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Summary

Most patients who experience cardiac arrest remain comatose after restoration of
blood circulation due to post-anoxic brain injury. Accurate outcome prediction
is essential for guiding clinical management and communicating with relatives.
Among the various neuroprognostication modalities, resting-state electroencephalo-
gram (EEG) analysis is the most widely used, as it directly reflects brain activity.
Currently, EEG-based clinical evaluation relies on visual interpretation, which is
prone to intra- and inter-rater variability. To overcome these limitations, computer-
based methods, particularly convolutional neural networks (CNNs), have recently
emerged as promising alternatives.

The aim of this work is to investigate the potential of a CNN to predict post-
cardiac arrest outcome from EEG data, based on Cerebral Performance Category
(CPC). Outcomes were classified as favourable (FO) for CPC scores of 1 or 2 and
unfavourable (UO) otherwise.

The dataset included EEG signals from 483 patients (39% FO) from the pub-
lic -CARE database, recorded within 12-24 hours after cardiac arrest. Model
optimization was performed via repeated 5-fold cross-validation, combining pre-
processing strategies evaluation and Bayesian hyperparameter tuning. The best
model achieved a mean validation area under the receiver operating characteristic
curve (AUC) of 0.844 + 0.050 and, on an independent test set, an AUC of 0.838
with 76% balanced accuracy. Optimization led to only marginal improvements,
suggesting model robustness and limited sensitivity to preprocessing or parameter
variations. Similar validation and test results indicate effective generalization to
unseen data.

To gain insights into the model’s decision-making process, gradient-weighted
class activation mapping (Grad-CAM) was used. This method highlighted the
EEG segments that most contributed to the model’s predictions. The analysis
revealed that the network’s decisions aligned with expert knowledge, indicating
that it had effectively learned clinically relevant EEG patterns.

This study confirms the strong potential of CNNs to provide stable and objec-
tive outcome predictions, supporting increasing trust in artificial intelligence and
encouraging its integration into routine critical care practice.
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Chapter 1
Introduction

Cardiac arrest (CA) is the third leading cause of death in Europe [1]. Most patients
who are successfully resuscitated from cardiac arrest, do not regain consciousness
immediately after return of spontaneous circulation (ROSC) and remain comatose
for a variable period, ranging from hours to weeks. Approximately half of them
never regain consciousness [2]. An accurate and early prediction of neurological
outcome is crucial both to communicate with the patient’s relatives and to guide
clinical decision-making. It helps healthcare providers to allocate resources more
appropriately, focusing intensive care on patients with an higher likelihood of
recovery. Among neuroprognostic tools, electroencephalography (EEG) is the most
widely used, as it directly reflects brain activity. Currently, EEG is interpreted visu-
ally by expert neurophysiologists through the identification of malignant patterns.
However, over the past decade, computer-based methods for predicting neurological
outcome from EEG data have gained increasing attention being objective and
automated. Deep learning models, particularly Convolutional Neural Networks
(CNN), have shown promise in automatically extracting relevant features from raw
EEG signals, potentially outperforming traditional methods. These approaches
could complement clinical assessment, supporting faster and more standardized
decision-making in critical care.

1.1 Cardiac Arrest

Cardiac arrest is defined as the sudden loss of all heart activity due to malfunctions
in the electrical system with resulting absence of bodily blood circulation. The
most frequent life-threatening cardiac arrhythmias are ventricular tachyarrhyth-
mias (ventricular tachycardia and ventricular fibrillation), or less commonly, brad-
yarrhythmias, asystole and pulseless electrical activity [3].

These potentially lethal arrhythmias are usually triggered by structural heart
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disease combined with functional variations or, more rarely, by functional alterations
alone [4]. Structural abnormalities may include coronary artery disease, acute or
healed myocardial infarction, cardiomyopathy, valvular heart disease and congenital
ion channelopathy (e.g. Brugada syndrome, long QT syndrome). Functional
alterations can be either cardiac, directly affecting the heart’s pumping ability,
or non-cardiac, which indirectly impact cardiac function. Cardiac alterations
include acute myocardial ischaemia, cardiac tamponade and trauma. Non-cardiac
alterations encompass electrolyte and metabolic disturbances, respiratory failure
and hypoxia, autonomic nervous system dysfunctions, immunological disorders,
toxicological poisoning and septic or haemorrhagic shock [5].

When CA occurs, the patient is characterized by loss of consciousness, unrespon-
siveness to stimuli, absence of a palpable pulse and either abnormal respiration,
referred to as agonal breathing, or no respiration at all. If this condition is left
untreated it can rapidly lead to death.

The actions that increase the chances of survival for a victim of CA are known
as the Chain of Survival. Successful resuscitation depends on four key steps:

o Early recognition of CA and activation of the emergency medical system
through a help call.

 Early bystander cardiopulmonary resuscitation (CPR) to slow down brain and
heart deterioration, buying valuable time for defibrillation.

« Early defibrillation, if the rhythm is shockable (ventricular tachyarrhythmias),
to restore a perfusing rhythm. If the CA occurs out of hospital, this can be
achieved thanks to automatic external defibrillators placed in public spaces.
Every minute of delay to defibrillation reduces the probability of survival to
hospital discharge by 10-12%. However, when bystander CPR is provided, the
decline in survival is more gradual, averaging a 3-5% reduction per minute of
delay [6].

» Early advanced life support and standardised post-resuscitation care to restore
patient’s quality of life.

The chain emphasizes the interconnection of these steps and the need for each
step to be performed quickly and effectively in order to optimise the chances of
survival with minimal neurological impairment [7].

1.1.1 Brain injury mechanisms

The consequence of cardiac arrest is the cessation of oxygen delivery to all vital
organs. Although brain represents only 2% of body weight, it requires 15-20%
of total cardiac output to sustain homeostasis [8]. Brain tissue viability strongly
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relies on continuous supply of oxygen and energy substrates, specifically glucose,
and cessation of cerebral blood flow (CBF) results in an immediate disruption of
brain activity. Due to their lack of intrinsic energy stores, neurons are particularly
vulnerable to ischaemia and cellular damage starts immediately after CA [9].
Brain injury involves a complex and incompletely understood sequence of mech-
anisms. This process can be divided into 4 sequential, yet sometimes overlapping,
phases that correspond to different stages of disease progression and treatment [6]:

1. Ischaemic depolarization;
2. Reperfusion repolarization;
3. Dysregulation;

4. Recovery and repair.

| REHABILITATION CENTER |

BEE

-&o’

Phase 1 Phase 2 Phase 3 Phase 4
Ischemic Reperfusion Postischemic Recovery and
Depolarization Repolarization Dysregulation Repair
Cardiac Arrest ROSC Post-ROSC Rehabilitation
Onset: 2-5 min Onset: 2-5 min after ROSC  Onset: Minutes to hours Onset: Days to weeks
Duration: Onset to Duration: 5-20 min Duration: Hours to days Duration: Weeks to years

repolarization

Figure 1.1: Post-cardiac arrest brain injury phases (taken from [6]).

Ischaemic depolarization

At the cellular level, ischaemia disrupts aerobic metabolism, resulting in the
depletion of adenosine triphosphate (ATP), the primary high-energy substrate.
The lack of ATP impairs various cellular processes. Specifically, the Na® /K*
pumps, which normally maintain the balance of ions across the cell membrane
by actively pumping sodium (Na™) out of the cell and potassium (K*) into the
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cell, stop working. As ATP is depleted, sodium accumulates inside the cell and
potassium leaks out. The flow of sodium within the cell causes water to enter
by osmosis, leading to intracellular cytotoxic oedema. Less negative intracellular
environment triggers membrane depolarization, which in turn causes the opening
of voltage-sensitive calcium (Ca®") channels. High concentration of intracellular
calcium activates lytic enzymes that damage the cell and leads to the release of
glutamate that binds to the cell membrane causing further calcium inflow. Lastly,
with aerobic metabolism halted, the cell relies on anaerobic glycolysis, producing
lactate, carbon dioxide (CO;) and hydrogen ions (HT), which leads to a decrease
in pH [6], [9].

Ischaemic depolarization occurs within 2 to 5 minutes after CA [10], [11]. The
CBF required to reverse ischaemic depolarization is greater than the threshold (<
20% of normal CBF) at which it initially occurs and increases the longer it is left
untreated [12]. Early CPR has the potential to delay ischaemic depolarization.
However, since the CBF achieved by CPR (~25% of normal brain blood flow)
is usually insufficient to reverse ischaemic depolarization, it cannot fully prevent
neuronal damage [6].

Reperfusion injury

With ROSC, CBF is restored and, even if it is essential to ensure neuronal in-
tegrity, reperfusion of ischaemic cerebral tissue triggers mechanisms that lead to
secondary brain injury. The restoration of mitochondrial electron transport chain
hyperpolarizes the inner mitochondrial membrane, which enhances calcium uptake
through the (Ca®") uniporter [13]. Mitochondrial calcium accumulation interferes
with ATP synthesis and causes the production of reactive oxygen species, which is
worsened by the oxygen supply restored by reperfusion; moreover, it can trigger
the opening of mitochondrial permeability transition pore. Its permanent opening
causes failure of cellular energy production potentially leading to cell necrosis,
while its transient opening provokes the release of apoptosis-inducing factors [14].
Reperfusion repolarisation occurs within 2-5 minutes after ROSC and calcium
overload resolves in 15-20 minutes [15], [16].

Moreover, reperfusion following prolonged global ischaemia can be incomplete
and uneven due to microvascular thrombosis, endothelial oedema or neutrophil
traps. In areas affected by this phenomenon, known as no-reflow, ischaemia persists
instead of being reversed [6].

Dysregulation

The dysregulation phase begins within minutes to hours after ROSC and can last
for hours or days. This phase is driven by multiple interconnected mechanisms
including post resuscitation brain tissue hypoxia, excitotoxicity, mitochondrial
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dysfunction, pathogenic inflammation and microvascular dysfunction. To these
cellular processes, regional and global changes in perfusion and oxygenation are
added [6].

After ROSC, a transient global hyperaemia, where CBF increases for approxi-
mately 15-30 minutes, can be observed. However, this is sometimes followed by
delayed hypoperfusion, a reduction in blood flow that may contribute to secondary
brain injury [8]. This phenomenon can be attributed to several factors, includ-
ing altered cellular metabolism, microvascular obstruction, increased intracranial
pressure due to cerebral oedema and ischaemic brain damage. At the cellular
level, a key contributor to neuronal injury is excitotoxicity. The excessive release
of glutamate into the extracellular space, combined with impaired reuptake by
glial cells, leads to neuronal hyperexcitability. This state can manifest as epileptic
seizures or abnormal electrical activity. The result is secondary intracellular and
mitochondrial calcium overload, contributing to delayed neuronal death [6].

Another injury mechanism is related to the immunopathological response to
damaged brain tissue. Resident macrophages, known-as microglia, are activated and
secrete pro-inflammatory cytokines, attracting leukocytes from the bloodstream.
These leukocytes adhere to endothelial cells of cerebral vessels and migrate into
neuronal tissue thanks to increased permeability of the blood-brain barrier. This
same process also allows for the leakage of fluids, leading to vasogenic oedema.
The inflammatory response is further amplified by additional cytokines release
from leukocytes [9]. While some degree of immune activation is necessary for
tissue repair, an excessive or maladaptive immune response can worsen brain injury
instead of promoting recovery [6].

Recovery and repair

Brain healing begins within days after initial brain injury and persists for weeks,
months or even longer. Awakening and cognitive recovery are the most evident
signs, but the underlying healing mechanisms in cardiac arrest survivors remain
poorly understood and are mainly derived from knowledge of post-stroke brain
remodelling [17]. The two key compensatory processes through which the brain
reshape its neural networks and functional connectivity are neuroplasticity and
neurogenesis. Neuroplasticity is the brain’s ability to reorganize itself by forming
new connections between regions. This occurs through synaptic pruning, where
dysfunctional synapses are lost, and synaptic sprouting, during which new axons
and dendrites grow from existing neurons [18]. Neurogenesis, on the other hand,
refers to the generation of new neurons from endogenous stem cells and it is
usually matched with angiogenesis and neuroglial genesis. These mechanisms can
be positively influenced by pharmacological or non-pharmacological interventions,
such as rehabilitation, exercise and sleep [19].

5



Introduction

1.1.2 Neuroprotective interventions

Neuroprotective management after cardiac arrest aims to maintain physiologic
homeostasis and minimise secondary brain injury. Disturbances in oxygenation,
ventilation, blood pressure and temperature should be prevented [20].

Normal oxygenation should be maintained in order to prevent both hypoxaemia,
which may worsen brain ischaemia, and hyperoxaemia, which could increase the
production of free radicals [21].

Low partial pressure of carbon dioxide (PaCO,), or hypocapnia, is associated
with vasoconstriction, potentially reducing cerebral blood flow and worsening
cerebral ischaemia. On the other hand, hypercapnia causes vasodilation and may
increase intracranial pressure (ICP), especially in the presence of cerebral oedema.
However, mild hypercapnia, which leads to a moderate increase in CBF, could be
beneficial [9]. Since there is no strong evidence to suggest that mild hypercapnia
is superior to normocapnia, current guidelines recommend maintaining normal
PaCO; levels and avoiding hypocapnia. Additionally, hypoperfusion should be
avoided in order not to reduce CBF and increase the risk of ischaemic damage [20].

Another neuroprotective strategy is targeted temperature management (TTM),
which aims to maintain a specific body temperature, typically between 33°C'
and 37°C. While experimental models have demonstrated that hypothermia
(32°C'—34°C') can slow down cerebral metabolism and reduce brain damage, clinical
studies have yielded conflicting results [20]. Due to the lack of conclusive evidence on
the effectiveness of active cooling, latest guidelines no longer recommend a specific
target temperature but emphasize the importance of avoiding fever (> 37.7°C) for
at least 72 h, as hyperthermia is associated with worse neurological outcomes [22].
Despite these recent findings, therapeutic hypothermia has been and still remains
part of clinical practice in some centres. In these cases, a fixed temperature is
typically maintained for 24 h, followed by a gradual rewarming phase.

In addition to the aforementioned strategies, pharmacological interventions
may also play a role in neuroprotection by mitigating alterations in the pathways
triggered by cardiac arrest; however, their efficacy requires further clinical evaluation.
[20].

1.2 Neuroprognostication

Approximately two-thirds of deaths in comatose patients admitted to the intensive
care unit, after resuscitation from out-of-hospital-cardiac-arrest, are caused by
hypoxic-ischaemic brain injury [23], [24]. However, only in a minority of cases,
death occurs as a direct consequence of post-cardiac arrest brain damage leading
to irreversible loss of all brain functions, i.e. brain death [25]. Most of these deaths
result from active withdrawal of life-sustaining treatment (WLST) in patients
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where the severity of brain injury is such that it indicates very low probability of
neurologically meaningful survival [26].While decisions regarding WLST should
also consider factors such as the patient’s age, comorbidities and personal wishes,
neurological prognostication plays a crucial role in guiding post-arrest care [20]. In
particular, early and accurate neuroprognostication is important both to inform
the patient’s relatives and to avoid unnecessary prolonged treatment in patients
with no chance of achieving a favourable neurological outcome.

1.2.1 Outcome measures

Neurological outcome following resuscitation from cardiac arrest is most commonly
assessed through the Cerebral Performance Category (CPC). This scale includes
five scores, ranging from complete recovery to death (Table 1.1).

Table 1.1: Cerebral Performance Category Score (CPC) (taken from [27]).

Score Description

1 Conscious: alert, able to work and lead a normal life. May have minor
psychological or neurological deficits (mild dysphasia, nonincapacitating
hemiparesis, or minor cranial nerve abnormalities)

2 Conscious: sufficient cerebral function for independent activities of daily
life; able to work in a sheltered environment

3 Conscious: dependent on others for daily support because of impaired brain
function (in an institution or at home with exceptional family effort). At
least limited cognition. Includes a wide range of cerebral abnormalities
from ambulatory with severe memory disturbance or dementia precluding
independent existence to paralytic and able to communicate only with eyes,
as in the locked-in syndrome

4 Not conscious: unaware of surroundings, no cognition. No verbal or psycho-
logical interactions with environment

5 Certified brain dead or dead by traditional criteria

Specifically, CPC 1 represents no or minimal neurological disability; CPC 2
minor neurological disability; CPC 3 severe neurological disability; CPC 4 coma or
vegetative state and CPC 5 death. CPC 1 and 2 are universally considered as good
neurological outcome, as they correspond to patients independent in daily activities,
while CPC 4 and 5 are invariably associated with poor neurological outcome.
Regarding CPC 3, it is generally, but not universally, considered as unfavourable
neurological outcome, since it includes patients that need assistance for daily living
[9]. CPC is typically assessed 3 to 6 months after CA, usually through patient
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interviews or medical record reviews, however there is no standardized method for
its collection.

Another scale that can be used to assess neurological functions is the modified
Rankin Score (mRS) [28]. Originally developed for stroke, it was then adapted to
cardiac arrest patient assessment. The mRS includes seven scores, from 0 to 6, and
provides a more fine-grained assessment of favourable outcomes compared to CPC,
making it a potentially more suitable tool for measuring long-term neurological
recovery [9].

Neither the CPC nor the mRS differentiate between the two main causes of
neurological death: brain death and death due to WLST. More importantly, they
do not distinguish between neurological and non-neurological causes of death. As a
result, resuscitated patients who pass away due to extracerebral complications after
regaining consciousness are classified as CPC 5 or mRS 6, despite their neurological
status at the time of death. To address this issue, the best neurological score,
rather than the final one, during the observation period can be used [9]. It should
be noted however that relying on the best score may overlook later neurological
deterioration that could impact the final prognosis.

1.2.2 Prognostic predictors

Since no single predictor can provide absolute accuracy, assessing the severity of
hypoxic-ischemic brain injury requires a multimodal approach (Figure 1.2).

European post-resuscitation care guidelines (2021) recommend integrating infor-
mation from clinical examination, biomarkers, neurophysiology and neuroimaging
into a prognostic algorithm (see subsection 1.2.4) to evaluate the probability of a
poor neurological outcome in comatose patients [20].

Clinical examination

The most used clinical prognostic examination signs are motor response, ocular
reflexes and myoclonus [9].

Motor response is evaluated through the motor component of the Glasgow Coma
Scale (GCS), a standardized tool for measuring a patient’s consciousness level.
The lack of motor response or abnormal extensor or flexor response following a
painful stimulus, in comatose patient after 72 h from ROSC (GCS-M < 3), is a
very sensitive sign of poor neurological outcome.

Ocular reflexes originate in the brainstem, which is quite resistant to anoxic
injury. This makes their absence a more specific sign of severe brain injury rather
than an altered motor response, which can be generated on different levels between
the cortex and the brainstem. At > 72 h after ROSC, the bilateral absence of both
pupillary and corneal reflexes predicts poor neurological outcome.
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Figure 1.2: Neurological prognostication modes (taken from [20]).

Biomarkers

Myoclonus refers to sudden, brief and involuntary twitching, jerking or spasm
caused by contraction or relaxation of one or more muscles. Its presence may indicate
an unfavourable prognosis depending on its characteristics. Early occurrence (<
6 h after ROSC), generalised distribution, synchronous or stereotyped patterns
and prolonged (> 30 min) duration (status myoclonus) are associated with worse
outcomes [20].

Biomarkers

After cardiac arrest, neurons and glial cells release several molecules that can be
measured in serum or plasma as markers. Blood biomarkers are easy to detect and
can objectively quantify the extent of brain injury. However, their interpretation can
be challenging, since their value depends on laboratory instruments and protocols
and/or potential extracerebral sources [9].

Among biomarkers, neuron-specific enolase (NSE) is the only one recommended
for neurological prognosis [20]. NSE is a glycolytic enzyme released into the
bloodstream by damaged neurons and neuroendocrine cells. This marker is also
present in blood cells and its early increase in concentration can be due to haemolysis,
for example, caused by CPR, [29]. However, high NSE values at 48-72 h after ROSC
are more likely to reflect a brain injury [20].
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Neurophysiology

Short-latency somatosensory evoked potentials (SSEPs) and EEG are the two main
electrophysiological methods used to assess the chances of neurological recovery
after CA.

SSEPs are non-invasively recorded by stimulating the median nerve at the wrist
using transcutaneous electrodes. The electrical signals, generated in the primary
somatosensory cortex, are detected by electrodes placed over the contralateral skull
[30]. The negative wave observed after 20 ms on the scalp EEG, which reflects
activation of the somatosensory cortex, is referred to as the N20 wave. The bilateral
absence of the cortical N20 wave after CA mostly indicates severe brain injury
with high specificity and moderate to low sensitivity. Its detection is resistant
to hypothermia but can be influenced by muscular artefacts, hence the use of
myorelaxants is recommended when recording SSEPs [20]. A low amplitude of N20
wave has been shown to be a sign of poor outcome as well [31], [32].

With regards to EEG, it is the most widely used test to evaluate the extent of
post-cardiac arrest brain injury in clinical practice [33]. Since this signal is the main
focus of this thesis, section 1.3 will explore its role in detail, the specific patterns
associated with neurological outcomes and the challenges in its interpretation.

Imaging

Brain computed tomography (CT) and magnetic resonance imaging (MRI) are
valuable tools to evaluate brain injury by detecting cerebral oedema following
cardiac arrest. However, acquiring CT and MRI images in the intensive care unit
can be challenging due to patient instability, the need for specialized equipment
and logistical constraints, which may limit their routine use in this setting.

On brain CT images, vasogenic oedema appears as effacement of cortical sulci.
In contrast, neuronal swelling due to cytotoxic oedema leads to a decrease in
grey matter (neurons) density, while the white matter (axons) remains relatively
unaffected. As a result, the grey-to-white ratio (GWR) decreases, making the
grey/white matter interface less visible. The lower the GWR, the more severe
the brain oedema. A reduced GWR occurs early in patients with severe hypoxic-
ischaemic brain injury and has been proposed as an objective predictor. However,
its reliability is limited by high variability across studies due to differences in
sampling areas and scanner software and hardware [9], [20].

Hypoxic-ischaemic brain injury reduces water diffusivity which appears on MRI
as hyperintensity on diffusion weighted imaging (DWI) with corresponding low
apparent diffusion coefficient (ADC) values. Similarly to GWR, ADC values vary
across studies.

Since there is currently no standardized method for CT-GWR or MR-ADC mea-
surements, these techniques are better suited to confirm the presence of ischaemic
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injury through visual analysis by an experienced neuroradiologist [20].

1.2.3 Sources of bias in prognostication

One of the main sources of bias in neuroprognostication following CA is the so-
called self-fulfilling prophecy. This occurs when results of prognostic tests are used
to guide therapeutic decisions that contribute to the fulfillment of the predicted
outcome. This leads to an overestimation of test performances and, in unfortunate
cases, to inappropriate WLST. Ideally, self-fulfilling prophecy could be avoided
by blinding test results. However, this is not feasible for clinical examination
and, specifically for EEG or brain images results, would be unethical since they
may reveal potentially treatable complications (e.g. epileptic seizures, intracranial
hypertension). An obvious way to limit the confirmation bias caused by the self-
fulfilling prophecy is to investigate prognostication where there is no active WLST
policy.

Other strategies to reduce the risk of falsely pessimistic prognosis include not
performing prognostication tests in the presence of confounding factors and basing
decisions on multimodal approaches and on repeated assessments. Among prognos-
tication methods, clinical examination is influenced by sedatives, myorelaxants and
opioids, EEG patterns by hypothermia and sedatives and the N20 wave amplitude
upon SSEP assessment by profound sedation.

In addition, it is necessary to consider that neurological recovery takes time
and therefore an appropriate time lag between the prognostication test and the
assessment of neurological outcome is needed [20]. Guidelines recommend for this
to be performed between 3 and 6 months after cardiac arrest [34].

The last source of bias worth mentioning is non-neurological causes of death. In
fact, when evaluating the accuracy of neurological predictors, extracerebral causes

of death, that can occur after regaining consciousness, should be taken into account
[9].

1.2.4 Prognostication algorithm

In the 2021 European guidelines on post-resuscitation care, a prognostication
strategy to predict neurological outcome of comatose adult patients after CA has
been proposed. Prognostication assessment should follow the scheme reported in
Figure 1.3. Two or more concordant unfavourable signs are necessary to prognosti-
cate poor neurological outcome. In case of discordant tests, where some indicate
unfavourable outcome and others favourable outcome, a prognostic reassessment is
recommended [20].
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Targeted temperature management and rewarming

Unconscious patient, M<3 at 272h without

confounders
YES
v
At least TWO of: Poor
* No pupillary and corneal reflexes at 272h outcome
* Bilaterally absent N20 SSEP wave likely

¢ Highly malignant EEG at >24h
* NSE >60 pg/L at 48 and/or 72h

+ Status myoclonus <72h Observe and

« Diffuse and extensive anoxic injury on brain CT/MRI re-evaluate

Figure 1.3: Prognostication algorithm after cardiac arrest based on current European guidelines
on post-resuscitation care (adapted from [20]).

1.3 EEG in neuroprognostication

1.3.1 From neurons to EEG

EEG represents the most common way to non-invasively measure electrical brain
activity. In particular, EEG measures the potential differences between two points
on the scalp through surface electrodes placed in a cap.

The human brain contains 100 billion neurons, each of which is connected to
thousands of other neurons. This large electrical network can be divided into
many sub-networks. The activity of a sub-network causes changes in extracellular
potentials; their superimposition is defined as a local field potential (LFP) [35].
The main sources of LFP are synaptic potentials, the transmission signals between
neurons, and action potentials, the electrical activations of neurons in response to
stimuli [36].

The potentials recorded on the scalp are a modified version of LFPs originating
from underlying groups of neurons. Two main mechanisms are responsible for this
phenomenon. First, the electrical field decays with the square of the distance from
the source and, therefore, LFPs are attenuated when they reach the electrodes.
Second, the volumetric conductance of the head’s tissues causes the potential
generated at a single point to spread over a wider area resulting in spatial smoothing
of the original signal [35].

Due to attenuation and smoothing, only synchronous neuronal activity (sum-
mated activity across brain areas) can be measured at the scalp level [37]. Major
EEG contributors are postsynaptic potentials of pyramidal neurons in the cerebral
cortex, as action potentials are too brief to be recorded [38]. Since the neuronal

12



Introduction

soma is located in deeper cortical layers, while neuronal dendrites extend more
superficially, synaptic activity creates a charge distribution that makes them dipoles
oriented perpendicularly to the cortical surface. If many neurons receive synap-
tic transmissions synchronously, the resulting electrical field magnitude is strong
enough to propagate up to the surface. The larger the population of neurons
involved in synchronous activity, the greater the amplitude of the signal recorded
on the scalp surface. This summation is less effective in cortical sulci, where
pyramidal neurons are not perpendicularly aligned to the scalp, leading to signal
cancellation [37].

To sum up, the ability of EEG to record brain activity strongly depends on
neuronal synchronization, the number and orientation of neurons, their distance
from the surface and the electrical properties of the surrounding tissues.

The oscillations of neural activity can have predominant frequencies that reflect
the underlying cognitive state. These frequency bands include delta (0.5-4 Hz)
associated with deep sleep, theta (4-8 Hz) linked to drowsiness or light sleep,
alpha (8-13 Hz) observed during relaxed wakefulness, beta (13-30 Hz) indicative of
active thinking or focused attention and gamma (30-100 H z) related to high-level
cognitive functions such as attention and memory.

In the context of post-cardiac arrest coma, the EEG is typically dominated by
slow-frequency rhythms. Gamma activity is generally absent, while beta rhythm is
rare and most often pharmacologically induced. The cerebral activity observed in
hypoxic-ischemic encephalopathy typically falls within the delta, theta and alpha
bands, although their spatial distribution and reactivity can vary considerably
across patients and over time [39].

1.3.2 EEG recording system

Brain electrical activity is primarily detected by surface electrodes, although
achieving a clean and reliable signal requires addressing various challenges.

The EEG signal is inherently weak, typically ranging between 10-100 pV in
a healthy, awake subjects and therefore it may be masked by other interferences,
generated both by the body and the environment [40]. Physiological artefacts can
include muscles activity, eye movements, heart activity and subject movements.
Environmental noise mainly comes from power line interference, electrode cable
movements and temporary electrode detachments (electrode pop artifact), which
can increase impedance and degrade signal quality [41], [42].

To minimize these issues, EEG systems use high-gain differential amplifiers.
These devices amplify the differential electrical activity between two electrodes
while rejecting common signals, effectively reducing shared noise and enhancing
the relevant EEG signal [41]. Additionally, careful electrode placement and proper
impedance control are crucial for obtaining reliable recordings.
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However, despite precautions, some noise will inevitably overlap with the neural
signal. Therefore, signal processing, both analogue and digital, is essential to
further enhance signal quality and extract meaningful brain activity.

Once the signal has been amplified, it is sampled at fixed time intervals, and
each sample is then converted into a digital form by an analogue-to-digital (A/D)
converter. The A/D converter is connected to a recording device, such as a
computer, where the signal can be displayed and stored.

1.3.3 Electrode placement and montages

The most commonly used electrodes material is pure silver coated with a layer of
silver chloride (Ag/AgCl) as they offer excellent and stable electrical properties.

To facilitate interpretation and comparison, electrode placement follows stan-
dardized positioning systems. One of the most widely recognized is the 10-20
system, originally proposed by Jasper [43], which ensures uniform interelectrode
spacing. This system positions electrodes at intervals of 10% and 20% relative
to four anatomical landmarks: the nasion, inion and left and right preauricular
points (Figure 1.4). To improve spatial resolution, additional electrodes can be
incorporated into the 10-20 framework. According to the convention, electrodes
are named based on their position on the scalp. The first character refers to the
cortical area (F=frontal area, C=central area, P=parietal area, T=temporal area
and O=occipital area). The second character is a number or a letter. Odd numbers
correspond to sites on the left hemisphere, while even numbers represent sites on the
right hemisphere. Midline electrodes are indicated with the letter z, Additionally,
the numbers increase as the distance from the midline increases [37].

"“51‘1“_43 %

Pre-auricular Inion
point

Inion

Figure 1.4: Electrode placement according to the international 10-20 system (taken from [44]).
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Based on the specific points on the scalp where the potential difference is
measured, there are two main types of electrode montages: unipolar (or referential)
montage and bipolar montage. In the unipolar setup, the potential difference
is measured relative to the same reference electrode for all recording sites. The
reference is typically placed on locations such as the earlobe, nose, mastoid, chin,
neck or the centre of the scalp. However, there is no universal consensus on the
optimal position for the reference electrode, as bioelectric currents generated by
muscles, heart or brain activity propagate throughout the body. On the other hand,
in the bipolar montage, each channel registers the potential difference between two
particular scalp electrodes [40].

1.3.4 Prognostic value of EEG

EEG is the most used and accessible prognostic tool following cardiac arrest [33].
This signal, reflecting cortical synaptic activity, which is very sensitive to the effects
of hypoxia, provides valuable information about the gradual recovery from brain
injury on time scales of hours to days. Moreover, EEG plays a crucial role in
diagnosing and managing epileptiform activity [45], [46].

The evolution of EEG background and patterns in comatose patients after CA can
help predict neurological outcome. In 2021, the American Clinical Neurophysiology
Society proposed standardized terminology for EEG in critical care patients [47].

Three main aspects should be considered when assessing EEG: the background
activity, the presence of superimposed discharges and the reactivity to stimulation
[20].

Background activity

The EEG background is described according to its frequency, voltage and continuity.
Signal voltage is classified as normal (> 20 uV'), low (< 20 uV') or suppressed (<
10 V). Continuity is categorised as continuous, discontinuous, burst-suppression
or suppression [45]. EEG is considered continuous if no suppression is observed
throughout the recording; discontinuous if suppression periods represent 10-49% of
the recording; burst-suppression if 50-99% consists of suppressed periods alternated
with bursts; and suppression if the entire signal is suppressed [47].

Most patients show suppressed or low voltage EEG shortly after return to
spontaneous circulation. However, in patients who later recover, a gradual transition
towards normal voltage EEG is usually observed within 12-24 h from cardiac
arrest. The faster this normalization occurs, the better the outcome. Persistent
presence of suppressed background after 24 h from ROSC is a reliable sign of poor
neurological prognosis [45]. Burst-suppression activity is widely recognized as a
highly unfavourable sign, particularly if it occurs 12-24 h after ROSC [20]. Bursts
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are defined as waveforms lasting more than 0.5 s and having at least 4 phases.
These bursts can be further divided in highly epileptiform and identical. Highly
epileptiform bursts exhibit epileptiform discharges (spikes or sharp waves) in at
least half of their duration. On the other hand, bursts are defined as identical if
the first > 0.5 s of each burst appear visually similar in all channels and in 90% of
bursts [47]. Identical bursts are a more specific sign of poor outcome than highly
epileptiform bursts, as they suggest a deterministic process indicative of severe
neurological impairment. A burst-suppression pattern may also be transiently
induced by sedation, but bursts appear heterogeneous and transient [48].

In contrast, the prognostic value of discontinuous EEG is uncertain across studies
[20].

Superimposed activities

The discharges superimposed on the EEG signal can be distinguished into periodic,
sporadic epileptiform and electrographic seizures [20]. Differently from bursts,
discharges are waveforms lasting less than 0.5 s, regardless the numbers of phases,
or lasting more than 0.5 s and with a maximum of 3 phases.

Periodic discharges occur repeatedly with a quantifiable interdischarge interval
and a relative uniform morphology [47]. They can involve both hemispheres
(generalised periodic discharges) or just one of them (lateralised periodic discharges).
This superimposed pattern is usually related to worse prognosis. However, the
background on which periodic discharges appear is considered a stronger predictor
of neurological outcome [49].

Sporadic epileptiform discharges refer to non-periodic epileptiform activity. They
can be linked to unfavourable outcome, but their presence has uncertain prognostic
value [50].

Electrographic seizures are defined as epileptiform discharges occurring at an
average frequency of more than 2.5 Hz for at least 10 s or any EEG pattern that
shows clear evolution (in terms of frequency, location or morphology) that lasts for
more than 10 s. An electrographic seizure lasting more than 10 continuous minutes
or 20% of one hour recording long is termed electrographic status epilepticus
[47]. These patterns are generally associated with poor prognosis, especially when
combined with other unfavourable EEG features. However, recovery remains
possible when the EEG is continuous and reactive and the epileptiform activity is
transient or responds to treatment [51].

EEG reactivity

EEG reactivity consists of a measurable change in frequency or amplitude, following
a predefined stimulus (pain, auditory or light) [47]. High variability across reactivity
testing has been reported, contributing to the inconsistent prognostic value of
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EEG reactivity in the literature. Presence of EEG reactivity in conjunction with
continuous or discontinuous normal voltage is a sign of good outcome, while its
absence has little added value to the EEG background activity [52].
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Figure 1.5: EEG patterns (taken from [45]).

In summary, highly malignant patterns include suppressed background with or
without superimposed discharges and burst-suppression, especially with identical
bursts.

European guidelines on post resuscitation care recommend using EEG for
prognostication not earlier than 24 h after ROSC, as confounding factors such as
sedation and hypothermia may affect its interpretation [20]. Sedation alters the
EEG signal in a dose-dependent manner, reducing its amplitude, frequency and
continuity as the dosage increases. However, highly malignant patterns are not
induced by standard sedative regimens. Therefore, while sedation should always
be considered when analysing EEG, it does not compromise its prognostic value
[53]. Similarly, mild hypothermia may influence EEG, but its effects are generally
minimal [54]. In addition, some evidence suggests that the prognostic accuracy of
EEG can be even higher in the first stages of coma, specifically between 12-24 h
after CA, potentially allowing for earlier outcome prediction [55], [56], [57], [58].
These publications highlight that improvements of brain activity within 24 h are
crucial for neurological recovery.

1.3.5 Limitations of visual interpretation

Extracting prognostic information from EEG signals is a complex task that can-
not be performed by general intensive care staff. In clinical practice, EEG is

17



Introduction

analysed visually by a neurologist or a neurophysiologist [59]. This procedure
is time-consuming, requires years of expertise and it is prone to both intra- and
inter-observer variability [60], [61]. Moreover, a non-negligible number of patients
remain in a “grey zone” due to inconclusive signs of either poor or good neuro-
logical outcome, making prognostication and clinical decision-making particularly
challenging [62]. Another drawback of visual EEG analysis is that it is inherently
constrained by the electroencephalographer’s ability to interpret a multidimensional
time series [63]. Its qualitative nature prevents a comprehensive quantitative assess-
ment, potentially overlooking crucial signal features, such as statistical properties
or fine-grained activity patterns, that may carry significant prognostic value [59].

Given these limitations, there is a clear need for novel approaches to improve
neurological prognostication. Computational techniques, being fast, automated
and objective, represent a promising alternative to visual assessment. Among
artificial intelligence methods, deep learning models have rapidly gained increasing
interest due to their ability to automatically learn complex features and perform
classification directly from raw EEG input.

1.4 Towards objective prognosis: Deep Learning
in EEG analysis

1.4.1 Introduction to Deep Learning

In recent years, artificial intelligence has revolutionized the medical field, enabling
unprecedented advancements in diagnostics, prognosis and clinical decision-making.

Artificial intelligence comprises any technique that enables computers to perform
tasks that usually require human intelligence. Machine learning (ML) is a subset of
artificial intelligence that includes all the approaches that allow machines to learn
iteratively from data without being explicitly programmed [64].

Among the countless applications of ML, classification is one of the most widely
used. Based on the available data, classification algorithms automatically learn the
distinctive features of each class (training phase) and use this knowledge to predict
the class of previously unseen examples (testing phase). This process is known as
supervised learning, as during the training phase, the model is provided with the
class labels of each data point, allowing it to learn to map input features to their
corresponding output labels. In contrast, during testing, the input of the model is
not labelled so that its ability to make predictions can be evaluated.

The training of traditional machine learning algorithms relies on features that
must be manually extracted from raw data. These features are designed to represent
specific properties of the original data while preserving the information necessary
to distinguish between classes. When analysing EEG, features can be derived from
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the time, spatial and frequency domains. This process, known as feature extraction
or feature engineering, requires a lot of time and expertise. The reliance of ML
algorithms performance on experts’ knowledge represents one of their greatest
strengths and, at the same time, one of the main drawbacks of such approaches
[65].

Deep learning (DL), a class of ML techniques, has emerged as a powerful
solution to this limitation. Unlike traditional ML algorithms, deep learning models
can automatically extract relevant features directly from raw data and perform
classification. This approach, known as feature learning, has the major advantage
of being data-driven and not constrained by a priori knowledge. For this reason,
and due to the complexity of their architectures, DL approaches typically require
significantly larger datasets compared to traditional ML methods.

One of the major limitations of DL models, especially in healthcare applications,
is their lack of interpretability, which undermines user trust. Their ability to
directly process raw data and provide final predictions without clear insight into
the decision-making process often makes them a “black box”.

Deep learning models are based on Artificial Neural Networks (ANN), whose
architecture is inspired by the structure and learning mechanisms of the human brain.
These networks consist of layers of interconnected processing units, which represent
neurons linked by synapses. Each artificial neuron receives many numerical inputs,
each multiplied by a weight and then summed with a bias term. The neuron’s output
is determined by applying an activation function to its total input, introducing
nonlinearity into the model. This mechanism mimics the integration of synaptic
signals of variable strength at the cell membrane level and the subsequent generation
of an action potential if a certain threshold is reached. The first layer of an ANN
receives the data input, the output layer provides the final prediction, while the
layers in between, called hidden layers, are responsible for learning a non-linear
mapping between input and output.

Convolutional Neural Networks (CNNs) are a class of ANNSs specifically designed
to process data with a grid-like structure, such as images or time-series, as EEG
signal. CNNs differ from ANNs due to the presence of convolutional and pooling
layers. Convolutional layers apply filters, also known as kernels, which slide across
the width and height of the input data to extract relevant features. The activation
layer then introduces non-linearity to the output of the convolutional layer. Finally,
the pooling layer reduces dimensionality by summarizing regions of the input using
metrics such as the maximum (max pooling) or the average (average pooling). This
sequence of layers can be stacked to extract hierarchical features, with the first
layers capturing simple patterns and deeper layers gradually learning more complex
structures. The final block of a CNN, responsible for classification, consists of
layers similar to those in an ANN, known as fully connected (FC) layers, where
each neuron is connected to every neuron in the previous layer. During training,
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both the filters in the convolutional layers and the weights and biases in the FC
layers are optimized to minimize the error between the model’s predictions and the
true labels (Figure 1.6).
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Figure 1.6: CNN architecture (taken from [66]).

1.4.2 State of the art

Several studies in the scientific literature have developed and evaluated deep
learning models applied to the EEG recordings of comatose patients following
CA, with the aim of predicting their neurological outcome. The vast majority
of these studies employed CNNs applied to resting-state EEG, the spontaneous
electrical activity of the brain recorded while the patient is not exposed to external
stimuli. In every work described below, the outcome was dichotomized based on
the CPC score: CPC 1-2 indicated favourable outcome, while CPC 3-5 indicated
unfavourable outcome. When evaluating classification performance in this context,
it is important to consider that an incorrect prediction of unfavourable outcome
may have more dramatic consequences than an overly optimistic one. This is
particularly critical when model predictions are used to guide clinical decisions,
potentially leading to the early WLST, in cases where recovery may have been
possible.

Van Putten et al. [67] designed a CNN with one layer to analyse a monocentric
dataset. In particular, the network processed 10-second segments from 5-minute
artifact-free EEG recordings at 12 h and 24 h after cardiac arrest. The EEG with
electrodes placed according to the 10-20 system, was band-pass filtered between
0.5-35 Hz, re-sampled at 64 Hz and re-referenced based on a longitudinal bipolar
montage. Each 10-second segment was classified independently and the predictions
of all epochs for a given patient were averaged to obtain the patient’s outcome. At
24 h after cardiac arrest, more patient recordings were available (~400) compared
to 12 h (~280). Outcome prediction was more accurate at 12 h with a sensitivity
of 58% at a specificity of 100% for the prediction of unfavourable outcome.
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Tjepkema-Cloostermans et al. [68] exploited a Visual Geometry Group (VGG)
architecture [69] in a multicentric study. This network consists of a deep CNN
with 13 convolutional layers, with a progressively decreasing size of convolutions.
The EEG preprocessing was the same as the previous study [67]. Data from two
centres (~660 patients) were used for training and internal validation, while signals
from three other centres (~230 patients) were used to evaluate the network’s
performance. The classification was performed separately at 12 h and 24 h after
cardiac arrest, as well as after combining data from the two time points. A better
performance, similar to the previous study [67], was obtained at 12 h. Finally,
incorporating data from the 12 and 24 h time points did not significantly modify
the model’s predictive performance.

A comparative study conducted by Pham et al. [70] compared the performance
obtained with the CNN from the previous study [68] with the one achieved by two
traditional ML algorithms (random forest and logistic regression) at 12 and 24 h
after CA. The dataset was the same as that used by Tjepkema-Cloostermans et al.
[68]. For the logistic regression model, two quantitative features were extracted
from each 5-minute EEG recording, while for the random forest, nine features were
computed. The random forest performance was significantly lower to that of the
CNN at each time point and for the prediction of both favourable and unfavourable
outcome. Logistic regression yielded comparable or higher performance than the
CNN in the first 12 h and lower performance at 24 h. Additionally, this study
evaluated the robustness of the three models to superimposed noise added to the
EEG signal. The CNN was shown to be less affected by artifacts compared to the
other ML techniques.

Building upon CNNs approaches, Jonas et al. [65] used a reduced version of
VGG with 6 convolutional layers applied to a monocentric dataset (~260 patients).
For each patient, 5-minute EEG recordings (1020 system) were downsampled to
50 Hz and were split into overlapping 10-second segments, with a 75% overlap
between consecutive segments. Similar to the aforementioned studies, patient-level
predictions were obtained by averaging the predictions across individual EEG
epochs belonging to that patient. The mean latency from CA was approximately
20 h. Unfavourable outcome was labelled as class 1, while favourable outcome
as class 0. The network yielded an accuracy of 83%, a sensitivity of 78% and
a specificity of 89%. Although these performances were the highest, they were
generally comparable to those achieved on the same dataset by other models,
such as the VGG network [68] or the CNN proposed by Van Putten et al. [67].
To better understand which EEG features influenced the model’s predictions,
Jonas et al. applied gradient-weighted class activation mapping (Grad-CAM), a
technique that highlights the parts of the signal that were most informative for
the model’s decision. The Grad-CAM technique showed that the network relied
on similar features to those exploited in clinical EEG visual inspection. Lastly,
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the authors enriched the dataset with sleep signals to facilitate the network’s
ability to recognize favourable patterns and decreasing the number of misclassified
unfavourable outcomes. Surprisingly, the opposite results occurred: misclassified
favourable outcomes decreased.

Zengh et al. [71] used a large international dataset (~1000 patients) including
continuous EEG recording with electrodes placed according to the 10-20 system
from seven different centres. The authors posit that the prognostic value of EEG lies
in its temporal evolution following cardiac arrest, rather than in isolated recordings
within narrow time windows, as done in previous studies discussed above. To
illustrate this, they employed a network called Bidirectional Long Short-Term
Memory (BiLSTM), an improved version of a Recurrent Neural Network, which
can track and utilize information from both earlier and later points in the input
sequence. The raw data were band-pass filtered between 0.5-30 Hz, re-sampled
at 100 Hz and re-referenced based on a bipolar montage. Each recording was
segmented into consecutive 5-minute intervals and, for each segment, 9 features
were extracted. The features extracted at 6-hour recording periods were combined,
with the network input consisting of both the features from the current 6-hour
epoch and the average features from all preceding 6-hour epochs. The model
performance increased with time, achieving the best predicted accuracy at 66 h
after cardiac arrest. However, this observation should be interpreted with caution,
as it may reflect uneven data availability across time points rather than a true
prognostic advantage of this specific window.

A more recent article by Pelentritou et al. [58] employed a CNN inspired
by the work of Schirrmeister et al. [72] consisting of three convolutional layers.
The authors used a multicentric dataset (~165 patients) for training and internal
validation, along with a portion of the dataset from Zengh et al. [71] for external
validation. The authors compared the model performance on the first (9-27 h) and
second day (28-56 h) of coma after cardiac arrest, as well as two electrode montage
resolutions (62 and 19 electrode configurations). The artifact-free EEG signals,
ranging from 8 to 20 minutes in duration and with a sampling frequency of 500
Hz, were segmented into 5-second epochs. The dataset was further augmented
through alternating decimation, resulting in epochs with a frequency of 100 H z.
Overall, the network achieved higher performance on the first day of coma for both
montages. On the internal validation set, the 62-channel configuration reached the
highest accuracy of 94% on day one, compared to 72% on day two. Interestingly,
on the second day, the 19-channel montage slightly outperformed the 62-channel
configuration, achieving 76% accuracy. The 19-electrode model was also tested on
the external validation set, where it achieved an accuracy of 87%. In this work,
the use of the Grad-CAM technique revealed that the network’s decision-making
process is based on evaluations similar to the clinical visual assessment of the EEG.
This network demonstrated very high predictive performance even in patients with
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uncertain outcome, identified based on inconsistent clinical markers’ prediction.
Lastly, no significant correlation was observed between predictive performance
and sedative levels indicating that differences in the performance between the first
and second day of coma were not trivially driven by differences in the clinical
management between the two days.

Differently from prior works, an interesting study by Aellen et al. [73] applied a
CNN to EEG responses to auditory stimulation during the first day of coma. The
model achieved slightly lower performance compared to the aforementioned studies
that used resting-state EEG.

Overall, the reviewed publications highlight the promising potential of deep
learning models in enhancing the objectivity of comatose patient outcome predic-
tion based on EEG signals. These models achieved comparable or even superior
performance relative to earlier computer-based approaches that relied on predefined
features, such as functional connectivity [74], [75], [76], power spectra [77], [57] or
malignant patterns [78]. Despite encouraging results, further multicentric validation
studies are necessary to confirm the reproducibility and robustness of these models
across different clinical settings and practices.

The present work was developed in part at the Swiss Brain-Body and Con-
sciousness laboratory at the Centre Hospitalier Universitaire Vaudois (CHUV) in
Lausanne and it is a natural continuation of the study by Pelentritou et al. [58].
In particular, a CNN, similar to the one proposed by the authors, was applied to a
larger and more heterogeneous multicentric dataset, the -CARE database [79]. The
goal of this study was to assess the CNN’s performance in predicting post-arrest
neurological outcome using EEG recordings acquired between 12 and 24 h after CA,
allowing for a more objective and timely prognostic assessment over the first few
hours following coma onset. A total of 483 patients were included and the dataset
was split into a training set (80%) and an independent test set (20%). Within the
training set, a 5-fold cross-validation procedure was used to evaluate the effect of
different EEG preprocessing pipelines and CNN parameters on model performance.
To identify the optimal EEG preprocessing configuration, signal duration, electrode
montage, filtering bandwidth and normalization strategy were tested. Following
this exploratory phase, the CNN architecture and its hyperparameters were further
optimized using a Bayesian optimization approach. The best performing model
following optimization was then retrained on the full training set and evaluated
on the held-out test set. In addition to assessing classification performance, in-
terpretability analysis via the Grad-CAM technique was used to investigate the
features exploited by the CNN in predicting comatose patient outcome.
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Chapter 2

Materials and Methods

2.1 Dataset

2.1.1 I-CARE Database

For the present thesis project, the International Cardiac Arrest Research (I-CARE)
consortium database was employed [79], [80]. It represents a real-world dataset
including continuous multichannel electroencephalography recordings from 1020
comatose patients following cardiac arrest, along with their neurological outcome.
The data were collected by seven different academic hospitals: two from the
Netherlands (Medisch Spectrum Twente and Rijnstate Hospital), one from Belgium
(Erasme Hospital) and four from the United States (Massachusetts General Hospital,
Brigham and Women’s Hospital, Beth Israel Deaconess Medical Center and Yale
New Haven Medical Center). The two hospitals from the Netherlands are considered
part of a single institution, as they are affiliated with the same university.

Neurological outcome was determined prospectively in the two Dutch hospitals
by a phone interview at 6 months after ROSC; while, for the remaining medical
centres, it was assessed retrospectively through medical chart review at 3-6 months
after ROSC. The outcome was measured using the best CPC score. In hospitals
without prospective follow-up, patients who achieved a CPC score of 1 or 2 by the
time of discharge were considered to have reached their best neurological outcome
and no further chart review was performed.

The dataset includes patients older than 15 years old, who underwent cardiac
arrest and remained comatose (Glasgow Coma Score < 8) after ROSC. All of
them were continuously monitored through EEG after admission to the intensive
care unit and for some of them electrocardiogram data was recorded as well. The
monitoring usually started within hours after CA and continued for several hours to
days depending on the patients’ conditions. As a result, the start time and duration
of recordings vary across patients. Sedation and analgesia were administered
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as needed by clinicians. Sedatives used and typical dose ranges were: propofol
(25-80 pg/kg/min), midazolam (0.1-0.7 mg/kg/hr) or fentanyl (25-200 pg/hr).
Neuromuscular blockade during the initiation of TTM was systematically applied
in only one centre, while in the remaining hospitals it was administered on an
as-needed basis.

EEG data were recorded according to the international 10-20 system, with
channel names harmonized across hospitals. When additional electrodes beyond
the standard 19 were available, they were also included in the database. For
routine clinical procedures, the continuous EEG monitoring was sometimes paused,
resulting in occasional gaps in the recordings. No filtering was applied to the
signals and their sampling frequency vary between 200 to 2040 Hz. The signals are
provided in a unipolar montage, as each channel is labelled with a single electrode.
However, the specific reference electrode used is not always documented and can
differ between hospitals and patients. Signal quality may deteriorate over time,
especially during prolonged recordings.

For each de-identified patient, data are organized into separate files correspond-
ing to consecutive hourly recordings. All data are provided in Waveform Database
format, where signal traces are stored in MATLAB files (MAT v4) and metadata
in header (.hea) files. Metadata include the channels description, signal sampling
frequency, power line frequency and start/end times of the recording. For each pa-
tient, additional clinical variables are provided in a separate text (.txt) file. These
include demographic information, cardiac arrest characteristics and neurological
outcome. A detailed overview is reported in Table 2.1.

This dataset was used as part of the George B. Moody PhysioNet Challenge 2023
[81]. Of the total 1020 patients originally included, only the data from 607 patients
were made publicly available, while the remaining were retained as a hidden test
set for the challenge.

2.1.2 Dataset selection

For this work only part of the -CARE was used. Subjects with at least one
recording within 12 to 24 h after CA and duration longer or equal to 30 minutes
were considered, resulting in 511 patients. The reason behind choosing latencies in
the range of 12 to 24 h is that it has been demonstrated to have high predictive value
(subsection 1.3.4), while the second requirement was imposed to ensure a duration of
minimum 20 minutes after the application of the preprocessing pipeline. Although
the number of patients was reduced from 607 to 511 due to inclusion criteria, the
proportion of favourable (FO) and unfavourable outcomes (UO) remained nearly
unchanged, with 38% FO and 62% UO in the selected cohort, compared to 37% FO
and 63% UO in the original dataset. Hospital C, corresponding to Massachusetts
General Hospital, was not represented in the reduced dataset, as none of its patients
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Table 2.1: Description of clinical variables provided for each patient in the -[CARE
dataset.

Variable Description

Patient Patient identification number

Hospital Hospital identifier (A-F)*

Age Patient’s age in years

Sex Biological sex (Male or Female)

ROSC Time in minutes from CA to ROSC (NaN if not available)

True = out-of-hospital cardiac arrest
False = in-hospital cardiac arrest

OHCA

True = initial rhythm was shockable

Shockable rhythm False = non-shockable

TTM Target temperature in °C (33, 36 or NaN if not applied)

Good = CPC 1-2
Poor = CPC 3-5

CpPC Cerebral Performance Category (ordinal scale from 1 to 5)

Outcome

! A=Medisch Spectrum Twente and Rijnstate Hospital; B=Erasme Hospital; C=Massachusetts
General Hospital; D=Brigham and Women’s Hospital; E=Beth Israel Deaconess Medical Center;
F=Yale New Haven Medical Center.

met the inclusion criteria.

To select one recording per patient without introducing bias, recordings were ran-
domly sampled within each latency window while maintaining the original FO/UO
proportion from the reduced dataset. The preprocessing strategy, described in
detail in the next section, was applied to each selected signal. If, after preprocessing,
one or more of the following criteria were not satisfied, a new signal was randomly
selected from the remaining available recordings:

e minimum duration of 20 minutes;
e no more than 4 channels interpolated;
« acceptable signal quality (i.e. not excessively noisy or isoelectric).

The automatic random selection was repeated for 3 cycles, after which manual
intervention was carried out for final adjustments. In particular, for the remaining
patients, among their available recordings, those that met the above inclusion
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criteria were selected. Despite efforts to keep the same original outcome distribution,
for some latencies the proportions are not perfectly preserved. The final dataset
included 483 patients with 39% FO and 61% UO. A summary of the dataset
demographic information, stratified by outcome, is reported in Table 2.2. As can be
observed, the mean latency for both groups is close to 18 h, which corresponds to
the central point of the 12-24 h window and indicates that a balanced distribution
was effectively maintained.

Table 2.2: Demographic and clinical characteristics of the final dataset stratified
by outcome.

Demographic FO (=188) UO (=295)
Female (%) 51 (27%) 92 (31%)
Age (y)! 58.2 + 13,5 63,2 + 159
Nmissin92 1 0

Latency (h)! 17,96 + 3,76 17,95 + 3,74
Shockable (%) 135 (72%) 104 (35%)
Nmissin92 1 0

OHCA 143 (76%) 211 (72%)

TTM 33°C, 36°C (%)

2
Nmissing

138 (73%), 22 (12%)
28

215 (73%), 28 (9%)
52

Time to ROSC (min)l 19,4 + 19,9 22,9 +£ 19
Nissing’ 131 134

CPC 1 (%) 151 (80%) -

CPC 2 (%) 37 (20%) ;

CPC 3 (%) - 18 (6%)
CPC 4 (%) - 8 (3%)
CPC 5 (%) . 269 (91%)
Hospital A 114 (61%) 117 (40%)
Hospital B 23 (12%) 71 (24%)
Hospital C 0 (0%) 0 (0%)
Hospital D 17 (9%) 35 (12%)
Hospital E 11 (6%) 38 (13%)
Hospital F 23 (12%) 34 (11%)

'Mean =+ standard deviation.
2Number of patients with missing information.
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2.1.3 EEG preprocessing

EEG preprocessing was implemented in MATLAB, partially using the FieldTrip
toolbox (release 2020-12-05) [82]. First, EEG signals were converted to microvolts
(uV'). For each channel, the header files contained information on the A/D conver-
sion, such as the gain and the baseline. The gain defines how many digital units
correspond to 1 pV', while the baseline indicates the digital value representing 0
1V. So, the formula that allows the conversion from digital to physical units is the

following;:
digital signal — baseline

signal (uV') = _
gain
After conversion, the 19 electrodes from the standard 10-20 system were extracted
and ordered to ensure coherence between patients. The resulting EEG data were
organized in a matrix with channels as rows and time samples as columns.
Subsequently, the following preprocessing steps were applied to prepare the EEG
signals for CNN input:

e Demeaning - This step consists of removing the mean value from each
EEG channel. The aim is to eliminate the direct current (DC) offset, a
constant baseline shift that can result from hardware or recording conditions.
By centering the signals around zero, demeaning ensures that subsequent
processing steps are not biased by non-physiological baseline variations.

« Band-pass filtering - To isolate EEG activity, the raw signal was band-pass
filtered between 0.1-40 Hz. Specifically, the band-pass filter was split into a
2"_order Chebyshev type I high-pass filter (with 30 dB stopband attenuation)
followed by a 4'"-order Butterworth low-pass filter. The Chebyshev Type II
was selected to ensure a steeper cutoff near 0.1 Hz compared to other filter
types. Infinite Impulse Response filters were preferred over Finite Impulse
Response due to their efficiency and ability to achieve the desired response
with lower orders and minimal delay. To prevent phase distortion, all filters
were applied in a forward and backward manner (zero-phase filtering). As a
result, the effective filter orders were 4 and 8", respectively.

» Notch filtering - A notch filter was applied to attenuate power line frequency;,
50 Hz in Europe and 60 Hz in the United States. Although this step was not
strictly necessary due to the previous 0.1-40 Hz filtering, it was still applied
to ensure the complete removal of power line artifacts.

o Down sampling - For uniformity, all EEG signals were down sampled to 200
Hz, the minimum sampling frequency across the dataset.

e Epoching - The continuous EEG signals were then segmented into 5-second
epochs, resulting in matrices of size 19x1000.
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e Manual channel and trial rejection - In this step, noisy channels and
epochs were removed, improving the global quality of the EEG signal. It
was performed using the FieldTrip function ft_rejectvisual. In particular,
various metrics were computed for each trial and channel and displayed
as scatter plots, allowing the user to manually identify and reject outliers
(Figure 2.1). The metrics considered in this process were:

— Variance measures the dispersion of the signal amplitudes around the
mean. High variance may indicate artifacts, while low variance may
suggest flat segments due to disconnected or inactive electrodes.

— Inverse variance, the reciprocal of variance; highlights flat segments or
channels.

— Minimum, mazimum, mazimum absolute value and range (max-min) help
detect abnormal and therefore unlikely physiological, peaks and troughs
in the signal.

— Kurtosis measures how much the distribution of signal amplitudes deviates
from a Gaussian distribution, indicating how likely it is that outliers are
present. Extreme values may be associated with artifacts.

— Z-value indicates the distance, in standard deviation, from the mean of the
signal distribution. Very high or very low values may indicate artifacts.

— Neighbours correlation identifies channels that have low correlation with
each of their neighbours. “Bad” channels usually have inherent noise that
is uncorrelated with others.

It is important to emphasize that rejection decisions did not solely rely on
scatter plots, but also on direct visual inspection of the EEG traces. For
instance, epileptiform activity or burst-suppression patterns may appear as
statistical outliers due to their deviation from background activity, but they
are not artifacts and should not be rejected.

« Bad channel interpolation - To ensure the same number of input channels
for every signal, the channels rejected in the previous step were interpo-
lated. The method used is the spherical spline interpolation by FieldTrip [83].
This approach reconstructs missing channels based on neighbours’ activity,
considering the head geometry and the electrode placement on a spherical
surface.

« Common average referencing (CAR) - Since the reference electrodes
were not consistently reported across all patients, all EEG signals were re-
referenced to the common average. This technique consists of computing the
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Figure 2.1: FieldTrip interface for the manual trials and channels rejection.

instantaneous mean across all channels and subtracting it from each sample,
as follows:

CAR(t) = ;f >

2SR (1) = x.(t) — CAR(L)

Cc

where z.(t) is the signal value of channel ¢ at time ¢t and N is the total
number of channels. Additionally, this method improves signal-to-noise ratio
by removing the shared noise across channels.

The choice of performing manual channel and trial rejection stems from the complex-
ity and heterogeneity of comatose patients’ EEG signals. Typical hypoxic-ischemic
brain injury patterns could easily be mistaken for artifacts by automated algo-
rithms. A commonly used technique for artifact removal in EEG is the Independent
Component Analysis (ICA), a semiautomatic method that separates statistically
independent components, allowing for artifacts removal without eliminating the
affected data portions. However, ICA may fail to reliably separate these sources
when the number of recording channels is limited, as was the case herein. Addi-
tionally, since eye blinks and movement artifacts are largely absent in the EEG of
comatose patients, manual preprocessing is considered sufficient to ensure adequate
data quality.

The final step of preprocessing was data augmentation, a set of techniques that
artificially increase the size and variability of data by generating new samples from
existing ones. This is particularly beneficial for deep learning models, which typically
require large and diverse datasets to generalize well. In this work, decimation was
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Figure 2.2: A 30-second segment extracted from the EEG of patient 681 (FO), divided into
5-second epochs, is shown at different preprocessing stages. In panel a, the raw EEG signal is
displayed. Panel b shows the signal after demeaning, band-pass and notch filtering and resampling
to 200 Hz. In panel c, the signal is shown after manual rejection of bad channels and trials,
interpolation of removed channels and CAR. In panel b, channels C4 and P4 (dashed traces)
were removed due to being isoelectric and noisy, respectively. The last two trials (highlighted in
red) were excluded due to an artifact, likely of electronic origin, which originated from P4 and
propagated to other electrodes. In panel ¢, the application of CAR notably reduced the heartbeat
artifact, especially visible in channels F8 and T4 in panel b.
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employed as a data augmentation strategy. Specifically, each clean 5-second epoch,
originally sampled at 200 H z, was split into two separate 5-second segments at 100
H 2z by selecting alternating samples: odd for one segment, even for the other. This
procedure effectively doubled the number of dataset examples. Since the signals
had already been band-pass filtered between 0.1 and 40 Hz, below the Nyquist
frequency of 50 Hz after downsampling, there was no risk of aliasing.

Each 19x500 epoch was associated with the corresponding patient label and
used as input to the CNN.

2.2 Convolutional Neural Network

2.2.1 CNN fundamentals

While a brief overview of CNNs has been already provided in the Introduction
(subsection 1.4.1), this section offers a more detailed explanation of their internal
mechanisms, in order to better contextualize the architecture adopted in this study.

As previously mentioned, what distinguishes CNNs are convolutional and pooling
layers. In convolutional layers, filters (or kernels) are small matrices that slide
over the input to perform element-wise multiplication followed by summation. The
stride defines how many positions the filter moves at each step over the input.
When convolution is performed without zero-padding, the output dimensions are
reduced; this is referred to as valid convolution. Each convolutional layer can apply
a variable number of filters, producing an equal number of feature maps. Each
filter is designed to extract different features from the input, allowing the network
to learn diverse representations. Next, an activation layer introduces non-linearity
into the network, allowing it to learn complex patterns. This is typically followed
by a pooling layer, that performs dimensionality reduction by summarizing areas
of the feature map superimposed to the moving kernel with their maximum (max
pooling) or average (average pooling). These layers can be stacked with varying
filter sizes and numbers in order to perform hierarchical feature extraction. At
the end of the convolutional and pooling stages, the feature maps are flattened
into a one-dimensional vector, which is passed to FC layers, where the actual
classification takes place. Final predictions are produced by an activation function,
which converts the CNN output into probabilities corresponding to each class.

To train and evaluate the CNN, the dataset is usually divided into three subsets:

 training set;

« validation set;

o test set.

The training process of the model begins with a forward pass, where data from the
training set is propagated through the CNN to generate a predicted probability
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distribution. At the end, the loss function computes the error between the predicted
distribution and the true distribution. The goal of training is to minimize the loss
by adjusting the kernels of the convolutional layers and the weights and biases of
the FC layers, which are randomly initialized. To determine how to update these
parameters, the network computes the gradients of the loss function: the partial
derivatives of the loss with respect to the trainable parameters of each layer, which
point toward the minimum of the loss function. This is done via backpropagation,
which exploits the chain rule to recursively compute the gradients for progressively
shallower layers. The parameters are then updated using an optimization algorithm
applied to mini-batches of data, with the step size controlled by the learning rate.
This whole process is repeated multiple times over the entire dataset, with each
complete pass referred to as an epoch.

After each epoch, the model is evaluated on the validation set, a subset of data
that is not involved in the training process. This set is used to monitor the model’s
performance, tune hyperparameters and detect overfitting. Hyperparameters are
the set of CNN parameters that are not trainable but must be defined prior to
training.

In contrast, the test set is used only after training is complete, to provide an
unbiased evaluation of how the model generalizes to unseen data.

2.2.2 CNN architecture

The CNN employed in this work is based on the architecture proposed by Pelentritou
et al. [58], which, in turn, was inspired by Schirrmeister et al. [72]. The model
is composed of three convolutional blocks followed by two fully connected layers
(Figure 2.3). The first convolutional block is specifically designed to handle EEG
signals and it is split into two layers:

o The first layer applies temporal convolution, where each kernel performs a 1D
convolution across time for each channel independently.

e The second layer performs spatial filtering, where the convolution is applied
across all channels simultaneously.

These first two layers aim to extract local temporal and global spatial information
from the EEG input, respectively, while the subsequent convolutional blocks are
designed to learn both local and global temporal modulations. This architectural
choice reflects the nature of EEG: spatially, electrodes capture mixed signals
originating from distributed cerebral sources, whereas temporally, brain activity
unfolds across multiple scales, with fast local oscillations superimposed on slower
global fluctuations [72]. No activation function is applied between these first layers
to facilitate the separate learning of temporal and spatial features.
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The activation function, applied immediately after the convolutional layers, is
the Rectified Linear Unit (ReLU) [84]. It is a simple and wide used function that
returns the input value if it is positive and zero otherwise. Then, max pooling is
performed with a kernel size of 1x3 and a stride of 3. The number of filters doubles
in each convolutional block (25, 50, 100), while the temporal filter size remains
the same (1x10), enabling the extraction of increasingly complex features from the
signals.

The classification is performed by two fully connected layers. The first layer
reduces the feature vector dimensionality and is followed by a ReLLU function. The
final layer outputs a single value, to which a sigmoid activation function is applied
to map the result into a probability score between 0 and 1, where 1 represents
favourable outcome while 0 unfavourable outcome. The loss function adopted in this
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Figure 2.3: Schematic representation of the CNN used in this study.

work is the Binary Cross-Entropy (BCE), a specialized version of the cross-entropy
loss tailored for binary classification problems [64]. Cross-entropy quantifies how
unexpected the true label, drawn from the data distribution, is with respect to the
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predictions made by the distribution modelled by the network. It is given by:

n C 1 n C .
Lo =Y Yiclog—=—=>> i logfi.

i=1 ¢=0 i,c i=1 ¢=0

where n is the number of examples in a batch, ¢ refers to the possible class labels
of input data, y to the true label and ¢ to the model predicted probability.

In the binary case, where ¢ € {0, 1}, since the probability of one class is the
complement of the other, the cross-entropy loss becomes:

n

Lpcp=—>_[ylogg+ (1 —y)log(1—7)]

=1

where y is the true label and ¢ is the predicted probability of the positive class.

After computing the BCE loss, optimization is carried out using the Adaptive
moment estimation (Adam) algorithm [85]. It calculates two statistics of the
gradients of the loss function: the first and second moment. The first moment
estimates the direction of the gradient via an exponential moving average, which
is a weighted average that gives more importance to the current batch’s gradient
compared to previous ones. Using the average instead of the current value alone
allows for a more stable estimation of the direction toward the loss minimum. The
second moment is the exponential moving average of the squared gradients. It
represents the variability of the gradients and indicates how much the network
should move in that direction. This allows the learning rate to be dynamically
adjusted: if gradients are large or unstable, the update step is reduced; if they are
small or steady, it is increased. The two moments are updated at each training
step using the following formulas:

my=Fr-m1+ (1 —51)- g vy =Ba-vi g+ (1= Ba) - g7

where m is the first moment, v the second, g the gradient and ¢ the number of
iterations.

Both moments are bias-corrected (see formulas below) because their moving
averages are initialized at zero, causing early updates to be misleadingly small.
As the number of iterations increases, the effect of correction diminishes, since

limy o (1 - 55,2) — 1.
oy . (%
1— 8 1— 4

The corrected moment values are then used to update the trainable parameters of
the network:
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where ¢ is a small value that prevents division by zero and stabilizes the update.
The hyperparameters (31, 52, € and the learning rate o must be predefined; in this
work they were set to 81 = 0.9, £ = 0.999, € = le ® and a = 5e™".

In order to enhance training stability and improve generalization, batch normal-
ization and dropout were integrated into the network architecture.

Batch normalization normalizes the output of each convolutional layers before
non-linearity, bringing it to zero mean and unit variance across a batch of data.
This strategy helps to mitigate the so-called internal covariate shift, the change
over time in the distribution of layer outputs caused by the continuous update of
network parameters during training [86].

Dropout consists in randomly disabling a fraction of neurons during each training
iteration. This prevents the network from becoming too reliant on specific units,
thereby improving its ability to generalize and reducing the risk of overfitting. In
the CNN adopted in this work, a dropout layer is placed between the two fully
connected layers, with a dropout rate set to 0.5.

2.3 Training and evaluation

2.3.1 CNN training and evaluation workflow

The workflow followed for the present thesis is shown in Figure 2.4.

The dataset, composed of 483 patients, was split into two subsets: a training
set representing the 80% of the population (386 patients) and a test set comprising
the remaining 20% (97 patients). Stratification by outcome was applied in order to
avoid bias and ensure that the original UO/FO distribution was preserved across
subsets.

To select the best preprocessing configuration and tune the hyperparameters, a
5-fold repeated cross-validation (CV) was employed on the training set. K-fold CV
is a common ML strategy in which the training set is divided into k smaller subsets
(folds); in each iteration, the model was trained on k — 1 folds and validated on
the remaining fold. The overall performance of the network was then computed as
the average of the performance across all iterations. This procedure allowed for a
more robust and stable evaluation of the CNN, reducing its dependency on any
specific data splits.

To further enhance the assessment reliability, cross-validation was repeated
twice, with different fold splits for each repetition. Although a greater number
of repetitions would provide an even more stable performance estimation, two
repetitions were considered sufficient to balance computational cost and reliability.
Stratification by outcome was applied during all CV splits as well. As a result, a
total of 10 distinct training sessions were conducted (5 folds x 2 repetitions).
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After selecting the best signal preprocessing configuration and tuning the CNN
hyperparameters, which will be discussed in detail in the following sections, the
model was retrained on the entire original training set, without performing any
validation. Finally, the performance of the CNN was evaluated on the unseen data
of the held-out test set. The following training settings were adopted to ensure both

Preprocessin Hyperparameters Dataset
P ’ yperp (483 patients)

l

s N s N
5-fold repeated Training set Test set
cross-validation (386 patients) (27 patients)

A\ J A J

—

Best parameters Retrained model
\ J \. J

4[ Final evaluation }7

Figure 2.4: Workflow scheme

efficiency and reproducibility. Before each training session in the cross-validation
procedure, the model weights were reset to their initial random state to ensure
independence among runs.

To avoid overfitting, which occurs when a model fails to generalize because it
fits too closely to the training data, early stopping was applied. In particular,
after each epoch, the validation loss was monitored and training was stopped if no
improvement was observed for 10 consecutive epochs; otherwise, training continued
up to a maximum of 100 epochs. The batch size was set to 64.

To prevent that performance changes are attributable to internal sources of
randomness within the network, a fixed random seed was set for all Python
libraries involved. Additionally, the benchmark mode was disabled and deterministic
algorithms were enforced to guarantee that identical inputs always led to identical
outputs during training and evaluation.

All CNN training and evaluation procedures were implemented in Python 3.9
using the PyTorch framework (version 1.12). Training was performed on an NVIDIA
Tesla V100 GPU with CUDA 11.6, provided by the Legion cluster of HPC@QPoliTO
(Politecnico di Torino Academic Computing Service) [87].
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2.3.2 Evaluation metrics

The network classified each epoch independently, providing a probability value
between 0 and 1. To obtain the patient-level prediction, the probabilities assigned to
their epochs were averaged. However, these probability scores have to be converted
into binary form before computing evaluation metrics. The discriminative threshold
for each iteration of the CV was computed through the Receiver Operating Char-
acteristic (ROC) curve derived from the corresponding validation set (Figure 2.5).
This graph shows the performance of a binary classifier as the decision thresholds
varies: sensitivity (true positive rate) is plotted on the vertical axis and 1-specificity
(false positive rate) on the horizontal axis. Considering survival as the positive
class, sensitivity (also known as recall) indicates the model’s ability to correctly
classify patients with a favourable outcome, whereas specificity reflects the ability to
correctly identify patients with an unfavourable outcome. An ideal classifier would
have a ROC curve reaching the top-left corner of the plot, where both sensitivity
and specificity are 100%. The bisector represents the performance of a random
classifier. Therefore, a good classifier should have a ROC curve situated between
the diagonal and the top-left corner, the closer to the ideal point, the better the
performance.

In this study, the cut-off threshold was selected as the one that maximizes the
geometric mean (G-mean) of sensitivity and specificity, ensuring a balanced and
impartial evaluation of the model’s performance:

threshold = max(\/sensz'tivity - speci ficity )

An important metric is the area under the ROC curve (AUC), which summarizes
the model’s ability to distinguish between the two classes: the closer the AUC
value is to 1, the higher the discriminative power of the classifier. An AUC value
of 0.5 indicates random guessing. It is the only metric computed in this study that
does not depend on the threshold definition.

Unlike AUC, all the following evaluation metrics rely on binarized predictions:
the probabilities above the threshold were set to 1, while those below to 0. These
metrics are derived from the confusion matrix, which summarizes the classification
results into four categories: true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN). TP and TN refer to patients correctly classified
as having a favourable and unfavourable outcome, respectively, whereas FP and
FN refer to patients incorrectly classified as having a favourable and unfavourable
outcome, respectively.

Sensitivity and specificity were computed as follows:

L TP . TN
Sensitivity = TP ©+ FN Speci ficity = TN © FP
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Perfect classifier
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Figure 2.5: Example ROC curve. The dashed red line represents a random classifier, while
the green one a perfect classifier. The shaded blue area corresponds to the AUC. The black star
marks the point of maximum G-mean, used to select the optimal threshold.

Given the imbalance in the dataset (more unfavourable outcome patients compared
to favourable ones), balanced accuracy was preferred over standard accuracy to
quantify the model’s performance. Indeed, in imbalanced datasets, standard
accuracy can be biased toward the majority class. On the other hand, balanced
accuracy, defined as the average of sensitivity and specificity, offers a more realistic
assessment by giving equal weight to both classes:

1 < TP TN )

B = -
alanced accuracy 2 \TP T FN + TN+ FP

Additionally, two metrics related to sensitivity and specificity were computed: the
negative predictive value (NPV) and positive predictive value (PPV), also known as
precision. They reflect the reliability of predictions: NPV indicates the likelihood
that a patient with a negative test result had UO, while the PPV quantifies the
probability that a patient classified as positive had FO. These two metrics are
defined as:

_ N ppy—_ 1P

TN + FN TP + FP
Finally, the Matthews Correlation Coefficient (MCC) was evaluated. This metric
is considered one of the most suitable to measure the quality of classification,
particularly for imbalanced datasets, because it takes into account all the elements
of the confusion matrix. The MCC ranges from -1 to +1, where +1 indicates perfect
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classification, 0 indicates random predictions and -1 indicates inverse classification.
It quantifies the alignment between the predictions and the true labels through the
following formula:

(TP-TN)— (FP-FN)

MCC =
/(TP + FP)-(TP+FN)- (TN + FN) - (TN + FP)

All the above-described metrics were computed independently for each CV run
on the corresponding validation set. Summary statistics, namely the mean and
standard deviation across iterations, were then calculated to provide a robust
estimation of the model’s performance.

Moreover, validation loss and AUC, together with training loss, were monitored
during training epochs to ensure no overfitting occurred.

Model performance was primarily evaluated using AUC, as it provides an
overall measure of its discriminative ability regardless of the classification threshold.
Sensitivity was considered the second most important metric, given the critical
implications of false negatives in the context of comatose patient outcome prediction
after CA. Indeed, the misclassification of a patient with a favourable prognosis as
having a poor one could potentially lead to premature WLST, resulting in severe
ethical and clinical consequences.

2.4 Optimization

2.4.1 Preprocessing configuration selection

The selection of the best preprocessing pipeline configuration was designed as a
cascading process: at each step, specific aspects of the preprocessing pipeline were
evaluated and, whenever one of the tested options led to improved performance, it
was retained for the subsequent steps.

The signal features, for which the impact on the model’s performance was
analysed, included:

e Duration — Three recording lengths were considered: 5, 10 and 20 minutes.
Although many patients had more than 20 minutes of clean recording available,
the signals were cropped to 20 minutes to ensure the same number of epochs
for all patients, as 20 minutes was the minimum recording length across the
dataset. This approach helped avoid introducing bias, since more stable and
accurate predictions would be expected for patients with a higher number of
epochs over which predictive performance is averaged. The 5-minute length was
included as it is commonly used in EEG studies for post-cardiac arrest outcome
prediction. Finally, the 10-minute segment served as an intermediate duration
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to explore performance between shorter and longer recordings. For each
patient, a random 5-minute, 10-minute and 20-minute segments was selected
from the available recording. This ensured that the model was not biased
by any specific portion of the signal and that the analysed recordings were
representative of the overall EEG activity. The random selection was different
for each duration, and based on the best-performing duration, the same
approach was maintained in subsequent steps, ensuring that any differences in
performance were not due to different data portions.

o Data augmentation - An ablation study was performed by removing data
augmentation after selecting the optimal signal duration, in order to assess
its individual contribution to model performance. Without augmentation the
epochs size increased from 19x500 to 19x1000.

 EEG montage - Two different montages were analysed: the unipolar montage
with common average referencing and the longitudinal bipolar montage. The
latter was included as it is commonly used in pattern analysis following post-
cardiac arrest brain injury. The longitudinal bipolar montage is particularly
effective in detecting localized abnormalities, as it highlights the differences in
electrical activity between adjacent electrodes. To obtain the bipolar montage,
the unipolar electrodes with common average referencing were subtracted from
each other (Figure 2.6), as this process effectively cancels out the common
reference and isolates the differential signal between the electrodes.

Figure 2.6: Longitudinal bipolar montage. In this configuration the number of resulting channels
is 18 (taken from [88]).

« Filtering bandwidth - Four bandwidths were included: 0.1-40 Hz, 0.5-40
Hz, 0.1-35 Hz and 0.5-35 Hz. The orders and the types of filters were kept
constant, as described in the subsection 2.1.3, only the frequency limits were
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changed. Although the tested frequency ranges are relatively close, adjusting
the lower and/or upper cut-off frequencies can help reduce low-frequency
artifacts or high-frequency noise, potentially impacting the quality of the EEG
signal used for classification.

e Normalization — CNNs can benefit from dataset normalization, even though
it may not always be beneficial depending on the context. Normalizing
data changes its distribution, potentially smoothing out differences. In the
context of outcome prediction in comatose patients, inter-subject differences
are likely informative for the network; therefore, subject-level normalization
was discarded. However, reducing variability between channels within the same
subject could not remove discriminative information. Two standardization
methods were considered: z-score normalization and robust scaling. They
were applied to each channel as follows:

T = u a:robust _ Le — medmn(xc)
c . c IQR

c

where z. is the channel signal p. the mean of the channel, o. the standard
deviation and IQR, the interquartile range. Robust scaling, which uses the
median and interquartile range, is less sensitive to outliers compared to z-score
normalization, which is more effective when applied to Gaussian distributions.

To determine whether the observed performance differences between configurations
at each step were statistically significant, a paired Wilcoxon signed-rank test
(o = 0.05) was applied [89]. The test was performed separately for each evaluation
metric by comparing, fold by fold, the results obtained from the two configurations
across the repeated 5-fold CV.

2.4.2 Bayesian optimization

Once the best-performing preprocessing pipeline configuration was identified, the
subsequent step involved optimizing the CNN using Optuna, a library for automated
hyperparameter tuning. Its goal is to identify the combination of parameters that
maximizes or minimizes a specific evaluation metric related to model performance.
Optuna’s default optimizer is Tree-structured Parzen Estimator (TPE), a form of
Bayesian optimization. TPE is based on constructing two separate probabilistic
models: one for hyperparameter configurations that have shown promising results
and another for those that have performed poorly. The initial iterations are used
to collect data necessary for estimating these distributions and rely on randomly
selected parameter combinations. In later stages, the selection of new configurations
is guided by their statistical similarity to those that previously yielded good

42



Materials and Methods

performance. This adaptive approach effectively balances the exploitation of
promising regions of the search space with the exploration of less-known areas.

In this study the metric that was maximized was the mean AUC, since it reflects
the discriminative ability of the model without depending on the threshold.

For computational reasons, in this phase, the number of the 5-fold CV repetitions
was decreased from 2 to 1. The number of iterations was set to 50, where the first
10 were used for the probabilistic models’ construction.

Given the limited computational resources, the optimization focused exclusively
on hyperparameters expected to have the most significant impact on model perfor-
mance. For the CNN architecture, the optimization involved the initial number
of filters, which was subsequently doubled at each deeper convolutional layer, as
well as the number of neurons representing the output size of the first FC layer
and input size of the second layer. For the training process, the hyperparameters
selected for optimization included the learning rate, dropout rate and weight decay.

Weight decay is a regularization technique that helps prevent overfitting and
improves generalization by penalizing large weights. In this phase, the AdamW
optimizer was used, which applies weight decay directly to the weights at each
update step, rather than adding it to the loss function as performed in the more
classical weight decay with Adam [90]. This approach avoids modifying the gradients
themselves and therefore interfering with adaptive moment estimation, making the
regularization effect more consistent and stable. The weights update rule becomes:

Ty
Or1 =0, — « <\/@_t+€+ A 9t>

where ) is the weight decay coefficient, controlling the strength of the penalty
applied to large weights.

It is important to note that, in the initial configuration, Adam optimizer was
used without any weight decay (A = 0), making it equivalent to AdamW.

Table 2.3: Hyperparameter search space and corresponding sampling methods

Parameter Tested values Sampling method
N. filters {16, 25, 32} Categorical

N. neurons {128, 256, 512, 1024} Categorical
Learning rate [le™" - 1e77] Continuous (log)
Weight decay [le™" - 1e™] Continuous (log)
Dropout percentage [0.2 - 0.6] (step=0.1) Continuous (linear)
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The starting value and the values tested are reported in Table 2.3. This shows
that the exploration ranges were generally centred around the initial values to
evaluate the impact of both greater and smaller values on CNN performances,
with the exception of weight decay, which had previously been fixed to zero.
Architectural parameters were defined as categorical, meaning they were sampled
from predefined discrete sets. In contrast, training parameters were treated as
continuous. Specifically, learning rate and weight decay were sampled from a
logarithmic scale, whereas dropout rate was sampled from a linear scale with a
fixed discretization step of 0.1. The choice of a logarithmic scale for exploring the
learning rate and weight decay allowed for an equal probability of selecting values
across different orders of magnitude. This is particularly important due to the
model’s sensitivity to these hyperparameters: even small changes in them can lead
to significant variations in performance.

As outlined above, due to the high computational cost, optimization phase was
performed using a 5-fold CV with a single repetition. However, to ensure a fair
comparison with the initial configuration the best combination obtained was finally
reassessed using a 5-fold CV with 2 repetitions.

To assess whether the performance improvement was statistically significant,
a paired Wilcoxon signed-rank test (o« = 0.05) was applied, as done for the
preprocessing optimization [89]. These steps allowed for a more robust and unbiased
evaluation of the gains achieved through hyperparameter tuning.

2.5 Final training and testing

The final phase of this study involved retraining the model using the optimized
hyperparameter configuration on the entire available training dataset (i.e., all
5 folds), in order to maximize the amount of data used during training before
evaluating the model’s performance on the unseen test set.

Since no validation set was available in this phase, early stopping could not be
applied. Instead, the number of training epochs was fixed to the mean of the epochs
at which each run of the repeated CV achieved the best validation performance,
using the selected preprocessing pipeline and optimized parameters.

After preprocessing the test data using the optimized preprocessing pipeline, it
was fed into the trained CNN. The performance metrics were computed using a
decision threshold set as the average of the optimal thresholds obtained across the
cross-validation runs.

Finally, to qualitatively assess the model’s decision-making process, the Grad-
CAM technique was applied on selected epochs from the test set to investigate the
EEG portions most relevant in model’s prediction.
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2.5.1 Grad-CAM

The interpretability of CNN models is of paramount importance to build trust
in artificial intelligence, especially in the context of critical care, such as neuro-
prognostication following cardiac arrest. Understanding which patterns primarily
drive the model’s decisions helps to demonstrate their consistency with expert
encephalographers’ knowledge, while also enabling the identification of potential
errors or uncovering novel insights that may not emerge from traditional analyses.
Unravelling the black-box nature of deep learning models represents a key step
toward their future integration into clinical practice.

Techniques such as Grad-CAM represent a powerful means of visually interpret-
ing the decisions made by CNNs [91]. Specifically, Grad-CAM generates a heatmap
from the final convolutional layer, highlighting the portions of EEG signals the
model mainly relies on to make its predictions.

To compute this image, the feature maps A& i) resulting from the last convolu-
tional layer are first extracted. Here, k denotes the channel index, and (i, j) the
spatial location. The resolution of the heatmap is determined by the size of the
feature maps (Z = HxW).

Next, the gradients of the logit (the model’s raw output before the sigmoid
activation) with respect to the feature maps are computed as 8?‘? -. They represent
how strongly the class score is influenced by each activation at each spatial location
in the feature maps.

The global average of the gradients is then computed for each feature map,
quantifying its importance for the final prediction:

dy
8A§ﬁ ;

R
QZEZZ

i=1j=1

The heatmap is then obtained by computing the weighted sum of the feature

maps using the weights o*, combining their contributions into a single spatial
representation:

L(i, 5) :Za’“-Aﬁj
k

To retain only the features that contribute positively to the class score and discard
those that suppress it, a ReLLU function is applied to the heatmap. Since Grad-CAM
is class-specific, and the network’s output corresponds to the positive class, the
heatmap for the negative class can be obtained by applying ReLLU to the negated
heatmap:

L*(i,5) = maz(0, L(i,j))
L™ (i,7) = max(0, —L(i,7))
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Finally, for visualization purposes, the two heatmaps were normalized with respect
to their global maximum and their temporal dimension was upscaled to match
the original input length (500), ensuring consistency with the input signal. By
comparing the signal epochs with the corresponding heatmaps, it was possible
to find out which EEG portions supported classification for both favourable and
unfavourable outcomes.
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Results

3.1 Optimization results

Before presenting the results obtained, a general overview of the model training
behaviour is provided.

During CV runs, training and validation losses, along with the validation AUC,
were monitored across epochs. An example of the learning curves is shown in
Figure 3.1. The model typically converged smoothly, with early stopping preventing
overfitting by halting training based on the validation loss. These trends were
consistent across runs, confirming the stability and effectiveness of the training
setup.
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Figure 3.1: Example of training dynamics for one cross-validation run.
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3.1.1 Evaluation of EEG preprocessing strategies

As previously described, the process of selecting the optimal preprocessing strategy
was conducted in a sequential manner.

Table 3.1: Performance metrics (mean + standard deviation) and computational
time for different EEG recording durations.

Metric 5 min 10 min 20 min
AUC 0.832 £ 0.055 0.839 &+ 0.059 0.844 £+ 0.060
MCC 0.517 4+ 0.124 0.512 £+ 0.129 0.527 £+ 0.118
Balanced Accuracy 0.755 £+ 0.061 0.756 4+ 0.063 0.766 4 0.058
Sensitivity 0.693 £+ 0.102 0.723 + 0.076 0.760 £+ 0.055
Specificity 0.816 £ 0.087 0.788 + 0.090 0.771 £+ 0.092
PPV 0.716 £+ 0.098 0.694 + 0.095 0.689 £ 0.091
NPV 0.810 £ 0.053 0.818 4+ 0.048 0.834 4+ 0.038
Computational time 1h 50 2h 20 3h 20

*Statistically significant difference in AUC between 5 and 20 minutes (p — value=0.049).

The first step focused on assessing the impact of EEG recording duration on
model performance. The tested lengths included 5, 10 and 20 minutes. Table 3.1
shows the resulting averages and standard deviations of the evaluation metrics
obtained on the validation folds during CV.

Since different random seeds were used to extract epochs for each recording
duration, the comparable performance across durations suggests that the model
is not sensitive to the specific portions of the EEG used during training. Across
different durations sensitivity was consistently lower than specificity, as was PPV
compared to NPV. This is potentially a consequence of the dataset imbalance, with
more patients having an unfavourable outcome.

The 20-minute duration yielded better performance in nearly all metrics, partic-
ularly in AUC (0.844 £ 0.060) and sensitivity (0.760 £ 0.055). Furthermore, the
larger number of epochs per subject in the 20-minute condition (480 vs. 240 in 10
min and 120 in 5 min) contributes to reduced or comparable standard deviation,
suggesting slightly more stable and reliable performance estimates.

The paired Wilcoxon signed-rank test revealed a statistically significant difference
in AUC between the 5-minute and 20-minute durations (p—value=0.049), indicating
an improved ability to distinguish between outcome classes with longer recordings.
However, no significant differences were found for the threshold-dependent metrics,
implying that, once an optimal threshold is applied, the practical benefit of using
longer durations may be limited.
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The corresponding computational time for each configuration is also reported,
showing an expected increase with longer input duration. However, since the
additional computational cost remained relatively limited and acceptable, the
20-minute duration was considered a suitable choice for the subsequent steps in
the analysis.

In the next step, after the choice of a 20 minute recording duration, the impact
of data augmentation on performance was evaluated. The comparison between
the CNN results with and without augmentation is presented in Table 3.2. The
small difference observed in the evaluation metrics suggests that data augmentation
is not strictly necessary in this case, likely due to the dataset being sufficiently
large for the model to effectively learn. The paired Wilcoxon signed-rank test
confirmed that no statistically significant differences were present between the two
configurations. Nevertheless, the model trained with data augmentation achieved a
slightly higher AUC (0.844 vs. 0.835), indicating a modest improvement in patient
outcome prediction. Interestingly, performance variability remained similar with
augmentation, despite its typical association with increased robustness. Given the
small numerical advantage in key metrics and the theoretical support for data
augmentation in deep learning, this strategy was retained in subsequent analysis
steps.

Table 3.2: Performance metrics (mean + standard deviation) with and without
data augmentation.

Metric Augmented Non-Augmented
AUC 0.844 + 0.060 0.835 £ 0.053
MCC 0.527 + 0.118 0.523 + 0.112
Balanced Accuracy 0.766 = 0.058 0.762 = 0.054
Sensitivity 0.760 £ 0.055 0.753 £ 0.076
Specificity 0.771 £ 0.092 0.770 £ 0.107
PPV 0.689 £ 0.091 0.690 £ 0.098
NPV 0.834 £ 0.038 0.832 £ 0.043

Next, the unipolar montage with CAR and the longitudinal bipolar montage
were compared. As reported in Table 3.3, the unipolar montage yielded slightly
better performance across all metrics, with the exception of specificity and PPV.
This suggests that slow and spatially distributed cerebral activity, better preserved
in the unipolar montage and attenuated in the bipolar configuration, may play
an important role in the prognostication of post-anoxic brain injury patient out-
come. Of note, the variability across CV iterations was comparable between the
two montages. Among the metrics, only AUC showed a statistically significant
improvement for the unipolar montage (p — value=0.027), reinforcing its potential
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advantage in capturing discriminative features.

Table 3.3: Comparison of performance metrics (mean £ standard deviation)
between unipolar (CAR) and longitudinal bipolar montages.

Metric Unipolar (CAR) Longitudinal Bipolar
AUC* 0.844 £+ 0.060 0.826 £ 0.049
MCC 0.527 £ 0.118 0.504 £ 0.119
Balanced Accuracy 0.766 £ 0.058 0.748 4+ 0.053
Sensitivity 0.760 £ 0.055 0.710 £ 0.079
Specificity 0.771 £ 0.092 0.787 £ 0.111
PPV 0.689 £ 0.091 0.700 £ 0.118
NPV 0.834 + 0.038 0.812 £ 0.043

*Statistically significant difference in AUC (p — value=0.027).

The impact of the EEG filtering bandwidth on CNN performances was next
evaluated. The frequency ranges tested were 0.1-40 Hz (baseline), 0.1-35 Hz,
0.5-40 Hz and 0.5-35 Hz. Results are reported in Table 3.4. While most perfor-
mance metrics remain relatively similar across the different filtering configurations,
AUC and sensitivity showed more variation, offering insight into the possible role of
different frequency components. In particular, reducing the low-pass cut-off from 40
Hz to 35 Hz did not substantially affect performance, suggesting that frequencies
above 35 Hz may carry limited discriminative information. In contrast, increasing
the high-pass cut-off to 0.5 Hz led to a more noticeable decrease in AUC and
sensitivity, suggesting a potential contribution of very low-frequency components to
the model’s predictive performance. This observation is consistent with the previous
findings on montage configuration and aligns with existing literature highlighting
the role of EEG background activity in neuroprognostication after cardiac arrest.
The 0.1-40 Hz configuration showed a statistically significant difference in AUC
compared to both 0.5-35 Hz and 0.5-40 H z, suggesting that the exclusion of very
low-frequency components may negatively affect the model’s ability to discrimi-
nate between classes. However, no statistically significant difference was observed
between 0.1-35 Hz and the two 0.5 Hz high-pass configurations. This indicates
that the contribution of frequencies below 0.5 Hz, while potentially beneficial,
may not be consistently strong across all frequency ranges tested. These results
suggest a possible, but not definitive, added value of preserving very low-frequency
information.

The configuration with both a higher low-frequency and a lower high-frequency
cut-off (0.5-35 Hz) produced mixed results. Overall, the broader frequency range
appeared slightly more favourable in terms of class separability and was therefore
retained in the final configuration.
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Table 3.4: Performance metrics (mean + standard deviation) across different
filtering bandwidths.

Metric 0.1-40 Hz 0.1-35 Hz 0.5-40 Hz 0.5-35 Hz

AUC* 0.844 = 0.060 0.837 £ 0.057 0.824 £ 0.060 0.826 £ 0.058
MCC 0.527 £ 0.118 0.513 £ 0.106 0.515 £ 0.106 0.523 £ 0.103
Balanced Acc. 0.766 £+ 0.058 0.758 £ 0.056 0.757 £ 0.052 0.760 + 0.051
Sensitivity 0.760 £ 0.055 0.763 &= 0.118 0.740 £ 0.079 0.730 £+ 0.071
Specificity 0.771 £0.092 0.753 & 0.089 0.774 £ 0.112 0.791 4 0.106
PPV 0.689 = 0.091 0.671 &£ 0.075 0.690 & 0.093 0.702 £ 0.087
NPV 0.834 £ 0.038 0.839 £ 0.061 0.826 £ 0.039 0.823 £ 0.035

*Statistically significant difference in AUC between 0.1-40 Hz and both 0.5-40 Hz
(p — value=0.002) and 0.5-35 Hz (p — value=0.010).

Finally, the effect of data normalization was explored. Table 3.5 reports the
evaluation metrics obtained for the non-normalized dataset, as well as following
z-score normalization and robust scaling. Statistical testing did not find any
significant difference between the three configurations for any of the evaluated
metrics. Nevertheless, both z-score and robust scaling lead to higher specificity and
related metrics compared to the non-normalized case, indicating a better ability to
correctly identify negative outcomes. Importantly, AUC and sensitivity remained
slightly higher without normalization, suggesting that non-normalized input may
better preserve features useful for detecting positive cases. Overall, performance
variability across CV runs was comparable across the three strategies.

Table 3.5: Performance metrics (mean + standard deviation) for different nor-
malization strategies.

Metric Non-normalized Z-score Robust scaling
AUC 0.844 + 0.060 0.836 = 0.051 0.831 + 0.039
MCC 0.527 + 0.118 0.555 + 0.067 0.550 + 0.085
Balanced accuracy 0.766 + 0.058 0.774 £+ 0.040 0.771 4+ 0.040
Sensitivity 0.760 = 0.055 0.737 + 0.121 0.733 £ 0.076
Specificity 0.771 = 0.092 0.812 4+ 0.088 0.809 + 0.109
PPV 0.689 + 0.091 0.727 + 0.071 0.727 £+ 0.090
NPV 0.834 + 0.038 0.836 + 0.052 0.830 + 0.034

Despite the marginal differences across configurations, the analysis enabled the
identification of a slightly more robust pipeline. The final preprocessing pipeline
included 20-minute EEG recordings, in a unipolar montage, filtered between 0.1
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and 40 H z, without normalization and with data augmentation.

For the selected preprocessing pipeline, the ROC curves obtained on each
validation set of the CV, along with the mean ROC curve and the corresponding
standard deviation are shown in Figure 3.2. The AUC value for each fold is also
reported. The mean ROC and AUC and their variability indicate good classification
performance and reasonable consistency across different CV runs. While a few
folds (e.g., fold 4 and fold 0) yielded slightly lower AUC values, the majority
showed a high discrimination performance, suggesting robustness of the selected
preprocessing pipeline.
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L ROC fold 7 (AUC = 0.80)
e ROC fold 8 (AUC = 0.90)
, ROC fold 9 (AUC = 0.81)
’ ——- Random classifier
e —— Mean ROC (AUC = 0.84 = 0.06)
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Figure 3.2: Validation ROC curves for each cross-validation fold, computed with the selected
preprocessing pipeline. The black line shows the mean ROC, with standard deviation represented
by the gray area.

With regards to the optimal thresholds across folds, they showed moderate
consistency, with an average of 0.438 + 0.077 (mean + standard deviation). While
some variability is expected due to differences in data distribution across folds, the
decision boundary remained relatively stable overall.

3.1.2 Evaluation of Bayesian optimization

Bayesian optimization was employed as the final step of hyperparameter tuning.
While major improvements were not expected in light of earlier findings, this step
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aimed to systematically explore the potential of alternative CNN hyperparameter
combinations to improve performance or increase robustness.

The graph in Figure 3.3 shows the history of optimization process across the
50 trials. The objective value, the mean AUC over the 5-fold CV with a single
repetition, increased from about 0.83 to almost 0.86.
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® Obijective Value
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0.845
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0.835
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0.825
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Figure 3.3: CNN hyperparameter optimization history plot

Figure 3.4 shows the distribution of AUC values across the exploration ranges of
each tuned CNN hyperparameter during the Bayesian optimization process. This
visualization provides insight into the relative influence of each parameter on model
performance.

In terms of the number of neurons in the fully connected layer (n_fc), a size of
1024 consistently yielded higher performance. Although the flattened input vector
has a size of 896, the richness and variability of the extracted features likely benefit
from a larger number of neurons, allowing for more effective representation and
combination of information.

The optimal initial number of convolutional filters (n_filter) was found to
be 16. This can be a reasonable choice in lightweight architectures, where a
small number of filters is often sufficient to capture low-level patterns, that are
progressively enriched by deeper layers. Moreover, using fewer filters reduces the
total number of parameters, which helps limit both overfitting and computational
cost.

Lower dropout rates (drop_perc) are associated with better AUC values. This
is likely due to the fact that, in simpler architectures such as the one used here, high
rates, causing the deactivation of more neurons, may remove too much information
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useful for classification, resulting in a reduction of the model’s learning ability.
The learning rate (1r) exhibited a non-linear relationship with performance.
While values in the 1077 range often resulted in relatively high AUCs, the best-
performing trials were achieved with learning rates around 1076.
For weight decay (weight_decay), no clear trend emerged. Performance ap-
peared fairly stable across a wide range of values, suggesting that this regularization
parameter had a limited effect on the current model and dataset.
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Figure 3.4: Mean AUC distribution across the exploration ranges of each tuned hyperparameter,
with each dot representing a trial. The darker the dot, the later the trial in the optimization
process.

Given the non-linear effect of the learning rate on performance, and the fact that
Bayesian optimization was performed on a single repetition, the best-performing
configurations within each of the two most promising orders of magnitude, 1076
and 1077, were re-evaluated using two 5-fold CV repetitions. In particular, trial 35,
the best performing trial from higher learning rates (AUC)eqn = 0.858), and trial
17, the best performing trial from lower learning rates (AUC),eqn = 0.853), were
selected for this evaluation.

Aside from learning rate and weight decay, the two configurations share iden-
tical hyperparameter values, as reported earlier (n_fc=1024, n_filter=16 and
drop_perc=0.2). Table 3.6 summarizes the values of the varying parameters. In
trial 17, the regularization effect of weight decay was more pronounced, as its value
was higher than in trial 35.

Table 3.6: Parameter differences between trial 35 and trial 17.

Metric Trial 35 Trial 17
Learning rate 9.75¢76 2.04e7
Weight decay 2.92¢76 1.61le~?

o4

Trial

40

30
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The evaluation metrics obtained for the two selected configurations are compared

with the pre-optimization results in Table 3.7.

Table 3.7: Performance metrics (mean + standard deviation) before and after

optimization.

Metric Pre-optimization Trial 35 Trial 17

AUC 0.844 £+ 0.060 0.844 £ 0.047 0.844 4+ 0.050
MCC 0.527 £ 0.118 0.546 £ 0.061 0.553 £+ 0.096
Balanced acc. 0.766 £ 0.058 0.772 £ 0.033 0.773 £ 0.046
Sensitivity 0.760 4 0.055 0.767 £+ 0.104 0.760 £ 0.081
Specificity 0.771 4+ 0.092 0.777 £ 0.104 0.786 4+ 0.132
PPV 0.689 £ 0.091 0.702 £+ 0.073 0.719 £+ 0.108
NPV 0.834 £+ 0.038 0.847 £+ 0.045 0.841 £+ 0.033

The tuning process yielded performance metrics similar to the pre-optimization
values, as confirmed by statistical testing which found no significant differences,
suggesting that the architecture may have reached a performance plateau. However,
given the slight improvement observed in the optimized configurations, one of them
was selected as the final model.

Trial 17 resulted in higher average performance, especially for MCC, balanced
accuracy, PPV and specificity. Variability was in most cases lower compared to in
the non-optimized case, but slightly higher than in trial 35.

However, it is worth noting, that the apparent stability of trial 35 may be due to
very fast convergence caused by a high learning rate. In each iteration of the CV,
validation loss began to increase after just 1 or 2 epochs, triggering early stopping.
This dynamic likely prevented the model from fully exploring the loss landscape,
increasing the risk of suboptimal convergence and limited generalization. For this
reason, trial 17, which underwent a more extended and consistent training process,
was selected as the final model.

3.2 Final evaluation on test set

The network with the optimized hyperparameters was retrained with the whole
available training dataset (386 patients). The total number of epochs was set to 42,
the closest integer to the average epochs at which the best validation performance
was observed across the repeated CV folds of the optimized configuration (trial 17).

Finally, the trained model was evaluated on the test set (97 patients). The
performance metrics, reported in Table 3.8, were computed placing the cut-off
threshold at approximately 0.447, the average threshold obtained across CV runs.
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Table 3.8: Performance metrics (mean + standard deviation) computed on the

test set.
Metric Test set
AUC 0.838
MCC 0.520
Balanced accuracy 0.757
Sensitivity 0.684
Specificity 0.831
PPV 0.722
NPV 0.803

The test set performance was consistent with the average CV metrics of the
selected configuration and they fell within the expected variability ranges (Table 3.7,
Trial 17). This suggests that the model is stable, did not overfit on training data
and is able to generalize effectively on unseen samples.

The corresponding ROC curve is shown in Figure 3.5. Its trajectory is regular
without abnormal fluctuations, above the random classification line and rather
symmetric, indicating a good balance between sensitivity and specificity. The
threshold falls within the steep region (FPR between = 0.1 and 0.3), where a good
trade-off between the two metrics can be obtained.

True Positive Rate

—— Classifier (AUC = 0.84)

T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 3.5: Test set ROC curve.
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Sensitivity and specificity showed the larger difference compared to the average
values across CV folds: sensitivity was slightly lower than the average of 0.760,
while specificity was slightly higher than the average of 0.786. The higher specificity
compared to sensitivity was potentially driven by the class imbalance in the dataset
which made FO patients harder for the network to predict. This is demonstrated in
Figure 3.6, which shows the distribution of the predicted probabilities of favourable
outcome for patients in the test set, stratified by outcome. FO patients exhibited
a more dispersed probability distribution, as indicated by the mean predicted
probability being close to the threshold. This contributed to a high number of false
negatives, resulting in lower sensitivity and positive predictive value. The majority
of correctly classified UO patients had very low predicted probability values, which
confirmed the higher confidence of the network in their classification. Nonetheless,
false positives, i.e., incorrectly predicted UO patients, were also observed.

Misclassified patients were not only caused by the partial classes overlap around
the threshold but also by high-confidence mistakes: patients for whom the CNN
assigned a predicted probability of favourable outcome largely different from the
ground truth. The underlying reasons for these potentially critical CNN errors will
be further explored in the next section through Grad-CAM analysis.
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Figure 3.6: Predicted probability distributions for favourable (FO) and unfavourable (UO)
outcome. The plot includes the elements of the confusion matrix: TP=26, FN=12, TN=49,
FP=10. The black horizontal lines indicate the mean predicted probability for each class, while
the dashed line marks the decision threshold.
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3.2.1 Grad-CAM analysis

To better understand the classifier’s decision-making process and verify whether the
features exploited were aligned with neurophysiologists’ expertise and not driven
by misinterpreted EEG patterns, a qualitative analysis was conducted using the
Grad-CAM visualization technique.

This analysis focused on 5-second epochs from a small subset of test set patients.
First, correctly classified subjects were examined, followed by patients that the CNN
misclassified with high-confidence. The heatmaps shown in this section highlight
which EEG portions are discriminative of FO or UO for the CNN. The colour bar
reflects the importance of each EEG region in distinguishing between FO and UO.

True negatives

Figure 3.7 shows the Grad-CAM results for patient 1002, correctly classified as
having an unfavourable outcome with a predicted FO probability of 0.08. The
EEG of this subject was characterized by a burst-suppression background.

The majority of the signal was suppressed with sudden, high-amplitude, jagged
bursts. As shown in the Grad-CAM heatmap (a), these bursts were predominantly
marked as discriminative of UO. In some cases, the slow deflection between the
burst and the suppressed segments was indicative of FO (b).

Figure 3.8 shows the Grad-CAM results for patient number 903, correctly
classified as having unfavourable outcome, with a predicted FO probability of
0.09. In this case, the EEG signal exhibited a burst-suppression background with
highly epileptiform bursts. The CNN identified the onset of the burst as slightly
indicative of FO, likely interpreting it as a possible sign of neural activity after
EEG suppression. However, the majority of the burst was strongly associated with
UO. The presence of generalized, repeated polyspike-and-wave discharges, followed
by an abrupt return to suppression, was indicative of UO for the model. This
aligns with expert clinician knowledge since epileptiform activity superimposed on
a markedly suppressed background is indicative of severely compromised cerebral
function.

Finally, the Grad-CAM heatmaps for patient number 382, correctly predicted
as having UO with a predicted FO probability of 0.06, is shown in Figure 3.9.
The observed fully suppressed background is strongly discriminative of UO, in
agreement with the guidelines upon clinical assessment.

58



Results

a UO with 0.08 predicted probability of FO
epoch predicted FO probability: 0.05

i

1s |£50 uv

b UO with 0.08 predicted probability of FO
epoch predicted FO probability: 0.09

Fpl ‘WWWWW\,\M
Fp2 M

S st

F8 1

F3

F4 1

T3 1

T4 1

C3

C4

S SRS 'y e

T6 AWVMW./J\,V\M

P3 i

P4 1

SE SRS Y Y

02 AVV—\IW\IWM\’/—/\'.\’\A/

FZ A’_MW'-\/\/\W\/

Cz+

Pz 1

_1s |£50 pv

FO

uo

Figure 3.7: Exemplar EEG epochs and corresponding class heatmaps from patient number 1002,
a 64-year-old man with an unfavourable outcome (CPC 5), recorded 16 h after cardiac arrest.
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UO with 0.09 predicted probability of FO
epoch predicted FO probability: 0.01
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Figure 3.8: Exemplar EEG epoch and corresponding class heatmaps from patient number 903,
a 85-year-old woman with an unfavourable outcome (CPC 5), recorded 18 h after cardiac arrest.

UO with 0.06 predicted probability of FO
epoch predicted FO probability: 0.06

ls |£50 pv

0.1

U0 1

0.0

Figure 3.9: Exemplar EEG epoch and corresponding class heatmaps from patient number 382,
a 74-year-old woman with an unfavourable outcome (CPC 5), recorded 21 h after cardiac arrest.
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True positives

EEG benign patterns will be discussed in this section by investigating true positive
patients.

Figure 3.10 shows patient number 413, with favourable outcome, correctly
classified with a predicted FO probability of 0.91, who presented a continuous theta
(~7 Hz) background without superimposed discharges. This was highlighted by
the CNN as a strong FO indicator.

A similar observation can be made for favourable outcome patient 584, shown
in Figure 3.11, with a predicted FO probability of 0.80. This patient exhibited a
continuous, well-modulated alpha background (~9 Hz).

Both examples are consistent with current literature, which regards continuous
and organized EEG activity as a marker of FO.

FO with 0.91 predicted probability of FO
epoch predicted FO probability: 0.95
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Figure 3.10: Exemplar EEG epoch and corresponding class heatmaps from patient number 413,
a b2-year-old woman with a favourable outcome (CPC 1), recorded 17 h after cardiac arrest.
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False negatives

False negatives, patients with favourable outcome incorrectly predicted as un-
favourable, are of particular interest in the context of the features exploited by
the CNN in making a wrong prediction as they may lead to an overly pessimistic
prognosis.
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FO with 0.80 predicted probability of FO
epoch predicted FO probability: 0.92
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Figure 3.11: Exemplar EEG epoch and corresponding class heatmaps from patient number 584,
a b2-year-old man with a favourable outcome (CPC 1), recorded 16 h after cardiac arrest.

0.2

Figure 3.12 shows favourable outcome patient 424, who was incorrectly classified
as UO with a predicted FO probability of 0.13. The EEG recorded 15 h after
CA showed a burst-suppression pattern characterized by prevalent suppression.
The bursts, when non-chaotic and characterized by smooth transitions back to
suppression, were marked as indicative of FO. However, the suppressed context of
these bursts led to an overall unfavourable epoch prediction. Burst-suppression is
generally considered a malignant pattern in clinical practise which can nonetheless,
improve as time after cardiac arrest passes.

Another example of a false negative prediction is presented in Figure 3.13.
Favourable outcome patient 448 was classified as having an unfavourable outcome
with a predicted FO probability of 0.07. This can be explained by the isoelectric
suppressed background, a highly malignant pattern in clinical EEG assessment,
that was also recognized as such by the CNN. The heartbeat artifact is likely the
cause of the small regular spikes that appear on the flat signal. The signal from
this 72-year-old man may evolve toward benign patterns, that after 15 h from CA
are still not visible.

Similarly, other patients who were misclassified as unfavourable outcome patients
exhibited suppressed or discontinuous background.
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FO with 0.13 predicted probability of FO
epoch predicted FO probability: 0.24
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Figure 3.12: Exemplar EEG epoch and corresponding class heatmaps from patient number 424,
a 20-year-old man with a favourable outcome (CPC 2), recorded 15 h after cardiac arrest.
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Figure 3.13: Exemplar of EEG epoch and corresponding class heatmaps from patient number
448, a T2-year-old man with a favourable outcome (CPC 1), recorded 15 h after cardiac arrest.
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False positives

Of equal importance is the investigation of false positives since such errors in
prediction may lead to inappropriate communication with patient relatives or
delayed care.

Unfavourable outcome patient 464 is shown in Figure 3.14. The subject, classified
as FO with a predicted FO probability of 0.75, showed continuous theta background
activity without discharges.

In Figure 3.15, unfavourable patient 991 is presented. The patient was assigned
a FO with a predicted FO probability of 0.78. The EEG segment displayed
continuous generalised rhythmic theta (~7 Hz) modulated by delta (< 1 Hz),
which is clinically considered as a marker of favourable outcome.

These errors could be due to a transitory recovery, active WLST or perhaps
extracerebral causes of death that the CPC score does not explicitly account for.
Hence, the neurological prediction of the CNN seems to be coherent with clinical
markers and points to the need for case-specific investigations into the network’s
choices.

Similar to false negative, additional unfavourable outcome patients were incor-
rectly recognised as having favourable outcome. These patients showed continuous
or nearly continuous background without superimposed discharges.

UO with 0.75 predicted probability of FO
epoch predicted FO probability: 0.75
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Figure 3.14: Exemplar EEG epoch and corresponding class heatmaps from patient number 464,
a 46-year-old woman with an unfavourable outcome (CPC 5), recorded 15 h after cardiac arrest.
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UO with 0.78 predicted probability of FO
epoch predicted FO probability: 0.85
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Figure 3.15: Exemplar EEG epoch and corresponding class heatmaps from patient number 991,
a 23-year-old man with an unfavourable outcome (CPC 4), recorded 14 h after cardiac arrest.
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This analysis suggests that the CNN effectively learned the predictive patterns
typically used by clinicians during the visual inspection of the resting-state EEG to
assess neurological outcome in comatose patients after cardiac arrest. In addition
to classifying suppressed background as unfavourable and continuous background
as favourable, Grad-CAM analysis revealed that the network assigned different
relevance to bursts depending on their characteristics, suggesting that it may
distinguish between subtypes of burst activity rather than treating all bursts
uniformly. Consulting a clinical expert could provide further insights into the
features that drive these distinctions.

More generally, it seems that mistakes were caused by factors other than the
incorrect attribution of prognostic value to EEG patterns. Instead, they might
reflect the presence of confounding factors such as extracerebral causes of death,
early EEG assessment before potential recovery, WLST, sedation or TTM.
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Chapter 4

Discussion

4.1 Summary of the study and main results

This study investigated the use of a DL approach to predict neurological outcome in
comatose patients following cardiac arrest, using resting-state EEG recordings. The
employed CNN was optimized by selecting the most effective EEG preprocessing
strategy and fine-tuning its hyperparameters through Bayesian optimization.

The best-performing preprocessing strategy involved 20-minute EEG segments,
band-pass filtered between 0.1-40 H z, recorded using a unipolar (CAR) montage,
with data augmentation applied and without signal normalization.

Bayesian optimization yielded the final set of hyperparameters, which included:
learning rate = 2¢~7 (initially 5e~7), weight decay = 1.6e~> (initially 0), number
of initial filters = 16 (initially 25), number of neurons = 1024 (initially 512) and
dropout rate = 0.2 (initially 0.5). While the architecture remained structurally
similar to the original CNN, these adjustments reflect a refinement of its capacity
and regularization properties.

During the optimization phase, the model showed stable performance, achieving
a mean AUC of 0.844 + 0.050 on the validation sets of the 5-fold CV. More
importantly, a similar AUC value of 0.838 was obtained on the independent test
set, supporting the generalizability of the model.

Beyond predictive accuracy, this work attempted to improve the interpretability
of the model’s predictions. Grad-CAM, a visualization technique, was applied
to highlight the EEG portions with the highest contribution to the network’s
predictions. The resulting heatmaps showed a correspondence with clinical prog-
nostic EEG markers, suggesting that the model was able to identify physiologically
meaningful patterns rather than relying on spurious EEG portions.

Although the different optimization steps did not lead to a substantial per-
formance improvement, the model showed stable and consistent results across
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the tested configurations. In critical clinical cases, such as outcome prediction of
post-anoxic patients, the ability of a model to maintain consistent performance
across varied conditions may be more valuable than marginal gains in accuracy.

The obtained performance is consistent with previous studies using the same
multicentric dataset in the 12-24 h window after cardiac arrest, although based on
different methodological approaches [71], [92].

Studies with a EEG-based classification design more similar to the present work
obtained slightly higher AUC values, ranging from 0.88 to 0.92 [58],(65],[68],[70].
These studies were usually based on smaller datasets, often collected from fewer
centres, which may have contributed to more optimistic performance estimates. In
contrast, the present work relies on a larger and more heterogeneous dataset, which
likely introduces greater variability but also makes the obtained performance more
representative of real-world clinical conditions. This highlights the robustness and
potential clinical relevance of the proposed approach.

4.2 Clinical integration

The present work adds to the growing literature confirming the potential of DL
techniques as a promising complementary tool to visual EEG interpretation for
outcome prediction after cardiac arrest. These methods offer fast and objective
assessments and can be informative of both favourable and unfavourable outcome,
unlike the majority of existing tests [59]. Despite these promising results, several
challenges must be addressed before these approaches can be integrated into clinical
practice.

First, generalizability remains a key concern and further validation across
multiple hospitals is needed to account for variability in EEG acquisition protocols
and intensive care clinical practices.

Another challenge is the limited explainability of deep learning algorithms.
Methods such as Grad-CAM, as demonstrated herein, can enhance transparency by
highlighting the EEG portions that most influenced each prediction. This technique
could enable clinical neurophysiologists and neurologists to assess, on a case-by-case
basis, whether a given prognosis is based on physiologically meaningful features or
non-specific EEG activity. Such transparency could improve trust in automatic
methods and facilitate their adoption as clinical decision-support tools.

Additionally, due to differences in outcome distributions between patient pop-
ulations, defining a fixed classification threshold can be challenging and context-
dependent. Therefore, in future clinical applications, the network’s output should
be treated as a probability rather than a binary decision, allowing clinicians to
exploit the full granularity of the model’s predictive performance.

Finally, it is worth emphasizing, that neuroprognostication after cardiac arrest
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should not solely rely on resting-state EEG evaluation but it should form part of a
multimodal assessment including EEG reactivity, clinical examination, biomarkers
and imaging [93].

4.3 Limitations and future directions

This study has some limitations which should be discussed. First, the EEG prepro-
cessing step involving the removal of artifacted channels and trials was performed
manually. This approach introduces subjectivity and reduces the reproducibility
of this work’s findings. A full-automated and standardized preprocessing pipeline
would instead provide a more robust solution for future applications. Moreover,
artifacted channels were interpolated, leading to a partial loss of the original in-
formation contained in the signal. Nonetheless, keeping noisy channels in the
input data for the CNN would likely result in unsatisfactory model training and
ultimately, misclassification of patient outcome.

In addition, only one 20-minute EEG recording was considered per patient,
providing a limited look into the brain activity within the 12-24 h period after
cardiac arrest. While this choice was motivated by previous literature, it does not
exploit the potential richness of information derived from the temporal evolution
of brain activity upon the progression of the comatose state. Indeed, recent
literature highlights how changes in the resting-state EEG over the course of the
injury strongly correlate with clinical outcomes [71]. In light of this, a promising
future direction for this work could involve the use of models capable of analysing
temporal sequences of EEG data, such as recurrent neural networks (RNNs) or long
short-term memory neural networks (LSTMs). These models could be fed with
sequential one-hour EEG recordings from the [-CARE database. This approach
could potentially offer a more dynamic and physiologically realistic view of the
post-anoxic brain recovery process in comatose patients after cardiac arrest.

4.4 Conclusion

In conclusion, this study confirms the great potential of artificial intelligence as
an objective and automated tool for predicting neurological outcome in comatose
patients after cardiac arrest. The deep learning model proposed herein demonstrated
the ability to recognize EEG patterns that are informed by expert knowledge and
known to be of prognostic relevance. However, relying on a single "snapshot" of brain
activity may not be sufficient to achieve fully reliable predictions. Incorporating
the temporal evolution of the EEG could represent a crucial step forward, allowing
for the model to capture more complex and physiologically realistic aspects of the
patient’s condition and in turn improve both performance and clinical utility.
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