1]
where d is the distance metric of space S.

From a less formal point of view, it can be described as a metric which compares
two curves, describing how much they are similar to each other: it also takes into
account the location and the ordering of each point in the curve. In our case d can
be seen as the Euclidean distance, since we are modelling the ECGs as they exists
in a R"™ euclidean space, where n is the signal length.

Definition 10.1.2. Consider two vectors A, B, each one composed of n compo-
nents. Then their cosine similarity S¢(A, B) is defined as follows:

A-B n L AB;
Sc(A, B) := =1 (10.2)

ClANBL o, a2 sr, B
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where of course A - B represents the scalar product between those two vectors and
| - || compute its norm.

It is interesting to note that this metric exists in an interval of [—1,1]. This
means that:

U Sc(A,B):liA:B,
« Se(A,B)=0= AL B;
« So(A,B)=-1= A= —B.

This is the only measure among the ones considered that has bigger values when
signals are closer to each other.

Definition 10.1.3. Consider two random variable u, v with different distributions.
Then it is possible to define the Wasserstein-1 distance between them, defining
it as:

li(u,v) = inf |z — y|dr(z,y), (10.3)

mel'(u,v) JRXR

where I'(x,y) is the set of probability distributions on whose marginals are and
on the first and second factors respectively. For a given value z, u(x) gives the
probability of u at position x, and the same for v(y).

The motivation behind the decision of including it is quite explicit: aim of
time-series forecasting is to recover a probability distribution, in order to allow
the forecasting for future values. Computing this distance allow to understand
better if a certain beat is original (if its distance is bigger than the one computed
by the naive augmentation process) or not.

Notice that a generic Wasserstein-p distance can be defined and implemented,
but it this case the one implemented in SciPy was used [29]. For this reason only
the case p = 1 is considered.

Finally, there is the Dynamic Time Warping (DTW) distance, which is a metric
used to compare the similarity of two time series by measuring the minimum
distance between them after aligning their features. Opposite to the ones defined
until now, there is no definition, as it is an heuristic algorithm used to compare
two different time-series. To analyse it deeper, check [56].

10.1.2 Beats similarity

Results are summarized in table 10.1.

Without any surprise, results show that the naive augmentation method creates
the more similar beats. This means that this method might be useful to have lots
of beats in a very short time, but it fails to create original and realistic beats
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altogether. All the other methods allow that, managing to preserve characteristic
for each class of beats while creating new ones: this might be very useful if one
needs loads of new beats, considering how much resources are needed in order to
acquire them.

Method | DTW | Wasserstein | Cosine Fréchet
Naive | 3.23899 0.09107 0.87219 | 3.53172
ETS 4.28596 0.26573 0.75039 | 6.06445
ARIMA | 7.22731 0.43715 0.52765 | 9.39777
LSTM | 6.24350 0.37540 0.53392 | 9.11308
RNN 5.92522 0.35729 0.56174 | 8.80935
Table 10.1.  Average metrics value for each augmentation method. Bolded values

indicates closer beats to the real ones according to each metric.

10.2 Classification with WST

Classification problems are one of the most popular kind of tasks in machine learn-
ing and deep learning. It consists in two phases:

e training, during which a consistent portion of available data is used in fit the
data and find the optimal parameters for the classifier that is going to be
used;

 testing, during which the rest of the data is labelled by the classifier.

In our case, since during the training phase the classifier can see true labels, it
is called supervised classification.

10.2.1 Metrics used

In order to have a measure of the results obtained, some classical metrics, often
used in machine learning classification problems, have been implemented. In order
to define and understand them, consider a generic class A and its element; after
the training and the testing processes, every element of said class can be labelled
as:

o true positive (TP), when an element of class A has been labelled correctly;

o false positive (FP), if an element which is not in class A has been mistakenly
labelled as A;
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« false negative (FN), an element of class A which was not recognized as one;

o true negative (TN), an element which is not in class A and was correctly
labelled outside that set.

Now the following can be defined.

Definition 10.2.1. Consider a supervised classification problem, and consider also
a generic class of elements, called A. Then the accuracy of said class is defined

as:
TP+TN

TP+TN+FP+FN'

ACC, = (10.4)

It basically count the number of correct labelled elements, and then divides
everything for the number of all elements considered.

Definition 10.2.2. Same as above. The precision metric is defined as

TP

PRE 4= ——
AT TPLFP

(10.5)

It gives an idea of the precision of the classifier with respect of a certain class.

Definition 10.2.3. Considering the same problem, the sensitivity metric is de-
fined as

TP
ENgy= ——— 10.
SENA = Tp PN (10.6)
while the specificity metric is defined as
TN
P S E— .
SR = TN P (10.7)

10.2.2 Results of the creation and classification processes
using naive augmentation

These results were obtained after having crafted 270 000 abnormal beats by us-
ing the naive augmentation technique, which means that a random noise w; ~
N(0,0.05) was added to each sample point. For each class (V, S, F) 90 000 were
considered, and 90 000 normal beats (N) were randomly sampled among the ones
already available.

Results are displayed in table 10.2 and image 10.1.

It is clear that this method is pretty good in classification, even if it is not
perfect neither in classify normal nor abnormal beats. Besides, after this process
has finished all one has is a dataset full of unrealistic and noised beats.
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Metric N F S \Y Averages
Accuracy | 0.95054 | 0.96671 | 0.93679 | 0.94370 | 0.9494
Precision | 0.97241 | 0.92056 | 0.82973 | 0.89234 | 0.9038

Sensitivity | 0.82559 | 0.94871 | 0.94007 | 0.88112 | 0.8989
Specificity | 0.99219 | 0.97271 | 0.93570 | 0.96456 | 0.9663

Table 10.2. Average metrics value for each class using naive generated beats.
Bolded values indicates highest class value for each metric.
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Figure 10.1. Confusion Matrix for naive generated beats.

10.2.3 Results of the creation and classification processes
using ETS technique

These results were obtained after having crafted 270 000 abnormal beats using
the exponential time smoothing (ETS) technique. As before, 90 000 beats for
each class (V, S, F) were considered, with 90 000 normal beats randomly sampled
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among the ones already available.

Metric N F S \Y Averages
Accuracy | 0.88257 | 0.95995 | 0.94512 | 0.95046 | 0.9345
Precision | 0.89608 | 0.87375 | 0.83450 | 0.88534 | 0.8724

Sensitivity | 0.59449 | 0.98164 | 0.97356 | 0.92116 | 0.8691
Specificity | 0.97681 | 0.95272 | 0.93564 | 0.96023 | 0.9564

Table 10.3. Average metrics value for each class using ETS generated beats.
Bolded values indicates highest class value for each metric.
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Figure 10.2. Confusion Matrix for ETS generated beats.

In table 10.3 and figure 10.2 all results referring to ETS crafted beats have been
summarized.

First thing that stands out is the very low sensitivity on normal (N) beats. This
might be as a consequence of the fact that for all other classes only created beats
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Metric F S \Y Averages
Accuracy | 0.98299 | 0.99253 | 0.97899 0.9848
Precision | 0.95835 | 0.98652 | 0.98793 | 0.9776
Sensitivity | 0.99208 | 0.99112 | 0.94856 | 0.9773
Specificity | 0.97844 | 0.99323 | 0.99421 | 0.9886

Table 10.4. Average metrics value only considering the three classes with
arrhythmia using ETS generated beats. Bolded values indicates highest
class value for each metric.
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Figure 10.3. Confusion Matrix for ETS generated beats, using only the
three classes with arrhythmia.

have been considered, while all normal beats were natural ones. This has another
major consequence: it basically means that the number of false negative is very
high for class N, and it can be said that our KNN classifier is very cautious, as it
labels lots of normal beats as abnormal.

In the real world, this would lead to a significant growth in cardiac visits, which
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would ultimately carry to a reductive number of abrupt failures and problems in
the long term. On the other hand, a significant increase in medical expenses would
be required by the national health service.

Finally, it can be noted that overall results are lower than the one obtained
with augmented beats: this should not cancel the significant pros of this new
augmentation process, since it allows to have a dataset full of realistic heart beats,
all having some kind of abnormalities. This might me a key result in future research
works, since it is known how difficult it is to acquire such data. Besides, results
are lower mainly because of the low results for class N; this is far from optimal,
but has another interesting consequence, as this pipeline allow KNN to be very
precise when it has to distinguish beats with abnormal features. This can be an
interesting idea for future works, since this simple model already allow to have
very good performances once an irregularity has been found, since it can help to
understand with a very good precision what type of cardiac disease is displayed
and, consequently, how it should be treated: classification itself was done after
transforming more realistic data, while the first one was done on non-realistic
beats obtained by perturbing the original ones: this should be taken into account
as well.

Lastly, because of the results obtained, it was decided to show what this model
can do if it just has to determine what kind of cardiac disease is revealed by
ECG. Basically, a Bayesian approach is used, and the results in 10.4 and 10.3 are
referred to the type of beats this model can correctly recognize, after knowing that
an arrhythmia has been diagnosed.

As shown, results are very good, and this model might be an important tool
for cardiologist in order to lower their work load, since it can distinguish very
effectively different kind of cardiac disease, besides of generating realistic beats of
said diseases too.

10.2.4 Results of the creation and classification processes
with ARIMA

Results obtained with ARIMA data augmentation process are compromised by
the low amount of beats that were created: in fact 1 400 beats per class has been
considered, for a total of just 5 600 beats, which is a very low number in this
field. This is a consequence of the inefficiency of ARIMA model with respect to all
other models used. It has to be remembered that ARIMA needs almost a minute
in order to create one single beat, while ETS just needs 0.656 seconds and both
RNN and LSTM require just two and five seconds per beat, respectively: this is
probably due to the fact that AutoETS function perform an automatic search of
the ideal parameters for ETS model, which is very light with respect of ARIMA;
function used to implement the latter, AutoARIMA, does basically the same, but
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needs a lot of time in order to find the ideal parameters.

Despite everything, a classification process was carried out and unfortunately
the number of beats are not enough in order to have significant results. Classi-
fication is still better for abnormal classes, but in general results do not satisfy
minimum expectations for tasks like this one. If this process could be made more
efficient, then an higher number of beats would be created, and results would be
far better than the one shown in table 10.5.

Metric N F S \Y Averages
Accuracy | 0.77679 | 0.86464 | 0.81893 | 0.87214 | 0.8331
Precision | 0.56168 | 0.70240 | 0.62468 | 0.77360 | 0.6656

Sensitivity | 0.48786 | 0.79571 | 0.69071 | 0.69071 | 0.6663
Specificity | 0.87310 | 0.88762 | 0.86167 | 0.93262 | (.8888

Table 10.5. Average metrics value for each class using ARIMA generated beats.
Bolded values indicates highest class value for each metric.

It needs to be noted that in order to improve results several for parameter
k of classifier KNN were tried, but no improvement was observed even putting
k =1,2,3. So the decision was to come back to the standard value k£ = 4.

10.2.5 Results of the creation and classification processes
using neural techniques

Classification with beats created with LSTM and RNN do suffer from the low
amount of data obtained, and results are pretty much comparable for both methods
considered: even by increasing parameter £ = 10 there is no visible improvement,
so it was decided again to leave it as k = 4. Results for LSTM are shown in
table 10.6 and figure 10.2.5, while results obtained with RNN are shown in table
10.7 and figure 10.2.5. These results prove how important it is to work with big
quantities of data in order to have success when dealing with deep learning tasks.

Metric N F S \Y Averages
Accuracy | 0.77550 | 0.84369 | 0.79025 | 0.83537 0.8112
Precision | 0.55849 | 0.68870 | 0.56772 | 0.68045 0.6238

Sensitivity | 0.48700 | 0.68388 | 0.67488 | 0.64387 0.6224
Specificity | 0.87167 | 0.89696 | 0.82871 | 0.89921 | 0.8741

Table 10.6. Average metrics value for each class using LSTM generated beats.
Bolded values indicates highest class value for each metric.
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Metric N F S \Y Averages
Accuracy | 0.78733 | 0.83544 | 0.78547 | 0.83186 | 0.8100
Precision | 0.58342 | 0.67457 | 0.55725 | 0.68463 | 0.6250

Sensitivity | 0.52222 | 0.66033 | 0.69056 | 0.60711 | 0.6201
Specificity | 0.87570 | 0.89381 | 0.81711 | 0.90678 | 0.8734

Table 10.7. Average metrics value for each class using RNN generated beats.
Bolded values indicates highest class value for each metric.
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Figure 10.4. Confusion Matrix for Figure 10.5. Confusion Matrix for
RNN method. LSTM method.
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Figure 10.6. Histogram with all average results for all augmentation
techniques seen in this work.

Besides that, it has to be considered that ETS was implemented by using an
automatic function, which allow the process to be as efficient as possible. In this
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case this was not possible, since LSTM and RNN do not have such possibilities
and have to be manually set-up. This model allow to have some original beats,
but fails to be as efficient as it should in order to have the needed amount in order
for the beats to be classified in a correct way.

Lastly, in image 10.6 there is a full recap on the average score for each metric
and for each augmentation technique that was used in this work. It is interesting
how both accuracy and sensitivity scores do not go below 80% even for the worse
methods, so it does show how there is promise for all of them; on the other hand,
only ETS method seems to be sufficiently precise, as shown from precision and
sensibility scores. In order to understand these results, it has to be remembered
that the number of beats is different for each method, as vastly discussed in this
chapter, and results shown in this image do vary a lot because of it.
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Conclusions and future
works

In this work, a much needed analysis on Wavelet Scattering Transform has been
performed, starting from Fourier transform. Despite being fundamental from an
historical point of view, since it allowed signals to be analysed by using their
frequency domain for the first time, its properties are not suited for all signals: in
fact, its sensibility of any kind of deformations results in a lot of difficulties when
analysing determined signals, like ECGs.

For this reason a new mathematical transform has been defined: the Wavelet
Scattering Transform, which bounds together the wavelet transform and a scat-
tering propagator, creating a brand new transform, invariant to translation and
scaling: these properties will be very useful, especially during the classification
process.

Another problem rose up just before taking on the classification problem: is
it possible to create a great amount of realistic human beats using mathematical
techniques, and in particular time-series forecasting” That is the point of the whole
second part of the work, since ECGs are really difficult to acquire and consume a
very high amount of both time and resources: all of that without even considering
all the privacy problems and the rarity of some syndromes, which means that
available data is limited.

For this reason a new procedure has been evaluated: nine random beats are
sampled and then, using different methods (ETS, ARIMA, LSTM, RNN) a new
one is created: this process has been repeated until almost three hundred thousand
new beats have been created. This allow for a greater variability of beats, which
results to be very original and significantly different from the real ones and from
the augmented ones, without losing their characteristics.

Finally it was possible to classify those new beats using WST.

In my future works I hope to improve even more the methods used to create
beats, so that it can create even more realistic beats and hopefully do that in a
more efficient way.
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Appendix A

Fundamentals of functional
analysis

A.1 Basic notions on bounded operators

Definition A.1.1. Consider a set M. Then the function d : M x M — R is called
metric if the following properties are satisfied:

1. d(z,y) > 0;
2. d(z,y) =0z =y
3. d(z,y) = d(y,z) (symmetry property);
4. d(z,z) < d(z,y) + d(y, z) (triangle inequality).
If d is a metric on M, then the pair (M, d) is called metric space.

Definition A.1.2. Let X be a vector space over a field F. It is called norm on
X a function ||+ || : X — R such that the following are valid V z,y € X and « € F:

L[|z = 0;

2. [lz]| =0 &z =0;

w

Nz = fedllz];

N

Nyl <l + -

A generic vector space X equipped with a norm is called a normed space.
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Definition A.1.3. Let X,Y two normed spaces defined on a numeric field F; a
transformation (or operator) 7': X — Y is said to be linear if:

T(ax+ Py) =T (z)+ pT(y),V z,y € X,a,5 € F. (A.1)

Proposition A.1.4. Let X,Y two normed spaces and T : X — Y a linear trans-
formation. The following are equivalent:

1. T is uniformly continuous;

2. T is continuous;

3. T is continuous in 0;

4. Fk>0st ||T(2)|| <kifxre X, |z <1;
5. 3k >0st ||T(2)|| < klz]| V2 e X.

Proof. Implications 1. = 2. and 2. = 3. are taken for granted. Only the last
three ones (3. = 4., 4. = 5. and 5. = 1.) will be shown.

3. = 4. If T is continuous in 0, it has to be so in a neighborhood of 0, which
means that if e =1 =30 > 0s.t. ||T(x)| < 1if |z]]| < §,x € X. Taken w € X
with [lw|| < 1, it yields that ||| = 2|jw|| < 2 <4, and so:

ow ow o
() <1=7(%) =7
() ()i
because 7 is linear. So: ||T(w)| < 1= ||T(w)| < 2.
4. = 5. If k is defined in such a way that ||T'(z)| < k, with x € X ||z| = 1.
Since T'(0) = 0 = T(0) < k||0]|, so let’s consider y € X,y # 0; then if we

normalize by the norm Hﬁ” =1= HT (ﬁ)“ < k. Then again, because T is a
linear transformation:

g 55

so [|T(y)|| < klly||, which proofs the point.
5. = 1. Since T is a linear transformation:

IT(z) =T = Tz =y <kllz —yl,V 2,y,€ X.

Putting € > 0,0 = £, then if ||z — y|| < ¢, we have:
€
IT(@) = Tl < kllz — gl < & (5) = e

which means that T is uniformly continuous. O]
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That means that linear bounded operators are continuous, and viceversa.

Definition A.1.5. Consider a measure space (X, u). Once the following norm is
defined:

1= ([ 1rPan)" . 1< p < o (A2

it is called space L? the set which includes all functions f : X — R such that the
following property is verified:

[f]ly < +o0. (A-3)

Cases for p = 1,2 are of particular importance, as the first part of this work pointed
out.

Definition A.1.6. Consider two functions f, g defined in R. Then the following
function is defined as convolution of f and g¢:

()= [

—0o0

+oo +oo

[t =rdr = [t =mgrydr  (A4)
Definition A.1.7. Consider a function f : R® — R™, and denote each component
of f(x) = (f1,... fm) Then the following matrix with m rows and n columns is
defined as the Jacobian matrix of f in the generic point x € dom(f) C R™:

dfi
1) = (@rssen 12520 0= (5o (0)) (A5)
Lj
For the same function it is possible to define the Hessian function as well:
HI(@) = (ihcigen i = =@ (A6
- 17 )1<7,5<n» J &Bﬁxj .

Definition A.1.8. The following generalized function (also called distribution) is
called Dirac’s distribution:

0 otherwise

5($):{1 ite=0 (A7)

Observation A.1.9. It is possible to note that, following its definition:
+oo
/ d(x)dxr =1

It is clearly useful in cases where you just want to consider only a point of a
certain function; in fact for every continuous function the following holds:

[ 8t~ mo)otw)dr = o(wo).

—00
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Definition A.1.10. Given f : X — Y, X, Y normed spaces, f is said to be a
Lipschitz operator if:

1f (@) = fWlly < kllz —yllx,Vre X yeY (A.8)

A .8 is called Lipschitz property. Basically, f is a Lipschitz operator if its vari-
ations in Y is always bounded by a multiple of the variations happened in X; k is
called Lipschitz constant. Besides, a Lipschitz operator is said:

« contractive if k£ < 1;
e nonexpansive if £ < 1;

o expansive if £ > 1.

A.2 Definition of Hilbert spaces

Together with the properties for linear operators, it is necessary to briefly review
some concepts of functional analysis, starting from the definition of a Hilbert space
and going through everything that supports this definition.

Definition A.2.1. The sequence {z,},y is called a Cauchy sequence if ¥V ¢ >
0 3 N(e) > 0 such that d(z,,z,) < eV n,m > N(e).

Noting that d is a metric, the following are recalled:

« in a metric space (that is, a vector space equipped with a metric) any con-
vergent sequence is a Cauchy sequence;

» a metric space is said to be complete if all Cauchy sequences belonging to it
are convergent.

At this point, it is possible to give the definition of a Hilbert space.

Definition A.2.2. A real or complex vector space H on which an inner product
(-,-) is defined is called a Hilbert space H = (H, (-,-)) if the metric space (H,d)
turns out to be complete, where d is the metric induced by the inner product on

H.
Note that for 1 < p < +o00, L? are Banach spaces; only L? is an Hilbert space.
Definition A.2.3. Consider an Hilbert space H and its scalar product

() HxH-—R, (A.9)
and let it respects all properties from A.1.2; then if the following function:
d(z,y) = ||z —yl| (A.10)

is a metric, then (A.10) is called norm induct by scalar product (-,-), and it is
denoted by || - ||
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Topology and algebra revise

B.1 Basic notions

Notions of topological space and open and closed set will be taken for granted.

Definition B.1.1. Given B subset of a topological space X, it is called closing
of set B the following:

B=({C|BcCcX} (B.1)

Definition B.1.2. A subset A of a topological space X is called dense in said
topological space if A = X.

Definition B.1.3. Consider a subset S of a vector space V over a numeric field
K; then it is possible to define the following:

span(S) ={ v+ ... Ao [ n e Ny, ... 0, € S; A, ..\, € KY
This sum is not necessarily finite.

Definition B.1.4. A sequence {g, }nen of elements in an Hilbert space H is said
to be a basis of it if the following condition is satisfied:

span(gn) = H, (B.2)

which means that the linear space spanned by those elements is dense in the Hilbert
space considered.

If (gm,gn) = 0V m # n, which means that all the elements of the basis are
linearly independent from each other, then the basis is called orthogonal; besides,
if |lgn]] = 1V n € R is valid together with all other properties, then {g, }nen is
said to be an orthonormal basis.
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Corollary B.1.5. Let B = {g, }nen an orthonormal basis of an Hilbert space H
then for every u € H we have:

u= §<u,gk>gk (B.3)
and
+00
= 3l e (B.4)

Thanks to B.1.3 it is clear that every element of an Hilbert space H can be

written as a sum using each element of B; it can be said that elements of B
generates H.
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Useful concepts for proving
theorem 2.3.2

C.1 Definitions and lemmas

Definition C.1.1. Consider a countable family (M, ),en of closed subspaces of
an Hilbert space X; then the internal orthogonal direct sum of said M, is

defined such that:
P M, = M, (C.1)
neN neN

In other words, if {x,} is an orthonormal base for an Hilbert space X, then
X - @HGN xn.

Lemma C.1.2. Considering an MRA V},j € Z, an orthonormal base for it is
given by {27/2¢(27t —n) | n € Z}

Proof. Changing variable u = 2t, we have an isomorphism [ such that:

I(Vo) = Vi, I(f(1)) = V2f(21). (C.2)
So {V2¢(2t—n) | n € Z} is an orthonormal base for V; and {2//2¢(27t—n) | n € Z}
is an orthonormal base for V; O

C.2 Theorems with relative proofs

Theorem C.2.1. Consider a space X with an inner product (-,-) and a complete
subspace M C X; then the following are valid:

a. X = Mo M,
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b. M = (M*)*

Proof. Point a. Clearly M N M+ = {0}; consider x € X and define mg € M as its
projection in M. Since x — my € M+ and z = mg + (x — mg), then M and M+
are complementary.

Besides:

o = ail|* = llm = ma|l* + [0 = nal?,

which means that, if we define z; = m; +n; € M @& M+, we obtain that
ri—>Tr=m-+n=m; — mAn; —n,
and because of arbitrariness of x, it means that
X=MeoM".

Point b. Since M C M+~ (this will be taken for granted; proof in [4]), thanks
to point a. the following can be considered: x = m +m’ € M++.

Now, since z,m € M**+ = m' = v —m € M*+ as well. Finally, since m’ €
M+ N M*++, it means that m’ =0, so M+ Cc M and M = M++. O

Theorem C.2.2. For any subspace M of an Hilbert space X, the following hold
true:

a. M+ = M;
b. M+ ={0} & M = X.

Proof. To prove point a., remember that M C M*+, and M is closed, then nec-
essarily M C M*+. Since M is complete, then Hilbert space M+* can be decom-
posed as:
MY =Moo M

Since M C M, then M c Mt Finally, considering x € (M)*, then z € M+ N
M4+ ={0} and M+ =Ma (M)t =M

Point b., («<): let x € M*; then for any r > 0, since M is dense in X, there
exists y € M such that ||z — y|| < r. Then:

> Jle —yl* = lzl* + [lyll* = [l

Since r is arbitrary, then x = 0.
Point b., (=): simply, M+ = {0} = M = M*++ =0t = X. O

102



Ringraziamenti

Contro ogni convenzione e superstizione, ho iniziato a scrivere questi ringrazia-
menti a novembre 2023, ovvero nel periodo, da un punto di vista accademico, piu
complicato. Dopo essere stato bocciato in due esami a settembre e aver preso un
voto basso in un progetto su cui avevo speso i precedenti sei mesi della mia vita, mi
sono ritrovato senza alcuna borsa di studio, con ancora sette esami da dare, una
media bassissima e avevo accumulato gia un anno di ritardo rispetto alla naturale
conclusione degli studi.

Quasi due anni dopo la media non si ¢ alzata, il ritardo si ¢ aggravato eppure mi
riempie di gioia leggere queste righe ora che il percorso si ¢ formalmente concluso:
e a questo giro vi beccate i ringraziamenti di una vita.

Ringrazio il mio relatore, il professor Lamberto Rondoni, e il dottor Davide
Carbone per il sostegno e l'aiuto indispensabile offertomi in questi mesi al fine di
concludere il mio lavoro.

In particolare, ci tengo a ringraziare il professore per la sua incredibile passione
per le materie che insegna, che mi ha permesso di riaccendere la mia per questo
mondo strano ed infinito che ¢ la matematica.

Inoltre ringrazio infinitamente Davide per avermi letteralmente accompagnato,
nel corso dell’'ultimo anno, attraverso questa ondivaga esperienza che ¢ stata scri-
vere la tesi: il tuo sostegno e le tue indicazioni sono state fondamentali al fine di
concludere questo lavoro, e te ne sono grato.

Ringrazio Alessandro, in arte Sandrino, non solo perché condividere con te le
passioni per la musica, lo sport e per tutto cio che riguarda la matematica mi apre
sempre nuovi orizzonti, ma soprattutto perché sei una persona onesta e generosa.
Le parole difficilmente rendono giustizia di quanto ogni istante passato con te mi
abbia fatto sentire bene: ogni chiamata ricevuta in tutti questi anni e stata la
dimostrazione della purezza della nostra amicizia, e spero di poter continuare a
condividere con te le mie passioni come ho potuto fare fino a questo momento.

Ringrazio Claudia e Veronica, coinquiline e amiche, perché cio che abbiamo
condiviso rimarra per sempre una parte fondamentale della mia vita.

Claudia, il modo naturale e spontaneo che hai di migliorare I'umore di chi sta
attorno a te semplicemente con la tua presenza e con la tua capacita di prendertene

103



Ringraziamenti

cura con tranquillita, sincerita e serenita e stato per me fondamentale nei tanti
momenti bui dei due anni in cui abbiamo condiviso 'appartamento e tante altre
sfighe.

Veronica, la tua gentilezza, il tuo modo naturale di far sentire importanti e a
loro agio le persone sono qualita speciali e rare, e dalle quali prendo ispirazione
ogni giorno della mia vita. Grazie per la tua generosita d’animo, per tutte le volte
che mi hai fatto ridere e soprattutto per tutte le volte in cui hai fatto i piatti senza
chiedermi nulla in cambio.

Qualunque cosa accadra ’appartamento di Corso Unione Sovietica 91 rimarra
per sempre il primo luogo a cui ripensero ricordando questi anni, e voi con esso.
(Che poi sia una cosa positiva o meno, vedremo...)

Ringrazio Nicola, che per me ¢ stato come un secondo fratello dal primo mo-
mento in cui ’ho incontrato ad ottobre del 2021 a Villa Claretta. Posso solo
provare a trascrivere l'importanza che hanno avuto tutte le gare viste insieme,
gli spritz bevuti alle panche, i consigli scambiati nei momenti difficili e le risate
condivise nei momenti belli. Ti ringrazio soprattutto per la spontaneita con cui
vivi, che mi ha insegnato quanto sia bello essere se stessi, senza pensare al giudizio
altrui, e di come questa cosa possa anche non andare bene a tutte le persone che
si incontreranno, senza che cio abbia importanza: tutto cio che conta alla fine &
potersi guardare allo specchio a fine giornata, e poter sorridere per essere riusciti
ad esprimerci nella maniera piu naturale possibile.

Ringrazio i miei fantastici amici di Carbonia: Alessia, Camilla, Davide A.,
Davide E., Fabio, Giulia, Lorenzo F., Lorenzo P., Lorenzo S., Luca M., Luca
O., Silvia. Potrei scrivere un libro su ciascuno di voi ed elencare le cazzate che
abbiamo fatto, le risate, le giornate al mare e i campeggi in cui ci siamo avvicinati
e attraverso i quali abbiamo solidificato rapporti gia molto profondi e coinvolgenti.
Vi ringrazio soprattutto per avermi dato una prova tangibile di una cosa di cui
sono sempre stato profondamente convinto: che 'amicizia non conosca confini e
distanze, e che anzi sia sempre in grado di travalicarle e andare oltre. Negli ultimi
tre anni tantissimi rapporti su cui avevo speso tempo, denaro, lacrime e sanita
mentale si sono definitivamente interrotti per motivi diversi, mentre il nostro ha
resistito al tempo, alle insidie, alle incomprensioni, e allo spazio che ci ha separati.
Mi auguro possa essere cosl ancora per molto, moltissimo tempo.

Ringrazio Niccolo, il mio fratellino. Anche se talvolta non condivido alcuni
tuoi atteggiamenti, io penso che tu abbia un potenziale immenso: sei una persona
determinata, che quando si appassiona a qualcosa ha la capacita di compren-
derla e applicarla nella maniera piu precisa possibile. Proprio per questo volevo
ringraziarti: perché negli ultimi anni abbiamo scoperto di avere tante passioni in
comune, e poterle condividere con te e stata un’emozione nuova, abituato come
sono a considerare le mie passioni come dei guilty pleasures e a nasconderle, come
se fossero cose di cui vergognarsi. Invece le passioni sono cio che piu di ogni altra

104



Ringraziamenti

cosa ci fa capire quanto la vita meriti di essere vissuta. Ti auguro di spiccare il
volo come meriti, e come gia stai dimostrando di poter fare: che questo sia solo
I’inizio anche per te.

Ultimi, ma primi per importanza, ringrazio Patrizia e Pierpaolo, ovvero la mia
mamma e il mio papa. Non solo per il vostro sostegno (economico, morale, spiri-
tuale), incrollabile come solo la fede sa essere anche nei momenti pit bui e misert,
ma soprattutto vi ringrazio perché, nel corso degli anni, mi avete insegnato cosa
significhi davvero amare incondizionatamente. In questo momento della mia vita
penso che faro scelte diverse da quelle che avete fatto voi, e probabilmente lo fac-
cio solo per egoismo e per voglia di una effimeria ed illusoria liberta. Proprio per
questo mi rendo conto di quanto preziosi siate stati voi che, nel creare la nos-
tra famiglia, avete accettato tutto cio che questa scelta comportava, senza mai
farmi mancare nulla e senza mai privarmi dell’affetto e del sostegno necessari per
proseguire e imparare a camminare con le mie gambe, in un mondo sempre piu
complicato e complesso.

Anche se oggi si conclude una lunga fase della mia vita, e se ne apre una
con ancora maggiori responsabilita, so che potro sempre contare sempre sulla mia
mamma e sul mio papa.

Questo traguardo e per voi, per tutte le persone meravigliose che ho menzionato
prima e per tutte le altre che non ho menzionato, ma che essendo presenti qui oggi
hanno deciso di condividere con me questo sogno che si realizza: grazie, perché
questi ricordi e questi momenti saranno per sempre nostri, che in fondo e cio che
conta di piu.

A voi tutti e tutte voglio dire che vi voglio bene, che siete la parte migliore della
mia vita, e vi amo.

105



Bibliography

[1] A. Karpathy. The unreasonable effectiveness of recurrent neural networks,
2015. https://karpathy.github.io0/2015/05/21/rnn-effectiveness/.

[2] J. Anden and S. Mallat. Multiscale scattering for audio classification. 2011
International Society for Music Information Retrieval, 2011.

[3] M. Artin. Algebra. Pretience Hall, 1991.

[4] G. Bachman, L. Narici, and E. Beckenstein. Fourier and Wavelet analysis.
Springer, 2002.

[5] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks,
5(2):157-166, 1994.

6] G. Box, G. Jenkins, and G. Reinsel. Time Series Analysis - Forecasting and
Control. Prentice-Hall International, 1994.

[7) H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equa-
tions. Springer, 2011.

[8] D. Brillinger. Time Series - Data Analysis and Theory. STAM, 2001.

[9] J. Bruna. Scattering Representations for Recognition. PhD thesis, Ecole Poly-
technique, 2012.

[10] J. Bruna and S. Mallat. Classification with Scattering Operators, 2013.
https://arxiv.org/abs/1011.3023.

[11] J. Bruna and S. Mallat. Invariant Scattering Convolution Networks. [EEE
Transaction on pattern analysis and machine intelligence, 2013.

[12] C. Olah. Understanding lstm networks, 2015. https://colah.github.io/
posts/2015-08-Understanding-LSTMs/.

106


https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

BIBLIOGRAPHY

[13] P. Cannarsa and T. D’Aprile. Introduzione alla teoria della misura e all’analisi
funzionale. Springer, 2008.

[14] D. Carbone and A. Licciardi. Wavelet Scattering Transform for Bioacustics:
Application to Watkins Marine Mammal Sound Database. arXiv e-prints,
pages arXiv-2402, 2024.

[15] C. Chatfield. The analysis of time series. An introduction. Springer, 1984.
[16] S. Cobzas, R. Miculescu, and A. Nicolae. Lipschitz Functions. Springer, 2019.

[17] P. Cowpertwait and A. Metcalfe. Introductory Time Series with R. Springer,
2009.

[18] D. Britz. Recurrent neural network tutorial, part 4 — implementing a gru and
Istm rnn with python and theano, 2015. https://dennybritz.com/posts/
wildml/recurrent-neural-networks-tutorial-part-4/.

[19] D. Britz. Recurrent neural networks tutorial, part 1 — intro-
duction to rnns, 2015. https://dennybritz.com/posts/wildml/
recurrent-neural-networks-tutorial-part-1/.

[20] D. Britz. Recurrent neural networks tutorial, part 3 — backpropagation
through time and vanishing gradients, 2015. https://dennybritz.com/
posts/wildml/recurrent-neural-networks-tutorial-part-3/.

[21] M. Kumar Das and S. Ari. ECG Beats Classification using mixture of features.
International Scholarly Research Notices, 2014.

[22] S. Dattani, F. Spooner, H. Ritchie, and M. Roser. Causes of death. Our World
in Data, 2023. https://ourworldindata.org/causes-of-death.

[23] M. Deza and E. Deza. Encyclopedia of Distances. Springer, 2009.

[24] H. Ni et al. Time Series Modeling for Heart Rate Prediction: from ARIMA
to Transformers. Proceedings of the 2024 6th International Conference on
FElectronic Engineering and Informatics, 2024.

[25] K. Benidis et al. Deep learning for time series forecasting: Tutorial and
literature survey. ACM Computing Surveys, 2022.

[26] Liu Z. et al. Wavelet Scattering Transform for ECG Beat Classification. Com-
putational and Mathematical Methods in Medicine, 2020.

[27] M. Loning et al. sktime version 0.36.0. https://github.com/sktime/sktime.
107


https://dennybritz.com/posts/wildml/recurrent-neural-networks-tutorial-part-4/
https://dennybritz.com/posts/wildml/recurrent-neural-networks-tutorial-part-4/
https://dennybritz.com/posts/wildml/recurrent-neural-networks-tutorial-part-1/
https://dennybritz.com/posts/wildml/recurrent-neural-networks-tutorial-part-1/
https://dennybritz.com/posts/wildml/recurrent-neural-networks-tutorial-part-3/
https://dennybritz.com/posts/wildml/recurrent-neural-networks-tutorial-part-3/
https://github.com/sktime/sktime

BIBLIOGRAPHY

[28] M. Loning et al. 33rd conference on neural information processing systems.
In sktime: A Unified Interface for Machine Learning with Time Series, Van-
couver, Canada, 2019.

[29] P. Virtanen et al. SciPy 1.0: Fundamental Algorithms for Scientific Comput-
ing in Python. Nature Methods, 17:261-272, 2020.

[30] R. Acharya et al. A Deep Convolutional Neural Network Model to Classify
Heartbeats. Computers in Biology and Medicine, 2017.

[31] G. Folland. Real analysis. Modern techniques and their applications. Wiley-
Interscience, 1999.

[32] 1. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[33] A. Grossmann and J. Morlet. Decomposition of Hardy functions into square
integrable wavelets of costant shape. Society for Industrial and Applied Math-
ematics, 1984.

[34] A. Haar. Zur theorie der orthogonalen funktionensysteme. Mathematische
Annalen, 1910.

[35] S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. PhD
thesis, Institut fur Informatik, Technische Universitat, Munchen, 1991.

[36] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Compu-
tation, 9(8):1735-1780, 1997.

[37] R. Hyndman and G. Athanasopoulos. Forecasting: principles and practice.
OTexts, 2021. OTexts.com/fpp3.

[38] D. Kingma and J. Ba. Adam: A method for stochastic optimization, 2017.
[39] N. Lanchier. Stochastic Modeling. Springer, 2010.

[40] A. Licciardi. Wavelet scattering transform. mathematical analysis and ap-
plications to virgo gravitational waves data. Master’s thesis, Politecnico di
Torino, 2023.

[41] A. Licciardi, D. Carbone, and L. Rondoni. Wavelet Scattering Operators
for Multiscale Processes: The Case Study of Marine Mammal Vocalizations.

In International Conference on Nonlinear Dynamics and Applications, pages
173-191. Springer, 2024.

108


http://www.deeplearningbook.org
OTexts.com/fpp3

BIBLIOGRAPHY

[42] A. Licciardi, D. Carbone, L. Rondoni, and A. Nagar. Wavelet Scattering
Transform for gravitational wave analysis: An application to glitch character-
ization. Physical Review D, 111(8):084044, 2025.

[43] S. Mallat. Group Invariant Scattering. Communications on Pure and Applied
Mathematics, 2011.

[44] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, 2011.

[45] S. Mallat. Understanding Deep Convolutional Networks. A Philosophical
Transactions, 2016.

[46] M. Manetti. Topologia. Springer, 2014.

[47] H. Marzog and H. Abd. ECG-signal Classification using efficient Machine
Learning approach. 2022 International Congress on Human-Computer Inter-
action, Optimization and Robotic Applications, 2022.

[48] T. Mills. Applied Time Series Analysis. Academic Press, 2019.

[49] D. Montgomery, C. Jennings, and M. Kulahci. Introduction to Time Series
Analysis and Forecasting. Wiley, 2008.

[50] G. Moody and R. Mark. The Impact of the MIT-BIH Arrhythmia Dataset.
IEEE Engineering in Medicine and Biology, 2001.

[51] J. Pan and W. Tompkins. A real-time QRS detection algorithm. IEEE Trans-
action on Biomedical Engineering, 1985.

[52] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent
neural networks, 2013.

[53] M. Reed and B. Simon. Functional Analysis. Academic Press, 1980.

[54] G. Van Rossum and F. Drake. Python 3 Reference Manual. CreateSpace,
Scotts Valley, CA, 20009.

[55] B. Rynne and M. Youngson. Linear Functional Analysis. Springer, 2008.

[56] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for
spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 26(1):43-49, 1978.

[57] Staff HPC@Polito. Guida introduttiva e regole per 'uso dei cluster hpc, 2022.

[58] American National Standard. Testing and reporting performance results of
cardiac rhythm and ST segment measurement algorithms. Association for the
Advancement of Medical Instrumentation, 2001.

109



BIBLIOGRAPHY

[59] The MathWorks Inc. MATLAB version: 9.5 (R2018b), 2018. https://www.
mathworks.com/matlabcentral/answers/593449-r2018b-matlab-9-5.

[60] The MathWorks Inc. MATLAB version: 9.5 (R2018b), 2018. https://wuw.
mathworks.com/matlabcentral/answers/593449-r2018b-matlab-9-5.

[61] The MathWorks Inc. Wavelet Toolbox version: 5.1 (R2018b), 2018. https:
//www.mathworks . com/products/wavelet.html.

[62] C. Torrence and G. Compo. A practical guide to wavelet analysis. Bulletin
of the American Meteorological Society, 1997.

[63] M. Vetterli and J. Kovacevic. Wavelets and subband coding. Prentice Hall
PTR, 1995.

[64] W. Wei. Time Series Analysis. Pearson Education, 2006.

110


https://www.mathworks.com/matlabcentral/answers/593449-r2018b-matlab-9-5
https://www.mathworks.com/matlabcentral/answers/593449-r2018b-matlab-9-5
https://www.mathworks.com/matlabcentral/answers/593449-r2018b-matlab-9-5
https://www.mathworks.com/matlabcentral/answers/593449-r2018b-matlab-9-5
https://www.mathworks.com/products/wavelet.html
https://www.mathworks.com/products/wavelet.html

	Introduction
	I Wavelet Scattering Transform
	Fourier transform
	Definition and properties
	Base properties
	Generalized Riemann-Lebesgue Lemma and its validity for Fourier transform
	Invertibility of Fourier transform

	Sensitivity to translations and deformations

	Wavelet transform
	Definition and existence conditions
	Core properties
	Wavelet basis
	Wavelet regularity
	-Lipschitz functions and vanishing moments
	Regularity theorems


	Finite scattering paths
	Aim and reasoning behind
	Definition of scattering transform and basic properties
	Definition of scattering propagator
	Basic properties


	From scattering transform to Wavelet Scattering Transform
	Localized Scattering Transform
	Definition of Wavelet Scattering Transform
	Properties of WST
	Non-expansion
	Translation invariance
	Lipschitz-continuous


	Final considerations
	Recap on Fourier, Wavelet and Wavelet Scattering Transform


	II Time-series analysis and forecasting
	Time-series analysis
	Theoretical foundation
	Time-series elements

	Classic time-series forecasting
	Basic notions of the forecasting problem
	Forecasting with Exponential Time Smoothing
	Forecasting with ARIMA models
	Autoregressive model
	Moving average and differencing models
	Adding a seasonal element and bounding everything together: SARIMA models


	Forecasting with neural methods
	Neural networks
	Basic structures
	From input to output: forward process and loss function
	Improving the results: back-propagation and optimization algorithms

	Forecasting with Recurrent Neural Networks
	Training a Recurrent Neural Network
	The Vanishing Gradient Problem
	Forecasting with Long Short-Term Memory



	III Experiment and results
	Experimental experience
	Pipeline description
	MIT-BIH Dataset
	The Wavelet Toolbox™ in MATLAB®
	Data augmentation and the sktime package
	Classification

	Results and discussion
	Beats creation
	Metrics used
	Beats similarity

	Classification with WST
	Metrics used
	Results of the creation and classification processes using naive augmentation
	Results of the creation and classification processes using ETS technique
	Results of the creation and classification processes with ARIMA
	Results of the creation and classification processes using neural techniques


	Conclusions
	Fundamentals of functional analysis
	Basic notions on bounded operators
	Definition of Hilbert spaces

	Topology and algebra revise
	Basic notions

	Useful concepts for proving theorem 2.3.2
	Definitions and lemmas
	Theorems with relative proofs

	Ringraziamenti
	Bibliography


