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Introduction

In the modern digital landscape, where individuals continuously interact with
online services and platforms, the protection of user privacy and the integrity
of authentication mechanisms have become critical concerns. As digital iden-
tity becomes increasingly central to accessing services, from financial systems
to healthcare and social media, ensuring that users can prove who they are
without unnecessarily revealing sensitive information is essential.

Traditional authentication mechanisms, such as passwords and central-
ized identity providers, present numerous risks: data breaches, single points
of failure, and pervasive user tracking. In response to these challenges, the
cryptographic community has developed privacy-preserving authentica-
tion protocols, including anonymous credential systems, which allow
users to authenticate while maintaining control over what information is
disclosed. Such systems enable selective disclosure of attributes (e.g., prov-
ing over-18 status without revealing a birthdate) and offer unlinkability,
meaning that multiple authentications by the same user cannot be trivially
correlated. These properties are particularly valuable in contexts such as
digital cash, access control, and anonymous access to web resources.

However, the emergence of quantum computing poses new challenges.
Many cryptographic primitives underlying current privacy-preserving sys-
tems, such as discrete logarithms and pairings, may become insecure in the
presence of quantum adversaries. This has triggered a growing interest in
post-quantum cryptography, and, in particular, in the development of
post-quantum anonymous credential schemes and zero-knowledge proofs that
remain secure even in a quantum world.
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Introduction

This thesis is situated within this context, exploring how advanced crypto-
graphic constructions, especially post-quantum zero-knowledge proofs
such as zk-STARKs, can be leveraged to build quantum-resistant privacy
preserving authentication systems.

Contents:

1. Chapter I introduces the concept of anonymous credentials, beginning
with traditional identity models and progressing to attribute-based cre-
dentials (ABCs). It describes the BBS+ signature scheme and briefly
introduces zk-SNARKs as tools for enabling selective disclosure.

2. Chapter II introduces the theoretical background of zero-knowledge
proofs, covering key concepts such as hash functions, complexity classes,
Sigma-protocols, and the formal definitions of zero-knowledge and proof-
of-knowledge.

3. Chapter III focuses on zk-SNARKs, presenting the algebraic structures
behind them, such as arithmetic circuits, R1CS, and polynomial com-
mitments, and detailing core protocols like the Sum-Check and GKR
protocols. A dedicated section also introduces the FRI protocol as a
low-degree testing mechanism.

4. Chapter IV turns to zk-STARKs, explaining the notions of computa-
tional integrity, IOPs (Interactive Oracle Proofs), and arithmetization
models such as AIR. A worked example and full protocol description
are provided to illustrate the zk-STARK construction.

5. Lastly, Chapter V presents a post-quantum Privacy Pass based on
anonymous credentials and zk-STARKs. It includes a STARK-friendly
signature variant (zkDilithium20), a credential construction, a rate-
limited protocol, implementation details, and performance benchmarks.

vii



Chapter I
Anonymous credentials

Anonymous credentials were invented to allow users to obtain credentials and
show some properties without revealing any additional information or allow-
ing tracking. It’s a way to show credentials without compromising privacy:
for example, a user might want to convince a verifier that it’s over some age,
without revealing its date of birth.

Currently, known implementations of this technology include Idemix by
IBM and UProve by Microsoft.

To appreciate the significance of anonymous credentials, it is essential to
first understand how traditional credential systems work.

I.1 Traditional credentials

A credential is a set of data that proves a user’s identity or provides infor-
mation about their rights or access level. Examples include passwords, ID
cards, certificates, and digital tokens. Credentials are essential for a secure
access control because they help verify that a user or system is who or what
they claim to be (authentication) and confirm the user’s permission to access
certain resources (authorization).

A trusted entity, like a government or an organization, issues the cre-
dential directly tied to the user’s identity. For example, a government might
issue a driver’s license with the user’s name, photo, and date of birth. In dig-
ital contexts, a website might issue a password or a digital certificate linked
to a user’s account.

1



Anonymous credentials

When accessing a service or system, the user presents the credential to
verify their identity. For example, entering a username and password to
log into an account, or showing an ID card to enter a restricted area. The
credential is often verified by matching it against stored information (like a
password hash in a database or a database of authorized ID card holders).

Figure I.1: Functioning of Traditional Credentials (Source: Melissa Chase)

With traditional credentials, the user is typically required to share their
identifying information in full with the verifier; such as their full name, date
of birth, or account details. This approach results in what is commonly
referred to as full disclosure of identity, meaning that each time the cre-
dential is presented, the verifier learns the complete identity of the user. This
process often leaves a traceable digital footprint, as verifiers can associate
multiple interactions with the same individual. Consequently, traditional cre-
dentials can expose users to tracking across services and transactions, raising
serious privacy concerns. In many cases, verifiers may store, share, or even
monetize this personal information, further undermining user privacy.

I.2 Attribute-Based Credentials (ABC)

The two primary properties that should aim to be achieved are:

• Selective disclosure: the holder can choose to disclose only parts of the
credential, rather than the entire credential

• Unlinkability: the verifier would not be able to link previous holder’s
interactions with him

2
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Anonymous credentials

In some cases, even the above two properties might not be sufficient, for
example when the holder wants to reveal part of the data: if a holder wants
to prove he is over 18 or above 65 for availing a service, he doesn’t need
to show his date of birth; just being able to prove those conditions, called
predicates is sufficient for the verifier. Similarly, an investor should be able
to convince a verifier that the total value of his assets is greater than some
amount without revealing the actual values of his assets.
One of the solutions to solve the above problem is called anonymous creden-
tials, sometimes called Attribute-Based Credentials (ABC). Instead of
considering the credential data as arbitrary bytes which are then signed by
the issuer, anonymous credentials add ”structure” to the credential. Each
claim in the credential is treated as an attribute and then these attributes are
signed in a specific way by the issuer to create a signature. These attributes
and the signature now form anonymous credentials.
Because of the ”structure” in this credential, the holder can prove to a ver-
ifier, using zero-knowledge proof, that he has this credential from the issuer
without revealing any of the attributes. To be precise, the holder can dis-
close these attributes exist and have been signed by an official issuer, without
disclosing the attributes themselves or the signature.

A trusted authority issues an anonymous credential to the user, but
instead of binding it directly to the user’s real identity, it links the credential
to specific attributes or entitlements. For instance, an anonymous credential
might show that a user is over 18 or has a certain qualification without
linking back to their actual name or ID. The credential is encrypted and
secured cryptographically, making it tamper-proof and difficult to forge.

When presenting an anonymous credential, users can selectively dis-
close only the information that’s necessary for the interaction. Crypto-
graphic techniques, like Zero-Knowledge Proofs (ZKP), allow users to prove
their credential’s validity without revealing the credential itself.

The verifier can confirm that the credential is valid without knowing who
the user is (Verification Without Identification). This process protects
user anonymity by preventing linkages across different transactions, so the
verifier cannot track users or create profiles based on repeated interactions
(unlinkability). As a result, privacy is enhanced, since users’ identities
remain protected, allowing anonymous access to services. Additionally, reg-
ulatory compliance is improved, especially with privacy laws like GDPR, as
less personal data is collected or shared.
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Anonymous credentials

I.2.1 BBS+ signature

To achieve both selective disclosure and unlinkability, a suitable approach
is to use the BBS+ signature scheme [CDL16]. One of its key properties is
the ability to prove, in zero knowledge, that specific attributes shared across
multiple credentials are equal, without disclosing the attributes themselves.

For instance, if both a driving license and a passport are issued with
BBS+ signatures, it is possible to demonstrate that the Social Security Num-
ber (SSN) attribute in both credentials is identical, without revealing the
SSN. This capability enables the secure linking of multiple credentials, which
is particularly useful when it is necessary to prove that all credentials pertain
to the same subject or identifier.

Introduction to zk-SNARKs

As previously said, some common requirements with anonymous credentials
are being able to prove conditions or predicates about the attributes, like
proving that total income from a bank statement credential is less than the
limit. Here, the total income might not be a single attribute but composed
of several attributes with one attribute per income source. Therefore, the
attributes need to be added together before comparing to the limit amount;
some cases may need more complex operations on one or more attributes.

These capabilities are not possible with BBS+ alone, and here is where zk-
SNARK comes into play, as it can be used to prove arbitrary conditions on the
attributes. Just to give the reader an idea, a Zero-Knowledge Succinct Non-
Interactive Argument of Knowledge (zk-SNARK) is a cryptographic proof
that allows one party (the prover) to demonstrate to another party (the
verifier) that they know a specific piece of information without revealing the
information itself and without requiring any interaction between the prover
and verifier after the initial proof setup. A more in-depth discussion of zk-
SNARKs, including their structure, properties, and practical applications,
will be presented in Chapter III.
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Chapter II
ZKP: Zero-Knowledge Proofs

Prior to presenting a formal definition of zero-knowledge proofs, it is neces-
sary to revisit several foundational definitions and concepts from the field of
cryptography, which will serve as the basis for the subsequent discussion.

Definition II.0.1. Computational Security (Informal)

A scheme achieves computational security if any “efficient adversary” suc-

ceeds in “breaking the scheme” with at most “negligible” probability.

To make this definition precise, we have to formalize the following con-
cepts:

• “Efficient adversary”, which means probabilistic polynomial-time (PPT)
algorithm. An algorithmA is polynomial time if its complexity isO(nc)
for some constant c > 0 and linear time when the complexity is O(n),
where n is the number of bits of the input.

• “Breaking the scheme”, which means succeeding at an experiment (or
game).

• “Negligible”, which means less than any negative power of a security
parameter λ. Parameters of the cryptographic schemes are chosen in
such a way that the best-known attack would break the scheme using
at least 2λ operations.

A function µ(λ) is negligible in λ if, for every positive integer c, there
exists a λ0 such that, for each λ > λ0, we get µ(λ) < 1

λc .

5



ZKP: Zero-Knowledge Proofs

II.1 Hash functions and commitments

Definition II.1.1. A hash function (with output length l(λ)) is a pair of

PPT algorithms (Gen, H) satisfying the following:

• Gen is a probabilistic algorithm that takes as input a security parameter

λ in unary and outputs a key k.

• H takes as input a key k and a string x ∈ {0, 1}∗and outputs a string

Hk(x) ∈ {0, 1}l(λ).

Definition II.1.2. Let (Gen, H) be a hash function. A collision for a

given key k ← Gen(1λ) of H is a pair x, x′ ∈ {0, 1}∗ such that x ̸= x′ and

Hk(x) = Hk(x
′).

The invert experiment, which we denote InvertAH(1
λ) works as fol-

lows:

• Generate a random x
$←− {0, 1}∗

• Compute y ←− Hk(x) for some k
$← Gen(1λ)

• Give k and y to the adversary A

• Let A output x′

• Return 1 if Hk(x
′) = y, 0 otherwise

Definition II.1.3. A hash function H = (Gen,H) is one way if the follow-

ing two properties hold:

• Easy to compute: there exists a polynomial time algorithm to com-

pute H.

• Hard to invert: for every PPT algorithm A, there exists a negligible

function negl(λ) such that Pr[InvertAH(1
λ) = 1] ≤ negl(λ)

Commitment schemes are now introduced as fundamental cryptographic
primitive used to bind data while preserving its confidentiality.

6
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Definition II.1.4. A commitment scheme on a message space M is a

triple of PPT algorithms (PGen, Commit, Open) such that:

1. PGen(1λ) takes as input a security parameter λ in unary and returns

the public parameters pp used by the scheme;

2. Commit(pp,m) takes as input the public parameters pp and a message

m inM. It returns the commitment com and the opening material o;

3. Open(pp,m,com,o) takes as input the public parameters pp, the mes-

sage m, the commitment com and the opening material o. It returns

Accept if com is the commitment of m or Reject otherwise.

A commitment must satisfy two properties: hiding and binding.
Hiding means that com reveals nothing about m and binding means that

it is not possible to create a commitment com that can be opened in two
different ways. These properties can be formally defined.

Definition II.1.5. Let ΠCom = (PGen, Commit, Open) be a commitment

scheme and let Hiding(ΠCom) be the hiding game represented in Figure II.1.

A commitment scheme ΠCom is computationally hiding if for all PPT

adversaries A there is a negligible function negl(λ) such that

|Pr[A wins Hiding(ΠCom)]| ≤
1

2
+ negl(λ)

If, for every pair m0,m1, the commitments com0 and com1 have the same
distribution, where (comi, oi) = Commit(pp,mi) for i=0,1, we say that the
commitment is perfectly hiding.

Definition II.1.6. A commitment scheme ΠCom=(PGen, Commit, Open) is

computationally binding if for all PPT adversaries A there is a negligible

function negl(λ) such that

Pr

 (com,m0, r0,m1, r1)← A(pp))

pp ← PGen(1λ),

m0 ̸= m1,

Open(m0, com, r0) = Accept

Open(m1, com, r1) = Accept

 ≤ negl(λ)

7



ZKP: Zero-Knowledge Proofs

If for every adversary A it holds that negl(λ) = 0, the commitment
scheme is said to be perfectly binding.

Hiding(ΠCom)

Adversary A Challenger C

pp pp← PGen(1λ)

Choose m0,m1 ∈ {0, 1}n m0,m1 b
$←− {0, 1}

com← Commit(pp,mb)

com

Guess b′ b′ A wins if b′ = b

Figure II.1: Hiding game for commitment schemes

There are many different assumptions that can be used to build secure
schemes: one well-known example is the Discrete Logarithm Problem
assumption (DLP) [McC90]. Given a finite cyclic group G of prime order p,
generated by an element g, and any element a ∈ G, there exists an exponent
x ∈ Fp such that gx = a. However, computing x from the known values of
g and a is not computationally efficient when the order of G is sufficiently
large. The same assumption holds for elliptic curves (ECDLP): given an
elliptic curve E defined on a finite field Fq and given two points of the curve
G and P , it is unfeasible to find the value d such that P = dG.

One famous commitment based on the difficulty of the discrete logarithm
is the Pedersen commitment [Ped92].

Let G be a finite cyclic group of prime order p.

1. The public parameters pp of the scheme consist of two randomly chosen
generators g, h ∈ G, such that g = hs for some exponent s ∈ Fp which
remains computationally hidden and unknown to all parties.

2. Given a message m to be committed, the committer samples a random

8
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value r
$←− Fp, referred to as the blinding factor, and computes the

commitment as
com← gm · hr.

The opening material is the couple o = (m, r).

3. To open the commitment, the verifier receives the opening material o
and verifies its correctness by checking whether

com
?
= gm · hr.

Theorem II.1.7. The Pedersen commitment is perfectly hiding and compu-

tationally binding, under the discrete logarithm assumption.

This scheme also has an interesting property: it is additively homo-
morphic. In fact, it is easy to prove that

com(m, r) · com(m′, r′) = com(m+m′, r + r′)

.

II.2 Complexity classes

Let {0, 1}∗ denote the set of all finite binary strings.

Definition II.2.1. A (formal) language L is a subset of {0, 1}∗ or, in

other words, a set of finite binary strings.

Definition II.2.2. Let L be a language. The decision problem for L is

the problem that, given a binary string x ∈ {0, 1}∗, asks to determine if x

belongs or does not belong to L.

In other words, a decision problem is a problem whose answer can be
only YES or NO. However, most of the interesting problems are not decision
problems, since the answer can be more complex (these are called search
problems). For example, the factoring problem asks to find the prime num-
bers p and q after being given N = pq. Luckily, most of the time one can
easily reduce a search problem to a finite number of decision problems. For
instance, the factoring problem can be equivalently formulated as the decision
problems:

9
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1. Is the first (binary) digit of p equal to 1? (yes or no)

2. Is the second digit of p equal to 1? (yes or no) ... and from the answers
one can easily compute p (and then q = N/p).

Definition II.2.3. A complexity class is a set of decision problems that

can be solved by algorithms of a specific complexity. Interchangeably, a

complexity class is a set of languages whose decision problems can be solved

by algorithms of a specific complexity.

Some important complexity classes are the following.

• P, which is the class of all decision problems that can be solved in
polynomial-time.

• BPP (Bounded-error Probabilistic Polynomial-time), which is the class
of all decision problems that can be solved by PPT algorithms that are
allowed to return a wrong answer with probability at most 1/3.

• PSPACE, which is the class of all decision problems that can be solved
by an algorithm using a polynomial amount of memory.

• NP (Nondeterministic Polynomial-time), which is the class of all deci-
sion problems whose solutions can be verified in polynomial time.

Definition II.2.4. The NP (Nondeterministic Polynomial-time) com-

plexity class is defined as follows. A language L belongs to NP if and only

if there exists a polynomial p and a polynomial-time algorithm A such that:

• For all x ∈ L there exists a witness (or proof) w ∈ {0, 1}∗ such that

|w| ≤ p(|x|) and A(x,w) = 1.

• For all x /∈ L and for all w ∈ {0, 1}p(|x|) we have that A(x,w) = 0.

Informally, a language L belongs to NP if for every true statement “x ∈
L” there exists a “short” proof w that can be used to efficiently verify the
truthfulness of “x ∈ L”. The term nondeterministic comes from an equivalent
definition of NP that employs nondeterministic Turing machines.

10
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II.3 Zero-Knowledge Proofs

Definition II.3.1. A k-round interaction of two functions f, g : {0, 1}∗ →
{0, 1}∗ on input x ∈ {0, 1}∗ is a sequence of strings a1, . . . , ak ∈ {0, 1}∗ de-
fined as

a1 := f(x)

a2 := g(x, a1)

a3 := f(x, a1, a2)

. . .

a2i+1 := f(x, a1, . . . , a2i) for 2i < k

a2i+2 := g(x, a1, . . . , a2i+1) for 2i+ 1 < k.

The final output of f is denoted by outf⟨f, g⟩(x).

Definition II.3.2. A language L is said to be in the complexity class IP if

there exists a PPT algorithm V (verifier) that can have a k -round interac-

tion with a function P : {0, 1}∗ −→ {0, 1}∗ (prover) such that the following

two properties hold.

• Completeness. If x ∈ L then there exists P such that

Pr[outV ⟨V, P ⟩(x) = 1] ≥ 2/3

.

• Soundness. If x /∈ L then for every P̃ we have that

Pr[outV ⟨V, P̃ ⟩(x) = 1] ≤ 1/3

.

A pair of (V, P ) satisfying completeness, is called an interactive proof

system for L.

Roughly speaking L ∈ IP if, for every x ∈ L, there exists an interactive
proof that, with overwhelming probability, convinces the verifier that x ∈ L;
while if x /∈ L, such a proof is impossible.

11



ZKP: Zero-Knowledge Proofs

The class IP does not change if its definition is changed by:

• allowing the prover P to be probabilistic;

• replacing the probability 2/3 with 1 (this is a nontrivial theorem);

• replacing the probability 1/3 with any fixed constant c < 1 (this follows
by repeating the interactive proof several times). In such a context, c
is called soundness error or cheating probability.

Definition II.3.3. Let L be a language in NP. A pair (P, V) of interactive

PPT algorithms is a perfect (statistical, computational, respectively) zero-

knowledge proof (ZKP) for L if the following three properties hold.

• Completeness. For every x ∈ L and for every witness w of this fact,

we have that Pr[outV ⟨P (x,w), V (x)⟩ = 1] ≥ 2/3

• Soundness. For every x /∈ L and for every (unbounded) probabilistic

algorithm P̃ , we have that Pr[outV ⟨P̃ (x), V (x)⟩ = 1] ≤ 1/3

• Zero-Knowledge. For every PPT algorithm V ∗, there exists an ex-

pected PPT algorithm S (simulator) such that for every x ∈ L and for

every witness w of this fact, the random variables outV ∗⟨P (x,w), V ∗(x)⟩
and S(x) are identical (statistically indistinguishable, computationally

indistinguishable, respectively)

The complexity classes of languages admitting perfect, statistical, and
computational ZKPs are called PZK, SZK and CZK respectively.

The completeness and soundness properties of ZKPs are analogous to
that of IP and the same considerations apply (2/3 can be replaced by 1,
and 1/3 can be made arbitrarily small). The zero-knowledge property says
that the verifier cannot learn anything new from the interaction, even if he
employs a different strategy V ∗. Indeed, he could have obtained the same
information by directly executing the simulator S on the publicly known
input x. Occasionally, the zero-knowledge property might be too difficult
to handle, since it takes into account every possible strategy of the verifier.
Therefore, it is relaxed to the following weaker property, which assumes that
the verifier applies a fixed (honest) strategy.

12
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• Honest-Verifier Zero-Knowledge. There exists an expected PPT
algorithm S (simulator) such that for every x ∈ L and for every wit-
ness w of this fact, the random variables outV ⟨P (x,w), V (x)⟩ and S(x)
are identical (statistically indistinguishable, computationally indistin-
guishable, resp.)

Definition II.3.4. Let L be a language in NP. A pair (P, V ) of interactive

PPT algorithms is a proof of knowledge (PK) for L if the following

property holds.

• Knowledge soundness (or knowledge extractability). There ex-

ists a constant k > 0 (knowledge error) and an expected PPT al-

gorithm E (extractor) such that for every interactive function P̃ and

every x ∈ {0, 1}∗ the following condition holds:

”If p := Pr[outV ⟨P̃ , V ⟩] > k then,on input x and access to the oracle

P̃ (x), the extractor E returns a witness w for x ∈ L within a number

of steps bounded by 1/(p− k) times a fixed polynomial of |x|.”

The definition of proof of knowledge is very involved. However, roughly
speaking, it says that given any algorithm P̃ that convinces the verifier that
x ∈ L, it is possible to build another algorithm E that produces a witness w
for the fact that x ∈ L.

The original definition of knowledge soundness given by Bellare and Gol-
dreich [BG93] was restricted to x ∈ L. However, it does no harm to extend
the definition to any x ∈ {0, 1}∗, as it is common today [Cou17]. Then it
can be proved that knowledge soundness implies soundness. At this point,
zero-knowledge proofs of knowledge can be defined as zero-knowledge proofs
(completeness, soundness, zero-knowledge) which are also proofs of knowl-
edge (knowledge soundness).

Definition II.3.5. Let L be a language in NP. A pair (P, V ) of interac-

tive PPT algorithms is a perfect (statistical, computational, resp.) zero-

knowledge proof of knowledge (ZKPoK) for L if:

• Completeness. For every x ∈ L and for every witness w of this fact,

we have Pr[outV ⟨P (x,w), V (x)⟩ = 1] ≥ 2/3.
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• Knowledge soundness. There exists a constant k > 0 (knowledge

error) and an expected PPT algorithm E (extractor) such that for

every interactive function P̃ and every x ∈ L the following condition

holds:

If p := Pr[outV ⟨P̃ , V ⟩] > k then, on input x and access to the oracle

P̃ (x), the extractor E returns a witness w for x ∈ L within a number

of steps bounded by 1/(p− k) times a fixed polynomial of |x|.

• Zero-Knowledge. For every PPT algorithm V ∗, there exists an ex-

pected PPT algorithm S (simulator) such that for every x ∈ L and

for every witness w of this fact, the random variables

outV ∗⟨P (x,w), V ∗(x)⟩ > k

and S(x) are identical (statistically indistinguishable, computationally

indistinguishable, resp.)

The complexity classes of languages admitting perfect, statistical, compu-
tational ZKPoKs are called PZKPoK, SZKPoK, CZKPoK, respectively.

II.4 Sigma-Protocols

Before diving into the technical construction of zk-STARKs, it is useful to
briefly recall the concept of Sigma-protocols (or Σ-protocols). These are
three-move interactive proof systems that have historically played a central
role in the development of zero-knowledge proofs and proofs of knowledge.

A Sigma-protocol consists of a prover and a verifier engaging in a simple
interaction: the prover sends a commitment, the verifier responds with a
challenge, and the prover replies with a response. Despite their simplicity,
Sigma-protocols satisfy important properties such as completeness, special
soundness, and special honest-verifier zero-knowledge. These properties make
them foundational tools in the design of cryptographic protocols, especially in
scenarios where proving knowledge of a secret without revealing it is essential.

While zk-STARKs differ significantly in structure, being non-interactive,
scalable, and post-quantum secure, the conceptual goals remain similar.

14
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Presenting Sigma-protocols helps build intuition about the nature of zero-
knowledge and how these goals are achieved in more advanced proof systems.

A Σ-protocol is a particular honest-verifier ZKPoK with a 3-pass struc-
ture.

Definition II.4.1. Let L be a language in NP. A Σ-protocol is a 3-pass

interactive proof between a prover and a verifier having the following struc-

ture:

1. The prover’s input is x ∈ L and a witness w of that fact.

2. The verifier’s input is x.

3. The prover sends to the verifier a commitment.

4. The verifier sends to the prover a response and sends it to the verifier.

5. The verifier checks if the response is correct, according to the challenge

and the commitment. In such a case the verifier accepts, otherwise he

rejects.

The prover consists of two PPT algorithms P1, P2 and the verifier consists of

two PPT algorithms V1,V2. The following scheme summarizes the execution

of the protocol of transcript (x, com, ch, rsp).

Prover(x,w) Verifier(x)

com,P state← P1(pk, sk) com

ch← V1(x, com)

ch

rsp← P2(P state, ch)

rsp return V2(x, com, ch, rsp)

Figure II.2: Σ-protocol

Moreover, the following properties hold.
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• Completeness. If the parties follow the protocol for x ∈ L the verifier

always accepts.

• Special Soundness. There exists an expected PPT algorithm

(extractor) that takes as input two transcripts (x, com, ch1, rsp1)

and (x, com, ch2, rsp2), with ch1 ̸= ch2, of an honest execution of the

protocol, and returns as output a witness w′ of x ∈ L. (Here w and w′

may or may not be equal.)

• Honest Verifier Zero Knowledge (HVZK). There exists an ex-

pected PPT algorithm, called simulator, that takes as input x and

returns as output a random transcript (x, com, ch, rsp) having identi-

cal (statistically indistinguishable, computationally indistinguishable,

resp.) probability distribution of transcripts of an honest execution of

the protocol on input (x,w).

The name “Σ-protocol” was used for the first time by Cramer [Cra97].
Usually, the verifier selects the challenge by simply picking a random element
of C. The notion of completeness is the more natural and it simply means
that the protocol should work if every party is honest. Usually, proving
completeness is straightforward. The notion of special soundness expresses
the idea that if a cheater is able to answer to more challenges for the same
commitment, then he is also able to compute the witness. In other words,
cheating is as difficult as computing the witness. The property of honest ver-
ifier zero-knowledge says that a simulator, who does not know the witness,
can still produce transcripts that are indistinguishable from a legitimate ex-
ecution of the protocol. Therefore, the transcripts of a legitimate execution
of the protocol contain no information (zero-knowledge) on the witness. As
in ZKPs, the soundness error (or cheating probability) of a Σ-protocol
is the probability that a verifier accepts the response of a cheater who does
not know the witness.

The Fiat-Shamir transform [FS99] is a technique used to convert a
Sigma protocol into a digital signature scheme. The basic idea is to replace
the verifier challenge generation with a hash function (Fig. II.3).

The transform can be used only if the protocol is public coin, that is
when the random generated by the verifier is also known by the prover in
the interactive version of the protocol.
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Prover(M,x,w) Verifier(M,x)

com← Pcom(x)

ch← H(M, com)

rsp← Presp(x,w, com, ch) com, ch, rsp ch← H(M, com)

return V(x, com, ch, rsp).

Figure II.3: Fiat-Shamir transform

Theorem II.4.2. Any Sigma protocol that is transformed with the Fiat-

Shamir transform is non-interactive in the Random Oracle Model.

TheRandom Oracle Model (ROM) assumes the existence of a publicly
accessible oracle that behaves as a black box, implementing a truly random
function. Although such oracles cannot exist in practice, they are typically
instantiated using cryptographic hash functions that are designed to approx-
imate the properties of random functions. The ROM is particularly useful
for conducting security proofs. The core idea is as follows: if an adversary A
is able to break a cryptographic scheme that is proven secure in the ROM,
then any practical instantiation of the random oracle, such as a cryptographic
hash function, would be insufficient for ensuring security in that context.

While security proofs in the Random Oracle Model do not guarantee
absolute security in practice, they provide a meaningful level of assurance
based on the assumption that well-designed cryptographic hash functions
closely emulate the behavior of a truly random oracle. For a broader dis-
cussion on the notion of oracles in cryptographic proof systems, including
zero-knowledge proofs (ZKPs), interactive proofs (IPs), and interactive ora-
cle proofs (IOPs), the reader is referred to the Appendix B.

II.5 Identification Schemes

Identification schemes extend the ideas introduced by Sigma protocols. In
these schemes, the prover’s goal is to authenticate themselves (e.g., prove
they know a secret or have certain knowledge) to a verifier, but without
disclosing any private information. This concept is pivotal because it ap-
plies to numerous real-world cryptographic applications like authentication,
secure communication, and privacy-preserving transactions. Understanding
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identification schemes provides the necessary groundwork for grasping more
sophisticated zero-knowledge protocols, such as zk-STARKs. zk-STARKs
(Zero-Knowledge Scalable Transparent Arguments of Knowledge) are a mod-
ern and highly scalable class of zero-knowledge proofs. While Sigma protocols
and identification schemes operate on a small scale, zk-STARKs aim to scale
up this idea while maintaining transparency and security without relying on
a trusted setup.

By grasping the core principles of identification schemes, which often
build on the structure of Sigma protocols, one can more easily understand
the advantages and challenges associated with zk-STARKs. These include
their scalability, transparency (without the need for a trusted setup), and
their ability to prove knowledge of large datasets or complex computations
while preserving privacy.

An identification scheme is an interactive method that allows a prover to
prove his identity to a verifier. The prover has a public key, which is publicly
known, and a secret key, which he keeps for himself. The prover identifies
himself to the verifier by providing a ZKPoK of his secret key.

Definition II.5.1. A (3-pass) identification scheme consists of PPT

algorithms Gen, P1, P2, V such that:

• The key-generation algorithm Gen takes as input 1λ and returns as

output the public key pk and the secret key sk of the prover.

• The prover and the verifier runs P1, P2, V as follows (here C is the

space of challenges).

Prover(pk, sk) Verifier(pk)

com,P state← P1(pk, sk) com

ch
$←− C

ch

rsp← P2(P state, ch)

rsp return V(pk, ch, rsp) = com.
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And, if everybody behaves honestly, the verifier returns 1 (accept).

It can be also introduced the Communication cost, that is, the amount
of information (in bits) that the prover and the verifier have to exchange in
a full identification.

Lemma II.5.2. Assume that the verifier picks the challenge at random with

uniform distribution. Then the communication cost is equal to

R ·
(
|com|+ 1

#C
∑
ch∈C

(|ch|+ |rspch|)
)

where R is the number of rounds and rspch is the response to the challenge

ch.

Argument systems are typically obtained combining two different tools:

1. An information-theoretically secure protocol, such as an IP, or a prob-
abilistically checkable proof (PCP);

2. Cryptography, which is used to restrict the prover, thus obtaining an
argument system.

Cryptography can also provide the argument system with other important
properties, such as zero-knowledge, succinctness and non-interactivity. An
argument system that satisfies all these properties is called zk-SNARK (zero
knowledge Succinct Non interactive ARgument of Knowledge).
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Chapter III
SNARKs

III.1 Preliminaries

Interactive proofs usually exploit the following basic property of polynomials,
known as Schwartz-Zippel Lemma [Sch79; Zip79].

Lemma III.1.1. Let F be a field (finite or infinite), and let g ∈ F[X1, . . . , Xm]

be a nonzero formal polynomial in m variables, of total degree at most d. Let

S ⊆ F be a finite subset. If x = (x1, . . . , xm) is chosen uniformly at random

from Sm, then

Pr
x←Sm

[g(x) = 0] ≤ d

|S|
.

Note: In a finite field, a nonzero formal polynomial may induce a function
that vanishes at every point of the domain. For example, over Fp, the poly-
nomial Xp−X is formally nonzero but vanishes on every x ∈ Fp. The lemma
applies to the polynomial as a formal object, not to the induced function.
Therefore, it is essential to maintain this distinction.

An easy implication of this Lemma is that, for any pair of distinct m-
variate polynomials p and q of total degree at most d over F, p(x) = q(x)
for at most d

|F| fraction of inputs. Suppose that a vector a = [a1, . . . , an] is
given. One natural way to associate this vector with a polynomial is to treat
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the elements of a as the coefficients of the polynomial. In this case:

pa(X) =
n∑

i=1

aiX
i−1

Alternatively, the vector a can be interpreted as a set of evaluations of
a polynomial at a canonical set of inputs, typically {1, . . . , n}. In this per-
spective, the unique (univariate) polynomial that matches these evaluation
values can be recovered using Lagrange interpolation, a well-known method
for reconstructing a polynomial from point-value pairs.

Lemma III.1.2. Let p be a prime number larger than n. For any vector

a = [a1, ..., an] ∈ Fn
p , there is a unique polynomial qa of degree at most n− 1

such that

qa(i) = ai+1, i ∈ {0, ..., n− 1}.

This polynomial is given by

qa(X) =
n−1∑
i=0

ai+1δi(X),

where

δi(X) =
∏

k=0,...,n−1:k ̸=i

X − k

i− k
.

δi(X) is usually referred to as the i-th Lagrange basis polynomial. The most
efficient way to evaluate qa in a random point requires O(n) time.

III.1.1 Multilinear Extensions (MLE)

In the context of STARKs and other proof systems, many computations are
defined over discrete structures, such as vectors or tables indexed by elements
of {0, 1}n. To work with these structures algebraically, it is often convenient
to represent them as polynomials defined over a finite field.

A multilinear extension is a technique that allows us to extend a function
defined over {0, 1}n to the entire field Fn, by constructing a unique polyno-
mial that is multilinear in each variable and agrees with the original function
on all Boolean inputs.

Consider a multivariate function f , defined over the domain {0, 1}v. If
v = log2(n), the domains {0, 1}v and {1, ..., n} have the same cardinality.
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Definition III.1.3. Let F be any field, and let f : {0, 1}v → F be any

function. A v-variate polynomial g over F is an extension of f if g(x) = f(x)

for all x ∈ {0, 1}v.

Any function f : {0, 1}v → F has a multilinear polynomial extension, that
is it has degree at most 1 in each variable. This means that the total degree
is at most v, which is logarithmic in the domain size 2v.

Lemma III.1.4. Any function f : {0, 1}v → F has a unique multilinear

extension (MLE) over F .

The unique MLE is denoted by f̃ .

Lemma III.1.5. Let f : {0, 1}v → F be any function. Then the following

f̃ : Fv → F is the unique MLE of f :

f̃(x1, ..., xv) =
∑

w∈{0,1}v
f(w) ·

v∏
i=1

(xiwi + (1− xi)(1− wi)),

where w = (w1, ..., wv) ∈ {0, 1}v.

Suppose that n = 2v. Then, the most efficient way for evaluating f̃ in a
random point r ∈ Fv requires O(n) time and O(n) space [VSBW13].

Example III.1.1. Let p = 11, and consider the function f : {0, 1}2 → Fp

given by f(0, 0) = 3, f(0, 1) = 4, f(1, 0) = 1, f(1, 1) = 2. Write out an

explicit expression for the MLE f̃ of f .

In this example, v = 2. The expression can be computed as follows:

f̃(x1, x2) =
∑

w∈{0,1}2
f(w) ·

2∏
i=1

(xiwi + (1− xi)(1− wi)).
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So it holds:

f̃(x1, x2) = f(0, 0)(1− x1)(1− x2) + f(0, 1)(1− x1)x2+

+ f(1, 0)x1(1− x2) + f(1, 1)x1x2

= 3(1− x1)(1− x2) + 4(1− x1)x2 + 1 · x1(1− x2) + 2x1x2

= 3(1− x1 − x2 + x1x2) + 4(x2 − x1x2) + (x1 − x1x2) + 2x1x2

= 3− 3x1 − 3x2 + 3x1x2 + 4x2 − 4x1x2 + x1 − x1x2 + 2x1x2

= (3) + (−3x1 + x1) + (−3x2 + 4x2)+

+ (3x1x2 − 4x1x2 − x1x2 + 2x1x2)

= 3− 2x1 + x2 + (3− 4− 1 + 2)x1x2

= 3− 2x1 + x2 + 0 · x1x2

= 3− 2x1 + x2.

III.1.2 Arithmetic circuits

Definition III.1.6. Fix a field Fp with p > 2. An arithmetic circuit

C : Fn
p → Fp is a directed acyclic graph (DAG) where inputs are {1, . . . , n}

and internal nodes are {+,−,×}.

An arithmetic circuit always defines an n-variate polynomial, and the
number of gates (the size) of the circuit C is denoted with |C|.

Example III.1.2. For example, the circuit related to the polynomial

f(x1, x2) = x1(x1 + x2 + 1)(x2 − 1)

is the following (it has |C| = 3 gates):
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Differently from the addition or multiplication gate, in the subtract gate

the ordering actually matters. Arithmetic circuits avoid subtraction gates

entirely by rewriting expressions. For instance, suppose to compute x − y.

It’s possible to rewrite it using two gates:

1. A first one (a multiplication gate) to compute (−1) · y;

2. A second one (an addition gate) to compute x+ (−y).

The arithmetic circuit for a given polynomial is not unique.

Definition III.1.7. An arithmetic circuit is unstructured if it has arbitrary

wires. A circuit is structured if it is divided into layers, and layer n receives

data from layer n− 1 and sends data to layer n+ 1.

Two classic problems when dealing with arithmetic circuits are the cir-
cuit evaluation problem and the circuit satisfiability problem (circuit
− SAT). In the former, the prover P and the verifier V agree on some arith-
metic circuit C, and the goal is to compute the value(s) of the output gate(s)
of C, given the input vector x. In the latter, given a circuit C that takes two
inputs, a public one x, and a private one w (called the witness and known
only by the prover P), the prover wants to convince the verifier V that indeed
there exists a witness w such that C(x,w) = y, where y is a public output.
Implementing an argument system typically involves two main phases:

• Front-end
The computation described by a general-purpose program is trans-
formed into an equivalent representation, such as an arithmetic circuit
or an instance of arithmetic circuit satisfiability.

• Back-end
A cryptographic proof system (interactive or non-interactive) is then
applied to verify that the circuit has been correctly evaluated, without
requiring re-execution of the computation.

Importantly, any arbitrary program can be compiled into an arithmetic cir-
cuit. Furthermore, verifying the correctness of a proof (i.e., solving the cir-
cuit satisfiability problem) typically requires significantly less computational
effort than performing the original computation itself.
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III.1.3 Rank-1 Constraint Systems (R1CS)

A representation closely related to the arithmetic circuit satisfiability prob-
lem is the Rank-1 Constraint System (R1CS). This formalism is widely used
in the design of zero-knowledge proof systems due to its algebraic structure
and compatibility with cryptographic protocols.

An R1CS instance over a finite field Fq is defined by three matrices
A,B,C ∈ Fm×n

q . A vector z = (z0, z1, . . . , zn−1) ∈ Fn
q , with z0 = 1 (of-

ten referred to as the constant term), is said to satisfy the system if the
following component-wise equation holds:

(A · z) ◦ (B · z) = C · z,

where ◦ denotes the Hadamard (element-wise) product.
Every instance of the circuit-SAT problem can be translated into an equiv-

alent R1CS instance. The matrices A,B,C encode the constraints corre-
sponding to each gate of the arithmetic circuit, and the number of nonzero
entries in any row is bounded by the fan-in of the corresponding gate (typi-
cally equal to 2 in most practical constructions).

Similarly, the fan-out of a circuit refers to the number of gates that receive
the output of a given gate as input. While R1CS primarily models the fan-
in behavior, careful circuit design can manage fan-out effectively through
intermediate variables and duplication of constraints.

This construction implies that the matrices A,B,C are inherently sparse,
as each constraint involves only a limited number of variables.

Let |x| denote the length of the public input, and |w| the length of the
witness. Define N = |C| + |x| + |w|, where |C| is the number of gates in the
arithmetic circuit. The vector z ∈ Fn

q , which includes all circuit wires, the
public input, and the witness, is then of length n = N + 1, accounting for
the leading constant term z0 = 1.

Each row of the matrices A,B,C corresponds to a single constraint in
the R1CS instance. The total number of constraints m is determined by the
structure of the circuit and the nature of its inputs and outputs:

• One constraint is added for each element of the public input x;

• No constraint is added for entries of the witness w;

• One constraint is added for each internal (non-output) gate of the cir-
cuit;
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• Two constraints are added for each output gate, in order to ensure
correct propagation and output validity.

As a result, the total number of constraints is given by:

m = N − |w|+ |y|,

where |y| denotes the number of output wires of the circuit.
It is important to note that each constraint in an R1CS instance is al-

ways expressed as a single multiplication between two linear combinations of
variables (mirroring the behavior of gates in an arithmetic circuit).

Example III.1.3. Let us consider the polynomial function f(w1, w2, w3) =

(w1·w2)(w2+w3) where the variables w1, w2, w3 ∈ Fq represent private witness

inputs, and the output y ∈ Fq is public. The polynomial f(w1, w2, w3) can

be represented by the following arithmetic circuit:

This circuit has:

• No public inputs, i.e., |x| = 0;

• Three witness elements, i.e., |w| = 3;

• Three internal gates (two multiplications and one addition);

• One public output, i.e., |y| = 1.
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To encode the computation, we introduce intermediate variables corre-

sponding to the outputs of internal gates:

z4 = z1 · z2
z5 = z2 + z3

z6 = z4 · z5
y = z6

These operations translate into the following R1CS constraints:

(z1 · z2) = z4

(1 · (z2 + z3)) = z5

(z4 · z5) = z6

(1 · z6) = y

Each equation can be expressed in the R1CS form:

(A · z) ◦ (B · z) = C · z, where z = (1, w1, w2, w3, z4, z5, z6, y) includes the

constant term and all intermediate variables.

The previous constraints are encoded in the matrices as follows:

A =


0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0

 , B =


0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

 ,

C =


0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


Each row in these matrices corresponds to one constraint in the form:

(A · z) ◦ (B · z) = C · z
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Thus, finding a valid witness w = (w1, w2, w3) such that the circuit com-

putes y = f(w) is equivalent to finding a vector z ∈ F8
q that satisfies all

constraints defined by the R1CS matrices.

This example illustrates how even a simple polynomial can be repre-

sented using a sequence of R1CS constraints, enabling it to be used in zero-

knowledge proof systems such as SNARKs or STARKs.

III.2 Definition

Definition III.2.1. A Succinct Non-interactive ARgument of Knowl-

edge (SNARK) is a triple of algorithms (S,P,V) defined as follows:

• (pp, vp)← S(C, λ, r): a setup algorithm that, given a circuit C, a secu-

rity parameter λ, and some randomness r, generates a pair of public

parameters: pp (prover parameters) and vp (verifier parameters).

• π ← P(pp, x, w): a proving algorithm that, given the prover’s param-

eters pp, a public input x, and a witness w, outputs a proof π. The

proof must be of sublinear size with respect to the size of the witness.

• b ← V(vp, x, π): a verification algorithm that, given the verifier’s pa-

rameters vp, the public input x, and a proof π, outputs a bit b ∈ {0, 1},
where 1 indicates acceptance. The verifier must run in sublinear time

with respect to the size of the circuit C.

If the SNARK additionally satisfies the property of zero-knowledge (i.e.,

the proof π reveals no information about the witness w) then the scheme is

referred to as a zero-knowledge SNARK (zk-SNARK).

Definition III.2.2. An argument system for circuit satisfiability is said to

be succinct if it satisfies the following properties:

• Proof length: The total communication (i.e., the proof size ℓπ) is

sublinear in the length of the witness |w|, such as ℓπ = O(log |w|). If
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ℓπ = O(log |C|), where |C| is the size of the circuit, the argument is said

to be strongly succinct.

• Verification time: The time required by the verifier to check the

proof is sublinear in the size of the circuit, for example time(V) =

O(|x|+ log |C|), where |x| is the size of the public input.

Some definitions of succinctness only require the first condition (i.e., sub-

linear proof size), without imposing constraints on the verifier’s runtime.

Before formally presenting the security properties of zk-SNARKs, an in-
formal definition of knowledge soundness is given to capture the extractor-
based security intuition behind these proof systems.

Definition III.2.3. A non-interactive argument system for circuit satisfi-

ability is said to be adaptively knowledge sound for a circuit C if the

following holds:

For any probabilistic polynomial-time (PPT) adversary A that outputs a

proof π and public input x such that the verifier accepts with non-negligible

probability κ, there exists a PPT extractor E (with black-box or non-black-

box access to A) that is able to extract a witness w such that:

Pr[C(x,w) = y] = κ− ε,

for some negligible function ε(λ), where λ is the security parameter.

In this context, adaptivity means that the adversary is allowed to choose
the statement x after observing the public parameters generated by the setup
algorithm.

Knowledge soundness implies the standard notion of soundness. However,
when the prover is computationally unbounded, the stronger property of
knowledge soundness may not hold. In such a case, the argument system
is referred to as a SNARG (Succinct Non-interactive ARgument), which
guarantees only soundness rather than knowledge soundness.
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III.3 Setup

When constructing a SNARK system, three main types of setup procedures
can be distinguished:

• Trusted setup per circuit: In this approach, the setup phase gener-
ates random parameters specific to a particular circuit C. It is crucial
that the prover does not learn these secret random values; otherwise,
they could forge proofs for false statements. This setup typically re-
lies on a trusted ceremony to ensure the secrecy and integrity of the
parameters.

• Trusted but universal (updatable) setup: The setup algorithm S
is divided into two sub-algorithms:{

Generate a universal reference string: gp← Sinit(λ, r),

Derive circuit-specific parameters: (pp, vp)← Sindex(gp, C),

where λ is the security parameter and r denotes randomness. In this
setting, the random values generated in Sinit are independent of the cir-
cuit C, allowing the setup to be reused across different circuits. More-
over, the universal parameters gp can be updated to improve security
without restarting the entire setup.

• Transparent setup: the setup algorithm does not rely on any secret
randomness. Instead, it uses only publicly verifiable procedures, such as
cryptographic hash functions or publicly known constants, to generate
the parameters. This approach removes the need for trust in the setup
phase but often comes with increased computational costs.

There are two main paradigms for building SNARKs:

• Functional commitment schemes combined with Interactive
Oracle Proofs (IOPs): this approach employs functional commit-
ment schemes such as polynomial commitments, multilinear commit-
ments, vector commitments, or inner product commitments, paired
with compatible IOPs. The resulting constructions yield SNARKs that
are applicable to general arithmetic circuits.
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• Pairing-based cryptography combined with linear Probabilis-
tically Checkable Proofs (PCPs): in this approach, SNARKs are
constructed using bilinear pairings and are based on representations
such as Quadratic Arithmetic Programs (QAPs). This method also
supports general circuits and is notable for its succinctness and effi-
cient verification.

III.4 The Sum-Check protocol

The first interactive proof protocol described is the Sum-Check protocol
[LFKN99]. Suppose there is a v-variate polynomial g defined over a finite
field Fq. The prover P wishes to convince the verifier V that the following
sum ∑

b1∈{0,1}

∑
b2∈{0,1}

· · ·
∑

bv∈{0,1}

g(b1, b2, . . . , bv)

is equal to some claimed value H.
For instance, if g is a bivariate polynomial, the goal is to verify that

H = g(0, 0) + g(1, 0) + g(0, 1) + g(1, 1).

The Sum-Check protocol provides an efficient interactive method for the
verifier to check the correctness of H without evaluating g exhaustively at
all points.

Clearly, the verifier V could compute the sum directly; however, this
would require 2v evaluations of g, which is computationally infeasible for
large v. Instead, the Sum-Check protocol enables V to verify the claim in a
number of steps linear in v, with polynomial-time computations relative to
the number of variables.

For simplicity, assume both V and the prover P have oracle access to g,
meaning that V can evaluate g(r1, . . . , rv) for any vector (r1, . . . , rv) ∈ Fv

q

with a single query.
Denote by degi(g) the degree of g with respect to the variable Xi.
The protocol proceeds in v rounds as follows:

Initial step: Before the interaction begins, the prover P sends a value C1

to the verifier V , which is claimed to be equal to the sum H.
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Round 1:

1. P sends to V a univariate polynomial g1(X1), which is claimed to satisfy

g1(X1) =
∑

(b2,...,bv)∈{0,1}v−1

g(X1, b2, . . . , bv).

2. V checks that
C1

?
= g1(0) + g1(1).

3. V selects a random element r1 ∈ Fq and sends it to P .

Round i, for 1 < i < v:

1. P sends to V a univariate polynomial gi(Xi), claimed to satisfy

gi(Xi) =
∑

(bi+1,...,bv)∈{0,1}v−i

g(r1, . . . , ri−1, Xi, bi+1, . . . , bv).

2. V verifies that
gi−1(ri−1)

?
= gi(0) + gi(1).

3. V selects a random element ri ∈ Fq and sends it to P .

Round v:

1. P sends to V a univariate polynomial gv(Xv), claimed to satisfy

gv(Xv) = g(r1, . . . , rv−1, Xv).

2. V verifies that
gv−1(rv−1)

?
= gv(0) + gv(1).

3. V selects a random element rv ∈ Fq.

4. V queries the oracle to compute g(r1, . . . , rv).

5. V verifies that
gv(rv)

?
= g(r1, . . . , rv).

6. If all checks pass, V accepts; otherwise, V rejects.
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Theorem III.4.1. Let g be a v-variate polynomial over a finite field Fq, with

degree at most d in each variable. For any specified value H ∈ Fq, define the

language

L =

g : H =
∑

b1∈{0,1}

∑
b2∈{0,1}

· · ·
∑

bv∈{0,1}

g(b1, . . . , bv)

 .

The Sum-Check protocol is an interactive proof system for L with perfect

completeness and soundness error at most vd
q
.

Proof. Perfect completeness follows directly from the construction of the pro-

tocol: if the prover is honest and H is indeed the sum of evaluations of g

over {0, 1}v, then the verifier accepts with probability 1.

To prove soundness, suppose that the prover is dishonest and tries to

convince the verifier that H equals the claimed sum when in fact

H ̸=
∑

b1∈{0,1}

∑
b2∈{0,1}

· · ·
∑

bv∈{0,1}

g(b1, . . . , bv).

Then there must exist at least one round i where the prover sends a polyno-

mial gi(Xi) that does not match

si(Xi) =
∑

(bi+1,...,bv)∈{0,1}v−i

g(r1, . . . , ri−1, Xi, bi+1, . . . , bv),

but the verifier’s check passes, i.e.,

gi(ri) = si(ri).

By hypothesis, both gi and si are polynomials of degree at most d. By

the Schwartz–Zippel lemma (III.1.1), the probability that two distinct poly-

nomials of degree at most d agree on a random point ri ∈ Fq is at most
d
q
.

Applying a union bound over the v rounds of the protocol, the total

soundness error is at most vd
q
.
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Costs of the protocol

Suppose degi(g) ≤ d for each i, and the protocol consists of v rounds.

Communication complexity. The communication consists of v univari-
ate polynomials gi, each of degree at most d, plus v−1 random field elements.
Therefore, the total communication cost is

O(vd).

Prover time complexity. The prover must compute v polynomials. The
i-th polynomial is evaluated 2v−i times and has at most d + 1 coefficients.
Hence, the total prover running time is

O
(
d · 2v · T

)
,

where T is the time required to query the random oracle.

Verifier time complexity. The verifier’s running time is proportional to
the total communication plus the time to query the random oracle, resulting
in

O(vd+ T ).

Remark It is important to observe that the messages sent by the verifier
to the prover consist solely of random elements drawn from the finite field
Fq, and are therefore completely independent of the polynomial g.

Indeed, the verifier requires only two pieces of information about the
polynomial g to carry out its role in the protocol:

• an upper bound on the degree of g with respect to each of its v variables,
and

• the capability to evaluate g at a randomly chosen point r
$←− Fv

q .

Consequently, the verifier can execute the Sum-Check protocol even with-
out explicit knowledge of the polynomial g to which the protocol is applied.
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Applications

The Sum-Check protocol finds application in various fundamental problems
and protocols in theoretical computer science and cryptography, including
but not limited to:

1. The proof that #SAT ∈ IP.

2. Counting the number of triangles in a graph.

3. Constructing highly optimized interactive proof protocols for matrix
multiplication.

4. The Goldwasser-Kalai-Rothblum (GKR) protocol.

While the Sum-Check protocol is not directly employed in the construc-
tion of zk-STARKs, several of its underlying algebraic ideas — such as low-
degree polynomial verification and arithmetization over structured domains
— echo throughout the design of STARK components such as FRI and alge-
braic IOPs. These conceptual parallels will be explored in later chapters to
better understand the broader landscape of scalable proof systems.

A useful subroutine

A simplified version of the Sum-Check protocol has been described, where
the verifier V can evaluate the polynomial with the help of an oracle. In
general, such an oracle is not required.

A common scenario involves the evaluation of a multilinear extension W̃
over Fq with v variables at just two points, say b, c ∈ Fv

q .

The following interactive protocol reduces the problem of evaluating W̃ (b)

and W̃ (c) to evaluate W̃ (r) at a single point r ∈ Fv
q .

Let l(t) be the parametric line defined such that l(0) = b and l(1) = c.

1. The prover P sends to the verifier V a univariate polynomial q(t) of
degree at most v, defined as

q(t) = W̃ (l(t)).

2. The verifier V interprets q(0) and q(1) as W̃ (b) and W̃ (c), respectively.
Then, V selects a random r∗ ∈ Fq and sets

r = l(r∗).
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3. Finally, the verifier V regards q(r∗) as the evaluation W̃ (r).

Example III.4.1. Let v = 2, b = (2, 4) and c = (3, 2). Consider the

multilinear extension W̃ defined as

W̃ (x1, x2) = 3x1x2 + 2x2.

The parametric line l(t) connecting b and c is given by

l(t) = (t+ 2, 4− 2t).

The prover computes the univariate polynomial

q(t) = W̃ (l(t)) = 3(t+ 2)(4− 2t) + 2(4− 2t) = −6t2 − 4t+ 32.

The verifier interprets

q(0) = W̃ (b) = 32, q(1) = W̃ (c) = 22.

Finally, for a uniformly random r ∈ Fq, the point

l(r) = (r + 2, 4− 2r)

lies on the line l, and the verifier interprets q(r) = W̃ (l(r)).

Theorem III.4.2. Let W̃ be a multilinear extension (MLE) over Fq with

v variables. The protocol described above achieves perfect completeness and

has soundness error at most v
q
.

Proof. Perfect completeness follows directly from the correctness of the pro-

tocol: if the prover P follows the protocol honestly and sends q(t) = W̃ (l(t)),

then all of the verifier’s V checks will succeed.

As for soundness, assume that the prover sends a polynomial q(t) such

that q(t) ̸= W̃ (l(t)), attempting to cheat. Since both q(t) and W̃ (l(t)) are

univariate polynomials of degree at most v, they can agree on at most v

points in Fq unless they are equal.

Therefore, by the Schwartz-Zippel Lemma (III.1.1), the probability that

the verifier’s random check at a randomly chosen point r∗ ∈ Fq passes despite

q(t) ̸= W̃ (l(t)) is at most v
q
.
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III.5 The GKR Protocol

A notable limitation of the Sum-Check protocol is that, in its general form,
the verifier V runs in polynomial time. A natural goal is to design a general-
purpose interactive proof system in which the verifier runs in linear time,
leveraging interaction with the prover to achieve sublinear verification. At
the same time, the prover P is expected to run in polynomial time.

Goldwasser, Kalai, and Rothblum proposed such a protocol in their arti-
cle [GKR15]. Their interactive proof system achieves these objectives and is
best understood in the context of the arithmetic circuit evaluation problem.
The protocol is general-purpose in the sense that any problem in the com-
plexity class P can be efficiently reduced to an instance of arithmetic circuit
evaluation. This makes the protocol particularly powerful and applicable in
a wide range of computational settings.

Protocol setting. Let C be a structured arithmetic circuit over a finite
field Fq, with fan-in 2 and depth d. The circuit is assumed to be log-space
uniform.

Definition III.5.1. A circuit C is log-space uniform if there exists a deter-

ministic Turing machine that, on input a gate label g, computes all relevant

information about gate g (e.g., gate type, input labels) using O(log |g|) space.

Let:

• |C| be the total number of gates in the circuit;

• d be the depth of the circuit, where layer d contains the inputs and
layer 0 the outputs;

• Si = 2ki be the number of gates in layer i;

• (x1, . . . , xn) ∈ Fn
q be the input vector.

The protocol proceeds in d rounds, one for each layer, where the goal of
round i is to reduce a claim about the values of the gates in layer i to a claim
about the values in layer i+ 1.

To describe the protocol formally, we define the following functions:

• Wi : {0, 1}ki → Fq, mapping the binary label of a gate in layer i to its
value;
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• in1,i, in2,i : {0, 1}ki → {0, 1}ki+1 , returning the labels of the input gates
of a given gate;

• addi : {0, 1}ki+2ki+1 → {0, 1}, which returns 1 if the tuple corresponds
to an addition gate with correct input labels;

• multi : {0, 1}ki+2ki+1 → {0, 1}, defined analogously for multiplication
gates.

Let W̃i, ãddi, and m̃ulti be the multilinear extensions of the above func-
tions.

Protocol: Round 0.

1. Let D : {0, 1}k0 → Fq be a function that maps each output gate label
to the claimed output value. The prover P sends D to the verifier V .

2. V samples a random r0 ← Fk0
q , and computes m0 ← D(r0). The goal

is now to verify that W̃0(r0) = m0.

To achieve this, the protocol uses the following identity:

Lemma III.5.2. For every z ∈ {0, 1}ki,

W̃i(z) =
∑

b,c∈{0,1}ki+1

[ãddi(z, b, c) · (W̃i+1(b) + W̃i+1(c))+

+m̃ulti(z, b, c) · W̃i+1(b) · W̃i+1(c)].

Let f
(ri)
i (b, c) denote the polynomial:

f
(ri)
i (b, c) := ãddi(ri, b, c)·(W̃i+1(b)+W̃i+1(c))+m̃ulti(ri, b, c)·W̃i+1(b)·W̃i+1(c).

Protocol: Round i, 0 ≤ i < d.

1. P claims that mi =
∑

b,c∈{0,1}ki+1 f
(ri)
i (b, c);

2. P and V invoke the Sum-Check protocol on f
(ri)
i ;

3. At the end of the Sum-Check protocol, V must evaluate f
(ri)
i at a

random point (b∗, c∗) ∈ Fki+1
q × Fki+1

q ;
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4. To do so, define a line ℓ(t) such that ℓ(0) = b∗ and ℓ(1) = c∗. The

prover sends the univariate polynomial q(t) := W̃i+1(ℓ(t));

5. V picks r∗ ← Fq, computes ri+1 := ℓ(r∗), and sets mi+1 := q(r∗), which

is claimed to equal W̃i+1(ri+1).

Final step. At the last layer d, V directly evaluates W̃d(rd) from the known
input vector and checks whether it equals md.

Costs of the protocol

Suppose the circuit C has depth d, size |C|, and is log-space uniform.

Communication complexity. The protocol proceeds in d rounds, each
invoking a Sum-Check protocol on a polynomial of arity 2ki+1, where Si+1 =
2ki+1 is the number of gates at layer i+1. Each round incurs a communication
cost of O(ki+1), and hence the total communication is

O(d log2 |C|).

Prover time complexity. The prover P must simulate the Sum-Check
protocol and evaluate intermediate multilinear extensions of functions like
W̃i, ãddi, and m̃ulti. In the original version of the protocol, the total prover
time is

O(|C|3),

though later refinements reduce this to quasilinear time in |C|.

Verifier time complexity. The verifier V only needs to read the input and
evaluate or access random positions in the circuit using log-space uniformity.
Thus, its running time is

O(n+ d log2 |C|),

where n is the input length.
Crucially, V does not need to read the full description of the circuit C.
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Soundness of the protocol

The GKR protocol achieves perfect completeness and has soundness error

O
(
d log2 |C|

q

)
.

Proof sketch. Suppose that P sends a false claim for the output of the
circuit. In order to convince the verifier V , it must happen that at some round
j, the prover sends a polynomial gj ̸= sj, where sj is the correct polynomial,
and yet

gj(rj) = sj(rj),

for some randomly chosen rj ∈ Fq.
There are two possibilities to consider:

1. During a Sum-check round: The Sum-Check protocol is applied to
polynomials of degreeO(1), so by the Schwartz-Zippel Lemma (III.1.1),

the probability that gj(rj) = sj(rj) while gj ̸= sj is at most O
(

1
q

)
.

2. During a subroutine check (line evaluation): Here, the verifier
checks equality of polynomials of degree at most O(log2 |C|). Again, by
the Schwartz-Zippel Lemma, the probability that two distinct polyno-

mials of such degree coincide on a random point is at most O
(

log2 |C|
q

)
.

Since the protocol consists of d iterations, and each iteration contains a
constant number of such checks, applying the union bound yields the overall
soundness error

O
(
d log2 |C|

q

)
.

The GKR protocol: an example

Consider the following arithmetic circuit defined over F5 (Fig.III.1). The
goal is to use the GKR protocol to verify whether the output of the circuit
is the vector (4, 2).

At the beginning of the protocol, the prover P sends to the verifier V a
function D : {0, 1} → F5 that is claimed to be equal to W̃0, the MLE of the
output layer of the circuit. In particular, D(0) = 4 and D(1) = 2.
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Figure III.1: arithmetic circuit defined over F5

MLE of the output layer. The verifier computes the multilinear exten-
sion:

D̃(x) = D(0)(1− x) +D(1)x = −2x+ 4 = 3x+ 4.

Then, V chooses a random value r0 ← F5, say r0 = 4, and computes m0 =
D̃(r0) = 1. The rest of the protocol will check whether W̃0(r0) = m0.

Round 0

The required multilinear extension is:

m̃ult0(x1, . . . , x5) = (1− x1)(1− x2)(1− x3)(1− x4)x5 + x1x2(1− x3)x4x5.

The prover claims that

W̃1(x1, x2) = −4x1x2 + x1 + 3x2 + 1.

Then, the Sum-Check protocol is applied to verify the equality:

m0 =
∑

b,c∈{0,1}2
m̃ult0(r0, b, c) · W̃1(b) · W̃1(c).

In this example, the verifier is convinced because:

1 = (1− r0)
(
W̃1(0, 0) · W̃1(0, 1)

)
+ r0

(
W̃1(1, 0) · W̃1(1, 1)

)
=

= −3(1 · 4) + 4(2 · 1) = −4 = 1 mod 5.
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However, V cannot compute W̃1 values directly. To complete the check,
V selects a random point (b∗, c∗) ← F2

5 × F2
5, e.g., ((1, 2), (2, 3)), and defines

the line:
ℓ(t) = (1 + t, 2 + t).

P sends the univariate polynomial q(t) = W̃1(ℓ(t)), which in this case is:

q(t) = t2 + 2t.

V now completes the Sum-check using q(0) and q(1), then chooses ran-
domly r∗ ← F5, say r∗ = 2, and sets:

r1 = ℓ(r∗) = (3, 4), m1 = q(r∗) = 3.

Round 1

V now verifies that m1 = W̃1(r1). For this, the next round of the GKR
protocol is applied.

The relevant multilinear extension is:

m̃ult1(x1, . . . , x6) = (1− x1)(1− x2)(1− x3)(1− x4)(1− x5)(1− x6)+

+(1− x1)x2(1− x3)x4(1− x5)x6 + x1(1− x2)(1− x3)x4x5(1− x6)+

+x1x2x3x4x5x6.

The prover claims:

W̃2(x1, x2) = 2x1x2 + x2 + 1.

The verifier checks:

m1 =
∑

b,c∈{0,1}2
m̃ult1(r1, b, c)

(
W̃2(b) · W̃2(c)

)
.

Indeed:

m1 = (1− r1(0))(1− r1(1)) · W̃2(0, 0)
2 + (1− r1(0))r1(1) · W̃2(0, 1)

2+

+r1(0)(1− r1(1)) · W̃2(1, 0)W̃2(0, 1) + r1(0)r1(1) · W̃2(1, 1)
2 = 3 mod 5.

Then, V samples a random point (b∗, c∗) ← F2
5 × F2

5, say ((3, 1), (4, 0)),
and defines:

ℓ1(t) = (3 + t, 4− t).

P sends the polynomial q1(t) = W̃2(ℓ1(t)) = 3t2+ t+4. V evaluates q1(0)
and q1(1), samples r∗ = 3, and sets:

r2 = ℓ1(r
∗) = (1, 1), m2 = q1(r

∗) = 4.
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Final check

Finally, the verifier checks:

m2 = W̃2(r2) = 2 · 1 · 1 + 1 + 1 = 4.

The check passes, and the verifier is convinced that the output of the
circuit is indeed (4, 2).

III.6 Polynomial commitments

A fundamental problem in the study of arithmetic circuits is the circuit
satisfiability problem. Given an arithmetic circuit C that takes as input a
public value x ∈ Fn and a private witness w ∈ Fm (known only to the prover
P), the goal of the prover is to convince the verifier V that there exists a
witness w such that

C(x,w) = y,

where y ∈ Fℓ is a publicly known output.
By combining the GKR protocol with a polynomial commitment scheme,

one can construct efficient interactive arguments for this satisfiability re-
lation [ZGKPP17]. In these constructions, the prover commits to certain
low-degree polynomials that encode the structure and evaluation of the cir-
cuit, and then uses the GKR protocol to verify correct evaluation layer by
layer.

These arguments are particularly powerful when they satisfy the property
of knowledge soundness. This means that, if the prover successfully convinces
the verifier, then there exists an efficient extractor that can recover a valid
witness w such that C(x,w) = y. In other words, the prover does not merely
convince the verifier of the existence of such a witness—it must actually know
one.

The Naive Approach

A naive solution to the circuit satisfiability problem would have the prover P
send the full witness π = w to the verifier V . Given a circuit C, public input x,
and public output y, the verifier would then directly check whether C(x,w) =
y. However, this approach suffers from several significant drawbacks:
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• Lack of succinctness: the prover must send the entire witness w,
which could be large;

• High verification cost: the verifier may require a large amount of
time to evaluate C(x,w);

• No zero-knowledge: revealing the witness w leaks private informa-
tion.

These limitations motivate the need for commitment schemes. In the
context of the GKR protocol, this need becomes even more evident: the
verifier V does not require access to the full witness. Instead, during the
protocol, the verifier only needs to verify a single value w̃(r), where w̃ denotes
the multilinear extension of the witness and r ∈ Fn is a randomly chosen
point.

To maintain succinctness and privacy, the prover P can commit to w̃
at the beginning of the protocol using a polynomial commitment scheme.
The parties then proceed with the GKR protocol as usual. Only at the
end of the protocol does the verifier need to verify that w̃(r) is consistent
with the committed polynomial. This is done by having the prover open the
commitment at the point r, producing a value and a short proof.

Definition III.6.1. A polynomial commitment scheme over a field F is

a tuple of four probabilistic polynomial-time algorithms

(Setup,Commit,CreateWitness,VerifyEval)

satisfying the following properties:

1. ck ← Setup(1λ, t): takes a security parameter λ ∈ N (in unary) and a

degree bound t, and returns a commitment key ck usable for polyno-

mials of degree at most t;

2. (com, o) ← Commit(ck, f(X)): takes as input a polynomial f(X) ∈
F[X] and returns a commitment com and opening material o;

3. (v, πz) ← CreateWitness(ck, f(X), z, o): takes a point z ∈ F, the open-

ing material o, and the polynomial f , returning the evaluation v = f(z)

and a proof πz;
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4. {0, 1} ← VerifyEval(ck, com, z, v, πz): verifies that v = f(z) for the

committed polynomial. This algorithm should run in sublinear time

with respect to the degree t.

As usual, a polynomial commitment must satisfy three fundamental prop-
erties: correctness, hiding, and binding. However, in many applications, a
stronger notion of binding is desirable. This stronger property is known as
extractability.

Extractability strengthens the binding property by ensuring that the
prover P is not only committed to a single value at a single point, but actually
to a unique low-degree polynomial p ∈ F[X] that explains all of its answers
to evaluation queries. In particular, if P is able to provide multiple correct
answers to different evaluation points, then extractability ensures the exis-
tence of an efficient algorithm that can reconstruct a polynomial consistent
with all of these answers.

Informal definitions of extractability and security are given below.

Definition III.6.2. A polynomial commitment scheme is extractable if,

for any probabilistic polynomial-time adversary that outputs a commitment

com, there exists an efficient extractor E that outputs a polynomial p(X) ∈
F[X] such that all evaluation proofs produced by the adversary are consistent

with p.

Definition III.6.3. A polynomial commitment scheme is secure if it satisfies

the following properties:

• Correctness: if com is a commitment to f(X), then

VerifyEval(ck, com, z, f(z), πz) = 1

for all z ∈ F;

• Evaluation Binding: it is infeasible for an adversary to produce two

valid openings (v, πz) ̸= (v′, π′z) at the same point z;

• Hiding: given access to at most t evaluations of f , an adversary cannot

predict f(z) for a new point z /∈ {z1, . . . , zt}.
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Historical Note. An instructive (but inefficient) commitment scheme was
proposed by Kalai in 2017 (during a workshop talk). This construction is a
relaxed polynomial commitment scheme that binds the prover only to a func-
tion that is close to a low-degree polynomial. The scheme is based on Merkle
trees and low-degree testing. The starting idea is to construct a commitment
by evaluating the polynomial at various points, placing these evaluations as
leaves of a Merkle tree, and then using the root as the commitment.

Note. A Merkle tree is a binary tree of depth log2(k), where the k inputs
are placed at the leaves, and the value of each internal node is computed
as the hash of the concatenation of its two children’s values. The algorithm
stores only the final hash, called the root of the tree. Let MTk denote the
algorithm that takes k inputs and outputs the root of the corresponding
Merkle tree. If (Gen,H) is a collision-resistant hash function family, then
(Gen,MTk) is also collision-resistant.

To prove that a value is indeed one of the leaves of the tree, the committer
sends the hash of its sibling node along with log2(k) − 1 other hashes, one
for each level of the Merkle tree. The verifier can then recompute the root
hash using these values. Hence, the communication complexity of this proof
is O(log2(k)).
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III.6.1 LDE: Low Degree Testing

To reveal w(r), the prover P exploits the properties of the Merkle tree and
simply sends w(r) along with all the hashes required for path authentication.

Issue There is no guarantee that the committed string contains all evalu-
ations of some multilinear polynomial — it may be an arbitrary function.

Solution A low degree test is employed to ensure that the committed string
is close to the evaluations of a low-degree polynomial. This is achieved by
inspecting only a small number of entries in the string.

Suppose a receiver is given oracle access to a large string s, which is
claimed to contain all evaluations of an m-variate function over a finite field
Fq (note that the total number of possible inputs is qm).

A low degree test inspects a small fraction of s to verify that these entries
are consistent with a low-degree polynomial; in other words, it guarantees
that s and the low-degree polynomial are close in Hamming distance.

An important low-degree test is the point-versus-line test [Aro03]. The
idea is to select a line ℓ ∈ Fm

q and check whether s restricted to ℓ is consistent
with a univariate polynomial of degree at mostm. This procedure is the same
subroutine used in the GKR protocol.

It has been shown that if the test passes with probability α, then there
exists a low-degree polynomial that agrees with s on approximately an α
fraction of points.

Let s be the string containing all qv evaluations of a v-variate multilinear
extension (MLE) we, defined over a finite field Fq.

The string s is committed using a Merkle tree, after which the low-degree
test is applied. The verifier chooses a random line ℓ ∈ Fv

q , and the prover
must reveal the values at all points along the line. Finally, the verifier checks
if these values are consistent with a univariate polynomial of degree at most
v.

The committed MLE we is computed by P starting from the knowledge
of the witness w used in the GKR protocol.

Theorem III.6.4. The relaxed polynomial commitment scheme based on

Merkle trees and low-degree tests is extractable.

47



SNARKs

Protocol Costs

The protocol consists of the GKR protocol combined with Merkle tree com-
mitments and low-degree testing.

Rounds. The number of rounds is

O(d log |C|),

which matches the number of rounds required by the original GKR protocol.

Communication complexity. The communication consists of the mes-
sages exchanged in the GKR protocol, which amount to O(d log |C|), plus
the additional data required to send the Merkle commitment and perform
the low-degree test. The latter dominates the overall cost, resulting in a total
communication complexity of

O(q log2 n),

where n is the length of the witness and q = O(n) is the size of the field.

Prover time complexity. The prover’s time is dominated by the cost of
committing to the multilinear extension we via a Merkle tree. This requires
super-polynomial time in n, specifically

O
(
nlogn

)
,

where n = 2v and v is the number of variables in the MLE. As a consequence,
this commitment scheme is not yet efficient for practical purposes, in contrast
to SNARK systems which typically achieve near-linear prover time.

Verifier time complexity. The verifier’s running time is

O(n+ d log |C|),

which includes the time to verify the GKR proof and to open the Merkle-
based polynomial commitment.

Remark. This polynomial commitment scheme can be replaced with any
other more efficient polynomial commitment protocol.
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III.7 FRI

Recap. Looking at the scheme proposed by Kalai, a key issue arises: there
is no guarantee that the committed string actually corresponds to the evalu-
ations of a multilinear (or low-degree) polynomial—it may in fact represent
an arbitrary function. To address this problem, a low-degree test is em-
ployed to ensure that the committed string is close to the evaluation table
of a low-degree polynomial. Remarkably, this can be verified by inspecting
only a small number of entries in the string. It has been proven that if the
test is passed with probability ε, then there exists a low-degree polynomial
that agrees with the committed string on approximately an ε fraction of the
evaluation points.

The resulting protocol constitutes a polynomial commitment scheme;
however, it is not considered practical due to two main limitations.

1. The number of leaves involved is equal to q, the cardinality of the
underlying finite field, resulting in a commitment time of O(q). Ideally,
the computational complexity should scale with the degree bound d of
the committed polynomial, rather than the size of the field.

2. In the absence of a proximity test, the verifier lacks any guarantee
regarding the degree of the committed polynomial, and cannot even be
certain that the commitment corresponds to a polynomial at all.

FRI (Fast Reed-Solomon IOP of Proximity) [BBHR18a] is designed
to address both of these issues.

FRI: Addressing the First Issue

To address the first limitation of the basic polynomial commitment scheme
(namely, the inefficiency due to committing over the entire field Fq), FRI
introduces a more efficient strategy. The idea is to Merkle-commit to the
evaluations f(x) of a polynomial f only over a carefully selected subset Ω ⊆
Fq, rather than over the full field.

This subset Ω is chosen such that its size is n = ρ−1 · d, where d is a
bound on the degree of the polynomial and 0 < ρ < 1. In practice, ρ is often
selected to be close to 1

2
. The quantity ρ−1 is commonly referred to as the

FRI blowup factor, while ρ represents the rate of the Reed–Solomon code
employed in the protocol.
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The choice of ρ introduces a fundamental trade-off in FRI between prover
efficiency and verifier cost. Specifically, a larger blowup factor ρ−1 results in
increased computation for the prover but leads to reduced verification time
and lower query complexity. Conversely, a smaller blowup factor benefits the
prover at the cost of higher verifier effort.

For efficiency purposes, the evaluation domain Ω is chosen as the set
of all n-th roots of unity in Fq, where n = ρ−1 · d is a power of two. This
choice provides algebraic structure and enables fast computation via the Fast
Fourier Transform (FFT).

The set

Ω = {x ∈ Fq|xn = 1 mod q} = {x, x2, . . . , xn}

has the following properties:

• Ω is a multiplicative subgroup of Fq: if x, y ∈ Ω, then x · y ∈ Ω.

• Since n is even, for every x ∈ Ω, it holds that x2 is an n
2
-th root of

unity.

• Again, since n is even, if x is a n-th root of unity ,−x is also in Ω.

• The set Ω has size exactly n if and only if n divides q − 1.

A commonly used field in practical implementations of FRI is the so-
called Goldilocks field, with cardinality q = 264− 232 +1. This field admits a
rich subgroup structure and supports efficient FFT-based operations.

The commitment phase in FRI operates over this domain and requires
O(ρ−1 · d) time, which is quasi-linear in the degree bound d.

FRI: Addressing the Second Issue

Regarding the second issue, the verifier must be assured that the committed
vector corresponds exactly to the evaluations of some polynomial of degree
at most d over the domain Ω.

Previous approaches, such as the point-versus-line test (III.6.1), attempted
to verify low-degree properties by inspecting only a few entries of the vector.
However, these methods have proven to be impractical in realistic settings.

In contrast, the FRI low-degree test is an interactive protocol composed
of two distinct phases. The first is the folding phase (also known as the
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commitment phase), which proceeds in log2(d) rounds. The second is the
query phase, which consists of a single round of interaction.

III.7.1 Folding phase

During the folding phase, the prover iteratively folds the committed vector
by halving its length at each step. The verifier V samples a random element
r ∈ Fq and sends it to the prover P , who then uses this value to combine
pairs of entries in the vector in a randomized linear manner. This folding
operation ensures that the resulting vector corresponds to a polynomial of
degree at most half the degree of the original polynomial.

The folding process is repeated until the polynomial degree is reduced to
zero. Nonetheless, the length of the folded vector remains ρ−1.

More formally, given a polynomial f(X), it can be decomposed into its
even and odd parts as follows:

f(X) = fe(X
2) +Xfo(X

2).

The folding step aims to combine these two parts into a single polynomial of
lower degree by leveraging the random scalar r.

So, the verifier selects a random field element r ∈ Fq and sends it to the
prover. The folding polynomial is defined as

ffold(z) = fe(z) + rfo(z), (III.1)

where fe and fo are the even and odd parts of f , respectively. This polynomial
clearly has degree at most half that of f , since both fe and fo have degree
at most deg(f)

2
.

Let x and −x be n-th roots of unity, and define z = x2. Then, by
interpolation, the folding polynomial satisfies

ffold(z) =
r + x

2x
f(x) +

r − x

−2x
f(−x). (III.2)

This identity holds because: by definition, f(x) = fe(z) + xfo(z). And,
observe that, if r = x, then ffold(z) = f(x), and if r = −x, then ffold(z) =
f(−x). Equation (9) has been specifically defined to ensure the desired be-
havior when the verifier’s random challenge r coincides with either x or −x.
In particular, it satisfies

ffold(z) = f(x) if r = x, and ffold(z) = f(−x) if r = −x.
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Since Equation III.2 is a linear function in r, and two degree-one polynomials
that agree on at least two distinct values must be identical, it follows that
Equation III.2 represents the unique valid folding expression for all values of
r ∈ Fq.

An essential property used in this construction is that the map x 7→ x2

is 2-to-1 over the evaluation domain Ω, as long as |Ω| = n is a power of two.
This is what guarantees that, at each round of folding, the size of the domain
is halved.

This property also motivates the specific choice of Ω. In fact, more naive
domains such as {0, 1, . . . , n− 1} do not satisfy the necessary algebraic clo-
sure under squaring and therefore cannot support the FRI folding process
correctly.

III.7.2 Query Phase

The query phase is performed after the completion of the folding phase.
During the folding process, a dishonest prover may attempt to cheat by
providing incorrect folded vectors. The purpose of the query phase is to
allow the verifier to detect such inconsistencies with high probability.

To do so, the verifier samples approximately λ
log2(ρ−1)

entries of each folded
vector, where λ is the desired security parameter, and checks whether the
value is consistent with the corresponding linear combination of two entries
from the previous layer of the folding process.

Costs

There are log2(d) rounds of folding (for a degree bound d) and for each round,
the verifier performs λ

log2(ρ−1)
queries. For every query, a Merkle authentica-

tion path is provided, whose length is log2 d, due to the depth of the Merkle
tree. As a result, the total proof length and the verifier’s runtime are both
O(log22(d)).

Finally, the interaction in the query phase can be removed using the
Fiat–Shamir heuristic, yielding a fully non-interactive version of the protocol
in the random oracle model.

Example III.7.1. Let F19 denote the underlying finite field.
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Choose θ = 2 ∈ F19, which has multiplicative order 9. The multiplicative

subgroup generated by θ is

Ω = ⟨θ⟩ = {1, 2, 4, 8, 16, 13, 7, 14, 9}.

Let the polynomial to be committed be

f(x) = 2x2 + 4x+ 3.

We evaluate f over all elements of the domain Ω:

f(1) = 2(1)2 + 4(1) + 3 = 9,

f(2) = 2(4) + 8 + 3 = 19 ≡ 0 (mod 19),

f(4) = 2(16) + 16 + 3 = 51 ≡ 13 (mod 19),

f(8) = 2(64) + 32 + 3 = 163 ≡ 11 (mod 19),

f(16) = 2(256) + 64 + 3 = 579 ≡ 10 (mod 19),

f(13) = 2(169) + 52 + 3 = 393 ≡ 13 (mod 19),

f(7) = 2(49) + 28 + 3 = 129 ≡ 15 (mod 19),

f(14) = 2(196) + 56 + 3 = 451 ≡ 14 (mod 19),

f(9) = 2(81) + 36 + 3 = 201 ≡ 11 (mod 19).

Thus, the evaluation vector is given by

f(Ω) = [9, 0, 13, 11, 10, 13, 15, 14, 11].

Commitment Phase A Merkle tree is constructed over the vector of eval-

uations. Each leaf of the tree corresponds to a field element x ∈ Ω and its

evaluation f(x). These values are hashed and recursively combined to form

the Merkle root, which serves as the commitment to the polynomial.

Folding Phase Assume that the verifier selects a random challenge

r = 6 ∈ F19. The prover computes a folded polynomial over the domain
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Ω(1) := {x2 | x ∈ Ω}, which has size |Ω|/2 due to the 2-to-1 property of the

squaring map on Ω.

The pairing for folding proceeds as:

(1, 16), (2, 13), (4, 7), (8, 14).

The folding rule is given by:

ffold(z) =
r + x

2x
f(x) +

r − x

−2x
f(−x), (III.3)

where z = x2 and −x denotes the multiplicative inverse of x within the

subgroup.

Let us compute an example with x = 1 and −x = 16. Given f(1) = 9

and f(16) = 10:

ffold(1) =
6 + 1

2 · 1
· 9 + 6− 1

−2 · 1
· 10 =

7

2
· 9 + 5

−2
· 10.

In F19, the inverse of 2 is 10, so:

7

2
≡ 7 · 10 = 70 ≡ 13 (mod 19),

−5
2
≡ −5 · 10 = −50 ≡ 7 (mod 19).

Thus:

ffold(1) = 13 · 9 + 7 · 10 = 117 + 70 = 187 ≡ 16 (mod 19).

Verifier Check The verifier selects index i = 0, corresponding to x = 1,

and requests the following from the prover:

• The values f(1) and f(16);

• Their respective Merkle authentication paths;

• The claimed value ffold(1) = 16.

The verifier computes the expected folded value using Equation (III.3)

and checks for consistency. Since the computed value matches and the Merkle

paths validate the correctness of the values at x and −x, the round is ac-

cepted.
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Conclusion This procedure is repeated for multiple rounds of folding until

the polynomial is reduced to a constant. In the final query phase, the ver-

ifier checks a small number of randomly selected positions across all layers

to ensure consistency with the folding process. This achieves a sound and

efficient proximity test for low-degree polynomials.

III.7.3 FRI Polynomial commitment

Although FRI significantly improves the efficiency of proximity testing, it
introduces two important limitations when employed as the basis for a poly-
nomial commitment scheme:

• The prover commits to the evaluations of a polynomial f only over
a restricted domain Ω ⊂ Fq. Consequently, if the verifier queries an
evaluation point r ∈ Fq \ Ω, the prover lacks a valid authentication
path to provide a convincing answer. This limits the commitment’s
applicability to arbitrary points in the field.

• The verifier is only guaranteed that the committed function is close to a
low-degree polynomial with respect to the relative Hamming distance.
However, this proximity guarantee does not necessarily imply that the
function is itself of low degree.

To address both limitations introduced by FRI, one can employ a stan-
dard algebraic technique used in many proof systems. Specifically, to prove
that a committed function f evaluates to a claimed value v at an arbitrary
point r ∈ Fq, it suffices to show the existence of a polynomial w(X) of degree
at most d such that

f(X)− v = w(X) · (X − r).

This identity implies that the polynomial f − v vanishes at X = r, i.e.,
f(r) = v. This algebraic condition can serve as the basis for constructing a
succinct proof of correct evaluation at arbitrary points, and is often layered
on top of protocols such as GKR (III.5) or FRI to enable general-purpose
polynomial commitments.

To confirm that f(r) = v, the verifier V applies FRI’s fold and query
procedure to the function

g(X) :=
f(X)− v

X − r
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using degree bound d− 1.
If V queries this function at a point in the domain Ω, the evaluation can

be obtained with one query to f at the same point (also see IOPs).
It can be proved that to pass verifier’s checks in this polynomial commit-

ment with noticeable probability, v must be equal to h(r), where h is the
degree-d polynomial that is closest to f (in Hamming distance).

For a discussion of potential issues with applying the Fiat-Shamir trans-
form to FRI, see Appendix A.4.

Costs The costs of the FRI polynomial commitment are the following:

Setup phase O(1) (transparent setup)
Prover time O(d log2 d)
Commitment size O(1) (Merkle root)

Proof size O(log22 d)
Verification time O(log22 d)

Table III.1: Asymptotic costs of the FRI polynomial commitment scheme.
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Chapter IV
Zk-STARKs

Zero-Knowledge Scalable Transparent Arguments of Knowledge (zk-STARKs)
are designed to address some of the critical limitations of zk-SNARKs, partic-
ularly the reliance on a trusted setup. zk-STARKs employ transparent setup
processes based on publicly verifiable randomness, eliminating the risk inher-
ent in trusted setup ceremonies. Furthermore, zk-STARKs are constructed
using cryptographic hash functions rather than elliptic curve pairings, ren-
dering them post-quantum secure, as quantum computers threaten the as-
sumptions underlying elliptic-curve-based cryptography. The importance of
zk-STARKs lies in their transparency, scalability, and long-term security.

The first formal definition of these concepts was introduced in the pa-
per entitled ”Scalable, transparent, and post-quantum secure computational
integrity” [BBHR18b].

IV.1 Computational Integrity and the DPM

Problem

A motivating example of the problem addressed by [BBHR18b] is the DNA
Profile Match (DPM) scenario. Suppose a national police force (P), which
maintains a confidential forensic DNA profile database (D), claims that the
DNA profile (p) of a controversial presidential candidate does not appear in
D. How can cryptographic protocols be used to convince the skeptical public
of this claim, without revealing any information about D or p, without relying
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on any trusted third party, and within reasonable computational effort?

Figure IV.1:

(P)

Figure IV.2:

(p)

Figure IV.3:

(D)

This example illustrates a broader issue: when a party P performs a
computation C on a dataset D, there is always a risk that P might misreport
the result C(D), thereby undermining computational integrity (CI). Verify-
ing CI requires ensuring that P has correctly performed and reported the
computation without external oversight.

If the dataset D is public, then any verifier V can recompute C on D
and compare the result with the claimed output. However, this verification
strategy is inefficient: the verifier’s runtime (TV ) is linear in the computation
time (TC) and requires access to the entire dataset D. This is similar to
checking a restaurant bill or validating the Bitcoin blockchain.

To address this inefficiency, cryptographic hash functions can be used to
compute a succinct, immutable fingerprint cmt of the dataset D at a given
time t. This fingerprint can be recorded on a public blockchain for future
reference. However, when D contains private data, such public verification
becomes infeasible, as it risks revealing sensitive information.

Traditionally, one would resort to a trusted third party (e.g., an audi-
tor) to verify computations over private data. However, this solution suffers
from scalability limitations and introduces a central point of failure. To over-
come these challenges, zero-knowledge (ZK) proof systems offer a compelling
alternative.

As discussed in Chapter II, zero-knowledge proof system for a computa-
tion C consists of a prover P and a verifier V. The prover aims to convince
the verifier that a certain computation was correctly executed, without re-
vealing any additional information. A secure ZK system satisfies two main
properties:

• Completeness: An honest prover can convince the verifier of a true
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statement.

• Soundness: A dishonest prover cannot convince the verifier of a false
statement, except with negligible probability.

Early ZK systems with scalable verification were based on Probabilis-
tically Checkable Proofs (PCPs). The PCP theorem guarantees the
following:

1. The prover’s runtime is polynomial in the computation: TP = T
O(1)
C

2. The verifier’s runtime is polylogarithmic in the computation: TV =
logO(1) TC

ZK systems based on PCPs (ZK-PCPs) exhibit the following key features:

1. Post-quantum security: These systems rely on collision-resistant
hash functions for interactive protocols and on the Random Oracle
Model (ROM) for non-interactive ones.

2. Proof/Argument of Knowledge (POK/ARK): These systems en-
able the prover to demonstrate knowledge of private data without re-
vealing it, and to prove the correctness of a computation.

3. Transparency: The verifier’s randomness is publicly known, removing
the need for a trusted setup.

IV.2 Interactive Oracle Proofs (IOPs)

To improve prover scalability without sacrificing the essential properties of
ZK-PCPs (i.e., transparency, universality, confidentiality, post-quantum se-
curity, argument of knowledge, and scalable verification), the Interactive
Oracle Proof (IOP) model was introduced. IOPs generalize both PCPs
and Interactive Proofs (IPs): like IPs, they involve multiple rounds of inter-
action, but like PCPs, the verifier is given query access to each message
sent by the prover.

More formally, IOPs allow the prover to write messages to an oracle in
each round, and the verifier can inspect any symbol of these messages by
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querying it directly. This enables sublinear-time verification relative to
the total proof length.

Ben-Sasson, Chiesa, and Spooner [BCS16] showed that any IOP can be
converted into a non-interactive argument in the Random Oracle Model using
the Fiat-Shamir heuristic. This transformation allows interactive protocols
to be used in non-interactive settings, a key step in constructing zk-SNARKs
and zk-STARKs.

Polynomial IOPs

An important subclass of IOPs is the Polynomial IOP (PIOP), in which
certain messages from the prover are represented as low-degree polynomials.
Let hi denote one such polynomial over a finite field, of degree at most di.
The verifier can query the evaluation of hi at any point r of its choice.

To turn PIOPs into practical SNARKs or STARKs, these polynomials
are replaced with polynomial commitment schemes. Examples of such
schemes include Ligero [AHIV22] and FRI [BBHR18a]. The general strategy
is as follows:

• Start with a PIOP for a relation such as R1CS satisfiability.

• Replace polynomial messages with commitments.

• Use Fiat-Shamir to make the protocol non-interactive.

The resulting system remains an IOP at its core, but is now scalable,
transparent, and non-interactive.

IV.3 Arithmetization Models: AIR and CCS

To enable the use of algebraic proof systems such as STARKs, computations
must be converted into algebraic form. Two key models for this purpose
areAlgebraic Intermediate Representation (AIR) and Customizable
Constraint Systems (CCS).

60



Zk-STARKs

AIR (Algebraic Intermediate Representation)

AIR represents computations using algebraic constraints over bounded-degree
polynomials. It is structured as follows:

• Finite field: Computations are performed over a finite field Fq with
prime q carefully chosen for efficient arithmetic. For example, q =
223 − 213 + 1.

• Execution trace: A matrix T of size n×m where n is the number of
computation steps and m is the number of algebraic registers.

• Transition constraints: Algebraic relations that span consecutive
rows (or with a fixed offset) in T .

• Boundary constraints: Conditions that fix initial or final values in
T to encode the inputs and outputs.

• Probabilistic verification: Constraints are checked at a single eval-
uation point ξ ∈ Fq, randomly chosen by the verifier.
By the Schwartz–Zippel lemma (III.1.1), a dishonest proof fails with
high probability.

• Randomized AIR with preprocessing (RAP): The prover sends
the execution trace, receives the verifier’s challenge ξ, and returns an
auxiliary trace. Fiat–Shamir renders this non-interactive.

CCS (Customizable Constraint Systems)

CCS generalizes multiple arithmetization models (R1CS, AIR, Plonkish cir-
cuits) and is structured as follows:

• Witness polynomials: These encode the state of the computation
using low-degree polynomials.

• Selectors: Define where and how constraints apply, similar to gates
in R1CS.

• Constraint composition: Local constraints are aggregated into a
global constraint polynomial.
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• Vanishing checks: The global constraint polynomial must vanish over
a predefined domain.

CCS serves as a unifying framework to capture most practical constraint
systems used in modern ZK protocols.

IV.4 ZK-STIKs and zk-STARKs

If an IOP-based proof system is:

• Scalable: Prover runtime is bounded by

TP = TC · logO(1) TC

• Transparent: No trusted setup

• Zero-Knowledge: Protects witness confidentiality

then it qualifies as a ZK-STIK (Scalable Transparent IOP of Knowl-
edge).

By making such a system non-interactive using Fiat-Shamir, one obtains
a zk-STARK: a Scalable Transparent IOP Argument of Knowledge.

zk-STARKs thus represent a culmination of decades of theoretical de-
velopment in probabilistic proof systems, yielding a practical, secure, and
efficient solution to verifying computations over both public and private data.

IV.5 Example: Fibonacci square sequence

The basic principles of the STARK protocol are described by building a proof
of a simple statement (knowledge of Fibonacci square sequence element) as
an example.

Preliminaries

Let F be a prime-order field of size N . Let F× denote the multiplicative
group of N − 1 elements, and let ω be any fixed primitive element in F×.
The field size is set to N = 3 · 230+1, and a multiplicative subgroup of order
2k is required. For instance, 2251 + 17 · 2192 + 1 may also be suitable.
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Merkle trees

A Merkle tree is a cryptographic construction that allows committing to a
large dataset using a single hash value. Each leaf node contains the hash of
a data block, while each internal node holds a hash derived from its child
nodes. To reveal any leaf’s data, its value must be presented along with the
Merkle path (Merkle proof).

STARK Protocol

Fibonacci Square Sequence: ai = a2i−1 + a2i−2 The following statement
is to be proven:

A field element x exists such that the 1023rd element of the Fi-
bonacci square sequence starting with 1 and x is 2338775057.

Private input: x = 3141592.

IV.5.1 Trace Polynomial

The trace is defined as a sequence of elements that serves as the foundation
of the proof. This sequence comprises both private and public values and is
required to satisfy a set of specific constraints. In the illustrative example
under consideration, the trace is taken to be the sequence a consisting of the
first 1023 elements of the Fibonacci square sequence.

This trace is assumed to represent the evaluation of an unknown trace
polynomial of degree |a| − 1, in accordance with the Unisolvence Theorem
(III.1.2). The term domain refers to a sequence of elements from the field
F at which polynomials are evaluated. In order to interpolate the trace
polynomial, a multiplicative subgroup of 1024 elements from F× is chosen as
the domain:

G = {gi | g = ω3·220 , i ∈ [0, 1024)}.

Using Lagrange interpolation over the 1023 points {(gi, ai)}1022i=0 , a trace
polynomial f ∈ F[x] is constructed.

It is worth noting that, in practice, more efficient algorithms for interpo-
lation may be employed, such as the Fast Fourier Transform (FFT).
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IV.5.2 Polynomial Commitment

To commit to the trace polynomial, an evaluation domain significantly larger
than the degree of the polynomial is employed. Specifically, the evaluation
domain is selected to be a multiplicative subgroup of 8192 elements in F×:

H = {hi | h = ω3·217 , i ∈ [0, 8192)}.

The evaluation set is then defined as:

E = {ω · hi | hi ∈ H}.

AMerkle tree is constructed over the evaluations {f(ei)}ei∈E, and the root
of this Merkle tree is referred to as the trace polynomial commitment. This
same commitment approach is utilized for additional polynomials throughout
the remainder of the protocol.

Constraints The initial statement implies the following constraints:

1. a0 = 1

2. a1022 = 2338775057

3. ai+2 = a2i+1 + a2i mod N

In order to verify that the committed trace polynomial satisfies all imposed
constraints, it is sufficient to verify that it vanishes at specific points. These
points are determined by the selected interpolation pairs (gi, ai), where g is
a generator of the multiplicative subgroup of the field F of order 1024. The
constraints under consideration are the following:

1. The initial value a0 is equal to 1, which is equivalent to stating that
the polynomial f(x)− 1 has a root at x = g0 = 1.

2. The final value a1022 is equal to 2338775057, which corresponds to the
condition that f(x)− 2338775057 has a root at x = g1022.

3. For every index i such that 0 ≤ i ≤ 1020, the recurrence relation

ai+2 = a2i+1 + a2i

must hold. This can be translated into the condition that the polyno-
mial

f(g2x)− f(gx)2 − f(x)2

vanishes at all points x = gi for i ∈ {0, . . . , 1020}.
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To formalize these conditions, the following constraint polynomials are
defined:

p0(x) =
f(x)− 1

x− 1
,

p1(x) =
f(x)− 2338775057

x− g1022
,

p2(x) =
f(g2x)− f(gx)2 − f(x)2∏1020

i=0 (x− gi)
.

The polynomials p0(x) and p1(x) are clearly well-defined, since their nu-
merators vanish at the corresponding denominator roots by construction.
However, the form of p2(x) is inconvenient to manipulate due to the high-
degree denominator.

To simplify p2(x), one can exploit the following identity over the multi-
plicative subgroup G = {gi | 0 ≤ i < 1024}:

x1024 − 1 =
∏
g∈G

(x− g),

which holds since both sides are polynomials whose roots are precisely the
elements of G.

Consequently, the denominator of p2(x) can be replaced by a divisor of
x1024 − 1 that omits the points where the constraint is not required to hold,
namely g1021, g1022, g1023. Thus, the final form of the third constraint poly-
nomial is given by:

p2(x) =
(f(g2x)− f(gx)2 − f(x)2)(x− g1021)(x− g1022)(x− g1023)

x1024 − 1
.

This formulation satisfies an essential property: the verifier, who receives
only evaluations of the trace polynomial at points x, gx, and g2x, can re-
construct the constraint polynomials pi(x) without any additional witness
information. This guarantees that the constraints are checkable solely from
the provided evaluations and the publicly known structure of the domain.

IV.5.3 Composition Polynomial

In order to aggregate all the individual constraint polynomials into a single
expression, a standard approach consists of computing a linear combination
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using random coefficients provided by the verifier. This technique ensures
that, with high probability, the satisfaction of the combined constraint im-
plies the satisfaction of all individual constraints, while maintaining sound-
ness and zero-knowledge properties.

Specifically, after the prover commits to the trace polynomial, the verifier
samples and sends three random field elements α0, α1, α2 ∈ F, which serve
as challenge scalars. The prover then constructs the composition polynomial
by linearly combining the previously defined constraint polynomials p0(x),
p1(x), and p2(x) as follows:

CP (x) = α0 · p0(x) + α1 · p1(x) + α2 · p2(x).

This composition polynomial encapsulates all the constraints in a single
expression and is used in the remainder of the proof system to enforce the
correctness of the computation trace.

To allow efficient verification, the prover evaluates CP (x) over the evalu-
ation domain (typically a multiplicative subgroup of the field) and commits
to the resulting codeword by constructing a Merkle tree over the evaluations.
This commitment enables subsequent queries and consistency checks during
the proof, while maintaining succinctness and integrity guarantees.

IV.5.4 Fast Reed-Solomon IOP of Proximity (FRI)

The overall goal is to verify that the committed polynomial CP (x) satisfies all
the imposed constraints by checking its evaluation at a random point chosen
by the verifier from the evaluation domain. However, a potential issue arises
when a malicious prover constructs a polynomial of large degree that admits
many roots in the field, thus undermining security. For instance, even a field
of size 261 is not sufficiently secure when verifying the polynomial at only one
point. Therefore, it is necessary to ensure that the degree of the committed
polynomial lies within an acceptable upper bound, which depends on the size
of the computation trace.

The final stage of the STARK protocol is the Fast Reed-Solomon Interac-
tive Oracle Proof of Proximity (FRI). FRI is an interactive protocol between
a prover and a verifier that establishes that a given evaluation corresponds
to a polynomial of low degree, where low degree means at most a ρ-fraction
of the size of the evaluation domain.

The key idea behind the FRI protocol is to iteratively reduce the degree of
a polynomial g0(x) of degree n = 2t by half, repeating this process until the
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polynomial becomes constant. Consider the polynomial g0(x) with degree
n and the initial evaluation domain E0 = E. The polynomial g0(x) can
be decomposed by grouping its even and odd coefficients into two separate
polynomials:

ge0(x
2) =

n
2∑

i=0

a2i · x2i, go0(x
2) =

n
2∑

i=0

a2i+1 · x2i.

Then, the next-layer FRI polynomial is defined as

g1(x
2) = g0e(x

2) + β · g0o(x2),

where β is a challenge randomly chosen by the verifier. The prover commits
to g1(x

2) over the next-layer evaluation domain E1 and repeats this procedure
until gi(x

2i) becomes a constant polynomial.
Concretely, starting from the evaluation domain

E0 = {w · hi | i ∈ [0, 8192)},

the next-layer domain is defined as

E1 = {(w · hi)2 | i ∈ [0, 4096)}.

This structure allows expressing ge0(x
2) and go0(x

2) using evaluations of g0 as
follows:

ge0(x
2) =

g0(x) + g0(−x)
2

, go0(x
2) =

g0(x)− g0(−x)
2x

,

which gives
g1(x

2) = ge0(x
2) + β · go0(x2).

It is important to note that for the above expressions to be valid, the
domain E must be closed under negation, i.e., −x ∈ E for every x ∈ E (in
order to achieve that gi(−x) can be committed together with gi(−x)). This
property holds because the evaluation domain is chosen as a multiplicative
coset of size 2k for some integer k. The proof of this fact (see Appendix A.1)
applies similarly to each subsequent domain Ei.
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IV.5.5 Protocol Definition

The verification of the entire computation is performed through the following
interactive protocol between the prover and the verifier.

Protocol: Zero-Knowledge Scalable Transparent Argument of Knowledge
(ZK-STARK)

Input:

• Private: a1 = 3141592 (secret element of the Fibonacci square se-
quence).

• Public: a0 = 1, a1022 = 2338775057 (fixed elements of the Fibonacci
square sequence) and F (finite field over which computations are per-
formed).

Protocol:

1. The prover interpolates the trace polynomial f(x) and submits its com-
mitment to the verifier.

2. The verifier samples random challenges α0, α1, α2 ∈ F and sends them
to the prover.

3. The prover constructs the composition polynomial CP (x) as a linear
combination of the constraint polynomials using the challenges αi, then
commits to CP (x) and sends the commitment to the verifier.

4. The verifier selects a random index i ∈ [0, 8192 − 16), computes c =
w · hi, and sends c to the prover.

5. The prover responds with the evaluations f(c), f(gc), f(g2c), CP (c),
CP (−c) along with the corresponding Merkle proofs.

Note: To claim gx where x = w · hi ∈ E (evaluation domain), the
prover uses power shifting by indices i+8 and i+16 to obtain g2x (see
Appendix A.1).

6. The verifier verifies the correctness of the Merkle proofs and checks the
validity of CP (c) by evaluating the constraint polynomials p0(c), p1(c),
and p2(c).
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7. The prover and verifier engage in the FRI protocol to verify low-degree
proximity of g0(x) = CP (x). At each FRI iteration i, the prover com-
mits to the polynomial gi(x), and the verifier selects a challenge β. The
prover responds with evaluations gi(c), gi(−c), which the verifier uses
to compute gi+1(c). This process repeats until gi(x), for i ∈ [1, 12),
reduces to a constant polynomial.

Note: The range i ∈ [1, 12) corresponds to the maximum degree of the

composition polynomial CP (x), which in this example satisfies

degCP (x) ≤ 11
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Chapter V
Post-Quantum Privacy Pass via

Post-Quantum Anonymous Credentials

V.1 Introduction

Privacy Pass is a protocol that issues unlinkable tokens to clients, enabling
anonymous authentication (Fig.V.1). Classical implementations rely on elliptic-
curve cryptography and blind signatures, which are rendered insecure by
quantum adversaries.

Figure V.1: Privacy Pass token issuance and redemption interaction overview

This chapter presents a post-quantum redesign of Privacy Pass based on
lattice-based anonymous credentials and zero-knowledge proofs constructed
with zk-STARKs. After describing the post-quantum threat model, the chap-
ter introduces the underlying proof system, a STARK-friendly variant of
Dilithium, the construction of anonymous credentials, and a protocol ex-
tension for rate-limiting. Experimental results confirm that the proposed
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approach remains practical even when proof sizes range from 85–175 kB.

Note: It is important to highlight that the protocol presented in this chap-
ter does not implement a zk-STARK in the strict sense as defined by Ben-
Sasson in [BBHR18b]. Instead, the construction deviates from the formal
notion of zk-STARKs and does not achieve zero-knowledge.

V.2 Cryptographic Setting and Motivation

Quantum adversaries capable of executing Shor’s and Grover’s algorithms
undermine the security of schemes based on discrete logarithms and RSA. A
post-quantum variant of Privacy Pass must ensure the following properties:

• Post-quantum security: All primitives must be secure against quan-
tum attacks.

• Unlinkability: Multiple authentications from the same client must
remain uncorrelated.

• Selective disclosure: Only the predicates required by the verifier
should be revealed.

• Transparency: Proof systems must avoid trusted setups.

These objectives are fulfilled using lattice-based digital signatures, hiding
commitments, and transparent zk-STARKs.

V.3 zk-STARK Framework

A zk-STARK is a scalable, transparent argument of knowledge that proves
statements represented as AIR (Arithmetic Intermediate Representation)
constraints over a finite field Fq. An execution trace is modeled as a ma-
trix T ∈ Fm×n

q , where rows denote time steps and columns denote registers.
Boundary constraints fix initial values, and transition constraints (of bounded
degree) express state evolution. Soundness is guaranteed probabilistically via
the Schwartz–Zippel lemma (III.1.1).

To support deeper traces and avoid costly non-native arithmetic, compu-
tations are embedded in Fq with prime q = 223− 213 +1 or q = 223− 220 +1,
and extended to Fq6 for proof evaluation.
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Randomized AIR with Preprocessing

Verification of polynomial identities such as f(X)g(X) = h(X) is reduced to
checking the identity at a random verifier-supplied point ξ. This is imple-
mented in the STARK framework via a Randomized AIR with Preprocessing
(RAP): the prover sends the execution trace, receives the challenge ξ, and
responds with an auxiliary trace. The Fiat–Shamir heuristic (II.3) renders
the protocol non-interactive.

Figure V.2: Execution trace for the signature verification RAP. Sizes of com-

ponents are roughly to scale.

V.4 zkDilithium: STARK-Friendly Signature

Scheme

Dilithium (see Appendix A.2) is modified to permit efficient verification
within zk-STARKs. The adapted scheme, referred to as zkDilithium, in-
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cludes the following changes:

1. The SHA-3 hash function is replaced with Poseidon, an algebraic hash
suitable for STARKs.

2. The public key includes the full t = As1 + s2 vector, avoiding the use
of public key compression and eliminating the need for hints.

3. The SampleInBall procedure, which generates a sparse challenge poly-
nomial with τ coefficients in {−1, 0,+1}, is reformulated to avoid re-
jection sampling. Instead, the procedure selects swap indices and signs
using field elements and performs a Fisher–Yates shuffle. A negligible
rejection probability (< 0.06%) is preserved.

4. For applications requiring larger trace depth, a variant denoted
zk20Dilithium is introduced, using q = 223−220+1 and adjusted bounds
(γ2 = 216).

Verification Constraints

Let z be the Dilithium response and w = Az−ct. The value w is decomposed
as w = 2γ2w1 + w0, where w0 ∈ (−γ2, γ2]. STARK constraints enforce the
validity of this decomposition:

w0 + w12γ2 − w = 0, (V.1)

(1− w2)w1w0 = 0, w2(w2 − 1) = 0, (V.2)

∥z∥∞ ≤ γ1 − β. (V.3)

Here, w2 is a binary flag indicating whether w = −γ2, a special case
required for correctness.

V.5 Anonymous Credential Construction

The credential system is constructed following the Camenisch–Lysyanskaya
paradigm:

1. The client commits to a vector of attributes a = (a1, . . . , ak), obtaining
a hiding commitment C.
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2. The issuer signs C using zkDilithium via a blind signature protocol.

3. The client presents (C, σ) and a zero-knowledge proof showing that the
committed attributes satisfy a predicate P (a), without revealing the
attributes themselves.

The STARK proof certifies:

• knowledge of a valid signature on a hidden commitment,

• correct opening of C to a,

• satisfaction of the predicate P .

The resulting proof has logarithmic complexity relative to the circuit size.
Empirical evaluations indicate proof sizes between 85 and 175 kB.

V.6 Rate-Limited Privacy Pass

The credential system enables token-based rate limiting without an attester.
Each credential embeds counters representing usage in different time win-
dows:

(nonce, tissue, c5m, c1h, c1d)

When redeeming a token, the client generates a new commitment C ′ with
updated counters and provides a zero-knowledge proof asserting:

1. knowledge of a valid signature on a previous credential,

2. correct computation of updated counters,

3. compliance with a rate-limiting policy (e.g., no more than 300 uses per
5 minutes).

Double-spending is prevented by revealing only the previous nonce. The
origin signs the new credential upon successful verification.
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Figure V.3: Protocol flow for rate-limited Privacy Pass with anonymous

credentials.

Variant Proof size (kB) Prover time (s) Verifier time (ms)

Size-optimized 85.6 4.8 19.8

Balanced 112.3 0.66 22.0

Time-optimized 173.3 0.30 31.4

V.7 Implementation and Performance

The proposed protocol is implemented in Rust using the Winterfell library.
All benchmarks target 115-bit conjectured security.

A measurement study involving over 750,000 client sessions demonstrated
that over 90% of users experienced an upload latency below 1 second for 100
kB proofs, assuming median upstream bandwidths above 2.5 Mbit/s.

V.8 Comparison with Prior Work

Recent proposals for lattice-based blind signatures report signature sizes
ranging from 22 to 100 kB, often accompanied by large transcripts and long
proving times. The credential scheme presented here offers comparable sizes
and significantly greater flexibility, including support for arbitrary predicates,
efficient verification, and full transparency.
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Chapter VI
Conclusion

In the paper Post-Quantum Privacy Pass via Post-Quantum Anonymous
Credentials, the authors claim to construct a privacy-preserving authenti-
cation protocol based on “post-quantum zk-STARKs.” However, a closer
examination reveals that this usage of the term “zk-STARK” diverges signif-
icantly from the formal, technical definition established in the literature on
zero-knowledge proofs. The Formal Definition of zk-STARK Traditionally, a
zk-STARK (Zero-Knowledge Scalable Transparent Argument of Knowledge)
is defined by a set of specific structural and cryptographic components:

• AIR (Algebraic Intermediate Representation): Encodes a computation
as a set of polynomial constraints.

• LDE (Low-Degree Extension): Extends the computation trace to a
larger evaluation domain to enable error detection.

• FRI (Fast Reed–Solomon IOP): A low-degree test protocol used to
prove that a function is close to a low-degree polynomial.

• Merkle Commitments over hash functions for transparent commitments
to the trace.

These ingredients collectively enable highly scalable, post-quantum secure
and transparent proofs of arbitrary computations. STARKs are particularly
suited for applications like verifiable computation, zk-rollups, and general-
purpose zero-knowledge machines.
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Conclusion

Despite the reference to zk-STARKs, the construction proposed in the Pri-
vacy Pass paper does not define an AIR. Does not apply a low-degree ex-
tension or use the FRI protocol. Does not rely on polynomial commitments
or Merkle trees in the standard STARK fashion. Is instead tailored to a
very specific ZK proof of knowledge of a Dilithium signature, implemented
via hand-crafted circuit constraints. Moreover, the authors acknowledge that
they were unable to implement the ZK component fully due to challenges in
encoding Dilithium’s structure within existing proof systems.

The authors seem to use the term “zk-STARK” to refer more generally to
a zero-knowledge proof system that is transparent, scalable in principle, and
post-quantum secure, regardless of whether it follows the STARK pipeline.
This looser definition reflects a shift from structural fidelity to property-based
reasoning: rather than using zk-STARK as a label for a specific cryptographic
protocol, it becomes shorthand for any ZK system that is non-interactive,
transparent (i.e. no trusted setup), and post-quantum safe. While such
an interpretation may be justified from a high-level perspective, it raises
important questions about terminology consistency and rigor, especially in
academic or security-critical contexts.

Implications

This discrepancy highlights a broader issue in the cryptographic commu-
nity: the growing divergence between formal definitions and practical usage
of protocol labels such as “zk-SNARK,” “zk-STARK,” or even “ZK proof.”
As these systems become more modular and application-specific, terms are
increasingly repurposed to describe their goals or security properties, rather
than their mathematical architecture. From an academic standpoint, this
creates a potential for confusion. For example: A reader might assume that
the system uses algebraic trace-based STARKs with polynomial constraints,
when it does not. The absence of AIR/LDE/FRI means the system can-
not inherit the same composability and scalability guarantees as traditional
STARK-based designs. It would be more precise for the authors to describe
their system as a transparent post-quantum ZK proof, or as a non-interactive
ZK argument based on hash functions, rather than using the zk-STARK label
in an overloaded way.
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Appendix A
Technical Appendices

A.1 Structural Properties of the STARK

Evaluation Domain

Proof of existence of additive inverse element in E

In general, this proof works for any field of order N where it is possible to
select a multiplicative subgroup of order 2k. In our example, N = 3 · 230 + 1
and k = 13.

Any element x ∈ E can be written as x = w ·hi = w ·wi·3·217 by construc-
tion. Without loss of generality, we can simplify this to x = hi. Then,

x = hi = w3·217·i and − x = hj = w3·217·j,

where

j = i+
|E|
2

(mod |E|).

We will explain why this holds below. For simplicity, assume i < j. Then:

x+ (−x) ≡ w3·217·i
(
1 + w3·217· |E|

2

)
≡ 0 (mod N).

Since |E| = 4096 = 212, we have:

1 + w3·217·212 ≡ 0 (mod N).
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Note that:
w3·229 ≡ N − 1 (mod N),

and therefore
w3·230 ≡ (N − 1)2 ≡ 1 (mod N).

The equation w3·230 ≡ 1 (mod N) follows from the order property of the
primitive element w in the multiplicative group F×.

Proof of shifted element index in E

Any element x ∈ E is equal to

x = w · hi = w · wi·3·217

by construction.
Then, while g = w3·220 , to claim gx and g2x from E we take w · hi+8 and

w · hi+16:

gx = w3·220 · w · wi·3·217 = w · w3·217(i+23) = w · hi+8

g2x = w3·221 · w · wi·3·217 = w · w3·217(i+24) = w · hi+16

This approach requires i to be less than |E| − 16, so the verifier selects i
from the range [0; 8192− 16).

A.2 The Dilithium Scheme

CRYSTALS-Dilithium is a lattice-based digital signature scheme built on the
hardness of two fundamental problems in module lattices: the Module Learn-
ing With Errors (MLWE) and the Module Short Integer Solution (MSIS)
problems. It was selected as the primary signature algorithm by NIST for
standardization in the post-quantum era.

Let R := Zq[X]/(Xn + 1) be a cyclotomic ring with n a power of two
(typically n = 256, 512, 1024) and modulus q a prime (e.g., q = 8380417).
The scheme operates over modules Rk and Rℓ for small integers k, ℓ.

79



Technical Appendices

Key Generation.

• Sample uniformly random matrix A ∈ Rl×k;

• Sample secret vectors s1 ∈ Rk, s2 ∈ Rℓ from a discrete centered distri-
bution over small-norm polynomials;

• Compute t := As1 + s2 ∈ Rℓ;

• Apply a rounding function Power2Round to decompose t into (t1, t0).

The public key is (A, t1) and the secret key is (s1, s2, t0).

Signing. To sign a message m:

1. Sample nonce vector y ∈ Rk with small norm;

2. Compute w := Ay;

3. Extract the high bits of w to obtain w1;

4. Compute challenge c := H(µ,w1), where µ is a message-dependent
hash;

5. Compute response z := y + c · s1;

6. Reject and restart if z or auxiliary bounds are violated (rejection sam-
pling).

The signature consists of (z, c,h) where h is a sparse hint vector enabling
reconstruction of w1 during verification.

Verification. The verifier:

• Recomputes w′ := Az− c · t1;

• Uses the hint h to derive w′1;

• Accepts if c = H(µ,w′1) and ∥z∥ is bounded.
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Security. The Dilithium signature scheme has been proven to be existen-
tially unforgeable under chosen-message attacks (EUF-CMA), assuming the
hardness of MLWE and MSIS. Rejection sampling ensures leakage resilience,
and deterministic hashing guarantees uniqueness.

Modifications Introduced by zkDilithium20

To enable efficient integration into zero-knowledge proof systems (such as zk-
STARKs), the zkDilithium20 variant introduces several critical adjustments.
These changes aim to make Dilithium more compatible with algebraic circuit
representations (e.g., R1CS or AIR) and to avoid operations that are difficult
to arithmetize.

1. Rounding Function Replacement. The standard Power2Round and
Decompose functions are bit-oriented and complex to model algebraically.
zkDilithium20 replaces these with field-level rounding and decomposition that
can be expressed via:

t = t1 · 2D + t0,

where both components lie in Rk and have coefficient bounds suited to field
arithmetic. This avoids branching and modular reduction logic in the circuit.

2. Hash Function Substitution. SHAKE-256 is not STARK-friendly
due to its bit-level permutation. zkDilithium20 replaces it with arithmetizable
cryptographic hash functions like Poseidon or Rescue, which offer efficient
representation over finite fields: c = HPoseidon(m,w1), where H is designed
to be efficiently verifiable inside low-degree polynomial constraint systems.

3. Prime Field Alignment. To avoid costly modular reduction inside
proof systems, the modulus q used in the ring Zq[X]/(Xn+1) is chosen such
that q < p, where p is the characteristic of the STARK field Fp. This ensures
native field compatibility.

4. Signature Encoding for ZK Circuits. Instead of using compressed
or byte-oriented formats, signatures in zkDilithium20 are encoded directly as
tuples over Fp, enabling zero-knowledge verification circuits to avoid serial-
ization logic and branching conditions.
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5. Optimized Constraints and Commitment Model. The internal
commitments to w1 and z are structured to minimize constraint complexity
by using field-packing and deterministic encodings, enabling succinct non-
interactive zero-knowledge proofs of signature validity.

Note: zkDilithium20 is an experimental adaptation of Dilithium designed
for zero-knowledge proof compatibility. While it retains the general struc-
ture and is inspired by the same MLWE/MSIS assumptions, its security has
not been formally analyzed at the same level as CRYSTALS-Dilithium, and
caution is advised when using it in critical applications.

A.3 Poseidon: A STARK-Friendly Hash

Function

Poseidon is a cryptographic hash function designed specifically for efficient
implementation inside zk-STARK and other algebraic proof systems. Key
properties include:

• Permutation-based construction: Poseidon operates as a fixed
number of rounds of a permutation applied to vectors over Fq.

• Native field operations: It uses only additions, multiplications, and
low-degree exponentiations (e.g., cube or fifth power), avoiding bitwise
operations such as XOR or shifts that are costly in algebraic proof
systems.

• Algebraic S-boxes: Nonlinear layers are implemented using polyno-
mial maps (e.g., x 7→ x5) rather than lookup tables, which makes the
function transparent and efficiently representable in arithmetic circuits.

• Security: Despite its algebraic simplicity, Poseidon is designed to re-
sist standard cryptanalytic attacks (collision, preimage, differential)
and achieves strong security margins for parameters matched to the
underlying field.

• Parameter flexibility: The number of rounds, state size, and S-box
exponent are chosen depending on the field Fq and desired security
level.
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Because of these features, Poseidon is well-suited as a drop-in replace-
ment for SHA-family hashes in zk-STARK contexts, reducing proof size and
verification complexity.

A.4 Additional Notes on FRI

One issue with FRI is that the Fiat-Shamir transform should not be applied
naively to render the folding phase non-interactive. The reason lies in the
general principle that, when the Fiat-Shamir transform is used to make a
multi-round interactive protocol non-interactive, a certain amount of security
is typically lost at each round unless the protocol satisfies a stronger property
known as round-by-round soundness.

This property ensures that soundness is preserved even when the verifier’s
challenges are generated in advance via a hash function, as in the Fiat-Shamir
paradigm. While round-by-round soundness has been established for some
protocols, such as the sum-check protocol III.4, no such guarantee has been
proven for FRI.

Nevertheless, despite the absence of a formal round-by-round soundness
proof, FRI is widely used in non-interactive settings in practical SNARK
constructions and production systems.
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Appendix B
The Dual Use of the Term “Oracle”

In the context of this thesis, the term oracle refers to a theoretical abstrac-
tion commonly used in computational complexity and cryptographic proof
systems. However, in the domain of blockchain technologies and smart con-
tracts, the word “oracle” acquires a distinctly different meaning. Although
both usages are technically sound within their respective domains, the se-
mantic divergence can lead to confusion, especially when integrating zero-
knowledge proof systems into blockchain-based environments.

This appendix aims to clearly distinguish between the two definitions,
highlighting the conceptual and practical differences, and grounding the
discussion with reference to the online course CryptoZombies [Loo24], a
widely used educational resource for learning smart contract development
on Ethereum.

Oracle in Cryptographic Proof Systems (ZKPs,

IOPs, ROM)

In cryptographic literature, particularly in zero-knowledge proofs (ZKPs),
interactive proofs (IPs), and interactive oracle proofs (IOPs), an oracle is an
idealized mathematical abstraction that allows an algorithm (usually
the verifier) to access information in a non-standard way.

Examples include:

• In Interactive Oracle Proofs, the verifier has oracle (i.e., query)
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access to the prover’s message and may inspect any part of it without
reading the entire proof;

• In the Random Oracle Model, an oracle emulates a truly random
function, typically instantiated by a cryptographic hash function in
practice.

These oracles do not exist physically; they are conceptual tools used
in security proofs and theoretical constructions to model limited knowledge,
efficiency, or access complexity.

Oracle in Blockchain and Smart Contracts

In contrast, within blockchain ecosystems (most notably Ethereum) an or-
acle is a trusted external service that delivers real-world data to smart
contracts. Because smart contracts are designed to be deterministic and iso-
lated from external sources for security reasons, they require oracles to access
off-chain information.

This concept is introduced in the CryptoZombies course [Loo24], where
oracles are explained as essential mechanisms for enabling smart contracts
to interact with inputs such as:

• Cryptocurrency prices (e.g., ETH/USD);

• Weather conditions or external events;

• Secure randomness for games or lotteries.

Oracles in this context are implemented as actual software services
(e.g., Chainlink) that must ensure integrity, availability, and often decentral-
ization. They serve as a bridge between on-chain logic and off-chain data.
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Summary Comparison

Aspect Cryptographic
Proof Systems

Blockchain / Smart
Contracts

Definition Abstract interface to
access data or func-
tions

External service that feeds
real-world data to contracts

Example usage IOPs, PCPs, ROM Chainlink, Band Protocol,
custom APIs

Physical existence No Yes (real-world software)

Purpose Optimize verification
and model limited ac-
cess

Inject off-chain data into
on-chain systems

Reference Ben-Sasson et al.
[BCS16], Fiat-Shamir,
FRI

CryptoZombies [Loo24], So-
lidity Docs

In advanced blockchain applications of zero-knowledge proofs, both no-
tions of oracle may coexist at different levels of the protocol, thus, cor-
rectly distinguishing the context and role of the term is essential for building
sound and secure cryptographic systems that interact with real-world envi-
ronments.
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