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Summary

In this work we aim to provide a mathematical model both for the angiogenesis and the
growth of a vascular tumor.
In the first part of the thesis, we focus only on the formation of new blood vessels, providing
a hybrid model to outline the evolution of pressure, chemicals and endothelial cells, that
lead the formation of the nascent vasculature.
It is important to underline the fact that, in this framework, we neglect the existence of
any cancer cell population and we focus only on the growing network dynamics.
From the mathematical point of view, this kind of problem deals with coupling of PDEs
defined in the interstitial tissue and the network, because fluids and chemicals are allowed
to flow across the vessels walls.
Therefore, we provide a suitable numerical method that resolves the problem introduced
above, exploiting the constrained minimization of a cost functional.
In the second part, instead, we introduce the tumor growth dynamics considering a mul-
tiphase model for a cell population and a liquid phase, in which chemicals are dissolved.
In this framework, the model takes into the fact that tumor responses to hypoxia condi-
tions producing endothelial growth factor, that induce the formation of new blood vessels.
Since the main novelty of the second part is the introduction of cell dynamics, we provide
a numerical method for the resolution of its governing law, the technique proposed in the
first part being still valid for the coupling mechanism.
To conclude, both in the first and in the second part, we present some numerical experi-
ments to investigate the behavior of the corresponding dynamics, in order to understand
the biological reliability of the model.
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Chapter 1

Introduction

1.1 Biological Overview
Angiogenesis is a process during which new blood vessels develop starting from a pre-
existing vasculature. It is a crucial component of many biological processes [7] and it can
occur either in healthy tissue with controlled mechanisms (embryogenesis, tissue repair,
wound healing) or in pathological conditions with uncontrolled or excessive blood-vessel
formation.
In this work, we focus on pathological events to study tumor-induced angiogenesis, a
phenomenon that takes place because tumors can survive in their avascular phase only
until they reach a diameter of approximately 1-2 mm. Over this limit, tumor metabolic
demand cannot be satisfied because oxygen and nutrients are not able to reach the tumor
by the sole effect of diffusion and, in order to grow beyond this size, cancer cells switch
to an angiogenic phenotype, attracting blood vessels from the surrounding environment
[3, 7, 16].
More precisely, as the tumor increases its volume, the shortage of oxygen leads it to
hypoxia and one of the many responses to this condition is the secretion, by the tumor
itself, of many polypeptides (tumour angiogenic factors, or TAFs) that induce endothelial
cell migration, proliferation and differentiation. Through this multitude of chemicals, the
vascular endothelial growth factor (VEGF) has been identified to be one of the main
driving forces [7, 21]. In particular, VEGF spreads via the extracellular matrix (ECM)
and when it reaches pre-existing blood vessels, it binds to specific receptors located on
the endothelial cells (EC) [21].
As a result, pushed by chemotactic effects, ECs start to migrate and proliferate until the
newly formed capillary network invades the tumor [7].
In fact, the endothelial cells synthesize matrix degradative enzymes (MDE) that deterio-
rate the ECM, enabling their migration towards the tumor with the formation of the first
protrusion (sprout)[3, 7].
A description of this process is provided in Figure (1.1), in which the main components
of the angiogenesis process are reported.
When endothelial cells start migrating, they can be classified in two main groups:
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• tipcells, located at the extremity of capillaries which are able to lead them across
chemotactic stimuli;

• stalk cells, the more proliferative ones, which can follow the tipcell movement giving
rise to the nascent capillary.

As the network grows, many different phenomena can be observed; for example two tip-
cells may encounter each other and merge, leading to the anastomosis process. Moreover,
under particular conditions, a new tipcell may arise, either from tipcell differentiation or
from stalk-to-tipconversion of aN EC located just behind the leading tipcell. This process
lead to two tipcells that migrate in diverging directions, thereby initiating the branch-
ing process. In proximity of the tumor, it could happen that the number of branching
increases, showing the brush border effect.
Finally, once the newly formed vasculature reaches the tumor, cancer cells may have access
to oxygen and nutrient again and, eventually, they can enter the blood vessels to form
metastasis. [3]
Nevertheless, biological experiments show that the vasculature near the tumor is not
able to efficiently supply oxygen and nutrients, since the tumor-induced blood vessels
generally have a tortuous geometry, their walls are leaky and the lymphatic drainage
is dysfunctional. Moreover, pathological conditions lead to the rapid formation of the
network, preventing the full development of the barriers, which can be easily destroyed
by the high pressure induced by tumor proliferation [11].

Figure 1.1: Illustration of early events in sprouting angiogenesis: endothelial cell are acti-
vated by VEGF, produced by the hypoxic tumor. They start proliferating and migrating
in response to chemotactic effects and they degrade the extracellular matrix until they
reach the tumor. This figure has been reproduced, with permission, from [1].

When cancer cells have access to nutrients, the process of tumor growth starts, so they
can undergo mitosis, proliferation and migration.
Let us focus on the migration phenomenon, which is a fundamental step for the invasion
process. In fact, when cells move in the extracellular matrix, they have to deform in order
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to cross the space between fibres and they must adhere them to apply a traction force
that allows the movement.
However, the structure of the ECM may also be a limit for migration, since cells are not
only constituted by an easily deformable cytoplasm, but also by a stiff nucleus, whose
structure consists of dense genetic materials (chromatin) surrounded by a lipid membrane
which is sustained by structural proteins (nuclear lamina)[13].
In particular, when the spaces between the ECM pores are too narrow and when the
nucleus is not elastic enough, the cell motility is very reduced. As a consequence, cells
migration is obstructed and they cannot reach areas with higher concentrations of nutri-
ents.
This short biological overview shows that angiogenesis and tumor growth dynamics are
very complex processes, so their description is not trivial. In this perspective, in the
following sections we provide a collection of works that face this problems and we will use
them as a starting point for our analysis.

1.2 Mathematical models in literature
Despite a large number of in vivo and in vitro experiments tried to give an effective
explanation of the phenomenon, angiogenesis is still a challenging event to be studied. In
fact, it is a process involving different spatio-temporal scales and many different biological
species. The formulation of in silico models may thus help its comprehension.
For these reasons, many mathematical models has been proposed with different ap-
proaches: the most important distinction consists in continuous [30] and discrete/hybrid
models [25, 21].
The former are generally given by systems of non-linear partial differential equations de-
scribing the distribution of ECs, TAFs and of other chemicals dissolved in the extracellular
matrix, such as oxygen or degradative enzymes. These kind of models have the advantage
of capturing the angiogenic features at the macroscopic scale but they are not able to
describe the geometry of the nascent vessels, nor to evaluate the inner blood flow.
In this scenario, we can cite for example [30], in which the authors propose a model of
tumor-induced angiogenesis for the growth of new capillaries, that also takes into account
their possible natural regression and further regrowth. From the mathematical point of
view, the problem is solved thanks to a phase-field approach that resolves the capillary at
full scale, while the presence of chemotactic growth factors is modelled by a PDE problem.
For what concerns discrete/hybrid models, instead, they allow to track the evolution of
the single endothelial cell and so they can give a realistic representation of the evolving
network. Furthermore the individual-based representation of the cells can be coupled
with the macroscopic description of the chemicals, making it is possible to describe the
interaction between the cells and the environment.
To give some examples of this kind of approach, we can cite the tip-tracking model pro-
posed in [25], in which the ECs density is substituted by an indicator function that captures
the network at the cell scale, while the concentration of chemicals is modelled by PDE
problems.
Another example is given by [21], in which an agent-based model is employed to describe
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the motion of tip cells, while a continuum approach illustrates the evolution of extracellular
matrix, chemotactic growth factors, matrix degradative enzyme and stalk cells density.
Nevertheless, also discrete/hybrid methods have some disadvantages such as the fact that
the number of vessels which can be considered is limited by the computational cost and
moreover, also in this case, it is not always possible to evaluate the blood flow inside
the nascent vessel. In this perspective, since it is fundamental to understand how the
exchanges between the vessels and the tissue occur, many different models have been
proposed to represent the fluid dynamics.
We can cite for example [18], in which the authors propose an algorithmic approach to
generate microvascular networks, taking into account the flux of blood and oxygen between
the vessels and the tissue, thanks to Starling’s filtration law. Nevertheless, they do not
consider any interaction between the evolving network and the angiogenic factors, so this
model is not completely suitable to describe tumor-induced angiogenesis.
A more effective approach is the one proposed in [3], in which the authors focus on the
angiogenesis process in order to describe the fluid flow and the chemical transport both
inside the healthy tissue and the blood vessels. A continuum model for the description
of chemicals and pressure is adopted, while the evolution of the network is studied at the
tipcell scale, thanks to a discrete tip-tracking model.
If we want to consider not only the evolution of the network, but also the growth of
an initial concentration of cancer cells, we need to look at more sophisticated models,
such as the one proposed in [11]. In this work, the authors present a 3D–1D coupled
model of tumor growth associated with an evolving vascular network that also takes into
account the angiogenesis process. For the tridimensional domain, a multiphase approach
is adopted to describe cell concentration, extracellular matrix and chemicals, whose phases
are tracked by a phase-field model. The blood flow and the exchanges between vessels
and tissue are actually considered, as well as the interaction between the growing network
and the angiogenic growth factors.
Many other different approaches can be use to handle this kind of problems, for example
the ones proposed in [32] and [33]. In [32], a phase field model for the cells and the
capillaries allows to study the behavior of tumor growth and angiogenesis, while [33] can
be considered as an extension of [32], in which the blood flow is also considered. In both
cases, the continuous description of cells and capillaries is completed by two PDEs for the
nutrients and the TAFs and by a discrete model for the tipcells. Furthermore, the latter
can be activated and deactivated in response to chemotactic stimuli.
Another example of a model that take into account both the growth of a cancer cells
popiulation and the development of a vascular network is provided by [10], in which
the authors build an hybrid model for the growth of a multi-species tumor treated by a
phase-field model combined with a law for the fluxes. The dynamics are coupled with
differential equations for the extracellular matrix, degradative enzyme and TAFs, while
the network evolution is managed by a biased random walk that accounts for chemotactic
and haptotactic effects.
Further different approaches are given by [28, 29, 15], in which the authors consider again
a continuum model for tumor growth and angiogenesis, with a discrete modelling of the
network morphology. In particular, the biological tissue is considered as a non-viscous,
non-linear and hyper-elastic material, the ECM and the biochemicals are regulated by
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differential problems, with interstitial fluid velocity described by Poiseuille’s law, blood
velocity given by Darcy’s law and trascapillary flux modelled via Starling’s filtration law.
This kind of approach allows to take into account also the effects of mechanical stimuli
both on the evolution of the interstitial tissue and of the network. Moreover, it is also
possible to consider the impact of the administration of cytotoxic and anti-angiogenic
drugs.
To conclude, a different kind of approach is the one proposed in [26], that resolves the
angiogenesis and tumor growth problems at a fully macroscopic scale. In this work, the
behavior of normoxic and hypoxic cancer cells, TAFs, vasculature and necrotic cells are
modelled via PDE problems, without any description of the cell scale.

1.3 Numerical methods in literature
The resolution of the biological models introduced above typically requires a method able
to resolve problems defined in a tridimensional domain with an embedded cylindrical
network, whose radius is much smaller than the dimension of the 3D sample.
In this context, it is often convenient to treat the network as a mono-dimensional object,
but this reduction is in general non trivial. Moreover, the variational formulation of
this kind of problem requires a proper trace operator that is not well posed when the
dimensionality gap between the involved manifolds is higher than one.
For this reason, the resolution of these problems is still under investigation because their
mathematical formalization is challenging and many works face this task, providing dif-
ferent resolution approaches.
We can cite [8, 9] in which the authors provide a methodological tool to handle elliptic
problems in fractured domains. The coupling terms are treated as Dirac measures con-
centrated on the fractures and the approximation of the solution is obtained introducing
suitable weighted Sobolev spaces.
A different approach is given by [14], in which the singularities produced by the exchange
between the mono-dimensional geometry and the tridimensional one are treated by a
decomposition technique. In this framework, the solution is split into a term that captures
the singularities and a regular correction term, allowing to reformulate the 3D-1D model
as a fixed point iteration scheme.
Another possible strategy is the regularization of the singularities as shown in [17], in which
the exchanges are modelled via smooth kernel functions that extend the source from a
mono-dimensional domain to a tridimensional neighbourhood of the vessel. Similarly, in
[27] the regularization of the singularities is performed by substituting the Dirac delta
sources with functions having a narrow support.
A different methodology is also proposed in [19], where the authors consider a combination
of Dirichlet and Neumann conditions in correspondence to the dimensionality gap between
the manifolds. In order to provide a well-posed formulation of these conditions, the
Lagrange multipliers method has been proposed.
Other examples are [2, 4], whose model assumption are similar to the ones proposed in
[20]. In particular, in these works the 3D-1D coupled model is derived from the fully
3D-3D one introducing suitable Sobolev spaces, that allow to define proper trace and
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extension operators.
In addition, differently from [20], a domain decomposition technique is implemented,
thanks to the introduction of auxiliary variables that formally decouple the tridimensional
problem and the mono-dimensional one, while the final solution is obtained minimizing a
cost functional, constrained by the governing equations on the subdomains.
The method proposed in [4] is an extension of [2], and the main difference lies in the fact
that the former allows to deal with discontinuous functions at the interface between the
tridimensional and the mono-dimensional domains.
This different mathematical choice is very useful in many biological problems, especially
when the interface is constituted by a semi-permeable membrane.
Furthermore, the problems proposed both [4] and [2] are discretized using finite elements
on non-conforming meshes: this is very convenient as it is possible to define different and
independent meshes on each subdomain and the handling complex geometries.

1.4 The contribution of the work
In the present work, we want to provide a method able to outline both the angiogenesis
process and the tumor growth dynamics and our starting point is [3], in which a 3D-1D
coupled model for the sole angiogenesis is provided.
More specifically, we consider three partial differential equation problems to describe the
dynamics of pressure, oxygen and vascular endothelial growth factor (VEGF). In particu-
lar, Poiseuille’s and Darcy’s laws describe the fluid flow in the vessels and in the interstitial
tissue, respectively. The trans-capillary flux is instead treated with the Starling’s filtration
law.
The growth of the network is regulated by a tip-tracking model and we take into account
the possibility of branching and anastomosis, according to suitable criteria related to the
age of the sprouts, their direction and the available quantity of VEGF.
To take into account also tumor growth, the work presented in [3] must be extended and,
to this aim, we consider the method proposed in [12].
In particular, we treat the tissue as a mixture constituted by cells, a liquid phase and the
extracellular matrix, obtaining the governing equation for cells evolution with a multiphase
approach and adding it to the angiogenic cascade.
For what concerns the numerical methods, we start from a finite element discretization
and a Backward Euler method for every PDE problem.
Moreover, since pressure and oxygen dynamics involve a 3D-1D coupling between the
interstitial tissue and the vasculature, we also have to adopt the method proposed in
point is [4].
For the discretization of the growing network, instead, we implement a Forward Euler
scheme, with the possibility to consider the virtual growth, i.e. we let the network grow
only when the distance between to consecutive tipcells is greater than the characteristic
size on a single endothelial cell.
Moreover, to resolve the governing equation for the cell dynamics we implement the New-
ton’s method.
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In detail, the thesis is organized as follows. In the first part we focus only on the an-
giogenesis process, in particular in Chapter 2 we provide the model assumptions and the
description of the 3D-1D coupling model. In Chapters 3 and 4 we describe the 3D-1D
optimization method and we provide some numerical experiments, respectively.
In the second part we introduce the tumor growth dynamics, in particular in Chapter 5
we obtain the governing law for the cells and we adapt the equation for pressure, oxygen
and VEGF to the multiphase approach. In Chapter 6 we formulate the Newton’s method
and, finally, in Chapter 7 we provide some numerical experiments.
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Part I

Angiogenesis
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Chapter 2

The Mathematical Modeling
of Angiogenesis

2.1 Notations and model assumptions
Before presenting the governing equations of the model, we first specify the domains over
which they are defined. In this perspective, we provide the following definitions.

• The set Ω defines the full domain in which biological processes occur, encompassing
both the vasculature and the surrounding tissue.

• The time interval in which the dynamics takes place is [0, T ] and we partition it into

0 = t0 < t1 < ... < tk < ... < tK = T,

with
Ik = (tk−1, tk] and ∆Ik = tk − tk−1.

• The capillary network at time tk is denoted by

Σk ⊂ Ω ⊂ R3,

and we neglect the regression and the remodelling of the network, considering only
the sprouting angiogenesis phenomenon, i.e.

Σ0 ⊆ Σ1 ⊆ ... ⊆ Σk.

• The set Dk = Ω\Σk stands for the interstitial volume.

• The boundary of the network is given by

∂Σk = Γk ∪ ∂Σk
in ∪ ∂Σk

out ∪ ∂Σk
d,

where
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– Γk is the lateral surface of Σk,
– ∂Σk

in ⊂ ∂Ω and ∂Σk
out ⊂ ∂Ω are the union of the inlet and outlet cross-sections

of Σk respectively,
– ∂Σk

d collects all the extremal cross-sections of Σk lying in the interior of Ω.

We suppose that ∂Σk
in and ∂Σk

out are fixed in time, so in the following we drop the
superscript k.

Figure 2.1: Representation of the capillary network Σk,

• The external boundary of the interstitial tissue is denoted by

∂Dk = ∂Ω\(∂Σin ∪ ∂Σout).

• If we imagine to cover the network Σk of straight cylindrical segments, the centreline
of each cylinder is given by

Λk
i = {λki (s), s ∈ (0, Ski )} i ∈ Y k,

where Y k is the set of the segments indices in the time interval Ik and Ski is curvilinear
abscissa of the endpoint of each segment.
Moreover, we define Λin, Λout and Λk

d as the union of the centre of the sections in
∂Σin, ∂Σout and ∂Σk

d, respectively.

• The set {xb}b∈Bk collects the points at which vessels centrelines join or bifurcate.
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• The subset Y k
b ⊂ Y k is such that the segments Λk

j , j ∈ Y k
b are connected in {xb}.

Furthermore, the curvilinear abscissa Si,b is such that λki (Si,b) = xb, i ∈ Y k
b (clearly

Si,b is either 0 or Ski );

• ñout and ñkd denote the unit normal vector to ∂Σout and ∂Σk
d, both pointing outward

the network Σk.
Similarly, nkΓ is the unit normal vector to Γk pointing outward Γk, while n is the
unit normal vector to ∂D pointing outward Dk

2.2 Models and methods
The present work is an extension of the model presented in [3], in which the angiogenesis
and blood delivery processes are described by three partial differential equation problems
and an ordinary differential equation one.
More specifically, we treat the pressure, oxygen and VEGF dynamics with the PDE prob-
lems, while the evolution of the tip cell positions is given by the ODE one.
For what concerns the initial conditions, we establish an equilibrium configuration for the
involved variables, defined over a fixed network Σ0 and D0 = Ω\Σ0.
Successively, the network can progress in response to the available chemicals, so we can
compute the new geometry Σ1 and then we can obtain the new fluid pressure, oxygen and
VEGF distributions.

Figure 2.2: Representation of the mutual dependence of the considered quantities.

As shown in Figure (2.2), the first quantity to be estimated is the fluid pressure that
allows us to acquire the fluid velocity both in blood vessels and in the interstitial tissue.
Once such velocity is computed, we adopt it to evaluate the new oxygen and VEGF
configurations.
It is worth to note that, at each time iteration, we keep fixed the vessel geometry and,
firstly, we resolve the fluid pressure problem. This allows us to obtain the fluid velocity
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that we use in the governing equations for oxygen and VEGF distributions. In particular,
we solve the oxygen problem and then the VEGF one, since, as we will show in the
following sections, the VEGF concentration is related to the oxygen availability.
At this point, we adopt the VEGF concentration to compute the tip cells displacement,
that successively allows us to obtain the new network morphology.
When the vessels geometry is updated, we keep it fixed again and we repeat the process
until the final time is reached.

2.2.1 The pressure model
Let us denote by p(x, t) the interstitial fluid pressure and by p̃(x, t) the the blood pressure
inside the capillary network.
The 3D-3D quasi-stationary coupled model that describes the motion of fluid ∀t ∈ Ik
both in the interstitial tissue and in the capillary blood vessels is the following:

− ∇ ·
A
k

µ
∇p(x, t)

B
+ βLSp

S

V

1
p(x, t) − pLS

2
= 0 x ∈ Dk (2.1)

k

µ
∇p(x, t) · nkΓ(x) = βp

1
p̃(x, t) − p(x, t) − ∆ponc

2
x ∈ Γk (2.2)

k

µ
∇p(x, t) · n(x) = βextp

1
pext − p(x, t)

2
x ∈ ∂D (2.3)

∇p(x, t) · nkd(x) = 0 x ∈ ∂Σk
d (2.4)

− ∇ ·
A
R2

8µ∇p̃(x, t)
B

= 0 x ∈ Σk (2.5)

R2

8µ∇p̃(x, t) · ñkΓ(x) = βp
1
p(x, t) − p̃(x, t) + ∆ponc

2
x ∈ Γk (2.6)

p̃(x, t) = p̃in x ∈ ∂Σin (2.7)
p̃(x, t) = p̃out x ∈ ∂Σout (2.8)

∇p̃(x, t) · ñkd(x) = 0 x ∈ ∂Σk
d. (2.9)

We assume that the tissue can be modelled as a saturated porous medium and so we use
the Darcy’s law to describe the interstitial flow velocity

v(x, t) = −κ

µ
∇p(x, t) x ∈ Dk, t ∈ Ik. (2.10)

On the other hand, as blood can be considered as an incompressible viscous fluid, we
adopt the Poiseuille’s law for the capillary blood velocity

ṽ(x, t) = −R2

8µ∇p̃(x, t) x ∈ Σk, t ∈ Ik. (2.11)
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Moreover, parameters κ, µ, βp and βextp are positive scalars denoting respectively the
hydraulic permeability of the tissue, the blood viscosity, the permeability of the capillary
wall Γk and the conductivity of the external boundary.
For what concerns the term ∆ponc, it accounts for the oncotic pressure, a contribution
due to different concentrations of chemicals on the two sides of the vessels wall. The most
important substance involved in oncotic processes is a protein, the albumin, such that
∆ponc assumes the following expression

∆ponc = ξ
1
ponc − ponc

2
, (2.12)

with ponc and ponc indicating the oncotic pressure of albumin inside Dk and Σk respectively
and ξ being the variance of the membrane from the perfect permeability.
Finally, we consider the lymphatic system drainage through the distributed sink term

βLSp
S

V

1
p(x, t) − pLS

2
(2.13)

where βLSp denotes the permeability of the lymphatic wall, S
V

stands for the surface of
lymphatic vessels per unit of tissue volume and pLS = pext represents the lymphatic system
pressure, with pext being the basal pressure.

Figure 2.3: Sketch of the 1D reduced problem with related quantities.

Furthermore, Equations (2.1) and (2.5) are coupled via the interface conditions (2.2) and
(2.6), which impose the conservation of the fluxes through the vessel walls. Since the radius
of the vessels is much smaller than the dimension of the whole domain, it is possible to
reduce the above 3D-3D model into a 3D-1D coupled one, assuming that inside the vessels
the variation of pressure along the section is negligible [3].
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In this perspective, we reduce the above model introducing two one-dimensional quantities,
namely p̂i(s, t) and p̌i(s, t), such that, in cylindrical coordinates, ∀i ∈ Y k, s ∈ (0, Ski ) and
t ∈ Ik we have

p̃|Σk
i
(r, θ, s, t) = p̂i(s, t) ∀r ∈ [0, R],∀θ ∈ [0,2π) (2.14)

p|Γk
i
(R, θ, s, t) = p̌i(s, t) ∀θ ∈ [0,2π). (2.15)

Moreover, we define the trans-capillary flux as

f̂ ip(s, t) = 2πRβp
1
p̂i(s, t) − p̌i(s, t) − ∆ponc

2
s ∈ (0, Ski ), t ∈ Ik, (2.16)

while the Poiseuille’s equation (2.11) reduces to

v̂i(s, t) = −R2

8µ
∂p̂i(s, t)
∂s

. (2.17)

It is also possible to define the flux inside the blood vessels as

Qi(s, t) = |Σi(s)|v̂i(s, t), (2.18)

so we can write the conservation law on the vessel centreline as

Qi(s+ ds, t) = Qi(s, t) − f̂ ip(s, t)ds. (2.19)

Now we can finally provide the formulation of the pressure problem in a 3D-1D framework:

− ∇ ·
A
k

µ
∇p(x, t)

B
+ βLSp

S

V

1
p(x, t) − pLS

2
=
Ø
i∈Y k

f̂ ipδΛk
i

x ∈ Dk (2.20)

− ∂

∂s

A
πR4

8µ
∂p̂i(s, t)
∂s

B
= −f̂ ip(s, t) ∀i ∈ Y k, s ∈ (0, Ski ) (2.21)

k

µ
∇p(x, t) · n(x) = βextp

1
pext − p(x, t)

2
x ∈ ∂D (2.22)

p̂ = p̂in in Λin (2.23)
p̂ = p̂out in Λout (2.24)
∂p̂

∂s
= 0 in Λd (2.25)

Ø
j∈Y k

∂p̂j(Sj,b, t)
∂s

= 0 ∀b ∈ Bk (2.26)

p̂i(Si,b, t) = p̂j(Sj,b, t) ∀i /= j ∈ Yb, ∀b ∈ Bk. (2.27)

The last two equations express, respectively, the flux balance and the pressure continuity
at bifurcation points, while f̂ ip is given by (2.16), while δΛk

i
stands for the indicator function

of the ith vessel centreline.
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2.2.2 The oxygen model
Correspondingly to the pressure case, the starting point for the oxygen problem is again a
3D-3D coupled problem, describing its advection, diffusion and consumption both in the
interstitial tissue and in the blood vessels.
As previously mentioned and as reported in figure (2.2), the advection velocities in the
interstitial tissue and in the blood vessels are computed accordingly to the gradient of
fluid pressure, as defined in Equations (2.10) and (2.11), respectively.
Now, denoting by c(x, t) and c̃(x, t) the oxygen concentration in Dk and Σk respectively,
the corresponding 3D-3D coupled problem is

∂c(x, t)
∂t

= ∇ ·
1
Dc∇c(x, t)

2
− v(x, t) · ∇c(x, t) −mc

!
c(x, t)

"
x ∈ Dk (2.28)

Dc∇c(x, t) · nkΓ(x) = βc
1
c̃(x, t) − c(x, t)

2
x ∈ Γk (2.29)

Dc∇c(x, t) · n(x) = βextc

1
cext − c(x, t)

2
x ∈ ∂D (2.30)

∇c(x, t) · nkd(x) = 0 x ∈ ∂Σk
d (2.31)

∂c̃(x, t)
∂t

= ∇ ·
1
D̃c∇c̃(x, t)

2
− ṽ(x, t) · ∇c̃(x, t) x ∈ Σk (2.32)

c̃(x, tk−1) = 0 x ∈ Σk\Σk−1 (2.33)

D̃c∇c̃(x, t) · ñkΓ(x) = βc
1
c(x, t) − c̃(x, t)

2
x ∈ Γk (2.34)

c̃(x, t) = cin x ∈ ∂Σin (2.35)

D̃c∇c̃(x, t) · ñout(x) = 0 x ∈ ∂Σout (2.36)

∇c̃(x, t) · ñkd(x, t) = 0 x ∈ ∂Σk
d (2.37)

For k = 0 we define the initial conditions

c(x, t0) = c0(x) x ∈ D0 (2.38)

c̃(x, t0) = c̃0(x) x ∈ Σ0. (2.39)

On the other hand, for k > 0 we only have to initialize the amount of oxygen in the
newborn capillaries, as reported in Equation (2.33). The oxygen concentration at time
tk−1 in Dk is instead available from the final value computed in Ik−1,
The parameters Dc, D̃c, βc and βextc are positive scalars denoting respectively the diffu-
sivity in the interstitial tissue Dk, the diffusivity in the network Σk, the permeability to
oxygen of the blood vessels wall Γk and the permeability of the external boundary ∂Dk.
Moreover, the function mc

!
c(x, t)

"
models the oxygen metabolization by endothelial cells

and we define it as
mc

!
c(x, t)

"
= Mcc(x, t) (2.40)

with Mc being a positive scalar denoting the consumption rate.
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Also in this case, Equations (2.28) and (2.32) are coupled via the interface conditions
(2.29) and (2.34), for the conservation of the flux.
Consequently, for the same reasons that lead us to reduce the pressure problem, we have
to introduce the one-dimensional quantities

c̃|Σk
i
(r, θ, s, t) = ĉi(s, t) ∀r ∈ [0, R], ∀θ ∈ [0,2π) (2.41)

c|Γk
i
(R, θ, s, t) = či(s, t) ∀θ ∈ [0,2π) (2.42)

and we define the trans-capillary flux as

f̂ ic(s, t) = 2πRβc
1
ĉi(s, t) − či(s, t)

2
s ∈ (0, Ski ), t ∈ Ik. (2.43)

In fact, we remind that the blood vessels radius is much smaller than the dimension of the
tridimensional domain and we assume again that inside the vessels the oxygen variation
along the section is negligible.
In this framework, the above model can be reduced into a 3D-1D one and it assumes the
following form

∂c(x, t)
∂t

− ∇ ·
1
Dc∇c(x, t)

2
+ v(x, t) · ∇c(x, t) +mc

1
c(x, t)

2
=
Ø
i∈Y k

f̂ icδΛk
i

x ∈ Dk

(2.44)

πR2∂ĉi(s, t)
∂t

− ∂

∂si

A
πR2D̃c

ĉi(s, t)
∂s

B
+ πR2v̂i(s, t)

ĉi(s, t)
∂s

= −f̂ ic(s, t)

∀i ∈ Y k, s ∈ (0, Ski ).
(2.45)

Dc∇c(x, t) · nk(x) = βextc

1
cext − c(x, t)

2
x ∈ ∂D (2.46)

ĉ = ĉin in Λin (2.47)
∂ĉ

∂s
= 0 in Λout and Λd (2.48)

c(x, t0) = c0(x) x ∈ D0 (2.49)

ĉ(x, t0) = ĉ0(x) x ∈ Λ0 (2.50)

ĉ(x, tk−1) = 0 x ∈ Λk\Λk−1 (2.51)Ø
j∈Y b

∂ĉj(Sj,b, t)
∂s

= 0 ∀b ∈ Bk (2.52)

ĉi(Si,b, t) = ĉj(Sj,b, t) ∀i /= j ∈ Yb, ∀b ∈ Bk (2.53)

2.2.3 The chemotactic growth factor model
The last PDE problem describes the evolution of the VEGF in the interstitial tissue and
its consumption by the network.
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More specifically, we suppose that the chemical is only dispersed in the tridimensional
sample, so we do not solve any equation inside the blood vessels domain.
In addition, there is no VEGF flux trough the capillary wall, but its consumption by the
endothelial cells occurs in terms of receptor mediated binding.
More precisely, the formulation of the problem for the chemotactic growth factor is the
following

∂g(x, t)
∂t

= ∇ · (Dg∇g(x, t)) − v(x, t) · ∇g(x, t) − σg(x, t) + fg(c(x, t)) x ∈ Dk

(2.54)

Dg∇g(x, t) · nkΓ(x) = −σ̃g(x, t) x ∈ Γk
(2.55)

∇g(x, t) · n(x) = 0 x ∈ ∂D
(2.56)

∇g(x, t) · ndk(x) = 0 x ∈ ∂Σk
d.

(2.57)

For k = 0 we set the initial condition

g(x,0) = g0(x) x ∈ D0, (2.58)

while for k > 0 we set
g(x, tk) = g(x, tk−1) x ∈ Dk. (2.59)

The parameters Dg, σ and σ̃ are positive scalars denoting respectively the diffusivity of
the VEGF in the interstitial tissue, its natural decay and the rate of consumption by the
network.
It is important to note that the above model has been modified with respect to the
one presented in [3]. In fact, the latter is constituted by an advection-diffusion-reaction
equation completed by a Dirichlet’s boundary condition at the interface between the tumor
and the interstitial tissue, which represents a constant distribution of endothelial growth
factor in correspondence to the tumor boundary.
Now, the governing equation is again an advection-diffusion-reaction one, but this time
we also introduce a forcing term, and complete the problem with a Neumann’s boundary
conditions on the whole external boundary.
In particular, the forcing term allows us to take into account the dependency of the VEGF
source from the available oxygen and it is given by

fg
!
c(x, t)

"
= rgmg(x)fV EGF

!
c(x, t)

"
. (2.60)

In particular, rg is a positive scalar denoting the VEGF production rate and mg(x) is
the indicator function that identifies the position of the VEGF source. We introduce this
function because we want to understand what happens when the growth factor is produced
by a source distributed in a specific area of the domain. This choice is a preliminary
analysis for the model presented in the second part of the present work, in which we will
introduce the tumor growth dynamics and VEGF will be produced by cancer cells.
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Finally, fV EGF
!
c(x, t)

"
is a function that introduces the dependency of the source from

the available oxygen. More specifically, we choose fV EGF
!
c(x, t)

"
as a logistic function

whose expression is given by

fV EGF
!
c(x, t)

"
= − 1

1 + exp
!

− c(x, t) + chypo
" + 1, (2.61)

with chypo = 11.5 mmHg and we report it in Figure (2.4).

Figure 2.4: VEGF source dependency form the available oxygen.

In particular, we can observe that (2.61) presents an inflection point in correspondence to
c(x, t) = 11.5 mmHg. We choose this value because, from [23], we know that the tumor
produces VEGF in response to hypoxia condition, in order to stimulate the growth of the
capillary network. Moreover, as reported in [23], we can consider different hypoxia thresh-
olds to describe the wellness of the tissue. In light of this, we focus on the physiological
hypoxia level that occurs at a concentration c(x, t) = 15 mmHg and on the pathological
one, that occurs at c(x, t) = 8 mmHg.
As a result, in this work we decide to build the function (2.61) such that the production of
VEGF is more intense in correspondence to low oxygen concentration (c(x, t) < 8 mmHg),
weaker for high oxygen concentration (c(x, t) > 15 mmHg) and with a transition region
between the pathological and physiological hypoxia levels. From the mathematical point
of view, the inflection point of the logistic function (2.61) has been set in the middle point
of the above two thresholds.

21



The Mathematical Modeling of Angiogenesis

Now, similarly to pressure and oxygen problems, it is possible to introduce the one-
dimensional quantity

g|Γk
i
(R, θ, s, t) = ǧi(s, t) ∀θ ∈ [0,2π), (2.62)

in order to rewrite (2.54)-(2.55) as a 3D equation with a singular reaction term:

∂g(x, t)
∂t

− ∇ · (Dg∇g(x, t)) + v(x, t) · ∇g(x, t) + σg(x, t) − fg(x, t)

= −
Ø
i∈Y k

2πRσ̃ǧ(s, t)δΛk
i

x ∈ Dk, t ∈ Ik.
(2.63)

2.2.4 The growth of the vascular network
For what concerns the analysis of the tip cells displacement and the consequent growth of
the vascular network, we adopt the same model presented in [3] and in the following we
show it for completeness.
Since vessel radius is much smaller than the dimensions of the tridimensional domain, we
collapse the vascular network at time tk on its centrelines Λk and the interstitial domain
Dk is extended to the whole Ω.
tip cells move in response to chemotactic stimuli and we can model their displacement.
In order to achieve this purpose, it is useful to define xp as the position of the generic tip
cell and to consider the ordinary differential equation

dxp
dt

= w
!
g(xp, tk),xp

"
, p ∈ Pk. (2.64)

We denote by Pk the set of tip cells at time tk, while w
!
g(xp, tk

"
,xp) stands for the

velocity of the generic tip cell p ∈ Pk. According to [3, 25], we define it as

w
!
g(xp, tk),xp

"
=


le

tc(g)
Krand
ECM (x)∇g

||Krand
ECM (x)∇g||

if g > glim

0 otherwise.
(2.65)

In Equation (2.65), glim is the minimum value of VEGF that endothelial cells need to
proliferate, le is the endothelial cell length and tc(g) is the cell division time [25]. Its
expression is given by

tc(g) = τ
1
1 + e

1
g
g

−1
22
, (2.66)

where τ is a cell proliferation parameter and g is the concentration at which tc = 2τ [25].
Its representation is provided in Figure (2.5), for g = 1 · 10−13 kg/mm3 and τ = 12 h.
We said that tip cells move in response to chemotactic effect, but we also have to consider
that their motion is strongly influenced by the structure of the substrate in which they
live, so it is necessary to model the orientation of the extracellular matrix fibres.
To this aim, we introduce the matrix Krand

ECM , which we define as follows
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Figure 2.5: Cell division time for g = 1 · 10−13 kg/mm3 and τ = 12 h

Krand
ECM (x) = I + kan(x)Kan

ECM (x). (2.67)
The term Kan

ECM (x) contains all the informations about the deviation from the isotropic
behaviour and kan(x) is the weight of the anisotropic contribution.
More specifically, Kan

ECM (x) assumes the following form

Kan
ECM (x) =


−k2(x)2 − k3(x)2 k1(x)k2(x) k1(x)k3(x)

k1(x)k2(x) −k1(x)2 − k3(x)2 k2(x)k3(x)
k1(x)k3(x) k2(x)k3(x) −k1(x)2 − k2(x)2

 , (2.68)

where the parameters ki(x), i = 1,2,3 and kan(x) are randomly chosen for each position
in space, such that

3Ø
i=1

ki(x)2 = 1 and kan(x) ∈ [0,1]. (2.69)

Branching

tip cells are not only subjected to chemotactic-induced movement, but they may also
undergo branching: this phenomenon consists in the formation of two different sprouts,
starting from a pre-existing one.
Furthermore, new tip cells may arise from stalk-to-tip conversion just behind the vessel
tip, resulting in two tip cells migrating in different directions and thereby initiating the
formation of a new branch.
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In particular, according to [3, 25], in our model we allow the birth of new sprouts if the
following two conditions are both satisfied:

1. the current sprout is old enough, i.e. its age is greater than a threshold age τbr,

2. ||wΠ||
||w||

> αw
br, i.e. the ratio between the norm of the orthogonal projection of w

on the plane Π (perpendicular to the current sprout) and the norm of w must be
greater than a threshold value αw

br.

Moreover, since the splitting may happen or not based on the available concentration of
VEGF, according to [3] we also introduce a branching probability such that tips are more
likely to branch when VEGF concentration is high.
In this work, the following probability has been chosen

Pbr =


1

1 + exp
!

− a(g − bgbr)
" g < gbr

1 otherwise.
(2.70)

with a = 20 mm3/kg and b = 1/2 and whose shape is the same proposed in [3], but this
novel formulation is more compatible with values of τbr close to the minimum of tc(g).

Figure 2.6: Branching probability for gbr = 1 · 10−13 kg/mm3

It is also important to specify that, as one can read in equation (2.66), it is counter-
intuitive choosing values of τbr lower than the minimum of tc(g).
The branching probability for gbr = 1 · 10−13 kg/mm3 is then reported in Figure (2.70).
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Now, assuming that the branching conditions described above are both satisfied and that
the probability effectively allows branching to occur, then the division of the parent sprout
generates two new extensions, whose direction must be defined.

Figure 2.7: Branching directions

To this purpose, let us consider the generic sprout P ∈ Pk, the plane Π orthogonal to its
orientation and wΠ the orthogonal projection of w on the plane Π.
We can compute the directions of the new sprouts as follows

w1 = w + wΠ

||wΠ||
dbr, w2 = w − wΠ

||wΠ||
dbr (2.71)

where dbr is a function of the diameter of the capillary, as shown in figure (2.7).

Anastomosis

The last possible outcome for tip cells is the formation of loops and this phenomenon is
called anastomosis.
Also in this case, the model is the same proposed in [3] and we report it for completeness.
In particular, anastomosis occurs whenever two sprouts get together or when a sprout
encounters a portion of another sprout that is not older than threshold age τan.
To be more precise, the first case is called tip-to-tip anastomosis and it produces the
deactivation of both tip cells.
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The second case, instead, is called tip-to-sprout anastomosis and it leads to the deactiva-
tion of only one of the two tips.
In the simulations we force anastomosis when the distance between two tips or the distance
between a tip and a sufficiently young sprout is lower than a value dan.
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Chapter 3

The mathematical model for
vascular tumour growth with
angiogenesis

3.1 The optimization based domain decomposition
for 3D-1D coupling

As shown in the previous sections, pressure and oxygen problems need to be solved taking
into account the coupling between the tissue and the network.
In particular, since the radius of the blood vessel is much smaller than the dimension of
the whole domain, the network can be considered as a one-dimensional object embedded
in a three-dimensional one.
Given that, the formulation of a well-posed numerical formulation for this kind of problem
is not trivial, since no bounded trace operator is defined when the involved manifolds have
a dimensionality gap higher than one [3].
Actually, it is possible to overcome this obstacle defining appropriate Sobolev subspaces
to obtain the variational formulation of the problem [2, 4, 20].
The main idea is the to apply a domain domain decomposition strategy that allows to
introduce a suitable cost functional. Then we implement the optimization method pre-
sented in [4], in which not only no bounded trace operator but also no mesh conformity
is required, and consequently it allows to deal with complex time-varying geometries.

3.1.1 The variational formulation
The oxygen problem

In this section, we focus on the oxygen problem, since the presence in this problem of
time derivation, advection and reaction terms allows us to give a complete description of
the strategy. Similar considerations still apply for simpler elliptic problems such as the
pressure one.
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We underline the fact that all the following consideration are reported in [3] and we show
them for completeness.
The first step is to define the proper spaces for the solution and, for this reason, let us
consider t ∈ Ik = (tk−1, tk] and define some important spaces and operators.

• The space of continuous functions on Λk whose restriction to Λk
i is in H1(Λk

i )

H1(Λk) =
Ù
i∈Y k

H1(Λk
i ) ∩ C0(Λk).

Each function û ∈ H1(Λk) can be written as

û =
Ù
i∈Y k

ûi, ûi ∈ H1(Λk
i ).

• The trace operator

γki : H1(Dk) ∪H1(Σk
i ) → H1/2(Γki ),

which, given u ∈ H1(Dk) ∪H1(Σk
i ) returns

γki ui = u|Γk
i
, i ∈ Y k.

• The extension operator
Eki : H1(Λk

i ) → H1/2(Γki ),

which, given ûi ∈ H1(Λk
i ) uniformly extends the value of ûi(s) to the boundary Γki (s)

of the transversal section Σk
i (s), i.e.

Eki ûi(s) = ũ(x) ∀x ∈ Γki (s).

• The extension operator

Θk
i : H1(Λk

i ) → H1(Σk
i ),

which given ûi ∈ H1(Λk
i ) uniformly extends its value to the cross section Σk

i (s) of
the cylinder, i.e.

Θk
i ûi(s) = ũ(x), ∀x ∈ Σk

i (s).

• The spaces

V̂ k
0 =

î
û ∈ H1(Λk) : û|Λin

= 0
ï
, V̂ k =

î
û ∈ H1(Λk) : û|Λin

= ĉin
ï

;

28



The mathematical model for vascular tumour growth with angiogenesis

HΓk
i =

î
u ∈ H1/2(Γki ) : u = Eki ûi, û ∈ V̂ k

ï
,

V k =
î
u ∈ H1(Dk) : γki u ∈ HΓk

i , ∀i ∈ Y k
ï
,

Ṽ k
i =

î
u ∈ H1(Σk

i ) : u = Θk
i ûi, û ∈ V̂ k

ï
.

Now, let us consider the oxygen variables for the tissue and for the network, respectively
chosen as

c(t) ∈ V k and c̃(t) =
Ù
i∈Y k

c̃i(t), c̃i(t) ∈ Ṽ k
i . (3.1)

Furthermore, according to (2.41)-(2.42) we introduce the following variables

č(t) ∈ V̂ k such that γki c(t) = Eki či(t) (3.2)

and

ĉ(t) ∈ V̂ k such that c̃(t)(x) = Θk
i ĉi(t) ∀x ∈ Σk

i . (3.3)

It is finally possible to provide the variational formulation of the 3D-1D oxygen problem,
that reads as:
∀t ∈ Ik, f ind c(t) ∈ V k and ĉ(t) ∈ V̂ k such that

A
∂c

∂t
, η

B
L2(Dk)

+
1
Dc∇c,∇η

2
L2(Dk)

+
1
v · ∇c, η

2
L2(Dk)

+
1
Mcc, η

2
L2(Dk)

+

+
1
βextc c, η

2
L2(∂D)

+
Ø
i∈Y k

1
2πRβc(či − ĉi), η̌i

2
L2(Λk

i )

=
1
βextc cext, η

2
L2(∂D)

∀η ∈ V k : γki η = Eki η̌i, η̌ ∈ V̂ k
0

(3.4)

Ø
i∈Y k

CA
πR2∂ĉi

∂t
, η̂i

B
L2(Λk

i )

+
A
πR2D̃c

∂ĉi
∂s
,
∂η̂i
∂s

B
L2(Λk

i )

+

+
A
πR2v̂i

∂ĉi
∂s
, η̂i

B
L2(Λk

i )

+
1
2πRβc(ĉi − či), η̂i

2
L2(Λk

i )

D
= 0 ∀η̂ ∈ V̂ k

0 .

(3.5)

Then, the aim is to apply the domain decomposition strategy presented in [4], in which
two auxiliary variables are introduced at the interface to formally decouple the problems
related to the vascular network and the tissue dynamics.
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More specifically, these two variables are here denoted by ψ̂D(t) and ψ̂Σ(t) and they allow
us to reformulate the problems (3.4)-(3.5) in the following equivalent manner:

∀t ∈ Ik, f ind c(t) ∈ V k, ĉ(t) ∈ V̂ k
c , ψ̂D(t) ∈ V̂ k, ψ̂Σ(t) ∈ V̂ k such thatA

∂c

∂t
, η

B
L2(Dk)

+
1
Dc∇c,∇η

2
L2(Dk)

+
1
v · ∇c, η

2
L2(Dk)

+
1
Mcc, η

2
L2(Dk)

+

+
1
βextc c, η

2
L2(∂D)

+
Ø
i∈Y k

1
2πRβcči, η̌i

2
L2(Λk

i )
−
Ø
i∈Y k

1
2πRβcψ̂Σ

i , η̌i
2
L2(Λk

i )
=

=
1
βextc cext, η

2
L2(∂D)

∀η ∈ V k : γki η = Eki η̌i, η̌ ∈ V̂ k
0

(3.6)

Ø
i∈Y k

CA
πR2∂ĉi

∂t
, η̂i

B
L2(Λk

i )

+
A
πR2D̃c

∂ĉi
∂s
,
∂η̂i
∂s

B
L2(Λk

i )

+
A
πR2v̂i

∂ĉi
∂s
, η̂i

B
L2(Λk

i )

+
1
2πRβcĉi, η̂i

2
L2(Λk

i )
−
1
2πRβcψ̂Di , η̂i

2
L2(Λk

i )

D
= 0 ∀η̂ ∈ V̂ k

0 .

(3.7)

with interface conditions, ∀i ∈ Y ke
či(t) − ψ̂Di (t), µ̂i

f
V̂ k

0 ,V̂
k′

0

= 0 ∀µ̂i ∈ V̂ k′

0 , t ∈ Ik (3.8)

e
ĉi(t) − ψ̂Σ

i (t), µ̂i
f
V̂ k

0 ,V̂
k′

0

= 0 ∀µ̂i ∈ V̂ k′

0 , t ∈ Ik (3.9)

and with V̂ k′

0 being the dual space of the space V̂ k
0 .

The final step is to rewrite the original problem into a PDE-constrained optimization one
and, in this perspective, we introduce the cost functional

Jk
1
ψ̂D(t), ψ̂Σ(t)

2
= 1

2
Ø
i∈Y k

1
||či(t) − ψ̂Di (t)||2L2(Λk

i ) + ||ĉi(t) − ψ̂Σ
i (t)||2L2(Λk

i )

2
(3.10)

representing the error committed when we approximate ĉ(t) and č(t) by ψ̂Σ(t) and ψ̂D(t).
So, in conclusion, the variational formulation of (3.10) reads:
∀t ∈ Ik

min
ψ̂D(t),ψ̂Σ(t)∈V̂ k

Jk
1
ψ̂D(t), ψ̂Σ(t)

2
subject to (3.6) − (3.7) (3.11)

The VEGF problem

As previously mentioned, since there is no flux of VEGF through the vessel walls, the
problem is only formulated in a tridimensional framework and the interaction between
the chemotactic growth factor and the network is expressed through a singular sink term.
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For this reason, a 3D-1D coupling approach is unnecessary but we nevertheless provide the
variational formulation because it will be further adopted for the matrix discretization.
In particular, it reads as follows:

Find g(t) ∈ V k such that

A
∂g

∂t
, η

B
L2(Dk)

+
1
Dg∇g,∇η

2
L2(Dk)

+
1
v · ∇g, η

2
L2(Dk)

+
1
σg, η

2
L2(Dk)

+

+
Ø
i∈Y k

1
2πRσ̃ǧi, η̌i

2
L2(Λk

i )
=
1
fg, η

2
L2(Dk)

∀η ∈ V k : γki η = Eki η̌, η̌ ∈ H1(Λk)

g(0) = g0
(3.12)

where γki g(t) = Eki ǧi(t)

3.2 Problem discretization
As mentioned in Section 3.1, since the 3D-3D coupled formulation can be reduced into a
3D-1D one, we can extend the tridimensional domain Dk to the whole Ω and discretize
it with a tetrahedral mesh T . This mesh is independent from the vessel network Λk, on
which we assemble three different partitions: T̂ k, τkD and τkΣ, each one independent from
the others and from T . Such meshes could change at each time-step, but instead of re-
meshing the whole network at every single iteration, we incrementally add new elements
to the previous in order to ensure computational efficiency.
Moreover, to guarantee mesh uniformity, a minimum element size can be fixed.
Now we introduce some notation that will be useful for the matrix formulation, more
specifically, for the tridimensional quantities, we denote:

• the number of DOFs of the discrete approximation of c(t) inside Ω as N ,

• the linear Lagrangian basis function on Ω as)
φj
*N
j=1,

• the discrete approximations of c(t) as

C(t) =
NØ
j=1

Cj(t)φj .

For the mono-dimensional ones, instead, we denote

• the number of DOFs at time tk of the discrete approximation of ĉ(t) , ψ̂D and ψ̂Σ as
N̂k, N̂k

D and N̂k
Σ respectively,

• the linear Lagrangian basis function on T̂ k, τkD and τkΣ respectively as)
φ̂j
*N̂k

j=1,
)
θ̂Dj
*N̂k

D

j=1 and
)
θ̂Σ
j

*N̂k
Σ

j=1,
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• the discrete approximations of ĉ(t), ψ̂D(t) and ψ̂Σ(t) respectively as

Ĉ(t) =
N̂kØ
j=1

Ĉj(t)φ̂j , Ψ̂D(t) =
N̂k

DØ
j=1

Ψ̂D
j (t)θDj and ΨΣ(t) =

N̂k
ΣØ

j=1
ΨΣ
j (t)θΣ

j . (3.13)

With reference to the variational formulation of the oxygen problem presented in Section
3.1, let us consider the following matrices and vector definitions for the semi-discretization
in space:

Ak ∈ RN×N s.t. Akl,j =
Ú

Ω

1
Dc∇φj · ∇φl + (v · ∇φj)φl +mcφjφl

2
dω+

+
Ú
∂Ω
βextc φj|∂Ωφl|∂Ωdσ +

Ú
Λk

2πRβcφj|Λk
φl|Λk

ds,

Âk ∈ RN̂k×N̂k s.t. Âkl,j =
Ú

Λk

1
πR2D̃c

dφ̂j
ds

dφ̂l
ds

+ πR2v̂
dφ̂j
ds

φ̂l
2
ds+

+
Ú

Λk
2πRβcφ̂jφ̂lds,

M ∈ RN×N s.t. Ml,j =
Ú

Ω
φjφldω,

M̂k ∈ RN̂×N̂ s.t. M̂k
l,j =

Ú
Ω
πR2φ̂jφ̂lds,

D̂k
β ∈ RN̂×N̂k

D s.t. (D̂k
β)lj =

Ú
Λk

2πRβcφ̂lθDj ds,

Skβ ∈ RN̂×N̂k
Σ s.t. (Ŝkβ)lj =

Ú
Λk

2πRβcφ̂l|Λk
θΣ
j ds,

F ∈ RN s.t. Fl =
Ú
∂Ω
βextc φldσ.

On the other hand, for the time discretization we adopted the backward Euler method,
on a uniform partition of the time interval Ik with a step ∆t ≤ ∆Ik such that

tk,q = tk−1 + q∆t, q ≥ 0.

Summarizing, here follows the fully discretized version of the equations (3.6)-(3.7):
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

(M + ∆tAk)C(tk,q) − ∆tSkβΨΣ(tk,q) = MC(tk,q−1) + ∆tF

(M̂k + ∆tÂk)Ĉ(tk,q) − ∆tD̂k
βΨD(tk,q) = M̂kĈ(tk,q−1)

C(tk,0) =

C0 if k = 0

C(tk−1) if k > 0

Ĉ(tk,0) =

Ĉ0 if k = 0

Ĉ♯(tk−1) if k > 0

(3.14)

where Ĉ♯(tk−1) is the extension of Ĉ(tk−1) ∈ RN̂k−1 to RN̂k . In particular, Ĉ♯(tk−1) is a
vectors whose elements are null in correspondence of DOFs defined on Λk\Λk−1.
At this point, we just provided the discretization of the PDE-problem described in the
section above, but in the same section we also introduced the cost functional (3.10) that
allows us to recast the original problem into a PDE-constrained one. So, it is now necessary
to provide the discrete formulation of (3.10) and to this aim we have to build the following
matrices:

Gk ∈ RN×N s.t. Gk
l,j =

Ú
Λk
φj|Λk

φl|Λk
ds,

Ĝk ∈ RN̂k×N̂k s.t. Ĝk
l,j

Ú
Λk
φ̂jφ̂lds,

Dk ∈ RN×N̂k
D s.t. Dk

l,j =
Ú

Λk
φ̂l|Λk

θDj ds,

Ŝk ∈ RN×N̂k
Σ s.t. Ŝkl,j =

Ú
Λk
φ̂lθ

Σ
j ds,

Gk
D ∈ RN̂k

D×N̂k
D s.t. (Gk

D)l,j =
Ú

Λk
θDj θ

D
l ds,

Gk
Σ ∈ RN̂k

Σ×N̂k
Σ s.t. (Gk

Σ)l,j =
Ú

Λk
θΣ
j θ

Σ
l ds.

At this point, all the above definitions allow us to write the discrete formulation of the
cost functional at time tk,q:

J̃k,q =1
2
1
C(tk,q)TGkC(tk,q) − C(tk,q)TDkΨD(tk,q) − ΨT

D(tk,q)(Dk)TC(tk,q)+

+ ΨD(tk,q)TGk
DΨD(tk,q) + Ĉ(tk,q)T ĜkĈ(tk,q) − Ĉ(tk,q)T ŜkΨΣ(tk,q)+

− ΨΣ(tk,q)T (Ŝk)T Ĉ(tk,q) + ΨΣ(tk,q)TGk
ΣΨΣ(tk,q)

2
,

(3.15)
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then we can finally formulate the saddle-point system

Kk



C(tk)

Ĉ(tk,q)

ΨD(tk,q)

ΨΣ(tk,q)

−Π(tk,q)

−Π̂(tk,q)


=



0

0

0

0

MC(tk,q−1) + ∆tF

M̂Ĉ(tk,q−1)


(3.16)

that collects the first order optimality conditions for problem (3.15) constrained by (3.14)
and we can solve it at each time-step.
More specifically, matrix K is given by

Kk =



Gk 0 −Dk 0 (∆tAk + Mk)T 0

0 Ĝk 0 −Ŝk 0 (∆tÂk + M̂k)T

−(Dk)T 0 Gk
D 0 0 −∆t(Dk

β)T

0 −(Ŝk)T 0 Gk
Σ −∆t(Skβ)T 0

∆tAk + Mk 0 0 −∆tSkβ 0 0

0 ∆tÂk + M̂k −∆tDk
β 0 0 0


,

while Π(tk,q), Π̂(tk,q) are the vector of DOFs of Lagrange multipliers.
To conclude, as proved in [4], matrix K is non-singular and the unique solution of (3.16)
is equivalent to the solution of the optimization problem (3.11).

3.2.1 The VEGF discrete problem
Let us consider now the chemotactic growth factor problem, that is simpler than the
oxygen one since no VEGF flux across the vessel wall exists, so we do not have to resolve
any 3D-1D coupled problem.
Our aim is to build the finite element discretization for VEGF problem and we can obtain
it considering a tetrahedral mesh T on domain Ω and defining the linear Lagrangian basis
functions

)
φj
*NG

j=1 on such mesh.
In this way, the discrete approximation of the variable g(t) reads as

G(t) =
NGØ
j=1

Gk(t)φj ,

with NG being the number of degrees of freedom.
Now, we define the matrices:

34



The mathematical model for vascular tumour growth with angiogenesis

Bk ∈ RNG×NG s.t. Bk
l,j =

Ú
Ω
Dg∇φj · ∇φldω +

Ú
Ω

!
v · ∇φj

"
φldω,

+
Ú

Ω
σφjφldω +

Ú
Λk

2πRσ̃φj|Λk
φl|Λk

ds

H ∈ RNG×NG s.t. Hl,j =
Ú

Ω
φjφldω,

such that the semi-discretization in space reads as
H∂tG(t) + BkG(t) = 0 t ∈ Ik

G(0) = G0.
(3.17)

For time discretization, also in this case we choose to adopt the backward Euler scheme,
with a uniform partition of Ik such that ∆t ≤ ∆Ik and

tk,q = tk−1 + q∆t, q ≥ 0.

The following system is then solved at each time-step to obtain the required solution
(H + ∆tBk)G(tk,q) = HG(tk,q−1) k > 0

G(tk,0) =

G0 if k = 0

G(tk−1) if k > 0.

(3.18)

3.2.2 The capillary growth discretization and the virtual growth
Lastly, we provide the discretization of the growing capillary network starting from equa-
tion (2.64) and applying the forward Euler method on it.
The relation in (2.64) shows a dependence of the tip cell position from the vascular growth
factor, so once G(tk) is computed, xp is updated as follows

xp(tk+1) = xp(tk) + ∆tk+1w(G(tk),xp(tk)), ∀P ∈ Pk. (3.19)

Since the capillary network is represented by sets of connected segments in the 3D space,
the points xp(tk+1) and xp(tk) should be joined by a line.
In this work, differently from [3], we introduce the implementation of a so called “virtual
growth”. The distance between xp(tk+1) and xp(tk) could be very small, so it is not
convenient to update the position of the tip cells at each time step, because such distance
may be lower than the characteristic dimension of the single endothelial cell and this is
not coherent with the biological evidences.
Moreover, the virtual growth is also useful to reduce the dependence of the network
morphology from the time-step adopted to the Euler method, as we will show in the
following section.
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Figure 3.1: Representation of the virtual growth criterion functioning.

To be more precise, in Figure (3.1) we report a simplified representation of the virtual
growth functioning, showing the different morphologies obtained with and without its
implementation.
More specifically, at each time iteration we evaluate the quantity xp(tk+1) − xp(tk) and,
if it is lower than a threshold value le, which represents the characteristic dimension of
the single endothelial cell, we do not update the position of the current tip cell, but we
only keep track of it. In the following iteration, we evaluate again the distance between
the new (virtual) position and the last physical one, repeating the process until the value
le is reached. Only at this point, the position of the current tip cell xp(tk+1) is updated.
Furthermore, even if branching can occur also when the current tip cell belongs to a virtual
position, we do not allow the formation of two virtual sprouts, but we only keep track of
the fact that the network can undergo branching.
Finally, when we update the position of the current tip cell, we also let the the network
produce two sprouts considering the plane Π orthogonal to the last segment involved
by the virtual growth. We compute the orthogonal projection wΠ of w(G(tk),xp(tk)),
obtaining the branching directions w1 and w2, that allow to split equation (3.19) into

x(1)
p (tk+1) = xp(tk) + ∆tk+1w1, x(2)

p (tk+1) = xp(tk) + ∆tk+1w2. (3.20)

To conclude, once the new positions of the tip cells have been computed, we update the
network in the following manner

Λk+1 = Λk ∪
Û

P∈Pk;
i=1,2

è
x

(i)
P (tk+1), xP (tk)

é
(3.21)

gaining the fixed geometry on which all the other quantities will evolve for t ∈ Ik+1.
We also specify the fact that, even if we decided to implemented the virtual growth
criterion, many other different choice could have been introduced.
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Chapter 4

Numerical Simulations

4.1 The setting
In this section we provide some numerical simulations using the proposed approach.
To this aim, we consider a cubic domain with an edge length of L = 0.5 mm and we
denote it as Ω = [0, L].
Successively, we place a small initial vascular network with two inlets and two outlets
inside the above domain, as sown in the left panel of Figure (4.1). We suppose that the
blood vessel radius is fixed both in time and space and its value is set to R = 5 ·10−3 mm.

Figure 4.1: On the left, initial capillary network with two blood inlets (red) and two
outlets (blue). On the right, initial condition for VEGF problem in the default setting

Now, for what concerns the time discretization, we choose the same uniform time-stepping
both for the growth of the network and for the Euler backward method, in particular we
set ∆Ik = ∆t = 12 h.
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On the other hand, for the discretization of the spatial domain, we consider a tetrahedral
mesh in which the maximum size of each element is given by 5 · 10−6.
Regarding instead the parameters of pressure, oxygen, VEGF and network growth, they
are listed in Tables (4.1)-(4.3) and we will use them as a default setting.

Table 4.1: Default parameter for pressure.

Parameter Value Unit Description Reference

β0
p 2.78 · 10−10 mm2 · h

kg Hydraulic permeability of
healthy capillary wall

[6]

rβp 10 - Increase of wall permeability
for tumor-generated capillaries

[5]

∆ponc 4.32 · 107 kg
mm · h2 Oncotic pressure jump

at the capillary wall
-

βLSp
S

V
2.89 · 10−7 mm · h

kg Effective permeability
of the lymphatic vessels

[6]

k 1.0 · 10−12 mm2 Hydraulic permeability of the tissue [6]

µ 1.44 · 10−2 kg
mm · h Blood viscosity [6]

p̃in 6.26 · 107 kg
mm · h2 Inflow pressure -

p̃out 6.05 · 107 kg
mm · h2 Outflow pressure -

pLS 0 kg
mm · h2 Lymphatic system pressure -

pext 0 kg
mm · h2 External pressure -

βextp 1.4 · 10−8 mm2 · h
kg Boundary conductivity [6]

In particular, looking at Tables (4.1) and (4.2), we have introduced two parameters,
namely rβp and rβc , that allow us to describe the wall permeability increment that occurs
in the blood vessels generated during the angiogenesis process.
In this perspective, we define the pressure hydraulic permeability of the capillary wall as

βp(x) =


β0
p ∀x ∈ Λ0

rβpβ
0
p ∀x ∈ Λk\Λ0, ∀k = 0, . . . , K,

(4.1)

and the oxygen hydraulic permeability of the capillary wall as
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Table 4.2: Default parameter for oxygen.

Parameter Value Unit Description Reference

β0
c 12.6 mm

h Hydraulic permeability of
healthy capillary wall

[6]

rβc 10 - Increase of wall permeability
for tumor-generated capillaries

-

Dc 4.86 mm2

h Diffusivity, tissue [6]

mc 3.6 h−1 Decay/metabolization parameter -

D̃c 1.8 · 103 mm2

h Vascular diffusivity [6]

c̃in 1.64 · 108 kg
mm · h2 Inflow concentration -

cext 6.05 · 106 kg
mm · h2 External oxygen concentration [6]

βextc 36 mm
h Boundary permeability -

βc(x) =


β0
c ∀x ∈ Λ0

rβc β
0
c ∀x ∈ Λk\Λ0, ∀k = 0, . . . , K.

(4.2)

This mathematical expedient allows to take in consideration the fact that tumor-induced
vessels are much more leaky than the physiological ones. This happens as the adhesion
forces between the endothelial cells in pathological conditions are weaker and so the per-
meability of vessel walls to fluid and chemicals increases, as shown by biological evidences.
Furthermore, for what concerns the values listed in Table (4.3), biological experiments
show that the mean VEGF concentration in the tissue is about 20 ng/ml ([22]), while
endothelial cells migrate at a VEGF concentration of 50 ng/ml ([31]).
In this work, since we measure the mass in kg, the volume in mm3 and the time in h,
when we convert the above values to our units of measure, we obtain that the order of
magnitude of VEGF concentration is 10−14 kg/mm3.
In light of these considerations, we choose to work with

• glim = 2.5 · 10−14 kg
mm3 ,

• g = 4glim = 1 · 10−13 kg
mm3 (according to [25]).

Moreover, data inferred from biological experiments also show that the VEGF diffusion
coefficient ranges between 0.036 − 2.16 mm2/h, while its decay rate is in the order of
0.456 − 0.65 h−1 ([24]).
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Table 4.3: Default parameter for VEGF and network growth.

Parameter Value Unit Description Reference

Dg 0.18 mm2

h VEGF diffusivity -

rg 1 h−1 Rate of VEGF production
by the source

-

σ 0.5 h−1 VEGF interstitial decay -
σ̃ 0.7 h−1 Endothelial cell VEGF

consumption rate
-

glim 2.5 · 10−14 kg
mm3 Minimum VEGF concentration

for cell proliferation
[22], [31]

g 1.0 · 10−13 kg
mm3 VEGF concentration for

tc = 2τ cell proliferation
[25]

gbr 1.0 · 10−13 kg
mm3 VEGF concentration for Pbr = 1 -

τ 12 h Cell proliferation parameter [25]
le 0.04 mm Endothelial cell length [25]

αwbr 0.3 - Threshold of ||wΠ||
||w|| for branching -

dbr 1.0 · 10−2 mm Branching distance -
τbr 48 h Threshold age for branching -
dan 1.0 · 10−5 mm Maximum distance for anastomosis -
τan 24 h Maximum capillary age for anastomosis -

To conclude, we also suppose that only the cells belonging to the tumor-induced network
can bind VEGF and consume it. So we can define the VEGF consumption rate as

σ̃(x) =


0 ∀x ∈ Λ0

σ̃ ∀x ∈ Λk\Λ0, ∀k = 0, . . . , K.
(4.3)

Before carrying any simulation to understand the impact of the parameter on the whole
dynamics, we report the results for the default setting.
To this aim, Figure (4.2) shows, from the top to the bottom, the distributions of pressure,
oxygen and VEGF for the default parameters, while Figure and (4.3) gives a representation
of the trascapillary flux of fluid and oxygen.
Every quantity is reported at time t = 2, 7, 14 days.
In the first row of Figure (4.2), we can observe that the pressure in the interstitial tissue
is lower than the pressure in the blood vessels and it increases over the time: this means
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Figure 4.2: Simulation of angiogenesis in the default setting with parameters listed in
tables (4.1), (4.2) and (4.3). First row: pressure evolution at times t = 2, 7, 14 days.
Second row: oxygen evolution at times t = 2, 7, 14 days with isolines corresponding to 8
mmHg (cyan) and 15 mmHg (magenta). Third row: VEGF evolution at times t = 2, 7,
14 days.

that fluid moves from the vessels to the tissue, exhibiting an arterious behavior. This
trend is confirmed by the results reported in the first row of Figure (4.3), where we show
the trascapillary flux distribution.
More specifically, this value is computed taking in consideration the difference between
the pressure in the blood vessel and the interstitial fluid one. For this reason, since the
color scales show positive ranges, we conclude that the fluid flows from the vessels to the
interstitium.
For what concerns the oxygen, the corresponding results are shown in the second row
of Figure (4.2), in which we also report the isolines for c = 1.38 · 107 kg/(h2 · mm) ≈
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Figure 4.3: Simulation of angiogenesis in the default setting with parameters listed in
tables (4.1), (4.2) and (4.3). First row: pressure trascapillary flux at times t = 2, 7, 14
days. Second row: oxygen trascapillary flux at times t = 2, 7, 14 days.

8 mmHg (cyan) and for c = 2.60 · 107 kg/(h2 · mm) ≈ 15 mmHg (magenta). We remind
that, as reported in the previous sections, these thresholds stand for the pathological
and physiological hypoxia levels, respectively. Looking at the corresponding isolines, we
understand that, starting from an initial condition in which the tissue is highly hypoxic,
as the network grows the oxygen flows from the vessels to the interstitium, leading to an
increment of its value in the tridimensional domain.
Also in this case, looking at the second row of Figure (4.3), we can observe that the
distribution of the oxygen trascapillary flux has a positive range of values and, since it is
defined taking in consideration the difference between the value in the blood vessels and
in the tissue, we can confirm that the behavior of the oxygen is exactly the one described
above.
Finally, the third row of Figure (4.2) shows the VEGF evolution. In this case, differently
from the model presented in [3], we consider a source of VEGF that depends on the avail-
able oxygen such that the higher is the oxygen, the lower is VEGF production. Moreover,
such source is not concentrated on a single face of the domain, but it has initial spatial
distribution which is shown in the right panel of Figure (4.1).
We can observe that, even if the network grows, it does not reach the top of the spatial
domain but it seems to stabilize. In fact, looking at the maximum value of the VEGF
over time, we can see that it reduces and, at the same time, the minimum of the oxygen
increases.
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This means that as the oxygen increases, the tissue does not suffer for hypoxic conditions
and, consequently, the VEGF source is weaker. Moreover, since VEGF is a promoter of
endothelial cell proliferation, when it is low, cells are less induced to duplicate and so the
network has a limited growth.
In the following section we provide some experiments to show how the variation of the
parameters impacts on the final solution.

4.2 Numerical Simulations
In this section we carry some numerical simulations in order understand how the network
morphology and the dynamics of pressure and chemicals are influenced by the variation
of a single parameter. In particular, in the following we focus on the ones related to the
virtual growth of the network, the source of VEGF and the pressure.

4.2.1 The virtual growth
One of the main novelty with respect to the work presented in [3] is the implementation
of the virtual growth of the network.
We remind that, in this framework, the vessels are allowed to grow only if the distance
between two tip cells is greater than a threshold value.
Furthermore, the proliferation of the endothelial cells occurs at a characteristic time,
namely the cell division time, that depends on the available VEGF, as we can read in
Equation (2.66).
In addition, for the numerical resolution, we have to establish a time step for the Euler
method that we adopt for the semi-discretization in time.
In light of these considerations, to understand the impact that the implementation of
the virtual growth has on the final morphology, we run some simulations to compare the
outcomes for different Euler method time-step.
Furthermore, in order to efficiently discuss the behavior of the dynamics, we decide to
temporarily remove the dependence of the cell division time from the VEGF distribution.
More specifically, we set

tc(g) = 24 h ∀g(x, t),

such that each endothelial cell proliferates with the same characteristic time, indepen-
dently on its spatial location and on the available VEGF.
Now, we can finally analyse what happens when we consider different time-steps: we
are interested in understanding the differences that occur when the time-step is lower or
greater than the cell division time.
The results are shown in Figure (4.4), where we consider, on the left column, the outcomes
obtained without the implementation of the virtual growth while, on the right, the ones
for the virtual growth. For what concerns the values of the time-step, we consider ∆t =
6, 12, 48 h, whose corresponding results are reported from the top to the bottom of Figure
(4.4)
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Figure 4.4: Simulation of angiogenesis with a fixed value tc = 24 h. First column: results
without the implementation of the virtual growth criterion. Second column: results with
the implementation of the virtual growth criterion. First row: results for ∆t = 6 h.
Second row: results for ∆t = 12 h. Third row: results for ∆t = 48 h.

We can observe that for ∆t < tc (first and second rows), the networks obtained without
the implementation of the virtual growth (left panel) are much different from the ones
obtained thanks to the virtual growth (right panel), which are instead comparable.
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In fact, when the time-step is small and when the network is allowed to grow independently
from the distance between two consecutive tip cells, the vessels can extend at each iteration
of the method, even of a tiny segment. The results is that the morphology shows a
fluctuating pattern, while the virtual growth guarantees a smoother geometry.
On the contrary, the third row of Figure (4.4) shows the outcomes for ∆t > tc (∆t = 48)
and we can observe that the results are comparable, while the final morphology highly
depends on the chosen time step, when ∆t < tc.
Indeed, since the time-step is large, the endothelial cells can duplicate themselves at least
once, so it is plausible that the distance between the current tip cell and its position in
the previous iteration is at least equal, or even greater, than the endothelial cell length.
In this perspective, we expect that the implementation of the two growth criteria leads to
the same results, as we obtain in the third row of Figure (4.4).

4.2.2 The VEGF source
Another novelty with respect to the work [3] is the introduction of a VEGF source that
replaces the original Dirichlet boundary condition on the upper face of the domain, which
constituted the interface between the tissue and the tumor.
This change is useful for a preliminary analysis of the model presented in the second
part of this work, in which we introduce the tumor growth dynamics coupled with the
angiogenesis process. In the second part of this work, in fact, the VEGF source will be
constituted by the cells, which are dispersed in the spatial domain.
In this perspective, it is useful to understand what happens when we act on the parameters
that regulate the intensity and the shape of the source, moreover we also analyse the
response to the variation of the VEGF consumption rate.
Let us start from the initial VEGF distribution shown in the right panel of Figure (4.1)
and let us consider different values for the rate of VEGF production. As reported in
Figure (4.5), we can see that, as expected, the lower is the production intensity, the lower
is the growth of the network.
In particular, we can see that for rg = 0.5 the network has a limited growth and, in
addition, it does not undergo branching.
On the opposite side, for rg = 2, the network is enough stimulated to grow, such that it
reaches the top of the domain and the number of branching considerably increases.
Another parameter that has an important impact on the dynamics is the VEGF consump-
tion rate, as reported in Figure (4.6).
Let us start from σ̃ = 0, i.e. the network does not consume VEGF. In this framework
VEGF concentration can decrease for the sole effect of the self-degradation, so its value
remains high and the network can extend and produce a large number of branching.
It is also useful to observe that the structure of the resulting network is not spread over
the space: this is due to the fact that, since the vessels does not consume the growth
factor, it remains high in the proximity of tip cells, so they do not have to explore the
domain to find higher concentration of VEGF (chemotactic effects are not strong).
When we consider instead a high consumption rate, we can see that the network growth
is lower. In particular, taking for example σ̃ = 5, the value of VEGF in proximity of the
network is very low so it cannot grow neither undergo branching.
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Figure 4.5: Simulations of angiogenesis varying rg. First row: network morphology a time
T = 14 days. Second row: VEGF distribution at time T = 14 days. From the left to the
right, result for rg = 0.5, rg = 1 and rg = 2.

To conclude, we now provide an example with a different shape of the VEGF source.
In this perspective, let us consider a spherical initial distribution, placed in the middle of
the domain.
The corresponding results are reported in Figure (4.7), where the first column shows the
outcomes for rg = 1 and the second the ones for rg = 2. From the top to the bottom
of the figure, we report the initial condition, the final VEGF distribution and network
morphology for T = 14 days.
As we can observe, for rg = 1 the VEGF source is not strong enough to guarantee a
significant growth of the network but, despite this, we can see how the vessels try to point
toward the centre of the domain, where the VEGF concentration is higher.
Looking at rg = 2, instead, the VEGF source is stronger and the growth is more encour-
aged. Also in this case, the vessels initially point toward the centre of the domain and
then, as they start consuming VEGF, they enlarge.

4.2.3 The pressure problem
In this last section we provide some experiments to show how the fluid parameters impact
on the trascapillary flux.
In this perspective, to efficiently analyse the results, we look at significative quantities
that allow us to understand the behavior of the process at a macroscopic scale.
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Figure 4.6: Simulations of angiogenesis for different σ̃. First row: network morphology at
time T = 14 days. Second row: VEGF distribution at time T = 14 days. From the left
to the right, result for σ̃ = 0, σ̃ = 0.7 and σ̃ = 5.

Table 4.4: Pressure characteristic values for the default setting

Max p̌ Min p̌ Max p̂ Min p̂ Total pr.
flux

Max pr.
flux

Min pr.
flux

Network
length

Arterious
flux

20.1635 -0.9373 36.2500 35.0000 0.6038 0.1556 0.0131 5.8427 5.8427

In particular, we focus on the maximum and minimum pressure values in the interstitial
tissue at the final time of T = 14 days and, for what concerns the analysis of the trascap-
illary flux, we compute it taking in consideration the difference between the pressure in
the blood vessels and in the tissue, as mentioned in the previous section.
More specifically, we obtain it with the following expression:

fp(s, t) =


β0
p

!
p̂(s, t) − p̌(s, t)

"
∀x ∈ Λ0

rβpβ
0
p

!
p̂(s, t) − p̌(s, t)

"
∀x ∈ Λk\Λ0.

(4.4)

Furthermore, in order to evaluate the magnitude of the flux across the whole network, we
introduce the computation of the total trans-capillary flux and we defined it as follows:

Fp(s, t) =
Ú

Λ
fp(s, t)ds. (4.5)
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Figure 4.7: Simulations with different initial VEGF distribution. First row: VEGF initial
condition. Second row: final VEGF distribution at time T = 14 days. Third row: network
morphology at time T = 14 days. First column: results for rg = 1. Second column: results
for rg = 2.

Finally, to measure the extension of the whole network and which percentage of its length
is involved by an arterious flow, we introduce a function for the estimation of the total
network length and of the portion of the network in which the quantity introduced in
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(4.4) is greater than zero.
For what concerns the results of the simulations, Table (4.4) contains all the quantities
described above for the default setting, while Tables (4.5), (4.6), (4.7) and (4.8) report
the behavior of the pressure dynamics for the variation of the parameters rp, β0

p , βLSp
S

V
and k, respectively.

Table 4.5: Pressure values for different rβp

rβ
p Max p̌ Min p̌ Total pr.

flux
Max pr.

flux
Min pr.

flux
Network
length

Arterious
flux

1 2.9767 -0.1179 0.0959 0.0172 0.0157 5.8056 5.8056
10 20.1635 -0.9373 0.6038 0.1556 0.0131 5.8427 5.8427
50 48.1218 -2.2893 0.7678 0.6117 -0.2777 5.7083 5.0863
100 57.7989 -2.7159 -0.6933 0.9008 -0.9695 5.6950 2.2627

Table 4.6: Pressure values for different β0
p

β0
p Max p̌ Min p̌ Total pr.

flux
Max pr.

flux
Min pr.

flux
Network
length

Arterious
flux

1 · 10−7 2.6212 -0.1204 0.0801 0.0171 0.0017 5.8058 5.8058
0.5 · 10−6 11.5772 -0.5349 0.3566 0.0814 0.0075 5.8849 5.8849
1 · 10−6 20.1635 -0.9373 0.6038 0.1556 0.0131 5.8427 5.8427
5 · 10−6 48.1539 -2.2826 0.8094 0.6117 -0.2781 5.7079 5.0859
1 · 10−5 57.8132 -2.7076 -0.6292 0.9013 -0.9715 5.6942 2.1664

Let us consider Tables (4.5) and (4.6), which are both related to the variation of the
hydraulic permeability of the capillary wall. More specifically, Table (4.5) refers to the
variation of the increment of the permeability of the tumor-induced vessels, while Table
(4.6) is referred to the variation of the permeability of the healthy capillary wall.
Looking at the outcomes, we can observe that the larger is the permeability, the higher is
the pressure in the interstitial tissue.
Furthermore, as we can read in Table (4.4), the minimum value of vascular pressure is
p̂(s, t) = 35 mmHg, while the maximum is p̂(s, t) = 36.25 mmHg and these values does
not change when we let the above parameters vary.
When the permeability of the vessels is large, the maximum interstitial pressure is greater
than the one in the vasculature and so the fluid flow changes its directions, going from
the tissue to the vessels, showing a venous behaviour. This phenomenon is evident for
rp = 100, rp = 50, β0

p = 1 · 10−5 and β0
p = 5 · 10−6, which correspond to higher values of

the vessel wall permeability.
In particular, looking at the total network length and at the portion of network involved
by an arterious trans-capillary flux we observe that, as the permeability decreases, the
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portion of arterious network gets greater. For example, we can see that

• for rp = 100, only 40% of the whole network shows arterious flux and the total
pressure flux exhibits a negative value,

• for rp = 50, the arterious flux sensibly increases and the portion of network involved
by arterious flow reaches about the 90%,

• for rp = 10 and rp = 1, the arterious flux is restored on the whole network.

Similar considerations hold for the results reported in Table (4.6).

Table 4.7: Pressure values for different βLSp
S

V

βLS
p

S

V
Max p̌ Min p̌ Total pr.

flux
Max pr.

flux
Min pr.

flux
Network
length

Arterious
flux

0 50.7432 -0.1487 -0.0695 0.0897 -0.0723 5.7184 2.1735
0.1 30.2057 -0.1070 0.3814 0.1388 0.0098 5.7949 5.7949
0.5 20.1635 -0.9373 0.6038 0.1556 0.0131 5.8427 5.8427
1 16.6306 -1.3066 0.6731 0.1622 0.0140 5.8465 5.8465

Let us consider now the values listed in Table (4.7), in which we analyse the response of
the pressure dynamics when we act on the permeability of the lymphatic system.
As we can read in the first column of Table (4.7), when we do not consider the existence
of the lymphatic drainage, i.e. βLSp

S

V
= 0, the interstitial pressure is very high.

In fact, when the excess fluid is not absorbed by the lymphatic system, it exerts a high
pressure in the interstitium and it flows towards the vessels, showing again a venous
behavior.
As the lymphatic system permeability increases, the efficiency of the drainage improves
and the arterious flow is restored.

Table 4.8: Pressure values for different k
µ

k

µ
Max p̌ Min p̌ Total pr.

flux
Max pr.

flux
Min pr.

flux
Network
length

Arterious
flux

1 · 10−13 43.1397 -7.7557 0.4259 0.1622 -0.0294 5.8881 5.8607
0.5 · 10−12 27.4589 -2.2263 0.5495 0.1542 0.0116 5.8516 5.8516
1 · 10−12 20.1635 -0.9373 0.6038 0.1556 0.0131 5.8427 5.8427
5 · 10−12 8.8458 6.457 · 10−6 0.6944 0.1625 0.0151 5.7255 5.7255
1 · 10−11 6.0935 3.25 · 10−4 0.7224 0.1650 0.0156 5.7094 5.7094
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To conclude, we also report an analysis of the impact of the diffusivity coefficient. In
particular we focus on the hydraulic permeability of the tissue, as reported in Table (4.8).
In this framework, the dynamics shows an arterious flow for almost every value of k,
except for a very small portion of network involved by venous flux for k = 1 · 10−13 mm2.
The most important differences lie in the maximum and minimum values of interstitial
pressure. In fact, we can observe that the higher is the hydraulic permeability, the lower
is the difference between the maximum and the minimum interstitial pressure.
Moreover, for very low values of k, the minimum pressure assumes negative values, showing
a sort of “fluctuating” behavior. This confirms the impact of the diffusion coefficients on
the regularization of the dynamics.
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Tumor Growth
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Chapter 5

The mathematical model for
vascular tumor growth with
angiogenesis

5.1 The cell concentration model
In this section we introduce the tumor growth dynamics, that we want to couple with the
angiogenesis process described in the previous chapters.
In this perspective, the starting point is a vascularized tissue, treated as a mixture with
no distinction between healthy and cancer cells.
First of all, we obtain the governing law of the cells evolution, in order to add it to the
equations introduced for the angiogenesis process.
Similarly to [12], let us consider a tissue constituted by cancer cells, liquid and extracellular
matrix. In particular, we denote by ϕc, ϕℓ and ϕm the volumetric fraction of cell, liquid
and extracellular matrix phases, respectively.
The following equations for mass and momentum balance hold in the 3D-domain:

∂ϕi
∂t

+ ∇ · (ϕivi) = Γi i = {c, l,m}

ρ̂i

C
∂(ϕivi)
∂t

+ ∇ ·
!
ϕivi ⊗ vi

"D
= ∇ · T̃i + m̃i + ρ̂iΓivi.

(5.1)

In particular

• vi is the velocity of the ith phase,

• ρ̂i is the true volumetric mass density of the ith phase,

• T̃i is the partial stress-tensor of the ith phase,

• Γi represents the rate at which the ith phase exchanges mass with the other phases,
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• m̃i represents the rate at which the ith phase exchanges momentum with the other
phases.

5.1.1 Constitutive Assumptions and Modelling Simplifications
In this section, we focus on the momentum balance equations and, first of all, we look at
the partial stress tensor and at the momentum exchange rates.
In particular, for what concerns T̃i, in a saturated mixture it is given by the purely
hydrostatic contribution −ϕipI, that indicates the amount of pressure sustained by the
ith phase, and the effective stress-tensor Ti.
The term m̃i, instead, is constituted by the non-dissipative component p∇ϕi, and the
dissipative one m̃(d)

i . More specifically, we define

T̃i = −ϕipI + Ti and m̃i = m̃(d)
i + p∇ϕi. (5.2)

where p is the pressure of the interstitial fluid.
Let us focus now on m̃(d)

i , which is given by the sum of the following two terms:

m̃(d)
i = Gi + mi. (5.3)

The first one vanishes with the growth contribution, so we can write

Gi = −ρ̂iΓivi. (5.4)

The second one, instead, takes the following form

mi =
Ø
β /=i

miβ, (5.5)

where each term miβ represents the force acting on the ith phase due to the presence of the
βth phase. In this framework, we assume a viscous interaction between the constituents,
so that

miβ ∝ −ϕiϕβ(vi − vβ), (5.6)

while, for the action-reaction principle we have that

miβ = −mβi. (5.7)

Moreover, in the following we will work under the hypothesis that:

• since we consider the presence of blood vessels and lymphatic system, differently
from [12], the mixture is not closed with respect to the mass,

• we do not take into account any momentum exchange between the tissue and the
blood vessels,
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• the inertial forces are negligible in the momentum balance law for each phase, there-
fore the corresponding equations reads as

∇ · T̃i + m̃i + ρ̂iΓivi = 0, (5.8)

that, by simple calculations, reduces to

∇ · Ti − ϕi∇p+ mi = 0, (5.9)

• the extracellular matrix is rigid and inert, so

vm ≈ 0 and Γm ≈ 0, (5.10)

• the stress tensor of the liquid phase is negligible, so

∇ · Tℓ ≈ 0. (5.11)

We can now explicit the system of equations that govern the mixture dynamics:

ϕc + ϕℓ + ϕm = 1

∂ϕc
∂t

+ ∇ · (ϕcvc) = Γc

∂ϕℓ
∂t

+ ∇ · (ϕℓvℓ) = Γℓ

∂ϕm
∂t

= 0

− ϕc∇p+ ∇ · Tc + mcm + mcl = 0

− ϕℓ∇p+ mlm + mlc = 0.

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

In particular, the following definitions hold

mlc = −ϕℓϕcµ[K(ϕℓ)]−1(vℓ − vc), (5.18)

mlm = −ϕℓϕmµ[K(ϕℓ)]−1vℓ, (5.19)

mcl = −mlc, (5.20)

mcm = −[M(ϕc, ϕm)]−1vc, (5.21)

Tc = −Σ(ϕc)I, (5.22)

Σ(ϕc) = E
ϕc − ϕ0

ϕmax − ϕc
ϕc, (5.23)

where µ is the viscosity of the extracellular fluid, K(ϕℓ) is the permeability tensor,
M(ϕc, ϕm) is the motility tensor and E is the Young modulus.
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Finally, we introduce two more assumptions coming from the dimensional analysis of the
momentum balance equations that, as shown in [12], allows to identify which are the
dominant contributions in the correspondent laws:

• vc
vℓ

<< 1 =⇒ mcl ≈ ϕcϕℓµ
#
K(ϕℓ)

$−1vℓ

• ∆p
E

<< 1 =⇒ mcl << mcm,

where ∆p is the scaling factor of the pressure variable and it represents the gap
between the arterial and the lymphatic system pressure.
This assumption implies that the interaction between the cells and the liquid phase
is negligible with respect to the interaction between the cells and the extracellular
matrix.

In light of these considerations, Equation (5.16) for the momentum balance equations of
the cells phase reduces to

∇ · Tc + mcm = 0. (5.24)

Moreover, substituting all the above definitions, Equation (5.17) for the momentum bal-
ance of the liquid phase becomes

−ϕℓ∇p− ϕℓϕmµ[K(ϕℓ)]−1vℓ − ϕcϕℓµ[K(ϕℓ)]−1vℓ = 0. (5.25)

By simple calculations, from (5.25) we obtain the expression for the fluid phase vℓ, so
that the system of equations for the momentum balance laws reads as

∇ · (−Σ(ϕc)I) −
#
M(ϕc, ϕm)

$−1vc = 0

vℓ = − 1
1 − ϕℓ

K(ϕℓ)
µ

∇p,

(5.26)

(5.27)

with ϕc + ϕℓ = ϕmax < 1.
Now, starting from Equation (5.26) it is possible to compute the cells velocity, that as-
sumes the following expression:

vc = −M(ϕc, ϕm)Σ′(ϕc)∇ϕc. (5.28)

5.1.2 The mass balance equations
Let us focus now on the mass balance equations.
Substituting the expression (5.28) into (5.13), the mass balance equation for the cells
phase is

∂ϕc
∂t

− ∇ ·
1
ϕcM(ϕc, ϕm)Σ′(ϕc)∇ϕc

2
= Γc. (5.29)

Similarly, starting from Equation (5.14) and replacing the liquid phase velocity with its
expanded form given by (5.27), the mass balance equation for the liquid phase reads as
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∂ϕℓ
∂t

− ∇ ·
A

ϕℓ
1 − ϕℓ

K(ϕℓ)
µ

∇p
B

= Γℓ. (5.30)

At this point, it is convenient to define the structure of the mass exchange rates Γc and
Γℓ, also recalling that we previously assumed Γm ≈ 0.
Let us consider that, in the formulation of Γc, we do not take into account the natural
decay (apoptosis) of the cells but only their proliferation.
Therefore, since cells can grow according to the available nutrients and the presence of
other cells, we define

Γc = ϕcSc(ϕc, c), (5.31)

with

Sc(ϕc, c) = γ(ϕmax − ϕc)(c− cref )+. (5.32)

Here, γ is the cell duplication rate and cref is the minimum oxygen concentration over
which cells can proliferate.
For what concerns Γℓ, we must take into account the fact that the cells and the lymphatic
system both absorb liquid, which is also exchanged with the vasculature.
For these reasons we can write the exchange rate Γℓ as

Γℓ = −ϕcSc(c, ϕc) − ϕℓβ
LS
p

S

V
(p− pLS) +

Ø
i∈Y k

f̂ ipδΛk
i
. (5.33)

Now it is useful to provide a specification about the flux across the vessel walls represented
by the third term on the r.h.s of (5.33), which must be considered from the vessels to the
tissue. Moreover, this is also useful to understand the derivation of the trascapillary flux
variables already introduced in the fist part of this work, in particular through Equations
(2.16) and (2.43).

Figure 5.1: Flux direction

Let us suppose to work in the 3D-3D framework so, looking at Figure (5.1), we can define
the trans-capillary flux as

Q = Qout −Qin, (5.34)
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where the quantities

Qout = βp
1
pλ − p− σ∆ponc

2
+

(5.35)

and
Qin = ϕℓβp

1
p+ σ∆ponc − pλ

2
+

(5.36)

are the outgoing and the incoming fluxes, respectively.
Moreover, p is the interstitial pressure and pλ is the tridimensional pressure inside the
blood vessels and we set σ = 1.
We also observe that we assume to neglect to positive part in order to avoid non-linearities
in the resolution of the corresponding 3D-1D numerical method.
In light of this, when we come back to the 3D-1D scenario, the term f ip reads as

f ip = 2πRβp[(p̂i − p̌i − ∆ponc) − ϕ̌ℓ(p̌i − p̂i + ∆ponc)], (5.37)

where p̂i and p̌i are the same quantities defined in Equations (2.14) and (2.15), while ϕ̌ℓ
is the trace of ϕℓ on the lateral surface of the vessels.
Now, taking into account all the above considerations, we can write the mass balance
equations in the tridimensional domain:



∂ϕc
∂t

− ∇ ·
!
ϕcM(ϕc, ϕm)Σ′(ϕc)∇ϕc

"
= ϕcSc(ϕc, c),

∂ϕℓ
∂t

− ∇ ·
A

ϕℓ
1 − ϕℓ

K(ϕℓ)
µ

∇p
B

= −ϕcSc(c, ϕc) − ϕℓβ
LS
p

S

V
(p− pLS)+

+
Ø
i∈Y k

2πRβp(1 + ϕ̌ℓ)(p̂i − p̌i − ∆ponc)δΛk
i
,

ϕc + ϕℓ = ϕmax.

(5.38)

(5.39)

(5.40)

We also observe that, since the first equation to be solved is (5.38), exploiting (5.40) we
have that

ϕℓ = ϕmax − ϕc =⇒ ∂ϕℓ
∂t

= −∂ϕc
∂t

(5.41)

and (5.39) reduces to an equation for the interstitial pressure.

5.2 The nutrients problem
In the above sections we introduced the tumor growth dynamics and, to this aim, we
adopted a multiphase model that allowed us to obtain the equations for the cells dynamics
and the pressure in the tridimensional domain.
Now we want to restore also the chemicals dynamics that, as shown in the previous
chapters, have a pivotal role in the angiogenesis process.
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We assume that oxygen and VEGF are dissolved in the liquid phase, so it is necessary
to reformulate the corresponding equations considering that ϕℓ occupies only a portion of
the domain Ω.
In this perspective, let us focus on the generic chemical ci(x, t), whose evolution is regu-
lated by

∂
!
ϕℓci

"
∂t

+ ∇ ·
1
ϕℓcivℓ

2
= ∇ ·

1
ϕℓD∇cn

2
+ Γℓci + Si (5.42)

where vℓ is nothing but (5.27) and Si is a source of substances not related to liquid
production or absorption.
Expanding the derivatives and recalling the mass balance equation for the liquid phase,
Equation (5.42) reduces to

ϕℓ
∂ci
∂t

+ ϕℓvℓ · ∇ci = ∇ ·
!
ϕℓD∇cn

"
+ Si. (5.43)

This structure can be adopted to provide the governing laws for the evolution of oxy-
gen and VEGF in the tissue. In particular, if we consider the oxygen dynamics in the
tridimensional sample we can write

ϕℓ
∂c

∂t
− ∇ ·

1
ϕℓDc∇c

2
+
A

ϕℓ
1 − ϕℓ

K(ϕℓ)
µ

∇p
B

∇c+ ϕℓmcc+

−
Ø
i∈Y k

2πRβc
!
1 + ϕ̌ℓ

"!
ĉ− č

"
δΛk

i
= 0.

(5.44)

To be more precise, mc is related to oxygen metabolization and it is equivalent to (2.40),
while

f̂ ic := −2πRβc
!
1 + ϕ̌ℓ

"!
ĉ− č

"
(5.45)

is the trans-capillary flux contribution, whose definition is totally comparable to (5.37).
Analogously, for what concerns the VEGF evolution we can write the following equation

ϕℓ
∂g

∂t
− ∇ ·

1
ϕℓDg∇g

2
+
A

ϕℓ
1 − ϕℓ

K(ϕℓ)
µ

∇p
B

∇g + ϕℓσg+

+
Ø
i∈Y k

2πRσ̃ϕ̌ℓǧδΛk
i

= rgϕcfV EGF (c),

(5.46)

where all the definitions given in the previous chapters still hold, with the only difference
that the source of VEGF now is not defined by an arbitrary function but it corresponds
to the cells distribution.
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5.3 The tumor growth model
Now we can finally collect all the equations defined above and provide the system that
describes both the angiogenesis and the tumor growth dynamics.

∂ϕc
∂t

− ∇ ·
1
Fc(ϕc)∇ϕc

2
+ Sc(ϕc, c)ϕc = 0 (5.47)

ϕℓ = ϕmax − ϕc (5.48)

− ∇ ·
A

ϕℓ
1 − ϕℓ

K(ϕℓ)
µ

∇p
B

+ ϕℓβ
LS
p

S

V

!
p− pLS

"
+

−
Ø
i∈Y k

2πRβp
!
1 + ϕ̌ℓ

"!
p̂− p̌− ∆ponc

"
δΛk

i
= −∂ϕℓ

∂t
+ Sc(ϕc, c)ϕc

(5.49)

− ∂

∂s

A
πR4

8µ
∂p̂

∂s

B
+
Ø
i∈Y k

2πRβp
!
1 + ϕ̌ℓ

"!
p̂− p̌− ∆ponc

"
δΛk

i
= 0 (5.50)

ϕℓ
∂c

∂t
− ∇ ·

1
ϕℓDc∇c

2
+
A

ϕℓ
1 − ϕℓ

K(ϕℓ)
µ

∇p
B

∇c+ ϕℓmcc+

−
Ø
i∈Y k

2πRβc
!
1 + ϕ̌ℓ

"!
ĉ− č

"
δΛk

i
= 0

(5.51)

πR2∂ĉ

∂t
− ∂

∂s

A
πR2D̃c

∂ĉ

∂s

B
+
A
πR4

8µ
∂p̂

∂s

B
∂ĉ

∂s
+
Ø
i∈Y k

2πRβc
!
1 + ϕ̌ℓ

"!
ĉ− č

"
δΛk

i
= 0 (5.52)

ϕℓ
∂g

∂t
− ∇ ·

1
ϕℓDg∇g

2
+
A

ϕℓ
1 − ϕℓ

K(ϕℓ)
µ

∇p
B

∇g + ϕℓσg +
Ø
i∈Y k

2πRσ̃ϕ̌ℓǧδΛk
i

=

= rgϕcfV EGF (c).
(5.53)

In order to to simplify the notation, we do not report explicitly the independent variables,
but each physical quantity must be considered as a function of space x and time t.
Moreover, the functions Fc(ϕc) and Sc(ϕc, c) are defined as follows

Fc(ϕc) = MϕcΣ′(ϕc), (5.54)

Sc(ϕc, c) = −γ(ϕmax − ϕc)(c− cref )+, (5.55)

where we assume that the motility tensor M(ϕc, ϕm) is isotropic and so, it is proportional
to M through the identity I. In addition, we define
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Σ(ϕc) = Eϕc
ϕc − ϕ0

ϕmax − ϕc
(5.56)

and

Σ′(ϕc) = 2Eϕcϕmax − Eϕ2
c − Eϕ0ϕmax

(ϕc − ϕmax)2 . (5.57)

For what concerns the initial and boundary conditions of pressure, oxygen and VEGF
problems, they are the same reported in the first part of this work.
More specifically, in order to avoid repetitions, we refer to Equations (2.23)-(2.27) for the
initial and boundary conditions of the pressure problem, (2.46)-(2.53) for the oxygen ones
and (2.55)-(2.57) for the VEGF ones.
In particular, as in the previous part, the initial conditions of pressure, oxygen and VEGF
are obtained solving the correspondent problems in steady state conditions.
Now, the main novelty is the introduction of the cells dynamics.
Since we suppose that cells cannot enter the vasculature, we do not need any interface
conditions that model the trans-capillary flux of the cells.
We only have to establish the behaviour of the external boundary of the spatial domain and
its initial condition: in this perspective we impose a homogeneous Neumann’s boundary
conditions on the external boundary while for the initial condition we set an arbitrary
distribution. In mathematical terms, this can be written as

∇ϕc(x, t) · n(x) = 0 x ∈ ∂D, (5.58)

ϕc(x,0) = ϕinitc (x) x ∈ D. (5.59)
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Chapter 6

Numerical Method

In this section we provide the numerical method that allows us to obtain the solution of
the tumor growth problem.
To this aim, it is worth to note that the same methods presented in Section (3.1) are still
applicable to the angiogenic cascade.
More specifically, pressure, oxygen, VEGF and network growth model can be solved with
the same techniques introduced in the first part of this work.
Nevertheless, it is worth to note that the coefficients of the PDE problems involve now
many non-linear terms and so we must introduce suitable quadrature rules.
Let us focus now on the main novelty with respect to the previous part of this work: the
introduction of the variable ϕc and its corresponding governing law, which is given by:

∂ϕc
∂t

− ∇ ·
1
Fc(ϕc)∇ϕc

2
+ Sc(ϕc, c)ϕc = 0, (6.1)

where the functions Fc(ϕc) and Sc(ϕc, c) are defined by (5.54) and (5.55), respectively.
Furthermore, Equation (6.1) is defined only in the tridimensional domain, since we assume
that cells cannot enter the vasculature.
Consequently, we do not have to introduce any mathematical description of cells behav-
ior inside the one-dimensional domain: in this perspective, no 3D-1D coupling model is
necessary to obtain the solution ϕc and, to achieve our purpose, we adopt a finite ele-
ment discretization with a backward Euler’s method for the semi-discretization in time.
Moreover, since we obtain a non-linear problem, we introduce the Newton’s method for
its resolution.

6.1 The Newton’s method
In this section we show how to implement the Newton’s method in our specific problem.
Our starting point is

∂ϕc
∂t

− ∇ ·
1
Fc(ϕc)∇ϕc

2
+ Sc(ϕc, c)ϕc = 0 (6.2)
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and we provide its time discretization, introducing the following notation

ε := ϕk+1
c (6.3)

ε0 := ϕkc (6.4)

to indicate the approximation of the solution at time k + 1 and k, respectively.
We employ the Backward Euler’s scheme that, thanks to definitions (6.3) and (6.4), can
be written as

ε− ε0

∆t − ∇ ·
1
Fc(ε)∇ε

2
+ Sc(ε, ck)ε = 0. (6.5)

Here, if we take the approximation of the oxygen at time k + 1, we would get a non-
linearity in the corresponding 3D-1D optimization problem, since the dependence from ϕc
contained in its equation should be resolved with a non-linear Newton’s method. In this
framework, for the sake of simplicity, we decide to consider the oxygen at time-step k in
order to treat it as a known term.
Now, we also have to provide the spatial discretization of the problem, so we exploit the
tetrahedral mesh T of the the domain Ω and the linear Lagrangian basis functions)

φj
*N
j=1

that we have already defined in section (3.2).
These allows us to write ∀i ∈ {1, . . . , N}

Gi(ε) :=
Ú

Ω

ε− ε0

∆t φidω +
Ú

Ω
Fc(ε)∇ε · ∇φidω +

Ú
Ω
Sc(ε, ck)εφidω (6.6)

where Gi(ε) is the generic component of the non-linear system

G(ε) = 0 (6.7)

that we want to solve with the Newton’s method, being

G(ε) =

G1(ε)
...

GN (ε)

 . (6.8)

In order to apply this method, the first step is to linearize the system thanks to the Taylor
expansion series, obtaining

G(ε(n+1)) = G(ε(n)) + J(ε(n))
!
ε(n+1) − ε(n)"+O

!
(ε(n))2". (6.9)

In particular, recalling that the Newton’s method is an iterative technique, ε(n+1) is the
approximation of the solution we are looking for at the (n+ 1)th iteration of the method,
ε(n) is its approximation at the nth iteration and J(ε(n)) is the Jacobian matrix of G(ε(n)).
In light of this, the relation (6.9) allows us to write

G(ε(n+1)) ≈ G(ε(n)) + J(ε(n))(ε(n+1) − ε(n)) = 0, (6.10)
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that reduces to
J
!
ε(n)"(ε(n+1) − ε(n)) = −G(ε(n)). (6.11)

This way, at each iteration of the method we have to solve a linear system to get ε(n+1)

and we set suitable stopping criteria to arrest it.
At the end of the iterations, under proper convergence hypotheses, we obtain the solution
of the problem ε, i.e. ε(n) → ε.
Now, since ε and ε0 are variables defined in the tridimensional domain, their spatial
discretizations are given by

ε =
NØ
j=1

εjφj (6.12)

ε0 =
NØ
j=1

ε0,jφj . (6.13)

Substituting them inside (6.6) we obtain

Gi(ε) =
Ú

Ω

qN
j=1 εjφj −

qN
j=1 ε0,jφj

∆t φidω +
Ú

Ω
Fc(ε)∇

1 NØ
j=1

εjφj
2

· ∇φidω+

+
Ú

Ω
Sc(ε, ck)

1 NØ
j=1

εjφj
2
φidω.

(6.14)

Now, we can rewrite the first term of (6.14) as

1
∆t

Ú
Ω

C
NØ
j=1

εjφj −
NØ
j=1

ε0,jφj

D
φidω = 1

∆t

NØ
j=1

εj

Ú
Ω
φjφidω − 1

∆t

NØ
j=1

ε0,j

Ú
Ω
φjφidω

(6.15)

the second as

Ú
Ω
Fc(ε)∇

1 NØ
j=1

εjφj
2

· ∇φidω =
NØ
j=1

εj

Ú
Ω
Fc(ε)∇φj · ∇φidω. (6.16)

and the third as

Ú
Ω
Sc(ε, ck)

1 NØ
j=1

εjφj
2
φidω =

NØ
j=1

εj

Ú
Ω
Sc(ε, ck)φjφidω. (6.17)

Now it is useful to compute also the Jacobian matrix of G(ε), whose generic component
is

Jil(ε) = ∂Gi(ε)
∂εl

. (6.18)
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By simple calculations, its first term is given by

∂

∂εl

Ú
Ω

qN
j=1 εjφj −

qN
j=1 ε0,jφj

∆t φidω = 1
∆t

Ú
Ω

1 NØ
j=1

∂εj
∂εl

φj
2
φidω = 1

∆t

Ú
Ω
φlφidω,

(6.19)
the second by

∂

∂εl

Ú
Ω
Fc(ε)∇

1 NØ
j=1

εjφj
2

· ∇φidω =

=
Ú

Ω

∂Fc(ε)
∂ε

∂ε

∂εl
∇
1 NØ
j=1

εjφj
2

· ∇φidω +
Ú

Ω
Fc(ε)

∂

∂εl

1 NØ
j=1

εj∇φj
2

· ∇φidω =

=
Ú

Ω
F ′
c(ε)∇εφl · ∇φidω +

Ú
Ω
Fc(ε)∇φl · ∇φidω

(6.20)

and the third by

∂

∂εl

Ú
Ω
Sc(ε, ck)

1 NØ
j=1

εjφj
2
φidω =

=
Ú

Ω

∂Sc(ε, ck)
∂εl

∂ε

∂εl

1 NØ
j=1

εjφj
2
φidω +

Ú
Ω
Sc(ε, ck)

∂

∂εl

1 NØ
j=1

εjφj
2
φidω =

=
Ú

Ω
S′
c(ε, ck)εφlφidω +

Ú
Ω
Sc(ε, ck)φlφidω.

(6.21)

In particular, we exploit the following properties

∂ε

∂εl
= ∂

∂εl

1 NØ
j=1

εjφj
2

=
NØ
j=1

δl,jφj = φl,

∂

∂εl

1
∇
1 NØ
j=1

εjφj
22

= ∇
1 NØ
j=1

∂

∂εl
εjφj

2
=

NØ
j=1

δl,j∇φj = ∇φl.

(6.22)

Now, since we have obtained the expressions for Gi(ε) and Jil(ε) without taking into
account that the variable ε should be considered as the approximation of the solution at
the nth iteration of the method, we finally introduce

ε(n) =
NØ
j=1

ε
(n)
j φj , (6.23)

i.e. the discretization of the approximation of the solution at the nth iteration of the
method.
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So, in light of all the above considerations, we can substitute (6.13) and (6.23) inside all
the proposed calculations and then we obtain

Gi(ε(n)) = 1
∆t

NØ
j=1

ε
(n)
j

Ú
Ω
φjφidω − 1

∆t

NØ
j=1

ε0,j

Ú
Ω
φjφidω+

+
NØ
j=1

ε
(n)
j

Ú
Ω
Fc(ε(n))∇φj · ∇φidω +

NØ
j=1

ε
(n)
j

Ú
Ω
Sc(ε(n), ck)φjφidω,

(6.24)

Jil(ε(n)) = 1
∆t

Ú
Ω
φlφidω +

Ú
Ω
F ′
c(ε(n))∇εφl · ∇φidω +

Ú
Ω
Fc(ε(n))∇φl · ∇φidω+

+
Ú

Ω
S′
c(ε(n), ck)εφlφidω +

Ú
Ω
Sc(ε(n), ck)φlφidω.

(6.25)

6.2 Matrix formulation
Now it is useful to show how the discrete formulation of the method presented in the
section above is implemented.
We take into account the fact that we solve the following system

J
!
ε(n)"(ε(n+1) − ε(n)) = −G(ε(n)), (6.26)

where the variables ε(n) and ε(n+1) stand for the approximation of the solution ε at the
nth and (n+ 1)th iteration of the Newton’s method, respectively.
First of all, we have to provide the discretization of the Jacobian matrix J

!
ε(n)", whose

definition is given by (6.25).
To achieve this purpose, we introduce the following matrices

A(ε(n)) ∈ RN×N s.t. Ai,l(ε(n)) =
Ú

Ω
Fc(ε(n))∇φl · ∇φidω

Ȧ(ε(n)) ∈ RN×N s.t. Ȧi,l(ε(n)) =
Ú

Ω
F ′
c(ε(n))∇ε(n)φl · ∇φidω

M(ε(n)) ∈ RN×N s.t. Mi,l(ε(n)) =
Ú

Ω
Sc(ε(n), ck)φlφidω

Ṁ(ε(n)) ∈ RN×N s.t. Ṁi,l(ε(n)) =
Ú

Ω
S′
c(ε(n), ck)ε(n)φlφidω

B ∈ RN×N s.t. Bi,l = 1
∆t

Ú
Ω
φlφidω.

(6.27)

Substituting in (6.25) the definitions suggested in (6.27), the discrete formulation of the
Jacobian matrix at the nth iteration is given by

J(ε(n)) = B + A(ε(n)) + Ȧ(ε(n)) + M(ε(n)) + Ṁ(ε(n)). (6.28)
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Furthermore, we also need to provide the discretization of the term G(ε(n)): in this
perspective, we firstly introduce the definitions (6.27) inside the Equations (6.24).
To be more precise, looking at the first and second addends in (6.24) we get

1
∆t

NØ
j=1

ε
(n)
j

Ú
Ω
φjφidω − 1

∆t

NØ
j=1

ε0,j

Ú
Ω
φjφidω =

NØ
j=1

ε
(n)
j Bi,j −

NØ
j=1

ε0,jBi,j . (6.29)

For what concerns the third, instead, we obtain

Ú
Ω
Fc(ε(n))∇

1 NØ
j=1

ε
(n)
j φj

2
· ∇φidω =

NØ
j=1

ε
(n)
j

Ú
Ω
Fc(ε(n))∇φj · ∇φidω =

NØ
j=1

ε
(n)
j Ai,j(ε(n))

(6.30)
and the last term in (6.24) can be rewritten as

Ú
Ω
Sc(ε(n), ck)

1 NØ
j=1

ε
(n)
j φj

2
φidω =

NØ
j=1

ε
(n)
j

Ú
Ω
Sc(ε(n), ck)φjφidω =

NØ
j=1

ε
(n)
j Mi,j(ε(n)).

(6.31)
We can finally assemble all the above calculations, in order to provide the component-wise
matrix formulation of (6.6)

Gi(ε(n)) =
NØ
j=1

ε
(n)
j Bi,j −

NØ
j=1

ε0,jBi,j +
NØ
j=1

ε
(n)
j Ai,j(ε(n)) +

NØ
j=1

ε
(n)
j Mi,j(ε(n)), (6.32)

that, more compactly, reads as

G
!
ε(n)" = Bε(n) − Bε0 + A(ε(n))ε(n) + M(ε(n))ε(n), (6.33)

To recapitulate, for the resolution of the system (6.11) we provide the discretization of
the matrix J(ε(n)) and of the term G(ε(n)).
Such discrete formulations are given by

J(ε(n)) = J̃(ε(n)) + B (6.34)

G
!
ε(n)" = G̃ε(n) − Bε0, (6.35)

being

J̃(ε(n)) := A(ε(n)) + Ȧ(ε(n)) + M(ε(n)) + Ṁ(ε(n)) (6.36)

G̃ε(n) := Bε(n) + A(ε(n))ε(n) + M(ε(n))ε(n). (6.37)
In particular, as we can observe, the coefficients of the integrand functions figuring in
(6.27) are not linear, so it is necessary to introduce suitable quadrature rules in order to
gain their approximation.
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Chapter 7

Numerical Simulations

7.1 The setting
In this section we provide some numerical results in order to understand the behavior of
the dynamics of the system when we take in consideration the presence of a cancer cell
population.
As we did in Chapter 4, we consider a cubic domain Ω = [0, L] in which we place a
small initial vascular network with two inlets and two outlets, whose radius is set to
R = 5 · 10−3 mm.
Nevertheless, differently from the previous case, the domain edge length is now given by
L = 2.5 mm, while for the spatial discretization we consider a tetrahedral mesh in which
the maximum element size, which is close to the dimension at which tumours start to
activate angiogenesis, is 5 · 10−4 mm
Moreover, regarding the time discretization, we consider again the same uniform time-
stepping both for the growth of the network and for the Euler backward method, but this
time we set ∆Ik = ∆t = 6 h, while the final time is T = 50 days.
For what concerns the parameters of the models, the ones related to pressure, oxygen,
VEGF and network growth dynamics are almost the same listed in Tables (4.1)-(4.3).
However, in this novel setting, in which we consider also the tumor growth dynamics, we
have to adjust some of the values introduced in the first part of this work in order to
obtain results that are more consistent with biological observations.
In this perspective, Table (7.1) collects all the parameters which are different from the
ones introduces in the first part and, in addition, we also report the parameters related
to the cell governing equation.
Another difference with respect to the first part of this work stands in the branching
probability parameters.

Pbr =


1

1 + exp
!

− a(g − bgbr)
" g < gbr

1 otherwise,
(7.1)

In Equation (7.1), we remind the formulation of the probability function and now we
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Table 7.1: List of parameters with different values with respect to the first part of this
work and new parameters related to the tumor growth dynamics.

Parameter Value Unit Description References
k 1.0 · 10−11 mm2 Hydraulic permeability of the tissue [6]
mc 0.36 h−1 Decay/metabolization parameter -

cext 1.4 · 107 kg
mm · h2 External oxygen concentration [6]

rg 0.5 h−1 Rate of VEGF production
by the source

-

gbr 2.0 · 10−13 kg
mm3 VEGF concentration for Pbr = 1 -

dbr 4.0 · 10−2 mm Branching distance -

M 1.4 · 10−10 mm3 · h
h Motility of the cells [13]

E 5.2 · 107 kg
mm · h2 Young modulus [13]

cref 1.4 · 107 kg
mm · h2 Necrotic threshold -

γ 1/48 h−1 Cells duplication rate -
ϕmax 1 -
ϕ0 0.5 -

set different values for the parameters a = 5 mm3/kg, which regulates the slope of the
function, and b = 3/4 which acts on the position of the inflection point.

We provide the representation of the probability function in Figure (7.1).

We also have to observe that, in this novel setting, in which we also take into account
cancer cells evolution, we assume to work with a different value of gbr. In particular, here
we set gbr = 2.0 · 10−13 kg/mm3 because, as we will show in the numerical experiments
reported in the following section, the VEGF concentration in the tissue is always greater
than 1 · 10−13 kg/mm3.

In this perspective, if we adopt the same branching parameters of the previous part of
this work, we would obtain an excessive network development, since tip cells would be
allowed to proliferate unconditionally because of the high amount of available VEGF.

Thanks to this novel combination of parameters, we can shift the threshold for the max-
imum branching probability in correspondence to higher values of VEGF concentration,
so we can obtain a more organized network morphology.
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Figure 7.1: Branching probability for gbr = 2 · 10−13 kg/mm3

7.2 Numerical simulations
We now provide some numerical simulations in order to analyse the growth dynamic and,
first of all, we want to understand what happens when we take different initial distributions
of cells.
More specifically, we carry two different experiments considering the following initial con-
ditions:

ϕinitc (x,0) = 0.5 ∀x ∈ Ω (7.2)

and

ϕinitc (x,0) = 0.5 + 0.75 exp
I

−
C

(x− 1.25)2

20 + (y − 1.25)2

20 + z2

2

DJ
. (7.3)

In the first case, as we can read in Equation (7.2), we consider a homogeneous initial
distribution of cells over the whole tridimensional domain.
In the second framework, instead, Equation (7.3) has the shape of a Gaussian function to
mimic an higher concentration of tumor cells close to the vascularized region
To be more precise, we report the two initial conditions in Figure (7.2): on the left panel
we display the homogeneous one, while on the right we report the Gaussian one.
In the latter case we assume that, in proximity of the vasculature, the oxygen concentration
is high enough to guarantee a stronger cells proliferation. Far from the vasculature,
instead, cells are suffering for hypoxia condition and their concentration is lower.
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Figure 7.2: Different initial conditions for cancer cell population. Left panel: the homo-
geneous initial condition. Right panel: Gaussian initial condition.

For what concerns the evolution over the time of the physical quantities involved by
angiogenesis and tumor growth processes, we refer to Figures (7.3), (7.6), (7.8) and (7.10),
in which we report cells, VEGF, oxygen and pressure development, respectively.
In particular, in the first column of each figure, we show the results for the homogeneous
initial condition, while in the second we report the evolution of the dynamics starting
from the Gaussian distribution of cells. For both cases, we exhibit the outputs at 10, 30,
50 days.
Looking at Figure (7.3) we can see that, independently form the initial condition, the
dynamics lead to the same qualitative behavior in which cells are much more concentrated
in correspondence to the initial vascular network.
Here, in fact, the oxygen is more available and, remembering that the production of cells
is regulated by Equation (5.55), when the oxygen concentration is high, cells proliferation
is stronger.

The main difference between the two scenarios lies in the maximum and minimum cell
concentration values, whose evolutions over the time are reported in Figure (7.4).
More specifically, looking at Figure (7.4), we can observe that, even if the Gaussian initial
condition ensures a higher cell concentration in the whole domain, in the homogeneous
framework the maximum cell concentration exhibits a more rapid increment in the first
phases of the process. We can justify this phenomenon because cancer cells located in
proximity of the initial network start proliferating very rapidly, thanks to the high amount
of available oxygen.
In addition, recalling that the proliferation is proportional to ϕmax − ϕc, as reported in
Equation (5.55), when cell concentration is high, their development is reduced. In light
of this, cells increment in the Gaussian setting is slower.
Successively, when the cells that were initially homogeneously distributed over the spatial
domain assume a configuration similar to the Gaussian one, the two different dynamics
develop with almost the same speed, even if cell concentration in the Gaussian scenario
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Figure 7.3: Simulation of tumor growth with parameter listed in Tables (4.1), (4.2), (4.3),
(7.1). From the top to the bottom, cancer cells evolution at time 10, 30, 50 days. On the
left panels: results for the homogeneous initial condition. On the right panels: results for
the Gaussian initial condition.
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Figure 7.4: Simulation for different cell initial conditions. Left panel: evolution of the
maximum cell concentration. Right panel: evolution of the minimum cell concentration.

Figure 7.5: Simulation for different cell initial conditions. Left panel: relative tumor mass
increment. Right panel: total tumor mass.

remains higher.
Moreover, looking at the results referred to the Gaussian setting, we can identify an
increment of cell proliferation speed in the last 20 days of simulations. This happens since,
as we will shown in the following, the number of vessels increases too, so the oxygenation
of the tissue is higher.
Similarly, looking at Figure (7.5), we can observe that both the relative increment and
the total mass of the tumor rise over the time with almost the same velocity. This
happens at least for the first thirty days of simulations, successively we can observe again
a differentiation between the two behaviors, and in the following we will give a proper
justification of this fact.
We also recall that the total tumor mass is given by

M =
Ú

Ω
ρ(x, t)ϕc(x, t)dΩ, (7.4)
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with ρ(x, t) = 1 · 10−6 kg/mm3 being the cell density, assumed to be equal to the water
density.
In light of this, accordingly with the formulation of the initial condition and with the
above considerations regarding the maximum value of cell concentration, the total tumor
mass of the Gaussian framework remains always greater than the corresponding value in
the homogeneous setting.
Let us examine now the VEGF evolution: we remind that, when we consider the tumor
growth dynamics, the VEGF is directly produced by cancer cells and the VEGF source
depends now by the variable ϕc. To be more precise, we recall that its expression is given
by

Sg = ϕcrg

A
− 1

1 + exp
!

− c(x, t) + chypo
" + 1

B
, (7.5)

with chypo = 11.5 mmHg.
This formulation suggests us that the higher is the cell concentration, the stronger is the
VEGF production.
In light of these considerations and since the Gaussian initial condition guarantees a
greater presence of cells in the tissue, in this setting the VEGF concentration is higher.
In facts, from the biological point of view, when the number of cells increases, the quantity
of oxygen needed for their survival increases too.
Recalling now that VEGF is a chemical that promotes the proliferation and the migration
of the endothelial cells and since oxygen in delivered by blood vessels, when cancer cells
need more nutrients, they produce more growth factor so the network can enlarge.
Consequently, as the network develops, it brings more oxygen to the tissue, allowing cancer
cells to proliferate.
As previously mentioned, looking at the VEGF values reported in Figure (7.6), we can
observe that they are greater that one, so we can justify our choice to shift the threshold
at which the branching probability is maximum in correspondence to higher values of
growth factor concentrations.
Moreover, as expected, the maximum VEGF values for the dynamics that starts from the
Gaussian initial condition are greater than the homogeneous case.
The main consequence of this fact lies in the network morphology: we can see that in the
Gaussian framework the resulting vasculature is much more extended and it shows a very
large number of branches.
The above considerations induce us to analyse also some physical quantities directly re-
lated to the network morphology, in order to give a quantitative measure of its extension.
In particular, we focus on the number of active points over the time and on the final
network length, that we report in Figure (7.7) and Table (7.2), respectively.
We remind that the active points are nothing but tip cells for which the concentration of
VEGF is high enough to guarantee tip cell motion.
Accordingly with the above observations, Figure (7.7) perfectly shows the impact that
higher concentrations of VEGF have on the network evolution.
Looking at the number of active points, when we consider the setting with the Gaussian
initial condition, we can observe that it is greater than the corresponding value in the
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Figure 7.6: Simulation of tumor growth with parameter listed in Tables (4.1), (4.2), (4.3),
(7.1). From the top to the bottom, VEGF evolution at time 10, 30, 50 days. On the left
panels: results for the homogeneous initial condition. On the right panels: results for the
Gaussian initial condition.
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homogenous framework, since in the first case the VEGF concentration is higher.
More specifically, the number of active points in the case of Gaussian distribution is about
three times the corresponding value in the case of homogeneous setting.
A similar relation is also registered in the total network length, that we report in Table
(7.2), and this confirms the fact that higher VEGF concentrations correspond to a greater
network extension.

Table 7.2: Total network length for different ϕc initial condition

Initial condition Homogeneous ϕ0
c Gaussian ϕ0

c

Total Network Length (mm) 92.3408 311.1089

Figure 7.7: Number of active points for different cell initial condition

At this point, it is worth to examine the oxygen dynamics in order to demonstrate that
when the network is more developed, the tissue is better oxygenated.
In this perspective, let us look at Figure (7.8), in which we also report the isolines corre-
sponding to c(x, t) ≈ 1.38 · 107 kg/(h2 · mm) ≈ 8 mmHg (cyan).
As we can observe, both at 10 and 30 days, the maximum value of oxygen in the tissue is
almost the same independently from the considered initial condition.
Looking at the final time T = 50 days, instead, we can see that in the homogeneous setting,
the maximum oxygen value is given by c(x, t) ≈ 14 mmHg, while for the Gaussian initial
distribution the maximum reaches the value c(x, t) ≈ 20 mmHg.
These results justify the fact that when we have a more extended vasculature, this can
effectively supply a higher quantity of oxygen, allowing the cancer cells to proliferate.
Moreover, recalling again that the growth of the tumor mass is regulated by Equation
(5.55), when the oxygen is more available, the proliferation is more intense.
In light of this, we can also justify the fact that, as reported in Figure (7.5), the relative
mass increment in the Gaussian setting shows an increase of its velocity, with respect to
the homogeneous one, after the first thirty days of simulation.
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Figure 7.8: Simulation of tumor growth with parameter listed in Tables (4.1), (4.2), (4.3),
(7.1). From the top to the bottom, oxygen evolution at time 10, 30, 50 days. On the left
panels: results for the homogeneous initial condition. On the right panels: results for the
Gaussian initial condition.
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Figure 7.9: Simulation for different cell initial conditions. Analysis of the fraction of
oxygenated tissue.

Now, looking at the isolines corresponding to the pathological hypoxia level (c(x, t) =
8 mmHg), we can also observe that the portion of tissue involved by hypoxia condition
progressively decreases over the time for both the initial conditions.
Nevertheless, it is also evident that this reduction is much more considerable when we start
from the Gaussian distribution of cells, especially looking at the last time step, where the
hypoxia affects only the upper corners of the domain.
In order to provide a quantitative measure of the percentage of tissue involved by hypoxia
conditions, we can look at Figure (7.9). Here we report the percentage of tissue in which
the oxygen concentration is above different thresholds, in particular we consider 8, 10, 12,
15 mmHg.
We can observe that, if we consider the percentage of tissue above the pathological hypoxia
level (8 mmHg), the Gaussian setting guarantees a better oxygenation and, at the end of
the simulations, about the 90% of the interstitium is not affected by pathological hypoxia
condition.
Also the homogeneous initial condition ensures a good oxygenation of the tissue, but since
the network development is slower, the oxygenation process is slower too and, after 50
days, only the 50% of the tissue is above the pathological hypoxia threshold.
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If we consider higher thresholds, instead, we can observe that, even if with the Gaussian
initial condition we still obtain a better oxygenation, the percentage of tissue above a
certain threshold decreases as the threshold increases.
More specifically, we can observe that

• the percentage of tissue above 10 mmHg is lower than the 7% in the case of Gaussian
initial condition and the 3% in the case of homogeneous one,

• the percentage of tissue above 12 mmHg is lower that the 1.6% in the Gaussian
framework and of the 0.4% in the homogeneous one,

• the percentage of tissue above 15 mmHg is lower than the 0.16% in the Gaussian
setting and null in the homogeneous one.

Therefore, recalling that c(x, t) = 15 mmHg is the physiological hypoxia level, the oxy-
genation of the tissue is never high enough to lead it in the physiological hypoxia condition.
To conclude, let us consider the pressure evolution whose results are listed in Figure (7.10).
As we can observe, the vascular pressure is always greater than the interstitial one, both
for each considered time-step and independently from the cells initial condition. This
means that we always obtain an arterious behavior of the vascular network, as expected.
It is worth to note that, in the Gaussian framework, the interstitial pressure is greater
than the corresponding value in the homogeneous one. This is coherent with the fact that
cells concentration in this setting is higher and they can press even more the tissue.

7.3 Sensitivity to parameter changes
In this section we provide some numerical results in order to understand the impact that
the variation of some selected parameters has on the process evolution.
In order to achieve this purpose, the starting point for all of the following simulation is
the homogeneous distribution of cells and we let vary only one parameter at a time. More
specifically, we focus on the variation of the following parameters:

• the permeability to the oxygen of the vascular network, i.e. β0
c ,

• the radius of the blood vessels, i.e. R,

• the cells duplication rate, i.e. γ

• the cells motility coefficient, i.e. M · E.

Furthermore, in order to represent the larger number of information in the most clear and
concise manner, we analyse the following characteristic quantities:

• the percentage of oxygenated volume for different thresholds (8, 10, 12, 15 mmHg),

• the relative tumor mass increment and the total tumor mass,

• the maximum and the minimum cancer cells concentration,
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Figure 7.10: Simulation of tumor growth with parameter listed in Tables (4.1), (4.2),
(4.3), (7.1). From the top to the bottom, pressure evolution at time 10, 30, 50 days. On
the left panels: results for the homogeneous initial condition. On the right panels: results
for the Gaussian initial condition.
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• the number of active points,

• the final network length.

Figure 7.11: Simulations for variations of β0
c . Analysis of the fraction of oxygenated tissue.

Let us start our analysis from the variation of the parameter β0
c , that we remind it acts

at the interface between the interstitium and the vascular network.
It stands for the vessel wall permeability to oxygen so, the greater its value, the more
easily the oxygen can be exchanged form the blood to the tissue.
In the original setting, the parameter value is given by β0

c = 12.6 mm/h and, since we
want to understand how its reduction or increment affects the dynamics evolution, we
consider the following variations:

• the 10% of the original value,

• the 50% of the original value,

• the 150% of the original value,

• the 200% of the original value.
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Let us start from the analysis of the tissue oxygenation and, to this aim, we consider the
same threshold introduced for the comparison between the homogeneous and the Gaussian
initial condition.
The results are reported in Figure (7.11) and we can observe that, as the permeability
increases, the percentage of oxygenated tissue above a certain threshold progressively
increases too. Nevertheless, also in this case, we obtain a significant oxygenation of the
tissue only when we measure its portion over the pathological hypoxia level (8 mmHg).
In this case, in fact, we reach about the 60% of the tissue above the corresponding threshold
for almost every variation of the parameter.
The only exception occurs when the permeability is twice the original one: in this case
the percentage of tissue whose oxygenation is greater that 8 mmHg reaches the 90%.
Looking instead at the other considered thresholds, we observe that, as they increase, the
percentage of enough oxygenated tissue gets smaller.
Therefore, also in this case, we cannot obtain a configuration in which the physiological
oxygenation is restored in the interstitium.

Figure 7.12: Tumor mass increment for variations of the parameter β0
c

Looking instead at Figure (7.12), we can deduce some informations about the tumor mass
and its variation over the time.
More specifically, we can see that the greater the permeability, the greater the tumor
mass. This is coherent with the results regarding the oxygenation of the tissue: in fact,
as we have already discussed in the previous section, when the available oxygen increases,
the proliferation of the cells gets stronger.
Consequently, since a higher permeability ensures a greater oxygen supply, we can detect
also a more evident amount of the tumor mass.
Finally, in order to give a measure of the network extension, we can look at Figure (7.13)
and Table (7.3), in which we report the number of active points and the total length of
the vasculature, respectively.
Also in this case, we can observe that the greatest values both in term of active points
and of total length are registered in correspondence to those parameter values that ensure
a better oxygenation of the tissue.
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Table 7.3: Total Network Length for variations of the parameter β0
c

Parameter
value (mm/h)

10% β0
c 50% β0

c β0
c = 12.6 150% β0

c 200% β0
c

Total Network
Length (mm)

60.4450 94.1491 92.3408 103.2173 186.7224

Figure 7.13: Number of active points for variation of the parameter β0
c

For example, we can observe that when considering a permeability value which is the 10%
of the original one, at final time T = 50 days the total network length is about 60 mm
and we find about 75 active points.
On the opposite side, when we look at the outputs corresponding to a permeability value
which is twice the original one, the number of active points is given by 400 and the total
network length reaches 186 mm.
These results confirm again that, when the vasculature is properly developed, the oxy-
genation of the tissue is high enough to guarantee a stronger proliferation of the cells.
Similar considerations also hold for the variation of the blood vessels radius, that in the
original framework is set to R = 5 · 10−3 mm.
Along the same lines of the previous case, we let the radius change and, more specifically,
we consider the following variations:

• the 10% of the original value,

• the 50% of the original value,

• the 115% of the original value.

Looking at the oxygenation levels of the tissue, reported in Figure (7.14), we can observe
that when the radius is very small it cannot properly carry nutrients and so the interstitial
oxygenation remains even below the pathological hypoxia level.
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Figure 7.14: Simulations for variations of R. Analysis of the fraction of oxygenated tissue.

On the contrary, when the radius increases, for example when we consider the case in
which it is the 115% of its original value, the oxygenation level sensibly increases too and,
at time T = 50 days, almost the whole tissue is above the pathological hypoxia level.
For what concerns the other thresholds, namely 10, 12, 15 mmHg, also in these cases we
cannot identify a configuration in which the oxygenation is considerably high, so we are
not able again to reach the physiological hypoxia condition (15 mmHg).
In addition, similarly to the previous analysis, we can still observe that as the oxygenation
increases, the tumor mass becomes larger, as reported on the left panel of Figure (7.15).
We can see, in fact, that the greatest tumor mass occurs when the radius is twice its
original value, which corresponds to the better oxygenation level too.

Table 7.4: Total Network Length for variations of the parameter R

Parameter
value (mm)

10% R0 50% R0 R = 5 · 10−3 115% R0

Total Network
Length (mm)

44.5509 55.7645 92.3408 242.9077
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Figure 7.15: Tumor mass for variations of the parameter R

Moreover, looking at the number of active points and at the total network length, whose
informations are collected on the right panel of Figure (7.15) and Table (7.4), also in this
case we can observe that the considerations carried above are still valid. This means that,
in correspondence to higher oxygenation levels, we notice again a more developed blood
vasculature that also ensures a more intense cell proliferation.
Let us consider now the variation of another parameter, but this time we move our focus
from the oxygen to the cells dynamics.
In this perspective, we consider the cell duplication rate γ, that we remind it acts in the
term (5.55) and that in the original framework was set to γ = 1/48 h−1.
In order to understand the impact that its reduction or increment may have on the evo-
lution of the process, we consider the following variations:

• γ = 1/36 h−1,

• γ = 1/72 h−1,

• γ = 1/96 h−1.

This time, in addition to the analysis of the tumor mass, we also introduce the evaluation
of the maximum and minimum cells concentration values over the time and we report
them in Figure (7.16).
As expected, when cells undergo mitosis very rapidly, i.e. γ is high, the maximum and
the minimum cell concentrations reach higher values with respect to the case in which the
duplication is slower. For example, when we compare the maximum cell concentration
corresponding to γ = 1/36 h−1 with the one of γ = 1/96 h−1, we can observe that the
first is sensibly greater than the second. This confirms the fact that, when cells are forced
to duplicate themselves quickly, their concentration increases more strongly.
Now, recalling that the tumor mass is given by Equation (7.4), higher values of cancer cell
concentration directly reflect on the tumor mass, as reported on the left panel of Figure
(7.17).
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Figure 7.16: Analysis of cancer cell concentration for variation of γ. Continuous lines:
maximum cell concentration. Dashed lines: minimum cell concentration.

Figure 7.17: Simulations for variations of γ. Left panel: Relative tumor mass increment.
Right panel: number of active points.

Here in fact we can observe that, when the duplication is slow, for example γ = 1/96 h−1,
the tumor has a limited growth, both in term of speed and final value.
Finally, if we want to understand the impact that the variation of γ has of the network
extension, we can look at the right panel of Figure (7.17) and Table (7.5), in which we
report the number of active points and the length of the vasculature, respectively.
We can observe that the results corresponding to γ = 1/48 h−1, γ = 1/72 h−1 and
γ = 1/96 h−1 are about superimposable. Looking instead at the case γ = 1/36 h−1, we
can observe a rapid increment both of the number of active points and of the total network
length. This happens because, when cells start proliferating very rapidly, they need more
oxygen to survive so they induce a stronger blood vessels development.
This fact is also confirmed by the results reported in Figure (7.18), in which we show
again the oxygenation level of the interstitium.
As we can observe, for γ = 1/48 h−1, γ = 1/72 h−1 and γ = 1/96 h−1, the percentage for
the different thresholds are quite the same. When we look at the results corresponding
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Table 7.5: Total Network Length for variations of the parameter γ

Parameter
value (1/h)

γ = 1/36 γ = 1/48 γ = 1/72 γ = 1/96

Total Network
Length (mm)

234.8008 92.3408 57.3251 71.6707

Figure 7.18: Simulations for variations of γ. Analysis of the fraction of oxygenated tissue.

to γ = 1/36 h−1, instead, we can see that the percentage of oxygenated tissue above the
level 8 mmHg sensibly increases, in parallel with the number of active points and the total
network length. So, we demonstrate again the fact that a solid vasculature can supply a
proper tissue oxygenation.
To conclude, we consider one more parameter that involves the cell dynamics.
We focus now on the motility coefficient of the cells, that in the original setting was given
by M · E = 7.2 · 10−3 mm2/h.
In order to understand its impact, we consider the following variations

• M · E = 7.2 · 10−5 mm2/h,

• M · E = 7.2 · 10−1 mm2/h.

87



Numerical Simulations

Figure 7.19: Simulations for variations of M · E. Left panel: Relative tumor mass incre-
ment. Right panel: number of active points.

The starting point of our analysis is the evaluation of the tumor mass, which is reported
on the left panel of Figure (7.19). As we can observe, this parameter does not have a
huge impact on the mass, which reaches almost the same values independently form the
parameter variation. The only exception occurs in the latest phases of the simulations,
when we look at the results corresponding to M · E = 7.2 · 10−5 mm2/h.
It is then worth to provide further analysis in order to understand the reason of this even
small deviation.

Figure 7.20: Analysis of cancer cell concentration for variation of M ·E. Continuous lines:
maximum cell concentration. Dashed lines: minimum cell concentration.

In this perspective, we examine the behavior of the maximum and minimum cells con-
centrations, that we report in Figures (7.20). Here we can see that the maximum values
are inversely proportional to the motility coefficient: the lower the cells diffusion is, the
higher the maximum concentration is.
In addition we can observe that, when M · E = 7.2 · 10−5 mm2/h, the maximum cell
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concentration reaches values much greater than the others, which remain rather compa-
rable independently from the parameter variation. In fact, when the cells motility is very
small, i.e. M · E = 7.2 · 10−5 mm2/h, the maximum exceeds 0.9, while in all the other
cases it reaches about 0.65.
For what concerns the minimum, instead, we can detect a direct proportionality, such
that the lower the cells motility, the lower the minimum concentration too.
Also in this case we can observe that the results corresponding to M ·E = 7.2 ·10−5 mm2/h
are distanced from the ones given by the other variation of the parameter M · E.
In particular, the minimum concentration results lower than the other cases, which still
remain comparable.
Moreover, when M · E = 7.2 · 10−5 mm2/h, the minimum cells concentration stays
unchanged over the time, maintaining the same amount of the initial condition.
Looking again at Figure (7.20) we can also deduce that the lower the cells motility, the
greater the differentiation between the maximum and the minimum cells concentration.
We can justify this phenomenon recalling that the motility is related to the random
movement of the cells within the spatial domain. This means that, when the motility is
high, cells are allowed to migrate, so they can potentially move towards regions with a
better oxygenation level. But when the motility is very low, cancer cells are essentially
stuck in their initial location.
This means that, if a certain group of cells was initially placed in proximity of a blood
vessel, where the oxygen supply is high enough to guarantee their proliferation, cell con-
centration can increase in that specific portion of the domain.
On the contrary, if we consider cells located in a area with limited oxygen availability,
they cannot proliferate so their concentration does not increases over the time.
This can explain why, when we consider M · E = 7.2 · 10−5 mm2/h, we obtain a very
high maximum cells concentration, but looking at the minimum we cannot detect any
variation.
On the opposite side, when the motility increases, the distance between the maximum and
the minimum cells concentration becomes smaller, until the corresponding curves become
superimposable, as we can see when M · E = 7.2 · 10−1 mm2/h.

Table 7.6: Total Network Length for variations of the parameter M · E

Parameter
value (mm2/h)

ME = 7.2 · 10−5 ME = 7.2 · 10−3 ME = 7.2 · 10−1 ME = 7.2

Total Network
Length (mm)

490.7984 92.3408 87.9476 67.9777

It is now useful to analyse some information regarding the vasculature extension, so we
focus again of the number of active points and the total network length, that we report
on the left panel of Figure (7.19) and Table (7.6).
According to the considerations above, we can still observe that the results regarding the
parameter values M · E = 7.2 · 10−3 mm2/h and M · E = 7.2 · 10−1 mm2/h are almost
comparable both in terms of number of active points and of total network length.
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The main difference lies again in the parameter value M · E = 7.2 · 10−5 mm2/h, for
which the we obtain a much more extended vascular network.
In order to understand the efficiency of the vasculature, we can conclude looking at Figure
(7.21), in which we report again the tissue oxygenation level.
As we can see, it does not exist again a parameter configuration leading to a high enough
oxygenation that ensure to reach the physiological hypoxia condition.
Nevertheless, when M · E = 7.2 · 10−5 mm2/h, the 90% of the tissue reaches the patho-
logical hypoxia level and this results confirms again the fact that cells proliferation is
guaranteed when the vasculature is developed enough to supply a good amount of oxy-
gen.

Figure 7.21: Simulations for variations of M · E. Analysis of the fraction of oxygenated
tissue.
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Chapter 8

Conclusions

In this master thesis we provided a mathematical model for the growth of a vascular
tumor, combined with the angiogenesis dynamics, i.e the formation of new blood vessels.
More specifically, in the first part of the present work, we neglected the evolution of a
cancer cells population and we focused on a simplified setting in which we studied only
the angiogenesis process. This has been a fundamental step because the development of
new blood vessels is itself a complex mechanism, since it involves the interaction between
different physical quantities on different scales. In particular, as we focused on the tumor-
induced angiogenesis, we took into account the evolution of the endothelial cells, that lead
the formation of the nascent vasculature, as well as the pressure, oxygen and endothelial
growth factor dynamics. In addition, we have also been able to represent both the pressure
and the oxygen trascapillary flux.
However, we have to remind that VEGF is generally produced by the tumor itself, so
in this simplified setting in which we do not consider the presence of any cancer cells
population, we built an artificial source of endothelial growth factor.
From the mathematical point of view, we initially provided a 3D-3D coupled strategy to
describe pressure, oxygen and VEGF evolution. Successively, exploiting the assumption
that the blood vessels radius is much smaller than the dimension of the tridimensional
domain, we reduced the above model into a 3D-1D coupled one. For what concerns the
network, instead, we adopted a discrete tip-tracking model.
In particular, we introduced a growth criterion for the vasculature (the virtual growth),
such that the effective development of the newly formed vessels does not occur until the
distance between two consecutive tip cells does not reach the endothelial cell length.
Regarding the numerical method, instead, we implemented an optimization strategy based
on the minimization of a PDE-constrained cost functional.
The numerical experiments performed thanks to the above model, allowed us to capture
important aspects related to the network development and the blood flow.
More specifically, we carried an analysis of the VEGF source, acting on the parameters
that regulate its intensity and its shape. As expected, we obtained that when the VEGF
concentration is higher, we get a more more extended vascular network.
Moreover, changing the shape of the source, we noticed that the growth occurs along
the direction of higher concentrations of VEGF, confirming the fact that endothelial cells
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move in response to chemotactic stimuli.
In addition, we also considered the variation of the rate at which the network consumes
VEGF. In this perspective, we observed that a very high consumption reflects on a very
low value of VEGF in correspondence of the network itself, that cannot properly enlarge.
To conclude, in the first part of this work we also carried an analysis of the parameters
related to the pressure evolution. Our aim was to reproduce an arterious behavior of the
fluxes across the vessel walls, i.e. the blood must flow from the vessels to the interstitium.
To this aim, we focused on the permeability of the vessel walls and on the efficiency of
the lymphatic drainage.
We observed that when the permeability is not too high, the network is entirely involved by
arterious flow, while as the permeability increases, the percentage of vasculature involved
by venous behavior increases too.
We also observed that the lymphatic system has a pivotal role in the fluids flow direction,
in particular when the drainage is not efficient enough, i.e. the permeability of the lym-
phatic system is not sufficiently high, the fluid is not properly absorbed and it presses the
interstitium. This leads to an inversion of the fluxes and the fluid moves from the tissue
to the vessels.
In the second part of the present work, instead, we introduced the tumor growth dynamics.
To this aim, the starting point was the model defined for the angiogenesis process but we
also introduced the governing law for cancer cells evolution.
The main novelty lies in the fact the we distinguished the cells from the interstitial fluid,
so it has been necessary the adoption of a multiphase approach.
In this perspective, we reformulated the equations describing pressure, oxygen and VEGF
evolution, taking in consideration the fact that they are dispersed in the liquid phase.
For what concerns the numerical method, the only difference lies in the implementation of
the Newton’s method for the resolution of cells governing law, while the PDE-constrained
method defined in the first part was still applicable for the other quantities.
Thanks to this model and to the corresponding simulations, we deduced important infor-
mations related to the tumor growth and the vascularization precess.
In fact, in the second part, we provided many numerical simulations varying different key
parameters in order to understand their impact on the whole dynamics.
We started defining two different initial distribution of cells and we understood that,
independently from the initial condition, the evolution converges to a configuration in
which cells are much more concentrated in correspondence to the vascular network. Here
in fact, the proliferation is higher thanks to the large oxygen availability.
We also observed that the VEGF concentration is directly proportional to the number of
cancer cells: when the tumor is very extended it easily undergoes hypoxia condition so
it produces a larger amount of endothelial growth factor in order to encourage the blood
vessels development.
For what concerns the impact of the parameter, we focused on the permeability to oxygen
and the radius of the vessel, moreover we analysed the variation of the cells duplication
rate and their diffusivity coefficients. We studied the response of the hypoxic volume
percentage, the tumor mass, the number of active points and the total network length.
As expected, we found out that when either the permeability or the radius increase, the
oxygenation of the tissue increases too, leading to an increment both of the tumor mass
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and of the network extension.
Similar reasoning also hold for the variation of the duplication rate: when cells have a fast
proliferation their mass increases too and they need a higher oxygen amount to survive.
In light of this, they produce more VEGF that stimulate the network development and,
consequently, this can ensure a larger oxygen supply.
For what concerns the diffusivity coefficient, instead, it allowed us to understand that the
lower is its value, the lower is cells motility too, so only the ones located in proximity of
the vessels can effectively proliferate.
To conclude, we provide some considerations regarding possible development of this work.
For example, even if we observed that the tumor can proliferate when the oxygen is more
available, we have to remind that biological evidences show that cancer cells may response
to hypoxia condition moving from an aerobic to an anaerobic metabolism.
This phenomenon is known as Warburg effect and it allows cells to produce energy con-
suming glucose instead of oxygen.
Therefore, the above model could be extended introducing the governing equation of
glucose, which could be mainly consumed by cancer cells when the oxygenation of the
tissue is not high enough to guarantee their survival.
Moreover, since we consider a simplified setting with a very small initial vasculature, we
can imagine to extend the present work considering a larger number of vessels, also with
different spatial configurations.
Similarly, we can also work with a greater spatial domain edge length.
Furthermore, it could be interesting the introduction of a method that outlines the inter-
face between cancer and healthy cells, as well as the possibility to study the deformation
of the tumor itself.
We may also remove the hypothesis that the extracellular matrix is rigid and inert, so we
can examine its consumption introducing also an equation for the degradative enzymes.
Furthermore, we recall that in the present work we solved the cancer cells governing law
treating the oxygen concentration as a known term. More specifically, at each time step,
we approximated the oxygen with its value at the previous iteration.
In light of this, it could be useful to generalize this method considering the oxygen value at
the current time and introducing a non linear Newton method to resolve the non linearity
in the corresponding 3D-1D optimization problem.
To conclude, in order to give a measure of the effects that the variation of some key
parameter has on some quantity of interest, it could be useful the implementation of the
sensitivity analysis. For example, in light of the analysis carried in second part of the
present work, we may focus on the wall permeability and on the vessels radius in order
to study the variation of the hypoxic volume percentage and the tumor mass in a more
rigours way, using sensitivity analysis techniques
To conclude, although the proposed model can still be greatly improved, this work takes
the first step towards understanding the modelling of tumor vascularization.
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