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Abstract 

One of the most recent areas of research in the field of Artificial 

Intelligence concerns Machine Unlearning. Since research necessarily 

needs many tests and benchmarks to evaluate new proposals about methods 

or algorithms and compare them to the already existing ones, large datasets 

are requested.  

Complications about the difficulty to collect big amounts of data or privacy 

of individuals led to synthetic datasets. Not only they are faster to create 

than collecting real data, and don’t leak information about anyone, but they 

are also built ad hoc, so the user can decide,and tune characteristics based 

on the aim of the test. 

In this thesis both Machine Unlearning and Synthetic Data Generation 

topics will be analysed, and the focus will be about showing how with 

different synthetic datasets tuned on purpose, Machine Unlearning can 

become harder or easier, and how we can use these synthetic datasets to 

observe performances of Machine Unlearning methods and compare them. 

The core idea is that samples from more entangled datasets will be harder 

to be forgotten by the models, while datasets with more separated data will 

be easier. We will also observe what having entangled data means and how 

we can measure this phenomenon. 
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1. Introduction 

Recently, Machine Learning has become very popular in different 

applications not only of our daily life but also in many specialized areas of 

any scientific field. Surely this technological innovation has brought 

notable advantages and has facilitated various tasks, but it also raised some 

concerns. First, finding data is not so easy as one could think, and Machine 

Learning algorithms often require large amount of data to be trained 

properly and be efficient, then problems about privacy and data security are 

increasingly emerging, especially when it comes to sensitive information 

of private citizens.  

The concept is that models could use indirectly or not information about 

individuals for their predictions, also without their permission. Nowadays 

this is considered a privacy violation. 

Since General Data Protection Regulation was introduced, every user got 

the right to request their data to be deleted from databases and models. 

Retraining models every time a request is made would be impossible, as 

well as extremely expensive in terms of energy, time and money.  

Beyond that, due to the very large amount of data necessary to train big 

models, often developers could realize that some data were wrong or 

biased, or subjected to copyright, and retraining from scratch the entire 

model it would essentially mean having wasted all the work done up to that 

point. 

Indeed, this would me an extremely expensive operation and repeating it 

every time that is necessary for the model to forget some information would 

be unrealizable. 

From these and other needs, Machine Unlearning was born. 

1. Machine Unlearning 

So, the question is: “Is it possible to remove the effects of some samples 

from a model trained on these, preserving its effectiveness, without 

retraining it from scratch on a new training set?” 

The answer is that this is exactly what the Machine Unlearning is supposed 

to do. 

Machine Unlearning indeed consists in eliminating the influence of a 

portion of data from a trained model, without requiring a full retraining on 

another subset of the original dataset, which, as said, is often a very 

expensive process.  
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Formally, we have a training set T, a forget set F, that is a subset of the 

entire training set that contains samples to forget, and a retain set R = T / F, 

that contains samples that should remain in the training of the Unlearned 

model. 

The aim is to obtain, after the Unlearning process on the Full model, trained 

on T, a model that is the closer to the Gold model, that is a model trained 

from scratch on R.  

 

Figure 1 Machine Unlearning Framework 

Evaluating the Machine Unlearning methods is a significant challenge, and 

the objective is to compare the Unlearned Model and the Gold Model, since 

the first is wanted to be the closer to the Gold, that having being trained on 

the retain set that don’t contains the forget samples, is exactly what we 

should require as a result from the unlearning process..  

Since one of the main reasons for removing data from trained models is 

about privacy, the aim is forgetting identities, that are the set of samples 

related to a specific individual. However, the model, after the unlearning 

process, has still to be efficient and produce accurate results. Thus, the 

comparison between Unlearned Model and Gold model is not only about 

performance, as we want that even without the forgotten data the 

predictions are reliable, but also about how much those data have actually 

been forgotten.  

To quantify the goodness of removing data-related information, a 

Membership Inference Attack (MIA) was made on models. This attack 

consists in taking features from predictions of a model for two datasets, in 

our case the set of the data to be forgotten (Forget Set) and a set of unseen 

data (Test Set), assigning them a label that indicates from which set a 

sample is, and then train a binary classification model (via Logistic 

Regression) to detect how easy is to distinguish if the model has seen a 

sample or not observing its prediction for it.  
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Examples of features from the predictions that could be taken are logits, 

entropy, probabilities (for each class), maximum confidence and 

correctness of prediction (as binary variable). As will be mentioned, we 

also tried to use the outputs of the model before the last layer as features. 

Logits are scores that the model gives as result for a sample to classify. 

Usually, to classify it we take the highest and assign as prediction the class 

with the highest score. The idea here is that observing how confident is the 

model in classifying a sample, the MIA could divide unseen data from 

seen-but-forgotten ones. The lower is the difference of MIA results, the 

better was the unlearning process, and the higher is the guaranteed privacy, 

because it means that the Unlearned Model act very similar to the Gold one, 

that actually has never seen both given sets, when it comes to classify a 

sample, even if it was seen in training before the Unlearning. We should 

expect a MIA accuracy result near 0.5, that means random guess, for the 

Gold model, and a higher one for the Full model (trained on the entire 

training set). The Unlearned model will have a MIA score between those 

value, the closer is to the Gold one, the better was the Unlearning. In our 

experiments we used the Forgetting Score to evaluate the guaranteed 

privacy by a model, that is the distance between the accuracy of MIA and 

0.5, that is the level of perfect privacy guaranteed, as this means that an 

intruder can only go with random guess to understand if a sample was 

already seen by a model or not. 

2. Synthetic Data Generation 

As mentioned above, recent Deep Learning models often require very large 

amounts of data to be trained, and often benchmark dataset are used to 

compare or test models. Since collecting data is not easy, and 

aforementioned concerns like privacy or copyright prevent the use of many 

resources, Synthetic Data are a reliable solution to access easily large 

amount of data with relatively little effort in terms of time and money. 

Synthetic Data can be generated from scratch or as an augmentation of real 

datasets.  

Main objectives of Synthetic Data generation are:  

• Class Balancing: rebalance real datasets in which some classes or groups 

(defined with respect to specific attributes) are underrepresented. 

• Sensitive Information Hiding: to hide datasets in which sensitive 

information is leaked, creating a new dataset with same characteristics of 

real one with fictitious individuals.  
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• Cheap Data: often some types of data require many resources to be 

collected, tools to generate them could solve this problem and avoid waste 

of time and money. 

When Synthetic Data are generated from a starting dataset for privacy 

reasons, the aim is to have a new dataset that performs as close as possible 

as the original one when used for training. 

When Synthetic Data are generated for class balancing instead, the problem 

is that a dataset with some classes or group that are underrepresented could 

lead to inaccurate predictions on those samples, or biased predictors.  

There are two ways to solve this problem:  

• Undersampling: we discard some samples from majority classes to obtain 

an equal number of samples for each group/class. 

• Oversampling: we generate new synthetic samples for minority 

classes/groups until its dimension reaches the majority class one. 

Obviously, the field of Synthetic Data is about Oversampling, since the 

concept is to generate new data. As will be discussed in the next session, 

many Synthetic Data Generation methods turned out to work better than 

simple Undersampling. 

 

Often these two techniques are also combined, generating more sample 

than necessary and then undersampling them to keep the ones that reflects 

better desired characteristics. 

The purpose of this work is to generate synthetic data, in particular tabular 

data, to test these methods, controlling some precise features of the 

datasets, and exploring which are their characteristics that make more or 

less complex the Machine Unlearning process. 
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2. Related Works 

For this thesis we had to collect information both about Synthetic Data 

Generation strategies and Machine Unlearning methods, and try to adapt 

them to our case. 

1. Synthetic Data Generation 

Most of Synthetic Data Generation methods are based on starting from a 

dataset that already exists, we will see some of them. The main reasons for 

generating synthetic data are imbalanced datasets or protecting some 

sensitive information. Both these motivations are about a pre-existing 

dataset, but in our case, since our objective is to be able to fully control the 

characteristics of the dataset, we cannot begin from real data, thus we must 

create a dataset from scratch. 

To compare different Synthetic Data generative methods, we can use two 

types of metrics:  

• Utility Metrics: indicate how good is the classification trained on the 

synthetic dataset. (For example, Accuracy, ROC–AUC)  

• Fairness Metrics: indicate how much difference there is in measurements 

in different subgroups. (For example, Equalized Odds, Statistical Parity, 

Equal Opportunity)  

We can observe briefly what these metrics indicate: 

• Accuracy: indicates the proportion of samples correctly classified on the 

entire dataset. It can be also computed for each class. 

• Recall: indicates proportion of samples correctly classified in a class with 

respect to all samples assigned to that class by the model. The idea is that 

shows how much del model is sensitive to a class. 

• F1 Score: combines accuracy and recall, and indicates the goodness of the 

performance, it takes values between 0 and 1 and the higher it is, the better 

is the prediction. 

• ROC-AUC: Receiver Operating Characteristics (ROC) curves are created 

varying a threshold for the classifier and keeping track of True Positive 

Rate (TPR) and False Positive rate (FPR) and plotting them in a 

bidimensional graph (restricted to the square [0,1] x [0,1]). Then the Area 

Under Curve (AUC) is computed, and it indicates the probability that the 

model will assign a higher score (of belonging to positive class) to a sample 

that is truly positive than to a negative one. Obviously the higher is AUC, 

the better is the model. 
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• Equalized Odds: indicates difference between true positive rates and false 

positive rates for different subsets of the dataset. 

• Statistical Parity: indicates whether the probability of being classificated 

in a class is consistent across different subsets of the dataset. 

• Equal Opportunity: indicates difference between true positive rates for 

different subsets of the dataset. 

Often these metrics must be analysed together, for example a binary model 

that classify everything as positive will have a perfect accuracy on the 

positive class, but for sure it is not a good model and only observing, for 

example, recall we can notice it. 

True Positive (TP) are samples classificated as positive (class 1 in a binary 

classification) that are truly positive, False Positive (FP) instead samples 

classificated as positive that are negative (misclassified). 

Groups are identified as sets of samples with the same value for a specific 

attribute. 

A class-balanced dataset is crucial for data preprocessing in most of 

classification problem. We define a dataset imbalanced when labels are not 

distributed homogeneously and there are overrepresented or 

underrepresented classes. If a model is trained on an imbalanced dataset, it 

could easily underestimate error on samples from minority classes and also 

if the overall accuracy is satisfying the performances will be reliable only 

for some classes.  

To overcome this problem one of the most popular and intuitive strategy is 

undersampling, that consist in reducing the dataset cutting off some 

samples from majority classes until their cardinality matches the minority 

ones. Surely this solves the problem of imbalance, but the loss of 

information due to having less samples in training set often leads to weaker 

models with a low learning capability. 

Another way to tackle this problem is oversampling, that consist in 

generating new data for minority class until they reach dimensions of 

majority one. The advantage with respect to undersampling is that no 

information from the original dataset is lost, but it must be paid attention 

on how new data are generated.  

Generating synthetic data is a powerful tool to adjust imbalanced datasets 

or to hide sensitive information, but the risk is to increase chances of 

overfitting (if new samples are too much similar to the already existing 

ones, they will impact too much on model weights) and to introduce noise 

into the dataset (if they are distributed too much differently with respect to 

the original samples). 
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The balance of a dataset can be not only about classes, but also about some 

attributes called protected that we could need to be uniformly spread 

among samples, for example even if the label of a dataset is height, and 

gender is just a feature, we could need a dataset with the same number of 

male and females, to train a robust model with a good prediction capability. 

To evaluate a synthetic dataset goodness, we must use a classifier to train 

on it and compare the obtained performances with the ones related to 

original datasets. For synthetic datasets generated from scratch instead, we 

can evaluate them observing if the required characteristics are satisfied or 

not. 

Let us analyse some of the most popular Synthetic Data generation 

methods: 

▪ SDV - GC 

The algorithm receives the starting dataset in tabular form; it is like an SQL 

database with different tables and references between them. A table without 

references to other tables is called standalone table. 

SDV– GC tries to estimate the distribution of the data in the final table and 

then generates new synthetic data samples from it.  

For every standalone table indeed, the model creates a distribution for every 

column and a covariance matrix with the covariances between them. To 

estimate them, SDV–GC uses Gaussian Copula, an algorithm that converts 

all column distributions (estimated from their respective values in the 

starting dataset) to standard Gaussian and then finds covariances. 

Then each table is aggregated with their respective parent table, iteratively. 

Gaussian Copula is applied to the “leaf node” tables (if we imagine tables 

relationships as a tree), we estimate distributions and covariance matrix for 

each table and add them as new columns in the respective parent table. This 

is defined as extended table. Repeating this procedure for all tables leads to 

a single final extended table that resumes all dataset information. Then to 

create synthetic data we just have to sample from the specified distributions 

for each column of each row and then obtain respective children rows for 

children tables. This procedure can be repeated until enough synthetic data 

are generated. 

▪ CART 

As the previous algorithm, also CART creates synthetic data starting from 

a pre-existing dataset. CART uses classification trees to partition the 

predictor space and create subsets with almost only samples with the same 

label. Partitions are created with several binary splits and the leaves of the 
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tree are the subsets. The tree can be pruned to avoid overfitting, using ad-

hoc criteria. 

Using tree leads to advantages like capturing also non-linear relationships 

and interaction effects better than parametric models, but it is also more 

difficult to interpretate and close to decision boundaries, predictions could 

be irregular. Intuitively we could say that the algorithm consists in 

sampling a value for an attribute for an instance from the pool composed 

by the values of the other instances that are “similar” (that means that the 

classification tree put them in the same leaf node, and they are in the same 

region of the partition of the latent space). If we need to synthetize more 

than a single attribute, we can do it sequentially using every time the last 

dataset created. To sample from a pool of discrete values (or classes) CART 

uses the Bayesian Bootstrap, and if the values are continuous, a density 

function is estimated and used for sampling. 

▪ SMOTE 

As the previous methods SMOTE starts from a pre-existing dataset and 

with geometrical operations in the feature space finds new synthetic 

instances. The idea is to take a point belonging to the minority class, sample 

one of its k nearest neighbours of minority class and find the synthetic point 

randomly on the joining segment. The effect, comparing the results using 

a decision tree trained on the original dataset and on the synthetic one, is a 

better oriented decision region. Comparing with a basic oversampling with 

replication of the minority class, we have a larger decision region (for the 

minority class), that leads to a more generalizable model. Indeed, simply 

replicating the minority class units leads to extra-specific decision 

boundaries and causes overfitting. 

The algorithm takes as input the sample, the number of minority class unit 

(T), amount of synthetic data to be created for each original instance (N) 

and the number of nearest neighbours to be used (k). The output is N x T 

synthetic minority class samples. 

In each iteration the k nearest neighbour for the current point (i) are 

computed, and one of them is sampled randomly. Then is computed for 

each attribute (attr) the difference (dif) between their values and a random 

number (gap) in [0,1] is sampled. The value for that attribute for the new 

synthetic point is computed as:  

    𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐𝑃𝑜𝑖𝑛𝑡𝑠[𝑛𝑒𝑤𝑖𝑛𝑑𝑒𝑥][𝑎𝑡𝑡𝑟] = 𝑂𝑟𝑖𝑔𝑆𝑎𝑚𝑝𝑙𝑒[𝑖][𝑎𝑡𝑡𝑟] +𝑔𝑎𝑝∗𝑑𝑖𝑓  
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SMOTE also shows improvements in correct classification of 

underrepresented classes. SMOTE– NC (Nominal Continuous) is a variant 

of SMOTE that consent to use also data with continuous and nominal 

features, but not full-nominal datasets. We will also add the possibility to 

introduce nominal features in our datasets. 

 

 

 

 

All observed methods are evidently based on manipulating a starting 

dataset rather than generating synthetic data from scratch. In the next 

section we will analyse how we overcame this problem to adapt the 

synthetic data generation to our needs, in this case. 

 

2. Machine Unlearning 

 We can now explore the methods for Machine Unlearning that we will use 

in our experiments. A general subdivision of Machine Unlearning methods 

is between Exact Unlearning and Approximate Unlearning.  

 

Exact Unlearning, even if its aim is entirely removing the data to be 

forgotten, may be too expensive, and since one of the reasons for the 

unlearning process is to avoid expensive computations as retraining from 

scratch, often Approximate Unlearning, that consists in simulating data 

forgetting, is preferred. 

Figure 2 SMOTE process in the feature space 
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▪ Fine Tuning 

Fine Tuning is an Approximate Unlearning technique, that take a pre-

trained model and continue its training only on samples from the retain set. 

An important limitation of this method is that samples from forget test are 

not truly removed, but training more the model, the influence of forget set 

on model’s parameters is reduced and the loss is minimized further only 

considering samples from retain set. The aim is to induce the model to tune 

its parameters only on these samples, removing during new training epochs 

the old influence of samples that were seen before and now must be 

forgotten. As said, no information is formally removed from the model, but 

it is just trained further on samples that can be remembered until 

(hopefully) samples from forget set have not anymore influence on the 

model’s decisions. The result on some Machine Unlearning evaluation 

techniques like MIA is that the model after the unlearning process will be 

much more confident on retain set, since it has seen it longer, than on forget 

set, that has not seen anymore, and this will be treated almost like an unseen 

set, that is the objective. 

 

▪ Negative Gradient Ascent 

Negative Gradient Ascent is a technique based on using Gradient Ascent 

(same core idea of Gradient Descent, but using maximization instead of 

minimization as objective) on the loss computed on samples from forget 

set. The effect on model’s parameters is that they are shifted far from the 

original values learned considering forget set part of training set.  

The process is iterative, and it is the opposite of a traditional learning 

process of a Neural Network, after the evaluation of each batch of forget 

set samples, the gradient of the loss is computed, and the weights are 

updated as: 

Figure 3 Representation of Fine-Tuning process 
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𝒘 = 𝒘 +  𝜶 𝒈 

Where g indicates the gradient of the loss on forget set samples. Notice that 

the direction of the gradient is followed, instead of its opposite direction as 

is usual in the standard training process. 

The effect is that the performances of the model on the forget set are 

significantly worsened, and usually a stopping criterion on the accuracy of 

the predictions on the retain set is utilized, to avoid a worsening also on 

these samples. 

 

▪ Advanced Negative Gradient Ascent 

Advanced Negative Gradient Ascent is an improved version of the previous 

technique. The idea is that not only an inverted training (called untraining 

in Figure 3) is performed on forget set like Negative Gradient Ascent, but 

also a further gradient descent on retain set is applied.  

Formally, there is an hyperparameter 𝛽 ∈ [0,1] that balances the gradient 

descent on the retain set and the gradient ascent on the forget set, as follows: 

𝒘 = 𝒘 −  𝜶 [ 𝛽 𝒈𝒓 − (1 − 𝛽 )𝒈𝒇] 

Where α indicates the learning rate, 𝒈𝒓 the gradient computed on the 

retain set and 𝒈𝒇 the gradient computed on the forget set. 

Figure 4 Representation of Negative Gradient Ascent process 
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Figure 5 Representation of Advanced Negative Gradient Ascent process 
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3. Methodology 

The purpose of the work is to create Synthetic Tabular Data, and the key 

point is the possibility of being able to tune some characteristics of the 

generated data to adjust the difficulty of the machine unlearning process. 

In general, you will mainly want to control how entangled the data 

generated for different classes are with each other, and based on this, how 

difficult it is to classify them. We can control different aspects of the data 

that is generated, but in general the main concept is how much the 

distributions overlap or not. Since the way to evaluate the work done is to 

use a classifier, the result that we generally expect is to have a higher 

accuracy with less overlapping and more distinct distributions. 

Mainly the strategies that had to be chosen regarding the two macro-phases 

of the process:  

• Data Generation: most Data Generation techniques are based on real 

datasets, we needed to create new data from scratch, so we had to use 

multivariate Gaussian distributions.  

• Classification: there are many methods for classification, in our case not 

necessarily binary, and the one used is a simple neural network with 

standard hyperparameters. 

Regarding Data Generation, the user specifies the number of columns 

(attributes), the number of different classes, the number of samples for each 

class and the desired divergence between distributions, then:  

1. An optimizer computes parameters for multivariate distributions 

of each class minimizing the distance of their divergence matrix 

with the target matrix specified as input.  

2. Instances are sampled from these distributions, generating the 

synthetic dataset. 

Figure 6 Our Synthetic Data Generation flowchart 
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1. Classification 

For Classification, we used simple Neural Networks composed by different 

numbers of Fully Connected Layers. We decided to use four different 

Neural Networks (Small, Medium, Large, Extra Large) to observe results 

with different complexities. After each Fully Connected Layer (except for 

the last one) there is a ReLU activation function. 

Fully Connected (FC) Layers are one of the most common layer types in 

Neural Networks. They are composed by neurons, and each neuron of the 

layer is connected with all the neurons of the previous layer and of the next 

one.  

They are very flexible and have many parameters, thus are often used for 

classification and regression tasks. Often, they are accompanied by other 

types of layers and due to their large quantity of parameters are susceptible 

to overfitting, but in our case the task was simple, since we used not so 

complex datasets in the shown experiments. 

Formally, the output of the layer is 𝒚 = 𝑓(𝑾𝒙 + 𝒃), where W is the weight 

matrix, learned during training process, b is the bias (as a vector),  f is the 

activation function. The output is a vector with a value for each of the 

neurons of the layer. W and b are learned during the training process. 

The activation function we used is ReLU, which is defined as follows: 

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥) 

 

Thus, it filters every output smaller than zero and maintains unchanged 

every output larger than zero. ReLU is not the only type of activation 

function. 

Figure 7 Fully Connected layer architecture 
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The role of activation functions in Neural Networks is to filter values below 

some threshold (denoising) and to create non-linearities between layers. 

Having non-linearities in a Network is useful (and necessary) because it 

helps to reproduce complex functions. 

Without activation functions, a Neural Network, regardless of its depth, 

would be a simple linear combination of inputs, and many complex 

relationships would be unlearnable. Sigmoid, SoftMax (for the last 

classification layer) and softer version of ReLU are other examples of 

popular activation functions. 

 

Let us observe deeply the architecture of the Neural Networks we used: 

• Small Classifier: 

- 6 Fully Connected layers 

- ReLU after each Fully Connected layer 

• Medium Classifier: 

- 8 Fully Connected layers 

- ReLU after each Fully Connected layer 

• Large Classifier: 

- 9 Fully Connected layers 

- ReLU after each Fully Connected layer 

• Extra Large Classifier: 

- 11 Fully Connected layers 

- ReLU after each Fully Connected layer 

 

The input size is the number of attributes, while the output size is the 

Figure 8 Some popular activation functions 
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number of classes, as the Neural Network gives a score for each class for 

each sample that indicate how much it is likely to belong to each one. 

The optimizer used for backpropagation and weight updates is ADAM. 

ADAM is an optimizer designed to efficiently update network weights 

during the training process by adapting the learning rate for each parameter 

individually. ADAM combines the advantages of two other popular 

optimization techniques: AdaGrad (Adaptive Gradient Algorithm) and 

RMSprop (Root Mean Square Propagation). Adam calculates adaptive 

learning rates for each parameter based on estimates of the first and second 

moments of the gradients. Essentially, it keeps track of an exponentially 

decaying average of past gradients (like momentum) and an exponentially 

decaying average of past squared gradients (like AdaGrad and RMSprop). 

Momentum gives inertia to the optimizer, lowering oscillations and leading 

to a faster convergence. 

ADAM is widely used for large quantities of data, particularly in Deep 

Learning. Formally at each step it is computed the gradient g, then 

momentum and second moment are updated as: 

 

𝑚𝑡 = 𝑏1𝑚𝑡−1 + (1 − 𝑏1)𝑔𝑡  

𝑠𝑡 = 𝑏2𝑠𝑡−1 + (1 − 𝑏2)𝑔𝑡
2 

And weights are updated as: 

𝑤𝑡+1 = 𝑤𝑡 − 𝛼

𝑚𝑡

1 − 𝑏1

√
𝑠𝑡

1 − 𝑏1
+ 𝜀

 

Where α is the learning rate, while 𝑏1 and  𝑏2 are hyperparameters that 

control exponential decay. 

                                               

 

2. Data Generation 

Here we have a list of what we can control about our Data Generation: 

 • Divergence between classes distributions 

 • Initial Parameters for distributions 

 • Constraints for Parameters 

 • Number of Continuous Attributes 

 • Number of Ordinal Attributes (and number of respective bins) 
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 • Number of Categorical Attributes (and number of respective possible 

values) 

 • Number of Samples for each Identity 

 • Levels of Temperature for Identities 

 • Number of Identities for each Temperature Level 

About Divergence, user can specify a specific target matrix with a different 

divergence between the distributions of each pair of classes, or a single 

divergence score for all pairs of classes.  

The divergence score is computed with the KL–Divergence via the 

command: 

torch.distributions.kl.kl_divergence(distribution_1 , distribution_2) 

The Kullback– Leibler divergence (KL-Divergence) is a non-symmetric 

score that measures how much are different two distributions. When the 

two distributions are multivariate it is computed as: 

𝐷𝐾𝐿(𝑝||𝑞) =  
1

2
𝑙𝑜𝑔

|Σ𝑞|

|Σ𝑝|
−

1

2
Ε𝑝 [(𝒙 − 𝝁𝒑)

𝑇
Σ𝑝

−1(𝒙 − 𝝁𝒑)]

+
1

2
Ε𝑝 [(𝒙 − 𝝁𝒒)

𝑇
Σ𝑞

−1(𝒙 − 𝝁𝒒)]  

The KL-Divergence could be interpretated as 

the expected excess surprise from using Q as a model instead of P when 

the actual distribution is P.  

Then, we pass to the optimizer two arrays:  

• Mean Matrix: contains means for each attribute (m columns) for each 

class (N rows). [Dimension: N x m] 

• Covariances Array: contains covariances between each pair of attributes 

for each class. [Dimension: N x m x m]  

The optimizer will find new values for these arrays that satisfy the desired 

requirements in terms of constraints and KL-Divergence, then these 

parameters define the multivariate distributions, one for each class, from 

which the synthetic data will be sampled. 

Since we use Adam optimizer, we can specify an initial point, for example 

if we want specific values for some distributions, this point is always set to 

zero to guarantee a better convergence of the algorithm, but it is added in 

the loss function with respect to KL-Divergence to consider it in 

computations and also added at the end to have desired parameters. We 
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could think the initial point for the mean parameters as an indication for the 

magnitude of the attribute. 

We also introduced shallow constraints with a penalty in the loss function 

of the optimizer which is computed as the MSE between the current 

solution and the desired one. This penalty is added to the MSE between the 

current divergence matrix and the target one. 

To manage ordinal attributes, the user can specify the number of bins of 

each attribute, then a column for each ordinal attribute will be generated as 

a continuous attribute and afterwards they will be discretized in bins. The 

edges of the bins are computed to have an almost uniform distribution of 

data among them. Since values for the same attributes come from different 

distribution (one from each class), it is necessary a function to find 

quantiles of a mixture of gaussians. The result will not be an exactly 

uniform distribution among bins because of the dependencies from other 

attributes. 

To manage categorical attributes, user can specify the number of possible 

categorical values allowed for each attribute, and a column for each 

possible value for each categorical attribute will be generated as a 

continuous attribute. Then, for each categorical attribute, for each row the 

maximum value of the column related to its possible values will be set on 

1, others on 0, and each column will become a binary column that reflects 

if a row belongs to a category or not.  

If a preponderance for a categorical value in a class is desired, it is enough 

to set the mean of the column related to that value higher than other for that 

class. 

The number of samples for each class is not simply the number of rows that 

are sampled independently from the multivariate gaussians, but it is 

specified with number of identities and number of samples for each 

identity.  

We consider an identity a set of instances related to the same individual, so 

to reflect this on our dataset, we distinguish:  

• Fixed Attributes: they are the same in all the samples of the same identity. 

For example, height on adults. 

• Minimum Variance Attributes: they are very similar in all the samples of 

the same identity. For example, weight on adults. 

• Standard Attributes: they are independently sampled in different rows 

related to same identity. For example, current mood of a person. 
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To implement this, first we sample a single row, then we create other 

samples for the same identity. From the technical point of view, we acted 

like this: 

• Fixed Attributes: their values are simply copied from the first row in all 

the samples related to the identity. 

• Minimum Variance Attributes: their values are sampled from a 

multivariate normal centred with the value of the first sample of the 

identity, no covariances and a variance equals to the mean divided by 100. 

(To preserve the magnitude of the attribute).  

• Standard Attributes: their values are sampled from the original 

distribution, conditioned to the values already sampled.  There is a specific 

formula to sample form a multivariate gaussian of which some values are 

already realized. 

Regarding temperature, we wanted to admit into the dataset identities that 

belong to more classes, instead of only one. This effect could be replicated 

using SoftMax with different temperatures to make different levels of 

instability in terms of class coherence in an identity. The SoftMax is 

defined as: 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒛)𝑖 =  
𝑒

𝑧𝑖
𝑇

∑ 𝑒

𝑧𝑗
𝑇

   where T is temperature 

The idea is that for each identity a vector of numbers sampled from a 

uniform distribution between 0 and 1 is generated. Then, this vector is 

mapped into a distribution over the classes regulated by the temperature T. 

The higher is T, the closer the output probabilities in the vector will be.  

Thus, through SoftMax a vector of probabilities for classes is created 

starting from a random vector and a temperature value for each identity, 

Figure 9 SoftMax without temperature (on the left) and SoftMax with temperature T=10 
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and every sample belonging to it will have its class sampled from this 

distribution. Fixed attributes are copied in every sample of the identity from 

the first row, regardless of their classes (even if they are different from the 

one of the first row), Minimum Variance attributes are sampled with a 

reduced variance from the distribution of the class of the first row, but 

Standard attributes are sampled from the multivariate of the new class (the 

one of the current sample that generally could be different from the one of 

the first row of the identity) conditioned to the already sampled values. This 

create a bit of controlled confusion in the dataset, with samples that are not 

exclusively from a class, but with attributes that come from different 

distributions. The higher is the temperature of an identity, the more is likely 

to change class through its samples. Multiple values of temperature can be 

set in our algorithm, and user can specify how many identities must be 

created for each temperature value. 

The Synthetic Data experiments were performed with the algorithm 

described, above. The next section is about how the synthetic data 

generated were used to perform Machine Unlearning experiments. 

 

3. Data Splitting and Selection 

After data generation, for the experiments the dataset is split in some 

subsets, to perform Machine Unlearning experiments: 

• Training set: the set on which the Full Model is trained, it is composed by 

the 80% of the entire dataset. 

- Forget set: the set that must be forgotten by the Unlearned Model, 

it is composed by the 15% of the training set. 

- Retain set: the set that must remain in the Unlearned Model, and on 

which the Gold Model is trained, it is composed by the 85% of the 

training set.  

• Validation set: validation set for all the models; it is composed by the 10% 

of the entire dataset. 

• Test set: test set for all the models; it is composed by the 10% of the entire 

dataset. 

The way the samples are split among subsets is not completely random, 

since the idea is not to forget random samples from the original training set, 

but to remove some specific sample related to some individuals.  

Indeed, we want to maintain in the same subset all the samples related to a 

single identity, because the idea is to remove from the original model the 
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information about some specific individuals, represented by a specific 

identity. 

Moreover, a specific value of temperature can be indicated for forget set, 

in that way only identities with that value of temperature will be selected 

to be forgotten and the user can control how much the forget set is 

entangled in the entire training set.  

The idea is that requiring to forget identities with low temperature, forget 

set will be less entangled since all the samples related to the same identity 

will be concentrated closer in the latent space, while high temperatures 

identities will be more spread and mixed with other identities. 

Then, each model is trained on the proper training set, and they are ready 

for predicting values on unseen samples. 

4. MIA 

After that, a MIA (Membership Inference Attack) is performed on both 

models. 

We already mentioned what a MIA is, but let us observe it how we used it 

in our experiments. 

Our version of MIA is the black-box one, since the attacker cannot see the 

model, but only the outputs it gives. Using features as loss, logits or 

confidence gives more information since not only indicate what is the class 

that the model is assigning to a label, but also how confident it is. From this 

information the attacker, that is a binary classifier, tries to understand if 

each sample was in the training set of the model or not. 

In our experiments we used MIA against both Full and Gold model, 

comparing their predictions on forget set and test set. 

While the Gold model has not seen both sets, thus the MIA should not be 

able to distinguish where samples come from, the Full model has seen the 

samples from forget set, but not the ones from test set, and we expect a 

higher accuracy of MIA as result. 

Moreover, we tried to provide to MIA linear regressor different 

combinations of features about predictions on samples. We computed, for 

the model prediction of each sample: 

• Loss 

• Maximum Confidence: it is computed taking the maximum values among 

assigned probabilities for each class, it indicates how much confident the 

model is in assigning a class to a sample. 
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• Entropy: it indicates the confusion of the model predicting the class for a 

sample, the closer are different class probabilities, the higher is the entropy, 

since it means that the model has not a clear assignment. 

• Binary Feature for correct classification or not: it indicates whether the 

model prediction is correct (1) or not (0) 

• Probabilities for each class (Normalized logits) 

After testing various combinations between these, Entropy and Maximum 

confidence turned out to be not informative at all, since with or without 

them the MIA result was exactly the same, while the binary feature for 

correctness of classification resulted too much informative, leading to a 

MIA result much higher than 0.5 also for the Gold model, that is not 

desired. 

Which of these features must be used could be subject of discussion and 

the user can choice how to combine them depending on how much power 

is desired to give to the MIA, the more features it has, the more it will be 

capable to capture differences between samples predictions. Since in our 

examples datasets are not very complex or large and models have only few 

layers, we decided in our experiments to utilize only the loss, that gave us 

satisfying results. 

Another test was performed using the outputs of the Neural Network before 

the last layer (the classification one), in order to capture the position of the 

sample in the latent space, but also this resulted to be too much informative, 

and providing this information the MIA regressor was able to split too 

much efficiently test and forget set also for Gold model. Probably this 

behaviour is due to the selection of the identities to be forgotten, that are 

picked just among the identities of a single temperature level. Using in a 

forget set only identities from a subset of the dataset could create patterns 

that MIA could exploit to divide members and non-members of the training 

set, even if the Gold model has not seen both.  

 

The output of MIA is the accuracy, that indicates the proportion of samples 

of which the provenance was correctly identified, and forgetting score, that 

is the distance of the accuracy from the random guess (0.5). This is because 

if the accuracy of MIA is lower than 0.5, it means that it could be used as 

an inverted classifier, and consider positive predictions as negative and vice 

versa.    

Thus, the higher MIA accuracy is for the Full model, the more evident is if 

a sample was or not in its training set, while for the Gold model we always 

expect a result near 0.5, because it truly has never seen both samples, and 

we are asking to the binary classifier of MIA an impossible challenge. 
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We also notice during testing that observing accuracy of models could be 

informative about interpretating MIA results. Indeed, if the model learned 

very well and have both good test accuracy on unseen samples, even 

without the forget set the Gold model can still perform good and be able to 

deceive MIA, having a good capability to predict unseen samples as the 

Full model. However, on the contrary, if models have not learned very well 

the training set, their prediction will be near random guess, and it would be 

impossible for the MIA classifier to distinguish unseen and forget data also 

for the Full model, because its prediction would be too poor and similar to 

a random assignment, even on seen samples. 

In both these cases the difference between MIA results on Full and Gold 

model is not significative, and the Unlearning process has not much sense. 

Indeed, we are interested in the Delta MIA Accuracy between the two 

models, or formally equivalently the Forgetting Score of the Full Model. 

(Notice that in our experiments we will show Delta Forgetting Score in our 

plots, since in practice the true value of MIA accuracy on the Gold Model 

is slightly different from the theoretical value of 0.5). This value indicates 

what we can call the unlearning potential of the model, the more this delta 

is wide, the more the unlearning process can work. Indeed, if the MIA 

accuracy of the Full model is high, it means that it is easy to understand if 

a sample was in its training set or not, and the unlearning process has room 

to act. However, a lower difference of MIA accuracy between Gold and 

Full models also suggest that the Full model already provides a good level 

of privacy of its training set, on one hand this means that the unlearning 

process is less necessary, on the other hand that the Unlearned model will 

be more efficient than the Unlearned model of another model that 

guarantees less privacy, because it would start from a already good model 

in terms of safety.  

The MIA accuracy for the Unlearned model will be included between the 

two MIA accuracies of Full and Gold model. The same holds for the 

Forgetting Score. 

The same concepts will be analysed and discussed more deeply in the 

Experiment section. 

5. Unlearning Evaluation 

The last part of our work was to apply the presented unlearning techniques 

to our dataset, and using the MIA accuracy to evaluate results.  

The experiments and the results found will be discussed more precisely and 

deeply in the proper section, while here we will just discuss briefly the 

process and the reasons of our choices. 
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First, as showed in the previous section, we tested model with different 

complexity with MIA to observe if, as expected, a decreasing trend is 

followed by the leakiness of the trained classifier with respect to an 

increasing KL-Divergence. 

Then, we applied different unlearning techniques to verify that the 

unlearned model guarantees a better privacy with respect to the original 

Full model, that means having a Forgetting Score included between the Full 

model one and the Gold model one, that is theoretically zero (not always in 

practice since the linear regressor of MIA could capture some hidden 

patterns in the forget set, especially if, as in our case, it is not selected 

randomly from the training set but from a subset of it). 

The result, as will be discussed in the next sections, confirmed what we 

expected, and synthetic data generated has been proven successfully to be 

suitable for experiments in Machine Unlearning, with the advantage of 

being able to be controlled accordingly to necessities and providing a 

perfect level of privacy, and as benchmarks to test and compare different 

unlearning methods. 

 

 



30 
 

4. Data Synthesis Experiments 

Before Machine Unlearning experiments, we tested our Data Generation 

algorithm with different parameters, to check its correctness and proper 

functioning. We also tested it to observe elapsed time and how does it scale 

changing features as number of classes, number and type of attributes and 

number of samples and identities. 

For the runs we used T4 GPU from Google Colab, and for the initial Data 

Generation experiments a simple classifier of three layers to observe the 

accuracy of classification performed on our synthetic dataset. As will be 

explained later, for more complex experiments new models with different 

complexity will be used. 

In the first part of the tool development process, we performed experiments 

in different phases observing at each step results before adding new 

features and obtaining the complete version. Here these experiments are 

shown, before analysing the final experiments that conclude our work. 

Even if the key aspect of the work is about Data Generation for Machine 

Unlearning, testing our algorithm for pure Data Generation was useful to 

become aware of which hyperparameters of our dataset are important to 

increase or decrease its complexity, and how much each feature impacts on 

the difficulty of the task for the classifier.  

Generally, we could expect that with higher KL-Divergence the accuracy 

will grow, because having more separate classes distributions will make it 

easier for the classifier to get predictions right. 
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The example in Figure 10 was performed with: 

• 3 Classes 

• 3 Continuous Attributes (Initial Point: [170, 65, None], No 

Constraints) 

▪ First is Fixed, second is Minimum Variance 

• 1 Ordinal Attribute (5 bins, No Initial Point, No Constraints) 

• 1 Categorical Attribute (3 values, No Initial Point, No Constraints) 

• 300 Identities per Class, 10 Samples per Identity 

We can observe some results for the 150 KL-Divergence synthetic dataset: 

▪ Matrix of Means: 

0.58 -0.04 0.74 1.65 1.7e+02 6.5e+01 1.74 

0.85 -0.56 0.58 -0.61 1.7e+02 6.5e+01 -2.07 

-1.83 -0.56 -1.08 0.26 1.7e+02 6.5e+01 1.6 

Table 1 Result of Means Matrix for dataset with 150 KL-Divergence between classes 

▪ Divergence Matrix: 

0. 150.73770142 150.53108215 

150.10214233 0. 149.41575623 

151.18327332 151.38252258 0. 

Table 2 Result of Divergence Matrix for dataset with 150 KL-Divergence between classes 

As we can observe, desired divergence is reached, and the attributes reflect 

the chosen initial point (in the matrix of means we have ordinal, categorical 

Figure 10 Example 1 of model accuracy on Synthetic Dataset 
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and continuous attributes, in this order, so we can see that 170 and 65 are 

respected for all classes). 

As expected, when KL-Divergence is higher, the test accuracy increases. 

For the search of optimal parameters of the distributions different 

tolerances can be used, depending on specific needs or values scale. 

In the next example, we kept all parameters equal, except for the number 

of classes, that we raised to 5: 

• 5 Classes 

• 3 Continuous Attributes (Initial Point: [170, 65, None], No 

Constraints) 

▪ First is Fixed, second is Minimum Variance 

• 1 Ordinal Attribute (5 bins, No Initial Point, No Constraints) 

• 1 Categorical Attribute (3 values, No Initial Point, No Constraints) 

• 300 Identities per Class, 10 Samples per Identity 

As we might have expected, with more classes general accuracy is lower, 

but the general increasing trend of accuracy with respect to a larger KL-

Divergence holds. 

The next example shows how, keeping the same number of classes, using 

more attributes the general accuracy of the classifier increases again, 

because we are giving more information to the model about samples. It 

leads to a simpler dataset. 

Figure 11 Example 2 of model accuracy on Synthetic Dataset 
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• 5 Classes 

• 5 Continuous Attributes (Initial Point: [170,65, None, None, None], No 

Constraints) 

▪ First is Fixed, second is Minimum Variance 

• 5 Ordinal Attribute (7 bins, 5 bins, No Initial Point, No Constraints) 

• 5 Categorical Attribute (5 values, 3 values, No Initial Point, No 

Constraints) 

• 600 Identities per Class, 5 Samples per Identity 

Let us denote that just 5 samples per identity are provided, so while the 

attributes are many, the information about a single identity is not very 

much. Despite of this, the accuracy results still quite high. 

From now on, all the shown experiments are performed with the final 

version proposed of the tool. 

We can also provide a portion of a generated dataset, in order to effectively 

see how synthetic data appears. We will use these hyperparameters: 

• Number of Classes: 3 

• Number of Identities for each temperature level: [5,10,5] 

• Temperature Levels: [0.01,1,5] 

• Temperature Level for Forget Set: 0.1 

• Number of Samples per Identity: 200 

Figure 12 Example 3 of model accuracy on Synthetic Dataset 
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• Number of Continuous Attributes: 6 (No Initial Point, No Constraints) 

• Number of Ordinal Attributes: 0 

• Number of Categorical Attributes: 0 

• Number of Fixed Attributes: 2 

• Number of Minimum Variance Attributes: 2 

• Number of Standard Attributes: 2 

• Variance Ratio: 100 

We can observe some samples of different KL-Divergence values: 

0.455974 0.379259 -0.5553 0.7372 -0.90434 -1.4758 1 

0.455974 0.379259 -0.5119 0.5858 0.28408 -0.3831 0 

0.455974 0.379259 -0.6179 0.8020 -0.22037 -1.0677 0 

0.455974 0.379259 -0.5686 0.8210 0.025825 -1.1221 1 

0.455974 0.379259 -0.5607 0.6601 -0.15184 -0.1684 1 

0.455974 0.379259 -0.4439 0.6818 0.98455 -0.7948 1 

Table 3 Example of Dataset with KL-Divergence 3.0 

We can notice from the first six rows of the dataset that, as expected, fixed 

attributes (first two columns) are kept constant as this is a single identity, 

minimum variance attributes (third and fourth columns) are similar but not 

identical and the standard attributes are completely different in each 

sample. It could also be interesting to observe labels of these samples, that 

are provided in the last column. Since this is a low temperature identity 

(level 0.01) we could deduct from this row that the main class of this 

identity is 1, but still some samples belong to other classes, as desired. 

Now, since identities are sorted, we can search for a high temperature 

identity to observe the difference: 

1.06019 1.0274 -0.604759 1.20467 -0.08242 -2.21113 1 

1.06019 1.0274 -0.694080 1.44677 -0.48284 -1.14367 2 

1.06019 1.0274 -0.70930 1.25305 -0.75031 -1.03831 0 

1.06019 1.0274 -0.642710 1.18547 -0.30387 -0.94950 1 

1.06019 1.0274 -0.635953 1.23215 -0.18861 0.46567 0 

1.06019 1.0274 -0.681238 1.20447 0.37751 -0.96584 2 

Table 4 Example of high temperature identity for dataset with KL-Divergence 3.0 

Despite the main class of this identity is 1, as we can deduce since the first 

sample of an identity identifies its main class, across other samples labels 

are almost uniformly distributed, that is what we expect from a high 

temperature identity. 
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Here we can observe instead some plots of synthetic data generated to 

notice the KL-Divergence effect: 

The example in Figure 14 was performed with 3 classes, 3 attributes 

without initial point or constraints and without identities, the KL-

Divergence chosen was 3. We can clearly distinguish the three classes. 

Figure 13 Example of Synthetic Dataset with KL-Divergence 3 

Figure 14 Example of Synthetic Dataset with KL-Divergence 50 
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Now from Figure 13  we can observe a plot of a synthetic dataset built with 

the same number of classes and attributes but a higher KL-Divergence. The 

KL-Divergence chosen is 50. 

Here we can notice that classes are more distinguishable with respect to the 

previous case, and this is exactly the effect that we expect from choosing a 

larger KL-Divergence. 

Now we can observe an example with the concept of identities, to observe 

how the data distribution changes. 

The next experiment was performed with 3 classes, 3 attributes, KL-

Divergence 50 and only 10 identities with 100 samples each and maximum 

temperature level (that means 5) to clearly observe them. To give sense to 

the concept of identities we fixed the first attribute and set the second one 

on minimum variance. 

Since the fixed attribute is the first (Attribute 0) and the one with minimum 

variance is the second (Attribute 1), it is clear that each identity is composed 

by a “column” of points along the axis of Attribute 2. Setting their 

temperature to 5 (the highest level), what we expected was an almost 

uniform distribution of the samples of the identity among the three classes, 

and how we can observe from the plot this is confirmed. 

Figure 15 Example of Synthetic Dataset using Identities concept 
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Now let us observe a similar plot with the same hyperparameters except for 

the identities’ temperature, that will be set on the minimum value, 0.01. 

Comparing this plot with the previous one it is evident how now the 

identities are still evident as “columns” of points, but in each identity, there 

is almost only one class, that is exactly what we expected to see lowering 

temperature level. 

There is total freedom of choice for the parameters of the Synthetic Dataset, 

the limitations are only about computational time and secondarily memory.  

Obviously, the time taken by the generation of the dataset depends on the 

desired dimension. Experiments shown that number of samples does not 

take much time, thus it is not about the size of the dataset, but more 

concerning number of classes and attributes. This is because the most time-

expensive part of the generation is the optimization of distributions 

parameters, that consist in a matrix of the means of the distributions (with 

dimension 𝑁 × 𝑚) and a three-dimensional array of the covariances 

matrices between attributes of each class (with dimension 𝑁 × 𝑚 × 𝑚), 

and results in the order of 𝑁𝑚2. 

Indeed, adding attributes increase more the required time than adding 

classes. 

However, the required time for Synthetic Data Generation is satisfying, and 

to give an idea datasets of the dimensions we used in our examples 

composed by 3 classes and 6 attributes took an amount of 20-30 seconds 

Figure 16 Example of Synthetic Dataset with identities with low temperature 
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for the parameter optimization and 10-15 seconds for sampling (using 150 

identities with 200 samples each), and must be considered that also the 

desired KL-Divergence could impact this, since the target of the 

optimization task can easily influence the taken time. 
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5. Unlearning Experiments 

For the unlearning experiments section, we implemented the three 

unlearning techniques mentioned in the Methodology section.  

The aim of the experiments is to show performances of different unlearning 

methods on our synthetic datasets and confirm that evaluating the process 

with metrics like MIA accuracy, the result will be included between the 

Gold model performance (perfect privacy) and the Full model one (original 

level of privacy). 

The aim for the Unlearned model is to have a MIA accuracy the closer to 

0.5, that means that the unlearning process was perfectly successful and 

deduce whether a sample was in the training set of the model or not is nearly 

impossible. Here we can observe an example of MIA results: 

 

How we can observe, results are provided as means and standard deviations 

of Forgetting Scores, because the same experiment is repeated with 

different seeds in order to reduce the noise due to dataset splits and model 

weights initialization. Indeed, different splits could lead to different 

performances, even if the forgotten identities have the same temperature 

level.  

Figure 17 MIA and accuracy result analysis 
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The number of seeds used is another hyperparameter decided by the user, 

the more seeds are used, the less influent will be the noise impact. 

Another decision that the user can make is to keep the same fixed dataset 

for all the run with different seeds, or not. Even the dataset generation can 

be different with the same hyperparameters because of the random 

initialization, and keeping it fixed help to reduce noise. 

The hyperparameters used for this example are: 

• Number of Classes: 3 

• Number of Identities for each temperature level: [10,20,10] 

• Temperature Levels: [0.01,1,5] 

• Temperature Level for Forget Set: Low 

• Number of Samples per Identity: 200 

• Number of Continuous Attributes: 6 

• Number of Ordinal Attributes: 0 

• Number of Categorical Attributes: 0 

• Number of Fixed Attributes: 2 

• Number of Minimum Variance Attributes: 2 

• Number of Standard Attributes: 2 

• Variance Ratio: 100 

• Model Used: Large_Classifier 

• KL-Divergence values: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 

• Number of Seeds: 6 

• Fixed Dataset: True 

From Figure 17, where we used low values for KL-Divergence, and in a 

small interval, we can notice that the difference between Gold and Full 

model in terms of Forgetting Score, considering some noise, is almost 

constant with respect to KL-Divergence.  

We can notice, observing the log of this experiment, that generally the 

accuracies are higher with KL-Divergence equal to 9, because the dataset 

is simpler, and we can focus on Full MIA accuracy, that is larger than Gold 

MIA one (that is exactly 0.5, as expected).  

This could be due to overfitting, as the higher Gold accuracy (performed 

on test set) in the 9 KL-Divergence case suggests. If the Full model overfits 
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data, it is much more confident in predicting them with respect to the 

unseen ones from the test set, and the MIA regressor can easily distinguish 

them. 

However, this experiment shows that using small values for KL-

Divergence is not very informative, since it is not recognizable a clear 

pattern or trend, and we tried to explore further using larger values. 

Thus, we can observe what happens using KL-Divergences in a larger 

interval, for example from 1 to 100: 

 

Observing Figure 18, we can notice that increasing KL-Divergence the 

difference between Forgetting Score of Full model and Gold model 

decrease. These results suggest that when the dataset become simpler, 

models improve their generalization capability and is not necessary to stick 

to the precise training set characteristics to learn. Thus, models generalize 

well also on unseen samples and MIA cannot distinguish anymore seen and 

unseen samples. 

From this plot we can understand the aim of the Unlearning process that 

we will do: with higher KL-Divergences the Full model already has a good 

level of privacy, if we apply an unlearning algorithm probably we will have 

a final Forgetting Score lower than applying it to a model trained on a lower 

KL-Divergence dataset, but it would not have much room to act. With 

lower KL-Divergences instead the final Forgetting Score after unlearning 

algorithm will probably be higher (thus worse), because the interval in 

Figure 18 Results of MIA with KL-Divergences from 1 to 100 
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which it could stand is larger, but, since the original Full model has not a 

good level of privacy, it has more sense to be applied 

First, we will observe and discuss how models with different complexity 

perform on the same fixed dataset, to compare them and deduce where and 

how the unlearning process could have sense to be applied. 

The fixed dataset that will be used for all the unlearning experiments was 

created with these parameters: 

• Number of Classes: 3 

• Number of Identities for each temperature level: [10,20,10] 

• Temperature Levels: [0.01,1,5] 

• Temperature Level for Forget Set: 0.1 

• Number of Samples per Identity: 200 

• Number of Continuous Attributes: 6 (No Initial Point, No Constraints) 

• Number of Ordinal Attributes: 0 

• Number of Categorical Attributes: 0 

• Number of Fixed Attributes: 2 

• Number of Minimum Variance Attributes: 2 

• Number of Standard Attributes: 2 

• Variance Ratio: 100 

• KL-Divergences: [1, 20.8, 40.6, 60.4, 80.2, 100] 

• Number of Seeds: 3 

• Fixed Datasets: True 
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Figure 19 MIA results with Small Classifier forgetting identities with Temperature = 0.01 

Figure 20 MIA results with Medium Classifier forgetting identities with Temperature = 0.01 
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Observing these plots, we can notice that the deeper is the model, the less 

is the guaranteed privacy, as is shown by the increasing Delta Forgetting 

Score. This is an expected result because more layers means that the model 

learns better its training set and MIA can distinguish with more success 

whether the classifier has already seen a sample or not.  

We can also observe that, as said before, generally using all classifiers, with 

higher KL-Divergences the Full model already has less dependence from 

the training samples, that means that a better level of privacy is guaranteed. 

Indeed, thanks to the increasing simpleness of the dataset, the 

generalization capability improves and model’s performances on unseen 

samples become as good as predictions on already observed samples. 

Before observing unlearning processes results, we can analyse what 

happens if we change the temperature level of the identities that must be 

forgotten. All the next plots were made using the Large Classifier. 

 

 

Figure 21 MIA results with Large Classifier forgetting identities with Temperature = 0.01 
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From this plot it is evident that using identities with a higher level of 

temperature in the forget set, the MIA is much less accurate, and the 

difference between forgetting scores of Gold and Full models is much 

lower than the previous case.  

This was an expected result, as with respect to comparing performances on 

a simpler forget set composed by more predictable identities with 

predictions on unseen samples, predictions on identities that require more 

generalization capabilities of the model are necessarily less confident, and 

MIA can’t distinguish as well as before seen and unseen samples. 

Figure 22 MIA results with Large Classifier forgetting identities with Temperature = 1 
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In the next plot we will observe what happens when the forgotten identities 

are even less predictable, using the higher level of temperature in the 

dataset. 

 

As expected, increasing even more the temperature of selected identities 

for the forget set, the difference between forgetting scores almost 

disappears, and we can observe almost just noise. We can also notice, 

observing the accuracies of the models, that they almost coincide each 

other. This confirms that training two models with training sets that differs 

of very noisy identities leads to almost identical results. That is explained 

by the fact that very noisy identities are less meaningful, and the model 

can’t learn very much from them, since four attributes out of six are 

constrained by the main class of the identity and only two free attributes 

are not enough informative to explain the class label. 

Since it has less sense to apply unlearning on the last two cases, results on 

experiments with lower temperature identities in the forget set will be 

shown. 

Now we will observe the results of the application of the aforementioned 

unlearning processes on our full models. The experiment will be repeated 

for three levels of complexity of the models: Small, Medium and Large. 

 

Figure 23 MIA result for Large Classifier forgetting identities with Temperature = 5 
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Figure 25 Unlearning results with Large Classifier 

Figure 24 Unlearning results with Medium Classifier 
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As we expected, after the unlearning process the distance of the Forgetting 

Score with respect to the Gold model’s one is reduced, considering some 

noise especially when the KL-Divergence is very little and the neural 

network too simple, because in this case classes are almost overlapped, and 

the entire dataset is close to be pure noise for a classifier that has not enough 

representative power. 

Accuracies are very similar because even if the complexity of the models 

are different, there are just few layers of difference between them, and the 

test set (on which the accuracy shown is computed), but it is still 

meaningful to observe that because we don’t want only a smaller Delta 

Forgetting Score, but also that the Unlearned Model has still a good 

performance, or even a random classifier would be satisfying. 

From these plots it is evident that a comparison between different 

unlearning processes is easy to make with synthetic datasets, and there is 

total freedom of choice for the desired models, even deeper or more 

powerful than the ones used for the examples. 

  

Figure 26 Unlearning results with Small Classifier 
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6. Conclusions 

We have discussed how we managed to create a tool for Synthetic Data 

Generation with the possibility to control almost every characteristic, and 

reasons for its application and uses.  

We also shown its application in controlled Machine Unlearning applying 

different techniques and observing the suitability of our tool for creating 

easily, quickly and efficiently benchmarks of various types in term of size, 

entanglement and variety for testing models and unlearning strategies. 

We noticed that main limitations of this method are very small values of 

KL-Divergence, where is difficult to understand how good the result is as 

classifiers struggle to have good performances, computational time and 

memory resources if very large datasets in terms of number of classes or 

attributes are required, since the parameters to be optimized may be too 

many.  

We also tried to stress our algorithm in order to observe its behaviour, for 

example with very asymmetric values for KL-Divergence among 

distributions, or using constraints that contradicted desires KL-Divergence 

values. In the first case the result was still good, without any differences 

with respect to the symmetric KL-Divergence case, while in the second  

case, due to the impossibility of satisfying both the requests (it would be 

mathematically impossible control with total freedom the divergence of 

distributions with locked parameters), the optimizer simply prefer to satisfy 

the divergence objective, unless the penalty of the constraints is increased. 

Like this penalty, many other hyperparameters that we tuned during the 

experiments could be changed, but they were not discussed as they are not 

generally dependent on the models used or the tasks, but we found that 

work better in almost all cases. Examples are tolerance for stopping 

criterion, number of epochs and learning rate of the ADAM optimizer used 

for parameter search, or the variance used for the initialization of 

parameters. However, changing these values within the limits of reason 

would not change the results, and could at most change the compromise 

between the elapsed time and the goodness of the performance. 

Another subject of discussion could be the choice of the features passed to 

the MIA regressor to attack the privacy levels of the models, as discussed 

before many strategies could be applied, we decided for our examples to 

use loss because using our models it was enough to show how the 

unlearning processes worked, but there is the possibility to combine other 

features as logits, entropy, confidence and correctness of predictions. 
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We can conclude that our work can be considered satisfying as the main 

objective of creating a tool to generate controlled synthetic tabular data was 

reached. The main reasons that motivated this work were that collecting 

data for in our case Machine Unlearning training, or more generally for 

Machine Learning training, is often much expensive in terms of energy, 

time and money, and in this thesis it was shown that with the presented tool 

datasets of various characteristics and sizes can be generated easily, with 

almost total control capability and in a reasonable time. 
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