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Abstract

Clean air is essential to our health and to the environment. However, due to human

activities causing polluting emissions, air quality has deteriorated considerably in

the last century. These activities are notably linked to industry, energy production,

domestic heating, agriculture and transport.

Air pollution is the number one environmental health problem in the EU. It causes

serious illnesses such as asthma, cardiovascular problems and lung cancer, and vul-

nerable groups are affected the most. Air pollution also damages the environment

and ecosystems through excess nitrogen pollution and acid rain. It is also costly for

our economy, as it leads to lost working days and high healthcare costs.

Data from the European Environmental Agency reports 240,000 premature deaths

caused by fine particulate matter annually and an annual economic cost of air pol-

lution ranging from €231 to €853 billion.

Since the 1980s, the EU has been implementing policies on air quality that have

contributed to a substantial decrease in most air pollutants over the past decades.

To tackle air pollution and achieve the EU’s zero pollution vision for 2050, the EU

has a comprehensive clean air policy based on three pillars: ambient air quality

standards, reducing air pollution emissions, and emissions standards for key sources

of pollution

However, the air quality challenge is far from being solved. Although the number

of people exposed to harmful air pollution has significantly decreased, persistent

exceedances above World Health Organization guideline exposure levels remain for

several air pollutants. Especially in the northern area of Italy known as Pianura

Padana where Turin and Milan are among the most polluted cities in whole Europe.

II



For several years, in almost all European and North American cities, the urban air

pollution levels characterization mainly relied on the direct measurements of the

concentration of the different pollutant species.

Nevertheless, even if these measurements provide direct information of the air pol-

lution level at given positions, they do not provide an exhaustive picture of the

distribution of air pollution throughout urban areas nor the possibility to evaluate

the impact of a new traffic plan. For this reason, during the last decade, public

authorities have increasingly adopted pollutant dispersion models to complement

the information provided by monitoring networks.

In the last decades, the team of LMFA (Laboratoire de Mécanique des Fluides et

d’Acoustique) in the École Centrale de Lyon has been developing SIRANE, an urban

air pollutant dispersion model conceived to simulate pollutant dispersion emitted

from line sources (e.g. traffic emissions) and point sources (e.g. chimneys) at the

district scale. This model has already been tested and validated against real data

measurements. However, it requires a significant amount of computational time to

simulate over a long time frame.

This thesis aims to develop statistical tools for predicting street-level pollutant con-

centrations under varying meteorological conditions. The objective is to create a

fast, general-purpose model for rapid predictions.

This work primarily focuses on the SIRANE simulation software and its use in

generating a statistically significant dataset of scenarios upon which street-level

NOx concentration can be inferred. An interpolation-based surrogate model and

a regression-based predictor were developed to estimate pollutant concentrations

from meteorological variables. The interpolation model achieved the highest overall

accuracy, leveraging the data structure itself, while the regression approach offered

a more generalizable and lightweight alternative. Although regression performance

remained slightly lower, particularly in capturing local street-level variability, it

proved effective in reconstructing temporal concentration patterns with limited input

complexity.
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Chapter 1

Urban Air Pollution

Urban air pollution represents one of the most pressing environmental challenges

faced by modern cities.

This chapter provides an overview of the main sources of urban emissions, the phys-

ical processes that govern pollutant dispersion within the urban environment, and

the associated impacts on human health and well-being. Understanding these fun-

damental processes sets the stage for introducing the modeling approaches discussed

in the following chapters.

All the knowledge derives from online sources and the book Urban Climates [5].

1.1 Emissions and diffusion in the urban atmo-

sphere

Urban areas are major focal points of pollutant emissions due to dense human ac-

tivities. The dominant sources of urban air pollution today are anthropogenic, es-

pecially vehicle traffic. In Europe, the transport sector has overtaken industry and

high-sulfur fuel combustion as the largest urban air pollution source. Road traffic

contributes heavily to NOx and particulate emissions in cities, despite technological

advances like catalytic converters reducing per-vehicle emissions. Other significant

urban emission sources include residential heating (particularly solid fuel or biomass

burning in winter), industrial processes, construction activities (dust), and natural

dust or pollen influx. These primary emissions consist of pollutants such as partic-

ulate matter (PM10 and PM2.5), nitrogen oxides (NOx), nitric oxide (NO), nitrogen

dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and volatile organic

compounds (VOCs). Secondary pollutants like ozone (O3) form within the urban

1



atmosphere from chemical reactions of precursors (NOx and VOCs) under sunlight,

contributing to urban smog.

Once emitted, pollutants in a city undergo dispersion (transport and diffusion)

within the urban canopy and boundary layer. The physical layout of a city strongly

influences this dispersion. Buildings and urban morphology create a complex rough-

ness that slows wind and can trap pollutants at low levels. For example, a “street

canyon” – a street flanked by buildings – acts as a semi-enclosed compartment that

limits pollutant dispersal. Emissions from vehicles within street canyons tend to

accumulate, making these locations pollution hotspots. Airflow in a street canyon

often forms vortices that recirculate air; pollutants may remain trapped until enough

wind penetrates the canyon to ventilate it. The dimensions and spacing of buildings

(and trees) are significant: they determine mixing and ventilation efficiency in the

urban canopy. Dense, tall building arrangements with narrow streets inhibit hori-

zontal and vertical mixing, leading to higher concentrations near the source, whereas

more open layouts allow pollutants to dilute more readily.

On the neighborhood to city scale, urban areas modify the atmospheric boundary

layer, affecting how pollutants diffuse vertically. The layer of air just above the

buildings (the urban canopy layer) extends up to mean building height, above which

lies the urban boundary layer that can reach 1–2 km in height by day but contracts at

night. During daytime, solar heating creates convective turbulence that promotes

vertical mixing of pollutants. A deep mixed layer can dilute pollutants, carrying

some of the burden upward away from the surface. At night, especially under

clear, calm conditions, radiative cooling of the surface can lead to a temperature

inversion (cool air trapped under warmer air aloft). This suppresses upward mixing,

sometimes confining pollutants to a shallow layer near the ground. In urban areas,

the result is often an overnight accumulation of pollution—a phenomenon sometimes

described as an urban pollution dome when winds are light. Under these stagnant

conditions, the city’s emissions build up over the urban area in a quasi-circular

“dome” of polluted air. This pollution dome can be reinforced by the urban heat

island: the warmth of the city relative to its surroundings can induce circulations

that recirculate pollutants. Indeed, a strong urban heat island (UHI) not only

creates a thermal dome but also tends to self-sustain a pollution dome by trapping

emissions in a recirculating flow, thereby prolonging smog episodes. In contrast,

when regional winds are strong, the polluted air is advected downwind, forming

an urban plume. The city then behaves like a giant “chimney,” and pollutants

are transported away in a plume that gradually disperses as it travels. Downwind

communities may experience this transported pollution plume even as upwind areas

remain cleaner.

2



Dispersion in urban environments is thus a balance between pollutant release rates

and the capacity of the atmosphere to dilute and transport those pollutants. Atmo-

spheric turbulence (enhanced by daytime heating and by air moving around build-

ings) acts to diffuse pollutants, whereas stable stratification and weak winds allow

concentrations to build. Furthermore, chemical transformation plays a role: for ex-

ample, nitric oxide (NO) emitted by vehicles can react with ozone at night, depleting

local ozone – but this process is limited to the shallow layer of the nocturnal city

air, underscoring the importance of vertical mixing between the surface and layers

aloft.

Another critical aspect of urban diffusion is the interplay of pollution with climate

factors. In humid atmospheres, pollutants can act as condensation nuclei, con-

tributing to haze or smog formation. Historically, coal-burning cities suffered from

industrial smog (so-called “pea-soup fogs”), where smoke and sulfur dioxide mixed

with fog. A notorious example is the London smog of 1952, during which cold,

stagnant air led to extreme accumulation of smoke; roughly 4,000 people died dur-

ing the week of the smog, and total excess deaths reached an estimated 12,000 in

the aftermath. Such events were exacerbated by temperature inversions trapping

pollutants. Modern cities, having reduced coal smoke, now more commonly face

photochemical smog. This type of smog, characterized by a brownish haze, results

from sunlight-driven reactions of NOx and VOCs (mainly from vehicle exhaust).

Photochemical smog is typically a daytime, summer phenomenon producing irri-

tants like ozone. Episodes have been observed in cities worldwide – for instance,

in Los Angeles and also in European cities on sunny days with heavy traffic. In

these conditions, the combination of intense sun and stagnant air leads to elevated

ozone and fine particles, causing reduced visibility and acute health symptoms (e.g.

eye irritation, coughing). The brown haze often seen hanging over large cities is an

indication of such photochemical pollution, which can trigger breathing difficulties

and asthma attacks in the populace.

In summary, emissions in urban environments originate largely from human activ-

ities (vehicles, heating, industry) and their dispersion is governed by urban micro-

climates. Complex airflow around buildings, atmospheric stability, and urban heat

island effects all modulate how pollution spreads. A city can alternate between trap-

ping its pollutants in a dome under static weather or flushing them out in plumes

under ventilated conditions. Understanding these processes is essential, as it under-

pins both pollution forecasting in cities and the design of mitigation strategies (for

instance, urban designs that promote ventilation, or timing industrial emissions to

favorable dispersion periods). Ultimately, the goal is to avoid the worst-case sce-

nario of stagnant, high-pollution episodes, and instead ensure that natural diffusion
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and transport processes keep urban air quality within safe limits.

1.2 Impact on health and wellness

Air pollution is widely recognized as one of the most severe environmental health

risks. The inhalation of polluted urban air has both immediate and long-term ef-

fects on human health and well-being. In the short term, high pollution episodes

(e.g. acute smog events) lead to increases in hospital admissions for respiratory and

cardiovascular distress, trigger asthma attacks, and can even cause acute poisoning

or death in extreme cases. Over the long term, chronic exposure to polluted air con-

tributes to the development of diseases and higher mortality rates in the population.

The World Health Organization estimates that ambient (outdoor) air pollution is

linked to 4.2 million premature deaths globally per year, primarily due to heart dis-

ease, stroke, chronic obstructive pulmonary disease (COPD), lung cancer, and acute

respiratory infections. This makes air pollution a leading cause of death worldwide,

on par with major health risk factors.

In urban areas, where pollution levels are highest, the public health burden is espe-

cially pronounced. A recent analysis in Europe highlighted that air pollution is the

continent’s single biggest environmental health risk, implicated in over 240,000 pre-

mature deaths each year in Europe. Prolonged exposure to fine particulate matter

(PM2.5) and other pollutants has been linked not only to respiratory illnesses and

cardiovascular diseases, but also to outcomes like lung cancer. There is emerging

evidence of links to other conditions such as diabetes and adverse birth outcomes,

underlining that pollution’s impact on health is systemic. The European Envi-

ronment Agency (EEA) and WHO have noted that certain groups – children, the

elderly, and people with pre-existing conditions like asthma – are particularly vul-

nerable. For example, children growing up in polluted cities may suffer from reduced

lung development and more frequent bronchitis and asthma symptoms. The elderly

and those with heart or lung diseases are at higher risk of hospitalizations or death

when pollution spikes, as their systems are less able to cope with the added stress

on lungs and blood circulation.

The specific pollutants in urban air each carry their own health risks. Particulate

matter is especially concerning: PM2.5 (particles ≤ 2.5µm) can penetrate deep into

the lungs and even enter the bloodstream, contributing to inflammation that af-

fects the heart and other organs. Long-term PM2.5 exposure is strongly associated

with higher risks of heart attacks, strokes, lung cancer, and reduced life expectancy.

Coarser PM10 (≤ 10µm) primarily affects the upper airways and can lead to res-

piratory irritation, coughs, and aggravation of asthma or chronic bronchitis. Epi-
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demiological studies have consistently shown that for every incremental increase in

fine particulate pollution, there is a measurable increase in mortality and morbid-

ity. In fact, life expectancy in heavily polluted urban regions is years shorter than

in cleaner areas, largely due to pollution-driven health effects. Nitric oxide (NO),

nitrogen dioxide (NO2), and the broader group nitrogen oxides (NOx) are also key

pollutants. NO is a primary product of combustion, particularly from vehicles, and

rapidly oxidizes to NO2 in the atmosphere. NO2 is a potent respiratory irritant that

can inflame the lungs and impair immune responses, especially in children. These

pollutants also serve as precursors to ozone and fine particulate formation, com-

pounding their health impacts. Chronic NO2 exposure inflames the lining of the

lungs and can reduce immune response, leading to more frequent infections (espe-

cially in children). NO2 also serves as a proxy indicator for traffic-related pollution,

which includes a mix of toxic constituents. Ozone (O3) at ground level (a secondary

pollutant) causes irritation of the eyes, nose, and throat and can trigger asthma

attacks; high ozone days often see upticks in emergency room visits for breathing

problems. Sulfur dioxide (SO2), more common historically (from coal burning), can

cause bronchoconstriction and coughing even at low concentrations in sensitive in-

dividuals. Though SO2 levels have declined in many cities due to cleaner fuels, it

remains a concern in regions still reliant on coal or heavy oil. Carbon monoxide

(CO) from incomplete combustion can acutely affect oxygen delivery in the body

(by binding to hemoglobin), and high concentrations (often in enclosed or poorly

ventilated spaces like tunnels or garages) can be immediately dangerous; in open

city streets, CO generally stays below acutely toxic levels but contributes to chronic

low-level exposure.

Beyond these physical health impacts, urban pollution also degrades overall qual-

ity of life or “wellness.” On smoggy days, people may be advised to stay indoors,

reducing opportunities for exercise and recreation, and causing psychological stress

or anxiety about health. The visibility reduction and noxious odors of smog can

also cause discomfort and mental distress. There is growing research into links be-

tween chronic pollution exposure and mental health or cognitive development – for

instance, associations with higher risk of neurodevelopmental issues in children and

neurodegenerative diseases in the elderly, although these links are still being stud-

ied. What is clear is that cleaner air correlates with a healthier, more productive

population: fewer missed work or school days, lower healthcare costs, and better

overall well-being.

From an epidemiological perspective, the burden of disease attributable to urban air

pollution is immense. A European study found that in some of the most polluted

cities, life-long residents lose multiple years of life expectancy compared to those in
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cleaner cities. Children suffer increased rates of asthma and bronchitis; the World

Health Organization reported that even in relatively developed regions, thousands

of deaths per year in children and adolescents can be attributed to air pollution.

These stark statistics have framed air pollution as not just an environmental issue

but a public health crisis. Indeed, air pollution’s impact is sometimes compared

to that of smoking. Recent global assessments suggest that breathing chronically

polluted air may be as harmful as smoking several cigarettes per day in terms of

health risk, and globally more people now die from air pollution than from tobacco

each year.

In conclusion, urban air pollution markedly undermines health and wellness. It in-

creases acute illness and mortality during high-pollution episodes and contributes

silently to chronic disease and premature death over time. The most dangerous

pollutants – fine particulates and ozone – penetrate deep into the body, causing

inflammation and oxidative stress that affects organs far beyond the lungs. Efforts

to improve urban air quality are therefore critical public health interventions. Every

reduction in pollutant concentrations can yield measurable improvements in popu-

lation health, from better respiratory function in children to fewer heart attacks in

adults. This is a major motivator behind environmental regulations and pollution

control policies, as discussed in the next section.

1.3 Enviromental policies

Given the significant impacts of urban air pollution on health and the environment,

governments have developed a variety of policies and measures to reduce emissions

and improve air quality. Historically, some of the earliest and most dramatic clean

air policies were triggered by acute pollution disasters. A landmark example is the

response to the London Great Smog of 1952. In its wake, the UK passed the Clean

Air Act of 1956, which restricted the burning of coal in urban areas, encouraged

a shift to cleaner fuels, and mandated taller chimney stacks for industry to dis-

perse emissions higher into the atmosphere. These measures successfully eliminated

the dense, deadly smoke-fogs (“smogs”) that once frequently shrouded London and

other industrial cities. Similar legislation followed in other countries (for example,

the United States Clean Air Act of 1970 and its amendments) targeting industrial

emissions, vehicle exhaust, and fuel quality.

Over the decades, a robust framework of air quality regulation has evolved at in-

ternational, national, and local levels. Air quality standards form the backbone:

scientific research (often synthesized by the WHO) informs guideline concentration

limits for key pollutants, which governments then adopt as legal standards. For
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instance, the European Union’s ambient air quality directives set limit values for

pollutants like PM10 (50µg/m3 daily, not to be exceeded more than 35 times per

year) and NO2 (40µg/m3 annual mean) to protect public health. Cities and coun-

tries are required to monitor air quality and report if these standards are violated,

and to implement Air Quality Plans to achieve compliance. Over time, the EU has

periodically tightened these limits (and is in the process of revising them further to

approach WHO’s recently updated guidelines). In practice, these standards have

driven many policy actions “on the ground.”

One major policy approach has been emission control at the source. For vehicles,

this includes progressively stricter exhaust emission standards (Euro 1 through Euro

6/VI in Europe, Tier standards in the US, etc.) that mandate cleaner engines and

the use of pollution control devices like catalytic converters and particulate filters.

As noted, the introduction of catalytic converters and the phase-out of leaded petrol

in Europe led to substantially lower emissions per car. However, the growing number

of vehicles meant that without further measures, overall pollution could still rise.

Thus, cities have also implemented traffic management and vehicle restrictions. Low

Emission Zones (LEZs) have been established in hundreds of European cities –

these zones allow only vehicles meeting certain emission criteria to enter, effectively

banning older, high-emitting cars from city centers. For example, cities like London,

Berlin, and Paris have LEZ or even Ultra Low Emission Zone schemes targeting

diesel soot and NOx. Some cities have experimented with congestion charging (as

in London or Stockholm) which indirectly improves air quality by reducing traffic

volumes. Others, especially in developing countries, have adopted alternate license

plate driving days or outright driving bans during smog episodes.

Industrial emissions are addressed through regulations on factories and power plants

– requiring smokestack scrubbers, filters, and sometimes relocation of heavy indus-

tries away from densely populated areas. After mid-20th century policies mandated

taller chimneys and emission controls, the infamous industrial smogs dissipated. To-

day, large combustion plants in many countries must adhere to strict emission limits

for SO2, NOx, and particulates, and they are often part of cap-and-trade schemes for

pollutants or greenhouse gases. Fuel quality improvements have also been critical:

removing sulfur from fuels (to near-zero levels in gasoline and diesel by the 2000s in

the EU and U.S.) has cut SO2 emissions drastically and also allowed cleaner vehicle

technologies. In many cities, transitioning power generation and heating from coal

to cleaner alternatives (natural gas, renewables) has yielded major air quality gains,

as seen in European cities from the 1980s onward.

At the urban planning level, cities are increasingly incorporating air quality consid-

erations. Urban design can improve ventilation – for instance, preserving open park

7



spaces and breezeways, and avoiding the creation of too many deep street canyons in

new developments. “Green infrastructure” like urban trees and green roofs can help

by not only improving aesthetics and reducing urban heat (which can exacerbate

ozone formation) but also by capturing some particulate matter on leaves (though

this is a modest effect relative to emissions reductions). Some cities promote these

as part of climate adaptation and air quality improvement strategies. Initiatives

to expand public transportation, cycling, and walking infrastructure also serve to

reduce reliance on high-pollution modes of transport.

Another critical policy area is the episode (emergency) response plan. Many urban

regions have tiered alert systems that trigger short-term measures when pollution

is forecasted to spike. For example, authorities may impose temporary driving

bans or speed reductions, encourage car-pooling and remote work, reduce industrial

production, or ban wood burning in fireplaces during multi-day pollution episodes.

These are often communicated as pollution “alert levels” (e.g., Code Red days).

While such emergency measures are stop-gaps and not substitutes for long-term

solutions, they can mitigate the worst peaks. Public awareness campaigns are also a

policy tool – educating citizens on actions to reduce emissions (like not idling cars,

or using public transit on bad air days) and on how to protect themselves (such as

avoiding outdoor exercise when air quality is poor).

Internationally, cooperation has helped drive policies. The transboundary nature of

air pollution (e.g., pollutants can travel long distances downwind) led to agreements

like the UNECE Convention on Long-Range Transboundary Air Pollution (CLR-

TAP) in 1979. Under CLRTAP, protocols were established to cut emissions of SO2,

NOx, VOCs, and other pollutants across Europe and North America. The EU’s

multi-pollutant directives (National Emission Ceilings Directive) and programs like

the Auto-Oil initiatives in the 1990s were born from recognition that comprehensive

strategies were needed. These set national caps on total emissions and promoted

cleaner vehicle technology and fuels. More recently, concerns about climate change

have dovetailed with air quality policy: cutting CO2 often coincides with reducing

co-emitted pollutants (for instance, shifting from coal to renewable energy reduces

CO2 and also SO2/PM). Thus, climate policies (like the EU Green Deal or city

climate action plans) often have co-benefits for air quality.

The effectiveness of these policies is evident in many success stories. Across most

high-income countries, lead, sulfur dioxide, and carbon monoxide levels have plum-

meted since the 1970s due to fuel and industrial regulations. In the EU, average

urban PM10 levels have declined and the number of days with extreme pollution

has generally fallen in the last few decades. However, challenges remain. NO2 and

PM2.5 levels in many cities still regularly exceed health-based limits, and enforce-
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ment of regulations can be inconsistent. Moreover, in rapidly developing cities in

Asia and Africa, pollution levels are still extremely high, calling for aggressive pol-

icy interventions similar to – or beyond – those implemented in Europe or North

America.

In conclusion, environmental policies addressing urban air pollution span a wide

range: from technological standards and fuel regulations to traffic restrictions and

urban planning. A combination of these strategies is usually needed to tackle the

complex mix of sources in a city. Crucially, policy development is an ongoing pro-

cess: as scientific understanding of health effects improves (often revealing harm at

lower concentrations than previously thought), governments are prompted to tighten

standards and innovate new solutions. Urban air pollution control stands as a testa-

ment to how policy, technology, and public awareness must work together to produce

healthier city environments.

1.4 The air pollution in Turin

Turin (Torino), a major city in northern Italy, offers a case study in urban air

pollution, illustrating both the severity of the problem and the efforts to mitigate it.

Turin lies in the Po Valley, a region notorious for having some of the highest pollution

levels in Europe. The geography and climate of the Po Valley strongly predispose it

to pollution accumulation. The valley is bordered by the Alps to the west and north

of Turin and by the Apennine mountains to the south, creating a large basin with

relatively weak natural air circulation. Especially in winter, temperature inversions

are common: cold air pools in the valley under a lid of warmer air, effectively

turning the Po Valley into a bowl that traps pollutants. As a result, emissions from

vehicles, industry, and heating across Turin and other Po Valley cities tend to build

up rather than disperse. The region often experiences extended periods of stagnant

air, during which pollutant concentrations can surge to very high levels. In essence,

the Po Valley acts as a containment area where both primary pollutants (like PM

and NO2) and secondary pollutants (like ozone formed from precursors) accumulate,

particularly during late autumn and winter when ventilation is poorest.
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Figure 1.1: NO2 EU concentration from ESA Copernicus Sentinel-5P (ref period 04–2018 to
03–2019) from [2]

The Alps (top) and Apennines (bottom) surrounding the valley form a barrier that

inhibits pollutant dispersion. Turin’s urban emissions profile is similar to that of

other large cities, with transportation, residential heating, and industry being key

contributors. However, its location in the heart of the Po Basin amplifies the impact

of these emissions on air quality. Measurements consistently show Turin to be among

the most polluted cities in Italy. For example, in 2022 Turin had the highest number

of days with PM10 levels exceeding the EU daily limit of 50µg/m3. One of the

city’s monitoring stations (Torino-Grassi) recorded 98 days over the limit in 2022 –

nearly triple the 35 exceedances per year permitted by law. This was the worst in

the country, ahead of other Po Valley cities like Milan (84 days) and others in the

same year. Such statistics underscore how frequently Turin’s residents are breathing

unhealthy air. Furthermore, Turin’s annual average concentrations of pollutants are

well above both EU standards and WHO guidelines. The annual mean PM10 in Turin

in 2022 was around 37µg/m3, nearly double the current EU annual limit (20µg/m3

from 2030, 40µg/m3 previously) and far above the WHO recommended 15µg/m3

(and the even lower 5µg/m3 guideline updated in 2021 for PM2.5). For finer particles,

PM2.5, the levels in Turin (often in the 20 − 25µg/m3 range annually) exceed the

WHO guideline of 5µg/m3 by about 4 to 5 times. A recent analysis noted that

residents across the Po Valley routinely breathe air with particulate concentrations

several times higher than what WHO deems safe. This translates into significant

health impacts locally – elevated rates of asthma and other respiratory illnesses,

and a contribution to cardiovascular disease and mortality. Indeed, Italy sees tens

of thousands of premature deaths each year attributable to air pollution, and the
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highest per-capita toll is in the northern regions encompassing Turin and the Po

Valley.

The pollutant mix in Turin includes high levels of NO2, largely from diesel traf-

fic. In 2019, for instance, Turin and Milan had some of the highest NO2 averages

in Europe, often exceeding 50 − 60µg/m3 in annual mean (versus the EU limit of

40µg/m3 and WHO guideline of 10µg/m3). In recent years, there have been incre-

mental improvements – partly due to newer vehicle fleets and temporary reductions

during events like COVID lockdowns – but NO2 pollution remains a serious concern.

Ozone (O3) in summer also affects Turin; the sunny climate and ample precursor

emissions in the region lead to frequent breaches of ozone target values in the warmer

months, especially downwind of the city. In winter, however, particulate matter is

the headline pollutant. Turin’s cold season PM problems stem from a combination

of vehicle exhaust, domestic heating (some residents in the region still use wood or

pellet stoves), and industrial and agricultural emissions (including ammonia from

agriculture contributing to secondary PM formation). The stable meteorological

conditions from roughly October through March mean that Turin often starts ac-

cumulating pollution in early winter and does not get sustained relief until spring

winds or rains arrive.

Local and regional authorities are acutely aware of these challenges, and Turin has

become a focal point for pollution-control initiatives in Italy. Piedmont (the region

containing Turin) together with neighboring regions in the Po Valley has adopted

a coordinated air quality plan – indeed, the Piano Regionale Qualità dell’Aria was

updated in 2018 to align with the broader Po Basin agreement. Under this plan, a

suite of measures are implemented in Turin:

• Seasonal vehicle restrictions: Every year during the cold months (typically

October 1 to March 31), Turin enforces progressive bans on older vehicles.

For example, petrol cars below Euro 2 and diesel cars below Euro 3 or Euro

4 are not allowed to circulate on weekdays. These restrictions tighten under

an agreed protocol if pollution persists. Notably, when pollution levels reach

defined thresholds for consecutive days, emergency traffic bans are triggered.

Turin has a tiered alert system (often color-coded from green to red). At

the highest alert (e.g. “red alert”), even relatively modern diesels (Euro 5

and below) can be temporarily banned from city roads. In late 2017, after

successive days of high PM, Turin raised its smog alert to red and banned

all diesel cars up to Euro 5 during daylight hours, sidelining about half a

million vehicles. More recently, in February 2024, amid another pollution

episode, Piedmont authorities imposed a temporary ban on diesel vehicles

Euro 3 through Euro 5 in Turin and surrounding towns for several days. Such
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measures underscore the drastic steps taken to curb emissions when air quality

degrades.

• Heating and industry measures: During high-pollution alerts, Turin also re-

stricts residential and commercial heating—requiring lower thermostat settings

(e.g. max 19°C in buildings) and urging a switch from wood-burning to cleaner

heating if possible. The local government has incentivized the phase-out of old

wood-burning stoves and diesel generators. Industrial facilities in the area are

required to curtail activities or use extra emission abatement on bad air days.

The city is also expanding its district heating network, which allows central-

ized, cleaner heat production (from cogeneration plants) instead of numerous

individual boilers.

• Urban transport and planning: Turin has invested in public transport (with a

modern metro line and plans for expansion, plus promotion of electric buses)

and bike-sharing infrastructure in an effort to provide alternatives to car use.

The city center has a Limited Traffic Zone (ZTL) in which vehicular access is

restricted or requires special permits, aiming to reduce congestion and pollu-

tion in the dense urban core. Additionally, Turin is one of the cities participat-

ing in the EU funded LIFE Prepair project: a collaborative initiative among

regions in the Po Valley to implement and share best practices for emissions

reduction (covering areas like vehicle emissions, energy efficiency, and agricul-

tural emissions). Under such programs, Turin has been piloting low-emission

vehicle incentives, installing more electric vehicle charging stations, and test-

ing innovative solutions (for example, using photocatalytic materials on some

road surfaces that might help break down pollutants).

Despite these efforts, progress is incremental. Data show that while there have

been improvements over the past two decades (for instance, average PM10 levels

in Turin have come down compared to the early 2000s, and the number of annual

mega-smog episodes has slightly decreased), Turin’s air quality still regularly fails

to meet both EU legal standards and the ambitious WHO health guidelines. For

instance, in 2023, Turin was again among the cities with the highest number of

PM10 exceedance days (though slightly fewer than 2022, thanks in part to favorable

weather). Legambiente’s annual report Mal’Aria continually places Turin at or near

the top of Italy’s pollution rankings, a stark indicator of the work remaining. Local

authorities acknowledge that without substantial reduction in emissions at source –

especially a faster renewal of the vehicle fleet to low-emission and electric vehicles,

and more fundamental shifts such as moving freight off roads – the city will struggle

to attain compliance with upcoming stricter EU air standards (like the new PM2.5
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limits for 2030). In fact, analyses suggest Turin (along with Milan) will need roughly

a 43% reduction in PM10 emissions to meet the 2030 targets, one of the steepest

cuts required among Italian cities.

On a positive note, awareness among citizens is high, and there is increasing public

pressure for cleaner air in Turin. Grassroots movements (e.g. parents campaign-

ing for clean air around schools) have emerged, and the issue of smog is a regular

topic in local media each winter. The municipality has thus integrated air quality

into its broader sustainability plans. The Torino 2030 Sustainable and Resilient

strategy explicitly includes an Air Quality Plan and a push for green infrastruc-

ture and climate resiliency, recognizing that mitigating heat islands and increasing

green spaces can complement air pollution reduction. Moreover, Turin has joined

international networks of cities (like C40 Cities and Eurocities) to exchange knowl-

edge on combating pollution and climate change. These collaborations help Turin

implement measures that have worked elsewhere, such as zero-emission zones or

pollution pricing schemes, potentially in the future. In summary, Turin exemplifies

the plight of a city facing significant air pollution due to both human factors and

geographic destiny. Located in the pollutant-trapping Po Valley, it endures frequent

smog episodes especially in winter, with pollutant levels that challenge health lim-

its. The city and region have responded with a multipronged strategy: emergency

traffic bans during peak smog, progressive elimination of older polluting vehicles,

improvements in heating and industrial emissions, and long-term urban planning

for sustainability. While these measures have prevented conditions from becoming

as dire as in the mid-20th century, Turin’s air remains far from clean. Achieving

sustained, substantial improvements will likely require continued policy innovation,

technological change (such as a transition to electric mobility), and persistent public

and political will. The case of Turin underscores that solving urban air pollution is

a long-term endeavor – one that must adapt to new scientific findings and balance

economic, social, and environmental considerations – but it is an endeavor critical

to the health and quality of life of the city’s residents.
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Chapter 2

Modelling Urban Air Pollution

In order to control and manage urban air quality, public authorities require an

integrated approach that incorporates direct measurements and modelling of mean

pollutant concentrations. These have to be performed by means of operational

modelling tools, that simulate the transport of pollutants within and above the

urban canopy over a large number of streets. The operational models must be able

to assess rapidly a large variety of situations and with limited computing resources.

This chapter describes the operational modeling tools available for simulating urban

air pollution, with emphasis on the SIRANE model. After presenting the general

principles of air quality measurement and computational modeling, the chapter pro-

vides a detailed technical overview of the SIRANE framework and its input require-

ments, concluding with validation results from a real-world case study.

2.1 How is pollution measured

2.1.1 Monitoring stations

Air pollution in urban areas is commonly measured using a network of monitoring

stations, typically managed by regional environmental protection agencies. These

stations are strategically positioned to capture variations in pollutant concentra-

tions across different urban settings: traffic-heavy roads, industrial areas, residential

zones, and background rural locations.

Modern monitoring stations are equipped with automatic analyzers that provide

high-resolution time series (e.g., hourly averages) of pollutants such as NO, NO2,

NOx, O3, CO, SO2, PM10, and PM2.5. These stations often include meteorological

sensors (wind speed and direction, temperature, humidity, and solar radiation),
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which are crucial for interpreting air quality data and modeling pollutant dispersion.

Passive samplers are also employed to capture average concentrations over longer

periods (typically weeks), especially in areas without fixed stations. These are use-

ful in dense networks for spatial mapping, although they provide limited temporal

resolution.

2.1.2 Modelling tools

Predictive models are essential complements to monitoring networks. They provide

spatial and temporal coverage beyond what physical stations can offer and are crucial

for scenario analysis and urban planning. Most modelling tools are divided into two

different categories based on the computational model that is used in order to predict

the pollutants’ concentration level:

• CFD codes: Computational Fluid Dynamics (CFD) models numerically

solve the Navier-Stokes equations to simulate airflow and pollutant disper-

sion in high resolution. They allow for detailed simulations of airflow in com-

plex urban geometries but are computationally expensive. Examples include

OpenFOAM-based models or the PALM model system.

Despite their accuracy, CFD codes are generally limited to small-scale ap-

plications or specific domains (e.g., a few city blocks) due to computational

demands. They are valuable for studying detailed dispersion in specific set-

tings like street canyons or intersections.

• Parametrization of mass and momentum transfer: For larger-scale

and operational models, simplified representations of fluid dynamics are used.

These parametrizations rely on empirical or semi-empirical formulations to

model:

1. Vertical exchanges between the urban canopy and the boundary layer

2. Street-level transport driven by convective and turbulent mechanisms

3. Lateral and vertical dispersion based on Monin-Obukhov similarity

theory and Gaussian plume models

These approximations allow real-time or near-real-time predictions at city scale

and form the basis of urban-scale models like SIRANE.

.
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2.2 SIRANE

2.2.1 Model outline

The SIRANE model (Soulhac et al., 2011[10]) is a deterministic, operational ur-

ban dispersion model designed to estimate mean pollutant concentrations at the

district scale, accounting for the complex morphology of urban street networks. It

operates under a steady-state approximation over hourly time steps and is specif-

ically adapted for the simulation of emissions from line sources (e.g., traffic) in

dense urban environments. The model decomposes the urban domain into two main

regions: the urban canopy layer (i.e., the volume inside street canyons) and the

overlying atmospheric boundary layer.

This work focuses exclusively on the estimation of pollutant concentrations at street

level. Consequently, the description of Gaussian atmospheric dispersion processes

above roof level is omitted. The analysis is restricted to the mechanisms that govern

pollutant accumulation and exchange within the street network.

Figure 2.1: Description of the urban domain in the model SIRANE.

Structure of the domain:

The urban district is represented as a network of connected street segments and

intersections (Fig: 2.2a). Each street is modeled as a rectangular channel (a “box”)

characterized by its length L, width W , and height H (average building height).

Pollutant concentrations are assumed to be uniformly mixed within the street vol-

ume (well-mixed box hypothesis). Pollutants can exit the canyon through three

main processes:
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• Convective mass transfer along the street due to the mean wind along their

axis (Fig: 2.2b);

• Turbulent transfer across the interface between the street and the overlying

atmospheric boundary layer(Fig: 2.2b);

• Convective transport at street intersections. Exchange ratios have been pa-

rameterised by a mass exchange tensor, which accounts for the influence of the

external flow direction(Fig: 2.2a);

These three processes, along with the equations that guides them, are described in

the following pages.

Figure 2.2: The different components of the SIRANE model. (a) Modelling a district by a
network of streets. (b) Box model for each street, with corresponding flux balance (c) Fluxes at a
street intersection. (d) Modified ed Gaussian plume for roof level transport.

Mass transfer along the street canyon:

Assuming steady state conditions, this mass balance over the street volume can be

written as:

QS + QI + Qpart,H = QH,turb + HWUstreetCstreet + Qpart,gr + Qwash (2.1)

where:

• QS is the mass flux of pollutants emitted by sources within the street (e.g.,

vehicle emissions) [µg/s];

• QI is the advective flux of pollutants entering the street from upstream via

the street axis [µg/s];

• Qpart,H is the sedimentation flux of solid particles entering the street from

above through the street-atmosphere interface [µg/s];
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• QH,turb is the vertical turbulent flux of pollutants from the street to the atmo-

sphere (roof-level exchange) [µg/s];

• HWUstreetCstreet is the advective flux of pollutants exiting the street down-

stream along the street axis, where:

– H is the average building height [m],

– W is the street width [m],

– Ustreet the spatially averaged wind velocity along the street axis [m/s],

– Cstreet is the spatially average concentration in the street [µg/m3].

• Qpart,gr is the deposition flux of solid particles toward the ground [µg/s];

• Qwash is the wet deposition flux due to precipitation scavenging [µg/s].

This equation represents a balance between the incoming pollutant fluxes (emis-

sions, upstream advection, particle sedimentation) and outgoing fluxes (turbulent

ventilation, downstream advection, ground deposition, and wash-out). The model

operates under a steady-state assumption for each hourly time step.

Each term is then expressed as a function of local variables and parameterized

according to urban geometry and meteorology.

Figure 2.3: Mass balance within a street canyon.

(i) Advection along the street axis

Advection is driven by the spatially averaged wind velocity Ustreet parallel to the

street axis. The advective flux through a cross-section A = H · W is given by:

QH,turb = ACstreetUstreet = HWUstreetCstreet (2.2)

In a network of streets, each street receives inflow from upstream segments and

contributes to downstream ones. The direction and magnitude of Ustreet are com-

puted from the external wind speed and direction, adjusted for street orientation
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and urban roughness. According to Soulhac et al. (2008) [8] Ustreet can be written

as:

Ustreet = UH cos(ϕ)
δ2

i

HW

[

2
√

2

C
(1 − β)

(

1 − C2

3
+

C4

45

)

+ β
2α − 3

α
+

(

W

δi

− 2
)

α − 1

α

]

(2.3)

The parameters used in this expression are defined as follows:

• UH : mean wind velocity at the top of the internal boundary layer, computed

from friction velocity u³ and stability functions (see below).

• ϕ: angle between the wind direction and the street axis [rad].

• H: average building height [m].

• W : street width [m].

• δi: thickness of the internal boundary layer within the canyon. Defined as:

δi = min(H, W/2)

• α = ln
(

δi

z0,build

)

: logarithmic stability parameter based on the building rough-

ness length.

• β = exp
[

C±
2

(

1 − H
δi

)]

: stability correction factor.

• z0,build: roughness length characterizing the urban canopy (typically a fraction

of the building height, e.g. z0 ≈ 0.1H).

• C: dimensionless stability-dependent parameter, obtained by solving the fol-

lowing transcendental equation:

z0,build

δi

=
2

C
exp

[

π

2

Y1(C)

J1(C)
− γ

]

where:

– J0(C), J1(C): Bessel functions of the first kind;

– Y0(C), Y1(C): Bessel functions of the second kind;

– γ: Euler–Mascheroni constant (≈ 0.5772).
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• UH is further given by:

UH = u³

√

√

√

√

√

π√
2k2C





Y0(C) − J0(C)Y1(C)
J1(C)

Y1(C)

û

þ

where:

– u³: friction velocity [m/s], representing surface shear stress;

– k: von Kármán constant (typically k ≈ 0.4).

This formulation accounts for the modification of the wind field due to the urban

canopy’s roughness and geometry. The use of Bessel functions arises from analytical

solutions to the diffusion equations in the roughness sublayer above the urban canopy

(Soulhac et al., 2011 [10]).

The term cos(ϕ) ensures that only the component of the wind parallel to the street

axis contributes to along-street advection. The result is a spatially variable wind

field across the network, depending on orientation and morphology.

(ii) Exchange with the atmosphere at roof level

Vertical mass exchange between a street canyon and the over- lying atmospheric

flow is modeled using a parametrized exchange velocity ud. The flux of pollutants

exchanged by turbulent diffusion at the street- atmosphere interface is:

QH,turb = udWL(Cstreet − Cstreet,ext) (2.4)

where:

• ud is the mass exchange velocity between the street and the overlying layer

[m/s].

• Cstreet − Cstreet,ext is the mean pollutant gradient of concentration between the

street and the atmospheric layer above roof level.

The exchange coefficient ud accounts for turbulent transfer driven by roof-level shear

and thermal convection, and is estimated (Soulhac, 2000 [9]; Salizzoni et al., 2009a

[6]) to be :

ud =
σw√
2π

(2.5)

where σw is the standard deviation of the vertical velocity computed at roof level.

(iii) Exchange at intersections

At junctions, pollutant mass is redistributed across intersecting streets. The upwind
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pollutant flux QI,j entering street j is a function of the exchange coefficient of Pij

which in turn depends on the wind direction ϕ.

However, this coefficient does not take into account the turbulent mixing but only

the topology of the mean streamlines within the intersections (Soulhac et al., 2009

[6]). By assuming that the turbulent mixing within the intersection mainly depends

on larger scale fluctuations, its effect can be modelled by considering the standard

deviation of the wind direction. We can therefore define a time averaged exchange

coefficient as:

P̂ij(ϕ0) =
þ

f(ϕ − ϕ0) Pij(ϕ) dϕ (2.6)

with

f(ϕ − ϕ0) =
1

σϕ

√
2π

exp



−1

2

(

ϕ − ϕ0

σϕ

)2
û

þ (2.7)

where ϕ0 is the average wind direction and σϕ is the standard deviation of the wind

direction.

The flux entering the intersection from street j can be expressed by taking into

account the contribution of all streets connected at the intersection:

QIj =
ù

i

P̂ij(ϕ0)Cstreet,i + Pext³jCI,ext (2.8)

The second term of ( 2.8) represents the flux from the external flow (therefore related

to a concentration CI,ext) and which enters the intersection vertically. The flux PI³j

is computed considering only the case of air from the external flow entering the

intersection (Pvert < 0) and assuming that the incoming flux is distributed in the

streets downwind of the intersection proportionally to the flow rate in each street:

Pext³j = max(−Pvert, 0)
Pstreet,j

ø

street downwind to the intersection

Pstreet,i

(2.9)

The SIRANE model provides a physically grounded, computationally efficient frame-

work to simulate pollutant concentrations at the urban scale. By combining simpli-

fied fluid dynamics within the canopy with Gaussian dispersion above roof level (not

adressed in this project), and integrating emission inventories and meteorological

data, it enables city-wide pollution mapping with relatively modest computational

effort.

However, it assumes quasi-stationarity over hourly intervals, and neglects memory
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effects (i.e., pollutants emitted in previous hours are not retained). This implies

reduced accuracy under stagnant conditions or during pollution build-up events.

Furthermore, it models the street network as a connected system of idealized boxes,

and does not resolve microscale turbulence. Nevertheless, its simplicity allows rapid

simulations over large districts with realistic geometries, making it suitable for op-

erational use and exposure mapping.

2.2.2 Input data

The SIRANE model requires several categories of input data to simulate the dis-

persion of pollutants at the urban scale. These include meteorological observations,

a geometric description of the street network, emission inventories from multiple

sources, and background pollutant concentrations.

Meteorological data

Meteorological input is critical for driving both the advection and the turbulent

dispersion components of the model. In particular, the following parameters are

needed on an hourly basis:

• Wind directionϕ [´], measured at reference height (typically 10 m);

• Air temperature T [´C];

• Friction velocity u³ [m/s], derived from Monin-Obukhov similarity theory;

represents the shear stress at the surface and is a key parameter for turbulent

momentum and mass exchange.

• Inverse Monin-Obukhov length L·1
MO [m·1], used to characterize atmospheric

stability; its reciprocal (LMO) represents the height above ground beyond

which buoyancy effects dominate over mechanical turbulence, influencing ver-

tical mixing and pollutant dispersion.

The external wind field is used to compute the along-street wind component Ustreet

using the formulation presented in Eq. 2.3, which accounts for building geometry

and roughness. The turbulent fluxes at the roof level, which govern vertical pol-

lutant exchange, are derived from u³ and LMO using parametrizations grounded in

Monin–Obukhov theory.

In SIRANE applications such as the Lyon case study (Soulhac et al., 2017 [7]),

meteorological data are obtained from a local synoptic station (e.g. Météo-France

station in Bron). The statistics of the wind field (e.g., wind rose and stability
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class distribution) are analyzed to assess the representativeness of the data over the

simulation domain.

Figure 2.4: Scheme of SIRANE inputs and outputs from Soulhac et al., 2012 [11].

It is important to note that meteorological inputs in SIRANE can either be obtained

from real measurements or can be synthetically generated. In sensitivity studies or

surrogate model development, a synthetic dataset may be constructed by systemat-

ically varying meteorological parameters over plausible physical ranges. As will be

shown in Section 4.2, an artificial meteorological dataset can be created by combin-

ing all possible values of: wind direction (ϕ), friction velocity (u³), air temperature

(T ), inverse Monin-Obukhov length (L·1
MO).

Such synthetic datasets enable parametric studies of pollutant dispersion in relation

to atmospheric stability and wind conditions, and are particularly useful for training

surrogate models or machine learning emulators based on SIRANE output.

The urban geometry: shape file

The urban geometry is described using a shapefile that defines the layout of the

street network and associated urban canopy parameters. Each street is modeled as

a polygonal segment characterized by:

• Street length L [m], width W [m], and average building height H [m];

• Classification as “canyon” or “open” based on the aspect ratio W/H;

– Canyon W/H ≤ 3;

– Open: W/H > 3.

• Connectivity to other street segments via intersections;

• Geographic position in a projected coordinate system (EPSG:32632).
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The shapefile is processed using GIS tools and pre-processing scripts (e.g., as de-

scribed in Soulhac et al., 2011 [10]) to generate:

• A topological graph of the street network;

• A table of attributes per street (street ID, geometry);

• Identification of inflow/outflow segments for each intersection;

• Mapping between street IDs and emission inventory grid cells.

Figure 2.5: Example of how a shape file approximates the urban geometry.

Urban geometry encoded in the shape file is key in shaping pollutant dispersion

patterns. It will play a central role in this thesis, as a reduced version of it—limited

to the district of San Salvario—will be used throughout the analysis. All relevant

details concerning its structure and preprocessing will be presented in Chapter 3.

Emission sources and temporal modulation

In the SIRANE modelling framework, emissions are categorized into four primary

source types: line (or street) emissions, surface emissions, point emissions, and

background concentrations. Each type plays a distinct role in shaping the resulting

pollutant concentration field.

• Linear emissions: These refer primarily to road traffic and are associated

with each segment of the street network. Traffic emissions represent the dom-

inant source of NO and NO2 in the urban canopy layer. Emission rates are

spatially distributed along the road geometry and are modulated over time to

reflect daily and weekly traffic patterns.

• Surface emissions: These cover distributed area sources such as domes-

tic heating, commercial activities, or diffuse industrial emissions. They are
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projected over polygons defined in the simulation domain and contribute to

ground-level concentration fields, especially during winter months when heat-

ing demand is high.

• Point emissions: These are associated with elevated stacks, power plants,

or other industrial facilities. In SIRANE, they are treated as vertical injec-

tions of pollutants above roof level and modeled using parameterizations or

external plume dispersion models. The file Sources_Ponctuelles.dat in-

cludes metadata such as coordinates, height, temperature, and references to

hourly-resolved emission profiles stored externally.

• Background concentrations: Rather than representing emissions per se,

background values correspond to the inflow pollutant concentrations at the

simulation domain boundaries. These are prescribed based on regional back-

ground levels or results from larger-scale chemical transport models. In the

Lyon case study (Soulhac et al., 2012 [11]), background concentrations were set

using measurements from suburban stations and remained constant through-

out the simulation period, providing a baseline onto which local emissions were

superimposed.

Figure 2.6: Location of point emission sources (black dots) in Turin.

Emission sources are temporally modulated using predefined hourly profiles. These

modulation coefficients reflect typical daily emission cycles and differ between source

types (e.g., traffic, heating, industrial activity). Each emission value defined in the

input files is scaled by a time-varying coefficient for every hour of the year.

For instance, line and surface emissions in SIRANE are associated with hourly mod-

ulation factors such as:
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• Mod_Lin_0_NOX: hourly scaling factor for NOx;

• Mod_Surf_NOX: hourly scaling factor for surface NOx emissions over the full

domain.

There are seven different modulation coefficients that change based on the charac-

teristics of the street. In the San Salvario district, all streets refer only to Mod_Lin_0

coefficients. These coefficients are stored in dedicated modulation tables with 8760

rows (one per hour of the year). The values are derived from empirical or regulatory

datasets, such as traffic counts or heating demand patterns, and are specific to each

pollutant and emission source type.

For example, on January 1st, 2014:

• The average modulation coefficient for line NOx was approximately 0.87, peak-

ing at 1.61 at 19:00;

• The modulation coefficient for surface NOx remained 1.0 throughout the day.

These modulation values directly influence the final emission rates used in disper-

sion simulations and are fundamental to reproducing realistic diurnal concentration

trends.

2.2.3 Output

The main output directories generated by SIRANE are GRILLE and GRILLE_STATS,

which provide two-dimensional gridded estimates of pollutant concentrations across

the simulation domain. The GRILLE folder contains hourly concentration fields

computed for each pollutant over the entire simulation period. In contrast, the

GRILLE_STATS directory stores statistical summaries—such as average, minimum,

and maximum concentrations—aggregated over the full time window of the simula-

tion.

Other relevant output folders include RUES_PAR_HEURE and RUES_PAR_RUE, both

of which focus on street-level concentration outputs. The RUES_PAR_HEURE folder

contains a series of .dat files, one per hour of simulation, where each row corresponds

to a specific street segment (indexed from 0 to N −1) and reports the concentration

at that time step.

The RUES_PAR_RUE folder, on the other hand, is structured as a set of files where each

street index corresponds to a time series of pollutant concentrations. However, dur-

ing the course of this work, it was observed that the values reported in RUES_PAR_RUE

remain constant across all time steps, unlike the values in RUES_PAR_HEURE, which
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show the expected temporal variation. This inconsistency suggests the presence of

a bug in the source code affecting the RUES_PAR_RUE output.

Due to this issue and the lack of a direct built-in graphical representation of street-

level concentrations on the urban network, this project focused primarily on the

analysis of concentrations extracted from the RUES_PAR_HEURE files.

Figure 2.7: Example of a GRILLE output that represents NOx in Turin.

2.2.4 Validation

In the Lyon validation case (Soulhac et al., 2017 [7]), the SIRANE model was ap-

plied over the entire urban agglomeration of Lyon for the year 2008. The simulation

domain included over 21,000 street segments and accounted for temporally-resolved

emission inventories, meteorological data, and detailed urban morphology. The vali-

dation process was carried out through comparison with both continuous automatic

monitoring stations and passive diffusion tubes (PDTs).

Specifically, the model output was compared against:

• Hourly NO2 concentration data from 15 automatic monitoring stations oper-

ated by the local air quality network (Atmo Auvergne-Rhône-Alpes). These

stations were categorized as traffic, suburban, urban background, and indus-

trial, allowing for performance assessment across a range of urban environ-

ments;

• Three passive sampling campaigns conducted over distinct periods of the year

(February, May, October), involving over 70 sites distributed across the city.

These PDTs provided spatially dense but temporally averaged concentration

data.
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To evaluate the model’s performance, the following statistical indicators were used:

• Fractional Bias (FB) — a symmetric metric evaluating mean over- or under-

prediction;

• Normalized Mean Square Error (NMSE) — assessing the variance be-

tween modeled and observed values;

• Correlation coefficient (Corr) — indicating the temporal co-variability of

the signals;

• Fraction of predictions within a factor of two (FAC2) — representing

the proportion of predictions that fall within a factor of two of observations.

Model performance was generally in agreement with the quality objectives estab-

lished by Chang and Hanna (2004) [3], which recommend:

|FB| ≤ 0.3

NMSE ≤ 4

FAC2 ≥ 0.5

Corr ≥ 0.5

The SIRANE model reproduced the spatial distribution of NO2 concentrations with

good fidelity, particularly capturing elevated concentrations along major roadways

and lower levels in peripheral or suburban areas. Temporal variability at traffic

stations was also well represented, especially under neutral and unstable atmospheric

conditions. Some discrepancies were observed under low wind or stable nighttime

conditions, where vertical mixing is weak and local effects become dominant.

Notably, the use of passive diffusion samplers allowed for the identification of con-

centration gradients on a fine spatial scale. While these devices tend to slightly over-

estimate concentrations compared to reference analyzers, their high spatial density

offered robust validation of the model’s ability to resolve street-scale heterogeneity.

Overall, the results confirmed that SIRANE can be effectively used for long-term,

high-resolution simulation of NOx and NO2 concentrations over complex urban do-

mains, making it a valuable tool for exposure assessment, policy design, and epi-

demiological studies.
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Chapter 3

Urban Geometry

As briefly discussed in the previous chapter, the shapefile provides both the ge-

ographic (coordinates) and topological (arcs and nodes) framework within which

SIRANE computes the diffusion and dispersion of pollutants. Urban geometry is

therefore a fundamental component of the model and cannot be neglected when

attempting to develop a predictive tool.

This dependency somewhat reduces the general-purpose applicability of the present

work, since both the simulations and subsequent predictions are inherently "overfit-

ted" to a specific shapefile — in this case, the district of San Salvario. As a result,

the model must be retrained on a new dataset for each urban topology of interest,

with dedicated SIRANE simulations tailored to the corresponding street network.

A truly general-purpose machine learning algorithm would need to learn the under-

lying geometric relationships between streets and be capable of adapting to arbitrary

urban contexts once trained. However, the development of such an advanced model

— which would likely require the integration of graph-based or geometric deep learn-

ing methods — lies beyond the scope of this thesis.

This chapter explains the rationale behind the dimensionality reduction approach

adopted in this thesis, which allows focusing on the San Salvario district as a test

case for surrogate model development.

3.1 Dimensionality reduction

By dimensionality reduction we refer to the spatial reduction of the original shape-

file domain, limiting it to a smaller geographic region. The rationale behind this

simplification is to significantly reduce the computational cost associated with the

simulations, allowing for faster execution times. Furthermore, since this work adopts

a highly experimental and data-driven methodology, the idea was to first validate
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the approach on a smaller-scale “toy model” before extending it to the entire ur-

ban area. Working on a reduced domain enables rapid iteration, facilitates testing

of different modeling techniques, and simplifies debugging. Given the limited and

fixed timeframe of this research, this strategy represents a major advantage.

3.2 Methodology used

To crop the shapefile and isolate the desired urban area (San Salvario district), the

open-source GIS software QGIS was employed. After importing the original street

network shapefile, all streets and nodes lying outside the region of interest were

manually deleted. This manual pruning alters the urban geometry while preserving

the topological structure and attribute fields of the remaining segments.

However, this process affects the correspondence between street identifiers and emis-

sion fluxes. In SIRANE, line emissions are assigned sequentially to street segments

according to their internal index in the shapefile. Therefore, once the domain is re-

duced, the linear emission file must be updated accordingly to maintain consistency.

This requires:

• identifying the original indices corresponding to the remaining streets in the

San Salvario district;

• removing emission records for deleted streets;

• reindexing the reduced emission file from 0 to N − 1, where N is the new

number of retained streets.

An important consideration concerns the handling of emissions associated with

streets that are removed during the domain reduction process. Simply assigning

a value of zero to their emissions in the input file is not sufficient. This is because

SIRANE links emission values to street segments based solely on their index order

in the shapefile. If the emission file is not updated to reflect the new reduced geom-

etry, the first N emission values (where N is the number of streets in the reduced

shapefile) will be incorrectly assigned to the remaining segments, regardless of their

actual identity in the original network. This can lead to erroneous spatial distribu-

tions, particularly if zero values (originally associated with now-removed streets) are

wrongly attributed to valid segments in the reduced model. To avoid this misalign-

ment, it is therefore essential to remove the emission entries corresponding to the

deleted streets and to reindex the emission file in a way that aligns precisely with

the geometry of the reduced shapefile. This ensures reproducibility and prevents

mismatches between the geometric and emissions datasets during the simulation

phase.
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3.3 Comparative analysis

Once a suitable domain reduction technique has been identified, it becomes possible

to perform a comparative simulation over both the full city network and a reduced

domain focused on San Salvario. The primary goal is to evaluate how the truncation

of the original shapefile affects the predicted concentrations within the district, and

to assess the extent to which emissions from the rest of the urban area influence

local pollutant levels. To this end, a dedicated simulation was first conducted over

the complete urban domain. This preliminary step was designed to investigate the

interactions between San Salvario and the surrounding city, providing insight into

the spatial scale and magnitude of pollutant exchange across district boundaries.

3.3.1 Interaction between San Salvario and the rest of the

city

The experimental setup consists of a one-day simulation over the full city domain,

using January 1st, 2014 as a representative test case. After the simulation, the

pollutant concentrations computed for the streets within the San Salvario district

are extracted, and the spatial average and time average are calculated —i.e., the

average NOx concentration across all streets at each hour and the average NOx

across 24 hours at each street.

To better understand the relative influence of local versus non-local emissions, four

emission scenarios for linear (traffic-related) sources were considered:

• FLTR: This is the reference case, in which linear emissions are present across

the entire domain, both inside and outside the San Salvario district;

• FLTR_SS: In this configuration, linear emissions are active only within San

Salvario. All street segments outside the district have their emissions set to

zero;

• FLTR_NOSS: This scenario is complementary to the previous one: linear

emissions are present only outside San Salvario, and they are set to zero within

the district itself;

• FLTR_0: In this final scenario, all linear emissions are set to zero, both inside

and outside San Salvario. The only contributions to street-level concentrations

come from surface, point, and background sources.
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In all four scenarios, the focus remains on the concentrations predicted within the

San Salvario district, allowing an assessment of how emissions in different parts of

the city affect the local air quality.

The images below (Fig. 3.1) display the gridded concentration output generated by

SIRANE for the four emission scenarios previously described. Although concentra-

tion differences at the individual street level are not easily discernible from these

plots, a clear trend emerges: linear (traffic-related) emissions play a dominant role

in determining overall concentration levels within the domain. When these emis-

sions are deactivated, the resulting concentrations are primarily attributable to the

remaining sources—namely surface, point, and background emissions.

This observation highlights an important aspect of pollutant dynamics within the

urban canopy. The transport and diffusion of pollutants along the street axis ap-

pear to have a predominantly local effect, influencing adjacent or directly connected

street segments. However, their impact diminishes rapidly with distance, suggesting

that inter-street pollutant exchange does not significantly affect remote parts of the

domain. This supports the hypothesis that the influence of street-level emissions is

spatially limited and largely confined to the immediate surroundings of the emission

source.
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(a) Scenario FLTR (b) Scenario FLTR_SS

(c) Scenario FLTR_NOSS (d) Scenario FLTR_0

Figure 3.1: Grille output of SIRANE for the averadge NOx concentration on January 1st, 2014
in the four different scenarios considered: FLTR (linear emissions across all the streets), FLTR_SS
(linear emissions only in San Salvario’s street), FLTR_NOSS (linear emissions only outside San
Salvario), FLTR_0 (no linear emissions).
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We now present a set of numerical results obtained using MATLAB that further

explore the concentration dynamics within the San Salvario district. Fig. 3.2 shows

the progressive reduction in the spatially averaged NOx concentration over the dis-

trict as linear emissions are progressively removed—first from the streets outside

San Salvario, and then from within. Although concentration differences at the indi-

vidual street level are not easily distinguishable in gridded plots, the effect of linear

emissions on overall concentration levels is clearly evident.

The highest concentrations are observed in the scenario where all streets—both

within and outside the San Salvario district—contribute with active emissions (FLTR).

Concentration levels decrease when emissions are restricted to streets located exclu-

sively within San Salvario (FLTR_SS), and are further reduced in the scenario

where all street-level emissions are completely suppressed (FLTR_0). In the case

where only streets outside San Salvario emit pollutants (FLTR_NOSS), the result-

ing concentrations within the district are higher than those observed in FLTR_0,

highlighting the influence of pollutant advection from the surrounding urban area.

This behavior is physically consistent and confirms the central role of local traffic

emissions in determining street-level concentration patterns, while also indicating

that inter-district transport has a secondary but non-negligible effect.

Figure 3.2: Spatially averaged NOx concentration time series over San Salvario on January 1st,
2014 for every hour of simulation in the four different scenarios considered: FLTR (linear emissions
across all the streets), FLTR_SS (linear emissions only in San Salvario’s street), FLTR_NOSS
(linear emissions only outside San Salvario), FLTR_0 (no linear emissions).

The images below (Fig. 3.3) presents a complementary view: the time-averaged

NOx concentration on January 1st, 2014, for each street in the district. The same

decreasing trend is observed across the four emission scenarios.
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Figure 3.3: Time-averaged NOx concentration on January 1st, 2014 for each street in San Salvario
in the four different scenarios considered: FLTR (linear emissions across all the streets), FLTR_SS
(linear emissions only in San Salvario’s street), FLTR_NOSS (linear emissions only outside San
Salvario), FLTR_0 (no linear emissions).

To further clarify these trends, the time-averaged concentrations are mapped directly

onto the San Salvario street network in Fig. 3.4.
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(a) FLTR (b) FLTR_SS

(c) FLTR_NOSS (d) FLTR_0

Figure 3.4: Time-averaged NOx concentration on January 1st, 2014 for each street in San Salvario
in the four different scenarios considered: FLTR (linear emissions across all the streets), FLTR_SS
(linear emissions only in San Salvario’s street), FLTR_NOSS (linear emissions only outside San
Salvario), FLTR_0 (no linear emissions).

Finally, the plots in Fig. 3.5 provide a numerical representation of the local effect

of pollutant transport, consistent with previous findings from the SIRANE gridded

output. They show the difference in time-averaged concentrations between two pairs

of complementary scenarios: FLTR vs. FLTR_SS and FLTR_NOSS vs. FLTR_0.
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(a) FLTR − FLTR_SS (b) FLTR_NOSS − FLTR_0

Figure 3.5: Differences in time-averaged NOx concentrations between complementary emission
scenarios on January 1st, 2014 for each street in San Salvario. Picture (a) shows the difference in
concentretion level between scenario FLTR (linear emissions across all the streets) and FLTR_SS
(linear emissions only in San Salvario’s street). Picture (b) shows the difference in concentration
level FLTR_NOSS (linear emissions only outside San Salvario) and FLTR_0 (no linear emissions).

As shown in Fig. 3.5, the most significant concentration differences occur along

the peripheral segments that connect the district to the surrounding urban fabric.

This indicates that pollutant transport has a predominantly local effect, strongly

influencing adjacent streets but quickly decaying with distance.

3.3.2 Comparison between full and truncated domain

This section focuses on a numerical comparison between simulations carried out on

the full domain and those restricted to the truncated domain. Based on the results

presented in the previous section, one would expect lower concentration levels in the

truncated domain due to the smaller number of active streets and the absence of

emissions originating from outside San Salvario.

As shown in Fig. 3.6, this expected trend is clearly confirmed. Moreover, the simula-

tion over the truncated domain reveals a different temporal pattern in the spatially

averaged concentration, indicating that emissions from the rest of the city influence

not only the absolute concentration levels but also their diurnal modulation. The

truncated domain simulation appears more regular, with reduced variability and

fewer sharp concentration peaks, reinforcing the role of the broader urban network

in amplifying transient episodes.
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Figure 3.6: Spatially averaged NOx time series concentration comparison between the full and
truncated domain simulations over San Salvario on January 1st, 2014 for every hour of simulation.
The blue line represents the average concentration in San Salvario with a simulation on the full
domain. The red line represents the average concentration in San Salvario with a simulation on
the truncated domain.

At the street level, a comparison of the time-averaged NOx concentrations (Fig. 3.7)

reveals a similar spatial pattern in both domains, albeit with lower absolute values

in the truncated case. Once again, reduced variability is observed in the truncated

domain, suggesting that emissions from outside the district contribute significantly

to the dynamic range of concentrations within San Salvario.
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Figure 3.7: Time-averaged NOx concentration comparison between the full and truncated domain
simulations over San Salvario on January 1st, 2014 for each street in San Salvario. The blue scatter
plot represents the average concentration in one day with a simulation on the full domain. The red
scatter plot represents the average concentration in one day with a simulation on the truncated
domain

A spatial visualization of the time-averaged concentrations (Fig. 3.8) further sup-

ports this observation: although concentration levels are generally lower in the

truncated domain, the spatial distribution of pollutant hotspots remains consis-

tent. Streets with higher concentrations in the full domain simulation also exhibit

higher values in the truncated simulation, albeit scaled down. This confirms that the

truncated domain can still capture the relative spatial patterns of pollution across

the district.

(a) FLTR (Full Domain) (b) TRCT (Truncated Domain)

Figure 3.8: Time-averaged NOx concentration across San Salvario streets in the full and truncated
domain simulations on January 1st, 2014 for each street in San Salvario. Panel (a) shows the
concentretion level for a simulation on the full domain. Panel (b) the concentretion level for a
simulation on the truncated domain.
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The similarity in spatial distribution between the two domains lends credibility to

the use of the truncated domain for further analysis. The key advantage of this

approach, however, lies in the significant computational savings, as summarized in

Table 3.1.

Execution

Component

Full Domain (s) Truncated Domain (s) Speed-up (%)

Global execu-

tion time

2948.071 702.560 76.2%

Iteration time 2839.743 677.865 76.1%

Avg. time per

iteration

118.323 28.244 76.1%

Initialisations 119.730 109.455 8.6%

Puffs 57.154 19.126 66.5%

Point sources 44.902 19.924 55.6%

Retrotrajectories 324.791 252.257 22.3%

Street plume 2037.620 71.256 96.5%

Chemistry 13.240 11.239 15.1%

Grid summa-

tion

50.432 48.143 4.5%

File writing 186.050 142.784 23.3%

Releases 5.824 3.681 36.8%

Table 3.1: Comparison of execution times between full and truncated domain simulations.

The computational advantage is substantial, especially given the limited and fixed

timeframe of this research. For this reason, all subsequent analyses—namely the

sensitivity study and the training of the predictive model—will be carried out using

simulations performed on the truncated domain.

3.4 Test dataset

The test dataset adopted throughout this work corresponds to a year-long simulation

over the reduced domain of San Salvario, using real and validated meteorological

inputs along with consistent emissions and temporal modulation coefficients. This

dataset was originally generated and employed by Matteo Bo in his PhD thesis Study

of aerosols air pollution assessments in indoor and outdoor environments based on

measuring and modelling approaches [1]. Its relevance lies in the fact that, in the

absence of real-life measurements of pollutant concentrations at street level, the
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outputs provided by SIRANE during this specific simulation period (i.e., the year

2014) will serve as the reference benchmark against which the performance of all

subsequent predictive models will be validated.

Figure 3.9: Logic relationship between the three different universes. The real world is visible to
predictive model only throught the SIRANE output of one year simulation on San Salvario.

In addition to its role in model validation, the test dataset also proved fundamental

in the exploratory analysis of the meteorological parameters. Specifically, it en-

abled the identification of the realistic range of variability (upper and lower bounds)

for key inputs such as wind direction, air temperature, friction velocity (u³), and

inverse Monin-Obukhov length (L·1
MO). This analysis guided the definition of the

phase space resolution used to construct the synthetic database presented in Chap-

ter 4, ensuring that the artificial input combinations were both representative and

physically plausible.

Meteorological parameter distribution

The test dataset comprises 8760 data points, corresponding to each hour of simula-

tion over the year 2014. Among these, only 8758 correspond to unique meteorolog-

ical parameter combinations; two specific combinations appear twice, as detailed in

Table 3.2.

Hour of Simulation ϕ T u³ L·1
MO

Hour 461 (20/01/2014 04:00) 236.5 5.2 0.08 0.0111

Hour 934 (08/02/2014 21:00) 236.5 5.2 0.08 0.0111

Hour 765 (01/02/2014 20:00) 259.3 5.3 0.08 0.0111

Hour 1080 (14/02/2014 23:00) 259.3 5.3 0.08 0.0111

Table 3.2: Duplicated meteorological parameter combinations in the test dataset.

Fig. 3.10 below shows the empirical distribution of the four meteorological variables

used in the simulations. This analysis provides key insights into the range, density,

and variability of the input space explored through the year-long simulation.
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Figure 3.10: Empirical distribution of the four meteorological parameters in the test dataset.

From the figure, it is evident that both the friction velocity (u³) and the inverse

Monin-Obukhov length (L·1
MO) exhibit highly skewed distributions. The former is

heavily concentrated around low values, while the latter shows a strong peak around

the value 0.0111, often associated with stable stratification conditions. Conversely,

temperature (T ) and wind direction (ϕ) show broader and more uniform distribu-

tions.

These findings highlight a potential strong statistical dependence between u³ and

L·1
MO, a relationship that will be further explored in Chapter 4. Moreover, un-

derstanding these distributions was crucial in selecting appropriate bounds and dis-

cretization steps for the synthetic phase-space construction described in the following

chapters.

Modulation coefficients time series

As explained in Chapter 2, both street and surface emissions are subject to tempo-

ral modulation through specific coefficients that capture the variation of emission

intensity over different hours of the day, days of the week, and months of the year.

In the case of surface emissions, the modulation coefficient is constant and equal

to 1, reflecting a steady emission profile. Conversely, as shown in Fig. 3.11, the
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modulation coefficient for street emissions exhibits significant temporal variability,

influenced by traffic patterns and diurnal cycles.

This temporal modulation presents a challenge in the construction of the synthetic

dataset used for training the predictive model. Since the artificial dataset is designed

to be meteorology-dependent but not time-dependent, the temporal component of

the emission modulation must be carefully managed. While this issue does not affect

the sensitivity analysis phase—where all inputs are treated equally—the lack of time-

representative modulation can result in a mismatch between model predictions and

real-world scenarios when evaluating model performance against the test dataset.

To address this discrepancy and ensure consistency between the synthetic dataset

and the real-case reference, a dedicated strategy was implemented during model

development. This aspect will be discussed in greater detail in the chapter 5, where

the integration of temporal modulation into the learning process will be presented.

Figure 3.11: Time series of the modulation coefficient for NOx street emissions in San Salvario.
The blue lines is the annual variation of the coefficient for each simulation’s hour. The red hori-
zontal line is the annual average.
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Chapter 4

Sensitivity Analysis

Once the modeling domain is defined, an essential step is to understand how sensitive

pollutant concentrations are to varying meteorological conditions. This sensitivity

analysis provides the foundation for developing accurate predictive models.

This chapter presents the methodology and results of a sensitivity analysis aimed

at characterizing how key meteorological parameters influence street-level pollutant

concentrations. The insights gained here are instrumental for guiding the design of

the surrogate models discussed in the following chapter.

4.1 Outline of the work

The first step in the modelling framework consists in creating a database that stores

the street-level NOx concentrations for the San Salvario district under different mete-

orological scenarios. The choice of focusing primarily on NOx stems from its relative

chemical stability: in contrast to ozone or other reactive species, NOx (defined as the

sum of NO and NO2) is not subject to significant transformation processes over short

timescales. This characteristic allows us to treat it as a passive scalar, thus avoiding

the introduction of non-linear reaction dynamics which would complicate the learn-

ing task for statistical models. SIRANE includes a simplified chemical module to

account for nitrogen oxide reactions involved in ozone formation and destruction.

This chemical mechanism is based on the well-known Chapman cycle:
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NO2 + hν
k1−→ NO + O·

O· + O2
k2−→ O3

NO + O3
k3−→ NO2 + O2

(4.1)

where k1, k2, and k3 are the kinetic constants associated with each reaction.
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Despite the inclusion of this chemical module, the modelling approach used in this

work relies on a simplification. First, SIRANE simulates the dispersion of NOx as

if it were a passive tracer. Subsequently, assuming photo-stationary equilibrium, it

derives the concentrations of NO, NO2, and O3 from the NOx values through the

above chemical scheme. This approach justifies our choice to model NOx directly, as

it simplifies the physics while still retaining an interpretable and relevant quantity

for street-level air quality analysis.

Once the database has been set up, the next step involves analysing how the mean

concentration levels within the district vary as a function of key meteorological vari-

ables. In particular, we focus on the influence of wind direction (ϕ), air temperature

(T ), friction velocity (u³), and the inverse of the Monin–Obukhov length (L·1
MO). The

analysis is restricted to the spatial average of the NOx concentrations across the San

Salvario district, providing a global overview of how each meteorological condition

modulates pollutant levels in the area.

4.2 The database creation

As discussed in Chapter 2, SIRANE considers four types of pollutant emission

sources: linear, surface, point, and background. In the construction of our database,

we chose to include only the first two—linear and surface emissions—while neglect-

ing point and background sources. This decision was motivated by two main factors:

first, preliminary analyses on the test dataset showed that point sources contributed

negligibly to time-based statistics (such as hourly or daily averaged concentrations);

second, excluding these components allowed for a substantial reduction in computa-

tional cost, which was essential given the limited timeframe of the project. Regard-

ing background concentrations, these were deliberately excluded as they represent

a scalar quantity uniformly added across the simulation domain and are not subject

to dispersion processes within the canopy model. As such, they act as a constant

offset on top of the street-level concentrations and do not carry information about

spatial variability or local emission characteristics. Including background concentra-

tions in the synthetic dataset would have introduced a constant bias across all data

points, offering little value to the learning process of a data-driven model that aims

to understand and reproduce the effects of local dynamics. However, subsequent

analysis revealed that the assumption of neglecting point sources holds primarily for

temporal statistics (Fig. 4.1), and not necessarily for spatial metrics. While point

sources may have minimal impact on time-averaged values, they can produce local-

ized peaks that influence the spatial distribution of concentrations. Unfortunately,

by the time this limitation was identified, the database had already been generated
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and the simulation results finalized, leaving no opportunity for further adjustment

within the available schedule.

A more detailed discussion of this limitation, along with its implications and possible

corrections, will be presented in the following chapter.

Figure 4.1: Barplot that shows the percentage contribution on the spatially avaraged annual
concentration of the different source emission. Red part represents the street emission contribution,
yellow one the surface, green one the point and purple is the background concentration contribution.

4.2.1 Phase space for meteorological inputs

Based on the empirical analysis of the meteorological parameter distribution in the

test dataset, a structured discretization of the input space was defined to build the

synthetic phase space used in Chapter 4. The discretization criteria are as follows:

• Wind direction ϕ: uniformly sampled from 0´ to 360´ with a step size of 5´,

yielding a total of 73 distinct values. This discrete set is denoted by Θ.

• Air temperature T : sampled in the range from −10´C to 45´C with incre-

ments of 5´C, resulting in 12 values. This discrete set is denoted by T .

• Friction velocity u³: discretized from 0.05 to 1.2 m/s using a step of 0.05 m/s,

producing 24 unique values. This discrete set is denoted by Φ.

The inverse Monin-Obukhov length L·1
MO, being a derived stability parameter that

does not vary naturally on a regular linear scale, was discretized using a manually,

as in (Soulhac et al., 2012[11]), selected set of representative nine values that

span a wide range of atmospheric stability regimes; the following set is denoted by

I:
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• Inverse Monin-Obukhov length L·1
MO:

−0.3, −0.2, −0.1, −0.004, −0.019, 0, 0.004, 0.019, 0.05, 0.12

The total number of unique meteorological parameter combinations, based on the

discretized phase space described above, is:

Ncomb = 73 × 12 × 24 × 9 = 189216

This means that in order to construct the complete synthetic dataset, a total of

189216 hourly simulations (∼ 21.6 years) are required, each corresponding to a

distinct combination of wind direction, temperature, friction velocity, and inverse

Monin-Obukhov length. This exhaustive sampling of the input parameter space en-

ables the construction of a high-resolution dataset. In this initial configuration, all

meteorological parameters are treated as mutually independent, and every possible

combination within the defined ranges is considered feasible. This assumption en-

ables the exhaustive exploration of the phase space but does not necessarily reflect

realistic atmospheric conditions. In Section 4.2.3, we will introduce a refinement of

this approach, where only physically plausible meteorological scenarios—based on

observed correlations and joint distributions—are retained in order to improve the

representativeness of the synthetic dataset.

4.2.2 Data structure

Once all simulations were completed, the concentration levels for each street were

stored in a five-dimensional array denoted as C, with dimensions:

DC = 586 × 73 × 12 × 24 × 9

where the first dimension indexes the 586 streets in the San Salvario district, and the

remaining four dimensions correspond respectively to the discretized values of wind

direction, air temperature, friction velocity, and inverse Monin-Obukhov length.

Based on this core array, additional four-dimensional arrays were constructed by

applying spatial statistics across the street index (first dimension), yielding the

following derived datasets:

• Cmean: spatial average of the concentration for each combination of meteoro-

logical parameters;

• Cmin: minimum concentration observed across all streets for each parameter

set;
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• Cmax: maximum concentration observed across all streets for each parameter

set;

• Cvar: variance of concentration levels across all streets for each parameter set.

The sensitivity analysis was conducted on all of these derived datasets; however, in

this thesis we report only the results concerning Cmean, since the primary objective

of the analysis was to investigate how meteorological variables influence average

concentration levels across the district. Pointwise statistics such as minimum and

maximum concentrations, being more susceptible to localized or episodic effects,

were deemed less informative in this context.

4.2.3 Feasible weather

This section investigates the interdependencies among meteorological parameters

and their implications for sensitivity analysis. While the synthetic dataset was

initially constructed by assuming complete independence between variables, it is

well known that certain combinations of meteorological conditions are physically

unrealistic and should therefore be excluded from meaningful analysis.

(a) ϕ vs u∗ (b) ϕ vs L−1

MO
(c) u∗ vs L−1

MO

(d) u∗ vs T (e) ϕ vs T (f) T vs L−1

MO

Figure 4.2: Empirical pairwise distributions of the four meteorological parameters. Each point
in these scatter plots is a pair of meteorological parameters sampled from the output of SIRANE’s
one year simulation over San Salvario.

Fig. 4.2 suggests that most meteorological variables appear relatively uncorrelated,

with the notable exception of the relationship between friction velocity u³ and the
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inverse Monin-Obukhov length L·1
MO. This correlation stems from the theoretical

relationship:

LMO = −ρcpθu3
³

κgH0

According to this expression, large values of u³ are physically plausible only under

neutral or near-neutral stability conditions, while under stable or unstable stratifi-

cation, lower values of u³ are more common. This phenomenon is clearly illustrated

in Fig. 4.1.

Figure 4.3: Distribution of meteorological data in the (L−1

MO
, u∗) space, independent of wind

direction.

To account for this physical constraint, the original five-dimensional dataset con-

structed under the independence assumption was filtered to retain only meteorolog-

ically feasible combinations of (L·1
MO, u³) and the relative. The accepted region is

delineated in red in Fig. 4.3.

49



Figure 4.4: Feasibility region of the dataset: red dots represent meteorologically plausible
(L−1

MO
, u∗) pairs. The dataset is filtered considering only points in the feasibility region.

In order to maintain the same data structure for consistency in subsequent analy-

ses, all infeasible parameter combinations were assigned NaN values. This strategy

ensured that both the sensitivity analysis and model training stages were conducted

using only valid meteorological scenarios, minimizing the influence of outliers or

physically unrealistic data points.

4.3 Analysis

In this section, we investigate how key meteorological parameters—namely temper-

ature, friction velocity, and wind direction—affect pollutant concentrations at street

level under varying atmospheric stability regimes. Each parameter is analysed in-

dependently to understand its specific contribution to the spatially averaged NOx

concentration across the district. The objective is to quantify the sensitivity of the

system to these variables and identify the most influential ones, providing insight

into the physical mechanisms driving pollutant dispersion in the urban environment.

4.3.1 Temperature

The first meteorological variable considered in the sensitivity analysis is the air tem-

perature T . In the context of this study, NOx is treated as a passive scalar, meaning

it does not undergo chemical transformations that are directly influenced by temper-

ature. Nevertheless, temperature can affect dispersion dynamics indirectly, primarily

through its influence on atmospheric turbulence and boundary layer processes.
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The atmospheric boundary layer height h—defined as the lowest part of the tro-

posphere that is directly affected by surface forcings—can vary with temperature,

particularly under unstable conditions. Such variations may influence turbulent

transport and vertical mixing through the implicit dependency of the vertical tur-

bulent velocity component σw on the boundary layer height h, as shown in Eq. 2.5

and the related formulations in Eq. 4.2. This, in turn, could affect pollutant con-

centrations at street level.
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σw =
ü

σ2
wc + σ2

wn if LMO < 0 - unstable

with σwc =
√

0.4 w³ 2.1(z/h)1/3(1 − 0.8z/h) and σwc = 1.3u³(1 − 0.8z/h)

σw = 1.3u³(1 − 0.8z/h) if LMO → ∞ - neutral

σw = 1.3u³(1 − 0.5z/h)3/4 if LMO > 0 - stable
(4.2)

However, the actual extent to which temperature modulates NOx concentrations at

street level remains uncertain and is precisely one of the aspects investigated in this

sensitivity analysis.

The plot in Fig. 4.5 is obtained by averaging the spatially averaged concentration

values stored in Cmean over the sets Θ (wind directions) and Φ (friction velocities),

for each fixed value of temperature and inverse Monin-Obukhov length i ∈ I:

Cmean(T ) =
1

|Θ||Φ|

ù

Dir¸Θ,u∗¸Φ

Cmean(Dir, T, u³, i) ∀i ∈ I (4.3)

Two main observations emerge from the analysis:

• The concentration levels remain nearly constant as temperature varies, with

only a slight decrease observable under the most unstable conditions.

• An oscillatory pattern is evident across different stability regimes: concentra-

tions tend to decrease from unstable to neutral conditions, and then increase

again moving towards more stable scenarios.
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Figure 4.5: Variation of spatially averaged NOx concentration levels as a function of temperature
for all nine different stability regimes. Lines transition in color from dark blue to light green as
conditions go from most unstable to neutral, and from light green to red as conditions shift from
neutral to most stable.

Figure 4.6 further illustrates the relative variation in concentration between the

minimum and maximum temperature values for each stability class. The largest

variation is observed under highly unstable conditions, yet it remains below 1%.
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Figure 4.6: Percentage variation in NOx concentration levels across the temperature range for
all nine different stability regimes. Bars from dark blue to light green go from most unstable to
neutral. Bars from light green to red go from neutral to most stable.

While the oscillatory behaviour described in the second point may depend on the

interactions with other meteorological parameters (analysed in the following sec-

tions), the overall impact of temperature on spatially averaged concentration levels

appears negligible. As a result, temperature can be excluded from the dataset with-

out significant loss of information, reducing the dimensionality of the database by a

factor of 12 and simplifying subsequent analyses.

4.3.2 Friction velocity

We expect friction velocity to be the most influential variable in regulating street-

level concentrations, as it directly affects both the advective transport along the

street axis through the term UH in Eq. 2.3 and the turbulent vertical exchange via

the parameter σw, as shown in Eq. 4.2. Since the temperature dimension has been

removed from the dataset, the average concentration profile in Fig. 4.7 is computed

by averaging over the set of wind directions Θ:

Cmean(u³) =
1

|Θ|

ù

Dir¸Θ

Cmean(Dir, u³, i) ∀i ∈ I (4.4)

Several key observations can be drawn from Fig. 4.7:

• As friction velocity increases, the average concentration levels decrease signif-

icantly across all stability regimes.
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• Due to the constraints imposed by meteorological feasibility (see Fig. 4.3),

high values of u³ occur only under neutral or near-neutral conditions.

• An unexpected behavior is observed in the lower range of friction velocity

values, approximately within [0.05, 0.2] m/s, where unstable conditions corre-

spond to higher concentration levels compared to more stable scenarios—contrary

to what physical intuition would suggest.

Figure 4.7: Variation of spatially averaged NOx concentrations as a function of friction velocity
for all nine different stability regimes. Lines transition in color from dark blue to light green as
conditions go from most unstable to neutral, and from light green to red as conditions shift from
neutral to most stable.

The last point strongly suggests that, in low friction velocity regimes, the effect of

wind direction becomes significantly more relevant than in high u³ regimes. In other

words, under stable conditions—where friction velocity tends to be lower—wind di-

rection appears to exert a greater influence on pollutant concentrations compared

to neutral or unstable conditions, where higher u³ values dominate the dispersion

dynamics. This hypothesis will be further investigated in the final part of the sen-

sitivity analysis, which focuses on the role of wind direction.

4.3.3 Wind direction

The last variable considered in the sensitivity analysis is wind direction. As in the

case of u³, the analysis is conducted on the reduced dataset, where the temperature
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dimension has been removed. Consequently, the plot in Fig. 4.8 is obtained by

averaging over the set of friction velocities Φ:

Cmean(ϕ) =
1

|Φ|

ù

u∗¸Φ

Cmean(ϕ, u³, i) ∀i ∈ I (4.5)

Since wind direction is a cyclic variable defined in the interval [0´, 360´], the results

are represented using polar coordinates. From Fig. 4.8, the following observations

can be drawn:

• The previously observed oscillatory behaviour persists: concentration levels

decrease when transitioning from unstable to neutral conditions and rise again

as conditions become stable.

• As stability increases, the influence of wind direction becomes more pro-

nounced, as evidenced by the progressive flattening of the polar plots. While

the profiles under unstable conditions appear nearly circular, stable regimes

exhibit more elliptical shapes, indicating stronger directional effects.

Figure 4.8: Variation of spatially averaged NOx concentrations as a function of wind direction
for different stability regimes. Lines transition in color from dark blue to light green as conditions
go from most unstable to neutral, and from light green to red as conditions shift from neutral to
most stable.

To further investigate the directional effects and the oscillatory patterns observed,

we plotted the concentration profiles as a function of wind direction for each stability

class and each feasible value of u³. From the previous analysis on u³, we learned

that high friction velocities significantly reduce concentration levels. In Fig. 4.9, it
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is evident how the combined effect of a shift toward neutral atmospheric conditions

and the increase in feasible u³ values contributes to reducing concentration levels.

This results in more data points being concentrated near lower concentration values,

thereby reducing the average concentration Cmean(ϕ) defined in Eq. 4.5.

Furthermore, the directional influence becomes increasingly prominent under stable

conditions, as demonstrated by the more elongated profiles. In addition, within the

critical region identified in the sensitivity analysis over u³—specifically in the range

[0.05, 0.2]—it was observed that concentration levels are actually higher under un-

stable conditions compared to stable ones, despite having the same friction velocity.

This apparently counterintuitive behaviour can be explained by considering the rel-

ative importance of the two dominant transport mechanisms at low wind speeds:

turbulent exchange with the overlying atmosphere and longitudinal transport along

the street axis.

Under low u³ regimes, turbulent vertical transport plays a more significant role

than horizontal advection. Since turbulence is enhanced in unstable atmospheric

conditions, the increased vertical exchange tends to retain pollutants within the

urban canopy, leading to higher concentration levels compared to stable scenarios,

where turbulent exchange is weaker.
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• Temperature plays a negligible role in affecting average NOx concentrations

at street level. This allowed us to reduce the dimensionality of the dataset,

eliminating the temperature axis and thus improving computational efficiency

by a factor of 12.

• Friction velocity u³ emerged as the most influential variable due to its dual

role:

1. It controls pollutant advection along the street axis through the term UH .

2. It regulates turbulent exchanges with the overlying atmosphere via the

vertical component σw.

As u³ increases, concentration levels drop rapidly, particularly in near-neutral

conditions where higher values of u³ are more likely.

• The strong correlation between L·1
MO and u³—a result of boundary-layer

physics—implies that high u³ values are only feasible under neutral or quasi-

neutral conditions. This:

1. Causes a natural filtering of meteorologically unfeasible conditions.

2. Helps explain the lower average concentration levels observed in neutral

regimes.

• Wind direction becomes increasingly relevant under stable conditions. The

polar plots showed that directional influence intensifies as stability increases,

reshaping the spatial profile from quasi-circular (unstable) to ellipsoidal (sta-

ble).

• A critical regime was observed in the range u³ ∈ [0.05, 0.2], where—at fixed

u³—concentration levels are higher in the unstable case than in the stable one.

This inversion is likely caused by a stronger contribution of turbulent mixing

in unstable conditions compared to street-axis advection.

• Physical consistency of results—such as the monotonic decrease of con-

centrations with u³ and the response to atmospheric stability—confirms the

reliability of the synthetic dataset as a basis for training surrogate models and

strengthens the methodological soundness of the hybrid physical–statistical

approach.

• Implications for model training: The sensitivity results will guide feature

selection and weighting strategies in the construction of predictive models. In

particular, they justify a reduced input space focused on the most informative

meteorological drivers.
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Figure 4.10: Different surfplots representing the spatially averaged concentration levels of NOx,
for all nine different stability regimes, as a function of friction velocity and wind direction. Panels
(a) to (i) represent conditions ranging from the most unstable to the most stable, with panel (f)
corresponding to the neutral case. The difference in surface area arises from the limited range of
feasible u∗ values.
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Chapter 5

Predictive Model - part I

The sensitivity analysis has demonstrated that pollutant concentrations are strongly

dependent on a small set of meteorological parameters. This opens the door to de-

veloping data-driven surrogate models capable of rapidly predicting concentrations

under arbitrary conditions.

This chapter presents the development of a data-driven predictive model for estimat-

ing street-level pollutant concentrations. The first part describes the construction

of the training dataset and the methodological choices made during its preparation.

The chapter then focuses on interpolation-based approaches, illustrating how these

techniques were employed both for dimensionality reduction and to provide valuable

insights into the behaviour of the model. Finally, it anticipates how the outcomes of

the interpolation analysis informed and supported the regression techniques explored

in the following chapter.

5.1 Outline of the work

In Section 3.4 we discussed the role of linear modulation coefficients applied to street

emissions, highlighting how these coefficients exhibit significant oscillations over the

time window of our simulation. While this aspect is not particularly critical in the

context of the sensitivity analysis—where the analysis operates without a tempo-

ral frame of reference—it becomes a key challenge when testing predictive models.

Indeed, model predictions are validated against SIRANE outputs, which inherently

depend on time and therefore on the modulation coefficients applied to emissions.

To address this issue, we developed a two-database strategy. The first dataset

contains concentration levels due exclusively to street emissions (Cstreet), which can

thus be modulated post hoc in a linear fashion to match any desired temporal profile.

The second dataset contains concentrations resulting solely from surface emissions
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(Csurf), which are characterized by a constant modulation coefficient and therefore

do not require further adjustment. The limitation of this approach lies in the fact

that the modulation coefficient must be provided by the user based on historical

data, as it cannot be inferred directly from the meteorological inputs themselves.

Once these two datasets were generated, we initially investigated the use of linear

interpolation as a prediction technique. This allowed us to assess the potential for

database size reduction while preserving sufficient accuracy. These results served

as a preliminary benchmark before the implementation of more advanced statistical

tools, with a particular focus on linear regression methods.

5.2 The database creation

In the creation of the dataset we followed the same approach explored in the first part

of Chapter 4: we focused exclusively on street-level NOx concentration levels, treated

as a passive scalar, and neglected point emissions and background concentrations in

order to reduce computational costs and accelerate the simulations.

5.2.1 Data structure

As previously discussed, we implemented a two-database strategy and thus generated

two five-dimensional arrays, denoted as Cstreet and Csurf, both with dimensions:

D = 586 × 73 × 12 × 24 × 9

where each dimension respectively corresponds to street index, wind direction, tem-

perature, friction velocity, and inverse Monin-Obukhov length.

The modulation coefficient for street emissions was initially set arbitrarily to unity.

To evaluate the correct concentration levels for a given simulation hour t, the Cstreet

database is subsequently rescaled using the actual linear modulation coefficient α(t):

Ct
street

= α(t) · Cstreet ∀t ∈ T (5.1)

The total concentration in each street is then computed as:

C = α(t) · Cstreet + Csurf + F (t) ∀t ∈ T (5.2)

where F (t) represents the background concentration levels at hour t.

Both α(t) and F (t) are stored in dedicated tables with 8760 rows, corresponding to

each simulation hour of the year, and are provided as part of the input data for the
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SIRANE annual simulation over the San Salvario district. This data structure relies

on the assumption that concentration levels vary linearly with respect to the mod-

ulation coefficient. As confirmed in the recent study by Tianyang and Sofia [4], this

linearity is a valid hypothesis when dealing with passive scalar diffusion phenomena.

5.3 Concentration function

The datasets Cstreet and Csurf contain the street-level NOx concentrations produced

respectively by linear and surface emissions. Both datasets depend exclusively on

the meteorological parameters and the street index s, as follows:

Cstreet(s) = f(s, ϕ, T, u,L
·1
MO), Csurf(s) = f(s, ϕ, T, u,L

·1
MO) ∀s ∈ Σ (5.3)

where Σ denotes the set of streets within the San Salvario district.

By introducing the modulation coefficient α(t) for linear emissions and the back-

ground concentration F (t), we extend the structure to incorporate temporal vari-

ability. The total concentration for a given street and simulation hour can thus be

expressed as:

C(s, t) = α(t) · Cstreet(s) + Csurf(s) + F (t) ∀t ∈ Ω, ∀s ∈ Σ (5.4)

where Ω represents the set of all simulation hours.

This formulation enables the computation of both spatial and temporal statistics,

depending on the variable of interest. It is important to note that the spatial

structure is intrinsically embedded in the dataset itself, as SIRANE’s outputs are

strictly tied to the specific urban geometry provided by the shapefile. As discussed in

Chapter 2, the model developed in this work is not general-purpose: it is calibrated

specifically for San Salvario and is not readily transferable to other urban contexts

without retraining on a new geometry.

5.3.1 Prediction

The predictive models implemented in this work aim to infer concentration levels

by learning the relationship between meteorological parameters and pollutant con-

centrations. The models estimate Cstreet(s) and Csurf(s) based on the meteorological

inputs. Once these estimates are obtained, the total predicted concentration for

each street and time step is calculated as:

Ĉ(s, t) = α(t) · Ĉstreet(s) + Ĉsurf(s) + F (t) ∀t ∈ Ω, ∀s ∈ Σ (5.5)
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Both the reference data from the year-long SIRANE simulation and the outputs of

the predictive models are stored in matrices of size 586×8760, where rows correspond

to street indices and columns to simulation hours. This data structure allows us to

easily switch between the temporal and spatial dimensions by simply operating on

columns instead of rows, depending on the type of statistic or analysis of interest.

HOURS 0 1 3 ... 8759

Id_0 158.62 163.34 170.68 ... 80.46

Id_1 157.26 161.72 169.69 ... 81.96

... ... ... ... ... ...

... ... ... ... ... ...

... ... ... ... ... ...

Id_585 160.79 164.59 170.48 ... 88.99

Table 5.1: Example of hourly data for multiple street IDs across a year. The values represents
NOx concentrations levels in µg/m3.

5.3.2 Model evaluation metrics

The performance of the predictive models was evaluated using a range of statistical

indicators commonly employed in air quality modelling and data science. These

metrics were applied both to the spatial dimension (i.e., street-level comparisons

at specific time points) and the temporal dimension (i.e., time series at specific

locations), depending on the focus of the analysis. The complete set of metrics

considered is listed below:

• Mean Absolute Error (MAE):

MAE =
1

N

N·1
ù

i=0

|yi − ŷi|

A robust and interpretable measure of average prediction error in absolute

units.

• Mean Square Error (MSE):

MSE =
1

N

N·1
ù

i=0

(yi − ŷi)
2

Emphasizes larger errors due to the squared term, making it sensitive to out-

liers.
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• Root Mean Square Error (RMSE):

RMSE =

√

√

√

√

1

N

N·1
ù

i=0

(yi − ŷi)
2

Provides an error estimate in the same units as the observed data, facilitating

interpretation.

• Mean Absolute Percentage Error (MAPE):

MAPE =
100

N

N·1
ù

i=0

û

û

û

û

û

yi − ŷi

yi

û

û

û

û

û

Useful for understanding error in relative terms; however, it can be sensitive

to small denominators.

• Normalized Mean Square Error (NMSE):

NMSE =
(yi − ŷi)2

yi · ŷi

Facilitates the comparison of model performance across different scales of con-

centration levels.

• Coefficient of Determination (R2):

R2 = 1 −
øN·1

i=0 (yi − ŷi)
2

øN·1
i=0 (yi − y)2

Measures the proportion of variance in the observed data explained by the

model.

• Pearson Correlation Coefficient (ρ):

ρ =
Cov(y, ŷ)

σy · σŷ

Quantifies the linear correlation between predictions and observations.

While all these metrics provide valuable insights into different aspects of model

performance—such as accuracy, bias, variance explained, and robustness to out-

liers—for the purpose of comparing different models within this work, the spatially

averaged annual RMSE was selected as the primary performance indicator. This

choice is motivated by several considerations:
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• RMSE expresses the error in the same units as pollutant concentrations, mak-

ing it directly interpretable in terms of air quality standards.

• By averaging spatially over all streets and temporally over a full year, this

metric aligns with the type of data typically used by public authorities and

environmental agencies to evaluate population exposure, assess compliance

with regulations, and formulate policies.

• RMSE, by penalizing larger errors more heavily, ensures that models providing

more consistent and reliable predictions across all streets and time periods are

favored.

Secondary metrics such as R2, NMSE, and the correlation coefficient were also ex-

amined during model evaluation to provide complementary information on model

fit and to identify specific strengths or weaknesses (e.g., systematic bias, ability to

capture variability). However, the annual RMSE remains the key metric for bench-

marking and reporting purposes in this study.

5.4 Interpolation

The first method tested in this work was simple linear interpolation. Although

this technique can produce remarkably consistent predictions with low error, it is

not considered a true machine learning approach. Indeed, it does not generate

a predictor function trained on a dataset capable of generalising to unseen data.

Rather, it always relies on the existing data structure itself to perform interpolation

and estimate values. This inherent dependence on the underlying dataset makes

the method non-portable, as it cannot be applied to new contexts without the full

reference data.

Nonetheless, given its surprisingly high accuracy in our case, linear interpolation

was employed as a preliminary tool to explore the feasibility of further reducing

the dataset size. Specifically, it was used to investigate whether increasing the dis-

cretization step of the remaining meteorological variables (with temperature already

excluded) would allow for significant data reduction while maintaining an acceptably

low prediction error.
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Figure 5.1: Schematic of trilinear interpolation. The function value at point C is computed
iteratively from the values at the vertices of the cube that encloses it. The method is based on the
progressive reduction of dimensionality: the interpolation is first performed along one axis, then
along the second, and finally along the third.

Another important consequence of using linear interpolation lies in its inherent filter-

ing effect on meteorologically feasible conditions. Since the interpolation procedure

estimates a value by weighting the contributions of neighbouring data points, it im-

plicitly ensures that predictions are based only on physically plausible combinations

of meteorological parameters. In other words, because the target value to be esti-

mated corresponds to an actual, feasible meteorological state, its nearest neighbours

in the phase space will also represent realistic atmospheric conditions. This char-

acteristic provides a form of automatic consistency with meteorological constraints,

without requiring explicit filtering or additional validation of input combinations.

5.4.1 Dimensionality reduction

In this section, as anticipated, we investigate how the spatially averaged annual

RMSE varies when progressively reducing the resolution of our dataset, i.e., by

adopting a coarser discretization for one variable at a time while keeping all other

parameters fixed.

Wind Direction

The first variable examined in this analysis is the wind direction. The results are

reported in the plots below:
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(a) RMSE as a function of the step size for
wind direction discretization.

(b) Percentage variation of RMSE between
consecutive discretization step sizes.

Figure 5.2: Results of the analysis on wind direction. Panel (a) shows the absolute RMSE trend
as the step size of wind direction discretization increases. Panel (b) reports the percentage change
in RMSE between successive step size increments. The blue line refers to the interpolation error on
the full dataset, while the red line refers to the error on the reduced dataset without temperature.
As expected, temperature has no influence on the results.

In the sensitivity analysis, temperature had already been ruled out as a significant

variable for influencing concentration levels. Nonetheless, to confirm this conclusion,

we performed the interpolation both on the full dataset and on the reduced dataset

excluding temperature. The results confirmed that temperature has no effect on

interpolation performance. Therefore, from this point onwards, we will definitively

exclude temperature from the analysis and focus exclusively on the reduced dataset.

Inverse Monin-Obukhov Length

For this parameter, since it does not belong to a regular interval like the other

variables but instead to a set of nine predefined values, we adopted a different

approach. Specifically, we constructed an heuristic by selecting and testing various

subsets of the original nine elements. The subsets were grouped into three categories,

designed to preserve a representative balance of stability conditions:

• Category 22: subsets of cardinality 5, including two unstable values, two

stable values, and the neutral condition: (un1, un2, 0, st1, st2);

• Category 21: subsets of cardinality 4, including two unstable values, one

stable value, and the neutral condition: (un1, un2, 0, st1);

• Category 11: subsets of cardinality 3, including one unstable value, one

stable value, and the neutral condition: (un1, 0, st1).

For each subset in every category, we performed linear interpolation and evaluated

the associated RMSE. The results are summarized in Fig. 5.3.
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Figure 5.3: RMSE values obtained for different subsets of inverse Monin-Obukhov length values.
Blue line: category 22 (5 elements); red line: category 21 (4 elements); yellow line: category 11 (3
elements).

The subset that yielded the lowest RMSE belonged to category 21 and consisted of

the following values:

L·1
MO = {−0.3, −0.004, 0, 0.012}.

This result is promising, as it suggests that the concentration levels exhibit an

approximately linear behavior within both the unstable and stable regimes, with

the neutral condition acting as a meaningful transition point. The following boxplot

(Fig. 5.4) further support this interpretation, illustrating the variations in spatially

averaged concentration as a function of L·1
MO.
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Figure 5.4: Boxplots showing the distribution of NOx concentrations as a function of inverse
Monin-Obukhov length. To the right of the boxplot, a corresponding graph is displayed: the black
line represents the trend of maximum concentration values, the blue line represents the average
concentration profile, and the red line indicates the minimum concentration as a function of the
inverse Monin-Obukhov length.

Friction velocity

The final variable considered in this analysis is the friction velocity u³. The results

are presented in the plots below.

(a) RMSE as a function of the discretization
step size for friction velocity.

(b) Percentage variation of RMSE between
consecutive discretization step sizes.

Figure 5.5: Results of the analysis on friction velocity. Panel (a) shows the trend of absolute
RMSE as the discretization step size for friction velocity increases. Panel (b) reports the percentage
change in RMSE between successive step size increments.

From the sensitivity analysis, we have already identified u³ as one of the most

influential variables affecting street-level concentration levels. As shown in the plots,

even the first coarsening of the discretization step results in an RMSE increase

of approximately 2%, confirming its critical role in accurately capturing pollutant

dispersion dynamics.
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Summary

From this preliminary analysis, the following conclusions emerged:

• Temperature was confirmed to have a negligible influence on street-level NOx

concentrations;

• The RMSE increases only modestly when enlarging the discretization step for

wind direction, indicating that this variable is less critical;

• The number of significant values for the inverse Monin-Obukhov length can

be reduced to four representative states: the most unstable (−0.3), the least

unstable (−0.004), the neutral condition (0), and the most frequently occurring

stable condition (0.012);

• The RMSE increases rapidly when the discretization step for friction velocity

is enlarged, confirming that this variable is the most influential.

Based on these results, the final decisions for the dimensionality reduction of the

phase space were as follows:

1. Removal of the temperature dimension;

2. Increase of the wind direction discretization step from 5´ to 30´, which resulted

in only a 0.48% increase in RMSE;

3. Reduction of the inverse Monin-Obukhov length values heuristically to a subset

of four representative conditions;

4. Maintenance of the original discretization for friction velocity, given its strong

influence on concentration levels.

As a result, the total number of meteorological combinations in our synthetic dataset

was reduced from 189216 to 1248, corresponding to a reduction of 99.34% compared

to the original dataset required by our model. This led to a dramatic reduction in

storage requirements: from over 700 GB for the two datasets Cstreet and Csurf to

approximately 4.6 GB, significantly enhancing the model’s portability.

Compared to the one-year simulation over San Salvario, where the number of unique

meteorological conditions is 8758 (including temperature) or 8126 (excluding tem-

perature), our reduced synthetic dataset requires only 14.25% and 15.36% of these

combinations, respectively.
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5.4.2 Testing and results

Once the final dataset was properly reduced, we proceeded with testing the inter-

polation method using both temporal and spatial metrics. The results are reported

graphically and numerically in this section.

Temporal trends in concentration levels

Table 5.2 summarizes the performance metrics of the interpolation model, evaluated

on the annual spatially averaged NOx concentration levels. The RMSE appears

slightly higher than anticipated, likely due to the large temporal window considered

(one year), which naturally introduces greater variability. Conversely, the NMSE

shows excellent agreement between predictions and reference values. Both the R2

and the Pearson correlation coefficient confirm a strong correlation, demonstrating

that the interpolation model provides reliable estimates of concentration trends.

MAE 11.6208

RMSE 19.4791

NMSE 0.0325

MAPE 9.89%

R2 0.9334

ρ 0.9771

Table 5.2: Performance metrics of the interpolation model evaluated on annual spatially averaged
NOx concentrations.

Fig. 5.6 shows the comparison between interpolated predictions and SIRANE refer-

ence values for spatially averaged concentrations over different time windows: one

year, one week, and one day. The model follows the reference values closely across

all time scales. This strong agreement is partly due to the use of the true modulation

coefficient as input, which matches the actual temporal modulation applied in the

SIRANE simulations. Nonetheless, the interpolation demonstrates good predictive

capability in reproducing concentration patterns.
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(a) Predicted vs. SIRANE spatially averaged concentrations over one year (2014).

(b) Predicted vs. SIRANE spatially averaged concentrations over one week (07/06/2014
– 14/06/2014).

(c) Predicted vs. SIRANE spatially averaged concentrations over one day (07/06/2014).

Figure 5.6: Comparison between interpolated predictions and SIRANE reference values for spa-
tially averaged NOx concentrations: (a) annual trend, (b) weekly trend, (c) daily trend.
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To better understand the spatial variability of model performance, we analyzed the

results for three subsets of streets:

• the six streets with the lowest annual RMSE,

• the six streets with RMSE values close to the median,

• the six streets with the highest annual RMSE.

Fig. 5.7 illustrates, for each subset, the comparison between predicted and reference

concentrations over one year. It is evident that as the RMSE increases, the model

tends to increasingly underestimate concentration levels. Furthermore, streets with

the highest RMSE are spatially clustered within a specific area of the district, sug-

gesting possible local effects not fully captured by the interpolation.

Finally, Fig. 5.8 shows the weekly concentration trends for the individual street with

the lowest RMSE (ID 147) and the street with the highest RMSE (ID 475). While

the model still captures the overall pattern of peaks and troughs, it significantly

underestimates peak values in the case of the street with higher RMSE.
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(a) Six streets with the lowest annual RMSE: predicted vs. SIRANE
concentrations.

(b) Six streets with median annual RMSE: predicted vs. SIRANE con-
centrations.

(c) Six streets with the highest annual RMSE: predicted vs. SIRANE
concentrations.

Figure 5.7: Comparison between interpolated predictions and SIRANE reference values for NOx

concentrations in selected street subsets.
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(a) Predicted vs. SIRANE concentrations over one week for street ID 147 (lowest RMSE).

(b) Predicted vs. SIRANE concentrations over one week for street ID 475 (highest
RMSE).

Figure 5.8: Weekly comparison between interpolated predictions and SIRANE reference values
for two streets with extreme RMSE values.

This spatial clustering of high-error streets motivated further investigation through

time-averaged RMSE maps to better understand the origin of these discrepancies

and assess potential local factors influencing model performance.

Spatial distribution of concentration

In this section, we analyze how the prediction error on time-averaged concentration

levels is spatially distributed across the San Salvario district.
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(a) Bar plot of MAE, RMSE, NMSE, R2 per
street. Red line: average value.

(b) Empirical distribution of MAE, RMSE,
NMSE, and R2 across all streets.

Figure 5.9: Error metrics (MAE, RMSE, NMSE, R2) for time-averaged NOx concentration levels:
(a) values for each street, (b) corresponding empirical distributions.

From Fig. 5.9, it is clear that while most streets exhibit errors close to the average,

a few streets display significantly higher error values, as visible in the spikes in the

bar plots. To better understand the spatial pattern of these errors, we mapped the

RMSE and NMSE values across the district.

(a) RMSE spatial distribution per street. (b) NMSE spatial distribution per street.

Figure 5.10: Spatial distribution of RMSE (a) and NMSE (b) for time-averaged NOx concentra-
tions across San Salvario streets.

Fig. 5.10 highlights how the highest errors are concentrated in a specific area of

the district. Comparing this location with the position of point emission sources

shown in Fig. 2.6 (see Chapter 2), we observe that the area corresponds precisely

to the location of one of the point sources near the entrance of the Michele Lanza

underpass. This confirms that the error concentration in that zone is primarily due

to the influence of point source emissions. As previously discussed in Section 4.2,

these emissions have a limited impact on time-averaged spatial statistics but can
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locally affect concentration peaks, which the model—lacking point source contribu-

tions—fails to capture.

Figure 5.11: Image highlighting the entrance of the Michele Lanza underpass (source: Google
Maps).

Finally, in the plots of Fig. 5.12, we report how the model predicts the annual

minimum, average and maximum NOx concentration values for each street. The

interpolation method shows a tendency to underestimate concentration levels across

all three statistics, with a particularly marked underestimation for the annual av-

erage and maximum values. A few outliers are also visible in the data. Both the

general underestimation and the presence of these outliers can largely be attributed

to the absence of point source contributions in the model predictions.
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(a) Predicted vs. SIRANE annual minimum NOx con-
centrations per street.

(b) Predicted vs. SIRANE annual average NOx con-
centrations per street.

(c) Predicted vs. SIRANE annual maximum NOx con-
centrations per street.

Figure 5.12: Comparison between predicted and SIRANE reference NOx concentrations per
street for different annual statistics: (a) minimum, (b) average, and (c) maximum values.
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5.4.3 Point emission contribution

In this section, we briefly investigate the local effect of different source emissions

(street, surface, and point sources). Figure 5.13 shows the contribution of point

emissions to the spatially averaged concentration in the San Salvario district over

the course of one year. Although their contribution is generally low, there are certain

periods in which point sources generate significant concentration peaks that cannot

be neglected.

Figure 5.13: Contribution of point emission sources to the spatially averaged NOx concentration
in San Salvario over one year.

Fig. 5.14 illustrates the spatial distribution of the percentage contribution of the

various emission sources (street, surface, and point) to the time-averaged NOx con-

centration across the district.
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(a) Contribution of street emissions.

(b) Contribution of surface emissions.

(c) Contribution of point emissions.

Figure 5.14: Spatial distribution of the percentage contribution of different emission sources to
the time-averaged NOx concentrations over one year in San Salvario. Panel (a) refers to street
emissions, panel (b) to surface emissions, and panel (c) to point emissions.
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These results clearly demonstrate that the mismatch in prediction for the specific

area corresponding to the maximum RMSE (as seen in street ID 475) is largely

attributable to the presence of point source emissions. When adding the point

emission contribution to the predicted values for that street, as shown in Fig. 5.15,

the agreement with the SIRANE reference significantly improves.

Figure 5.15: Comparison between predicted and SIRANE concentrations for street ID 475 over
one week (07/06/2014 – 14/06/2014), after adding the contribution from point emissions as a
correction factor.

This finding opens the possibility of adjusting the database by incorporating the

hour-by-hour point emission contribution for each street. However, although this

approach would reduce the overall error, it is not formally correct: the meteorolog-

ical conditions used to generate the synthetic database and those associated with

the point source emissions are not strictly consistent, and point sources were not

part of the learning model. For these reasons, we preferred to evaluate model perfor-

mance while explicitly acknowledging the bias introduced by neglecting point source

contributions.
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Chapter 6

Predictive Model – Part II

The interpolation-based method presented in the previous chapter served as a pre-

liminary tool for analysing the dataset and understanding the relationships between

meteorological variables and pollutant concentrations. It also provided valuable

insights for defining the structure of the predictive model and for guiding dimen-

sionality reduction strategies.

In this final chapter, we extend the predictive framework by introducing regression-

based techniques, focusing specifically on linear regression. The chapter describes in

detail the setup of the regression models, the rationale behind the choice of predic-

tors, and the implementation strategy. The results will be discussed in continuity

with the analyses carried out in the previous chapter, highlighting both the strengths

and limitations of the regression approach in reproducing SIRANE’s outputs and in

supporting data-driven predictions of street-level concentrations.

6.1 Regression

In this section, we describe the linear regression models implemented for predicting

street-level NOx concentrations based on meteorological inputs. Linear regression

assumes an additive linear relationship between the predictors (i.e., meteorological

variables) and the target variable (pollutant concentration). The general form of

the model is:

Ĉ = β0 +
p

ù

i=1

βiXi + ε (6.1)

where Ĉ is the predicted concentration, Xi are the predictors, βi the model coeffi-

cients, β0 the intercept, and ε the residual error term, assumed to follow a normal

distribution with zero mean.
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This method offers simplicity, computational efficiency, and interpretability, al-

though it may not capture complex non-linear relationships present in the data.

6.2 Predictors and model structure

In designing the regression models for the prediction of street-level NOx concen-

trations, two distinct configurations were implemented to balance model simplicity,

accuracy, and generalizability. Both models rely on meteorological predictors that

influence pollutant dispersion and concentration within the urban environment.

6.2.1 Choice of predictors

The selected meteorological variables were:

• Wind direction (ϕ): represented through its sine and cosine components to

handle its circular nature and ensure continuity between 0° and 360°;

• Friction velocity (u³): a key driver of both advection along street axes and

turbulent exchange between street canyons and the overlying atmosphere;

• Inverse Monin-Obukhov length (L·1
MO): an indicator of atmospheric sta-

bility, influencing vertical mixing and dispersion processes.

These variables were selected based on their physical relevance and their established

role in regulating pollutant transport, as highlighted in the sensitivity analysis pre-

sented in Chapter 4.

6.2.2 Model configurations

To explore the trade-off between generalizability and predictive accuracy, two linear

regression configurations were tested:

1. Model 1: NOx ∼ sin(ϕ) + cos(ϕ) + u³ + L·1
MO This model is compact

and independent of street-specific identifiers. It aims to provide a general

predictor applicable to new or unseen streets and different urban contexts,

without requiring additional spatial information at prediction time.

2. Model 2: NOx ∼ sin(ϕ) + cos(ϕ) + u³ + L·1
MO + Road_ID

This model includes a categorical predictor for the street (Road_ID), allowing

it to capture fixed structural differences between streets, such as geometry,

orientation, and surrounding morphology. It is designed for greater accuracy
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at the individual street level but requires knowledge of the specific street at

prediction time and is not generalizable beyond the streets present in the

training dataset.

The first model offers scalability and applicability across different scenarios, but at

the cost of reduced accuracy in capturing local heterogeneities. The second model

achieves a better fit to the observed data but increases complexity proportionally to

the number of streets and sacrifices generalizability to new environments.

All models were trained on the interpolation-reduced datasets developed in the pre-

vious chapter, constrained only to meteorologically feasible conditions as defined in

Chapter 4. The performance of the models was then evaluated against the reference

dataset provided by the one-year SIRANE simulation over the San Salvario district.

6.2.3 Testing and results

In this section, we present the evaluation of the two regression models using the same

performance metrics introduced in the previous chapter. The goal is to compare their

predictive capability, both in temporal trends and in spatial distribution.

Analysis of regression coefficients

Before discussing the predictive performance, it is useful to briefly analyze the regres-

sion coefficients obtained for the two models, which are identical for both Model1

(without Road_ID) and Model2 (with Road_ID) as they refer to the same un-

derlying physical relationships. The coefficients were estimated separately for the

datasets Cstreet and Csurf.

For the Cstreet dataset, the model yielded:

Predictor Estimate SE tStat pValue

(Intercept) 45.417 0.497 91.466 0

Sin(ϕ) 0.114 0.030 3.793 1.49e-4

Cos(ϕ) 0.367 0.028 13.101 3.30e-39

u³ -42.776 0.065 -662.35 0

L·1
MO 65.741 0.348 188.66 0

Table 6.1: Regression coefficients for the model trained on Cstreet.

• A positive intercept (45.417), representing the baseline concentration level in

the absence of meteorological influences.

• Small positive contributions from sin(ϕ) (0.11422) and cos(ϕ) (0.36734), con-

firming the limited but non-negligible role of wind direction. The positive sign
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indicates that, on average, higher concentrations are associated with wind

components blowing along certain preferential directions (depending on the

geometry of San Salvario), particularly those aligned with positive sine and

cosine projections.

• A strong negative coefficient for friction velocity (u³: −42.776), consistent with

the physical expectation that higher turbulence enhances pollutant dispersion

and lowers concentration levels.

• A large positive coefficient for inverse Monin-Obukhov length (L·1
MO: 65.741),

highlighting how stable conditions (higher L·1
MO) hinder vertical mixing and

increase ground-level concentrations.

For the Csurf dataset, the coefficients exhibit similar trends but differ in magnitude:

Predictor Estimate SE tStat pValue

(Intercept) 19.169 0.188 101.95 0

Sin(ϕ) -0.322 0.011 -28.249 2.26e-175

Cos(ϕ) 0.565 0.011 53.192 0

u³ -17.379 0.024 -710.67 0

L·1
MO 10.228 0.132 77.512 0

Table 6.2: Regression coefficients for the model trained on Csurf.

• A smaller intercept (19.169), in line with the typically lower contribution of

surface emissions to overall concentrations.

• A negative coefficient for sin(ϕ) (−0.32215) and a stronger positive coefficient

for cos(ϕ) (0.56473), suggesting a stronger directional dependency for surface

emissions, with concentrations tending to decrease or increase depending on

the alignment of wind direction with street orientation. The sign reflects

the geometric alignment of the urban grid relative to the cardinal directions

encoded by the sine and cosine terms.

• A negative coefficient for friction velocity (−17.379), confirming again the

dispersive role of turbulence, though with a reduced impact compared to street

emissions.

• A positive coefficient for L·1
MO (10.228), showing a smaller but still relevant

influence of atmospheric stability on surface-emission concentrations.

All coefficients are statistically significant (p-values close to zero), demonstrating

that the selected meteorological predictors provide meaningful explanatory power
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for both types of emissions. The sign and magnitude of the coefficients are consistent

with the findings of the sensitivity analysis presented in Chapter 4, and they reflect

the interaction between wind direction, atmospheric stability, turbulence, and the

urban geometry of San Salvario.

Temporal trends in concentration levels

Table 6.3 summarizes the performance metrics of the two models, evaluated on the

annual spatially averaged NOx concentration levels. As expected, both regression

models perform slightly worse than the interpolation-based approach, reflecting the

increased challenge of fitting a general predictive function. However, the model

including Road_ID (Model 2) shows better accuracy across all error metrics, although

the improvement over Model 1 is moderate.

Metric Model 1 (No Road_ID) Model 2 (Road_ID)

MAE 18.2568 16.1574

RMSE 29.3799 26.4485

NMSE 0.0762 0.0617

MAPE 16.60% 13.97%

R2 0.8485 0.8772

ρ 0.9411 0.9572

Table 6.3: Comparison of error metrics for the two models: Model 1 without Road_ID and
Model 2 with Road_ID.

Both models demonstrate a high correlation with SIRANE reference values, as il-

lustrated in Fig. 6.1, where the predicted spatially averaged concentrations over a

representative week align closely with the simulated data and the outputs of the two

models are visually indistinguishable.
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(a) Predicted vs. SIRANE spatially averaged concentrations over one week
(07/06/2014–14/06/2014), Model 1 (No Road_ID).

(b) Predicted vs. SIRANE spatially averaged concentrations over one week
(07/06/2014–14/06/2014), Model 2 (Road_ID).

Figure 6.1: Weekly comparison between regression predictions and SIRANE reference values for
spatially averaged NOx concentrations: (a) Model 1 (No Road_ID), (b) Model 2 (Road_ID).

The performance on the six streets with the highest RMSE confirms that Model

2 offers greater spatial precision, particularly in areas influenced by local emission

sources (e.g., near point sources identified in the interpolation analysis). This is

illustrated in Fig. 6.2.
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(a) NOx concentrations in the six streets with the highest RMSE, Model 1 (No Road_ID).

(b) NOx concentrations in the six streets with the highest RMSE, Model 2 (Road_ID).

Figure 6.2: Comparison of model predictions with SIRANE reference values for NOx concentra-
tions in the six streets with the highest RMSE.

Spatial distribution of concentration

Figure 6.3 presents the distribution of error metrics across all streets. Model 2

achieves slightly lower average error and reduced variance, demonstrating better

stability in predictions.
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(a) Model 1 (No Road_ID). (b) Model 2 (Road_ID).

Figure 6.3: Error metrics (MAE, RMSE, NMSE, R2) and their empirical distribution across all
streets: (a) Model 1 (No Road_ID), (b) Model 2 (Road_ID). Red lines indicate the average value.

Figure 6.4 maps the spatial distribution of RMSE and NMSE. Model 2 displays

more homogeneous performance across the district, especially for NMSE, with errors

primarily concentrated around known hotspots, such as the Lanza underpass area

linked to point source emissions.
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(a) Model 1 (No Road_ID). (b) Model 2 (Road_ID).

Figure 6.4: Spatial distribution of RMSE and NMSE per street: (a) Model 1 (No Road_ID),
(b) Model 2 (Road_ID).

Finally, Fig. 6.5 compares how the two models predict annual minimum, mean, and

maximum concentrations across streets. Model 1 tends to average out street-specific

variability since it is not able to learn that the differences in the concentrations levels

are due to urban geometry. Model 2 is able to distinguish between streets but still

shows an overall tendency to underestimate concentrations. The worst performance

is observed in the annual minimum predictions, with high variance in the results

and scattered data points.
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(a) Model 1 (No Road_ID). (b) Model 2 (Road_ID).

Figure 6.5: Comparison of annual minimum, mean, and maximum NOx concentrations across
streets for the two models (a) Model 1 (No Road_ID), (b) Model 2 (Road_ID).
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6.3 Final considerations

The most accurate model performance was achieved using interpolation. This is not

unusual, as interpolation strongly relies on the dataset structure itself to estimate

values and inherently incorporates the geometry of the district, given that the street

index is encoded as the first dimension of the data structure.

Regarding the regression techniques, Model 2 — which includes Road_ID as a cate-

gorical predictor — provided better performance. However, the improvement offered

by this model is not substantial enough to justify its adoption, especially consider-

ing that street-level predictions remain less accurate. Furthermore, its complexity

scales with the number of streets, and applying this model to a full city domain

(where the number of streets can reach the order of 104) would result in significant

computational expense.

Model 1 — without Road_ID as a categorical variable — performed surprisingly

well. This can be attributed to the fact that, as with interpolation, the geometry of

the district is implicitly encoded in the dataset. While this model fails to capture

accurate local variability, its overall performance remains comparable to that of

Model 2. It is important to note, however, that when applied to a different domain,

Model 1 would likely fail to provide reliable predictions, as it depends heavily on the

geometry-encoded structure of the dataset. Nevertheless, in cases where a complete

dataset is available — as in our study — this model represents a preferable choice

due to its simplicity, reduced computational requirements, and ease of training.
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Conclusions

The work presented in this thesis explored the development of data-driven surro-

gate models for the prediction of street-level NOx concentrations in an urban district,

using San Salvario (Turin) as a case study. The approach combined physical simu-

lations performed with SIRANE with statistical and regression techniques applied

to a synthetic dataset of meteorological scenarios.

The main advantage of the surrogate models lies in their ability to reproduce the

concentration levels estimated by SIRANE with significantly reduced computational

effort. In particular:

• The interpolation-based model demonstrated high predictive accuracy, thanks

to its direct reliance on the structured dataset that encodes the geometry of

the urban environment. This approach is efficient and easy to implement when

a dense reference dataset is available.

• The linear regression models, especially the configuration including Road_ID

as a categorical predictor, allowed the capture of structural differences between

streets and improved local accuracy. The simpler model without Road_ID

showed a good balance between accuracy and portability, requiring fewer com-

putational resources and offering the potential for application in other urban

contexts, provided an adequate dataset is available.

Despite these advantages, the surrogate models developed in this work present im-

portant limitations:

• The models are strongly overfitted to the specific urban grid of San Salvario.

A truly general-purpose model would need to learn the relationship between

urban geometry characteristics, meteorological variables, and street-level con-

centrations. This could be achieved without necessarily resorting to highly

complex architectures (such as convolutional neural networks or graph neural

networks), but rather by introducing additional predictors that encode urban
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structure — for example, by clustering streets according to their orientation,

width-to-length ratio (W/L), or width-to-height ratio (W/H), and predicting

concentrations at the level of these classes.

• The temporal dependency in the current models is introduced solely through

the user-given modulation coefficients of street emissions. A more advanced

model could learn this modulation directly from historical time series data, en-

abling it to predict temporal emission patterns as a function of meteorological

conditions and other contextual variables.

• The time available for this thesis was not sufficient to implement and tune

more complex models, such as artificial neural networks or ensemble machine

learning techniques, which would have required significant effort both in terms

of model architecture design and computational resources for training.

In conclusion, this work represents a preliminary stage of a broader modelling effort.

The surrogate models developed provide a valuable and computationally efficient

tool for estimating pollutant concentrations in a specific domain, but future work

should focus on increasing generalizability, integrating additional urban and tempo-

ral features, and exploring more sophisticated learning algorithms. With more time

and resources, this approach could be extended to larger urban areas, incorporate

richer datasets, and support advanced applications in air quality management and

urban planning.

Computational resources provided by hpc@polito, which is a project of Academic

Computing within the Department of Control and Computer Engineering at the Po-

litecnico di Torino (http://www.hpc.polito.it)
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