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Summary

Sleep plays a fundamental role in physical and mental health, and poor-quality sleep is associ-
ated with a wide range of chronic conditions. However, sleep disorders remain underdiagnosed
and undertreated in many cases, in part due to the limited accessibility of accurate sleep monitor-
ing. Although Polysomnography (PSG) is the gold standard for sleep monitoring, it is limited to
controlled clinical settings, requires trained professionals, and is typically restricted to a single
night of sleep that may not reflect the typical sleep behavior of the patient.

Recent advances in wearable technology offer new opportunities for continuous, unobtru-
sive, and home-based sleep monitoring. This thesis explores a deep learning-based approach to
automatic sleep staging using physiological signals collected from wearable devices to provide
accessible tools for personalized sleep assessment, particularly for individuals with suspected
or diagnosed sleep disorders.

The proposed method uses a Convolutional Neural Network (CNN) architecture, the U-
Sleep, trained on multimodal data, namely Acceleration (ACC), Blood Volume Pulse (BVP),
Electrodermal Activity (EDA), and Skin Temperature (TEMP), recorded using the Empatica
E4 wristband. The dataset includes 127 participants with simultaneously recorded PSG and
wearable data, allowing for direct performance comparison with the clinical standard.

Results show that the model can accurately estimate key sleep parameters, with Bland-
Altman analysis revealing good agreement for Sleep Efficiency (SE), REM Latency (RL), Wake
After Sleep Onset (WASO), and durations of REM and Deep sleep. Epoch-by-epoch concor-
dance reached an accuracy of 0.87±0.07 for Wake, 0.90±0.04 for REM, 0.71±0.07 for Light,
and 0.89±0.04 for Deep sleep. Overall accuracy and F1-score were 0.69±0.08 and 0.62±0.11
for the whole dataset, and 0.77±0.05 and 0.74±0.06 for healthy participants, respectively.

To assess the robustness and generalizability of the model, additional experiments were con-
ducted on external datasets and with a different wearable device. These evaluations confirmed
the adaptability of the model to various data sources and configurations, highlighting its poten-
tial for scalable application in real-world contexts.

In conclusion, this work demonstrates the feasibility of using multimodal wearable data for
personalized sleep staging. By capturing individual-specific physiological patterns, the pro-
posed approach supports the use of deep learning for precision sleep health, with potential
applications in long-term monitoring, early detection, and management of sleep disorders in a
clinical setting.
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Chapter 1

Introduction

1.1 The importance of sleep

Sleep is an essential biological process marked by a substantial reduction in physical and mental
activity, altered consciousness, and decreased muscle tone. It is regulated by circadian rhythms,
influenced by environmental conditions such as light and temperature, and is governed by com-
plex neurobiological mechanisms. On average, sleep occupies about one-third of human life,
highlighting its fundamental role in maintaining physiological balance and overall health.

Sleep quality and structure, particularly the alternation between Non-Rapid Eye Move-
ment (NREM) and Rapid Eye Movement (REM) stages, are crucial for cognitive and physical
functioning. Restorative sleep supports memory consolidation, attention, emotional regulation,
immune defense, tissue repair, and hormonal balance.

In contrast, poor or inadequate sleep has been linked to a wide range of negative effects.
Zheng et al. [1] associate irregular sleep patterns with a higher risk of chronic conditions like
cardiovascular disease, type 2 diabetes, and obesity. Cognitive problems, such as reduced con-
centration, slower reaction times, and memory lapses, are also common, and chronic sleep
disorders can contribute to mental health disorders and increase the risk of accidents. Moreover,
reductions in Slow-Wave Sleep (SWS) and REM sleep have been associated with structural
brain changes in older adults, including brain atrophy [2], suggesting that sleep quality may be
a risk factor for neurodegenerative diseases such as Alzheimer’s.

Given its pervasive impact on health, monitoring sleep patterns is a key tool in the early
detection and prevention of related disorders. Promoting good sleep should be a central goal in
public health strategies.

1.1.1 Sleep Stages

According to the American Academy of Sleep Medicine (AASM), sleep is divided into five
distinct stages that alternate cyclically throughout the night. These include a wake stage, three
NREM stages—N1, N2, and N3—and one REM stage. Together, these stages form the sleep
architecture, which typically repeats every 90 to 120 minutes in healthy adults.

The characteristics of each sleep stage are the following:
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• Stage N1 marks the transition from wakefulness to sleep and represents light sleep, as
individuals can be easily awakened in this phase. During this stage, brain activity begins
to slow, muscle tone decreases slightly, and eye movements are slow and rolling.

• Stage N2 is a deeper form of light sleep and constitutes the largest proportion of total
sleep time. It is characterized by a further slowing of brain activity and the appearance
of reduced response to external stimuli. Body temperature drops, heart rate slows, and
muscles become more relaxed.

• Stage N3, also known as SWS or deep sleep, is the most restorative stage. It is dominated
by high-amplitude, low-frequency delta waves. During N3, muscle tone, breathing rate,
and blood pressure reach their lowest levels. This stage is critical for physical recovery,
immune function, and memory consolidation.

• REM sleep, contrarly to NREM stages, is characterized by rapid eye movements, low
muscle tone (near paralysis), and brain activity similar to wakefulness. This is the stage
where most vivid dreaming occurs. REM sleep plays a vital role in emotional regulation,
mostly in the consolidation of procedural and emotional memories.

Sleep typically begins in N1 and progresses through N2 and N3 before entering REM. Over
the course of the night, the proportion of REM sleep increases, while N3 sleep becomes less
prominent. N1 and N2 are collectively referred to as light sleep, and N3 as deep sleep. For the
purpose of this work, the four stages considered will be: Wake, REM, Light (N1 + N2), and
Deep (N3).

1.1.2 Sleep Disorders
Sleep disorders are a group of medical conditions that alter sleep quality, timing, and duration,
often leading to significant daytime distress. They can manifest as difficulty falling or staying
asleep, excessive daytime sleepiness, abnormal behavior during sleep, or disruptions of the
body’s internal clock. According to the National Institute of Health (NIH), sleep disorders
affect approximately 30–40% of the global population, making them a worldwide public health
concern. These conditions can arise from various causes, including genetic predispositions,
neurological disorders, lifestyle factors, or other medical conditions, and their impact ranges
from mild disturbances to severe, chronic conditions.

The most common sleep disorders are the following:

• Sleep-related breathing disorders: conditions characterized by abnormal respiration pat-
terns or insufficient ventilation during sleep. These disorders can lead to fragmented sleep,
reduced oxygen levels, and daytime fatigue. One common example is Obstructive Sleep
Apnea (OSA), which causes relaxation of the tongue that blocks the airway during sleep.

• Insomnia: difficulty falling, staying asleep, or waking up too early and being unable to
return to sleep. People with insomnia often experience daytime fatigue, irritability, poor
concentration, and reduced performance.

• Central disorder of Hypersomnolence: difficulty staying awake during the day despite
getting a normal or long amount of nighttime sleep.
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• Parasomnias: collection of unusual sleep behaviors, movements, emotions, perceptions,
or dreams that occur while falling asleep, during sleep, or while waking. These events are
typically involuntary and can be disruptive to the individual or bed partner. For instance,
REM sleep behavior disorder, often coexisting with other neurological disorders, causes
people to act out during dreams.

• Circadian rhythm disorders: shifted sleeping hours, mismatching the normal day-night
schedule. This misalignment can lead to difficulty falling asleep, waking up at socially
acceptable times, or maintaining regular sleep-wake patterns.

Understanding and identifying these disorders is essential not only for clinical diagnosis
but also for the development of specific interventions and personalized therapies. Since many
sleep disorders alter the architecture and distribution of sleep stages, several sleep measures -
such as sleep onset latency and REM duration - can be valuable biomarkers. These quantitative
indicators provide insights into underlying pathological processes and can be used for early
detection, treatment monitoring, and risk stratification in both clinical and research contexts.

1.2 Polysomnography

PSG is considered the gold standard for sleep monitoring and clinical diagnosis of sleep disor-
ders. It involves the simultaneous recording of multiple physiological signals during sleep, in-
cluding Electroencephalogram (EEG), Electrooculogram (EOG), and Electromyography (EMG),
among others. These signals provide a comprehensive overview of brain activity, eye move-
ments, and muscle tone, which are essential for the accurate sleep staging.

Despite its diagnostic accuracy, PSG presents several limitations. The process requires sleep
technicians or clinicians to manually annotate sleep stages by visually inspecting the recorded
signals. This manual scoring is time-consuming and inevitably subjective, leading to variability
in classification. For instance, inter-rater agreement in four-stage sleep classification has been
reported to be around 83.7%, according to Nikkonen et al. [3], who analyzed 50 PSG record-
ings scored by 10 experts from 7 different sleep centers, involving both healthy individuals and
patients with sleep disorders. Furthermore, PSG is typically conducted in a controlled hospital
or sleep laboratory environment, requiring the attachment of numerous sensors to the patient’s
head, face, chest, and limbs. This setup can interfere with natural sleep patterns, as the unfamil-
iar setting and the physical discomfort of the equipment may lead to altered or unrepresentative
sleep behavior [4]. In addition, the procedure is labor-intensive, expensive, and not scalable for
big populations and long-term use [5].

As a result, recent research has increasingly focused on developing more accessible and less
intrusive alternatives to traditional PSG. These approaches aim to facilitate large-scale, cost-
effective sleep monitoring while maintaining clinical relevance. Such advancements are partic-
ularly important not only for the early detection of sleep disorders, but also for understanding
their potential associations with other medical conditions, including neurodegenerative diseases
[6].
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1.3 Wearable Devices

The increasing demand for accessible and non-intrusive sleep monitoring in real-world settings
has driven the development and spread of wearable and nearable technologies. Devices such
as smartwatches, wristbands, sensor-embedded mattresses, and bedside radars have emerged as
promising tools for capturing sleep-related physiological data outside the clinical environment.
These technologies can be classified as either consumer or research devices, depending on their
use, data accessibility, and validation. They typically record signals such as Heart Rate (HR),
ACC, TEMP, and in some cases EDA or Photoplethysmography (PPG), from which sleep stages
or measures can be estimated.

While such technologies offer the potential for scalable and cost-effective sleep assessment,
significant challenges remain. The most challenging among them is improving the accuracy
of sleep detection algorithms and maximizing the clinical relevance of the data these devices
produce. Many commercial devices rely on proprietary algorithms and have limited ability to
distinguish between light, deep, and REM sleep stages with sufficient precision. These limita-
tions are highlighted by a prospective multicenter validation study that evaluated 11 commer-
cially available sleep trackers, revealing substantial variability in their performance and limited
agreement with gold-standard PSG scoring for sleep stage classification [7].

Moreover, a substantial number of wearable systems lack proper validation in clinical pop-
ulations, particularly among individuals with sleep disorders, who have atypical sleep archi-
tecture. As emphasized by Zambotti et al. [8], precise benchmarking against PSG in diverse
datasets is essential to establish the reliability and generalizability of these technologies across
different applications.

In this study, two research wearable devices are employed to explore the feasibility of sleep
monitoring through wrist-worn sensors:

• Empatica E4: a wristband device designed for research applications that provides high-
resolution raw physiological data, including 3-axis ACC, BVP, EDA, and TEMP.

• Corsano: a research-grade wristband providing both raw physiological signals and sleep
stage estimations, offering an integrated approach to sleep tracking.

1.4 Research Goals

The main objective of this study is to develop a deep learning-based model capable of classi-
fying sleep stages using physiological data collected from wrist-worn research devices, with a
particular focus on individuals affected by sleep disorders. This research is motivated by the
need to bridge the gap between the high accuracy of clinical sleep monitoring methods and the
practicality of wearable technologies. Specifically, the aim is to design a model that surpasses
the classification performance of currently available consumer-grade devices, while maintaining
scalability, accessibility, and reduced obtrusiveness, which are key limitations of standard PSG.

Given the increasing relevance of real-world sleep monitoring, the study also emphasizes
clinical applicability. By focusing on populations with diagnosed sleep disorders, it addresses
a significant gap in wearable validation studies, which often rely on healthy participants. The
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methodology integrates multiple sources of physiological data to improve stage discrimination
and tests the robustness of the proposed solution across datasets and device types.

The specific research objectives can be summarized as follows:

1. Integration of EDA and TEMP: Investigate the impact of adding EDA and TEMP to
traditional sensor modalities (e.g., ACC and PPG), focusing on signal preprocessing and
model optimization. The goal is to evaluate whether these additional signals enhance the
model’s ability to differentiate between sleep stages.

2. Diagnosis-specific performance analysis: Assess the model’s performance across differ-
ent diagnostic subgroups (e.g., insomnia, sleep apnea, parasomnias), together with healthy
participants, to identify potential strengths and limitations. This analysis will help un-
derstand how sleep disorders affect wearable-based stage classification for future model
adaptations in clinical settings.

3. Use of augmented training data: Combine data from the initial dataset with an open-source
dataset acquired using the same research device, in order to improve model generalization
and robustness through exposure to a wider range of sleep patterns and inter-subject vari-
ability.

4. Cross-device generalization: Evaluate the trained model on a separate dataset acquired
from a different wrist-worn device, to explore the model’s generalizability across devices.

Overall, this work aims to contribute to the development of more accurate and clinically
relevant wearable-based sleep monitoring systems, potentially paving the way for future appli-
cations in remote diagnostics, personalized sleep health, and early detection of sleep conditions.
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Chapter 2

Material and Methods

2.1 Datasets

2.1.1 SMS

The first dataset analyzed in this work is part of the Sleep Monitoring Study (SMS) [9], made up
of 127 participants recorded for one night in an examination room at the Sleep-Wake Epilepsy
Centre (SWEZ) of the University Hospital of Bern, Switzerland. Clinical metadata with demo-
graphic information, including the number of participants, percentage of females, average age,
and percentage of each diagnosis of sleep disorder, is presented in Table 2.1.

The prevalent diagnosis in the dataset is sleep-related breathing disorders, such as OSA, and
central disorders of hypersomnolence. These are followed by insomnia, parasomnias (such as
REM sleep behavior disorder), sleep-related movement disorders (such as periodic limb move-
ment disorder), and some cases of circadian disorder. Moreover, the dataset contains missing
diagnoses and includes participants belonging to other unspecified sleep disorders. Healthy
controls refer to individuals who were evaluated in the sleep clinic but did not receive a formal
diagnosis of any sleep disorder. Although some of these participants may have atypical sleep-
related characteristics, they are considered within the range of normal physiological variation
and classified as healthy for the purposes of this study.

The participants’ sleep was monitored with a wristband, Empatica E4 (E4), placed on the
non-dominant arm together with PSG. One night of sleep is recorded for each participant. The
choice of the non-dominant wrist aims to reduce movement artifacts and improve the reliability
of the collected data. The E4 suits this work due to its non-invasive nature, portability, and
ability to continuously collect multiple physiological signals, making it a suitable device for
sleep research conducted in both clinical and research environments.

The data provided by the wristband are shown in Table 2.2 with their respective range, unit
of measures, frequencies, and type of data, including the ACC expressed as a 3-axis accelerom-
eter, which captures body movements and can help infer activity levels or restlessness during
sleep; the BVP derived from the PPG signal, which uses light absorption to measure blood
volume changes and allows for the estimation of heart rate and heart rate variability; the HR
estimated from the BVP signal; the Inter-Beat Interval (IBI) which is the time interval between
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Table 2.1: Demographics of the SMS dataset

Dataset Full Train Evaluation Test

Participants (n) 127 86 15 26

Females (%) 54.89 56.04 53.33 51.85

Age (mean ± SD) 45.3±16.2 46.2±16.4 44.6±15.7 42.2±16.1

Diagnosis (%)

Breathing disorders 59.1 60.5 60.0 53.9

Hypersomnolence 15.0 14.0 13.3 19.2

Insomnia 5.5 5.8 6.7 3.9

Missing diagnosis 4.7 4.7 6.7 3.9

Parasomnias 4.7 4.7 6.7 3.9

Healthy controls 4.7 3.5 0.0 11.5

Other disorders 4.7 5.8 6.7 3.9

Movement disorders 1.6 1.2 0.0 3.9

Circadian disorders 1.5 2.2 0.0 0.0

Demographics of SMS dataset, including number of participants, percentage of females, age as mean ± Standard
Deviation (SD) expressed in years, and percentage of sleep disorders diagnoses. The values are shown for the full
dataset and for the training, evaluation, and test sets.

individual beats, derived from the HR; the EDA, measured by a perspiration sensor, which re-
flects changes in skin conductance associated with sympathetic nervous system arousal; and the
TEMP, measured by an infrared thermopile, which tracks peripheral skin temperature and may
provide insight into circadian rhythms and thermoregulation. These signals offer a comprehen-
sive overview of the participants’ physiological state during sleep, allowing for the identification
of patterns related to autonomic nervous system activity and therefore to sleep stages. Moreover,
the E4 data were later synchronized with the PSG recordings to allow comparative analysis and
assess the potential of wearable technology to approximate gold standard sleep measurements.

A visual representation of the physiological signals collected through the E4 is provided in
Figure 2.1. The plot illustrates the temporal evolution of each signal over the course of the
recorded night. On the x-axis, time is expressed in hours, allowing for an intuitive understand-
ing of how the physiological parameters vary throughout the sleep period. The y-axis reports
the respective units of measurement for each signal, corresponding to those listed in Table 2.2.
To facilitate interpretation and highlight potential correlations between physiological dynamics
and sleep architecture, the signals are segmented and colored according to the alternating sleep
stages identified through PSG. Each color segment corresponds to a specific sleep stage (e.g.,

18
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Table 2.2: Empatica E4 signals

Signal Range Unit of measure Frequency Type of signal

ACC ±2 g 32 Hz 3-axial

BVP ±500 a.u. 64 Hz PPG sensor-derived

HR 60–200 bpm 1 Hz BVP-derived

IBI Varies with HR ms Not fixed HR-derived

EDA 0.01–100 µS 4 Hz Continuous signal

TEMP 16–42 °C 4 Hz Continuous signal

Overview of the signals provided by the Empatica E4, including range, unit of measure, frequency, and type of
signal. Units of measure: g = gravitational acceleration; a.u. = arbitrary units; bpm = beats per minute; ms =
milliseconds; µS = microsiemens; °C = degrees Celsius.

Wake, REM, Light, Deep), enabling a direct visual association between the physiological varia-
tions and the sleep pattern. This representation supports a more comprehensive analysis of how
certain biosignals fluctuate in relation to the sleep cycle.

Figure 2.1: Signal plots coloured according to sleep stages

Physiological signals recorded by the device worn by one participant suffering from OSA; each signal is coloured
according to the corresponding sleep stages.
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The plot includes only the ACC, BVP, EDA, and TEMP signals, which are the primary focus
of this work. The derived signals HR and IBI, although available, are excluded from the study
due to their direct dependence on the BVP signal and their lower sampling frequency, which
makes them redundant or less informative in this context.

2.1.2 DREAMT
The Dataset for Real-time sleep stage EstimAtion using Multisensor wearable Technology
(DREAMT) presented in [10] is an open-source dataset from the Physionet challenge. It col-
lects a night of sleep from 100 participants recruited from the Duke University Health System
(DUHS) Sleep Disorder Lab, including signals from the E4, together with sleep technician-
annotated sleep stage labels based on PSG recordings. Clinical metadata are also available,
with information about participants’ health and sleep disorders as shown in Table 2.3. Only
the primary diagnosis is reported for each participant. Given that the sleep study protocol is
specifically designed to detect and monitor apnea events during sleep, a large proportion of the
cohort had already been diagnosed with OSA. Other sleep disorders such as hypersomnolence,
Restless Leg Syndrome (RLS), and insomnia are also represented, together with a small group
of healthy controls.

Table 2.3: Demographic of the DREAMT dataset

Metric Full dataset

Participants (n) 100

Females (%) 55

Age (mean ± SD) 56.2 ± 16.6

Diagnosis (%)

Breathing disorders 66

Hypersomnolence 20

Healthy controls 9

Restless leg syndrome 2

Insomnia 2

Demographics of DREAMT dataset, including number of participants, percentage of females, age as mean ± SD
expressed in years, and percentage of sleep disorders diagnoses. The values are shown for the full dataset.

All six raw signals from the E4, 3-axial ACC, BVP derived from the PPG sensor, EDA,
and TEMP, HR and IBI estimated from the raw BVP are provided by the dataset. All the data
are available in the highest sampling frequency of 64 Hz, from the original frequencies already
shown in Table 2.2. The actual timestamp is time-shifted and starts with 0 to preserve privacy.

Sleep stage labels are provided every 30 seconds and are derived from technician-annotated
PSG data. The following stages are included: Wake (W), Non-REM stages N1, N2, and N3,
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and REM (R). An additional label, Preparation (P), marks the initial period before the PSG
recording officially begins. In this work, the data were trimmed to exclude the preparation
phase, considering the lights-off time as the first annotated stage following the "P" label, and
the lights-on time as the last available stage. This ensures that only the actual sleep period is
analyzed, removing non-representative segments.

A special label, Missing, is present in rare cases where no sleep stage annotation is available.
This label appears very infrequently across the dataset. Specifically, significant missingness is
observed only in two participants due to a PSG re-setup during the night, resulting in approx-
imately 15 minutes of continuous missing labels. In four other participants, only one epoch
labeled as "Missing" was found.

This open-source dataset was selected not only to expand our dataset of sleep disorder par-
ticipants and improve performance, but also because of its clinical richness. The availability
of expert-labeled sleep stages from PSG, combined with synchronized wearable data (E4), al-
lows for robust multimodal learning and validation. Furthermore, the diversity in sleep disorder
diagnoses and the inclusion of clinical metadata make it a valuable resource for improving gen-
eralization and model interpretability across heterogeneous populations.

2.1.3 Corsano

The dataset from Corsano is a work-in-progress dataset, mainly used in this work to demonstrate
the generalizability of the model to different devices. The current version of the dataset provides
only ACC and PPG signals, sampled at 32 Hz and 128 Hz, respectively. Although the Corsano
device is capable of recording EDA, TEMP, and its own sleep stage estimations, which could
be used for comparison with the model, these data are unfortunately not available in the version
of the dataset currently accessible.

The first step in the data preparation involved aligning the timestamps of the Corsano record-
ings, which were collected in Japan, with Swiss local time. Since the recordings often spanned
entire days and, in some cases, multiple days per participant, the focus is only on the nocturnal
periods that corresponded to the lights off and lights on times recorded in the PSG. This re-
striction was necessary because PSG ground truth data was only available for the first night of
recording.

Figure 2.2 shows the sleep stage labels for multiple participants across the night. Each row
represents one participant, and colors indicate different sleep stages or data quality states. It is
evident that the dataset is affected by a substantial amount of artifacts (in dark grey) and missing
data (in light grey). These issues limit the amount of usable data for testing the model. For
example, some participants have large gaps of unrecorded or corrupted data spanning several
hours, particularly in the early or late portions of the night.

Due to this limitation, only the third participant from the top, who exhibits a relatively con-
sistent and artifact-free signal throughout the night, was selected for use in the test set. This
participant is the only one with more than 50% valid epochs, also displaying a representative
sleep architecture, including periods of Wake, REM, Light, and Deep sleep, providing a mean-
ingful test case for model generalization.
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Figure 2.2: Sleep stages from Corsano dataset

Sleep stage annotations for all Corsano participants during the first night of recording. Each row corresponds to
one participant, with colors indicating Wake (orange), REM (green), Light (light blue), Deep (blue), Artefact (dark
grey), and Missing data (light grey).

2.2 Deep Learning Architecture

The deep learning architecture tested in this work is a fully CNN based on U-Net [11], [12],
called U-Sleep [13], which is a State Of The Art (SOTA) algorithm for sleep stage classification
from PSG-based EEG and EOG.

CNNs are a class of deep learning models particularly well-suited for processing structured
signals such as images and time-series data. In the context of sleep stage classification, CNNs
are widely used because of their ability to automatically extract relevant features from raw
physiological signals, such as EEG and EOG. These signals often contain characteristic local
patterns, such as specific brain waveforms associated with different sleep stages, that CNNs can
effectively capture through their convolutional layers.

CNNs are also capable of learning both spatial and temporal dependencies in the data while
maintaining a relatively low number of parameters, which makes them efficient and less prone
to overfitting, particularly important when dealing with noisy physiological data and limited
training samples.

Although CNN-based models were originally applied to PSG signals, recent works, includ-
ing [14], have shown that similar architectures can also be effectively applied to wearable-
derived signals.

The U-Sleep network architecture is composed of four main modules, each responsible for
a specific stage in the signal processing and classification:

• Conformation Module. This module preprocesses the input signal by applying zero-
padding and reshaping operations to ensure compatibility with the network architecture.
It standardizes input length and format, facilitating efficient batch processing.

• Encoder Module. It is a hierarchical stack of convolutional layers that progressively ex-
tracts local and high-level features from the input while reducing the temporal resolution.
It captures both short and long-range dependencies and condenses the signal into a com-
pact latent representation.
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• Decoder Module. It is a symmetric structure with respect to the encoder, composed of
transposed convolutions or upsampling layers that restore the compressed representation
back to the original temporal resolution. It enables the network to produce temporally
aligned outputs by integrating encoded features with contextual information.

• Segment Classifier Module. Being the final stage of the network, it maps the decoded
representation to discrete sleep stage predictions. It splits the output into individual epochs
and assigns class labels based on learned temporal patterns.

All the modules were introduced in U-Sleep [13], except for the conformation module pre-
sented by Olsen et al. [14]. In this last study, the model was tested in another wearable device,
using as input ACC and PPG signals, both present in the SMS dataset.

In Figure 2.3, the CNN architecture is illustrated, including the input signals, preprocessing
step, network structure, and the resulting hypnogram, which is compared to PSG.

Figure 2.3: U-Sleep architecture

Overview of the U-Sleep CNN architecture. The diagram illustrates the input wearable signals (ACC and PPG) as
in [14], preprocessing steps, the four main processing modules of the network, and the output hypnogram used for
sleep stage classification, compared against PSG-based ground truth.

The U-Net architecture was selected for its effectiveness in time series segmentation tasks,
such as sleep stage classification, where maintaining temporal resolution and capturing local
context are essential. Its encoder-decoder structure allows the model to extract both short-term
dynamics and long-range dependencies by integrating multiscale feature representations. This
capability is particularly important in this domain, as stage transitions often rely on intricate
temporal patterns spanning multiple physiological signals. This model was chosen for these
reasons and preferred over the CNN previously tested on the E4 device by Li et al. [15], due
to its flexibility to accept any type and number of input time series data and its slightly better
SOTA performance.

Although recent approaches based on attention-based architectures and Large Language
Models (LLMs) have demonstrated strong performance on sequential data tasks [16], they typ-
ically rely on extensive pre-training using large datasets and require substantial computational
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resources, factors that are often impractical in clinical or wearable applications. In contrast, our
selected U-Net-based architecture can be trained on relatively small datasets, making it a more
feasible option that better fits the real-world constraints of sleep monitoring in patients with
various disorders using wearable devices.

The key contributions of this work include the adaptation of the network proposed in [14],
experiments with various signal combinations, identification of optimal parameters, and a com-
prehensive model evaluation. Additionally, this study applies the model to a clinical dataset
comprising participants diagnosed with sleep disorders, highlighting its potential applicability
in real-world, pathological sleep conditions.

In [14], Olsen et al. used only ACC and PPG data from a consumer wearable device. Empat-
ica E4 also provides other signals, including EDA and TEMP, as well as derived measurements,
such as BVP. In this work, different combinations of input signals were considered.

2.3 Preprocessing
The time series data were first cut between the lights-off and lights-on times according to PSG
annotations. From the starting 133 participants in the SMS dataset wearing the Empatica E4, six
were excluded because of a failed temperature sensor, resulting in 127 participants in the final
analysis, as shown in Table 2.1. The specific preprocessing applied to each signal is presented
in the following subsections.

2.3.1 cvxEDA
The EDA signal was processed following the approach proposed in [17], in which the raw signal
is decomposed into its tonic and phasic components using a physiologically inspired convex
optimization framework. In cvxEDA, the observed EDA signal y(t) is modeled as the sum of
three components:

y(t) = r(t) + p(t) + ε(t) (2.1)

• r(t) is the tonic component, modeled as a smooth, low-frequency signal using a cubic
spline with knots spaced over time;

• p(t) is the phasic component, obtained by convolving a sparse neural activation signal u(t)
with a biexponential impulse response h(t);

• ε(t) is Gaussian white noise.

The goal is to recover u(t), r(t), and consequently p(t), by solving the following convex
optimization problem:

min
r,u

1
2 ∥y − r − h ∗ u∥2

2 + λ ∥u∥1 + γ

2

...D2r
...2

2
(2.2)

s.t. u(t) ≥ 0 ∀t

24



2.3 – Preprocessing

where:

• ∥y − r − h ∗ u∥2
2 ensures fidelity to the observed signal;

• ∥u∥1 promotes sparsity in the neural activation;

•
..D2r

..2
2 penalizes curvature in the tonic component, enforcing smoothness;

• λ and γ are regularization parameters.

This formulation allows for a robust and interpretable decomposition of the EDA signal.
A visual result example from one participant in the SMS dataset is shown in Figure 2.4. The
plot shows a comparison between the original EDA signal with its tonic and phasic components
during a night of sleep, with time expressed in hours on the x-axis, and respective EDA values
in microsiemens (µS) on the y-axis.

Figure 2.4: EDA decomposition

Plot of EDA original signal (blue), together with its tonic (orange) and phasic (green) components, obtained with
the cvxEDA algorithm. The x-axis represents the time expressed in hours (h), while the y-axis is expressed in
microsiemens (µS).

Only the phasic component of EDA p(t) = h ∗ u(t) was retained as input to the CNN, as it
more directly reflects the fast, event-related dynamics of sympathetic nervous system activity.
It has also been shown to be more strongly correlated with brain rhythms during sleep with
respect to the tonic component [18], in particular being positively correlated with theta waves
(dominant during light sleep) and negatively correlated with delta waves (dominant during deep
sleep).
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2.3.2 Delta TEMP
The TEMP signal was transformed by computing the first-order difference (delta) between con-
secutive samples, defined as:

∆T (t) = T (t) − T (t − 1) (2.3)

where T (t) is the temperature signal at time t, and ∆T (t) represents the delta-transformed
temperature [19].

This transformation was motivated by the limitations of applying spectrogram-based anal-
ysis, which is introduced in the following section, to slowly varying, low-frequency signals.
Spectrograms derived from the raw temperature signal tends to exhibit highly redundant and un-
informative patterns due to the signal’s low temporal dynamics. In contrast, the delta-transformed
signal introduces mid-range frequency components that are better aligned with the sensitivity of
time–frequency representations commonly used in deep learning models.

The transformed signal also helps reduce baseline effects, that is, slow or constant signal
components that do not carry meaningful physiological information, as well as intersubject
variability. As a result, the model becomes more sensitive to relevant physiological fluctua-
tions. These include thermoregulatory responses such as peripheral vasoconstriction, which are
commonly associated with REM sleep and other transitions in sleep architecture [20].

2.3.3 Common preprocessing
The ACC and BVP signals were first preprocessed to reduce inter-subject variability and stabi-
lize signal amplitude. Specifically, median centering was applied to the ACC signal to eliminate
the influence of movement-related baseline shifts, while z-score normalization was used for the
BVP signal to standardize its distribution (i.e., transformation to zero mean and unit variance),
ensuring comparability across samples and reducing the impact of amplitude-related variance.
Mathematically, z-score normalization is defined as:

zi = xi − µ

σ
(2.4)

where xi is the original signal value, µ is the mean, and σ is the standard deviation.
Next, both signals underwent adaptive Interquartile Range (IQR) normalization using a 300-

second sliding window. This technique dynamically scales the signal based on the local disper-
sion, with IQR defined as:

IQRw = Qw
3 − Qw

1 (2.5)

where Qw
1 and Qw

3 denote the first and third quartiles within the window w. The signal is then
normalized with respect to the local median x̃w as:

x′
i = xi − x̃w

IQRw

(2.6)

This approach is robust to non-Gaussian noise and local trends. To limit the influence of
extreme values, data points beyond a threshold of 20 times the local IQR were clipped. This
empirical threshold follows prior work on wearable sensor data [14].
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Similarly, the transformed EDA and TEMP signals were normalized using median normal-
ization, followed by adaptive IQR normalization and outlier clipping. The clipping thresholds
were set to 20 times the IQR for EDA and 15 times the IQR for TEMP, based on their signal-
specific variability profiles.

To ensure temporal alignment across modalities and datasets, all signals were resampled to
a uniform frequency of 32 Hz. Specifically:

• For the SMS dataset, the PPG signal was downsampled from 64 Hz to 32 Hz, and the EDA
and TEMP signals were upsampled from 4 Hz to 32 Hz.

• For the DREAMT dataset, all signals were downsampled from 64 Hz to 32 Hz.

• For the Corsano dataset, only the PPG signal was downsampled from 128 Hz to 32 Hz.

Finally, all preprocessed signals were transformed into spectrograms via the Short-Time
Fourier Transform (STFT), enabling representation in the time-frequency domain. The STFT is
defined as:

STFT{x(t)}(t, f) =
Ú +∞

−∞
x(τ)w(τ − t)e−j2πfτ dτ (2.7)

where w(τ − t) is a windowing function (e.g., Hann window) centered at time t. This represen-
tation captures how the frequency content of a signal evolves over time, highlighting transient
and rhythmic patterns typical in physiological processes.

The use of time-frequency representations is particularly beneficial when working with
CNNs, highly effective at learning local patterns and features in structured spatial data. Spectro-
grams provide a two-dimensional grid-like input, analogous to images, which aligns well with
the inductive biases of CNN architectures.

2.4 Evaluation

The SMS dataset was stratified by diagnosis, as reported in Table 2.1, and split into train-
ing (65%), validation (15%), and test (20%) sets. Similarly, the combined SMS + DREAMT
dataset, where the latter was added to expand the population, was stratified and split using the
same proportions, as shown in Table 2.4.

To ensure consistent input dimensions, recordings were segmented into consecutive, non-
overlapping windows, each including a fixed number of 30-second epochs. This segmentation
strategy, commonly used in the sleep stage classification framework, has multiple purposes:
it standardizes the input data to fixed-length sequences compatible with deep learning mod-
els, which typically require uniform input shapes; it reduces variability introduced by differing
recording durations across subjects; and it enables parallel batch processing during training,
improving computational efficiency. Moreover, this window length aligns with standard clinical
practice for sleep stage annotation. According to the AASM guidelines, human experts assign
sleep stages based on 30-second epochs. This duration provides a good balance between tem-
poral resolution and physiological relevance, capturing enough signal variation to differentiate
between stages.
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Table 2.4: SMS + DREAMT dataset split

Diagnosis Full dataset Training set Validation set Test set
(227 participants) (65%) (15%) (20%)

Breathing disorder 62.56 63.23 62.96 60.00

Hypersomnia 17.18 18.06 3.70 20.00

Healthy controls 6.17 5.81 7.41 8.89

Insomnia 3.96 4.52 7.41 -

Parasomnias 2.64 1.94 7.41 2.22

Missing diagnosis 2.64 1.92 7.41 2.22

RLS 0.88 1.29 - -

Movement disorders 0.88 0.65 - -

Others 3.08 2.59 - 4.44

Percentage distribution of sleep disorders in the combined SMS + DREAMT dataset and its split into training
(65%), validation (15%), and test (20%) sets.

Following preliminary computational experiments, the input segment length was set to 1024
epochs, approximately 8.5 hours of sleep, which typically covers an entire night of record-
ing. This length was selected as a compromise between capturing a complete sleep cycle and
maintaining computational tractability. Recordings shorter than this length were zero-padded
to preserve the fixed input shape, while longer recordings were truncated. The padding was
masked during model training to minimize the impact of artificial zeros on learning dynamics.

Hyperparameter tuning was performed using HyperBand [21], a resource-efficient method
that dynamically allocates training time to promising configurations while discarding under-
performing ones early. This approach significantly accelerates the search process compared to
traditional grid or random search, especially in high-dimensional hyperparameter spaces. The
parameters to optimize were:

• M , the number of encoder–decoder blocks, which directly affects model capacity and
the depth of feature abstraction; higher values allow the model to learn more complex
representations, but may increase the risk of overfitting.

• K, the kernel height of the 2D convolutions, which influences the temporal and spatial res-
olution of learned features; adjusting this value can help the model better capture relevant
patterns in signals of varying duration or structure.

• The initial filters number in the first encoder layer, which sets the starting model complex-
ity; this parameter determines the richness of the feature maps extracted in early stages,
and can impact both performance and computational cost.
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• The focusing parameter α of the loss function, which adjusts the model’s attention to
hard-to-classify samples; tuning this value is especially useful in imbalanced classification
tasks, as it allows the model to prioritize underrepresented or more difficult classes.

• The learning rate, which controls convergence speed and stability; an appropriate value
ensures efficient training without divergence or getting stuck in local minima.

Optimization was performed using the ADAM optimizer [22], known for its robustness in train-
ing deep architectures.

2.4.1 Loss function

In the context of sleep stage classification, class imbalance poses a significant challenge, as
some stages (e.g., REM) are underrepresented compared to others like light sleep. To address
this issue, a binary focal loss was employed, which enhances the model’s focus on misclassified,
harder examples.

Focal loss, originally introduced for object detection tasks, modifies the standard binary
cross-entropy by incorporating a modulating factor that reduce the weights of well-classified
examples. In this implementation, the loss also adapts dynamically to batch-level class distribu-
tions, leveraging the positive sample ratio pw to modulate the contribution of each class during
training. This design helps to prevent the majority class, in this case light sleep, from dominat-
ing the learning process and encourages the model to learn more robust features for minority
classes.

The loss for a batch of size N is defined as:

L = − 1
N

NØ
i=1

è
(1 − pw)α · 1yi=1 · log(pi) + pα

w · 1yi=0 · log(1 − pi)
é

(2.8)

where:

• pi: predicted probability for sample i;

• yi: true label for sample i (0 or 1);

• pw: positive sample ratio in the batch;

• α: focusing parameter that controls the strength of emphasis on hard examples;

• 1(·): indicator function selecting the relevant term based on the ground truth label.

This formulation ensures that the gradient contribution from well-predicted examples is re-
duced, preventing overfitting to the dominant classes. The focusing parameter α allows for a
finer control over this effect: higher values of α place more emphasis on correcting misclas-
sifications. By computing pw per batch, the method remains adaptive to fluctuations in class
distributions across batches, further improving robustness.
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2.4.2 Performance metrics
To evaluate model performance, a combination of standard classification metrics and domain-
specific sleep-related measures was employed. These metrics were chosen to ensure compara-
bility with SOTA methods, to capture performance across all classes despite class imbalance,
and to ensure clinical relevance in sleep staging applications.

Due to the imbalance in sleep stage distributions, where stages such as light sleep dominate
while stages like REM are underrepresented, it is essential to report not only overall accuracy
but also per-class metrics that highlight model behavior on minority classes.

Per-stage (i.e., single-class) performance was evaluated using the following metrics:

• Accuracy measures the overall correctness of the classification model, i.e., the proportion
of total predictions (both positive and negative) that are correct:

Accuracy = TP + TN

TP + TN + FP + FN
(2.9)

where TP (true positives) and TN (true negatives) are correctly predicted instances, while
FP (false positives) and FN (false negatives) represent misclassifications. This metric
gives a general sense of how well the model performs across all classes.

• Sensitivity (also known as recall or true positive rate) indicates the model’s ability to
correctly identify instances of a specific sleep stage when it is actually present:

Sensitivity = TP

TP + FN
(2.10)

A higher sensitivity means the model rarely misses true occurrences of the target class
(i.e., few false negatives).

• Specificity (true negative rate) reflects the model’s ability to correctly recognize when a
specific sleep stage is not present:

Specificity = TN

TN + FP
(2.11)

High specificity implies that the model makes few false positive predictions, thus avoiding
incorrect detections of the sleep stage when it is absent.

• F1-score is the harmonic mean of precision and recall, and it provides a balanced measure
that takes into account both false positives and false negatives:

F1-score = 2 · Pr · Re

Pr + Re
(2.12)

where Re = T P
T P +F N is the recall (sensitivity), and Pr = T P

T P +F P is the precision. The
F1-score is particularly useful when the class distribution is imbalanced, as it penalizes
extreme values in either precision or recall.
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These metrics were computed per class to better understand model sensitivity to each indi-
vidual sleep stage, particularly important for clinical stages (e.g., REM or N1) whose accurate
detection is crucial for diagnosis and treatment.

Overall multi-class performance was quantified using:

• Balanced Accuracy provides an average of recall (sensitivity) values computed for each
sleep stage, thus offering a performance measure that is robust to class imbalance:

Balanced Accuracy = 1
4 ·

4Ø
i=1

Sensitivityi (2.13)

where Sensitivityi is the sensitivity for the i-th sleep stage. By giving equal weight to
each class regardless of their frequency, balanced accuracy ensures that the performance
on underrepresented stages is not overshadowed by dominant ones.

• Macro-F1 is the arithmetic mean of the F1-scores computed independently for each sleep
stage. Unlike the standard (Micro) F1-score, it does not take class frequency into account,
making it especially suitable when evaluating models on imbalanced datasets:

Macro-F1 = 1
4 ·

4Ø
i=1

F1 − scorei (2.14)

where F1−scorei is the F1-score for the i-th class. This metric provides a class-balanced
view of performance.

• Cohen’s Kappa (κ) measures the agreement between the model’s predictions and the PSG-
based annotations, while adjusting for the agreement that could occur by chance:

κ = p0 − pe

1 − pe
(2.15)

Here, p0 denotes the observed agreement, i.e., the proportion of sleep epochs where the
predicted and true labels match. The expected agreement pe estimates the probability of
random agreement based on the marginal distributions of predicted and actual labels. A κ
value of 1 indicates perfect agreement, whereas 0 implies no better agreement than chance.

Metrics such as Cohen’s κ are particularly informative in sleep staging, as they align with
inter-rater reliability measures used in clinical settings. High κ values indicate strong agreement
with expert annotations, which is essential for model adoption in diagnostic contexts. Further-
more, macro-averaged metrics ensure that underrepresented but clinically important stages (e.g.,
REM) are not hidden by the majority class (N2), providing a fair and interpretable evaluation.
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2.4.3 Sleep measures
In addition to classification metrics, clinically relevant sleep measures were computed to eval-
uate the utility of the model in practical, real-world settings such as sleep medicine and home
monitoring. While classification metrics provide a detailed account of the model’s per-epoch
performance, they do not directly reflect the overall sleep architecture, which is an essential as-
pect for both diagnostic and research purposes. Therefore, sleep summary metrics were derived
to assess how well the model can reconstruct key features of a typical night of sleep, including
timing, duration, and structure of various stages. These included:

• Total Sleep Time (TST): the total duration of all epochs classified as any sleep stage
(excluding wake), providing a measure of overall sleep quantity.

• Sleep Onset Latency (SOL): the time elapsed from lights-off (the start of the recording)
to the first epoch classified as sleep, indicating the subject’s ability to enter sleep.

• REM Latency (RL): the interval between sleep onset and the first epoch of REM sleep.

• Sleep Efficiency (SE): the ratio between total sleep time and the total recording time,
typically expressed as a percentage; it reflects how efficiently the time in bed is spent
sleeping.

• Wake After Sleep Onset duration (WASOd): the cumulative duration of wake epochs oc-
curring after the first sleep epoch, indicating the degree of sleep fragmentation during the
night.

• REM sleep duration (REMd): the total duration of epochs classified as REM sleep, re-
flecting the extent of REM sleep achieved across the night.

• Light sleep duration (Lightd): the total time spent in light sleep stages (N1 + N2), which
represent the transitional and lighter phases of non-REM sleep.

• Deep sleep duration (Deepd): the cumulative time spent in deep sleep (N3 stage), associ-
ated with restorative physiological processes and slow-wave activity.

These measures were derived from the predicted hypnograms and compared to those com-
puted from the PSG annotations, allowing for an assessment of the model’s ability to recover
meaningful sleep architecture. Beyond their descriptive value, such measures serve to evaluate
sleep quality and are in clinical routine reports. Therefore, accurate estimation of these quan-
tities is a critical step toward validating the model’s practical relevance and its potential for
integration into tools for remote or automated sleep monitoring.
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Results

Hyperparameter tuning identified the optimal configuration as M = 10, K = 16, initial filters
= 32, α = 0.15, and learning rate = 10−3.

Performance analysis for this configuration using the SMS datasets is presented in the fol-
lowing section, following the standardized framework introduced in [23]. This approach in-
cludes a sleep measure analysis, with a summarizing table to compare the proposed model with
the ground truth represented by PSG and Bland-Altman plots; an epoch-by-epoch analysis to
present the performance metrics, both at a single stage and global level, commonly used in the
classification framework; and finally the distribution of the sleep stages comparing that from
PSG and the model.

Subsequently, additional results are reported for the combined SMS + DREAMT dataset,
including an epoch-by-epoch analysis and a learning curve to show the effectiveness of adding
training data. Finally, epoch-by-epoch results for the Corsano test participant are shown.

3.1 SMS dataset
The first experiments with the SMS dataset were about finding the best signal combination in
terms of global performance metrics. The reason is that the model has already been tested with
ACC and PPG only, but the E4 also provides other signals, namely EDA and TEMP. These
signals are proven to be correlated to the sleep pattern, so the first goal of this work is to add
these signals as input to the model. An overview of the results in terms of global metrics for the
most meaningful signal combinations is shown in Table 3.1. It includes the values expressed as
mean ± SD of Accuracy, Balanced Accuracy, Macro-F1, and Cohen’s κ.

In Figure 3.1, four confusion matrices are shown, comparing the model to the ground truth
provided by PSG. Each confusion matrix corresponds to the model results for a different com-
bination of input signals, starting from the model with ACC only, then adding BVP, EDA, and
TEMP once at a time. The figure highlights how adding each signal changes each class’s per-
formance, including the values for precision, recall, and F1-score. The main matrix displays the
counts and normalized values for each class. The right column shows recall for each class, the
bottom row shows precision, and the bottom-right cell shows the macro-averaged F1-score.

As it can be seen from both Table 3.1 and Figure 3.1, the best results are obtained for the
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Table 3.1: Results for different signal combinations

ACC BVP EDA TEMP Accuracy Bal. Acc. Macro-F1 Cohen’s κ

x 0.57 ± 0.09 0.50 ± 0.08 0.46 ± 0.08 0.31 ± 0.11

x x 0.67 ± 0.07 0.64 ± 0.09 0.61 ± 0.09 0.48 ± 0.12

x x x 0.66 ± 0.08 0.62 ± 0.09 0.59 ± 0.11 0.46 ± 0.14

x x x 0.68 ± 0.08 0.63 ± 0.11 0.60 ± 0.12 0.49 ± 0.14

x x x x 0.69 ± 0.08 0.64 ± 0.10 0.62 ± 0.11 0.50 ± 0.14

Global metrics results express as mean ± SD for different signal combinations from SMS dataset.

model with all signals combined, including ACC, BVP, EDA, and TEMP, for which a more
detailed analysis is shown in the following subsections.

3.1.1 Sleep measures analysis

In Table 3.2, a detailed comparison is presented between sleep measures obtained from PSG and
those estimated by the proposed model. For each sleep measure, the table reports the mean and
SD, the 95% Confidence Interval (CI) of the mean, and p-values from statistical tests. When
the distribution of paired differences was normal, a paired t-test was applied; otherwise, the
Wilcoxon signed-rank test was used. The difference is considered statistically significant if
p-value < 0.05. The evaluated measures include the overall sleep measures: TST, SOL, RL,
SE, WASO duration, and the duration of individual sleep stages (REM, light, and deep). These
numerical results provide an overview of the agreement between the model’s estimates and the
PSG reference, highlighting potential differences or variability across individuals.

In Figure 3.2, Bland–Altman plots are shown for each sleep measure to visually assess the
agreement between the model and PSG. A Bland–Altman plot is a method commonly used
to compare two quantitative measurement techniques by plotting the difference between the
two measurements against their mean. This allows for the identification of systematic biases
and the assessment of the extent of agreement across the measurement range. In each plot,
the x-axis represents the mean of the two values (model and PSG), while the y-axis shows
their difference. Differences are expressed in minutes for all sleep measures, except for sleep
efficiency (SE), which is reported in percentage on both axes. Each plot includes horizontal
lines indicating the mean difference (bias) and the limits of agreement (mean ± 1.96·SD), which
define the range within which 95% of the differences between the two methods are expected
to lie. These visualizations help detect potential proportional biases or increased variability
at specific ranges of the measurements, offering a complementary perspective to the statistical
comparisons reported in Table 3.2.
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3.1 – SMS dataset

Table 3.2: Sleep measures mean difference between PSG and the model

Sleep Measure Metric PSG Model p-value

TST (min)
Mean ± SD 359.23 ± 78.41 372.15 ± 86.50

0.24

95% CI mean [327.56, 390.90] [337.22, 407.09]

SOL (min)
Mean ± SD 18.92 ± 15.15 12.81 ± 12.29

0.02*

95% CI mean [12.80, 25.04] [7.85, 17.77]

RL (min)
Mean ± SD 132.78 ± 76.46 107.75 ± 72.49

0.12

95% CI mean [101.90, 163.66] [78.47, 137.03]

SE (%)
Mean ± SD 74.22 ± 13.82 76.25 ± 12.78

0.20

95% CI mean [68.64, 79.80] [71.09, 81.41]

WASOd (min)
Mean ± SD 60.83 ± 41.40 54.81 ± 42.53

0.55

95% CI mean [44.10, 77.55] [37.63, 71.98]

REMd (min)
Mean ± SD 60.90 ± 33.09 57.15 ± 30.52

0.55

95% CI mean [47.54, 74.27] [44.82, 69.48]

Lightd (min)
Mean ± SD 223.25 ± 60.86 245.60 ± 61.84

0.04*

95% CI mean [198.67, 247.83] [220.62, 270.58]

Deepd (min)
Mean ± SD 75.08 ± 31.79 69.40 ± 32.37

0.39

95% CI mean [62.24, 87.92] [56.33, 82.48]

Comparison of sleep measures between PSG and the proposed model on the test set. It includes mean ± SD and
95% CI mean for each sleep measure. All values are expressed in minutes, except for SE, which is given as a
percentage. The p-value of the difference between model and PSG is also included, where * denotes statistically
significant difference (p < 0.05).
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Figure 3.1: Confusion matrices for different signal combinations

Confusion matrices illustrate the progressive improvement in classification performance as additional signals are
incorporated from a single signal to the complete set of four modalities.

3.1.2 Epoch-by-epoch analysis

The epoch-by-epoch performance of the model is summarized in Table 3.3, which includes both
single-class (per-stage) and multi-class evaluation metrics. All results are computed on the test
set and are reported as mean ± SD across participants.

For the per-stage evaluation, performance metrics are provided separately for Wake, REM,
Light, and Deep sleep stages. The reported metrics include Sensitivity, Specificity, Accuracy,

36



3.1 – SMS dataset

Figure 3.2: Bland-Altman plots of sleep measures

Bland-Altman plots of sleep measures of the model compared to PSG on the test set. Blue dots represent individ-
ual samples, orange horizontal lines indicate zero difference (i.e., perfect agreement), grey lines show the mean
difference between the two measures.
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Table 3.3: Performance metrics (SMS dataset)

Sleep stage Sensitivity Specificity Accuracy F1-score

Wake 0.59 ± 0.20 0.94 ± 0.07 0.87 ± 0.07 0.60 ± 0.17
REM 0.55 ± 0.25 0.95 ± 0.04 0.90 ± 0.04 0.53 ± 0.22
Light sleep 0.76 ± 0.11 0.66 ± 0.12 0.71 ± 0.07 0.72 ± 0.09
Deep sleep 0.66 ± 0.23 0.95 ± 0.05 0.89 ± 0.04 0.64 ± 0.15

Global
Accuracy Bal. Acc. Macro-F1 Cohen’s κ

0.69 ± 0.08 0.64 ± 0.10 0.62 ± 0.11 0.50 ± 0.14
Performance metrics for single-class and multi-class four-sleep stage classification on the test set of the SMS
dataset. All values are expressed as mean ± SD.

and F1-score, offering a detailed assessment of the model’s ability to detect each sleep stage on
an epoch level. These metrics reflect the stage-wise classification performance and highlight the
model’s strengths and limitations in distinguishing between individual sleep stages.

In addition to the per-stage metrics, global evaluation measures are presented to capture
the overall classification performance across all sleep stages. These include overall Accuracy,
Balanced Accuracy, Macro-F1 score, and Cohen’s κ. While Accuracy provides a general mea-
sure of correctness, Balanced Accuracy and Macro-F1 account for class imbalance, ensuring
that performance on minority classes is adequately reflected. Cohen’s κ further quantifies the
agreement between the model’s predictions and the reference annotations, correcting for chance
agreement. Together, these global metrics provide a comprehensive view of the model’s effec-
tiveness in sleep stage classification.

3.1.3 Distribution of sleep stages

The sleep stage distributions of consecutive durations are shown in Figure 3.3 for the partic-
ipants in the SMS test set, comparing PSG values to the model results. Each plot shows a
histogram, including the time expressed in minutes on the x-axis and the density, i.e., the nor-
malized values, on the y-axis, so that the area integrates to one.

A clear similarity can be observed between the sleep stage distributions obtained from PSG
and the E4, particularly in the case of WASO and deep sleep, where the two modalities show
comparable patterns. However, some discrepancies emerge when analyzing REM sleep: the
proposed model tends to produce more concentrated distributions toward shorter durations, sug-
gesting an overestimation of REM sleep fragmentation. A similar, but less pronounced, trend is
also present for light sleep, indicating that the model may slightly underestimate the continuity
of the light sleep stage.
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3.1 – SMS dataset

Figure 3.3: Sleep stage distributions of consecutive durations

Comparison of PSG and wristband’s model distributions of consecutive durations for WASO, REM, light and deep
sleep. Each histogram shows the time expressed in minutes on the x-axis and the density, i.e., the normalized
values, on the y-axis, with the resulting area integrating to one.
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3.1.4 Results per diagnosis

The classification performance divided per diagnosis is reported in Table 3.4. The table sum-
marizes global performance metrics—Accuracy, Balanced Accuracy, Macro-F1, and Cohen’s
κ—for each primary diagnosis included in the SMS dataset. These metrics offer a comprehen-
sive overview of the model’s ability to generalize across clinically heterogeneous subgroups.

As highlighted in Table 3.4, the best performance is obtained for the healthy control par-
ticipants, reaching an Accuracy of 77%, Balanced Accuracy of 73%, Macro-F1 of 74%, and
Cohen’s κ of 64%. Good results, comparable or even higher than overall results on the test set,
are obtained for hypersomnia and breathing disorders participants, followed by movement dis-
order, resulting in a good Accuracy, but lower performance in terms of the other global metrics.
The worst results, substantially lower than the overall model results, are obtained for insomnia
and parasomnias participants.

Table 3.4: Results per diagnosis

Diagnosis Accuracy Bal. Acc. Macro-F1 Cohen’s κ

Breathing disorders 0.68 0.64 0.62 0.49

Hypersomnolence 0.72 0.67 0.62 0.52

Healthy controls 0.77 0.73 0.74 0.64
Movement disorders 0.69 0.52 0.52 0.53

Insomnia 0.52 0.51 0.50 0.29

Parasomnias 0.51 0.49 0.47 0.29

Mean classification performance for each diagnosis class, computed across all participants in the test set.

Further insight into class-wise model behavior is provided in Figure 3.4, which displays
violin plots for various performance metrics, specifically the per-class metrics across individual
sleep stages: Sensitivity, Specificity, Accuracy, and F1-score. A violin plot combines aspects
of a boxplot with a kernel density estimate, offering a richer visualization of the distribution
of data. The shape of each violin reflects the distribution of the corresponding metric, where
the width at any given point represents the density of the data; wider sections indicate a higher
concentration of values.

In this figure, each violin includes the SMS test samples, each one color-coded according
to the participant’s diagnosis, enabling a direct visual comparison of metric distributions across
diagnostic groups. This representation not only shows central tendencies such as the median
and interquartile range but also reveals the overall shape of the distribution, including skewness
and tails, characteristics that are often hidden in simpler visualizations.

The plots also highlight the performance trade-offs that the model faces in more challenging
diagnostic categories, where greater variability among individuals is frequently observed. Such
visualizations are instrumental in identifying patterns of model behavior that may be diagnosis-
dependent, and they help identify areas where the model may benefit from additional refinement.
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3.1 – SMS dataset

Figure 3.4: Violin plots with diagnoses

Per-class violin plot performance metrics, including test set samples, represented as dots coloured according to
diagnoses. Here LS = Light Sleep, DS = Deep Sleep.

To further illustrate the model’s limitations and strengths, Figure 3.5 presents a detailed ex-
ample of a participant diagnosed with insomnia. The figure includes a hypnogram that compares
predicted (dashed blue) and actual (black) sleep stages derived from PSG, with red dots high-
lighting where the model is misclassifying a stage. On the right, the figure shows a confusion
matrix with both absolute and normalized values. This example clearly highlights the difficulty
of the model in capturing transitions and accurately distinguishing between sleep stages in pa-
tients with fragmented or atypical sleep architecture. In this specific case, the model struggles
to identify the numerous wake epochs of the insomnia participant, mostly classifying them as
light sleep.

Overall, these results indicate that while the model achieves promising performance for
some diagnostic categories, particularly healthy individuals and those with hypersomnolence,
there remains significant room for improvement in detecting and accurately characterizing more
complex and heterogeneous sleep disorders such as insomnia and parasomnias.
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Figure 3.5: Hypnogram and confusion matrix from an insomnia participant

Hypnogram and confusion matrix including a comparison between PSG and model sleep stages on an insomnia
test participant. On the left, the hypnogram shows predicted (dashed blue) and actual (black) sleep stages from
PSG, with red dots indicating the model’s misclassified epochs. On the right, a confusion matrix compares the
model’s predictions to PSG, with both absolute and normalized values.

3.2 SMS + DREAMT datasets

In this section, the SMS and DREAMT datasets are merged to leverage the benefits of a larger
and more diverse dataset, with the goal of enhancing model performance and generalizability.

To provide insight into the characteristics of the two datasets, the distribution of sleep
stages is examined and visualized using box plots, as illustrated in Figure 3.6. This analy-
sis reveals substantial differences in the representation of sleep stages between the SMS and
DREAMT datasets. Specifically, Figure 3.6 depicts the proportion of total sleep time spent in
each stage—wake, REM, light, and deep sleep—aggregated across participants. Each box plot
includes the median, interquartile range (IQR), and outliers, offering a clear depiction of both
central tendency and variability.

The SMS dataset (blue) demonstrates relatively stable stage proportions among individuals,
particularly in the light and REM sleep stages, indicating a more homogeneous distribution. In
contrast, the DREAMT dataset (orange) shows a higher degree of variability across participants,
most notably in the light sleep stage. Furthermore, deep sleep is frequently underrepresented
in the DREAMT recordings, suggesting a potential limitation in capturing that stage correctly.
Conversely, light sleep constitutes a substantial portion of sleep time in both datasets, often
dominating the overall distribution.

The epoch-by-epoch analysis for the combined dataset, similar to the one proposed for the
SMS dataset only, and the learning curve with increasing training size are shown in the following
subsections. Both the datasets include PSG sleep stages used as ground truth, and the E4 signals,
ACC, BVP, EDA, and TEMP, already used in the SMS dataset section. The results are shown
using the same model, input signals combination, and parameter configurations of the previous
analysis.
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3.2 – SMS + DREAMT datasets

Figure 3.6: Box plot to compare sleep stage distribution between datasets

Box plot representing the distribution of sleep stages in the SMS (blue) and DREAMT (orange) datasets.

3.2.1 Epoch-by-epoch analysis
In Table 3.5 the epoch-by-epoch performance metrics are shown for the combined SMS +
DREAMT dataset. The results show the limitation of the model in detecting REM and deep
sleep, mostly in terms of Sensitivity and F1-score. This most probably influences the global
metrics, specifically Balanced Accuracy, Macro-F1, and Cohen’s κ, showing lower results than
the model with SMS dataset only. However, the Accuracy is still higher due to the good perfor-
mance in classifying wake and light stages.

Table 3.5: Performance metrics (SMS + DREAMT dataset)

Sleep stage Sensitivity Specificity Accuracy F1-score

Wake 0.66 ± 0.23 0.90 ± 0.13 0.86 ± 0.09 0.64 ± 0.15

REM 0.45 ± 0.31 0.96 ± 0.04 0.91 ± 0.04 0.43 ± 0.29

Light sleep 0.72 ± 0.15 0.66 ± 0.19 0.71 ± 0.08 0.71 ± 0.12

Deep sleep 0.41 ± 0.38 0.94 ± 0.07 0.91 ± 0.06 0.39 ± 0.34

Global
Accuracy Bal. Acc. Macro-F1 Cohen’s κ

0.70 ± 0.08 0.60 ± 0.13 0.55 ± 0.14 0.46 ± 0.15
Performances for single and multi-class sleep stage classification on the SMS + DREAMT test set.
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3.2.2 Learning curve
Figure 3.7 displays the learning curve for the model trained on the combined SMS and DREAMT
datasets. The x-axis represents the proportion of the training set used during training, while the
y-axis shows model performance in terms of four global metrics: Accuracy, Balanced Accuracy,
Macro-F1, and Cohen’s κ.

A learning curve illustrates how the model’s performance evolves as the amount of training
data increases. It provides insight into the model’s learning capacity and helps assess whether
the performance has stabilized or could benefit from additional data.

To generate the curve, the model was trained on progressively larger subsets of the train-
ing data, ranging from a small fraction up to the full dataset. For each subset, performance
was evaluated on a fixed hold-out validation set to ensure comparability between results. This
procedure allows us to observe whether the model is underfitting, overfitting, or approaching
optimal generalization. As the training size increases from 0 to 192 samples, all metrics show
overall improvement:

• Accuracy increases up to around 75 samples and then stabilizes around 0.65–0.7.

• Balanced Accuracy follows a similar trend, reaching values close to 0.6.

• Macro-F1 improves significantly until around 100 training samples, after which it stabilize
around 0.55.

• Cohen’s κ, starting from zero, increases more gradually, stabilizing around 0.45.

Figure 3.7: Learning curve SMS + DREAMT dataset

The plot shows the learning curve for the model trained on the combined SMS and DREAMT datasets. The x-axis
represents the training set size, increasing from 0 to 192, while the y-axis shows model performance for Accuracy
(green), Balanced Accuracy (blue), Macro-F1 (orange), and Cohen’s Kappa (red).
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3.3 Corsano dataset

The results are shown for a single test participant, using as input only the ACC and PPG sig-
nals available from the Corsano device. The model was pretrained on the SMS and DREAMT
datasets and was not fine-tuned on Corsano data, due to the few data available, but also in order
to evaluate its generalizability to unseen devices.

Table 3.6 shows the single and multi-class metrics for the test participant.

Table 3.6: Performance metrics (Corsano dataset)

Sleep stage Sensitivity Specificity Accuracy F1-score

Wake 0.82 0.98 0.96 0.79

REM 0.11 0.92 0.89 0.07

Light sleep 0.73 0.67 0.70 0.76

Deep sleep 0.59 0.87 0.80 0.59

Global
Accuracy Bal. Acc. Macro-F1 Cohen’s κ

0.68 0.56 0.55 0.43

Performance metrics for single-class and multi-class four-sleep stage classification on the test set of the Corsano
dataset. All values are reported as point estimates (standard deviations not available).

The model demonstrated varying performance across the different sleep stages. High sensi-
tivity (82%) and specificity (98%) were observed for Wake, indicating strong detection ability
in this class. Light sleep showed balanced performance, with sensitivity and specificity values
of 73% and 67%, respectively, and the highest F1-score among all stages (76%).

Deep sleep achieved moderate results, with a sensitivity of 59% and specificity of 87%. In
contrast, REM sleep detection was notably limited, with a low sensitivity (11%) and F1-score
(7%), despite relatively high specificity (92%).

Global metrics reflect the imbalanced per-class performance. The overall accuracy was 68%,
while balanced accuracy and macro-F1 were lower (56% and 55%, respectively), suggesting
variable model effectiveness between classes. Cohen’s κ of 43% indicates moderate agreement
with the reference labels.

A visual results analysis is shown in Figure 3.8, including the hypnogram and confusion
matrix comparing the model performance to the PSG. While the model shows reasonable per-
formance overall, mostly in detecting Wake and Light epochs, it is evident that it struggles to
accurately identify REM sleep, likely due to the low number of REM epochs in the test data
relative to other stages.
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Figure 3.8: Hypnogram and confusion matrix from Corsano

Hypnogram and confusion matrix including a comparison between PSG and model sleep stages on an insomnia
test participant. On the left, the hypnogram shows predicted (dashed blue) and actual (black) sleep stages from
PSG, with red dots indicating the model’s misclassified epochs. On the right, a confusion matrix compares the
model’s predictions to psg, with both absolute and normalized values.

3.4 Comparison to literature
A comparison of the performance of the proposed model on all three datasets with previous
studies on four-class sleep stage classification using wearable signals is presented in Table 3.7.
The studies included in this literature review were selected based on the following criteria:

• Results for four-sleep stage classification, including Wake, REM, Light (N1+N2), and
Deep (N3) sleep, compared to with PSG annotations;

• Use of signals acquired exclusively from wrist-worn wearable devices;

• Reporting of at least a subset of the global evaluation metrics adopted in this work, to
allow for models comparison;

• SOTA performance reported for the corresponding experimental settings.

The table reports, for each work, the model architecture, the input signals used, the number
of participants, any relevant diagnoses, and the evaluation metrics available in the respective
studies, including accuracy, balanced accuracy, macro F1-score, and Cohen’s kappa.

Olsen et al. [14] employed U-Net using as input ACC and PPG. A larger dataset of 231
participants, made up of mostly Breathing Disorders (BD) subjects, included wrist-worn tri-
axial ACC at 25 Hz and PSG-derived PPG at 100 Hz. The hold-out set was composed of 35
healthy participants with both ACC and PPG derived from another wearable device, at 25 and
50 Hz, respectively. Another dataset of 35 participants with ACC and PPG both recorded at
25 Hz was also included, reaching a total of 301 participants. The reported metrics include an
accuracy of 69% and Cohen’s κ of 58%.

Li et al. [15] employed a transfer learning approach, adapting a model which combined a
CNN with a Support Vector Machine (SVM) classifier pretrained on ECG signals. The dataset
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Table 3.7: Comparison to related works

Model Signals Participants Diagnosis Accuracy / BA / F1 / κ

SMS U-Net
ACC + BVP +
EDA + TEMP 127 Sleep disorders 69 / 64 / 62 / 50

SMS + DREAMT U-Net
ACC + BVP +
EDA + TEMP 227 Sleep disorders 70 / 60 / 55 / 46

Corsano U-Net ACC + PPG 1 Sleep disorders 68 / 56 / 55 / 43

Olsen et al. [14] U-Net ACC + PPG 301 Healthy/BD 69 / - / - / 58

Li et al. [15] CNN + SVM ACC + PPG 105 Healthy/PTSD 69 / - / - / 44

Silva et al. [24] Features RNN ACC + PPG 1522 Healthy/SA 71 / 72 / - / 56

Song et al. [25] SLAMSS
ACT + HRM

+ HRSD 808 Healthy 72 / - / 73 / -

Zhai et al. [26] LSTM ACT + HR 1743 Healthy* 70 / - / 52 / 54

Comparison of recent sleep stage classification works to the proposed model. The overview includes the model
used, the input signals, the number of participants, the diagnosis, and the global metrics for all three datasets of
this study, and for some SOTA works. *16% with sleep disorders.

includes 105 participants, some of whom with Post-Traumatic Stress Disorder (PTSD). The
model with ACC and PPG collected from the E4 achieves an accuracy of 69% and Cohen’s κ
of 44%.

Silva et al. [24] proposed a Recurrent Neural Network (RNN) algorithm based on hand-
crafted features, using ACC and PPG signals from commercial smartwatches, evaluated on
a population of 1522 participants, including both healthy subjects and a minor percentage of
individuals with diagnosed Sleep Apnea (SA). The results include accuracy (71%), balanced
accuracy (72%), and Cohen’s κ (56%).

Song et al. [25] used a Long Short-Term Memory (LSTM) model called Sequence-to-sequence
LSTM for Automated Mobile Sleep Staging (SLAMSS) on Actigraphy (ACT), Heart Rate
Mean (HRM), and Heart Rate Standard Deviation (HRSD). The data, derived from an acti-
watch, includes ACT, HRM, and HRSD from 808 healthy participants. The model results in
72% of accuracy and 73% of F1-score.

Finally, Zhai et al. [26] designed a multimodal LSTM sleep staging model using both motion
(from ACT) and cardiac features (from PPG-derived HR), trained and evaluated on a large-scale
dataset of 1743 participants. The data included mainly healthy individuals and 16% suffering
from sleep disorders. The model achieved an accuracy of 70%, a macro F1-score of 52%, and a
Cohen’s κ of 54%.
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Chapter 4

Discussion

This study, which involves deep learning for four-sleep stages classification, targets heteroge-
neous datasets comprising participants with a range of diagnosed sleep disorders and markedly
disrupted sleep. This population is both clinically relevant and presents great challenges for
modeling. Furthermore, the datasets used in this work include up to 227 participants, which
increases classification difficulty due to the limited amount of training data and high inter-
individual variability. Certain diagnostic categories are also underrepresented, posing an ad-
ditional challenge to the model’s generalizability across diverse sleep disorders.

In contrast, as shown in Table 3.7, most existing studies involve mainly healthy participants
or include only a small proportion of individuals with sleep disorders. Moreover, these previous
works use as input signals those with higher resolution, in some cases PSG-derived, or large
datasets, contrary to the proposed approach, which considers only wearable-derived signals in
a realistic clinical population.

Despite these constraints, the proposed approach achieves performance comparable to that
reported in the literature, underscoring the robustness of the multimodal model used, which
integrates ACC, BVP, EDA, and TEMP signals. These findings highlight the potential of this
method for application in real-world, diagnostically diverse sleep populations.

The following sections provide a more detailed discussion of each objective introduced at
the beginning of this study, including the integration of EDA and TEMP, results per diagnosis,
the augmentation of the dataset, and finally, the cross-device generalization.

4.1 Integration of EDA and TEMP
The proposed model tested on the SMS dataset with ACC, BVP, EDA, and TEMP for four-sleep
stages classification achieves an overall accuracy of 69%, balanced accuracy of 64%, F1-score
of 62%, and κ of 50% on the test set. As shown in Figure 2.1, both EDA and TEMP exhibit
correlations with sleep stages; however, preliminary experiments integrating these signals into
the model resulted in worse classification performance. This observation motivated the devel-
opment of alternative preprocessing steps specifically adapted for EDA and TEMP, enhancing
their contribution to the overall model accuracy.

To provide a comprehensive interpretation of the results, the following subsections address
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the sleep measure and epoch-by-epoch concordance analysis.

4.1.1 Sleep measures analysis
In addition to the performance for sleep stage classification, the agreement between sleep mea-
sures derived by the proposed model and the ground truth values obtained from PSG was also
evaluated. As shown in Table 3.2, and in the visual analysis provided by the Bland-Altman
plots in Figure 3.2, no statistically significant differences were found for most metrics, with the
exception of SOL and the duration of light sleep (Lightd). These results suggest that the model
is generally capable of providing reliable estimates of key sleep architecture parameters.

This difference in SOL can be linked to a known limitation of wrist-worn wearables: their
inability to reliably detect wakefulness in the absence of movement, especially near sleep onset.
This is a well-documented limitation in wearable sleep monitoring, as actigraphy-based systems
often struggle to distinguish low-movement wakefulness from actual sleep. Consequently, the
model may underestimate SOL, mistaking motionless wake periods for light sleep.

Similarly, the overestimation of light sleep duration may be attributed to the model’s ten-
dency to misclassify wake or REM epochs as light sleep. This trend is in line with the class
distribution imbalance commonly found in sleep datasets, where light sleep represents the ma-
jority class. As a result, the model may be biased to overpredict this stage, particularly in
ambiguous or transitional epochs.

Together, these findings highlight specific areas where wearable-based models still face chal-
lenges, particularly in the accurate detection of sleep transitions and minority sleep stages. De-
spite this, the overall alignment of estimated sleep measures with PSG reinforces the potential
utility of the proposed approach for large-scale or at-home sleep monitoring in heterogeneous
populations.

4.1.2 Epoch-by-epoch analysis
The detailed epoch-by-epoch evaluation presented in Table 3.3 reveals both the abilities and
limitations of the model in classifying sleep stages. Notably, the model demonstrates high
specificity across most classes, particularly for wake, REM, and deep sleep. This reflects a
strength in avoiding false positives, especially for stages that are often confused with others in
wearable-based systems.

In contrast, sensitivity values are more differentiated between stages. The model performs
worst in detecting REM (0.55 ± 0.25) and Wake (0.59 ± 0.20), highlighting a tendency to miss
true instances of these stages. This suggests challenges in capturing the physiological signals
associated with these sleep stages, which may be explained by their lower occurrence and their
high transitional nature. Consequently, the F1-score for REM sleep is the lowest among the
stages (0.53 ± 0.22), reflecting both the limited recall and the complexity of accurately identi-
fying this stage based on wrist-worn data. Light sleep, on the other hand, achieves the highest
sensitivity (0.76 ± 0.11) and a relatively stable F1-score (0.72 ± 0.09), with a trade-off in speci-
ficity (0.66 ± 0.12), indicating that the model tends to assign many epochs to this dominant
stage.

Global classification metrics (Accuracy: 0.69 ± 0.08; Balanced Accuracy: 0.64 ± 0.10;
Macro F1-score: 0.62 ± 0.11) reflect moderate concordance with the gold-standard PSG, as
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also supported by a Cohen’s κ of 0.50 ± 0.14. These results are encouraging, especially given
the complexity and diagnostic heterogeneity of the dataset, and are in line with or superior to
other prior works using wearables in mostly healthy subjects.

In addition, the results presented in Table 3.1 and the visual analysis given by the confusion
matrices in Figure 3.1 illustrate the incremental benefit of incorporating multiple signal modal-
ities. Starting from a single-sensor setup using only ACC, the model shows limited ability to
identify deep and REM sleep stages. The inclusion of BVP provides a noticeable performance
improvement, particularly for REM classification. The highest overall accuracy is reached when
all available modalities (ACC, BVP, EDA, and TEMP) are combined, demonstrating improved
detection of each class. These findings highlight the value of a multimodal strategy in enhanc-
ing sleep stage classification, especially for capturing less frequent and physiologically complex
stages like REM sleep.

4.2 Diagnosis-specific performance analysis
Most validation studies of wearable-based sleep monitoring have been conducted on healthy
participants, whose sleep patterns tend to be continuous, stable, and undisturbed. Consequently,
these studies may not properly reflect the performance of wearable devices in clinical settings
where sleep is often fragmented, irregular, and affected by participants or context-specific con-
ditions. This work addresses this limitation by including a clinically heterogeneous population
and by stratifying the evaluation of model performance according to specific sleep disorder di-
agnoses. This approach enables a more comprehensive understanding of how wearable-based
sleep staging models generalize across various pathological profiles.

As shown in Table 3.4, the highest classification performance was observed in healthy con-
trol participants, with consistently strong metrics, reaching an Accuracy of 77%, Balanced Ac-
curacy of 73%, Macro-F1 of 74%, and Cohen’s κ of 64%. This result is in line with the litera-
ture, given that healthy participants typically exhibit more structured and easily distinguishable
sleep patterns, which are easier for the model to learn and classify accurately.

Performance was more heterogeneous across clinical subgroups. Participants diagnosed with
hypersomnolence and breathing disorders achieved relatively high scores, suggesting that de-
spite their underlying conditions, these groups maintain discernible physiological patterns that
the model can capture effectively. In contrast, the model performed least effectively for indi-
viduals with insomnia and parasomnias, both of which produced the lowest metrics across the
diagnoses. In particular, Balanced Accuracy values of 51% for insomnia and 49% for parasom-
nias indicate significant challenges in accurately identifying sleep stages in these groups. These
difficulties are likely caused by highly irregular sleep architecture and increased intra-subject
variability that makes classification more challenging.

This issue is further illustrated in the example shown in Figure 3.5, where the model mis-
classifies extended wake periods as light sleep in an insomnia case. This misclassification likely
arises because the participant remains motionless in bed with reduced heart rate, physiological
conditions that resemble light sleep despite actual wakefulness, highlighting a common limita-
tion of wearable devices that rely heavily on movement and heart rate signals.

Similarly, classification performance for individuals with movement disorders was relatively
weak, with a Balanced Accuracy of 52%. This may reflect the heterogeneity of this diagnostic
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group and the complex nature of their sleep disorders, which may deviate significantly from
patterns the model was trained on.

To improve diagnostic sensitivity, especially in underrepresented or pathologically complex
groups, future work should prioritize the development of larger and more balanced datasets, ide-
ally including sufficient representation from each disorder type. However, the results obtained
in this study demonstrate that the inclusion of multiple physiological signals, particularly those
with strong associations to sleep patterns, can yield performance comparable to SOTA models
[24], even under challenging clinical conditions.

4.3 Augmented dataset

To increase the diversity and size of the training data, two existing datasets, SMS and DREAMT,
were combined. These datasets share a common set of physiological signals collected using the
E4 device (ACC, BVP, EDA, and TEMP) together with gold-standard PSG annotations. By
merging these datasets, the aim was to create a more heterogeneous sample set with a wider
range of sleep behaviors and disorders, improving the model’s generalizability to real-world
applications.

However, as shown in Figure 3.6, the two datasets have different class distributions, increas-
ing the inter-subject variability. The most challenging characteristic of the additional DREAMT
dataset is that 49% of the participants have no deep sleep, 69% of whom suffer from OSA,
which can explain this unusual sleep pattern. For this reason, the results are not very promis-
ing, with a slight improvement only in accuracy with respect to the model trained on the SMS
dataset. A more detailed analysis of the results with the combined dataset is shown below.

4.3.1 Epoch-by-epoch analysis

As shown in Table 3.5, overall classification metrics, including relatively high values of Accu-
racy (70%), indicate that the model generalizes well across the dataset. However, the consistent
gap between the other metrics (Balanced Accuracy, Macro-F1, and Cohen’s κ) highlights the
presence of class imbalance, likely driven by the overrepresentation of light sleep and the rela-
tive underrepresentation of REM and deep stages.

This imbalance is further illustrated in Figure 3.6, which shows the distribution of sleep
stages across the two datasets. Notably, participants from the DREAMT dataset, many of whom
suffer from OSA, exhibit a marked absence or reduction of deep sleep. This pathological sleep
architecture significantly alters the class distribution in the combined dataset and likely impacts
the model’s ability to learn representative features for the deep sleep class. As a result, the
model may be biased toward stages that are more consistently represented across both datasets,
such as light sleep, while underperforming on those that are rare or dataset-specific.

Additionally, the relatively lower Macro-F1 and Cohen’s κ scores reinforce this issue, as
these metrics are particularly sensitive to the model’s ability to detect less frequent classes.
Poor detection of REM and deep sleep epochs, both of which are commonly affected in clini-
cal populations, reduces agreement beyond chance and signals limited generalization for these
clinically relevant states. This is particularly concerning in diagnostic contexts, where accurate
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staging of REM and deep sleep plays a critical role in evaluating sleep quality and identifying
specific disorders.

4.3.2 Learning curve
The learning curve presented in Figure 3.7 confirms that model performance improves as more
training samples are introduced, with the most substantial gains occurring up to approximately
100 instances. Beyond this threshold, performance stabilizes, suggesting that the model is near-
ing its capacity to extract useful patterns given the current feature set and architecture. This
leveling effect is typical when the model becomes saturated with the available information, in-
dicating no further improvement from simply increasing data volume without modifying the
learning approach.

In sum, while dataset augmentation improves generalization, the underlying class imbalance,
partly due to the physiological effects of OSA in the DREAMT dataset, remains a limiting factor
for model robustness. Addressing this through targeted data augmentation, stratified sampling,
or class-aware loss functions may be necessary to enhance performance, especially for clinically
underrepresented sleep stages.

To address these limitations, future work could explore various strategies, including:

• Class balancing methods, such as resampling or cost-sensitive learning, to mitigate skewed
class distributions;

• Feature augmentation, including temporal context windows or signal-derived frequency
features;

• Advanced architectures, such as RNNs or LLMs, which might better capture the temporal
dynamics of sleep;

• Transfer learning approaches, leveraging pre-trained models on larger wearable datasets.

By combining datasets and expanding the training size, this study represents a step toward
more robust and clinically applicable wearable sleep stage classification. However, further im-
provements in both data diversity and model complexity are likely necessary to reach perfor-
mance levels suitable for diagnostic use in more challenging populations.

4.4 Cross-device generalization
To assess the generalizability of the proposed model to different wearable devices, a preliminary
evaluation was conducted using data from a participant wearing the Corsano device, used as test
set. The model had been pretrained exclusively on the combined SMS and DREAMT datasets,
which use the E4 wearable. Despite this, the model was able to process and classify Corsano
data without additional fine-tuning, demonstrating encouraging results.

As shown in Table 3.6, the classification performance on Corsano data was comparable
to the results obtained from the E4-based datasets, achieving an Accuracy of 68%, Balanced
Accuracy of 56%, Macro-F1 of 55%, and Cohen’s κ of 43%. These values suggest that the
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model can generalize reasonably well to data acquired from a different device, provided that the
signal modalities and preprocessing steps remain consistent.

The model shows the worst per-class performance on REM sleep, a very common result in
this context since it is the rarest class, as evident in Figure 3.8.

It is important to note that this evaluation is based on a single subject from an ongoing and
still-growing Corsano dataset. For this reason, the results should be considered preliminary and
interpreted with caution. However, they offer promising evidence that the proposed multimodal
architecture is robust enough to operate with different wrist-worn technologies, opening the
door to wider applicability.

In future work, the model can be applied to the full Corsano dataset as it becomes available.
This will allow for a more systematic validation of cross-device performance and may inform
further adaptations or fine-tuning strategies to improve the model performance across different
wearable devices.
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Chapter 5

Conclusions

This work showed the applicability and clinical relevance of deep learning techniques for sleep
stage classification using wrist-worn sensors in a heterogeneous population with diagnosed sleep
disorders. In contrast to many previous studies limited to healthy subjects with consolidated
sleep, this model effectively handles the complexity and variability due to pathological sleep
patterns. The achieved performance, comparable to SOTA wearable-based methods, highlights
the potential of multimodal physiological signals from consumer-grade devices as scalable and
non-invasive alternatives to the gold standard PSG.

Importantly, by combining datasets from different sources and evaluating the model on a
clinically diverse population, the generalizability and robustness of wearable sleep staging in
real-world settings were demonstrated. The preliminary cross-device testing on data collected
from the Corsano wearable further suggests that the developed approach can adapt to different
devices, supporting its applicability in different clinical and research contexts.

This study underscores the importance of personalized Artificial Intelligence (AI) models
that not only leverage multimodal sensor data but also incorporate diagnostic information and
population heterogeneity to achieve personalized sleep monitoring. Such approaches pave the
way toward patient-centered care in sleep medicine, enabling continuous, at-home sleep assess-
ment and more personalized therapeutic interventions.

5.1 Limitations and Future Work
Despite these promising results, several limitations must be acknowledged. This study was con-
ducted in a clinical environment where manual PSG scoring, although performed by experts,
may suffer from inter-scorer variability and less standardized protocols due to practical con-
straints. The relatively small sample size and the heterogeneous representation of diagnostic
categories limit the model’s ability to generalize uniformly, especially for less frequent or more
complex disorders such as insomnia and parasomnias.

Furthermore, the current U-Net architecture processes fixed-length input segments, which
may truncate longer sleep recordings. Extending the model to accept variable-length inputs
or leveraging architectures designed for sequential data, such as recurrent or attention-based
networks, could enhance temporal modeling of sleep dynamics.
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Incorporating diagnosis labels into the training process through weighted loss functions or
multitask learning frameworks could improve sensitivity for underrepresented classes and en-
able the model to adapt to specific pathological profiles. Addressing class imbalance via over-
sampling, stratified batch sampling, or synthetic data generation will likely enhance robustness
across diverse patient populations.

Finally, while initial cross-device generalization results are encouraging, comprehensive val-
idation on larger, heterogeneous datasets from multiple wearable platforms is necessary. Future
work will focus on fine-tuning the model on such datasets, improving preprocessing standard-
ization, and exploring transfer learning techniques to further boost cross-device compatibility.

In conclusion, this study lays a strong foundation for the development of clinically appli-
cable, wearable-based sleep staging tools. Continued efforts to integrate richer clinical data,
improve model architectures, and validate in different populations will be critical steps toward
guaranteeing reliable, personalized sleep health monitoring outside of laboratory settings.
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