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1. Abstract

Understanding the development of neurodegenerative diseases represents an open challenge
for modern medicine today and is a fundamental step toward the possible identification
of therapies. The aim of this thesis is to study the progression of these conditions inside
the brain - in particular Alzheimer’s disease - using reaction-diffusion models. The present
research links the continuous diffusion model with the brain connectome, which is described
by a discrete network model.

Using COMSOL Multiphysics software, a three-dimensional geometry of the right brain
hemisphere and its connectome structure is constructed. The study initially implements
the Fisher-Kolmogorov model to investigate the role of tau protein in initiating the disease.
Subsequently, the focus shifts to the interaction between tau and β-amyloid proteins, as
recent studies suggest that the spread of β-amyloid is the key driver of early cognitive
decline and highly interacts with tau proteins. A tailored model is then developed to apply
the findings to a cohort of patients at different stages of the disease.

All numerical simulations are followed by a parametric study investigating the rates
of conversion of healthy proteins into misfolded forms, the interaction parameter between
pathological species, and the time required for complete invasion of the cerebral cortex.

In the analysis of the patient cohort, simulation results are compared to clinical data to
assess the correspondence between modelled predictions and observed disease progression.

The results demonstrate that the implemented models effectively reproduce the spatial
and temporal patterns of misfolded protein propagation, offering a realistic representation
of disease dynamics.
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2. Introduction

2.1 The brain

The brain is the principal organ of the nervous system in all vertebrates and most inverte-
brates. It is usually located in the head, near the sensory organs, responsible for processing
signals from the rest of the body [17]. As the control center of the organism, it plays a
fundamental role in regulating both voluntary and involuntary functions.

In humans, the brain, together with the spinal cord — connected through the brainstem
— constitutes the central nervous system. It controls most bodily activities by receiving,
analyzing, and coordinating information from the sense organs. Through the processing of
incoming stimuli, it determines which instructions to send to the rest of the body.

Anatomically, the brain is enclosed within the cranial cavity, which serves a crucial
protective role, and is immersed in cerebrospinal fluid. It is separated from the rest of the
body’s blood flow by the blood-brain barrier, which regulates the exchange of substances to
maintain a stable environment. Nonetheless, the brain is vulnerable to injury, disease, and
infection. Injury may result from physical trauma or reduced blood flow — a condition
known as ictus. The most common diseases affecting the brain are neurodegenerative
disorders such as Parkinson’s disease, various forms of dementia (including Alzheimer’s
disease), and multiple sclerosis. Tumors may also develop, often as metastases from other
body regions.

The structure that most distinguishes the mammalian brain from that of invertebrates
is the cerebral cortex, a continuous laminar layer of gray matter forming the outer surface
and covering the white matter of the cerebral hemispheres. It is composed of neurons and
nerve fibers and has a thickness of approximately 2–4 mm.

Functionally, the brain comprises the telencephalon and the diencephalon. The telen-
cephalon includes the cerebral hemispheres and forms the largest part of the brain. Each
hemisphere is conventionally divided into four lobes: frontal, parietal, occipital, and tempo-
ral. Each lobe contains cortical areas responsible for specific functions. The diencephalon
is a group of neural structures located between the left and right hemispheres. Although
the hemispheres are largely similar in form and function, some tasks are more specialized
— for example, language is typically associated with the left hemisphere, while visuospatial
abilities are more dominant in the right. The hemispheres are interconnected by neural
pathways, the largest of which is the corpus callosum.

The average adult human brain weighs about 1.2 - 1.4 kg and represents roughly 2%
of total body weight. It has a volume of approximately 1260 cm3 in men and about 1130
cm3 in women, although significant individual variation exists.
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Figure 2.1: Left: top view drawing of an encephalon, depicting the two cerebral hemispheres
and their overall shape [13]. Right: diagram of the vertical (sagittal) section of a human brain,
showing key internal structures such as the corpus callosum, thalamus, hypothalamus, brainstem,
and cerebellum [6]. Together, these views offer a complementary representation of both external
and internal brain anatomy.

2.2 Biology of neurodegenerative diseases
Proteins are biological macromolecules composed of chains of amino acids that form the
foundation of all living organisms. They perform a wide range of functions in the human
body, including catalyzing metabolic reactions, facilitating synthesis, responding to stimuli,
and transporting molecules across different sites.

Proteins have a natural tendency to fold into compact, three-dimensional structures.
Only properly folded proteins are stable in biological environments over time. Failures
in folding are associated with pathological conditions, leading to the disruption of vital
cellular, tissue, and organ functions. Misfolded proteins can aggregate into insoluble fibrils
or plaques, which are toxic to cells and interfere with normal physiological processes.

The diversity of neurodegenerative diseases arises from the specific proteins involved in
misfolding. Notable examples include prion disease, Alzheimer’s disease (AD), Parkinson’s
disease (PD), Creutzfeldt-Jakob disease, and Amyotrophic Lateral Sclerosis (ALS) [5].

Figure 2.2 illustrates the correlation between the accumulation of misfolded proteins
and their respective neurodegenerative diseases.

a−e: In Alzheimer’s disease, the formation of β-amyloid protein plaques begins in the
neocortical region and subsequently spreads throughout the brain.

b−f : Also in Alzheimer’s disease, tau protein accumulation begins in the locus coeruleus,
then spreads to the transentorhinal and hippocampal areas.

c−g: In Parkinson’s disease, α-synuclein protein propagation begins in the brainstem.
The first lesions appear in the olfactory bulb and medulla oblongata, later affecting other
areas.

d−h: In ALS, TDP-43 protein is initially found in the granular motor cortex and α-
motor neurons of the spinal cord. The disease then progresses toward the prefrontal and
post-central cortex, eventually reaching the temporal and hippocampal regions.
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Despite their significant impact on tissue biology and cognitive function, the mechanisms
behind the emergence and aggregation of misfolded proteins remain poorly understood.
Their prevalence and toxicity have been widely studied over recent decades and continue
to be the subject of scientific debate.

Figure 2.2: Misfolded proteins (a−d) and corresponding patterns of disease progression (e−h)
in major neurodegenerative disorders [5].
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2.3 Pathogenic protein aggregates: the prion paradigm
The prion paradigm emerged after decades of research into unusual animal and human
diseases characterized by atypical infectivity, prolonged incubation periods, and the absence
of inflammation or any detectable viral agent. In the 1980s, Prusiner and his colleagues first
demonstrated that the infectious agent responsible for these diseases was an abnormally
folded protein, which led to the coining of the term “prion”.

Pathologically, prion diseases are characterized by the accumulation of prion proteins
(PrPs), which eventually lead to neuronal loss and structural changes in the brain. Under
normal conditions, PrPs adopt a non-pathogenic three-dimensional conformation. Disease
occurs when these proteins misfold and aggregate into structures known as “oligomers”
and “fibrils”.

The fundamental mechanism underlying the disease is the aggregation of normally pro-
duced prion protein (PrP). This process can be triggered by different factors, depending
on the form of the disease:

• Hereditary form, caused by gene mutations that increase the tendency of PrP to
misfold;

• Infectious form, resulting from the introduction of already misfolded prion proteins
(seeds) from external sources;

• Idiopathic form, arising from spontaneous misfolding of PrP, followed by the self-
propagation of endogenous misfolded seeds.

The term ‘infectivity’ in the context of prions refers to disease initiation caused by an
external misfolded protein that enters the body and induces misfolding in native PrPs.
Since these aggregates are formed from endogenous proteins, the immune system fails to
recognize them as foreign and does not mount a defensive response. In humans, prion
diseases of infectious origin are extremely rare: only approximately 3400 cases have been
identified globally, and such occurrences are now virtually non-existent.

Typically, once the disease is established in the body, it enters a clinically silent incuba-
tion period during which it spreads within the brain. Eventually, characteristic signs and
symptoms appear, culminating in death [23].

Within the brain, prions spread with high specificity along defined anatomical pathways,
suggesting that neuronal transport mechanisms play a central role in their propagation.

2.4 The Alzheimer’s disease
The intriguing clinical and pathological similarities between prion diseases and neurodegen-
erative disorders have been extensively studied. Among these, Alzheimer’s disease (AD)
stands out as a major neurodegenerative condition, characterized clinically by a progressive
decline in cognitive function and histologically by the presence of intra-cerebral plaques
and neurofibrillary tangles.

Plaques are heterogeneous lesions consisting of extracellular masses of amyloid fibrillar
peptide (Aβ), while tangles consist of intracellular bundles of fibrillar tau protein. As the
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disease advances, additional lesion types, such as cerebral Aβ-amyloid angiopathy, as well
as age-related comorbidities, are often observed in the brain.

Tau protein is found in large quantities inside neurons and plays a key role in stabi-
lizing microtubules. In several neurodegenerative disorders, including AD, tau undergoes
abnormal hyperphosphorylation and polymerization, a pathological process referred to as
tauopathy, which initiates the cascade of events that trigger disease progression. The
spread typically begins in the locus coeruleus, proceeds to the transentorhinal region, and
subsequently reaches the entorhinal cortex, eventually propagating to the neocortex and
axonally connected areas.

Recent studies have demonstrated that β-amyloid oligomers (sAβ), very small assem-
blies of soluble misfolded proteins, are the primary mediators of misfolding transmission,
promoting the aggregation of additional pathological proteins. Due to their extracellu-
lar localization, Aβ oligomers diffuse through the brain’s interstitial fluid and propagate
anisotropically along neuronal fibre tracts, thereby reaching and inducing misfolding in
previously unaffected cells.

2.5 The connectome
A major challenge in understanding neurodegenerative diseases lies in deciphering the
clinico-pathological relationships that influence both diagnosis and treatment. The same
primary pathology can give rise to multiple clinical syndromes, while a single syndrome may
stem from diverse neurodegenerative aetiologies. Therefore, an ideal approach to disease
identification involves investigating the functional networks responsible for information
processing and transfer in the brain. This may help correlate neuropathological patterns
with clinical syndromes — for instance, dementia in the case of Alzheimer’s disease (AD).

Cognitive abilities rely on large-scale functional networks distributed throughout the
brain. Post-mortem studies have shown that neurodegenerative pathology often spreads
within strongly connected anatomical regions, where neurofibrillary tangles are more ex-
tensive. The study of this process is central to the ‘prion-like’ hypothesis, which describes
the propagation of misfolded proteins from their site of origin along neuronal pathways.
Despite mounting evidence that neuronal networks contribute to disease progression, many
aspects of their role remain poorly understood [22].

The prion-like diffusion hypothesis implies a view of the network as a tangle of passive
connections between distant brain areas, through which pathogens are transported. How-
ever, recent theories suggest a more active role, proposing that certain network hubs may
facilitate or even generate pathological proteins, acting as catalysts for disease progression.
A central concept in this framework is the connectome: a comprehensive map of neural
connections in the brain, encompassing both adjacent and long-range pathways mediated
by axonal projections. Both post-mortem analyses and neuroimaging studies support the
notion that such networks serve as channels for the transmission of misfolded proteins
across functionally connected but anatomically distinct regions.

In AD, neuroimaging using positron emission tomography (PET) has revealed signif-
icant overlap between the spatial distribution of β-amyloid and fronto-parietal networks,
as well as a correlation between tau accumulation and specific functional circuits.

Recent approaches employ ‘correlative network models’, based on graph theory, where
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nodes represent brain regions and edges represent biological or functional connectivity.
The central hypothesis is that disease propagation begins in one or more epicentral regions
and spreads along synaptic connections. Imaging studies have shown that areas most
strongly connected to these epicentres often exhibit the fastest rates of pathological protein
accumulation or grey matter atrophy, as observed in AD.

This framework is illustrated in figure 2.3:

a. On the left, the neuroimaging technique allows for the regional quantification of
protein accumulation. Red areas indicate regions with high tau protein deposition,
whereas yellow areas show lower levels. On the right, the structure of the connec-
tome is displayed, highlighting the white matter tracts that interconnect different
brain regions.

b. The left panel illustrates a potential approach to analyzing the network architecture:
brain regions are modelled as nodes, and the interconnections between them are
represented as edges in a graph. The shading intensity of each node reflects the
local burden of pathological proteins, with the darkest red node representing the
epicentre of disease propagation. Based on both the intrinsic properties of nodes
and their network connectivity, the model estimates how the pathology may spread
to distant areas of the brain. On the right, a linear correlation is shown between
pathological burden and network connectivity: the higher the connectivity, the greater
the accumulation of tau in the corresponding region. Additionally, nodal properties
allow predictions of spatial propagation patterns.

c. Individual-specific models are generated by integrating PET-based regional measure-
ments of tau deposition. For each subject, a graph-based model is constructed to
reflect the individual’s unique brain network architecture. Variations in these archi-
tectures may account for differences in the pattern and extent of pathological spread.
Below, a covariance matrix illustrates the relationship between tau-PET signal across
brain regions and the corresponding network connectivity, offering insights into the
association between brain structure and the spatial diffusion of pathology.

d. After defining the spatial propagation model, this is integrated with the temporal
dynamics of disease progression. These models simulate the early accumulation of
misfolded aggregates in initial regions, followed by their diffusion through the network
over time. This process is governed by a set of parameters that take into account
node characteristics such as aggregation, production and diffusion, as well as the
connectivity of the network itself.

The idea that networks thus serve as conduits for the spread of disease suggests that disease
progression can be simulated from the information from imaging representing the network
itself.
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Figure 2.3: Methods for assessing the influence of network architecture on disease progression
[22].

2.6 Diagnosis of neurodegenerative diseases
The diagnosis of neurodegenerative diseases is a complex process that requires a multidis-
ciplinary approach: there is no single definitive test, but rather, analyses from different
clinical symptoms are combined with a series of instrumental and biological examinations.

In the case of AD, the first step towards diagnosis is taken through a targeted and
detailed clinical assessment of the patient’s cognitive condition. The diagnostic criteria
used are those proposed by the National Institute on Aging and Alzheimer’s.

The clinical evaluation is supported by instrumental examinations, such as Magnetic
Resonance Imaging (MRI) useful for identifying possible cerebral atrophies, in particular in
the hippocampus, or Computerized Tomography (CT), less sensitive than the former but
useful for ruling out other pathologies, and Positron Emission Tomography (PET). The
latter is fundamental for making the diagnosis: FDG (fluorodeoxyglucose) PET assesses
cerebral metabolism, while amyloid PET detects the accumulation of β-amyloid plaques.

It is also possible to carry out analysis of the cephalorachid fluid (CSF), which may show
a decrease in β-amyloid, thus an accumulation of plaques, or an increase in tau protein,
associated with the formation of neurofibrillary tangles. These biomarkers are useful for
confirming the diagnosis and differentiating AD from other dementias.

After confirmation of the presence of the disease, patients can be categorized according
to the severity of their symptoms.
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3.1 Diffusion models for neurodegenerative diseases
Prion diseases are characterised by a series of chain reactions in which misfolded infectious
proteins induce healthy counterparts to adopt the same pathogenic conformation, distinct
from their physiological structure. These diseases display unique kinetic characteristics:

1. Disease progression becomes inevitable once prion production processes are initiated;

2. The length of the incubation period depends on both the initial concentration of
pathological proteins and the rate at which they replicate;

3. The disease course is marked by a prolonged and silent incubation phase, during which
prions accumulate and spread, followed by a brief but fatal symptomatic period [14].

Since the initial identification of these diseases, researchers have been trying to develop
mathematical models capable of capturing the above-mentioned features. The main diffi-
culty encountered was that early models focused on producing repeatable and predictive
results, but were not based on the physical mechanisms that regulate protein diffusion. Ini-
tial studies primarily investigated individual seeding events involving monomeric or poly-
meric proteins that could induce misfolding in native proteins. Over time, however, the
focus shifted towards understanding the diffusion of prion-like proteins within the cere-
bral cortex and the resulting cognitive and behavioural consequences. This shift proved
essential for differentiating between symptoms and improving diagnostic specificity.

To date, most hypotheses and extensive research suggest that pathological proteins
in neurodegenerative diseases propagate through mechanisms similar to those of prions,
spreading progressively throughout the brain along anatomically connected neural networks
[10]. Moreover, reaction-diffusion models, rooted in physical principles governing molecular
diffusion, have successfully described the growth and propagation of misfolded proteins in
diseases such as Alzheimer’s (AD), Parkinson’s (PD), and Amyotrophic Lateral Sclerosis
(ALS). This is possible because, despite differences in clinical and pathological features,
these disorders share fundamental molecular properties with prion diseases: nucleation,
growth, and spreading.

One of the major challenges in studying disease progression lies in the fact that the first
clinical symptoms of cognitive decline typically appear one or two decades after the initial
cellular abnormalities have begun to emerge in the brain. As a result, obtaining data from
the earliest stages of the disease remains particularly difficult.
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Figure 3.1 illustrates the propagation of pathological proteins associated with different
neurodegenerative diseases — tau and β-amyloid in Alzheimer’s disease (AD), α-synuclein
in Parkinson’s disease (PD), and TDP-43 in Amyotrophic Lateral Sclerosis (ALS) — across
three distinct stages of disease progression, highlighting the spatial patterns of protein
aggregation in each case.

Post-mortem studies conducted on several hundred human brains have consistently
confirmed the progression patterns depicted in the figure, which have therefore become
the basis for repeatable and predictive models. In AD, for example, plaque accumulation
caused by β-amyloid proteins has been repeatedly observed to begin in the neocortex and
then spread to subcortical regions, as shown in the first row in orange [20]. In the same
disease, tau protein aggregation, represented in blue in the second row, originates in the
locus coeruleus and subsequently extends to the entire cerebral cortex [2]. In PD, the
presence of α-synuclein proteins, highlighted in red in the third row, is first detected in the
motor nucleus and the olfactory bulb, from which it later spreads to additional brain areas
[3]. The fourth row, shown in green, depicts the accumulation of TDP-43 proteins in ALS,
which begins in the motor cortex and later involves the neocortex and brainstem [4].

Figure 3.1: Characteristic progression of the accumulation of pathologic specific proteins in
neurodegenerative diseases deduced from post-mortem brain analyses. Respectively, from top to
bottom, β-amyloid protein deposits in Alzheimer’s disease, tau inclusions in Alzheimer’s disease,
α-synuclein inclusions in Parkinson’s disease, and TDP-43 inclusions in amyotrophic lateral scle-
rosis. Three stages of progressive neurodegeneration are shown, from left to right, with white
arrows indicating the possible spread of lesions [26, 12].
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Despite these advances, modelling neurodegeneration remains an open challenge. A
common goal is to develop a model capable of explaining why disease progression becomes
inevitable after the initial protein accumulation e why it proceeds so slowly in the early
stages and then accelerates dramatically in later phases.

3.2 Diffusion models for Alzheimer’s disease

The prevailing theory in neurodegeneration research suggests that, in Alzheimer’s disease
(AD), tau proteins within healthy axons behave similarly to prions, undergoing misfold-
ing and progressively forming larger aggregates of pathological proteins that propagate
throughout the brain. To understand how the disease advances, it is first essential to ex-
amine both the mechanisms of molecular misfolding and the biophysical principles that reg-
ulate their diffusion within the cortical structure. To address these challenges, researchers
have proposed three main mathematical approaches, each capturing different aspects of
the underlying biological complexity:

1. Kinetic growth and fragmentation models, which simulate local molecular interactions
between misfolded and normally folded protein aggregates of varying sizes. These
models typically rely on systems of ordinary differential equations (ODEs) and are
useful for studying the nucleation and elongation dynamics at the microscopic scale.

2. Network diffusion models, founded on graph theory, which describe the macroscopic
propagation of misfolded proteins through anatomically defined brain networks. These
models treat the brain as a system of interconnected nodes (regions) and edges (ax-
onal pathways), allowing researchers to simulate the spread of disease from seed sites
along connectivity pathways.

3. Continuum models, based on reaction-diffusion equations, which provide a spatially
continuous representation of protein spread over time. These models use partial
differential equations (PDEs) to describe the evolution of pathogenic proteins as a
function of both molecular kinetics and anisotropic diffusion along fiber tracts.

Figure 3.2 illustrates the typical spatio-temporal progression of misfolded tau protein
spread in AD. The three rows depict: (a) clinical observations from imaging data, (b) results
from continuum modelling, and (c) outcomes from network diffusion modelling [10]. The
simulation in the second row is based on a non-linear anisotropic reaction-diffusion model,
which captures both the directional transport of tau along white matter tracts and the
local amplification of misfolded aggregates. Although this approach is highly accurate and
closely aligns with clinical observations, it is also computationally onerous, as it requires
finely resolved spatial data and complex numerical solvers. The third row model, on the
other hand, employs the principles of graph theory to simulate protein diffusion along a
discrete network of brain regions. This method simplifies anatomical geometry, allows
scalable calculations and facilitates the integration of patient-specific connectivity data.

Moreover, hybrid strategies are now being explored, combining the spatial accuracy
of continuum models with the efficiency of network-based approaches. These integrative
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methods aim to achieve a balance between biological precision and computational feasibil-
ity, potentially enabling real-time simulation of disease spread in individual patients based
on neuroimaging data.

Figure 3.2: Study of the typical diffusion of misfolded tau protein in Alzheimer’s disease.
Respectively, starting from the top, the clinical observation (a), the continuum model (b) and
the diffusion model implemented through graph theory (c) are illustrated. In all three paradigms
it can be seen that the accumulation of misfolded tau occurs first in the locus coeruleus, and
then spreads to the transentorhinal region and entorhinal cortex. It progressively spreads to all
interconnected neocortical brain regions [10].

3.3 Fisher-Kolmogorov model
The Fisher-Kolmogorov model, frequently used in the literature for the study of protein
misfolding, is the most widely adopted model [10]. It is commonly used to describe popula-
tion dynamics and travelling wave solutions in a variety of fields. It is based on a non-linear
reaction-diffusion equation for an unknown component u, which in this case represents the
concentration of misfolded proteins:

du

dt
= ∇ · (D∇u) + αu(1 − u) (3.1)

where D is the diffusion tensor that characterizes global protein spreading and α charac-
terizes the local conversion rate from the healthy to the misfolded state.

Equation (3.1) has two steady-state solutions: an unstable one for u = 0, and a stable
one for u = 1. This implies that once the misfolded protein is present everywhere in
the brain, u > 0, the concentration will tend to veer toward the misfolded state, u = 1.
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Of particular interest is the parameter α, which is purely phenomenological and does not
provide information about the mechanisms inherent in the current infection. It also cannot
capture intermediate equilibrium states such as, for example, the result of drug treatment
[10]. One can model the presence of misfolded proteins in a specific area of the brain from
which diffusion will begin with non-homogeneous initial conditions, u0 > 0. Within the D
tensor, the part of diffusion that occurs extracellularly will be denoted by the coefficient
dext, and that which occurs by axonal transport, thus along the n direction, will be enclosed
in daxn:

D = dextI + daxnn ⊗ n

Prion cells are known to be transported with high specificity along established anatomical
pathways, and it is generally assumed that axonal transport is faster than extracellular
diffusion. [25]

Figure 3.3: Fisher-Kolmogorov model kinetics. The model has only one unknown, namely the
concentration of misfolded proteins u, and converts healthy proteins to misfolded proteins with
rate α. In the presence of a small perturbation from the healthy state, u > 0, all proteins will
convert to the misfolded state, u = 1 [10].

3.4 Interaction model between proteins

Recent studies have shown that Alzheimer’s disease (AD) is characterized by the progressive
and widespread accumulation in the brain of two distinct pathological proteins: β-amyloid
(Aβ) and tau. The progression of AD involves the deposition of Aβ plaques in the cortex
and the formation of neurofibrillary tangles composed of misfolded tau protein.

Aβ typically first appears in the frontal regions of the cerebral cortex and subsequently
spreads to other cortical and subcortical areas. According to the prevailing ‘amyloid cas-
cade hypothesis’, the abnormal accumulation of Aβ acts as the upstream trigger of the
pathological process, initiating a cascade of downstream events, including the misfolding,
aggregation, and atypical propagation of tau. However, this hypothesis alone has proven
insufficient to fully explain the complexity of AD pathogenesis. As a result, alternative
mechanisms have been proposed, many of which emphasize the critical and possibly in-
dependent role of tau in disease progression. In particular, growing experimental and
mechanistic evidence indicates that Aβ facilitates the aggregation of tau and accelerates
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its diffusion across the brain, thereby influencing the extent of neurodegeneration and
cognitive decline.

Among the most compelling of these alternative frameworks is the concept of network-
based propagation. Unlike conventional models that assume purely spatial diffusion, recent
neuroimaging studies suggest that both Aβ and tau propagate preferentially along axonal
projections, following the architecture of the brain’s structural connectome. Through this
trans-neuronal mechanism, the two proteins can interact locally, while the effects of their
interaction propagate through neural circuits to distant brain regions. This may explain
the distinct and often non-overlapping spatial distributions of Aβ and tau observed at
different stages of the disease. Consistent with these observations, numerous mathematical
models have been developed to investigate the dynamics of their interaction. Among these,
spatio-temporal reaction-diffusion models of tau — augmented by secondary diffusion terms
reflecting Aβ-driven facilitation of tau aggregation — have emerged as some of the most
robust and widely accepted approaches for capturing the coupled progression of the two
proteinopathies in Alzheimer’s disease [18].

The brain’s anatomical connectivity network is represented by the graph G = {V, E},
where the nodes vi ∈ V, i ∈ [1, N] represent distinct grey matter regions of the brain,
and the edges ei,j ∈ E correspond to the axonal fibre connections between them. Two
time-dependent vectors, uAβ and utau, are defined to describe the concentration levels of
Aβ and tau, respectively, at each node.

A model is proposed below that integrates the production of the two proteins, their
diffusion, and their interaction:

dutau

dt
= −δHutau + αftaueEC (3.2)

duAβ

dt
= −δHuAβ + αfAβ(m · uAP P ) (3.3)

where the equation (3.2) represents the evolution of the diffusion of the tau protein and
the equation (3.3) that of the β-amyloid protein.

Diffusion of both tau and β-amyloid proteins is modelled through the Laplacian matrix
of the connectome H and a diffusivity rate δ, which depends on the concentration gradients
of the protein under consideration and the degree of connectivity between regions. This
approach aims to capture trans-neuronal propagation as an active axonal transport process,
in which fibre length is considered negligible and does not significantly influence diffusion.

In the equation describing tau protein dynamics, a focal seeding term, αftaueEC , is
included, originating in the entorhinal cortex (EC), identified as the sole region responsi-
ble for producing the misfolded protein. All other regions are assumed incapable of tau
synthesis and contribute only to its transport and aggregation.

In contrast, the equation modelling β-amyloid dynamics employs the same diffusion
framework used for tau, incorporating the term αfAβ(m·uAP P ). This includes a production
term proportional to both the region’s baseline metabolic activity m, as measured by FDG-
PET in healthy individuals, and the local availability of Amyloid Precursor Protein, uAP P ,
from which Aβ is generated.

Since the onset of production is gradual, followed by a possible decline and plateau, the
production terms are modulated by long-duration Gamma-shaped driving functions ftau

and fAβ, which describe the temporal evolution of protein synthesis [18].
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Several studies have investigated the coexistence of β-amyloid protein and tau proteins
within brain regions. The model with the strongest empirical support is presented below.
It describes a unidirectional interaction, in which β-amyloid is hypothesised to promote
tau aggregation. Equation (3.2) is modified as follows:

dutau

dt
= −δHutau + αftaueEC + γuAβutau(k − utau) (3.4)

The last term, utau(k−utau), represents a logistic growth component, where tau accumula-
tion is promoted by local concentrations of Aβ, but saturates as tau approaches a maximal
capacity k. This formulation ensures biological plausibility by preventing indefinite growth.

3.5 Integration of the connectome structure
Recent theories regarding the structure of the connectome have laid the groundwork for
the development of diffusion models that incorporate brain network architecture [22].

In neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, and Huntington’s, the
connectome is thought to facilitate the spread of pathological proteins, enabling their
propagation even between non-adjacent regions. The application of these models marked
a significant turning point: a strong spatial correlation was observed with patterns of grey
matter atrophy. In Alzheimer’s disease in particular, longitudinal diffusion data revealed
that the architecture of the human brain network is sufficiently predictive of the regional
accumulation of tau protein. These findings were further supported by studies in murine
models of neurodegenerative disease: when applied to the mouse brain connectome, diffu-
sion models yielded accurate predictions of axonal tracing following inoculation, allowing
for the investigation of disease progression over time.

A current limitation of these models is their lack of a term representing the system’s re-
sistance — that is, factors capable of modulating the rate of protein accumulation. These
factors could either accelerate or slow down the local spread of misfolded proteins, de-
pending on the biological environment. Only in recent adaptations of epidemic spreading
models has this limitation begun to be addressed. In particular, some studies have intro-
duced both production and clearance terms to model the dynamics of pathogen load at
the level of individual brain regions.

Nonetheless, many avenues remain open for improving the biological realism of such
models. This is especially true given that axonal transport mechanisms are the subject
of ongoing research. Moreover, emerging theories increasingly regard the connectome not
merely as a passive conduit but as an active substrate that participates in protein produc-
tion and propagation within physiological processes.

3.6 Brain network model
In order to model the diffusion of proteins through the connectome structure, the latter
can be represented as a weighted graph G, consisting of N nodes and E edges [10].

The graph G was derived from diffusion tensor MRI scans of 418 subjects included in
the Human Connectome Project [15], using data from the Budapest Reference Connectome
v3.0 [19]. The original high-resolution graph G comprised N = 1015 nodes and E = 37477
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edges. For modelling purposes, this was coarse-grained to a graph with N = 83 nodes and
E = 1130 edges. Each edge in the graph is weighted by the average number of fibres nIJ

present in each region of the brain, which have a length between 11.3 mm and 136.8 mm
and denoted by lIJ .

The connectivity structure of the graph G can be summarised using two matrices: the
diagonal degree matrix D = diag{DII} involving the degree of each node I, and the
weighted adjacency matrix A, where each entry is proportional to the ratio of mean fiber
number and length between nodes I and J . The difference between the matrices D and A
is defined as a weighted graph Laplacian L.

L = D − A with AIJ = nIJ

lIJ
and DII =

NØ
J=1

AIJ (3.5)

Assuming that the parameter LIJ characterizes the diffusion of healthy and misfolded
proteins through the brain network, the Fisher-Kolmogorov model can be discretized on
the weighted graph G. Equation (3.1) becomes

duI

dt
= −

NØ
J=1

LIJuJ + αuI(1 − uI) (3.6)

Figure 3.4: Brain network model. The propagation of misfolded tau proteins is modelled over
the brain connectome, represented as a weighted graph G with N = 83 nodes and E = 1130
edges. Each edge weight is defined as the ratio between the average number of fibres nIJ and
their average length lIJ computed from diffusion MRI data of 418 healthy subjects in the Human
Connectome Project [24].
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4. The Numerical Brain

4.1 Overview of work performed

The simulations were performed using COMSOL Multiphysics, a finite element analysis
software, on a three-dimensional geometry generated from an imported mesh designed to
represent the so-called ‘ideal brain’ and its associated connectome structure.

The brain model was obtained by converting the imported mesh into a solid three-
dimensional domain suitable for numerical analysis. This domain was then subdivided on
its surface into fourteen distinct zones, corresponding to the main anatomical macro-areas.
This subdivision is considered ‘ideal’ because it does not alter the original geometry, mesh
resolution or simulation results, but rather serves as a visual and analytical reference to
provide a clearer understanding of the spatial location of these regions within the brain.

In this anatomical framework, the connectome was explicitly modelled as a network
of ten three-dimensional channels embedded within the brain geometry. These channels
represent the principal fibre tracts that form the macrostructural connectivity network,
facilitating long-range communication between disparate brain regions.

Protein diffusion processes were implemented through coupled reaction-diffusion equa-
tions defined at the brain surface and within the connectome channels. The reaction
terms account for local protein aggregation and production, while diffusion is governed
by spatial gradients and the adjacency matrix derived from the connectome. Diffusion
within the connectome channels was modelled as effectively instantaneous with respect to
diffusion through surrounding brain tissue, reflecting their role as primary conduits for
trans-neuronal propagation of pathological proteins.

Time-dependent simulations were carried out over a 40-year period, with output data
recorded at 6-month intervals. This temporal discretization was selected to accurately
capture the slow progression of neurodegenerative pathology, enabling detailed mapping
of protein accumulation and spread over clinically relevant timescales. However, when the
model is applied to a selected cohort of patients, simulations are conducted over a 30-year
period to better reflect individual disease progression within that time-frame.

The results of these simulations will provide a comprehensive picture of disease progres-
sion, highlighting the temporal evolution of misfolded protein concentrations within each
brain region as model parameters governing the reaction-diffusion processes are varied. In
the case of the studied patients, simulated data will be compared against their individual
PET imaging results to assess the model’s predictive accuracy. Furthermore, the dynamics
of the model’s key parameters will be traced to evaluate their impact on the progression
and characteristics of the disease.
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4.2 Meshing construction
The initial mesh was obtained using a series of processing pipelines available within the
FreeSurfer software suite, applied to the MNI template — commonly referred to as the
‘ideal’ subject and widely adopted as a standard anatomical reference in neuroimaging
studies.

In particular, the ‘recon_all’ pipeline was used to reconstruct cortical surfaces from
raw MRI data. Subsequently, the ‘mris_convert’ tool was employed to export the surface
data into STL format, thereby enabling compatibility with the COMSOL Multiphysics
environment.

The original mesh derived from the STL file includes 261722 surface elements, 18323
edges, and 12745 vertices. This extremely dense structure, while anatomically detailed,
initially posed a significant computational burden for the numerical solution of the model.
To overcome this problem, a mesh simplification process was applied, aimed at reducing
the number of elements while preserving the essential morphological features of the three-
dimensional brain surface. This preprocessing step allowed for a more computationally
efficient model implementation without compromising anatomical fidelity.

The complexity of the imported mesh can be seen in the left-hand side of the figure 4.1;
the right-hand side shows the simplified mesh. The figure also shows three views of the
cerebral cortex thus obtained. The latter represents the right hemisphere and forms the
geometric basis for the simulations described above. Specifically, the first view shows the
entire hemisphere, providing an overall perspective of the structure; the second illustrates
the outer cortical surface, corresponding to a lateral view; and the third presents the
internal cortical surface, offering a medial view of the anatomy.

These visualisations effectively convey the level of detail of the original mesh prior to
simplification and highlight its anatomical consistency, which was maintained throughout
the modelling process.
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Figure 4.1: Left: original cortical mesh obtained from the STL file. Right: refined and simplified
version of the mesh, used for the simulations presented in this study. The first row displays the
entire right hemisphere, the second shows the external (lateral) surface of the cortex, and the
third illustrates the internal (medial) surface.
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4.3 Ideal brain
From the detailed construction of the mesh described above, the focus is now on the so-
called ‘ideal brain’, a geometric framework crucial for simulations. This structure comprises
the grey matter and cortical regions and is derived from the T1-weighted magnetic reso-
nance imaging (T1w-MRI) template known as the ‘MNI152_template’. This template is
generated through the averaging and co-registration of thousands of individual MRI scans,
and it is widely acknowledged as a standard anatomical reference in neuroimaging studies
[7, 9, 8].

The extensive dataset forming the foundation of the ‘MNI152_template’ originates
from the Human Connectome Project, with data processing and analysis coordinated by
the WU-Minn consortium, the McDonnell Center for Neuroscience Systems at Washington
University, alongside other NIH-supported neuroscience research centers. This rigorous
data processing ensures that the ‘ideal brain’ template accurately captures normative brain
anatomy, providing a robust and reproducible basis for computational modeling.

In the COMSOL Multiphysics environment, the cortical surface mesh previously im-
ported in STL format was converted into a solid three-dimensional geometry. This con-
version preserves the anatomical detail inherent in the original mesh, while enabling the
implementation of reaction-diffusion simulations directly on the brain surface.

Figure 4.2 presents multiple perspectives of this three-dimensional structure, illustrating
the anatomical fidelity of the model and its suitability for simulating protein diffusion
dynamics within the brain. Fourteen distinct anatomical regions of interest were delineated
on the surface of the brain model. The colours used to identify each zone in the list below
correspond exactly to those depicted in figure 4.2, enabling a direct visual correlation
between the anatomical structures and their spatial localization on the cortical surface.
This subdivision facilitates the analysis of protein diffusion dynamics and pathological
progression in relation to specific brain regions.

The following describes each region’s functional relevance and potential implications of
pathological alterations as modelled in the study.

1. Inner zone: composed primarily of white matter, this region is assumed to be unaf-
fected by the propagation of pathological proteins.

2. Temporal zone: involved in auditory perception, visual memory, and affectivity. Le-
sions in the right temporal lobe impair interpretation of non-verbal auditory stimuli,
whereas damage to the left side affects visual recognition, memory, and language
functions.

3. Occipital zone: includes the primary visual cortex and visual association areas.
Pathology here can result in visual perception deficits and difficulties in spatial un-
derstanding.

4. Parietal zone: encompasses the somatosensory cortex, responsible for sensory and
tactile processing, and the parietal cortex, involved in language, calculation, spatial
orientation, and memory. Lesions may cause impaired processing of simultaneous
stimuli and reduced spatial awareness.
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5. Frontal zone: responsible for voluntary motor control, language production (both
spoken and written), and emotional regulation. Damage often leads to cognitive and
behavioural disorders as well as diminished empathy.

6. Mid-frontal zone: along with the frontal zone, this area underpins long-term memory,
attention control, and personality traits. Protein aggregation here is associated with
planning and decision-making difficulties.

7. Upper-frontal zone: located at the uppermost surface of the frontal lobe, it supports
self-awareness and integration with sensory processing areas.

8. Cingulate zone: interfaces with subcortical structures and plays a key role in affective
processing, acting as a bridge between emotions and cognition.

9. Zone of the wedge: a subsection of the occipital lobe that receives direct visual input
from the retina.

10. Language zone: specializes in language comprehension, semantics, and speech pro-
duction planning. Lesions can cause impairments in both spoken and written com-
munication.

11. Hippocampal zone: crucial for memory formation, including short- and long-term
memory, and spatial orientation. It integrates signals from multiple brain areas and
is one of the earliest regions affected by Alzheimer’s disease.

12. Entorhinal zone: heavily involved in memory formation and commonly referred to
as the ‘house of memories’. It is typically the first cortical region to exhibit protein
accumulation in Alzheimer’s pathology.

13. Sensorial zone: processes sensory inputs from the five senses. Lesions can result in
disturbances across vision, hearing, touch, taste, and smell.

14. Central zone: governs voluntary motor control, behavioural planning, attention reg-
ulation, and impulse control. Damage may lead to disinhibition of action„ expressive
aphasia, abulia, apathy, and impaired executive functioning.
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Figure 4.2: Left: three-dimensional structure of the analysed portion of the brain created from
the starting mesh. Right: three-dimensional structure divided into the fourteen areas of interest
described above, with colors corresponding to those used in the list for each region. In the
external view of the cerebral cortex, the parietal, occipital, central, temporal, superior frontal,
middle frontal and frontal areas can be distinguished. In the internal view of the brain, the
entorhinal, inner, hippocampal, language, sensory, wedge, cingulate and the remaining portions
of the superior frontal, frontal and temporal areas are observed.
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4.4 Construction of the connectome structure
The connectome structure within the brain was represented by the construction of ten
cylindrical channels, each with a radius of 0.1 mm and varying lengths and curvatures.
These channels serve as conduits connecting distant brain regions, facilitating rapid trans-
port of protein diffusion between areas. In the simulations, a pure diffusion equation —
devoid of any reaction or production terms — was applied exclusively to these connecting
channels to accurately model protein transport along the connectome pathways.

The resulting geometric configuration of the connectome is illustrated in figure 4.3.

Figure 4.3: Left: integration of the connectome structure, respectively for the whole, frontal and
inner vision of the portion of cerebral cortex considered. Right: integration of the connectome
structure within the total meshwork of the cerebral cortex, in the three realised views. The red
arrows indicate some of the channels that are part of the connectome structure.
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To model the connectivity between specific brain regions mediated exclusively by the
connectome domain — subsequently referred to in the mathematical model as Ωc — a
binary adjacency matrix Ac was constructed.

This matrix was derived directly from the three-dimensional geometry of the connec-
tome designed in COMSOL Multiphysics and shown in figure 4.3, consisting of cylindrical
channels physically connecting distant cortical areas. Each element Ac,IJ of the matrix
takes the value 1 if there exists a direct connection between regions I and J , and 0 other-
wise.

Although inspired by the network-based formulation presented earlier in (3.5), this
matrix is not directly involved in the numerical simulations; instead, it serves as a schematic
representation of the anatomical connectivity realized in the COMSOL model and offers
a concise overview of how the constructed connectome channels link the defined cortical
regions. The same structural logic underlies the discretised diffusion network described by
the Fisher-Kolmogorov-type equation (3.6).

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.
1. 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2. 0 0 0 0 0 0 0 0 0 0 0 1 0 1
3. 0 0 0 0 0 0 0 0 0 0 1 0 0 1
4. 0 0 0 0 0 0 0 0 0 1 0 0 0 0
5. 0 0 0 0 0 0 0 0 0 0 0 0 1 0
6. 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7. 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8. 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9. 0 0 0 0 0 0 0 0 0 0 0 0 1 0
10. 0 0 0 1 0 0 0 0 0 0 0 0 0 0
11. 0 0 1 0 0 0 0 0 0 0 0 1 0 0
12. 0 1 0 0 0 0 0 0 0 0 1 0 0 0
13. 0 0 0 0 1 0 0 0 1 0 0 0 0 0
14. 0 1 1 0 0 0 0 0 0 0 0 0 0 0

Table 4.1: Binary adjacency matrix representing the presence (value 1, highlighted in yellow) or
absence (value 0) of structural connections between cortical regions. The matrix is constructed
from the three-dimensional geometry of the connectome designed in COMSOL Multiphysics. It
schematically encodes the connectivity pattern imposed by the cylindrical channels linking distant
brain areas, as shown in figure 4.3.

The adjacency matrix introduced above encodes the presence or absence of structural
connections between brain regions, based on the three-dimensional geometry of the con-
nectome. To model diffusion exclusively through these connecting channels, it is necessary
to consider an effective diffusion coefficient that accounts for the combined transport prop-
erties of multiple microchannels. It is assumed that the connectome can be approximated
as a set of microchannels, which collectively behave like a single flow conduit. Let each
channel have a flow rate denoted by q⃗i with the simplifying assumption that all q⃗i are
approximately equal.

37



The Numerical Brain

Thus, the total flow rate q⃗H through the equivalent conduit is given by:Ø
i

q⃗i = q⃗H

Applying Fick’s law to each microchannel,

q⃗i = −Di∇ui

where the ui represents the concentration in channel i. Summing over all channels yields
an effective diffusion process described by:Ø

i

(−Di∇ui) = −Deff ∇UH

where Deff and UH are the effective diffusion coefficient and overall concentration in the
combined structure, respectively.

This reasoning relies on the following assumptions:

1. The concentrations ui within the channels are sufficiently similar to each other to
approximate their sum by UH leading to the relation:

Ø
i

−di

3
∂ui

∂s

4
= −

AØ
i

di

B
∂u

∂s

2. The diffusion coefficients di are the same between the channels, therefore:

−
AØ

i

di

B
∂u

∂s
= −Deff

∂u

∂s

Since concentration gradients are non-zero, it follows thatØ
i

di = Deff

In order to implement this concept within COMSOL Multiphysics for visualization,
the parameter N was introduced such that

Ndi = Deff

In the simulations, N = 106 is used to scale the diffusion coefficient within the connec-
tome channels, effectively capturing the combined transport capacity of a large number of
microchannels. This adjustment reflects the modelling assumption that the connectome
acts as a densely packed bundle of homogeneous channels, each contributing equally to the
overall diffusion process.
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5. Mathematical Models

5.1 Model 1: Diffusion pattern of tau protein
Tau protein, which is responsible for the onset of Alzheimer’s disease, was modelled in
terms of its diffusion within the brain using a reaction-diffusion system derived from the
Fisher–Kolmogorov framework, as presented in equation (3.1). As shown in figure 3.2,
tau pathology initially emerges in the locus coeruleus; therefore, in the simulations, the
entorhinal cortex was chosen as the starting region for tau propagation, as it is spatially
aligned and biologically connected to this site.

The model, implemented in COMSOL Multiphysics, is formulated as a system of partial
differential equations defined on the surface Ω of the cerebral cortex. This system describes
the spatio-temporal evolution of tau protein concentration across the entire cortical struc-
ture, with the exception of the inner region, denoted by Ωint, which is not involved in
the pathological progression. In this inner zone, a diffusion-free formulation is adopted,
and Dirichlet boundary conditions are imposed along the interface between Ω and Ωint to
ensure that no flux of tau protein occurs either into or out of Ωint.

In addition to the reaction–diffusion system defined on Ω\Ωint, a pure diffusion equation
was also implemented to represent the dynamics of tau protein along the white matter
connections, corresponding to the structure of connectome. This domain is denoted by
Ωc, and it captures the network-like geometry of axonal fibre bundles that connect distant
regions of the cerebral cortex. The inclusion of Ωc enables the modelling of long-range
protein transport, complementing the surface-based propagation described on Ω \ Ωint.

∂utau

∂t
= D∇2utau + αtauutau(1 − utau) in Ω \ Ωint

∂utau

∂t
= ND∇2utau in Ωc

(5.1)

In system (5.1), the first expression models the reaction-diffusion behavior of the tau protein
on the cortical surface Ω \ Ωint. The diffusion coefficient D quantifies the rate at which
the protein spreads across the brain surface and is set to 10

è
mm2

year

é
, a reference value

commonly associated with diffusion in grey matter, as adopted in previous studies [26].
The term αtau denotes the reaction rate and represents the speed at which native tau
proteins undergo misfolding and aggregation due to pathological processes. The second
equation in the system describes a purely diffusive process on the connectome network,
denoted by Ωc. Here, the scalar multiplier N is introduced to account for the structural and
functional anisotropy of white matter pathways that compose the connectome structure.
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This parameter is set to 106, thus amplifying the diffusive flux in this region to reflect the
high conductivity and long-range connectivity of neural fibre bundles.

5.2 Model 2: Dynamics of protein interactions
Alzheimer’s disease is marked by the accumulation of two key proteins, β-amyloid and
tau. β-amyloid appears first in frontal brain regions and initiates a cascade of pathological
events, including tau misfolding and abnormal spread. Studies show that this protein
promotes tau aggregation and accelerates its propagation, worsening brain atrophy and
cognitive decline. Their interaction, together with network-based transmission, explains
the distinct spatial patterns of these proteins during disease progression [18].

To simulate this interaction and to assess how the disease propagates across different
brain regions, the model presented in equation (3.4) was implemented in COMSOL Multi-
physics. The parameter k was set to 1, thereby maintaining the upper bound of misfolded
protein concentration at a normalized value of 1, consistent with the assumption used in
the system (5.1) for the tau protein alone.

The following mathematical model is formulated as a system of partial differential equa-
tions (PDEs) defined on the brain surface, denoted by Ω. In this framework, the internal
domain Ωint is excluded from the diffusion process, while in the connectome subdomain
Ωc, the dynamics are governed by the same diffusion-only equation previously adopted in
the system (5.1).



∂utau

∂t
= D∇2utau + αtauutau(1 − utau) + γintuβutau(1 − utau) in Ω \ Ωint

∂uβ

∂t
= D∇2uβ + αβuβ(1 − uβ) in Ω \ Ωint

∂utau

∂t
= ND∇2utau in Ωc

(5.2)

In the system (5.2), the first equation describes both the diffusion of the tau protein and its
interaction with the β-amyloid protein, represented by the non-linear term γintuβutau(1 −
utau), which models the acceleration of the amyloid-induced misfolding process of tau.
The second equation accounts for the diffusion of the β-amyloid protein alone, with the
parameter αβ denoting the conversion rate from healthy to misfolded protein, analogously
to αtau in the tau equation. The third equation models protein diffusion along the white
matter fibre tracts, i.e. connectome channels. In all equations, the diffusion coefficient D

is set to 10
è

mm2

year

é
for both species, and the parameter N remains fixed at 106.

5.3 Model 3: Adapted model for patients
In order to adapt the interaction model defined in system (5.2) for application to patient-
specific data, a modification was introduced to the parameter k, which governs the upper
bound of misfolded protein concentration. Specifically, the value of k was modified from 1 to
3 to reflect clinical observations related to the accumulation of tau and β-amyloid proteins.
This adjustment is based on experimental studies indicating that the standardized uptake
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value (SUV ) of tau, as measured via PET imaging, does not exceed a threshold of 3 in
affected brain regions.

The SUV is a dimensionless parameter obtained by normalizing the tracer activity
concentration in a specific tissue (in MBq/mL) to the injected dose normalized by body
weight (in MBq/g). Assuming an average tissue density of 1 g/mL, the units cancel
out, resulting in a unitless measure [16]. This normalization allows SUV to serve as a
semi-quantitative indicator of pathological burden in vivo.

SUV = Tracer concentration(MBq/mL)
Injected dose(MBq)

Body weight(g) 1(g/mL)

To ensure reliability in model calibration, only patient data minimally affected by phys-
iological variability or technical artifacts in SUV quantification were considered, thereby
enhancing the model’s ability to realistically simulate disease progression in clinical con-
texts. Within this framework, assigning k = 3 ensures that the modified model remains
aligned with physiological constraints observed in vivo, thereby enhancing its capacity to
realistically capture the dynamics of disease progression across individual patients.

The following system of equations represents the patient-specific adaptation of the in-
teraction model previously introduced in (5.2), as implemented in COMSOL Multiphysics
for the study of individual cases.



∂utau

∂t
= D∇2utau + αtauutau(3 − utau) + γintuβutau(3 − utau) in Ω \ Ωint

∂uβ

∂t
= D∇2uβ + αβuβ(3 − uβ) in Ω \ Ωint

∂utau

∂t
= ND∇2utau in Ωc

(5.3)

where parameter D is equal to 10
è

mm2

year

é
and N is equal to 106.

Also in this case, the first equation represents both the diffusion of the tau protein and
its interaction with the β-amyloid protein; the second is the reaction-diffusion equation of
the β-amyloid protein exclusively; the third equation models diffusion through the channels
of the connectome structure.
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6. Simulation Results

Published data indicate that the accumulation process of misfolded proteins in Alzheimer’s
disease and the clinical progression of the medical condition develops over a period of about
40 years [26]. In the reality of the situation, the appearance of observable symptoms and
the diagnosis do not coincide with t = 0, since significant protein aggregation has already
occurred. Consequently, simulations were conducted along this ideal disease trajectory,
from the initial seeding of tau in the entorhinal cortex through its progressive dissemination
to all other brain regions. Simulation results were generated at six-month intervals: at
each time point, the results were visualised in COMSOL Multiphysics, and the average tau
protein concentrations for each area of the brain were saved in an Excel file in order to
realize, using MATLAB calculation software, the diagrams shown in the following sections.

6.1 Model 1: tau protein diffusion

The simulation analysis is introduced by examining the results of the first model, developed
specifically to study the diffusion dynamics of the tau protein exclusively. This model
aims to represent an idealized scenario in which tau propagates throughout the brain
independently, without any interaction with other misfolded proteins. This overview is in
line with previous theories in the Alzheimer’s disease literature, which posited that the
pathogenesis was driven exclusively by the anomalous propagation of a single misfolded
protein species. The concentration of the tau protein is regulated by the reaction-diffusion
equation of the system (5.1), where the key parameters are the conversion rate αtau and the
diffusion coefficient D. As an initial condition, a concentration of zero was assigned across
the entire brain domain, except for the entorhinal cortex — denoted by Ωe and identified
in the literature as the initial epicentre of Alzheimer’s disease — where a non-zero initial
concentration, denoted as u0,tau, was introduced. This setup defines the two critical states
of the system: the initial seeding at time zero, and the saturation point at concentration
value 1, corresponding to the complete invasion of tau throughout the brain.



∂utau

∂t
= D∇2utau + αtauutau(1 − utau) in Ω \ Ωint

∂utau

∂t
= ND∇2utau in Ωc

utau(t = 0) = u0,tau in Ωe

utau(t = 0) = 0 in Ω \ Ωe

(6.1)
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The system of equations presented in (6.1) corresponds to the reaction–diffusion model
implemented in COMSOL Multiphysics for the simulation of tau protein propagation.
The first two equations describe the evolution of the concentration in the cortical domain
Ω\Ωint, and the connectome Ωc, through reaction–diffusion and pure diffusion, respectively.
The third equation specifies that the inner brain domain Ωint is excluded from the diffusion
process and remains unaffected by tau accumulation.

Initial conditions are imposed in the final two equations: a non-zero value u0,tau in the
entorhinal cortex Ωe and zero concentration elsewhere. While this simplified configuration
may not fully capture clinical reality — where tau accumulation is already present in
multiple regions at the time of diagnosis — it facilitates a clearer observation of the spatio-
temporal dynamics of the disease.

To explore the model’s behaviour, simulations were conducted by varying the initial
concentration u0,tau and the conversion rate αtau. The diffusion coefficient was held con-
stant at D = 10

è
mm2

year

é
, following prior work [26]. In total, five simulations were performed,

providing insight into how tau might spread through brain tissue in the absence of amy-
loid interaction. Despite its simplicity, the model serves as a foundational framework for
understanding the fundamental mechanisms underlying tau-driven neurodegeneration.

6.2 The effect of αtau

In this section, a parametric analysis is carried out on the αtau coefficient to evaluate
its influence on the propagation dynamics of misfolded tau protein. The initial condition
assigns a concentration of 0.1 in the entorhinal zone, while all other cortical and connectome
regions are initialized at zero.

The parameter αtau is varied across the values 3, 3.5, 4, 4.5 e 5
è

1
year

é
, and for each

configuration, simulations are performed using COMSOL Multiphysics. To monitor the
temporal evolution of disease progression, three-dimensional brain renderings are exported
at five key time points: 96, 192, 288, 384 and 480 months, corresponding to 8, 16, 24, 32
and 40 years, respectively.

The external view in the figures below highlights the cortical surface, where the central,
parietal, mid-frontal, upper-frontal, and temporal zones are allocated. Protein diffusion in
this portion proceeds upwards from the temporal region, located inferiorly. Notably, small
clusters of activity emerge in non-adjacent regions, particularly visible at 8 and 16 years.
These patches, not spatially contiguous with the entorhinal zone, become active through
long-range connections established through the connectome structure, demonstrating the
model’s ability to capture non-local propagation phenomena.

The inner view illustrates a sagittal section of the right hemisphere, where the inner
region Ωint, excluded from diffusion, appears centrally as an area unaffected by diffusion.
Directly below, the entorhinal region Ωe — the presumed origin of the pathological seed-
ing — shows initial accumulation of misfolded protein and subsequent diffusion towards
adjacent hippocampal structures and inferiorly into the temporal area. In a mirror-like
manner, an identical propagation pattern is assumed for the left hemisphere of the brain.

A global perspective of the right hemisphere is also provided to demonstrate how
diffusion progressively reaches peripheral cortical areas, including sensory and language-
associated regions. This viewpoint allows visualisation of advanced diffusion to the upper
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frontal regions and cingulate, which marks complete cortical involvement and clinical de-
generation.

For each simulation, average tau concentrations per brain region are exported and post-
processed using MATLAB to generate time-dependent concentration plots. The resulting
profiles exhibit characteristic sigmoidal growth curves, all initiated from zero except in
the entorhinal zone (set to 0.1), and asymptotically approaching the model’s saturation
threshold of 1, consistent with the critical concentration level.

The results of the simulations for each αtau value — namely 3, 3.5, 4, 4.5 and 5
è

1
year

é
— are presented and analyzed in the following sections.

External view Internal view Global view

Figure 6.1: Evolution with αtau = 3
è

1
year

é
. From top to bottom row, year 8,16,24,32 and 40.
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External view Internal view Global view

Figure 6.2: Evolution with αtau = 3.5
è

1
year

é
. From top to bottom row, year 8,16,24,32 and 40.
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External view Internal view Global view

Figure 6.3: Evolution with αtau = 4
è

1
year

é
. From top to bottom row, year 8,16,24,32 and 40.
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External view Internal view Global view

Figure 6.4: Evolution with αtau = 4.5
è

1
year

é
. From top to bottom row, year 8,16,24,32 and 40.
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External view Internal view Global view

Figure 6.5: Evolution with αtau = 5
è

1
year

é
. From top to bottom row, year 8,16,24,32 and 40.
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6.3 Parametric study results
Based on the results of the simulations, several observations can be made regarding the
temporal dynamics of disease progression.

As illustrated in figure 6.1, when the conversion rate parameter is set to αtau = 3
è

1
year

é
,

the model predicts that the full cortical invasion by pathological tau culminates in the su-
perior frontal region after approximately 40 years. This scenario represents an idealized,
baseline progression of tau pathology, reflecting the disease spreading autonomously with-
out interaction with other misfolded proteins or external pathological factors. Such a
timescale is consistent with the slow and insidious nature of Alzheimer’s disease progres-
sion observed clinically, emphasizing the long preclinical phase during which tau pathology
gradually accumulates before overt symptoms manifest.

With incremental increases in the parameter αtau, which governs the rate of tau misfold-
ing and conversion, a marked acceleration in disease spread is observed. The simulations
depicted in figures 6.2, 6.3, 6.4, and 6.5 demonstrate a systematic decrease in the total in-
vasion time, varying from 40 years at αtau = 3

è
1

year

é
to approximately 30 years when αtau

achieves 5
è

1
year

é
. This trend highlights the critical influence of the conversion rate on the

rhythm of neurodegeneration, suggesting that even relatively small increases in αtau can
significantly shorten the disease timeline, thereby potentially impacting clinical prognosis
and intervention strategies.

The corresponding sigmoidal concentration profiles derived from the five simulations
provide further qualitative insights into these dynamics. As αtau increases, the curves be-
come progressively steeper, indicating a more abrupt increase in tau concentration in the
affected brain regions. This increase reflects a non-linear acceleration of protein accumula-
tion and aggregation, which could correspond to a turning point beyond which pathological
spread becomes rapid and widespread. On the abscissa axis, time is expressed in years to
facilitate intuitive understanding of the time scale, while the y-axis shows the mean tau
concentration progressively increasing between 0 and 1 and represents the transition from
a healthy cortical state to a fully invaded one.
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Figure 6.6: Average tau protein concentrations across brain regions in simulations with αtau set
to 3, 3.5, 4, 4.5, and 5

è
1

year

é
, respectively.
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Using MATLAB software, the evolution of the invasion times calculated by varying the
parameter αtau was analysed and plotted, as illustrated in figure 6.7. Additionally, table
6.1 reports the invasion times of the cerebral cortex obtained not only from the simulations
presented above but also from additional simulations performed with intermediate values
of the parameter αtau, all ranging between 3

è
1

year

é
and 5

è
1

year

é
.

αtau

è
1

year

é
Invasion Time (years)

3 40
3.25 38.5
3.5 37
3.75 36

4 34
4.25 33.5
4.5 32
4.75 31.5

5 30
Table 6.1: Summary of chosen αtau values and the resulting times required for complete cerebral
cortex invasion.

Figure 6.7: Trend of invasion time across different values of the parameter αtau, highlighting
the acceleration of disease progression with increasing misfolding rates.
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6.4 Simulations with different parameters

6.4.1 First simulation: αtau = 2.7

In the first simulation, the parameters were set to αtau = 2.7
è

1
year

é
and u0,tau = 0.25.

The diffusion of tau protein initiates in the entorhinal cortex and subsequently spreads
to the temporal and hippocampal zones, which are among the first to be invaded. Propa-
gation also occurs through the connectome structure, enabling rapid transfer to the central
region. These areas, in turn, are connected to other cortical regions via the same net-
work, facilitating both linear and quasi-instantaneous transmission of the pathology. As
the diffusion advances, the language and sensorial areas are affected alongside the central,
parietal, and occipital zones. The final regions to be involved are those located in the
superior part of the brain, specifically the mid and upper frontal areas and the cingulate
cortex.

Figure 6.8 shows the evolution of average tau protein concentrations across various brain
regions. The full invasion of the cerebral cortex occurs in approximately 40 years, which is
referred to as the saturation time. The resulting output consists of a series of sigmoid-like
curves that align with patterns reported in the literature and reflect a plausible trajectory
for tau propagation under idealized conditions.

In clinical cases of Alzheimer’s disease, cortical invasion rarely unfolds over such a
prolonged timescale. Instead, progression tends to occur more rapidly, leading to a range of
neurological impairments. This acceleration is often due to the fact that diagnosis typically
coincides with the onset of the first symptoms, by which time the corresponding brain
regions have already undergone significant pathological changes. The complete invasion of
the brain correlates with advanced stages of the disease, marked by severe cognitive and
motor decline. Additionally, Alzheimer’s pathology is associated with significant atrophy
and loss of grey matter, which can ultimately compromise overall brain function.

Figure 6.8: Simulation with parameters αtau = 2.7
è

1
year

é
and u0,tau = 0.25. Average concen-

tration trends of tau protein across different brain regions over a 40-year simulation period.
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6.4.2 Second simulation: αtau = 3

In the second simulation, the parameters were set to αtau = 3
è

1
year

é
and u0,tau = 0.25.

As in the previous case, the diffusion of tau protein begins in the entorhinal cortex and
proceeds toward adjacent regions, both anatomically and via connectome-based connectiv-
ity.

From the trends shown in figure 6.9, the concentration curves rise earlier than those in
the previous simulation, indicating an earlier onset of tau propagation. Although the final
concentrations again approach saturation around 40 years, the advancement of the sigmoids
suggests that cortical regions begin to be affected sooner than in the first simulation. This
implies that the overall disease progression initiates earlier, potentially anticipating the
emergence of clinical symptoms.

It is also observed that the invasion order of the brain regions remains unchanged: in
fact, the upper-frontal and cingulate zones continue to be the last to reach saturation.
This consistency suggests that the topological structure of the brain and the underlying
connectome continue to drive the directional progression of the pathology, regardless of
moderate changes in the misfolding rate parameter.

Figure 6.9: Simulation with parameters αtau = 3
è

1
year

é
and u0,tau = 0.25. Average concentra-

tion trends of tau protein across different brain regions over a 40-year simulation period.

The following simulations highlight that the parameter αtau plays a central role in this
type of analysis, while the initial concentration u0,tau has a comparatively minor impact.
Although both parameters are inherently patient-specific, the initial concentration is as-
sumed to correspond to the early seeding level of the misfolded protein, a quantity that
is rarely measurable in clinical settings. This is primarily due to the fact that, by the
time Alzheimer’s disease is typically diagnosed, the entorhinal cortex and adjacent regions
are already partially invaded by the pathological agents, thereby reducing the relevance of
precise knowledge of the initial condition.
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6.4.3 Third simulation: αtau = 3.7

In the third simulation, the coefficient αtau was increased to 3.7
è

1
year

é
, while the initial

concentration u0,tau was slightly reduced to 0.2.
Compared to the first two simulations, the sigmoidal curves representing the regional

concentrations emerge at an earlier time, despite the lower initial seeding level. This trend
is illustrated in figure 6.10. The overall cortical invasion is completed in approximately 36
years, indicating a faster progression of the pathology relative to the previous cases.

Figure 6.10: Simulation with parameters αtau = 3.7
è

1
year

é
and u0,tau = 0.2. Average concen-

tration trends of tau protein across different brain regions over a 40-year simulation period.

This result suggests that the conversion rate αtau plays a more significant role than
the initial concentration u0,tau in determining the speed of pathological spread. Even with
a lower initial amount of tau protein, the increased rate of self-replication and misfolding
leads to an earlier and more rapid invasion of brain regions. This highlights the importance
of the kinetic properties of tau propagation in shaping the temporal profile of disease
progression.

6.4.4 Fourth and fifth simulation: αtau = 4 and αtau = 4.3
The final two simulations further demonstrate how increasing the parameter αtau leads to
a progressive reduction in the time required for complete cortical invasion.

In the fourth simulation, shown in figure 6.11, αtau is set to 4
è

1
year

é
, with an initial

concentration u0,tau = 0.15. In the fifth simulation, displayed in figure 6.12, the parameters
are αtau = 4.3

è
1

year

é
and u0,tau = 0.1.

The fourth and fifth simulations confirm the trend observed in previous analyses: in-
creasing the parameter αtau results in a faster invasion of the cerebral cortex, with total
saturation occurring after approximately 34 and 33 years, respectively. Despite progres-
sively lower initial concentrations, the outcome remains largely unchanged, reinforcing the
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conclusion that the conversion rate αtau is the primary driver of disease propagation, while
the initial seeding level u0,tau has limited influence.

The expected and consistent graphical output across all cases remains a family of sig-
moidal curves, each representing the temporal evolution of tau concentration within a spe-
cific brain region, thereby providing a clear and interpretable depiction of the progression
dynamics.

Figure 6.11: Simulation with parameters αtau = 4
è

1
year

é
and u0,tau = 0.15. Average concen-

tration trends of tau protein across different brain regions over a 40-year simulation period.

Figure 6.12: Simulation with parameters αtau = 4.3
è

1
year

é
and u0,tau = 0.1. Average concen-

tration trends of tau protein across different brain regions over a 40-year simulation period.
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6.5 Model 2: interaction between tau and Aβ proteins

In this section, the results of the simulations examining the interaction between tau and
β-amyloid proteins within the brain are presented. The objective is to highlight how the
progression of cerebral invasion differs from the case in which αtau was the only active
parameter.

The concentration dynamics of the tau and β-amyloid proteins are governed by the cou-
pled reaction–diffusion equations defined in system (5.2). In this model, the key parameters
are the conversion rates αtau and αβ, the diffusion coefficient D, and the interaction coef-
ficient γint, which quantifies the extent to which β-amyloid influences tau propagation.

As initial conditions, a non-zero concentration of the tau protein u0,tau was assigned
exclusively to the entorhinal cortex, denoted by Ωe and considered in the literature as the
primary site of tau pathology, while a non-zero concentration of β-amyloid u0,β was set in
the frontal region, denoted by Ωf , which is known to exhibit early amyloid deposition.

All other brain regions were initialized with zero concentration for both proteins. As in
the Model 1, a concentration value of 1 represents the saturation threshold, corresponding
to complete pathological invasion of the brain tissue.



∂utau

∂t
= D∇2utau + αtauutau(1 − utau) + γintuβutau(1 − utau)H(t − 16) in Ω \ Ωint

∂uβ

∂t
= D∇2uβ + αβuβ(1 − uβ) in Ω \ Ωint

∂utau

∂t
= ND∇2utau in Ωc

utau(t = 0) = u0,tau in Ωe

utau(t = 0) = 0 in Ω \ Ωe

uβ(t = 0) = u0,β in Ωf

uβ(t = 0) = 0 in Ω \ Ωf

(6.2)
System (6.2) was implemented in COMSOL Multiphysics to enable a detailed visualization
and analysis of the interaction dynamics between tau and β-amyloid proteins.

In the simulations conducted, it was assumed that the onset of the interaction occurs
approximately 16 years after the onset of the disease, corresponding to the time when
the diffusion front of the tau protein reaches the frontal region of the brain. This timing
was established on the basis of the previous parametric study focusing exclusively on tau
propagation. Accordingly, the interaction term γintuβutau(1 − utau)H(t − 16) within the
model equations is activated at time t = 200. Furthermore, according to the scientific
literature, the protein-protein interaction is understood to commence after a variable latent
period, predominantly influenced by disease progression, subsequent to the initial seeding
and early invasion of tau protein within the brain [18].

For each value of αtau = 3,4,5
è

1
year

é
, simulations were conducted by progressively vary-

ing the parameter αβ among 2,3,4,5
è

1
year

é
and γint among 1.5,2.5,3

è
1

year

é
. The resulting

invasion times are reported in tables 6.2 and 6.3 below.
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αtau

è
1

year

é
αβ

è
1

year

é
γint

è
1

year

é
Invasion Time (years)

3 2 1.5 37.5
4 2 1.5 32
5 2 1.5 28
3 3 1.5 35.5
4 3 1.5 31
5 3 1.5 28
3 4 1.5 35
4 4 1.5 31
5 4 1.5 28
3 5 1.5 35
4 5 1.5 31
5 5 1.5 27.5
3 2 2 35
4 2 2 31
5 2 2 28
3 3 2 34.5
4 3 2 30.5
5 3 2 27.5
3 4 2 34
4 4 2 30
5 4 2 27
3 5 2 33.5
4 5 2 30
5 5 2 27
3 2 2.5 35
4 2 2.5 31
5 2 2.5 28
3 3 2.5 33.5
4 3 2.5 30
5 3 2.5 27
3 4 2.5 33
4 4 2.5 29.5
5 4 2.5 27
3 5 2.5 32.5
4 5 2.5 29
5 5 2.5 27

Table 6.2: Respectively, from left to right, the coefficients of αtau, αβ , γint and the invasion
times resulting from the simulations performed.
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αtau

è
1

year

é
αβ

è
1

year

é
γint

è
1

year

é
Invasion Time (years)

3 2 3 34
4 2 3 31
5 2 3 28
3 3 3 32.5
4 3 3 29.5
5 3 3 26.5
3 4 3 32
4 4 3 28.5
5 4 3 26
3 5 3 31.5
4 5 3 28
5 5 3 25.5

Table 6.3: Respectively, from left to right, the coefficients of αtau, αβ , γint and the invasion
times resulting from the simulations performed.

The simulation results yield several key insights. First, it is clear that, with both αtau

and αβ held constant, increasing the interaction parameter γint consistently reduces the
invasion time of the cerebral cortex. This outcome aligns with existing literature, which
suggests that the propagation of β-amyloid protein accelerates disease progression and
consequently cognitive decline.

In contrast, the influence of αβ appears comparatively modest. When αtau remains
fixed, variations in αβ lead to only gradual, incremental decreases in invasion time, without
any marked or abrupt effects.

Taken together, these findings suggest that among the parameters αβ and γint, the
interaction coefficient plays the more decisive role in modulating the dynamics of disease
progression. Accordingly, the reaction–diffusion process driving the spread of proteins
associated with Alzheimer’s disease is primarily influenced by their mutual interaction, as
well as by the timing of β-amyloid diffusion initiation from the frontal brain region.

In figure 6.13 this trend is shown: on each line the parameter γint is kept constant and
the parameter αβ is varied for each plot. Looking at the graphs from left to right, it can be
seen how the invasion times vary for the values of αtau = 3,4,5

è
1

year

é
shown on the x-axis.

Several simulations are presented to illustrate that, according to the results in tables
6.2 and 6.3, when αtau and αβ are fixed, increasing the parameter γint leads to a decrease
in the time required for the invasion of the cerebral cortex. The parameters αtau = 5

è
1

year

é
and αβ = 3

è
1

year

é
are first considered, with αtau > αβ. Four time points are recorded for

each simulation: 7, 14, 21, and 28 years (i.e., 84, 168, 252, and 336 months). At each time
point, the progression of diffusion is reported as the parameter γint increases. Next, the
case where αtau < αβ is considered, with αtau = 4

è
1

year

é
and αβ = 5

è
1

year

é
. The trend of

cerebral cortex invasion is shown for values of γint = 1.5, 2, 2.5, 3
è

1
year

é
at the time points

of 8, 16, 24, and 32 years (i.e., 96, 192, 288, and 384 months). Finally, the case where
αtau = αβ is considered, with both parameters equal to 3

è
1

year

é
. The process of cerebral
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cortex invasion is presented for each value of γint at the four time points of 9, 18, 27, and
36 years, corresponding to 108, 216, 324, and 432 months, respectively.

All simulations were performed with an initial concentration of tau protein in the en-
torhinal zone equal to 0.1 and of β-amyloid protein equal to 0.1 in the frontal zone. For
each simulation performed, the graph of the average protein concentrations accumulated in
each area of the brain is shown, in order to have a complete view of how, as the parameter
γint increases in all three cases studied, the invasion time gradually decreases.

Figure 6.13: Trend of invasion times for varying values of γint and αβ . From top to bottom, γint

assumes the values 1.5,2,2.5, and 3
è

1
year

é
; within each row, from left to right, αβ = 2,3,4,5

è
1

year

é
.
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6.5.1 Case αtau > αβ

External view Internal view Global view

Figure 6.14: Year of evolution 7 with αtau = 5
è

1
year

é
, αβ = 3

è
1

year

é
fixed. From top to bottom,

γint = 1.5,2,2.5 and 3
è

1
year

é
.
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External view Internal view Global view

Figure 6.15: Year of evolution 14 with αtau = 5
è

1
year

é
, αβ = 3

è
1

year

é
fixed. From top to

bottom, γint = 1.5,2,2.5 and 3
è

1
year

é
.
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External view Internal view Global view

Figure 6.16: Year of evolution 21 with αtau = 5
è

1
year

é
, αβ = 3

è
1

year

é
fixed. From top to

bottom, γint = 1.5,2,2.5 and 3
è

1
year

é
.
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External view Internal view Global view

Figure 6.17: Year of evolution 28 with αtau = 5
è

1
year

é
, αβ = 3

è
1

year

é
fixed. From top to

bottom, γint = 1.5,2,2.5 and 3
è

1
year

é
.
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Figure 6.18: Trend of mean concentrations for each brain region resulting from simulations
with αtau = 5

è
1

year

é
and αβ = 3

è
1

year

é
, for increasing values of the interaction parameter

γint = 1.5,2,2.5,3
è

1
year

é
, respectively.
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6.5.2 Case αtau < αβ

External view Internal view Global view

Figure 6.19: Year of evolution 8 with αtau = 4
è

1
year

é
, αβ = 5

è
1

year

é
fixed. From top to bottom,

γint = 1.5,2,2.5 and 3
è

1
year

é
.
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External view Internal view Global view

Figure 6.20: Year of evolution 16 with αtau = 4
è

1
year

é
, αβ = 5

è
1

year

é
fixed. From top to

bottom, γint = 1.5,2,2.5 and 3
è

1
year

é
.
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External view Internal view Global view

Figure 6.21: Year of evolution 24 with αtau = 4
è

1
year

é
, αβ = 5

è
1

year

é
fixed. From top to

bottom, γint = 1.5,2,2.5 and 3
è

1
year

é
.
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External view Internal view Global view

Figure 6.22: Year of evolution 32 with αtau = 4
è

1
year

é
, αβ = 5

è
1

year

é
fixed. From top to

bottom, γint = 1.5,2,2.5 and 3
è

1
year

é
.
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Figure 6.23: Trend of mean concentrations for each brain region resulting from simulations
with αtau = 4

è
1

year

é
and αβ = 5

è
1

year

é
, for increasing values of the interaction parameter

γint = 1.5,2,2.5,3
è

1
year

é
, respectively.
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6.5.3 Case αtau = αβ

External view Internal view Global view

Figure 6.24: Year of evolution 9 with αtau = 3
è

1
year

é
, αβ = 3

è
1

year

é
fixed. From top to bottom,

γint = 1.5,2,2.5 and 3
è

1
year

é
.
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External view Internal view Global view

Figure 6.25: Year of evolution 18 with αtau = 3
è

1
year

é
, αβ = 3

è
1

year

é
fixed. From top to

bottom, γint = 1.5,2,2.5 and 3
è

1
year

é
.
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External view Internal view Global view

Figure 6.26: Year of evolution 27 with αtau = 3
è

1
year

é
, αβ = 3

è
1

year

é
fixed. From top to

bottom, γint = 1.5,2,2.5 and 3
è

1
year

é
.
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External view Internal view Global view

Figure 6.27: Year of evolution 36 with αtau = 3
è

1
year

é
, αβ = 3

è
1

year

é
fixed. From top to

bottom, γint = 1.5,2,2.5 and 3
è

1
year

é
.
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Figure 6.28: Trend of mean concentrations for each brain region resulting from simulations
with αtau = 3

è
1

year

é
and αβ = 3

è
1

year

é
, for increasing values of the interaction parameter

γint = 1.5,2,2.5,3
è

1
year

é
, respectively.
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6.5.4 Overall results

Several significant results emerge from the analysis described above. Firstly, with the
values considered, in the case where αtau > αβ, an increase in the interaction coefficient
γint corresponds to a gradual decrease in the cerebral cortex invasion time. Specifically,
a 0.5 increment in γint results in an approximate reduction of 6 months in the overall
invasion time. This behaviour suggests that a higher interaction rate between tau and
β-amyloid proteins accelerates plaque formation, thereby hastening cognitive decline. A
similar dynamic is observed when αtau < αβ, although the effect is more pronounced. In
this scenario, each 0.5 increment in γint leads to a reduction of about 12 months in the
invasion time.

A fundamental aspect that emerges from the parametric study, visible in the tables
6.2 and 6.3 showing all the simulations, is the difference in the invasion times when the
coefficient γint is kept constant. In particular, when αtau > αβ, the invasion of the cerebral
cortex occurs more rapidly than in the opposite case. This indicates that the disease pro-
gresses more aggressively under such conditions. Considering, for example, the simulations
performed keeping the parameter γint = 1.5

è
1

year

é
constant: in the first case it is observed

that the complete invasion of all brain regions can occur in as little as 28 years, whereas
in the case αtau < αβ, the complete accumulation of pathological proteins occurs at ap-
proximately 31 years. This result suggests a relatively slower progression of the disease,
with the onset of severe cognitive decline delayed in the patient’s clinical course. A similar
trend is observed for values of γint = 2, 2.5 and 3

è
1

year

é
.

A parallel tendency is also observed for the case where αtau = αβ. Holding both coeffi-
cients constant while increasing γint results in a reduction of the invasion time. Specifically,
for αtau = 3

è
1

year

é
and αβ = 3

è
1

year

é
, the maximum invasion time calculated is approxi-

mately 35.5 years, which decreases as γint increases. Tables 6.2 and 6.3 further illustrate
that, as αtau and αβ increase simultaneously, the invasion time decreases accordingly. Thus,
the overall time trend is consistent with that observed in the two previous scenarios.

A qualitative analysis of the simulations reported can be conducted. In all three cases
examined, at the initial time points considered (7, 8, and 9 years), it is evident that even
in the presence of protein interaction, the connectome structure plays a fundamental role.
This mechanism, which links spatially non-adjacent regions of the brain, facilitates diffusion
in multiple directions. The distinct ‘spots’ observed in the lower left frontal view of the
cerebral cortex, shown in the first column of Figures 6.14, 6.19, and 6.24, correspond to the
propagation of tau protein originating from the areas depicted in the adjacent snapshots,
representing the brain’s inner view.

The enlargement of these initial ‘spots’, combined with the progressive tau diffusion
from the temporal region, leads to the eventual invasion of all brain areas. This progression
can be observed in the snapshots presented in Figures 6.15, 6.20, and 6.25. The second
time frame, particularly in the central view, represents a key moment for highlighting how
an increase in the interaction parameter γint results in a temporally accelerated diffusion
process across all examined cases. In the upper left portion of these images, corresponding
to the frontal region, a red area is visible, indicating high concentrations of the diffusing
tau and β-amyloid proteins. This region becomes more pronounced and spatially extended
in the simulations where, for fixed values of αtau and αβ, a higher value of γint is employed.
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The results presented further underscore the significance of the interaction parameter
γint, which strongly influences both the timing and the rate of disease progression. In figures
6.16, 6.21, and 6.26, which represent advanced diffusion stages, an increasingly accelerated
propagation is observed as γint increases. In the frontal views on the left of each figure,
the uninvolved cortical regions, displays in blue, progressively decrease in size. A similar
trend is visible in the central inner-brain views, where the upper-frontal and cingulate
areas exhibit a more extensive accumulation of pathological proteins for higher values of
γint. Finally, in the full-brain views on the right, the superior region and part of the wedge
zone are shown to approach full plaque formation. This effect becomes increasingly evident
when examining the figures from top to bottom, further reinforcing the accelerating impact
of protein interaction on disease spread.

In the snapshots shown in figures 6.17, 6.22 and 6.27, the simulations display the fi-
nal stage of disease progression, characterised by the complete invasion of the cerebral
cortex by the pathological proteins tau and β-amyloid. This state corresponds to the max-
imum saturation of the system and is strongly associated with the most severe cognitive
and neurological disturbances observed in the advanced stages of Alzheimer’s disease. A
comparative analysis of these final-stage snapshots reveals a key trend: as the interaction
parameter γint increases, the spatial uniformity of the protein concentration becomes more
pronounced and is reached in a shorter time-frame. This suggests that the strength of
the interaction between tau and β-amyloid proteins significantly influences the global dy-
namics of disease spread, effectively accelerating the transition from localised pathology to
widespread neurodegeneration.

This spatial progression is further supported by the temporal graphs of average concen-
trations for each brain region reported in figures 6.18, 6.23, and 6.28, which consistently
show a sigmoidal shape. These curves not only illustrate the progressive temporal accumu-
lation in different regions at the onset of pathology, but also reflect the interplay between
intrinsic diffusion parameters and non-linear effects introduced by protein interactions. An
increase in γint results in an earlier inflection point and a steeper growth rate in the con-
centration curves, underscoring the pivotal role of protein interaction in accelerating both
the onset and spatial progression of the pathology.

Table 6.4 shows the values of the parameters selected for the simulations discussed
above, while figure 6.29 illustrates the time course of the resulting invasion in the three
scenarios considered. The curves highlight the influence of the interaction parameter γint

on the temporal dynamics of disease progression.
In particular, the green line corresponds to the case where αtau = αβ = 3

è
1

year

é
, with

the black dots indicating the invasion times calculated at increasing values of γint. The
light blue line represents the scenario αtau < αβ, with blue dots indicating the associated
invasion times. In contrast, the magenta line refers to the αtau > αβ case, with red dots
indicating the times resulting from each simulation.

These trends collectively demonstrate how increasing γint accelerates disease progression
in all configurations, with changes in αtau and αβ modulating the overall rate and timing
of cortical invasion.
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αtau

è
1

year

é
αβ

è
1

year

é
γint

è
1

year

é
Invasion Time (years)

5 3

1.5 28
2 27.5

2.5 27
3 26.5

4 5

1.5 31
2 30

2.5 29
3 28

3 3

1.5 35.5
2 34.5

2.5 33.5
3 32.5

Table 6.4: Table with the parameters of the simulations shown in the figures 6.14, 6.15, 6.16,
6.17, 6.19, 6.20, 6.21, 6.22, 6.24, 6.25, 6.26, 6.27.

Figure 6.29: The graph illustrates the temporal evolution of cerebral cortex invasion times as a
function of the interaction parameter γint. A consistent decrease in invasion time is observed with
increasing γint, highlighting the accelerating effect of protein interaction on disease progression.
Specifically, the light blue curve represents the case αtau = 4

è
1

year

é
and αβ = 5

è
1

year

é
, the

magenta curve corresponds to αtau = 5
è

1
year

é
and αβ = 3

è
1

year

é
, and the green curve illustrates

the scenario with αtau = 3
è

1
year

é
and αβ = 3

è
1

year

é
.
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The observed trends appear consistent across all cases, reaffirming that an increase
in the interaction parameter γint leads to a decrease in the invasion time of the cerebral
cortex. This behaviour is further confirmed in the scenario where αtau = αβ, extended to
the cases with both coefficients equal to 4

è
1

year

é
and 5

è
1

year

é
.

These results are presented in figure 6.30. The graph further demonstrates that even
when αtau and αβ are simultaneously increased, the overall temporal dynamics remain
unchanged: higher values of γint consistently result in shorter plaque formation times,
indicating a faster progression of the disease and a more rapid onset of cognitive decline.

Figure 6.30: The graph illustrates the temporal evolution of cerebral cortex invasion times as a
function of the interaction parameter γint. A consistent decrease in invasion time is observed with
increasing γint, highlighting the accelerating effect of protein interaction on disease progression.
Specifically, the light blue curve represents the case αtau = 4

è
1

year

é
and αβ = 4

è
1

year

é
, the

magenta curve corresponds to αtau = 5
è

1
year

é
and αβ = 5

è
1

year

é
, and the green curve illustrates

the scenario with αtau = 3
è

1
year

é
and αβ = 3

è
1

year

é
.
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7. Application of the Model to Patient-
Specific Data

The application of the reaction–diffusion model defined in equation (5.3) is now presented,
incorporating an extended range for the concentrations of tau and β-amyloid proteins.
Four patients were selected as representative cases, each corresponding to a distinct stage
of Alzheimer’s disease progression.

Prior to the presentation of the simulation results, it is useful to outline the clinical
classification framework used for patients with Alzheimer’s disease and the parameters
involved. When a patient undergoes a PET (Positron Emission Tomography) scan, used
to assess the average concentration of pathological proteins in the brain, the resulting data
are spatially distributed across the 84 anatomical regions into which the brain is subdivided.
This regional segmentation enables a detailed mapping of protein accumulation.

In parallel, patients are subjected to cognitive evaluations, from which specific clinical
indices are derived to support disease staging and classification.

One of the most widely adopted metrics is the Mini-Mental State Examination (MMSE),
a neuropsychological test designed to assess global cognitive function. The test has a max-
imum score of 30, with lower scores indicating increasing cognitive impairment. In clinical
settings, the MMSE is routinely employed to monitor disease progression and categorize
patients by the severity of cognitive decline. However, recent literature suggests that the
MMSE alone may not serve as a reliable predictor of disease trajectory, thereby motivating
the integration of additional biomarkers and diagnostic modalities for more comprehensive
assessments [27].

Based on MMSE scores in combination with PET scan findings, patients are generally
classified into four broad categories that reflect the degree of cognitive decline:

1. Cognitive Normals (CN): MMSE 28 − 30, PET scan with no pathological findings.

2. Mild Cognitive Impairment (MCI): MMSE 24 − 27, PET scan indicating mild hy-
pometabolism.

3. Mild Dementia: MMSE 20 − 23, PET scan showing moderate hypometabolism.

4. Moderate to Severe Dementia: MMSE < 20, PET scan revealing extensive hy-
pometabolism.
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7.1 Case study
The present case study focuses on a cohort of four patients, each exhibiting Alzheimer’s
disease at different stages of progression.

For each subject, the following clinical and demographic information was collected:
the RID (Research ID) associated with the ADNI database [1], the Mini-Mental State
Examination (MMSE) score, the diagnostic category (GROUP) to which the subject was
assigned, chronological age, and the mean regional concentrations of tau and β-amyloid
proteins as obtained from PET imaging data.

To integrate clinical imaging data with the mathematical model developed in this study,
the original division of the brain into 84 regions was adapted to match the 14 macro-
regions defined within the computational framework. This aggregation was performed by
calculating the average value of protein concentration within each macro-area, based on
the individual values from the original 84 regions. This transformation ensured consistency
between clinical observations and simulation domains, facilitating a meaningful comparison
between real and simulated data.

As with the parametric studies presented earlier, the inner zone is excluded from this
analysis, since it is not directly involved in the local accumulation of pathological proteins.
For this reason, its associated mean concentration remains null and does not appear in
table 7.1.

ID Patient 1 Patient 2 Patient 3 Patient 4
RID 31 800 1190 467

GROUP CN MCI DEMENTIA DEMENTIA
AGE 90.18 83.01 87.27 91.1

MMSE 30 26 25 19
Entorhinal zone 0.61 2.35 2.44 2.61
Temporal zone 0.07 2.21 3 3

Hippocampal zone 0.01 2.44 2.95 3
Sensorial zone 0.005 0.52 2.98 3
Occipital zone 0.003 0.77 2.91 3
Language zone 0.0007 0.45 3 3
Frontal zone 0.003 2.12 2.97 3

Zone of the wedge 0.0002 0.007 1.99 2.9
Mid-frontal zone 0.02 2.12 3 2.92

Parietal zone 0.0001 0.0001 1.89 3
Central zone 0.04 0.45 2.48 3

Upper-frontal zone 0.003 0.43 2.21 3
Cingulate zone 0.001 1.12 2.31 2.44

Table 7.1: Average concentrations of tau and β-amyloid proteins calculated and adjusted within
the 14 macro-areas into which the brain was subdivided for the purposes of this study. The values
refer to four patients, each presenting Alzheimer’s disease at a different stage of progression. The
inner zone is not included because it is not directly affected by the diffusion or accumulation of
misfolded proteins and therefore consistently exhibits zero concentration.
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7.2 Model 3: Clinically adapted model for patient
data integration

Following the adaptation of the interaction model to accommodate clinically realistic con-
centration limits for misfolded proteins, the simulation framework was applied to a cohort
of four patients diagnosed with Alzheimer’s disease at different stages of progression. The
simulations, based on system (5.3), incorporate patient-specific data and enable the anal-
ysis of tau and β-amyloid propagation dynamics in vivo.

∂utau

∂t
= D∇2utau + αtauutau(3 − utau) + γintuβutau(3 − utau)H(t − 16) in Ω \ Ωint

∂uβ

∂t
= D∇2uβ + αβuβ(3 − uβ) in Ω \ Ωint

∂utau

∂t
= ND∇2utau in Ωc

utau(t = 0) = u0,tau in Ωe

utau(t = 0) = 0 in Ω \ Ωe

uβ(t = 0) = u0,β in Ωf

uβ(t = 0) = 0 in Ω \ Ωf

(7.1)
In this patient-specific analysis, the diffusion coefficient was maintained at D = 10

è
mm2

year

é
,

and the connectome scaling factor was set to N = 106, consistent with the previous simula-
tions. For all simulations described below, the initial concentrations of misfolded proteins
were uniformly set to 0.05 for both u0,tau and u0,β.

The primary objective of this study is to identify, for each patient, the specific time point
along the simulated disease trajectory that best corresponds to their clinical condition, as
inferred from PET imaging data. In particular, the goal is to determine the simulation step
at which the spatial distribution and mean concentrations of misfolded proteins match those
observed in the patient’s brain. Once this temporal alignment is achieved, the model can
then be used to qualitatively predict the future evolution of pathological burden, offering
valuable insight into the expected progression of cognitive decline in each individual case.

To this end, a comprehensive series of numerical simulations was performed, system-
atically varying the reaction parameters αtau and αβ, which govern the autocatalytic ac-
cumulation of tau and β-amyloid, respectively, as well as the interaction parameter γint,
which regulates the synergistic feedback between the two proteins. The resulting simula-
tion outputs were then compared with the PET-derived concentration patterns to identify
the configuration that most accurately reflects each patient’s current disease stage.

7.3 Results
This section presents the results obtained from the application of model (7.1) to the individ-
ual cases listed in table 7.1. For each simulation, the average concentrations of misfolded
proteins were computed and recorded for each of the defined brain regions, enabling a
direct comparison with the PET-derived values. Based on the positioning of the PET
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values along the simulated temporal evolution, a corresponding average reference year was
inferred for each patient, representing the estimated stage of disease progression.

The first simulation was performed using the following parameter values: αtau =
0.9
è

1
year

é
, αβ = 0.9

è
1

year

é
, and γint = 1.2

è
1

year

é
. This configuration corresponds to a

scenario in which the transformation rates of healthy tau and β-amyloid proteins into their
misfolded counterparts are equal.

First and foremost, it is evident that in this scenario, the total invasion of the cerebral
cortex occurs approximately 35 years after the initial onset of misfolded protein propa-
gation. The diffusion process, originating in the entorhinal cortex, follows a progression
pattern remarkably similar to that observed in the earlier simulations. Notably, the cingu-
late cortex and the upper-frontal regions continue to represent the final areas to be affected,
reflecting a consistent and biologically plausible trajectory. Following the simulation, the
spatially averaged concentration values for each brain region were meticulously recorded
and subsequently compared with the corresponding PET-derived measurements for each
individual patient.

The analysis begins with the first patient, who is approximately 90 years old, presents
an MMSE score of 30, and is identified by the RID code 31. This individual belongs to
the Cognitively Normal (CN) group, exhibiting no significant abnormalities in the PET
scan. This positioning makes him a crucially representative subject for the early — or
potentially even preclinical — stage of disease progression. This is supported by the low
average concentrations of tau and β-amyloid proteins, which remain significantly below the
critical 3 threshold established for complete cortical invasion. Based on these observations,
the model estimates that the patient’s disease course corresponds to within the first 10
years following the initial onset of protein propagation. This inference aligns with the
patient’s clinical profile: the MMSE score of 30 and classification within the Cognitively
Normal (CN) group all indicate the absence of overt symptoms typically associated with
Alzheimer’s progression. This assessment is further supported by the MMSE result, which
shows no measurable deficits in the main cognitive domains, including attention, memory,
orientation, language, and executive functions, reinforcing the thesis that the patient is in
a pre-clinical phase of the disease.

The next step involves analysing the comparison between protein concentrations mea-
sured via PET imaging and those simulated by the proposed model. The highest concentra-
tions are consistently observed in the entorhinal, temporal, and hippocampal regions, areas
known to be the initial sites of pathological onset. According to the connectome-based dif-
fusion structure implemented in the model, these regions exhibit strong connectivity with
the central and mid-frontal zones, which indeed display elevated levels of misfolded pro-
teins in the simulations. Based on this correspondence, the model estimates the average
disease progression time for this patient to be 8.26 years, suggesting that the pathological
process began approximately eight years prior to the imaging evaluation.

Table 7.2 presents a detailed comparison between the PET-derived concentrations, the
simulated values, and the corresponding simulation time points at which these concentra-
tions are reached. Additionally, histogram 7.1 graphically illustrates the discrepancy be-
tween clinical observations and model outputs, offering a visual assessment of the model’s
predictive accuracy in reproducing the patient-specific pathological burden.
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Zones Patient 1 values Simulation values Reference times (years)
Entorhinal zone 0.61 0.607 4
Temporal zone 0.07 0.071 5

Hippocampal zone 0.01 0.013 4.5
Sensorial zone 0.005 0.0036 9.5
Occipital zone 0.003 0.0034 9
Language zone 0.0007 0.0008 9.5
Frontal zone 0.003 0.0007 8

Zone of the wedge 0.0002 0.0002 10.5
Mid-frontal zone 0.02 0.024 5

Parietal zone 0.0001 0.0001 13
Central zone 0.04 0.039 4.5

Upper-frontal zone 0.003 0.003 12.5
Cingulate zone 0.001 0.0003 12.5

Table 7.2: Average concentrations of tau and β-amyloid proteins measured via the patient’s
PET scan, alongside the corresponding concentrations obtained from the simulation conducted
with parameters αtau = 0.9

è
1

year

é
, αβ = 0.9

è
1

year

é
, and γint = 1.2

è
1

year

é
, as well as the respective

reference times at which these simulated concentrations were recorded.

Figure 7.1: Comparison between the average concentrations obtained from the patient’s PET
scan (darker bars) and those computed by the simulation with parameters αtau = 0.9

è
1

year

é
,

αβ = 0.9
è

1
year

é
and γint = 1.2

è
1

year

é
(lighter bars) for patient 1.
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It is possible to make a further observation on the progression of Alzheimer’s disease in
patient 1. Going to investigate the sigmoids resulting from the simulation carried out in
the figure 7.2, one can see the hypothesized diffusion of tau and β-amyloid proteins zone
by zone. Plotting the values obtained from the PET scan on the graph, by means of filled
dots, one obtains that their dislocation occurs in the first 12 years of the simulation, in
the zone where the sigmoids representing most of the areas interesting from the diffusion
have not risen yet. This leads to the assumption that the average protein concentration
is still very low within the entire cerebral cortex. The only exception is observed for the
entorhinal area, which in fact turns out to be the site of disease onset.

Figure 7.2: Trend of mean concentrations of tau and β-amyloid proteins in the simulation with
parameters αtau = 0.9

è
1

year

é
, αβ = 0.9

è
1

year

é
and γint = 1.2

è
1

year

é
. The dots represent the

average concentrations per zone calculated by PET for patient 1.

A comparison between the patient’s condition at the time of the PET scan and the
corresponding simulation output at the estimated average disease stage is shown in figure
7.3.

The simulation presents three views of the cerebral cortex at year 8 of disease progres-
sion, a time point selected based on the average concentrations derived from the PET data.
This corresponds to the stage in which the model predicts similar levels of pathological
protein accumulation. It is noticeable that the entorhinal zone exhibits a higher concentra-
tion of misfolded proteins in the simulation compared to the PET scan. This discrepancy
can be explained by the fact that this region is one of the earliest sites of tau accumula-
tion; therefore, its local concentration may exceed the average at the reference time. Apart
from this local difference, the spatial distribution of pathological proteins across the cortex
shows good agreement between simulation and clinical data, supporting the validity of the
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model in reproducing the patient’s condition at the estimated stage of disease.
Finally, the simulation illustrates how the connectome structure facilitates the spread

of tau and β-amyloid proteins from the entorhinal cortex to adjacent areas, such as the
temporal lobe. This process is visually captured by the signal observed in the lower right
quadrant of the second cortical view.

Simulation view Patient’s PET view

Figure 7.3: Comparison between the simulation with the parameters αtau = 0.9
è

1
year

é
, αβ =

0.9
è

1
year

é
, γint = 1.2

è
1

year

é
and the real data for patient 1. Left: view of the cerebral cortex

invasion trend at time 96 months. Right: view of the cerebral cortex with the values of the
concentrations calculated by PET in the respective areas.
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The same type of analysis was carried out for patient 2 (RID= 800). The patient is 83
years old, has an MMSE score of 26, and belongs to the MCI (Mild Cognitive Impairment)
diagnostic group.

Based on these clinical indicators, it can be inferred that the patient presents with
symptoms typically associated with MCI, such as memory lapses and mild cognitive diffi-
culties, as reflected in the Mini-Mental State Examination score. Common manifestations
at this stage may include forgetfulness regarding recent events, repetition of questions, and
difficulty retaining new information. Language-related disorders may involve word-finding
difficulties or naming errors, while orientation-related problems may include confusion
about dates and times or episodes of distraction and slowed cognitive processing. Despite
these symptoms, the patient maintains an overall preserved level of functional indepen-
dence and does not yet meet the criteria for dementia. However, the risk of progression to
Alzheimer’s disease increases with age and severity of symptoms.

Analysing the average concentrations of simulated misfolded proteins by zone, it is
evident that regions involved in memory, language and orientation are already significantly
affected. In particular, many of these regions have concentrations above the 2 threshold
value.

The model estimates the patient’s position within the disease timeline to be at year
14.73, thus approximately 15 years from the onset of misfolded protein propagation. Ac-
cording to the simulation, the pathological proteins spread beyond the entorhinal cortex
and reached the temporal, hippocampal, sensorial, and language areas. Through the con-
nectome structure, further progression to the central and frontal cortical regions is evident.

Table 7.3 reports the average protein concentrations measured from the patient’s PET
scan, the corresponding values obtained from the simulation, and the estimated year at
which each concentration level is reached in the model.

Zones Patient 2 values Simulation values Reference times (years)
Entorhinal zone 2.35 2.350 15
Temporal zone 2.21 2.252 16

Hippocampal zone 2.44 2.484 16.5
Sensorial zone 0.52 0.465 15
Occipital zone 0.77 0.823 16
Language zone 0.45 0.444 16
Frontal zone 2.12 2.263 13

Zone of the wedge 0.007 0.008 13.5
Mid-frontal zone 2.12 2.165 17

Parietal zone 0.0001 0.0001 13
Central zone 0.45 0.439 10

Upper-frontal zone 0.43 0.383 14.5
Cingulate zone 1.12 1.121 16

Table 7.3: Average concentrations of tau and β-amyloid proteins measured via the patient’s
PET scan, alongside the corresponding concentrations obtained from the simulation conducted
with parameters αtau = 0.9

è
1

year

é
, αβ = 0.9

è
1

year

é
, and γint = 1.2

è
1

year

é
, as well as the respective

reference times at which these simulated concentrations were recorded.
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The histogram in figure 7.4 illustrates the discrepancy between the PET-derived and
simulated data. Overall, the simulation results show good agreement with the concen-
trations measured from the PET scan, confirming the model’s ability to reproduce the
observed protein distribution in the patient’s brain.

Figure 7.4: Comparison between the average concentrations obtained from the patient’s PET
scan (darker bars) and those computed by the simulation with parameters αtau = 0.9

è
1

year

é
,

αβ = 0.9
è

1
year

é
and γint = 1.2

è
1

year

é
(lighter bars) for patient 2.

Finally, the temporal trends of the average protein concentrations per zone and the
positioning of the values derived from the PET scan for patient 2 are examined.

As shown in figure 7.5, the markers representing the patient’s average concentrations are
mostly clustered around years 15 and 16 of the simulation, with the exception of the central
area, which still exhibits a relatively low level of diffusion and corresponds to an earlier
simulation time, approximately year 10. In particular, all reference values fall within the
ascending phase of the concentration curves. This temporal location is consistent with the
patient’s clinical symptoms and suggests a phase of the disease characterised by the initial
formation and accumulation of misfolded protein plaques, particularly in brain regions
associated with memory, language, and spatial orientation.
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Figure 7.5: Trend of mean concentrations of tau and β-amyloid proteins in the simulation with
parameters αtau = 0.9
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1
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é
, αβ = 0.9

è
1

year

é
and γint = 1.2

è
1

year

é
. The dots represent the

average concentrations per zone calculated by PET for patient 2.

Finally, the correspondence between the simulation and the actual PET data is exam-
ined. For patient 2, the simulation at year 15, very close to the computed average invasion
time, was selected for comparison.

The correspondence between the simulated model and the observed data appears to
be quite strong. The entorhinal and hippocampal regions are completely invaded by mis-
folded proteins, as indicated by their dark red colouring in the simulation. Temporal and
frontal regions, which are later in the progression pathway, show intermediate levels of in-
volvement, represented by lighter shades. The remaining regions, on the other hand, show
predominantly blue tones, indicating limited or no invasion at this stage.

The differences in colour intensity between the PET data and the simulation can be
explained by the nature of the two data representations. In simulation, protein diffusion
is continuous and spatially heterogeneous: pathological proteins gradually propagate both
locally and through the connectome structure, leading to partial and spatially variable
saturation within each region. In contrast, PET imaging provides an average value for
each anatomical region, represented uniformly. To reconcile these perspectives, one can
imagine that a region with partial invasion, as suggested by the simulation, has a composite
protein concentration, resulting from both strongly affected subregions (darker tones) and
subregions not yet affected (lighter or blue tones). The PET value, in this case, actually
reflects an average of these internal variations.

Therefore, the shades observed in the simulated cortical maps are consistent with the
average concentrations recorded in the PET data. This supports the conclusion that the
estimated average disease time is a plausible representation of the patient’s actual disease
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stage.

Simulation view Patient’s PET view

Figure 7.6: Comparison between the simulation with the parameters αtau = 0.9
è

1
year

é
, αβ =

0.9
è

1
year

é
, γint = 1.2

è
1

year

é
and the real data for patient 2. Left: view of the cerebral cortex

invasion trend at time 180 months. Right: view of the cerebral cortex with the values of the
concentrations calculated by PET in the respective areas.
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The same type of analysis was conducted for patient 3 (RID = 1190). This individual
is approximately 87 years old and has an MMSE score of 25, placing him within the range
for Mild Cognitive Impairment (MCI).

The symptoms typically associated with this condition are slight but evident to both
the patient and those around them. They may include difficulties with recent memory,
such as repeating questions or statements or forgetting names and appointments, temporal
or spatial disorientation, language-related difficulties (e.g. difficulty following complex
conversations) and disturbances in planning or organisation of tasks. From a psychological
point of view, changes in humour and behaviour may also be present, including anxiety,
irritability, or depression, often related to difficulties in daily functioning.

As shown in table 7.4, the temporal, hippocampal, sensorial, and language regions
show average protein concentrations close to the saturation threshold, suggesting that
these areas are completely or almost completely invaded by misfolded proteins. These
numerical results are consistent with the clinical symptoms manifested by the patient.
Furthermore, the simulation results closely match the PET-derived data, with an average
stage of disease progression corresponding to year 25.73, i.e. approximately 26 years from
the onset of pathological protein propagation.

The histogram in figure 7.7 provides a visual comparison between the average protein
concentrations derived from the patient’s PET scan and those predicted by the compu-
tational model. A strong correspondence is observed for most brain regions. In contrast,
some discrepancies emerge in the language, frontal, and mid-frontal areas, where PET
values are slightly higher than those predicted by the simulation. This divergence could
indicate a more advanced local accumulation of protein plaques in these areas than ex-
pected. A possible explanation could be a higher rate of propagation of the β-amyloid
protein than tau in this particular patient.

Zones Patient 3 values Simulation values Reference times (years)
Entorhinal zone 2.44 2.443 26
Temporal zone 3 2.996 26

Hippocampal zone 2.95 2.932 26
Sensorial zone 2.98 2.980 25.5
Occipital zone 2.91 2.912 25
Language zone 3 2.990 26
Frontal zone 2.97 2.953 26

Zone of the wedge 1.99 2.008 27
Mid-frontal zone 3 2.964 27

Parietal zone 1.89 1.936 27
Central zone 2.48 2.515 27

Upper-frontal zone 2.21 2.213 26
Cingulate zone 2.31 2.332 20

Table 7.4: Average concentrations of tau and β-amyloid proteins measured via the patient’s
PET scan, alongside the corresponding concentrations obtained from the simulation conducted
with parameters αtau = 0.9

è
1

year

é
, αβ = 0.9

è
1

year

é
, and γint = 1.2

è
1

year

é
, as well as the respective

reference times at which these simulated concentrations were recorded.
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Figure 7.7: Comparison between the average concentrations obtained from the patient’s PET
scan (darker bars) and those computed by the simulation with parameters αtau = 0.9

è
1

year

é
,

αβ = 0.9
è

1
year

é
and γint = 1.2

è
1

year

é
(lighter bars) for patient 3.

The sigmoidal curves representing the trend of the average protein accumulation in each
brain region are now examined. The concentrations detected by PET were added to the
graph as data points. It is evident that most of these points lie around the 26 year, with
the exception of the cingulate region, which appears slightly earlier along the timeline.

This last observation is particularly relevant, as it confirms the model’s ability to accu-
rately interpret the data: the cingulate and upper-frontal regions should indeed be among
the last to be affected by the spread of the pathological protein. However, one might wonder
why the cingulate area is estimated to be affected before the superior frontal region.

One possible explanation lies in its location and geometric conformation: the cingulate
cortex is spatially closer to the frontal area, identified as the origin of the β-amyloid protein
epidemic, and much smaller than the superior frontal area, so it is completely invaded first
by the spreading protein.

Furthermore, the sigmoid curve describing the concentration trend in the cingulate
area shows a strong initial increase followed by a longer accumulation plateau. This trend
suggests that in the cingulate cortex, the clinical manifestations of the disease may become
more evident during this latent accumulation phase, when plaque accumulation reaches a
critical threshold.

As also shown in the histogram of figure 7.7, most brain regions have already been
significantly invaded by the misfolded proteins. All PET-based data points are located in
the ascending end of the sigmoid curves, suggesting that the pathological process is firmly
established within the cortex.
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Given this clinical picture, it is likely that the patient will experience progressive cog-
nitive decline over the next few years, resulting in deteriorating neurological function.

Figure 7.8: Trend of mean concentrations of tau and β-amyloid proteins in the simulation with
parameters αtau = 0.9

è
1

year

é
, αβ = 0.9

è
1

year

é
and γint = 1.2

è
1

year

é
. The dots represent the

average concentrations per zone calculated by PET for patient 3.

Finally, the correspondence between the simulation implemented in COMSOL Multi-
physics and the patient’s real data, also displayed in the software, is analysed. On the left,
the simulation is shown at 312 months, i.e. 26 years, which corresponds to the average
state of disease progression calculated for the patient. On the right, the distribution of
pathological protein concentrations derived from the PET scan is displayed.

From the global view of the cerebral cortex, it can be seen that the invasion is almost
complete, with the exception of a few regions such as the cingulate, upper-frontal, and the
area of the wedge.

The frontal view reveals that the spread of misfolded proteins has already reached the
temporal, occipital, language, and mid-frontal regions, while parts of the frontal, upper-
frontal, and the wedge areas remain less affected. In fact, in the PET-based representation,
these latter regions appear lighter in colour than the deep red tone, indicating that total
saturation has not yet occurred.

At last, the internal view shows that the propagation of pathological proteins is ap-
proaching completion in the uppermost cortical regions, suggesting that cognitive func-
tions associated with the frontal and superior cingulate areas are likely to be affected later.
In years to come, this progression could lead to cognitive decline, resulting in a loss of
self-awareness and the patient’s ability to maintain emotional relationships.
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Simulation view Patient’s PET view

Figure 7.9: Comparison between the simulation with the parameters αtau = 0.9
è

1
year

é
, αβ =

0.9
è

1
year

é
, γint = 1.2

è
1

year

é
and the real data for patient 3. Left: view of the cerebral cortex

invasion trend at time 312 months. Right: view of the cerebral cortex with the values of the
concentrations calculated by PET in the respective areas.
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The same type of analysis was carried out for patient 4 (RID = 467). This patient is 91
years old and has an MMSE score of 19, indicating a condition of Moderate Cognitive Im-
pairment. Generally, this score corresponds to an intermediate stage of the disease, where
symptoms are more pronounced and personal autonomy is considerably compromised.

Typical symptoms associated with a MMSE of 19 include a marked deterioration of
memory, with severe difficulty remembering recent events, a tendency to forget important
personal information, and the occasional inability to recognise familiar or recently met
people. The patient also shows considerable disorientation, sometimes getting lost even in
familiar surroundings. Language and communication may be compromised, with difficulty
expressing thoughts or engaging in basic conversations. Daily functioning is also affected,
with difficulty in performing routine tasks such as preparing meals or using the telephone.
From a psychological point of view, the patient may present with humour disorders such
as irritability, anxiety, depression, mood swings, and reduced social inhibition. In some
cases, mild psychotic symptoms such as suspiciousness or paranoia may also emerge.

The table 7.5 shows the values obtained from the patient’s PET scan, together with
the corresponding results of the computational simulation. The average time of disease
progression in which the patient was placed is approximately 31 years from the onset of
misfolded protein propagation. In fact, almost all of the simulated protein concentration
values approach the critical threshold of 3, with the exception of the entorhinal and cin-
gulate regions, which present slightly lower values. The latter, in agreement with both
previous analyses and model predictions, is among the last areas to be affected by disease
progression and plaque accumulation. In this case, the cortex invasion is almost complete,
which corresponds to the severity of the patient’s clinical symptoms.

Zones Patient 4 values Simulation values Reference times (years)
Entorhinal zone 2.61 2.529 35
Temporal zone 3 2.998 34.5

Hippocampal zone 3 2.932 34
Sensorial zone 3 2.998 32
Occipital zone 3 2.999 30.5
Language zone 3 2.999 29
Frontal zone 3 2.953 29.5

Zone of the wedge 2.9 2.899 33.5
Mid-frontal zone 2.92 2.931 23

Parietal zone 3 2.987 35
Central zone 3 2.996 33

Upper-frontal zone 3 2.998 34
Cingulate zone 2.44 2.455 21

Table 7.5: Average concentrations of tau and β-amyloid proteins measured via the patient’s
PET scan, alongside the corresponding concentrations obtained from the simulation conducted
with parameters αtau = 0.9

è
1

year

é
, αβ = 0.9

è
1

year

é
, and γint = 1.2

è
1

year

é
, as well as the respective

reference times at which these simulated concentrations were recorded.
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As shown in the histogram in figure 7.10, the protein concentrations measured by PET
correspond closely to those obtained from the COMSOL simulation in most cortical regions.

Figure 7.10: Comparison between the average concentrations obtained from the patient’s PET
scan (darker bars) and those computed by the simulation with parameters αtau = 0.9
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1
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,

αβ = 0.9
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1
year

é
and γint = 1.2

è
1

year

é
(lighter bars) for patient 4.

Once again, trends in mean protein concentrations are examined through the sigmoid
curves shown in figure 7.11. It can be observed that the markers representing the values
obtained from the PET scan are all grouped on the right side of the curves: an indica-
tion that, in almost all cortical regions, the concentrations of pathological proteins have
approached a state of full or almost complete saturation.

These PET-derived values are located within a time span of 29 to 35 years, which
includes the model’s estimated average disease time of 31 years since the start of propaga-
tion. This close correspondence between the simulation and the empirical data reinforces
the reliability of the model in capturing the temporal dynamics of protein diffusion and
plaque formation.

In particular, the consistent positioning of all regional values within the saturated phase
of the sigmoids implies that the functional capacity of the affected brain areas can be
severely impaired. This aligns well with the patient’s clinical picture, which shows signifi-
cant cognitive and functional impairment. The convergence of simulated and clinical data
at an advanced stage of disease progression provides further validation of the predictive
capability of the model.
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Figure 7.11: Trend of mean concentrations of tau and β-amyloid proteins in the simulation
with parameters αtau = 0.9
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é
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è
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é
. The dots represent

the average concentrations per zone calculated by PET for patient 4.

Finally, the comparison between the simulation data processed in COMSOL Multi-
physics and the real PET-derived data is analysed.

It is immediately evident that, at the time of 372 months (31 years), the invasion of
the cerebral cortex is almost complete. In the global cortical view, the only regions not
yet completely invaded are small areas located between the zone of the wedge and the
upper-frontal region. In the PET-based representation of the patient, these areas still
show lighter red hues, indicating that full saturation of pathological proteins has not yet
occurred. Since the PET data reflect average protein concentrations across regions, it is not
possible to directly observe partially invaded sub-areas. Therefore, as in previous cases, a
proper comparison between simulation and PET values requires interpreting the simulated
spatial data in an averaged form.

The external and inner views of the cortex confirm that nearly all areas are affected by
the propagation of misfolded proteins, consistent with the expected advanced stage of the
disease. Over time, this widespread diffusion leads to extensive plaque accumulation and
progressive neurodegeneration.

As also observed in patients 1, 2 and 3, the internal region of the brain remains un-
changed by the reaction-diffusion dynamics of tau and beta-amyloid proteins. This is due
to the anatomical composition of the inner zone, which consists mainly of white matter
that is not directly involved in the cortical spreading mechanisms of Alzheimer’s disease.
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Simulation view Patient’s PET view

Figure 7.12: Comparison between the simulation with the parameters αtau = 0.9
è

1
year
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, αβ =

0.9
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è
1

year

é
and the real data for patient 4. Left: view of the cerebral cortex

invasion trend at time 372 months. Right: view of the cerebral cortex with the values of the
concentrations calculated by PET in the respective areas.
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7.4 Parametric study

The simulation performed using the parameters αtau = 0.9
è

1
year

é
, αβ = 0.9

è
1

year

é
, and

γint = 1.2
è

1
year

é
has proven capable of accurately interpreting the data of the patient

cohort. To ensure the flexibility and adaptability of the constructed model, a parametric
study based on additional simulations is now presented.

Given the variability in biological conditions for each patient at the time of diagnosis
— particularly in terms of propagation dynamics and the misfolding rates of pathological
proteins — a parametric analysis is essential to ensure the model’s flexibility and generaliz-
ability. The aim of the following analysis is to investigate how variations in the parameters
αtau, αβ, and γint influence the estimated progression timeline of the disease within the
same patient cohort. In particular, by fixing the interaction parameter at γint = 1.5

è
1

year

é
,

a parametric study is performed on αtau and αβ, while the initial concentrations of tau
and β-amyloid proteins are kept constant at 0.05.

7.4.1 Case αtau = αβ

The following simulation was performed with parameters set to αtau = 1.5
è

1
year

é
, αβ =

1.5
è

1
year

é
, and γint = 1.5

è
1

year

é
.

Compared to the previous simulation, all parameters have higher values, which should
result in shorter invasion times and a faster progression of the disease. This is actually
observed: under these conditions, the accumulation of misfolded proteins throughout the
cerebral cortex occurs in approximately 26 years.

For patient 1 (RID = 31), table 7.6 shows the comparison between the average protein
concentrations obtained from the PET scan and those computed from the simulation, along
with the corresponding reference times. In this case, the estimated average invasion time
is approximately 5.7 years. Compared to the first simulation, this result places the patient
at an earlier stage of cortical invasion.

The same procedure was applied to patient 2 (RID = 800), for whom an average esti-
mated placement time of approximately 10 years was observed. Once again, the disease
progression time is shorter than that obtained in the initial simulation.

For patient 3 (RID = 1190), the estimated average time is approximately 17 years, high-
lighting a significant discrepancy of about 9 years when compared to the earlier simulation
— an indication of a notable acceleration in disease progression under the new parameter
set.

Finally, for patient 4 (RID = 467), an average progression time of 25 years was calcu-
lated. In this case, the time difference compared to the previous simulation, with parame-
ters αtau = 0.9

è
1

year

é
, αβ = 0.9

è
1

year

é
, and γint = 1.2

è
1

year

é
, is approximately 6 years.

The values reported in tables 7.6, 7.7, 7.8, and 7.9 correspond, respectively, to the aver-
age protein concentrations measured by PET scan, those computed through the simulation,
and the estimated times at which such concentrations are reached for each patient.
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Zones Patient 1 values Simulation values Reference times (years)
Entorhinal zone 0.61 0.495 2
Temporal zone 0.07 0.061 3

Hippocampal zone 0.01 0.018 3
Sensorial zone 0.005 0.006 7
Occipital zone 0.003 0.003 6
Language zone 0.0007 0.00068 6.5
Frontal zone 0.003 0.0015 6

Zone of the wedge 0.0002 0.00019 7.5
Mid-frontal zone 0.02 0.020 3

Parietal zone 0.0001 0.0002 9.5
Central zone 0.04 0.047 3

Upper-frontal zone 0.003 0.001 9.5
Cingulate zone 0.001 0.002 10

Table 7.6: Average concentrations of tau and β-amyloid proteins measured via the patient’s
PET scan, alongside the corresponding concentrations obtained from the simulation conducted
with parameters αtau = 1.5

è
1

year

é
, αβ = 1.5

è
1

year

é
, and γint = 1.5

è
1

year

é
, as well as the respective

reference times at which these simulated concentrations were recorded.

Zones Patient 2 values Simulation values Reference times (years)
Entorhinal zone 2.35 2.315 5
Temporal zone 2.21 2.194 11

Hippocampal zone 2.44 2.389 11
Sensorial zone 0.52 0.601 11
Occipital zone 0.77 0.729 10.5
Language zone 0.45 0.452 11
Frontal zone 2.12 2.180 10

Zone of the wedge 0.007 0.008 9.5
Mid-frontal zone 2.12 2.079 12.5

Parietal zone 0.0001 0.0002 9.5
Central zone 0.45 0.455 7

Upper-frontal zone 0.43 0.444 11.5
Cingulate zone 1.12 1.120 12.5

Table 7.7: Average concentrations of tau and β-amyloid proteins measured via the patient’s
PET scan, alongside the corresponding concentrations obtained from the simulation conducted
with parameters αtau = 1.5

è
1

year

é
, αβ = 1.5

è
1

year

é
, and γint = 1.5

è
1

year

é
, as well as the respective

reference times at which these simulated concentrations were recorded.
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Zones Patient 3 values Simulation values Reference times (years)
Entorhinal zone 2.44 2.440 6.5
Temporal zone 3 2.994 16

Hippocampal zone 2.95 2.937 15
Sensorial zone 2.98 2.983 18
Occipital zone 2.91 2.902 17.5
Language zone 3 2.991 18
Frontal zone 2.97 2.961 15

Zone of the wedge 1.99 2.027 19.5
Mid-frontal zone 3 2.969 19.5

Parietal zone 1.89 1.877 19
Central zone 2.48 2.471 19.5

Upper-frontal zone 2.21 2.230 19.5
Cingulate zone 2.31 2.292 15

Table 7.8: Average concentrations of tau and β-amyloid proteins measured via the patient’s
PET scan, alongside the corresponding concentrations obtained from the simulation conducted
with parameters αtau = 1.5

è
1

year

é
, αβ = 1.5

è
1

year

é
, and γint = 1.5

è
1

year

é
, as well as the respective

reference times at which these simulated concentrations were recorded.

Zones Patient 4 values Simulation values Reference times (years)
Entorhinal zone 2.61 2.612 25.5
Temporal zone 3 2.999 25.5

Hippocampal zone 3 2.948 26.5
Sensorial zone 3 2.999 24
Occipital zone 3 2.999 23.5
Language zone 3 2.999 24
Frontal zone 3 2.961 25

Zone of the wedge 2.9 2.919 24.5
Mid-frontal zone 2.92 2.928 17

Parietal zone 3 2.999 26
Central zone 3 2.996 24.5

Upper-frontal zone 3 2.999 25
Cingulate zone 2.44 2.414 15.5

Table 7.9: Average concentrations of tau and β-amyloid proteins measured via the patient’s
PET scan, alongside the corresponding concentrations obtained from the simulation conducted
with parameters αtau = 1.5

è
1

year

é
, αβ = 1.5

è
1

year

é
, and γint = 1.5

è
1

year

é
, as well as the respective

reference times at which these simulated concentrations were recorded.

100



Application of the Model to Patient-Specific Data

Let us now examine the comparison between the distribution of average concentra-
tions obtained from the simulation and those derived from PET imaging, as shown in the
histograms in figure 7.13 and the sigmoidal plots in figure 7.14 for patients 1, 2, 3, and 4.

The histograms indicate that the average concentrations computed using the simulation
with parameters αtau = 1.5

è
1

year

é
, αβ = 1.5

è
1

year

é
, and γint = 1.5

è
1

year

é
are generally

consistent with those measured via PET. Slight discrepancies observed in specific regions
for patients 1 and 2 may be attributed to the time discretization of the simulation, which
was carried out at six-month intervals. It is likely that a finer temporal resolution would
yield an even closer correspondence.

The sigmoidal plots further support these findings. For patient 1, the PET-derived con-
centration points are concentrated within the first 10 years of the simulation, in agreement
with the estimated average time. In patient 2, the points are clustered around the period in
which pathological proteins begin to propagate extensively across the cortex, starting from
the entorhinal region. This is reflected by the fact that the PET value for the entorhinal
cortex is located near the peak of its corresponding sigmoid, indicating advanced invasion
in that region. In patient 3, most PET-derived values fall within the range of 16 to 20
years, corresponding to the phase during which the cortical regions located at the top of the
brain are progressively invaded. Finally, for the patient 4, most of the values are placed on
the sigmoid plateau, indicating an almost complete saturation of the protein accumulation
in the cortical cortex, consistent with an already advanced and diffuse pathological state.

Figure 7.13: Comparison between the average concentrations obtained from the patient’s PET
scan (darker bars) and those computed by the simulation with parameters αtau = 1.5

è
1

year

é
,

αβ = 1.5
è

1
year

é
and γint = 1.5

è
1

year

é
(lighter bars) for patient 1, 2, 3 and 4, respectively.
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Figure 7.14: Trend of mean concentrations of tau and β-amyloid proteins in the simulation
with parameters αtau = 1.5

è
1

year

é
, αβ = 1.5

è
1

year

é
and γint = 1.5

è
1

year

é
. The dots represent

the average concentrations per zone calculated by PET for patient 1, 2, 3 and 4, respectively.

Finally, the simulation results at the four mean time points corresponding to the clinical
placement of each patient in the study are analysed.

For patient 1, the estimated mean time since the onset of pathological protein propaga-
tion is approximately 5.7 years. Accordingly, the simulation output at 66 months is shown
in figure 7.15.

Compared to the PET-derived data, the simulation appears to overestimate the ac-
cumulation of pathological proteins in the entorhinal cortex, suggesting a more advanced
stage of local invasion than is actually observed. Despite this discrepancy, the simulation
correctly captures the subsequent spread of proteins to adjacent regions, particularly the
temporal cortex through the connectome structure, as visible in the external view of the
simulated brain. In all other cortical areas, the concentrations obtained from the simulation
show good agreement with those measured by PET.

This suggests that, in the case of the patient 1, the estimated mean disease progression
time of 5.5 years may be slightly higher than the patient’s actual clinical stage.
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Simulation view Patient’s PET view

Figure 7.15: Comparison between the simulation with the parameters αtau = 1.5
è

1
year

é
, αβ =

1.5
è

1
year

é
, γint = 1.5

è
1

year

é
and the real data for patient 1. Left: view of the cerebral cortex

invasion trend at time 66 months. Right: view of the cerebral cortex with the values of the
concentrations calculated by PET in the respective areas.
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In the case of patient 2, the comparison between the PET scan results (shown on the
right) and the simulation output at 120 months (shown on the left) is encouraging.

The PET images highlight regions with higher average protein concentrations through
red and orange hues. Correspondingly, the simulation results indicate that these same
regions were the initial targets for the propagation of misfolded proteins and plaque ac-
cumulation. Conversely, areas depicted in blue in both the PET scan and the simulation
correspond to regions where cognitive functions are still largely preserved.

Simulation view Patient’s PET view

Figure 7.16: Comparison between the simulation with the parameters αtau = 1.5
è

1
year

é
, αβ =

1.5
è

1
year

é
, γint = 1.5

è
1

year

é
and the real data for patient 2. Left: view of the cerebral cortex

invasion trend at time 120 months. Right: view of the cerebral cortex with the values of the
concentrations calculated by PET in the respective areas.
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In the case of patient 3, it is observed that the majority of brain regions are affected
by a widespread presence of tau and β-amyloid proteins, indicating that the disease is
progressively involving nearly all areas of the brain.

The protein concentrations measured by the PET scan show a good agreement with
the simulation results captured at 198 months (i.e. 16.5 years). Regions appearing in
lighter colors — such as yellow, orange, and light red — correspond to areas that the
simulation indicates have not yet been fully invaded by the pathology. This correspondence
suggests that these areas are likely to be the last to experience cognitive decline and, as
the simulation further demonstrates, the last to be affected by plaque accumulation.

Simulation view Patient’s PET view

Figure 7.17: Comparison between the simulation with the parameters αtau = 1.5
è

1
year

é
, αβ =

1.5
è

1
year

é
, γint = 1.5

è
1

year

é
and the real data for patient 3. Left: view of the cerebral cortex

invasion trend at time 198 months. Right: view of the cerebral cortex with the values of the
concentrations calculated by PET in the respective areas.
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Ultimately, in the case of patient 4, the simulation shown on the left side of figure
7.18 indicates that the invasion of the cerebral cortex is nearly complete, with all areas
affected by the accumulation of misfolded proteins. This is well reflected on the right side
of the figure, which displays the PET scan results. Both the simulation performed with
parameters αtau = 0.9

è
1

year

é
, αβ = 0.9

è
1

year

é
, γint = 1.2

è
1

year

é
and the current simulation

place the patient in an advanced stage of the disease, characterized by ongoing cognitive
decline.

The primary difference between the two simulations consists in the estimated average
time of cortical invasion: approximately 31 years in the first simulation, compared to about
25 years in the second. This reduction in estimated time correlates with the increased
parameter values, indicating a faster disease progression and an earlier placement of the
patient along the disease timeline.

This observation suggests that the simulation with parameters αtau = 1.5
è

1
year

é
, αβ =

1.5
è

1
year

é
, and γint = 1.5

è
1

year

é
may more accurately represent the patient’s condition,

positioning them around 25 years from the initial appearance of misfolded tau protein in
the entorhinal region. The subsequent years are characterized by continued cognitive de-
cline and neurodegeneration, during which the average concentration of misfolded proteins
stabilizes upon reaching the threshold value of 3, while plaque formation continues.
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Simulation view Patient’s PET view

Figure 7.18: Comparison between the simulation with the parameters αtau = 1.5
è

1
year

é
, αβ =

1.5
è

1
year

é
, γint = 1.5

è
1

year

é
and the real data for patient 4. Left: view of the cerebral cortex

invasion trend at time 300 months. Right: view of the cerebral cortex with the values of the
concentrations calculated by PET in the respective areas.
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7.4.2 Case αtau > αβ

In this section, the case in which the parameter αtau is greater than αβ is analyzed. The
assigned values are αtau = 1.7

è
1

year

é
and αβ = 1.1

è
1

year

é
, thus assuming a faster conversion

rate from healthy to misfolded proteins for tau compared to β-amyloid.
For patient 1 (RID = 31), the calculated mean cerebral cortex invasion time is 5.52 years,

confirming an early stage of the disease in which no acute symptoms are present. This
is evident in the first histogram of figure 7.19 and the first concentration graph in figure
7.20, where only the entorhinal zone shows a significant protein concentration different
from zero.

Patient 2 (RID = 800) has an estimated mean invasion time of approximately 9.61 years,
consistent with previous simulations placing the patient in a mildly symptomatic stage. As
shown in the second histogram of figure 7.19 and the corresponding sigmoid graph in figure
7.20, almost all brain areas exhibit non-zero protein concentrations concentrated within
the first 10 years of the simulation, indicating the early spread of the disease across the
cerebral cortex.

For patient 3 (RID = 1190), the average invasion time is 16.26 years, reflecting dissemi-
nated disease presence and initial protein accumulation in most brain regions. This timing
aligns with the appearance of noticeable clinical symptoms during testing. The third his-
togram in figure 7.19 illustrates the correspondence between simulated and PET-derived
values over time, while the third sigmoid graph in figure 7.20 shows PET concentration
dots clustered after approximately 15 years from disease onset.

Finally, patient 4 (RID = 467) presents a mean invasion time of 22.84 years, indicating
advanced disease progression. This patient already exhibits symptoms consistent with a
deteriorating condition. The last histogram in figure 7.19 and the fourth concentration
trend graph in figure 7.20 reveal that PET values correspond to a near-total cerebral
invasion with plaque formation.

Tables 7.10, 7.11, 7.12, and 7.13 report the PET values, simulation results, and cor-
responding reference times for each patient. Comparative histograms between calculated
and PET concentrations for each patient are shown in figure 7.19, alongside the average
concentration trends per brain region in figure 7.20.

Lastly, the simulation results at the average times — 66 months for patient 1, 114
months for patient 2, 192 months for patient 3, and 276 months for patient 4 — are
presented and compared with the corresponding PET data in figures 7.21, 7.22, 7.23, and
7.24.
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Zones Patient 1 values Simulation values Reference times (years)
Entorhinal zone 0.61 0.69 2
Temporal zone 0.07 0.093 3

Hippocampal zone 0.01 0.013 2.5
Sensorial zone 0.005 0.0025 6
Occipital zone 0.003 0.003 5.5
Language zone 0.0007 0.0007 6
Frontal zone 0.003 0.0061 6.5

Zone of the wedge 0.0002 0.0002 7
Mid-frontal zone 0.02 0.016 2.5

Parietal zone 0.0001 0.0001 8.5
Central zone 0.04 0.036 2.5

Upper-frontal zone 0.003 0.0006 9.5
Cingulate zone 0.001 0.001 10

Table 7.10: Average concentrations of tau and β-amyloid proteins measured via the patient’s
PET scan, alongside the corresponding concentrations obtained from the simulation conducted
with parameters αtau = 1.7

è
1

year

é
, αβ = 1.1

è
1

year

é
, and γint = 1.5

è
1

year

é
, as well as the respective

reference times at which these simulated concentrations were recorded.

Zones Patient 2 values Simulation values Reference times (years)
Entorhinal zone 2.35 2.365 4.5
Temporal zone 2.21 2.167 10

Hippocampal zone 2.44 2.518 10.5
Sensorial zone 0.52 0.552 10
Occipital zone 0.77 0.712 9.5
Language zone 0.45 0.434 10
Frontal zone 2.12 2.081 10

Zone of the wedge 0.007 0.0061 8.5
Mid-frontal zone 2.12 2.097 13

Parietal zone 0.0001 0.0001 8.5
Central zone 0.45 0.467 6.5

Upper-frontal zone 0.43 0.407 11.5
Cingulate zone 1.12 1.046 12.5

Table 7.11: Average concentrations of tau and β-amyloid proteins measured via the patient’s
PET scan, alongside the corresponding concentrations obtained from the simulation conducted
with parameters αtau = 1.7

è
1

year

é
, αβ = 1.1

è
1

year

é
, and γint = 1.5

è
1

year

é
, as well as the respective

reference times at which these simulated concentrations were recorded.
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Zones Patient 3 values Simulation values Reference times (years)
Entorhinal zone 2.44 2.458 5.5
Temporal zone 3 2.996 15

Hippocampal zone 2.95 2.950 15.5
Sensorial zone 2.98 2.981 16.5
Occipital zone 2.91 2.893 16
Language zone 3 2.999 18
Frontal zone 2.97 2.960 12.5

Zone of the wedge 1.99 2.063 18.5
Mid-frontal zone 3 2.968 20

Parietal zone 1.89 1.877 17.5
Central zone 2.48 2.454 19

Upper-frontal zone 2.21 2.263 21.5
Cingulate zone 2.31 2.290 16

Table 7.12: Average concentrations of tau and β-amyloid proteins measured via the patient’s
PET scan, alongside the corresponding concentrations obtained from the simulation conducted
with parameters αtau = 1.7

è
1

year

é
, αβ = 1.1

è
1

year

é
, and γint = 1.5

è
1

year

é
, as well as the respective

reference times at which these simulated concentrations were recorded.

Zones Patient 4 values Simulation values Reference times (years)
Entorhinal zone 2.61 2.612 31
Temporal zone 3 2.999 28

Hippocampal zone 3 2.950 22
Sensorial zone 3 2.999 23
Occipital zone 3 2.999 20
Language zone 3 2.999 19.5
Frontal zone 3 2.961 20.5

Zone of the wedge 2.9 2.906 23
Mid-frontal zone 2.92 2.908 18

Parietal zone 3 2.999 24.5
Central zone 3 2.999 25

Upper-frontal zone 3 2.999 25.5
Cingulate zone 2.44 2.438 17

Table 7.13: Average concentrations of tau and β-amyloid proteins measured via the patient’s
PET scan, alongside the corresponding concentrations obtained from the simulation conducted
with parameters αtau = 1.7

è
1

year

é
, αβ = 1.1

è
1

year

é
, and γint = 1.5

è
1

year

é
, as well as the respective

reference times at which these simulated concentrations were recorded.
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Figure 7.19: Comparison between the average concentrations obtained from the patient’s PET
scan (darker bars) and those computed by the simulation with parameters αtau = 1.7

è
1

year

é
,

αβ = 1.1
è

1
year

é
and γint = 1.5

è
1

year

é
(lighter bars) for patient 1, 2, 3 and 4, respectively.

Figure 7.20: Trend of mean concentrations of tau and β-amyloid proteins in the simulation
with parameters αtau = 1.7

è
1

year

é
, αβ = 1.1

è
1

year

é
and γint = 1.5

è
1

year

é
. The dots represent

the average concentrations per zone calculated by PET for patient 1, 2, 3 and 4, respectively.
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Simulation view Patient’s PET view

Figure 7.21: Comparison between the simulation with the parameters αtau = 1.7
è

1
year

é
, αβ =

1.1
è

1
year

é
, γint = 1.5

è
1

year

é
and the real data for patient 1. Left: view of the cerebral cortex

invasion trend at time 66 months. Right: view of the cerebral cortex with the values of the
concentrations calculated by PET in the respective areas.
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Simulation view Patient’s PET view

Figure 7.22: Comparison between the simulation with the parameters αtau = 1.7
è

1
year

é
, αβ =

1.1
è

1
year

é
, γint = 1.5

è
1

year

é
and the real data for patient 2. Left: view of the cerebral cortex

invasion trend at time 114 months. Right: view of the cerebral cortex with the values of the
concentrations calculated by PET in the respective areas.
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Simulation view Patient’s PET view

Figure 7.23: Comparison between the simulation with the parameters αtau = 1.7
è

1
year

é
, αβ =

1.1
è

1
year

é
, γint = 1.5

è
1

year

é
and the real data for patient 3. Left: view of the cerebral cortex

invasion trend at time 192 months. Right: view of the cerebral cortex with the values of the
concentrations calculated by PET in the respective areas.
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Simulation view Patient’s PET view

Figure 7.24: Comparison between the simulation with the parameters αtau = 1.7
è

1
year

é
, αβ =

1.1
è

1
year

é
, γint = 1.5

è
1

year

é
and the real data for patient 4. Left: view of the cerebral cortex

invasion trend at time 276 months. Right: view of the cerebral cortex with the values of the
concentrations calculated by PET in the respective areas.
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7.4.3 Case αtau < αβ

The last case analysed corresponds to the condition αtau < αβ, with parameter values set
to αtau = 1.1

è
1

year

é
and αβ = 1.7

è
1

year

é
. Following the same procedure adopted in the

previous sections, the subsequent discussion addresses the results obtained for each of the
four patients.

For patient 1 (RID = 31), the estimated mean time for cerebral cortex invasion is
approximately 6.88 years. As shown in the first histogram of figure 7.25, only the entorhinal
region presents a concentration different from zero, indicating that the disease is still in
an initial phase. In the corresponding concentration graph in figure 7.26, the PET-derived
values fall entirely within the first 10 years of the simulation. In figure 7.27, which compares
the simulation at the calculated average time with the PET-derived spatial map, all brain
areas appear in shades of blue, reporting negligible protein accumulation, except for the
entorhinal region, where the spread has just begun.

For patient 2 (RID = 800), the mean invasion time is approximately 12.03 years. The
second histogram in figure 7.25 shows non-zero concentrations in almost all brain regions,
with higher values in the entorhinal, temporal, hippocampal, frontal, and mid-frontal areas.
This pattern is also confirmed in figure 7.28, where the comparison between the simulation
and the PET data reveals that regions with more intense red coloring are those with
higher protein accumulation, while lighter shades and transitions toward blue indicate
lower concentrations.

In the case of the patient 3 (RID = 1190), the average estimated invasion time is about
20.42 years. The third histogram in figure 7.25 illustrates that most regions of the brain
are invaded by tau and β-amyloid proteins, with lower concentrations persisting only in
the frontal, upper frontal, cingulate, and the wedge regions. As shown in figure 7.29, these
areas are the last to be reached by the spread of the disease. In addition, the third graph
of the concentration in figure 7.26 shows that the PET values, represented as points, are
in the second half of the sigmoid curves, close to saturation.

Lastly, patient 4 (RID = 467) shows a calculated average invasion time of about 25.73
years, indicating an advanced stage of the disease. This is reflected in the fourth histogram
of figure 7.25 and in the fourth concentration graph in figure 7.26, where the PET-derived
dots appear in the final portion of the sigmoids. The advanced progression is further
confirmed by figure 7.30, which shows a fully invaded cortex in both the simulation (left)
and the PET-based reconstruction (right).

Tables 7.14, 7.15, 7.16, and 7.17 report the PET values, the corresponding simulation
outputs, and the reference times for each patient. The histograms comparing simulated and
PET-derived concentrations are presented in figure 7.25, while the corresponding average
concentration trends by brain region are shown in figure 7.26.

Finally, the simulation outputs at the average time points — 78 months for patient 1,
144 months for patient 2, 246 months for patient 3, and 312 months for patient 4 — are
compared with the respective PET data in figures 7.27, 7.28, 7.29, and 7.30.
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Zones Patient 1 values Simulation values Reference times (years)
Entorhinal zone 0.61 0.54 3
Temporal zone 0.07 0.062 4

Hippocampal zone 0.01 0.010 3.5
Sensorial zone 0.005 0.005 8.5
Occipital zone 0.003 0.0027 7.5
Language zone 0.0007 0.00059 8
Frontal zone 0.003 0.00034 6

Zone of the wedge 0.0002 0.00015 9
Mid-frontal zone 0.02 0.021 4

Parietal zone 0.0001 0.0001 11.5
Central zone 0.04 0.049 4

Upper-frontal zone 0.003 0.001 10
Cingulate zone 0.001 0.002 10.5

Table 7.14: Average concentrations of tau and β-amyloid proteins measured via the patient’s
PET scan, alongside the corresponding concentrations obtained from the simulation conducted
with parameters αtau = 1.1

è
1

year

é
, αβ = 1.7

è
1

year

é
, and γint = 1.5

è
1

year

é
, as well as the respective

reference times at which these simulated concentrations were recorded.

Zones Patient 2 values Simulation values Reference times (years)
Entorhinal zone 2.35 2.359 8.5
Temporal zone 2.21 2.174 13.5

Hippocampal zone 2.44 2.439 14
Sensorial zone 0.52 0.463 13
Occipital zone 0.77 0.771 13.5
Language zone 0.45 0.508 14
Frontal zone 2.12 2.149 10.5

Zone of the wedge 0.007 0.0066 11.5
Mid-frontal zone 2.12 2.122 13

Parietal zone 0.0001 0.0001 11.5
Central zone 0.45 0.428 8.5

Upper-frontal zone 0.43 0.429 12
Cingulate zone 1.12 1.069 13

Table 7.15: Average concentrations of tau and β-amyloid proteins measured via the patient’s
PET scan, alongside the corresponding concentrations obtained from the simulation conducted
with parameters αtau = 1.1

è
1

year

é
, αβ = 1.7

è
1

year

é
, and γint = 1.5

è
1

year

é
, as well as the respective

reference times at which these simulated concentrations were recorded.
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Zones Patient 3 values Simulation values Reference times (years)
Entorhinal zone 2.44 2.441 13.5
Temporal zone 3 2.990 19.5

Hippocampal zone 2.95 2.951 28.5
Sensorial zone 2.98 2.981 22
Occipital zone 2.91 2.895 21.5
Language zone 3 2.991 22.5
Frontal zone 2.97 2.960 19

Zone of the wedge 1.99 1.992 22
Mid-frontal zone 3 2.968 18

Parietal zone 1.89 1.91 23.5
Central zone 2.48 2.515 21.5

Upper-frontal zone 2.21 2.24 19
Cingulate zone 2.31 2.281 15

Table 7.16: Average concentrations of tau and β-amyloid proteins measured via the patient’s
PET scan, alongside the corresponding concentrations obtained from the simulation conducted
with parameters αtau = 1.1

è
1

year

é
, αβ = 1.7

è
1

year

é
, and γint = 1.5

è
1

year

é
, as well as the respective

reference times at which these simulated concentrations were recorded.

Zones Patient 4 values Simulation values Reference times (years)
Entorhinal zone 2.61 2.613 25
Temporal zone 3 2.999 25

Hippocampal zone 3 2.965 31.5
Sensorial zone 3 2.999 28
Occipital zone 3 2.999 29
Language zone 3 2.999 25
Frontal zone 3 2.960 25.5

Zone of the wedge 2.9 2.89 26
Mid-frontal zone 2.92 2.915 16.5

Parietal zone 3 2.999 31.5
Central zone 3 2.999 28

Upper-frontal zone 3 2.999 27.5
Cingulate zone 2.44 2.419 16

Table 7.17: Average concentrations of tau and β-amyloid proteins measured via the patient’s
PET scan, alongside the corresponding concentrations obtained from the simulation conducted
with parameters αtau = 1.1

è
1

year

é
, αβ = 1.7

è
1

year

é
, and γint = 1.5

è
1

year

é
, as well as the respective

reference times at which these simulated concentrations were recorded.
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Figure 7.25: Comparison between the average concentrations obtained from the patient’s PET
scan (darker bars) and those computed by the simulation with parameters αtau = 1.1

è
1

year

é
,

αβ = 1.7
è

1
year

é
and γint = 1.5

è
1

year

é
(lighter bars) for patient 1, 2, 3 and 4, respectively.

Figure 7.26: Trend of mean concentrations of tau and β-amyloid proteins in the simulation
with parameters αtau = 1.1

è
1

year

é
, αβ = 1.7

è
1

year

é
and γint = 1.5

è
1

year

é
. The dots represent

the average concentrations per zone calculated by PET for patient 1, 2, 3 and 4, respectively.
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Simulation view Patient’s PET view

Figure 7.27: Comparison between the simulation with the parameters αtau = 1.1
è

1
year

é
, αβ =

1.7
è

1
year

é
, γint = 1.5

è
1

year

é
and the real data for patient 1. Left: view of the cerebral cortex

invasion trend at time 78 months. Right: view of the cerebral cortex with the values of the
concentrations calculated by PET in the respective areas.
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Simulation view Patient’s PET view

Figure 7.28: Comparison between the simulation with the parameters αtau = 1.1
è

1
year

é
, αβ =

1.7
è

1
year

é
, γint = 1.5

è
1

year

é
and the real data for patient 2. Left: view of the cerebral cortex

invasion trend at time 144 months. Right: view of the cerebral cortex with the values of the
concentrations calculated by PET in the respective areas.
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Simulation view Patient’s PET view

Figure 7.29: Comparison between the simulation with the parameters αtau = 1.1
è

1
year

é
, αβ =

1.7
è

1
year

é
, γint = 1.5

è
1

year

é
and the real data for patient 3. Left: view of the cerebral cortex

invasion trend at time 246 months. Right: view of the cerebral cortex with the values of the
concentrations calculated by PET in the respective areas.
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Simulation view Patient’s PET view

Figure 7.30: Comparison between the simulation with the parameters αtau = 1.1
è

1
year

é
, αβ =

1.7
è

1
year

é
, γint = 1.5

è
1

year

é
and the real data for patient 4. Left: view of the cerebral cortex

invasion trend at time 312 months. Right: view of the cerebral cortex with the values of the
concentrations calculated by PET in the respective areas.
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7.4.4 Overall results
The average cerebral cortex invasion times calculated from the parametric study conducted
with varying values of αtau and αβ are reported in the corresponding table 7.18.

It is evident from the parametric study that, as the parameter αtau increases, even in
cases where αβ decreases, the time it takes for misfolded proteins to spread throughout
brain regions progressively decreases. This trend is particularly clear in patients 3 and 4,
suggesting that when the interaction between tau and β-amyloid proteins becomes more
significant, the disease progression accelerates noticeably.

This relationship is also illustrated graphically in the figure 7.31, which shows the
calculated invasion times across different parameter configurations. The parametric anal-
ysis thus reinforces the observation that increasing αtau consistently shortens the average
time required for complete cortical invasion. This supports the hypothesis that the tau
protein plays a primary role in initiating and sustaining the propagation of neurodegen-
erative pathology. From a biological point of view, this result is in line with evidence in
the literature suggesting that misfolded tau spreads trans-neuronally along the anatomical
connectome pathways and acts as an early biomarker of Alzheimer’s disease progression.
The sensitivity of the model is thus further supported by the fact that αtau is a strong time
factor and cortical involvement.

Within this study, not only the role of the tau protein misfolding rate, αtau, is consid-
ered relevant, but also that of the β-amyloid protein, represented by the parameter αβ.
This becomes particularly evident when analysing the behaviour of simulations based on
the modified patient model (7.1). Compared to those performed using the protein inter-
action model, it is observed that as the parameter αβ increases, the final invasion pattern
shifts from the superior frontal region toward the zone of the wedge. However, according
to the literature, the superior frontal cortex is typically among the last regions to be af-
fected by protein accumulation. This discrepancy suggests that the parameter αβ must be
constrained within a specific range to prevent this biologically inconsistent spatial shift.

This observation can be verified by comparing the simulation results for patient 4 with
parameters αtau = 1.1

è
1

year

é
, αβ = 1.7

è
1

year

é
, and γint = 1.5

è
1

year

é
(see figure 7.30) with

any other simulation included in the parametric study presented in Chapter 6.
Overall, these results confirm the importance of carefully calibrating the parameters

governing protein dynamics, in particular αtau and αβ, in order to reproduce biologically
realistic disease trajectories.

From a modelling point of view, this emphasises the need for physiologically grounded
parameter ranges to ensure temporal and spatial consistency with clinical observations.
From a clinical point of view, on the other hand, these results may help to improve the
interpretation of PET imaging and simulation-based disease staging, offering a more refined
tool to assess patient-specific progression and potentially guide therapeutic strategies.
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ID αtau

è
1

year

é
αβ

è
1

year

é
γint

è
1

year

é
Average Invasion Times

Patient 1
1.1 1.7

1.5
6.88

1.5 1.5 5.69
1.7 1.1 5.52

Patient 2
1.1 1.7

1.5
12.03

1.5 1.5 10.15
1.7 1.1 9.61

Patient 3
1.1 1.7

1.5
20.42

1.5 1.5 16.76
1.7 1.1 16.26

Patient 4
1.1 1.7

1.5
25.73

1.5 1.5 25.19
1.7 1.1 22.84

Table 7.18: Average cerebral cortex invasion times calculated for each patient under different
parameter configurations. In all simulations, the interaction parameter was held constant at
γint = 1.5

è
1

year

é
, while the values of αtau and αβ were varied as follows: (αtau, αβ) = (1.1, 1.7),

(1.5, 1.5), and (1.7, 1.1)
è

1
year

é
, respectively.

Figure 7.31: Trends of the average cortical invasion times obtained from simulations with
varying αtau and αβ values, and fixed γint = 1.5

è
1

year

é
. From top to bottom, results are shown

for patients 1, 2, 3, and 4, respectively.
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Finally, the Euclidean norm error was computed for each patient across the four reported
simulations. The purpose of this calculation was to quantify the deviation between the
simulated concentrations of misfolded proteins in the cerebral cortex — obtained from the
patient-specific model implementation — and the real concentrations measured via PET
imaging.

The Euclidean norm error is defined by the following formula:

err = ||v − w||2 (7.2)

where v is the vector of PET-derived values for each patient, and w is the vector of simulated
concentrations.

The calculated errors for each simulation are reported in table 7.19.

ID

αtau = 1.1
è

1
year

é
αβ = 1.7

è
1

year

é
γint = 1.5

è
1

year

é
αtau = 1.5

è
1

year

é
αβ = 1.5

è
1

year

é
γint = 1.5

è
1

year

é
αtau = 1.7

è
1

year

é
αβ = 1.1

è
1

year

é
γint = 1.5

è
1

year

é
αtau = 0.9

è
1

year

é
αβ = 0.9

è
1

year

é
γint = 1.2

è
1

year

é
Patient 1 0.0682 0.1157 0.0886 0.0076
Patient 2 0.1095 0.1336 0.1451 0.1859
Patient 3 0.1903 0.0604 0.1377 0.0789
Patient 4 0.0576 0.0949 0.0639 0.1182

Table 7.19: Euclidean norm errors between the PET-result concentrations and the simulated
concentrations, calculated for each patient by varying the parameters αtau, αβ and γint.

The analysis of the error values reveals that the accuracy of the simulations varies
depending on the parameter set used. In general, lower Euclidean norm errors correspond
to parameter configurations that better capture the disease stage inferred from PET scans,
both in terms of spatial distribution and magnitude of accumulation.

In most cases, the lowest errors were obtained for simulations in which the average
invasion time closely matched the apparent disease progression observed in PET data.
This suggests that calibrating parameters such as αtau and αβ is critical not only for
temporal alignment but also for achieving spatial fidelity in concentration estimates.

For instance, patient 4 consistently showed lower errors across simulations, indicating
good agreement between model predictions and PET results. Conversely, patient 2 ex-
hibited relatively higher errors, likely due to the minimal spread of pathology at early
stages, which makes numerical approximations more sensitive to noise or local variations
in PET-signal.

These findings highlight the sensitivity of the model to parameter variations and under-
line the importance of personalized calibration for accurate prediction. In particular, the
interaction between αtau and αβ, dictated by the parameter γint, appears to play a key role
not only in disease progression, but also in determining the fit of the model to real-world
data.
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8. Conclusions

This final chapter presents the concluding observations of the work carried out, highlighting
both its current limitations and possible future developments aimed at improving the
results obtained.

Starting from the analysis of the model used, the Fisher-Kolmogorov reaction-diffusion
model (3.1), it can be stated that it effectively captures the diffusion dynamics underlying
the propagation of neurodegenerative diseases in the brain. The invasion times derived
from the simulations, both in the case of tau protein diffusion alone and in the study of its
interaction with β-amyloid, appear to closely match the actual progression times observed
in patients affected by Alzheimer’s disease.

Regarding the connectome structure implemented in COMSOL Multiphysics, the simu-
lations demonstrated that it provides a coherent continuous representation of the discrete
connectivity model typically used in this field. This structure enabled the diffusion pro-
cesses to be modelled in a realistic spatial framework aligned with known neuro-anatomical
pathways.

Focusing on the applied study involving the diffusion of misfolded proteins in the cere-
bral cortices of the four selected patients, the average invasion times computed were found
to reflect the clinical and pathological conditions of each case. The model shows promise
in its ability to temporally place a patient within the disease progression curve. This be-
comes particularly evident when the symptomatology observed, and clinically attributed
to a certain disease stage, is correctly identified by the model within a comparable time-
frame. This correspondence supports the validity of the chosen parameters — including
the diffusion coefficients of the two protein species, their respective propagation rates, and
the interaction coefficient — all of which exhibit units of measurement and magnitudes
consistent with physiological expectations and literature data.

An additional remark concerns the computational cost associated with the implemen-
tation of the three models and the simulation times observed. For the model simulating
the spread of the tau protein alone (6.1), the average simulation time was approximately
35–45 seconds. In the model including the interaction with β-amyloid (6.2), this increased
to 90–100 seconds. Finally, in the most complex patient-specific model (7.1), each simula-
tion required approximately 3–5 minutes.

This progressive increase in computational demand reflects the added complexity of the
system and the number of parameters involved.

The following sections discuss in detail the limitations encountered in the models and
simulations developed, and propose potential directions for future research aimed at ex-
tending and improving the work presented here.
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8.1 Limitations

This section outlines the main limitations currently affecting the models analyzed in this
study.

First and foremost is the assumption regarding the propagation of misfolded proteins
within the connectome structure. In the present work — as in several recent studies on
the same topic — it was assumed that the spread of tau and β-amyloid proteins does
not affect the architecture of the connectome itself [26]. This simplification is based on
the biological rationale that, under normal physiological conditions, the brain is capable
of regulating the accumulation of pathological proteins through efficient clearance mecha-
nisms. In neurodegenerative diseases, however, this balance is disrupted, resulting in the
progressive formation of toxic aggregates that propagate across neural regions, causing
widespread cellular dysfunction [11].

Despite this, there is increasing evidence that the propagation of these aggregated pro-
teins may not be entirely passive. In the long term, their accumulation may induce struc-
tural and functional alterations in the neuronal pathways themselves. Therefore, future
modelling efforts should consider the introduction of a dynamic coefficient or function capa-
ble of capturing changes in the physical characteristics of the connectome over time — for
example, representing synaptic weakening, atrophy, or axonal degradation. To date, few
comprehensive models attempt to describe both cortical diffusion and dynamic alterations
in white matter connectivity during the course of neurodegeneration.

A second limitation concerns the spatial discretization of the idealized brain structure
used for the simulations. The division of the cortex into 14 macroscopic regions allowed a
tractable and interpretable analysis of the spatial-temporal invasion pattern [21]. However,
this simplification inevitably grouped together functionally heterogeneous areas, possibly
introducing inaccuracies — particularly in the patient-specific model, where the simulated
concentrations were compared with PET-derived measurements.

To enable this comparison, regional averages were computed over the micro-areas com-
posing each macro-region. This averaging process, although necessary, likely introduced a
loss of resolution and spatial specificity. A possible solution would involve implementing a
more detailed partitioning of the cortex, segmenting it into a greater number of anatom-
ically or functionally defined micro-regions. Mapping the simulations directly onto this
higher-resolution cortical geometry could improve the match between model predictions
and PET-derived concentration data. In this way, both the generated concentration his-
tograms and the spatial progression graphs would reflect more accurately the real spatial
heterogeneity of the pathological burden.

It can reasonably be assumed that as the number of regions considered and the complex-
ity of the dynamic processes modelled - including the interaction between protein accumu-
lation and connectome structure - increases, the computational cost and simulation time
will also increase. However, these developments are essential to capture the full biological
complexity of disease progression in neurodegenerative disorders such as Alzheimer’s.

Based on the limitations discussed above, the following section presents possible direc-
tions for future work aimed at overcoming these constraints and enhancing the biological
realism and predictive capacity of the models.
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8.2 Future work
There are several promising directions for the future development of this research, a few
of which are outlined below.

One of the most immediate extensions would be to incorporate the left hemisphere
of the brain into the model, mapping its anatomical subdivisions and functional areas,
and examining how they are affected by disease progression in parallel with the right
hemisphere.

Another important step could involve increasing the complexity of both the brain and
the connectome structures. Building on the foundation laid in this work, the connectome
could be further refined to more closely resemble real anatomical data, increasing the den-
sity and distribution of inter-regional connections. Although such an improvement is likely
to increase the computational cost and simulation time, it would provide a complete brain
model capable of capturing the simultaneous propagation of misfolded proteins in both
hemispheres. In this context, one could revise the original mesh imported into COMSOL
Multiphysics or generate a new, more detailed one to improve the spatial accuracy of
simulations and parameter estimation.

A third avenue for future work involves expanding the patient cohort used to validate
the model. This would not only provide further testing ground for the model’s robustness
but also help identify limitations and improve its generalizability. In particular, selecting
patients at different stages of disease progression would offer insights into how symptoms
and protein diffusion patterns evolve over time. Gradually, this approach could lead to
the creation of a comprehensive database of case studies and a predictive tool capable of
accurately placing new patients within the appropriate disease phase.

Further development could focus on the possibility of customising model parameters, in
particular αtau, αβ and γint, by calibrating them directly to each patient’s PET scan data.
This would make it possible to construct a grid of parameters from which to select the most
suitable values according to individual disease profiles, minimising errors and improving
the adaptability of the model to patient-specific conditions.

Furthermore, the current model could be extended to incorporate biologically realistic
mechanisms such as protein clearance, impaired glial function, or region-specific vulnerabil-
ity. These additions would allow the model to simulate the imbalance between production
and removal of misfolded proteins — a key aspect of neurodegenerative pathology — with
greater fidelity. Expanding the framework to integrate molecular-level features, such as
gene expression or synaptic connectivity, could also support a multi-scale modelling ap-
proach, linking microscopic processes to macroscopic anatomical changes.

Lastly, the integration of clinical data beyond PET imaging, including MRI, cere-
brospinal fluid biomarkers, or electrophysiological recordings, would enhance model cali-
bration and validation. Combined with machine learning algorithms, the simulation results
could be used to develop hybrid predictive models that forecast disease progression or clas-
sify patient status with higher accuracy. Over time, this could support the development of
clinical decision-support tools tailored to personalized medicine, capable of predicting the
outcome of pharmacological interventions and simulating their effect on cortical involve-
ment and disease course.
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