
POLITECNICO DI TORINO

MASTER’s Degree in BIOMEDICAL ENGINEERING

MASTER’s Degree Thesis

EEGNet for Real-time EEG-Based Stress Analysis

Supervisors

Prof. Francesco Paolo ANDRIULLI

Prof. Sadasivan PUTHUSSERYPADY

Dott. Matteo SAIBENE

Candidate

Gioele TIRABOSCHI

JULY 2025

Abstract

Chronic stress is an increasingly critical issue for public health, but the current meth-
ods to detect it are often subjective, slow, or inadequate for a real-time application.
This project proposes a system for an automatic analysis of mental stress based on
electroencephalographic (EEG) signals, leveraging a Convolutional Neural Network
(CNN) from the EEGNet architecture [1]. The model was optimised to achieve high
performance in terms of both accuracy and processing speed, to enable real-time
integration in wearable and portable devices.

The model has been trained on the public SAM40 [2] dataset, and its hyperpa-
rameters were fine-tuned using K-fold cross-validation. To evaluate generalisation
capabilities, the model was also tested on newly collected EEG data specifically
acquired for this project across five sessions. Results show a classification accuracy of
92.73%±2.08% when all sessions were included in the training set, and 67.65%±6.76%
when only the first four sessions were used for training and the last session for testing.
This indicates that including data from the target subject’s session is essential to
improve the model’s performance.

The inference speed of the complete pipeline, including data loading, preprocessing,
preparation, and classification, was also evaluated. For each 2-second-long segment,
the system required 252.7 ms ± 45.5 ms, corresponding to an Information Transfer
Rate (ITR) of 16.62 bits/min. This latency is compatible with real-time applications.
However, more than 70% of the processing time is currently consumed by the
preprocessing step, which includes Independent Component Analysis (ICA) for
artefact removal.

Future work should aim to optimise the preprocessing pipeline to reduce compu-
tational load without compromising artefact removal quality. Additionally, although
the current implementation operates offline on pre-recorded data, transitioning to an
online, real-time system represents a key next step.

Beyond stress detection, the proposed model has the potential to be adapted
to classify other cognitive states, such as fatigue, distraction, or cognitive overload.
When integrated into neurofeedback systems, it could enable real-time interventions
for self-regulation and burnout prevention, paving the way for intelligent, adaptive
tools to address mental well-being.

I

ACKNOWLEDGMENTS

I want to extend my sincere thanks to Sada and Matteo for their unwavering support
throughout this thesis, and to Professor Andriulli for accepting being my supervisor.

Table of Contents

Abstract . I

1 Introduction 1
1.1 Motivation and Public Health Relevance 1
1.2 EEG and BCI as Tools for Stress Detection 1
1.3 Limitations of Current Literature . 2
1.4 Project Objectives and Methodology 2
1.5 Thesis Structure . 3

2 Background 4
2.1 Brain and EEG signal . 4
2.2 Stress . 9

2.2.1 Neurobiology of Stress . 10
2.3 BCI . 11

3 State of the art 15
3.1 Methods for inducing stress . 15
3.2 Classification methods . 16
3.3 Literature review . 21

3.3.1 Electrodes Chosen . 21
3.3.2 Public Datasets . 22
3.3.3 Preprocessing Steps . 22
3.3.4 Accuracy Performances . 23
3.3.5 Processing Time . 24
3.3.6 Limitations of Current Research 24

4 Materials and Methods 28
4.1 Computational Setup . 28
4.2 Dataset . 29

4.2.1 Data Acquisition . 29
4.2.2 Experimental Tasks . 29

4.3 Signal Preprocessing . 31
4.4 Data Augmentation . 35
4.5 Data Preparation . 37
4.6 Architecture Used . 38

III

TABLE OF CONTENTS

4.7 Training Hyperparameters . 40
4.8 Data Collection . 41

4.8.0.1 EEG cap and Electrodes 42
4.8.0.2 Bioamplifier . 42
4.8.0.3 Software used . 42
4.8.0.4 Protocol Definition 43
4.8.0.5 New Data Processing 44

4.9 Evaluation Methods . 46
4.9.1 Classification Accuracy . 46
4.9.2 Algorithm Velocity . 46

4.10 Acknowledgements . 47

5 Results 48
5.1 Hyperparameter Optimisation via Fine-tuning and K-fold Cross-Validation

of EEGNet . 48
5.1.1 Impact of Batch Size on Testing Accuracy 48
5.1.2 K-Fold Cross Validation . 49
5.1.3 Segment Length . 51

5.2 Training and Validation Performance Analysis 52
5.2.1 Analysis of Loss Curves . 52
5.2.2 Analysis of Accuracy Curves 53

5.3 Evaluation on 10% of the Dataset . 53
5.4 K-Fold Cross-Validation on Subjects 54

5.4.1 K=5 . 55
5.4.2 K=40 . 55

5.5 EEGNet Applied on New Data . 56
5.5.1 Testing on the Data from all the Sessions 57
5.5.2 Testing on the Data from the Fifth Session 58

5.6 Velocity of the Algorithm . 59
5.6.1 ITR . 59
5.6.2 Literature Comparison . 60
5.6.3 Potential Improvement . 60

6 Discussion 61
6.1 Classifier Performance and Generalisation Limits 61
6.2 Device Limitations . 61
6.3 Ethical considerations . 62

7 Conclusion 64
7.1 Summary . 64
7.2 Limitations . 65
7.3 Future Research . 65

A K-Fold Cross-Validation Table 67

IV

TABLE OF CONTENTS

B Codes 69

Bibliography 96

Dedications 105

V

List of Figures

2.1 Human brain scheme, image taken from here. 5
2.2 EEG electrodes positioning with the 10-10 system; image taken from

here. 6
2.3 Three examples of state-of-the-art EEG devices. From left to right:

g.tec g.GAMMAsys with dry electrodes for high-density, quick setup;
Brain Products BrainCap featuring active electrodes for high signal
quality; the portable Emotiv EPOC X, ideal for everyday applications. 7

2.4 Scheme of the interconnected components in a BCI system; image
from [28]. 13

4.1 Placement of the 32 electrodes for the SAM40 data acquisition, fol-
lowing the 10-10 international system; image from [2]. 29

4.2 Examples of stress-inducing tasks: Stroop Test (left), Arithmetic Task
(middle), Mirror-Image Matching Task (right); images from [2]. . . . 30

4.3 Module of the Butterworth BPF (Left) and Notch Filter (Right) used
in the analysis. 34

4.4 Signal comparison for subject 5, channel F7. Top panel: raw signal.
Middle panel: after filtering. Bottom panel: after ICA. 35

4.5 Original signal (blue) and its linear surrogate (orange). 36
4.6 Data preparation steps from the 75-second signal to the 2-second

subsignals used as input for the classifier. 37
4.7 Flowchart with the steps of the algorithm from the preprocessing to

the classifier. 37
4.8 Comparison of ReLU (blue) and ELU (orange) activation functions.

ELU smoothly continues into negative values, while ReLU is strictly
zero for negative inputs. 39

4.9 Electrodes positioning in the EEG cap used for the data acquisition.
In green, the 16 recording electrodes, in red the reference electrode, in
white the other electrodes from the 10-20 international system, which
have not been used in this data collection. 42

4.10 OpenBCI Cyton board coupled with the Daisy module, which together
form the bioamplifier system used for EEG data acquisition. 43

VI

https://www.researchgate.net/figure/Human-Brain-Structure_fig1_343748857
https://commons.wikimedia.org/wiki/File:EEG_10-10_system_with_additional_information.svg

LIST OF FIGURES

4.11 OpenBCI GUI, showing the time-signals from the 16 channels (left),
the FFT of the 16 channels (top-right), and the networking block
(bottom-right), which allows sending the data to the LabRecorder. . 44

4.12 Experimental Setup. The subject is positioned in front of the screen
with the interfaces. The EEG cap is connected via cables to the
amplifier, which is connected via Bluetooth to the USB dongle in the
laptop. 45

4.13 Example of the four tasks in the protocol. In the top-right corner of
each interface, the countdown before the next interface appears. . . 45

5.1 Training and Validation Loss (left) and Accuracy (right) as a Function
of Training Epoch. 52

5.2 Test accuracies for each subject in the K=40 cross-validation, illus-
trating the variability of the model’s performance across individual
subjects. In yellow, the subjects who performed in the range mean ±
standard deviation. In red, the subjects with lower values. In green,
the subjects with higher values. 56

5.3 Percentage accuracies of the model over 40 trials, testing on the data
from the fifth session. 58

VII

List of Tables

3.1 Overview of EEG Features Used for Stress Classification in ML algo-
rithms. 17

3.2 Comparison of ML and DL for EEG-based Stress Classification. . . . 21
3.3 Overview of Key Public Open-Access EEG Stress Datasets. 22
3.4 Literature Review (1/2); * indicates multiclass classification (number

of class in brackets). 26
3.5 Literature Review (2/2); * indicates multiclass classification (number

of class in brackets). 27

4.1 EEGNet architecture Parameters Summary. 40
4.2 Training hyperparameters and their values. 40

5.1 Average ± standard deviation testing accuracy of EEGNet across
different batch sizes. 49

5.2 Top 8 hyperparameter configurations from 5-fold cross validation,
ordered by mean validation accuracy µ. 50

5.3 Accuracy % by Segment Length (s). 51
5.4 Test Accuracies on 10% Held-Out Dataset for Batch Sizes 32 and 64.

Respective Mean and Standard Deviation are: 91.13% ± 2.04%, and
90.29% ± 2.10% . 54

5.5 Optimised parameters and their value. 54
5.6 Test Accuracies for K=5 Cross-Validation. 55
5.7 Accuracy % for ten runs varying the kurtosis values. Kurtosis threshold

of 8 led to an average accuracy of 90.41% ± 1.55%, while a kurtosis
threshold of 12, to an average accuracy of 92.73% ± 2.08% 57

A.1 Hyperparameter configurations ranked 1-40 from 5-fold Cross-Validation,
ordered by mean validation accuracy µ. 67

A.2 Hyperparameter configurations ranked 41–96 from 5-fold cross valida-
tion, ordered by mean validation accuracy µ. 68

VIII

Acronyms

ADC Analog-Digital Converter.
AI Artificial Intelligence.
ApEn Approximate Entropy.
AR Auto Regressive.

BCI Brain-Computer Interfaces.
BLSTM Bidirectional Long Short-Term Memory.
BPF Band Pass Filter.

CAR Common Average Reference.
CNN Convolutional Neural Network.

DL Deep Learning.
DNN Deep Neural Network.
DT Decision Trees.
DWT Discrete Wavelet Transform.

ECG Electrocardiogram.
EEG Electroencephalogram.
ELU Exponential Linear Unit.
EMG Electromyography.

FFT Fast Fourier Transform.
fMRI functional Magnetic Resonance Imaging.
FT Fourier Transform.

GSR Galvanic Skin Response.

HPA Hypothalamic-Pituitary-Adrenal.
HRV Heart Rate Variability.

IFFT Inverse Fast Fourier Transform.
ICA Independent Component Analysis.

IX

Acronyms

ITR Information Transfer Rate.

LDA Linear Discriminant Analysis.
LPF Low Pass Filter.
LR Logistic Regression.
LSL Lab Streaming Layer.
LSTM Long Short-Term Memory.

MI Motor Imagery.
ML Machine Learning.
MLP Multi Layer Perceptron.

NN Neural Network.
NIRS Near Infrared Spectroscopy.

PCA Principal Component Analysis.
PFC Prefrontal Cortex.

ReLU Rectified Linear Unit.
RNN Recursive Neural Network.

SCWT Stroop Colour Word Test.
SDCAN Symmetrical Deep Convolutional Adversarial Net-

work.
SGD Stochastic Gradient Descent.
SMO Sequential Minimal Optimization.
SNR Signal-to-Noise Ratio.
SSVEP Steady-State Visually Evoked Potentials.
STFT Short-Time Fourier Transform.
SVM Support Vector Machine.

VGG Visual Geometry Group.
VR Virtual Reality.

WHO World Health Organization.

X

Chapter 1

Introduction

1.1 Motivation and Public Health Relevance

Chronic stress represents an increasing problem for public health. However, the
available methods for detecting it are still mostly subjective, slow, or not suitable
for real-time applications. It is then necessary to develop an objective, fast, and
non-invasive system that can detect stress when it manifests itself.

Stress is a determinant factor in many physical and mental pathologies, such as
cardiovascular diseases, anxiety, and depression [3, 4]. Since the COVID-19 pandemic
began, the rise of remote work has led to a significant increase in stress-related
illnesses. Furthermore, the increasing concern about irreversible climate change, the
coming of new wars, and world instability did nothing more than generally enhance
preoccupation and stress.

According to the World Health Organisation (WHO), stress-related disorders are
responsible for more than 1 trillion dollars per year in productivity loss [5]. This
figure underscores the immense economic burden of chronic stress, highlighting not
only the direct costs of healthcare and treatment but also the indirect losses derived
from reduced output, absenteeism, and impaired cognitive function in the workforce.
This colossal financial drain on the global economy emphasises the urgent need for
effective stress detection and management strategies, as investments in this area
could yield substantial returns in both public health and economic prosperity.

The possibility to detect stress early and in real-time would allow timely inter-
ventions, improving quality of life. A real-time stress monitor could alert a driver to
take a break, or notify a student to pause before reaching a burnout, or it could be
integrated in a workspace environment to adapt task difficulty based on cognitive
load.

1.2 EEG and BCI as Tools for Stress Detection

It is known that stress affects brain signals by modulating its activity in specific
frequency bands. By studying these variations, it’s possible to get insights to
classify mental states as stressed or relaxed [6]. Recent evolution in Brain-Computer

1

Introduction

Interfaces (BCI), systems that can connect the human brain to external devices, and
Electroencephalography (EEG), a non-invasive brain signal acquisition technique
with a high temporal resolution, have made it possible to directly monitor brain
activity for these goals.

1.3 Limitations of Current Literature

Literature proposed numerous approaches based on Machine Learning and Deep
Learning algorithms to classify stress from EEG signals. These models are very
effective on the EEG data, often achieving accuracies higher than 90% (see Sec.
3.3.4). However, the vast majority of the studies do not focus on real-time analysis.
Traditional pipelines rely on extensive preprocessing, including manual Independent
Component Analysis (ICA) and filtering, which are difficult to automate and are
usually more precise than the automatised algorithms. Furthermore, studies often
work with computationally heavy models, usually difficult to apply in real-time.
Then, the models are usually tested on test sets from the same dataset used for the
training. In this way, they consist of recordings of the exact same type and acquisition
conditions as the training data, limiting the generalisation to new subjects. In the
end, the articles analysed use private datasets, making it difficult to replicate the
studies.

1.4 Project Objectives and Methodology

In this project, an EEG-based stress classifier based on Convolutional Neural Networks
(CNN) will be developed and evaluated, exploiting the EEGNet architecture [1],
which has never been used in stress analysis before. The main goal is to optimise
the model in terms of velocity and accuracy, to get a reliable net with inference
times compatible with real-time usage. This way, the algorithm might be applied
in everyday wearable or mobile devices to detect and intervene in high-level stress
states. The model is first trained on a public dataset, the SAM40 dataset [2], and
then it is tested on new EEG data, acquired specifically to evaluate the capacity of
the model to work on a completely different dataset.

The classifier achieved great performance both during the training and during
the testing, except in the experiments involving the testing on subjects not present
in the training set. The results suggest that, to achieve high accuracy, the classifier
still requires data from the tested subject in the training set, indicating limited
generalisation capability.

Nevertheless, the results show that the use of CNN in stress analysis is a promising
path for real-life contexts, such as wearable devices or an adaptive system for mental
health. In particular, the EEGNet model, even though it had not been used before
in stress analysis, was found to be particularly fit for the task. Its convolutions
use different kernel sizes, and this allows it to find patterns both in time, if a
one-dimensional kernel is applied, and space, by using bidimensional kernels.

2

Introduction

Beyond stress detection, the methodology developed in this project opens the
door to broader applications in cognitive monitoring. Through slight adaptations,
it might be extended to classify other mental states, such as fatigue, distraction,
or cognitive overload. Additionally, by integrating the model in a neurofeedback
framework, it might allow real-time intervention related to self-regulation, focusing
improvement, or burnout prevention. This leads to an intelligent future system that
will be able to dynamically respond to cognitive and emotive users’ needs.

1.5 Thesis Structure

The thesis includes the following chapters:
Chapter 2 presents theoretical bases, including an overview of the human brain,

EEG characteristics, stress and its impact, and principles of BCI.
Chapter 3 describes the state-of-the-art in EEG stress detection, including stress-

inducing techniques and classification methods.
Chapter 4 illustrates the materials and methods used: computational setup,

dataset, preprocessing techniques, model architecture, new data collection, and
evaluation techniques.

Chapter 5 reports the experimental results, including the fine-tuning of the
EEGNet’s parameters, the model’s final accuracies, and the evaluation on the new
dataset.

Chapter 6 critically discusses the results and the limits of the work, concluding
with ethical considerations related to the study.

Chapter 7 provides a conclusion of the project, suggesting possible future devel-
opments.

3

Chapter 2

Background

This chapter lays out the theoretical background, essential to better understand the
study proposed in the paper. It will start by detailing the human brain, describing
its structure and functions. Then, the discussion will move to the EEG signal, a
powerful non-invasive method for recording brain activity, enabling the analysis of
cognitive and emotive states, such as stress response. A central focus will be on
stress, defining its nature, how it can be classified, and its effects on human health.
The chapter will conclude with an introduction to BCIs, systems that enable direct
communication between the brain and external devices.

2.1 Brain and EEG signal

The human brain is an extremely complex organ, responsible for the regulation of
the cognitive, emotional, and physiological processes. It consists of approximately
86 billion neurons [7] that communicate through electrical and chemical signals,
forming complex networks that are the foundation of all cerebral functions. Among
the various techniques available for studying brain activity, EEG has emerged as
one of the most widely used methods, due to its non-invasive nature, high temporal
resolution, and ability to capture neural dynamics in real-time.

This section gives an overview of the structure and functions of the brain, the
principles of EEG signal acquisition, and its applications in stress analysis.

Structure and Function

As shown in Fig. 2.1, the human brain is anatomically divided into distinct regions,
each contributing to different cognitive and physiological functions. The frontal lobe,
placed in the anterior part of the cortex, is mainly associated with executive functions,
to decisional process, and voluntary movement control. Next to it, the parietal lobe
plays a crucial role in the processing of sensory input and spatial orientation. The
temporal lobe, positioned laterally, is essential for auditory tasks, such as language
comprehension and memory. The occipital lobe, positioned at the posterior end of
the brain, is focused on the visual processing [8]. In particular, the prefrontal cortex

4

https://hms.harvard.edu/news/new-field-neuroscience-aims-map-connections-brain

Background

Figure 2.1: Human brain scheme, image taken from here.

in the frontal lobe is associated with EEG activity linked to stress, reflecting its role
in stress responses [9].

Below the cerebral cortex, the cerebellum, found inferior to the occipital lobe, is
fundamental for motor coordination, equilibrium, and fine regulation of voluntary
movements. The brain stem, comprising structures such as the midbrain, pons, and
medulla oblongata, connects the brain and spinal cord, regulating the vital autonomic
functions, like breathing, and heart rate [10].

Deeper structures such as the limbic system, which includes the amygdala and
hippocampus, are crucial for emotional processing and memory formation. In the
same way, the hypothalamus, a central regulator of the endocrine system, is responsible
for homeostatic processes, including the stress response through the hypothalamic-
pituitary-adrenal (HPA) axis. These subcortical structures interact extensively with
the cortical regions to regulate cognition, emotion, and physiological stability [11].

Neuronal activity in these regions generates electrical potentials that can be
measured using EEG. When neurons communicate, they produce synchronised
electrical discharges known as brainwaves, which vary in frequency and amplitude
depending on the brain’s state. These brainwaves are categorised into several bands,
each associated with different mental states and functions:

• Delta waves (0.5–4 Hz), which are predominant during deep sleep.

• Theta waves (4–8 Hz), associated with drowsiness, meditation, and memory
consolidation.

• Alpha waves (8–12 Hz), which are present during relaxed wakefulness and
closed-eye states.

• Beta waves (12–30 Hz), linked to active thinking, focus, and stress.

• Gamma waves (30–100 Hz), which are involved in higher cognitive processes
and information integration.

5

https://www.researchgate.net/figure/Human-Brain-Structure_fig1_343748857

Background

Understanding these brainwave patterns is essential for interpreting EEG signals
and identifying neural correlates of stress. Among these, beta, gamma and alpha
waves are particularly relevant for stress detection. Increased beta activity, especially
in the frontal and central regions, has been associated with a higher cognitive load
and stress responses. For instance, studies have shown that elevated beta power in
areas like Fz (mid-frontal) and F3 (left frontal) is indicative of mental effort and
stress during demanding cognitive tasks [6]. This increase in beta activity reflects
enhanced cortical arousal and information processing related to the perceived stressor.
In the same way, increased gamma activity can point to hyper-excitation, or excessive
cognitive effort, which might lead to stress states. On the contrary, stress has also
been linked to a reduction in alpha power, because these waves are usually associated
with relaxation. Therefore, the analysis of the balance between these bands can
provide useful insights regarding stress levels and their neural underpinnings [12].

EEG Signal Acquisition

EEG is a non-invasive technique that measures electrical activity on the scalp using
electrodes positioned in specific locations following standardised systems such as
the 10-20 or the 10-10 international systems (see Fig.2.2). This system ensures a
coherent positioning of the electrodes across different studies, thereby allowing for
reproducible results. The electrodes detect voltage fluctuations generated by the
summation of post-synaptic potentials in large groups of neurons. These signals are
then amplified, filtered, and digitised for analysis.

Figure 2.2: EEG electrodes positioning with the 10-10 system; image taken from
here.

One of the main advantages of EEG is its high temporal resolution, enabling the
capture of neural activity in milliseconds. This makes EEG particularly suitable for
studying dynamic processes like stress responses, which could occur rapidly and vary
over time. However, EEG also has some limitations, such as a low spatial resolution
due to the blurring effect of the skull and scalp, as well as susceptibility to artefacts
from muscular activity, eye movements and environmental noise. Advanced signal

6

https://commons.wikimedia.org/wiki/File:EEG_10-10_system_with_additional_information.svg

Background

Figure 2.3: Three examples of state-of-the-art EEG devices. From left to right:
g.tec g.GAMMAsys with dry electrodes for high-density, quick setup; Brain Products
BrainCap featuring active electrodes for high signal quality; the portable Emotiv
EPOC X, ideal for everyday applications.

processing techniques, such as ICA and other Machine Learning (ML) algorithms,
are often employed to mitigate these challenges and extract meaningful information
from EEG data.

State-of-the-Art EEG Devices

State-of-the-art EEG devices represent a technological frontier in brainwave acquisi-
tion. These modern devices can have a really high channel density, allowing for a
high spatial resolution by better capturing neural activity. A key innovation is the
integration of dry electrodes, which completely remove the need for conductive gel.
This notably reduces preparation time, increases the subject’s comfort, and makes
the EEG more accessible for application outside of clinical spaces.

Many cutting-edge devices are now portable and wireless, facilitating research and
the monitoring of EEG signals in every natural environment. This has opened up
new possibilities for studying cognition, sleep, stress, and performance in a real-world
context.

Examples of these EEG caps and systems include systems like the g.tec g.GAMMAsys
with its high channel count and dry electrodes options for quick setup (on the left
in Fig.2.3), the BrainCap series from Brain Products (in the middle, in Fig. 2.3),
known for its high-density active electrodes, providing exceptional signal quality and
spatial resolution, and the increasingly popular wearable solutions such as those
from Emotiv; for instance, the Emotiv EPOCH X (on the right in Fig.2.3) uses
fewer electrodes, mainly in frontal and temporal areas, and is very practical for its
portability and its potential in all-day-life applications.

Furthermore, electronic advancement led to a higher Signal-to-Noise Ratio (SNR)
and higher signal quality. These improvements are making EEG a more and more ver-
satile and powerful tool not only for clinical research, but also for real-life applications
such as BCIs, neurofeedback and well-being monitoring.

7

Background

EEG Applications in Stress Analysis

As previously stated, EEG has been widely used in stress research due to its ability
to detect real-time changes in cerebral activity related to stress. Studies have
demonstrated that stress alters the power and connectivity of specific brainwave
bands, particularly in the frontal and temporal regions. For example, increased
beta activity in the prefrontal cortex has been linked to heightened stress levels,
while lower alpha activity is often associated with impaired relaxation, and cognitive
overload [12].

Recent advancements in EEG technology, combined with ML approaches like
CNNs, have further enhanced the capacity to detect and classify stress states. For
example, researchers have developed models which use EEG data to differentiate
between stress and non-stress conditions with high accuracy. These models are based
on characteristics such as spectral power (the strength of brain waves at different
frequencies), coherence (the degree of synchronized activity between different brain
regions), and asymmetry ratios (differences in brain activity between the left and
right hemispheres), which provide insights about neural mechanisms underlying stress
[13].

EEG-based BCI systems have shown promising capacity in real-time monitoring
and intervention. For example, neurofeedback techniques use EEG signals to provide
users with real-time feedback about their cerebral activity [14], enabling them to
learn self-regulation strategies to manage stress. Such applications highlight the
potential of EEG as a tool for personalised stress interventions.

Challenges and Future Directions

Despite its many advantages, EEG-based stress analysis has still to face many chal-
lenges. One major obstacle is the inter-individual variability of the EEG patterns,
which could make it difficult to generalise results between populations. Furthermore,
while advanced signal processing techniques (such as ICA or Principal Component
Analysis) are employed to counteract common EEG limitations like artefact contami-
nation and inherent low spatial resolution, these methods are often computationally
expensive and do not always achieve complete artefact removal.

Future research should focus on addressing these challenges, developing faster
and more robust algorithms for artefact removal, improving the EEG spatial resolu-
tion through advanced techniques of source localisation, and integrating EEG with
other modalities, such as the functional Near-InfraRed Spectroscopy (fNIRS), or
physiological sensors (e.g. heart rate variability). Additionally, longitudinal studies
are needed to better understand how stress-related EEG models evolve with time
and in response to interventions.

8

Background

2.2 Stress

In recent years, stress has emerged as a significant public health issue, particularly
in light of the numerous societal disruptions, including the COVID-19 pandemic.
The rise of remote work in daily life, the reduction of human interactions, and the
growing uncertainty about global safety (wars, climate change, among other factors)
contributed to an increase in stress levels among the global population. As people
spend more time in isolation, often working at desks for many hours per day, chronic
stress has emerged as a major challenge for public health [15, 16]. This section
provides an overview of stress, its physiological and psychological mechanisms, its
effects on health and the importance of early detection and intervention.

Definition and Mechanisms of Stress

Stress is scientifically defined as the natural response of the body to challenges or
demands, also called stressors [17]. This response can be manifested at a physical,
emotional or psychological level, and is essential to help the subjects adapt to
changing environments. The physiological stress response is primarily mediated
by the hypothalamic-pituitary-adrenal (HPA) axis, which triggers the release of
stress hormones such as cortisol, adrenaline, and noradrenaline [18]. These hormones
prepare the body for a rapid reaction, enhancing the heart rate, the blood pressure,
and activating energy reserves. This reaction is known as fight-or-flight, and is a
survival mechanism that individuals use to effectively respond to perceived threats.

Types of Stress: Eustress and Distress

Stress is not intrinsically harmful, and can be classified into two different types:
eustress and distress [18, 19, 20]. Eustress refers to a positive form of stress that
improves cognitive performance, concentration, and motivation. It usually manifests
during short-term challenges that lead to personal growth, higher productivity, and
resilience. For instance, eustress could appear during an exam at university, increasing
how focused students are, helping them answer the questions correctly, or in athletic
competitions, sharpening the performance, or even in a life-threatening situation in
an unknown environment, triggering alertness. On the contrary, distress describes
the negative effects of excessive and prolonged stress, which might drastically reduce
cognitive functions, alter sleeping patterns, and contribute to long-term health
complications. Understanding the distinction between these types of stress is crucial
for developing effective strategies to address this issue.

Effects of Chronic Stress on Health

When the stress response is activated too frequently or is prolonged, it might lead
to significant health consequences [21]. Chronic stress is strongly linked to the
development of mental health disorders, such as anxiety and depression, as well as
physical conditions including cardiovascular disease, immune system dysfunction,

9

Background

and gastrointestinal issues [3, 4]. Prolonged exposure to stress hormones, especially
cortisol, might have a harmful impact on various bodily systems, like cancer and
other chronic illnesses. Moreover, chronic stress could worsen pre-existing mental
health conditions and reduce the overall well-being of individuals.

Prevalence and Societal Impact of Stress-Related Disorders

Mental disorders, like anxiety and conditions related to stress, are some of the most
expensive pathologies worldwide for governments [22]. The WHO estimates that
depression and anxiety problems cost more than one trillion dollars to the global
economy, in productivity loss [5]. In the USA alone, even before the pandemic,
mental health cost 193.2 billion dollars per year [23].

Health costs have rapidly increased because of stress conditions, with estimates
suggesting that a substantial proportion of medical consultations are influenced
or exacerbated by stress-related disturbances [24]. In 2021, a study in the UK
revealed that anxiety and depression were the main causes of sick days in the country,
representing 50% of the job-related sick days.

Epidemiological studies showed that a significant percentage of the population
declares facing anxiety or stress problems, positioning them among the most prevalent
chronic disorders globally. Typically, anxiety disorders start manifesting early on,
under 15 years of age [4], highlighting how important it is to approach this issue
at an early stage and suppress their progression, through early intervention and
prevention strategies. Even though the diffusion of these problems is increasing, only
a small percentage of the affected subjects receive adequate help. This underscores
the immediate need for innovative approaches to detect and manage stress.

2.2.1 Neurobiology of Stress

The physiological response to stress is not solely mediated by the HPA axis, but
it deeply involves other important brain regions. The amygdala, a fundamental
component of the limbic system, plays a crucial role in the processing of fear and
emotive responses, rapidly evaluating the potential threats and starting a stress
response. The prefrontal cortex, responsible for executive functions such as the
decision-making process, usually modulates the activity of the amygdala. However,
under chronic stress, the capacity of the prefrontal cortex to control these functions
can be compromised, leading to a higher emotive reactivity. Also, the hippocampus,
vital for memory formation, is highly influenced by stress. A prolonged exposure to
stress hormones, particularly cortisol, can lead to a reduction in the volume of the
hippocampus, influencing memory and emotional resilience. Chronic stress can also
induce structural changes in the prefrontal cortex, contributing to the misregulation
of the stress response and to a higher susceptibility to mood disturbances.

10

https://www.hse.gov.uk/statistics/dayslost.htm
https://www.hse.gov.uk/statistics/dayslost.htm
https://www.who.int/news-room/fact-sheets/detail/mental-disorders

Background

The Role of Neuroscience in Stress Analysis

The increasing development of neuroscience and of biomedical research opened new
avenues for understanding and addressing stress. In particular, EEG stands out
as an ideal tool for stress detection, thanks to its direct and real-time access to
brain activity. Stress deeply influences the always-changing mental states, leading
to dynamic variations in the brainwaves, which EEG can capture because of its
high temporal resolution. On the contrary, other acquisition techniques such as
functional Magnetic Resonance Imaging (fMRI) are expensive, non-portable, or
with low temporal resolution. In a similar way, Galvanic Skin Response (GSR) and
Heart Rate Variability (HRV) provide indirect measures of the activation of the
sympathetic nervous system, while EEG provides direct information about neural
activity, cognitive and emotional states related to stress. This direct and real-time
access to brain activity makes EEG particularly efficient in analysing the cerebral
dynamics underlying stress responses, allowing for fast interventions to mitigate
them.

EEG and BCI technologies, combined with ML techniques such as CNN, offer
promising tools for early detection and intervention [25, 26, 27]. By analysing neural
activity patterns associated with stress, researchers can get more information about
its fundamental mechanisms, develop strategies to mitigate, and sometimes prevent,
its negative effects. This progress shows great potential to improve stress management,
especially chronic stress, promoting general well-being in an increasingly stressful
world.

Conclusion

Stress is a complex phenomenon that plays a pivotal role in adaptation and survival.
However, when it becomes chronic or excessive, it could lead to grave consequences
for both mental and physical health. With the increasing prevalence of stress-related
conditions, it’s crucial to develop solutions for early detection and treatment. Thanks
to advancements in neuroscience and technology, researchers are exploring innovative
solutions to address stress and its impact on health, contributing to improving the
quality of life for individuals worldwide.

2.3 BCI

BCI technology is a revolutionary advancement in the neuroscience field and in
biomedical engineering. BCIs are systems which enable direct communication between
the brain and external devices, bypassing traditional pathways like muscles and nerves.
By translating brain activity into actionable commands, BCIs have the potential
to revolutionise various domains, such as health care, assistive technology, and
stress management. This section provides an overview of the principles of BCI, its
applications in stress analysis, and the challenges associated with its implementation.

11

Background

Principles of BCI

A BCI system is typically built with five interconnected components, each playing a
critical role in the system’s functionality. These components are: signal acquisition,
signal preprocessing, feature extraction, classification, and application interface.
Together, they form a cyclic system that translates brain activity into commands or
feedback. A scheme of this system is presented in Fig. 2.4.

1. Signal Acquisition: the first component in a BCI system is the signal acquisition.
This requires neuroimaging techniques to catch the brain activity. The most
used modalities are EEG, fMRI, and Near InfraRed Spectroscopy (NIRS).
Between these, EEG is the most used, as stated before, due to its non-invasive
nature, portability, high temporal resolution, and low cost. The EEG electrodes,
positioned on the scalp, detect electrical potential generated by neural activity,
giving real-time data about cerebral dynamics.

2. Signal pre-processing: once brain activity has been acquired, it undergoes pre-
processing to remove noise and artefacts which could interfere with an accurate
analysis. This step is crucial to guarantee the quality of the data. Techniques
such as filtering, artefact removal, and signal normalisation are usually applied.
Preprocessing prepares raw signals for further analysis, improving their clarity
and reliability.

3. Feature Extraction: the next step is feature extraction, where patterns or
significant characteristics in the signals are identified. These characteristics
might include spectral power (for example, alpha, beta or gamma power),
Event-Related Potentials (ERP), or connectivity measures (e.g. coherence
between different brain regions). The choice of the characteristics depends
on the specific application of the BCI: stress analysis will require different
features than Motor Imagery (MI) or Steady State Evoked Potentials (SSVEP).
Effective feature extraction is essential to properly capture the neural correlates
of the user’s intentions or mental states.

4. Classification: after the feature extraction, the signals are sent to a classification
module, where ML algorithms interpret the data and translate it into actionable
commands. Common algorithms include Support Vector Machines (SVM),
CNNs, and Linear Discriminant Analysis (LDA). These algorithms classify the
brain signals into predefined classes, such as different mental states (e.g. stress
or relaxation), or types of movements (e.g. left arm up, left arm down). The
accuracy and the efficiency of the classification process are essential to studying
the performance of the BCI system.

5. Application Interface: the final component is the application interface, which
works as a bridge, connecting the BCI system to the user through feedback. This
interface changes depending on the application. For example, in a neurofeedback
system, the interface could give auditory or visual feedback to help users regulate

12

Background

their brain activity. In a motor control application, the interface could translate
the brain signals into commands for a robotic arm or a virtual keyboard. The
interface is what makes the BCI system practical and easy to use, enabling a
real-world implementation.

Figure 2.4: Scheme of the interconnected components in a BCI system; image from
[28].

Together, these five components form a closed-loop system, where brain activity
is always monitored, processed, and translated into actions or feedback. This loop
enables a real-time interaction between the user and the BCI system, enabling
applications like stress management, assistive technology and cognitive improvement.
The integration of these components is what makes BCIs powerful tools to understand
and exploit the brain’s potential.

Applications of BCI in Stress Analysis

BCI technology has demonstrated great potential in the field of stress detection. By
using brain activity in real time, BCIs could provide personalised insights about stress
levels in a subject, making it easier to intervene in time. For instance, neurofeedback-
based BCIs could use EEG signals to monitor stress-related patterns in the brainwaves,
such as an increase in the beta activity in the prefrontal cortex, providing users
with real-time feedback. This feedback might help people to learn self-regulation
techniques, such as deep breathing, to modulate their stress response.

Another BCI application in the field of stress is the development of adaptive
systems, which respond to the mental state of the user. For example, a working envi-
ronment connected to a BCI system could regulate the illumination, the temperature
or the task difficulty depending on the stress levels of the user, promoting a more
comfortable and productive environment. At the same time, the BCI-based Virtual
Reality (VR) environments have already been used for studying stress reduction,
allowing the users to immerse themselves in relaxing landscapes while receiving
real-time feedback about their brain activity [25].

13

Background

Ethical Considerations

The development and the implementation of BCIs raise many ethical considerations.
The main one is privacy. BCIs collect highly sensitive brain data, making it essential
to have robust security measures to prevent unauthorised access or improper use.
Another challenge is the signal interpretation, as current BCIs might not always
reflect with high accuracy the intention or the mental state of the subject, leading
to wrong interpretations. Furthermore, there is a risk of bias in ML classifiers,
where algorithms trained on non-representative datasets might lead to the creation
of systems that don’t work properly with a larger number of users. Addressing these
ethical considerations through careful design and continuous dialogue is fundamental
for the responsible development of BCIs.

14

Chapter 3

State of the art

The first BCI-based systems emerged in the late 1980s and early 1990s. Initial
developments focused on applications such as P300-based spellers [29], which used
flickering lights in a 6 × 6 matrix containing alphabetical letters and other symbols.
By analysing the P300 signal, which is a positive deflection in the EEG occurring
around 300 milliseconds after the user perceives a relevant stimulus, researchers were
able to identify the letter the user was looking at. In the last two decades, the field
of BCI in biomedical engineering has grown significantly, including applications in
neurorehabilitation [30, 31, 32, 33, 34], emotion recognition [35, 36], brain-to-brain
communication in humans [37, 38, 39], smart home control [40, 41], and even music
composition [42].

Regarding stress analysis, research has been conducted for multiple years to
classify stress states into binary (stress vs. no stress [12, 13, 25, 27, 43]) or multiclass
categories (e.g., low, moderate, and high stress [44, 45]). These advancements aim
to improve real-time stress detection and intervention strategies based on EEG and
other physiological signals.

3.1 Methods for inducing stress

To study stress responses, many experimental techniques are used to induce stress in
the subjects under controlled conditions. These stressors can broadly be categorised
into physiological stressors, which directly challenge the body’s homeostasis (e.g., a
cold pressor test where a hand is submerged in ice water), and psychological stressors,
which involve cognitive or emotional demands (e.g., public speaking, cognitive load
tasks). The most commonly used methods are the psychological stressors, presented
in the following list. Visual examples of these stress-inducing tasks will be shown in
Sec. 4.2.2, in Fig. 4.2.

• Stroop Test: this task requires the participant to name the colour of a written
word, as fast as possible. The cognitive interference arises from the incongruence
between the colour of the word and the word itself, which is the name of a
colour (e.g. the word "red" could be written with blue ink). This cognitive

15

State of the art

conflict increases the cognitive load, thereby raising the stress level, especially
when the time available to answer is limited [25, 27, 43, 46].

• Arithmetic Tasks: the participants have to solve arithmetical operations, which
involve additions, subtractions, multiplications, or divisions of numbers with
more than two digits. By increasing the difficulty of the operations, the
probability of making mistakes raises, as well as the stress level of the subject.
Time limitations make stress increase even more [25, 43, 44, 46].

• Mirror-Image Matching Task: in this test, participants have to determine as
fast as possible if two images, one next to the other, are mirror-symmetrical.
The time pressure contributes to stress induction [12, 13, 27, 43, 47].

• Stressful Driving Simulation: in this task, participants are placed in a VR
environment, where they have to drive in challenging driving scenarios. These
include high-traffic urban areas, complicated crossroads, or highway driving at
high speeds. The scenarios are designed to induce stress through time pressure,
unexpected obstacles, and the need for rapid decision-making [48].

• Music and Video Stimuli: specific auditory and visual stimuli can be used to
evoke stress-related emotions. For example, fast-paced and discordant music, or
distressing videos might activate stress-related brain activities, while relaxing
music or peaceful landscapes can induce relaxation [49, 50].

• Performance Feedback and Time Pressure: to further improve stress induc-
tion, it is possible to visualise real-time feedback, comparing the participant’s
performance against a (fictitiously) inflated average score to create a sense
of underperformance. Another way to induce stress is to create a noisy and
disturbing environment, which would make it difficult for the subject to focus.
Additionally, showing a timer with a countdown enhances the time-pressure,
especially when little time remains, increasing the participant’s stress levels
[51].

These methods, often combined, create a controlled environment that induces
stress, enabling researchers to effectively study physiological and neurological re-
sponses to stress.

It is crucial to note that, for ethical reasons, stress induction in research settings
must always be mild and reversible. Participants’ well-being cannot be overlooked,
and studies are designed to ensure that induced stress does not cause lasting harm
or discomfort.

3.2 Classification methods

To classify the signals recorded after stress-inducing tasks, two main supervised
approaches are used: Machine Learning (ML) and Deep Learning (DL).

16

State of the art

Machine Learning

ML is a subset of Artificial Intelligence (AI) that focuses on the development of
algorithms capable of learning from data and improving their performance over time
without being explicitly programmed. In the context of EEG-based stress analysis,
ML is commonly used to create predictive models that can distinguish between
different stress conditions. The accuracy of the ML model strongly depends on the
quality of the data and, most of all, on the extracted features. One of the main
advantages of ML methods is their capacity to get good results even with relatively
small datasets, if they are well-balanced and without noise, and the feature extraction
step is optimised.

The most commonly used features in the literature can be categorized into time-
domain, frequency-domain, connectivity, and non-linear features. In Tab. 3.1, a
description of the most widely adopted EEG features for stress analysis is presented.

Feature Type Feature Name Description [References]

Time-Domain

Mean Average amplitude of the EEG signal. [52]
Standard Deviation Measures the variability of the signal. [52]

Skewness Describes the asymmetry of the amplitude dis-
tribution. [52]

Kurtosis Measures the peakedness of the distribution, use-
ful for detecting transient activity. [52]

Phase Lag Quantifies the delay between signals from dif-
ferent brain regions, indicating synchronisation.
[50]

AR Coefficients Models EEG signals as a linear combination of
past values to capture temporal dependencies.
[52]

Frequency-Domain

Delta Power (0.5-4 Hz) Associated with deep sleep and unconscious
states. [13, 25, 50]

Theta Power (4-8 Hz) Related to relaxation, drowsiness, and cognitive
workload. [13, 25, 43, 50]

Alpha Power (8-12 Hz) Associated with a relaxed but alert state. [13,
25, 43, 50]

Beta Power (12-30 Hz) Related to active thinking and anxiety. [13, 25,
43, 50]

Gamma Power (>30 Hz) Linked to high-level cognitive processing and
focused attention. [13, 25, 50]

Power Ratios Ratios like Theta/Alpha and Beta/Alpha give
insights into cognitive and emotional states. [12,
13, 43, 50]

Wavelet Transform (WT) Captures transient patterns in EEG signals with
time-frequency analysis. [12]

Connectivity Coherence Measures synchrony between EEG signals at spe-
cific frequencies. [13, 50]

Asymmetry Difference in power between different electrodes
(e.g. left or right hemisphere), linked to emo-
tional states. [13, 50]

Non-linear Approximate Entropy (ApEn) Quantifies signal complexity, where higher values
indicate increased irregularity. [52]

Hurst Exponent Measures long-term memory or persistence in
time series, useful for analysing fractal structure
in EEG signals. [52]

Table 3.1: Overview of EEG Features Used for Stress Classification in ML algo-
rithms.

In literature on EEG stress analysis, several ML classifiers are commonly used,

17

State of the art

each with distinct mechanisms:

1. Support Vector Machines (SVM): SVM is a supervised learning algorithm that
aims to find the hyperplane that best separates the different classes in the
feature space. It works by maximising the margin between the closest points of
each class, called support vectors. The articles that used SVM are [13, 25, 43].

2. Sequential Minimal Optimisation (SMO): SMO is an efficient algorithm used
to train the SVM, particularly with large datasets. The training process in the
SVM implies the solution of a complex quadratic programming problem. SMO
simplifies it by dividing the problem into subproblems, which can be solved
analytically, avoiding the computationally expensive numerical optimisation.
This makes SMO particularly useful for SVM training, especially on a large
scale. The article which used SMO is [50].

3. Stochastic Gradient Descent (SGD): SGD is an optimisation algorithm used
for training models, especially with large datasets. Instead of calculating the
gradient on the whole dataset, it calculates the gradient for a random batch
of data, making the process way faster. This method is often used in both
linear and non-linear classification problems in EEG stress analysis. The article
which used SGD is [50].

4. Logistic Regression (LR): LR is a supervised algorithm used for classification,
particularly for binary problems. It predicts the probability that an observation
belongs to a specific class. To do so, it applies a sigmoid function to a linear
combination of the input variables. The sigmoid function maps the output
to the range (0, 1), interpreted as a probability. Depending on whether this
probability is higher or lower than a certain threshold, the observation is
assigned to a class or the other. The articles which used LR are [13, 50].

5. Decision Trees (DT): DT is a model that divides the data into subsets, depending
on the value of a feature. The splitting continues recursively, creating branches
that represent decisions. The final decision is made at the leaves of the tree.
DT is simple to interpret and can handle both categorical and continuous data,
making it suitable for stress classification in EEG analysis. The article which
used DT is [13].

Deep Learning

DL is a branch of ML that relies on the use of artificial Deep Neural Networks (DNN),
which are constituted of many layers of neurons. These models are particularly well-
suited for analysing complex data like EEG, given their capacity to learn hierarchical
representations. This is useful to learn progressively more abstract representations
and automatically extract the most relevant features from raw data, without any

18

State of the art

explicit human intervention. Different from traditional ML methods, which need
a manual feature selection, DL can identify the most significant features directly
from data, improving in this way the efficiency and accuracy of the model. One of
the most used DL techniques is the CNNs, particularly efficient in the time-series
signals analysis like EEG, due to their ability to detect complex spatial and temporal
features.

The main difference between ML and DL is in their complexity and in the way
in which they learn from data. While traditional ML methods are based on explicit
mathematical techniques and require a manual feature extraction, DL is based on
much more complex and deep models, which learn automatically from raw data,
eliminating the need for human intervention in the feature design. This allows DL to
face harder tasks, but it usually requires larger datasets and computational resources.

To address the need for extensive data, techniques such as data augmentation
are used to artificially increase the number of samples in the dataset by modifying
existing ones (e.g., rotating images, adding noise). Additionally, transfer learning is a
powerful countermeasure where a pre-trained model on a large, generic dataset is fine-
tuned for a specific task, significantly reducing the amount of data and computational
power required for training. GPU computing is used to accelerate the training of
these complex Neural Networks (NN).

While large datasets and computational resources are key challenges, others exist,
such as interpretability, meaning that the results coming from DL are usually a black
box, potentially leading to overfitting if not handled correctly, and the need for careful
hyperparameter tuning.

DL models have been widely used in EEG-based stress analysis because of their
capacity to automatically extract significant features from complex brain signals.
The following architectures have been explored in the reviewed studies:

• Multi-Layer Perceptron (MLP): MLP is a fully connected feedforward NN, with
multiple hidden layers, in which each neuron applies a weighted sum followed
by a non-linear activation function. MLPs are efficient for classification tasks,
but lack specialised mechanisms to capture temporal or spatial dependencies
in EEG signals. The articles which used MLP in stress analysis are [25, 50].

• Deep Neural Network (DNN): DNN is a general term for NN with multiple
hidden layers that allow a hierarchical learning of the features. They can extract
complex features from EEG data, but, to avoid overfitting, they need very large
datasets. The articles which used DNNs in stress analysis are [25, 53].

• Convolutional Neural Network (CNN): CNNs are DL models designed to extract
spatial features through convolutional layers. CNNs are frequently used in
EEG-based stress analysis, processing time-frequency representations or raw
EEG signals to detect relevant patterns for the stress classification. The articles
which used CNNs (alone or in combination) in stress analysis are [13, 27, 44,
47, 49, 53, 51].

19

State of the art

• VGGish-CNN : A variation of CNN based on the VGG (Visual Geometry Group)
architecture, originally developed for image classification. In EEG-based stress
analysis, VGGish-CNN is used to analyse spectrogram-like EEG representation,
exploiting the deep hierarchical extraction of the features for a higher accuracy.
The paper that used VGGish-CNN is [46].

• Long Short-Term Memory (LSTM): LSTM is a variant of a Recurrent Neural
Network (RNN), designed to model long-range temporal dependencies. LSTMs
are particularly adapted for EEG-based stress classification, because they can
capture the evolution in time for the brain activity, improving the classification
performances. Articles that used LSTM (alone or in combination) in stress
analysis are [12, 44, 47, 49, 51, 52].

• Bidirectional LSTM (BLSTM): BLSTM is an extension of the LSTM, which
elaborates the EEG sequences in both forward and backwards directions. In
this way, the model can learn features both from past and future timesteps.
This bidirectional processing improves the feature extraction from the EEG
signal, making BLSTM highly effective in stress classification. The articles
which used BLSTM (alone or in combination) in stress analysis are [47, 52].

• Symmetrical Deep Convolutional Adversarial Network (SDCAN): SDCAN is a
new framework of DL which integrates the feature extraction based on CNN with
adversarial learning. SDCAN uses adversarial inference to automatically capture
invariant and discriminative features from the raw EEG signals, improving
accuracy and generalisation between subjects. This approach aims to improve
the robustness of the model, particularly in cross-subject stress classification
scenarios. The article which used SDCAN in stress analysis is [45].

These DL architectures offer multiple advantages: CNNs excel in the extraction
of spatial patterns. LSTM and BLSTM capture temporal dependencies, and adver-
sarial networks improve the robustness and the generalisation in EEG-based stress
classification.

Comparison of Machine Learning and Deep Learning

Both ML and DL approaches offer unique strengths and weaknesses when applied
to EEG-based stress analysis. The choice between them often depends on the
specific dataset characteristics, available computational resources, and desired model
interpretability.

Tab. 3.2 provides a concise overview of the fundamental differences and trade-offs
between traditional ML and DL.

Unsupervised and Semi-Supervised Methods

These approaches are useful when the labelled data is scarce, and they look for
hidden patterns in unlabelled data. Some techniques are clustering (grouping similar

20

State of the art

FEATURE ML DL
Feature Extraction Manual, domain-specific Automatic, learned from data
Data Requirements Works with smaller datasets Requires large datasets
Computational Resources Less demanding (CPUs) Demanding (GPUs needed)
Complexity & Model Depth Simpler, shallower models Complex, multi-layered networks
Interpretability Generally more interpretable Often a "black box"
Performance on Complex Tasks May struggle with raw data Excels with complex raw data
Overfitting Risk Lower with small datasets Higher with small datasets

Table 3.2: Comparison of ML and DL for EEG-based Stress Classification.

patterns in the same cluster) and dimensionality reduction (to simplify complex
data). Semi-supervised methods combine a small quantity of labelled data with
many unlabelled data to improve the training, inferring labels or refining decision
boundaries.

Even though non-supervised and semi-supervised methods are theoretically well-
suited for EEG analysis because of the scarce amount of labelled data, they are rarely
applied to stress detection. This is mainly because of the difficulty in validating the
extracted patterns, which are usually abstract and cannot be directly interpreted
and verified, of the inherently subjectivity of stress, which does not have clear and
objective labels, and of the proven effectiveness of the supervised methods, which
have always achieved high performance in the field of stress classification.

3.3 Literature review

Tables 3.4 and 3.5 give an overview of published research papers in EEG stress
analysis, summarising the information displayed below.

3.3.1 Electrodes Chosen

EEG-driven stress analysis is based mainly on signals from the frontal and frontopolar
regions, which have a crucial role in the emotive regulation and cognitive control
[54]. The literature highlights the importance of frontal midline theta activity (4–8
Hz), particularly in Fz, which increases under cognitive load and stress. Additionally,
frontal alpha asymmetry (8–13 Hz), measured between the left and right prefrontal
regions, is a well-established biomarker, with reduced alpha power in the left hemi-
sphere indicating higher stress levels. Increased beta activity (13–30 Hz) in frontal
regions is also associated with heightened anxiety and arousal [43].

Beyond frontal electrodes, some studies include temporal, parietal and occipital
channels, to capture wider neural stress-related responses. In any case, the choice
of the electrodes varies with the methodology and with the study goals. The
minimal configurations often prioritise a smaller set of frontal electrodes for practical
applications [50], like wearable devices, while more complete studies use higher
density configurations, up to 64 channels [44], to improve spatial resolution. Despite
these variations, the predominance of the frontal and frontopolar channels in the

21

State of the art

literature confirms their critical role in the EEG-based stress analysis, balancing the
physiological relevance with the practical feasibility.

3.3.2 Public Datasets

The vast majority of the datasets containing raw data (not features from the data)
used to train the models are private and collected for the specific research. Only
the SEED, DEAP and SAM40 datasets are publicly available. Table 3.3 presents
the number of subjects, channels, labels (classes), and total duration per subject for
these three datasets.

Dataset Name Subjects, Channels, Duration Labels
DEAP 32, 32, 40 minutes Multiclass (Arousal, Valence)
SEED 20, 62, 60 minutes Multiclass (Positive, Neutral, Negative emotion)

SAM40 40, 32, 6 minutes Multiclass (see Par. 4.2.2)

Table 3.3: Overview of Key Public Open-Access EEG Stress Datasets.

Between these three datasets, it is important to highlight that the SAM40 dataset
is the only one which has a clear distinction between the stress and the relaxation
classes. On the contrary, DEAP and SEED present more heterogeneous classes that,
even if they are related to emotive or cognitive states, don’t always offer a clear
distinction between the stress and relaxation classes, making these datasets less
suited for research focused on these two states.

3.3.3 Preprocessing Steps

The preprocessing techniques applied in the EEG-based stress analysis are focused
mainly on artefact removal and signal standardisation. The most commonly used
methods are the Band Pass Filtering (BPF), with frequency ranges varying across
the studies (from 0-4 Hz as lower cut-off frequency, to 30-60 Hz as higher cut-off
frequency), to eliminate low-frequency drifts and high-frequency noise. Some studies
also implement the baseline correction and the Common Average Referencing (CAR)
to reduce the variability between channels. The notch filtering (at 50 or 60 Hz,
depending on the country) is usually applied to suppress the power line interference.
The z-normalisation is often used to have comparable recordings.

Among more complex techniques, the ICA is widely used to remove artefacts, in
particular eye movement, while the Principal Component Analysis (PCA) appears
less frequently. Some studies apply the Discrete Wavelet Transform (DWT) to
decompose the signals in different frequency bands, but this technique is less common
than the others.

Overall, the preprocessing choices in the literature reflect a balance between
computational efficiency and the need for a robust artefact removal, ensuring that
the EEG extracted features remain meaningful for the stress classification.

22

State of the art

3.3.4 Accuracy Performances

The performance of classifiers used in EEG-based stress analysis varies across studies.
Below, we report the results obtained by different ML and DL models.

Machine Learning Classifiers

• Support Vector Machine (SVM): Achieved accuracy rates of 88%, 96%, 94.64%,
and 95% in binary classification tasks, and 75% in three-class classification,
demonstrating its potential for reliable stress state classification.

• Sequential Minimal Optimization (SMO): Reached an accuracy of 97.53%,
highlighting its efficiency and effectiveness in handling large datasets.

• Stochastic Gradient Descent (SGD): Achieved 96.30%, showcasing the potential
of gradient-based optimization methods.

• Logistic Regression (LR): Produced accuracies of 98.77% and 84%. While its
performance is exceptional in the first case, the drop in the second suggests
high sensitivity to feature selection and data quality.

• Decision Trees: Achieved a modest accuracy of 84%, indicating that it may
not be well-suited for the complexity of EEG-based stress classification.

Deep Learning Classifiers

• Feedforward Networks: MLP achieved 92.59% and 94.64% accuracy, while
DNN achieved lower results (86.62%), showing that deeper architectures do
not always guarantee better classification unless properly optimised.

• Convolutional Neural Networks (CNNs): Standard CNNs demonstrated a wide
range of accuracy values: 64.2%, 96%, and 97.61% in binary classification, and
90.46% in a three-class setting. The VGGish-CNN model outperformed all,
achieving 99.25% accuracy.

• Long Short-Term Memory Networks (LSTMs): Performance varied significantly
across studies, with accuracy values of 86% and 70.67%, indicating that se-
quential modelling alone may not always be optimal for EEG-based stress
detection.

• Symmetrical Deep Convolutional Adversarial Network (SDCANs): Reached
only 60.52% (four-class) and 48.17% (five-class) accuracy.

• Hybrid Architectures: Many studies developed hybrid architectures, leading
to some of the best results. BLSTM-LSTM reached 82.57% to classify stress
and 86.33% to classify relaxation. CNN-LSTM, which integrates convolu-
tional feature extraction with temporal modelling, reached 96.70% and 97.8%

23

State of the art

accuracy in binary classification, maintaining above 91% for a four-class prob-
lem. CNN-BLSTM achieved 99.2%, nearly matching VGGish-CNN, suggesting
that combining CNN feature extraction with bidirectional recurrence is highly
effective for stress classification.

3.3.5 Processing Time

The vast majority of the articles in the literature reviewed do not explicitly report the
duration of the classification algorithm, since the main goal is usually to maximise
the accuracy, even by reducing the temporal efficiency of the algorithm. For instance,
in the article [46], the classification process alone required 184 seconds, reaching
an accuracy of 99.25%. This result is reached through a complex NN, based on
the VGGish model, that extracts 4096 features from each segment, which are then
elaborated by a CNN. However, it is not specified the time requested for each of
the 25-millisecond-long segments for the classification. Instead, in the article [49],
an LSTM model is used, achieving an accuracy of 97.8%. Also, in this case, the
complexity of the architecture leads to a processing time of 12.5 seconds for each
input. Added to this, a significant preprocessing time, due to complex techniques
such as the azimuthal projection. The most balanced approach between accuracy
and computational efficiency is presented in [13]. In this article, each segment is
elaborated in 327.1 ms, of which only 7.1 ms are used for feature extraction and
classification. The other 320 milliseconds are used for preprocessing. These results
highlight a critical point in the field of EEG-based stress analysis: temporal efficiency,
often overlooked to achieve higher accuracies, represents a fundamental aspect for
real-time applications, where each millisecond can make a difference.

3.3.6 Limitations of Current Research

Despite the promising results reported in the literature, multiple limitations do not
allow a diffused application and the generalisability of these EEG-based systems:

• Limited Real-Time Implementations: while the research demonstrates a really
high accuracy in offline analysis, almost no article aims to have a fast classifica-
tion algorithm. The vast majority of the presented models are really efficient,
but also very computationally expensive, making the real-time implementation
an insurmountable challenge. In addition, many articles are not completely
automatic, having manual techniques such as ICA for artefact removal.

• Scarcity of Public Datasets: as mentioned before, the vast majority of the
datasets used are not publicly available. This implies that it is difficult to
replicate and validate the proposed models, or to compare different models on
the same dataset. This means that the accuracies reported in the articles might
not be directly comparable or representative of real-world performance.

• Testing Datasets: all the models’ performances have been evaluated on the
same dataset used in the training. Other datasets with different characteristics

24

State of the art

(SNR, number of channels, and others) might not perform as good as the
original dataset. The lack of an external validation on an independent dataset
represents a significant limit for the model’s generalisability.

In conclusion, even if the progress in EEG stress analysis is notable, to be able
to pass from a research environment to a real application, it is essential to face
the challenges related to real-time implementation and robustness of the models on
unseen data. Overcoming these limitations will open the way to more reliable and
widely usable stress monitoring systems.

25

State of the art

P
ap

er
N

am
e

N
um

be
r

of
Su

bj
ec

ts
,

C
ha

nn
el

s
M

ea
su

re
m

en
ts

D
ur

at
io

n
P

ro
to

co
l

P
re

pr
oc

es
si

ng
C

la
ss

ifi
er

us
ed

A
cc

ur
ac

y
K

ey
fin

di
ng

s

EE
G

ba
se

d
St

re
ss

Le
ve

lI
de

nt
ifi

ca
tio

n
[4

3]

10
,1

4
(A

F3
,F

7,
F3

,F
C

5,
T

7,
P7

,
O

1,
O

2,
P

8,
T

8,
FC

6,
F4

,
F8

,A
F4

)

8
m

in
20

s

30
s

(S
tr

oo
p

o
M

at
h,

ra
nd

om
ly

)
20

s
R

es
t

10
tim

es

BP
F

(0
.1

6-
43

)
H

z
Ba

se
lin

e
C

or
re

ct
io

n
SV

M
88

%
St

ro
op

96
%

M
at

h
75

%
*(

3)

R
es

t:
P

α
is

hi
gh

er
St

re
ss

:
P

β
is

hi
gh

er
M

at
h

→
hi

gh
er

st
re

ss

H
um

an
st

re
ss

cl
as

sifi
ca

tio
n

us
in

g
EE

G
sig

na
ls

in
re

sp
on

se
to

m
us

ic
tr

ac
ks

[5
0]

27
,4

(A
F7

,A
F8

,T
P

9,
T

P
10

)
6

m
in

3
m

in
ba

se
lin

e
3

x
1

m
in

so
ng

s
N

ot
ch

fil
te

r
(4

5-
64

)
H

z
SM

O
SG

D
LR M
LP

97
.5

3%
96

.3
0%

98
.7

7%
92

.5
9%

En
gl

ish
m

us
ic

re
du

ce
s

st
re

ss
m

or
e

th
an

U
rd

u
m

us
ic

EE
G

-b
as

ed
m

en
ta

l
wo

rk
lo

ad
es

tim
at

io
n

us
in

g
de

ep
BL

ST
M

-L
ST

M
ne

tw
or

k
an

d
ev

ol
ut

io
na

ry
al

go
rit

hm
[5

2]

48
,1

4
(A

F3
,F

7,
F3

,F
C

5,
T

7,
P7

,
O

1,
O

2,
P

8,
T

8,
FC

6,
F4

,
F8

,A
F4

)

-

Si
m

ul
ta

ne
ou

s
C

ap
ac

ity
-b

as
ed

m
ul

tit
as

ki
ng

ac
tiv

ity
N

o
ta

sk

PB
F

(4
-3

2)
H

z
BL

ST
M

+
LS

T
M

82
.5

7%
(S

)
86

.3
3%

(R
)

T
he

pr
op

os
ed

m
od

el
cl

as
sifi

es
be

tt
er

th
an

R
F

an
d

SV
M

D
et

ec
tio

n
of

M
en

ta
l

St
re

ss
th

ro
ug

h
EE

G
Si

gn
al

in
V

R
En

vi
ro

nm
en

t
[2

5]

28
,3

2
(F

p1
,F

p2
,F

7,
F3

,F
z,

F4
,

F8
,F

C
5,

FC
1,

FC
2,

FC
6,

T
7,

C
3,

C
z,

C
4,

T
8,

C
P

5,
C

P
1,

C
P

2,
C

P
6,

P
7,

P
3,

P
z,

P
4,

P
8,

P
O

3,
P

O
z,

P
O

4,
O

1,
O

z,
O

2,
A

F7
)

18
m

in
2

m
in

(S
tr

oo
p)

4
m

in
(R

el
ax

)
3

tim
es

BP
F

(0
.2

-4
5)

H
z

IC
A

(P
ic

ar
d

m
et

ho
d)

PC
A

SV
M

M
LP

D
N

N

94
.6

4%
94

.6
4%

86
.6

2%

Be
st

re
su

lts
us

in
g

al
lb

ra
in

wa
ve

s

Pe
rfo

rm
an

ce
Ev

al
ua

tio
n

of
EE

G
-b

as
ed

M
en

ta
l

St
re

ss
A

ss
es

sm
en

t
A

pp
ro

ac
he

s
fo

r
W

ea
ra

bl
e

D
ev

ic
es

[1
3]

22
,1

9
(F

p1
,F

p2
,F

3,
F4

,F
7,

F8
,C

3,
C

4,
T

3,
T

4,
T

5,
T

6,
P

3,
P

4,
O

1,
O

2,
Fz

,C
z,

an
d

P
z)

-
M

at
h

ta
sk

s
R

es
t

BP
F

(4
-3

0)
H

z

SV
M

D
T

LR C
N

N

95
%

84
%

84
%

96
%

C
N

N
is

be
tt

er
in

ac
cu

ra
cy

an
d

co
m

pu
ta

tio
na

lt
im

e

C
og

ni
tiv

e
St

re
ss

R
ec

og
ni

tio
n

du
rin

g
M

at
he

m
at

ic
al

Ta
sk

an
d

EE
G

ch
an

ge
s

fo
llo

w
in

g
A

ud
io

-V
isu

al
St

im
ul

if
or

R
el

ax
at

io
n

[1
2]

-,
8

-
M

at
h

ta
sk

s
Fu

nn
y

vi
de

os

Pa
rk

s-
M

cC
le

lla
n

op
tim

al
FI

R
fil

te
r

(2
-4

0)
H

z
to

re
m

ov
e

ar
tif

ac
ts

LS
T

M
86

%
A

ha
pp

y
st

at
e

in
cr

ea
se

s
α

Po
we

r

M
ob

ile
EE

G
-B

as
ed

W
or

ke
rs

’S
tr

es
s

R
ec

og
ni

tio
n

by
A

pp
ly

in
g

D
ee

p
N

eu
ra

lN
et

wo
rk

[5
3]

10
,1

4
-

Lo
w

st
re

ss
(s

im
pl

e
ta

sk
s)

H
ig

h
st

re
ss

(r
isk

y
ta

sk
s)

BP
F

(0
.5

-6
0)

H
z

N
ot

ch
fil

te
r

IC
A

C
N

N
FC

D
N

N
64

.2
0%

86
.6

2%

T
he

be
st

N
N

ha
s

2
hi

dd
en

la
ye

rs
w

ith
:

-8
3

ne
ur

on
s

-2
3

ne
ur

on
s

Table 3.4: Literature Review (1/2); * indicates multiclass classification (number of
class in brackets).

26

State of the art

P
ap

er
N

am
e

N
um

be
r

of
Su

bj
ec

ts
,

C
ha

nn
el

s
M

ea
su

re
m

en
ts

D
ur

at
io

n
P

ro
to

co
l

P
re

pr
oc

es
si

ng
C

la
ss

ifi
er

us
ed

A
cc

ur
ac

y
K

ey
fin

di
ng

s

Sy
m

m
et

ric
C

on
vo

lu
tio

na
la

nd
A

dv
er

sa
ria

lN
eu

ra
l

N
et

wo
rk

En
ab

le
s

Im
pr

ov
ed

M
en

ta
l

St
re

ss
Cl

as
sifi

ca
tio

n
Fr

om
EE

G
[4

5]

21
,3

2
(F

p1
,F

p2
,F

7,
F3

,F
z,

F4
,

F8
,F

C
5,

FC
1,

FC
2,

FC
6,

T
7,

C
3,

C
z,

C
4,

T
8,

C
P

5,
C

P
1,

C
P

2,
C

P
6,

P
7,

P
3,

P
z,

P
4,

P
8,

P
O

3,
P

O
z,

P
O

4,
O

1,
O

z,
O

2,
A

F7
)

25
m

in

R
es

t
5

m
in

no
St

re
ss

10
m

in
Pr

e
St

re
ss

5
m

in
St

re
ss

Pe
rio

d
5

m
in

M
at

h

BP
F

(0
.5

-4
0)

H
z

C
A

R
fil

te
r

IC
A

SD
C

A
N

60
.5

2%
*(

4)
48

.1
7%

*(
5)

It
is

po
ss

ib
le

to
cl

as
sif

y
st

re
ss

in
m

ul
tip

le
st

ag
es

A
no

ve
lt

ec
hn

iq
ue

fo
r

st
re

ss
de

te
ct

io
n

fro
m

EE
G

sig
na

l
us

in
g

hy
br

id
de

ep
le

ar
ni

ng
m

od
el

[4
7]

39
,1

9
(F

p1
,F

p2
,F

3,
F4

,F
7,

F8
,

Fz
,C

3,
C

4,
C

z,
P

3,
P

4,
P

z,
T

3,
T

4,
T

5,
T

6,
O

1,
O

2)

4
m

in
4

s
62

s
Su

bt
ra

ct
io

n
ta

sk
s

18
2

s
R

es
t

D
isc

re
te

W
T

C
N

N
-L

ST
M

C
N

N
-B

LS
T

M
96

.7
0%

99
.2

%

CN
N

:a
ut

om
at

ic
FS

BL
ST

M
:p

er
fe

ct
fo

r
in

fo
-e

xt
ra

ct
io

n
→

C
N

N
-B

LS
T

M
ha

s
hi

gh
ac

cu
ra

cy

EE
G

-b
as

ed
st

re
ss

id
en

tifi
ca

tio
n

an
d

cl
as

sifi
ca

tio
n

us
in

g
de

ep
Le

ar
ni

ng
[5

1]

14
,8

(F
p1

,F
p2

,F
pz

,F
z,

F3
,F

7,
F8

,a
nd

F4
)

40
m

in

15
m

in
U

nt
im

ed
M

at
h

Te
st

10
m

in
R

el
ax

15
m

in
T

im
ed

M
at

h
Te

st

LP
F

(0
-3

1)
H

z
IC

A
LS

T
M

C
N

N
70

.6
7%

*(
3)

90
.4

6%
*(

3)

T
im

e-
lim

ita
tio

n
in

cr
ea

se
s

st
re

ss
le

ve
ls

St
re

ss
N

et
:

H
yb

rid
m

od
el

of
LS

T
M

an
d

C
N

N
fo

r
st

re
ss

de
te

ct
io

n
fro

m
el

ec
-

tr
oe

nc
ep

ha
lo

gr
am

sig
na

l(
EE

G
)

[4
9]

SE
ED

:2
0,

62
D

EA
P:

32
,3

2
SE

ED
:5

0
m

in
D

EA
P:

40
m

in

SE
ED

:2
-4

m
in

m
ov

ie
+

30
s

ev
al

D
EA

P:
40

x
1

m
in

m
us

ic
vi

de
os

A
zi

m
ut

ha
l

Pr
oj

ec
tio

n
Te

ch
ni

qu
e

LS
D

M
+

2D
C

N
N

97
.8

%
M

et
ho

d
va

lid
on

di
ffe

re
nt

da
ta

se
ts

St
re

ss
D

et
ec

t:
A

D
ee

p
Le

ar
ni

ng
A

pp
ro

ac
h

fo
r

M
en

ta
lS

tr
es

s
D

et
ec

tio
n

U
sin

g
T

im
e-

Fr
eq

ue
nc

y
R

ep
re

se
nt

at
io

n
of

EE
G

Si
gn

al
s

[2
7]

40
,3

2
(F

p1
,F

p2
,F

7,
F3

,F
z,

F4
,

F8
,F

C
5,

FC
1,

FC
2,

FC
6,

T
7,

C
3,

C
z,

C
4,

T
8,

C
P

5,
C

P
1,

C
P

2,
C

P
6,

P
7,

P
3,

P
z,

P
4,

P
8,

P
O

3,
P

O
z,

P
O

4,
O

1,
O

z,
O

2,
A

F7
)

6
m

in

[2
5

s
R

el
ax

(2
5

s
St

re
ss

+
5

s
R

es
t)

3
tim

es
]

3
tim

es

Tr
an

sfo
rm

at
io

n
of

EE
G

sig
na

li
n

a
T

F
2D

im
ag

e
T

F
+

C
N

N
97

.6
1%

T
F+

C
N

N
pe

rfo
rm

s
be

tt
er

th
an

pr
ev

io
us

N
N

s,
es

pe
ci

al
ly

us
in

g
ra

nd
om

da
ta

se
t

St
re

X
N

et
:

A
N

ov
el

En
d-

to
-E

nd
D

ee
p-

Le
ar

ni
ng

-B
as

ed
Im

pr
ov

ed
M

ul
til

ev
el

M
en

ta
l

St
re

ss
Cl

as
sifi

ca
tio

n
Fr

om
EE

G
Se

ns
or

s
[4

4]

18
,6

4
8

m
in

40
s

60
s

Ey
es

C
lo

se
d

60
s

Ey
es

O
pe

n
(6

0
s

M
AT

+
40

s
R

es
t)

4
tim

es

BP
F

(0
.1

-4
5)

H
z

A
rt

ifa
ct

Su
bs

pa
ce

R
ec

on
st

ru
ct

io
n

IC
A

z-
no

rm
al

iz
at

io
n

C
N

N
+

LS
T

M
+

Ex
tr

em
e

G
ra

di
en

t
Bo

os
tin

g
+

Sq
ue

ez
e

Ex
ci

ta
tio

n

91
.6

0%
(2

)
91

.8
1%

*(
4)

Eff
ec

tiv
e

an
d

R
ob

us
t

m
od

el
fo

r
m

ul
ti-

cl
as

s
cl

as
sifi

ca
tio

n

St
re

ss
de

te
ct

io
n

ba
se

d
EE

G
un

de
r

va
ry

in
g

co
gn

iti
ve

ta
sk

s
us

in
g

co
nv

ol
ut

io
n

ne
ur

al
ne

tw
or

k
[4

6]

40
,3

2
(F

p1
,F

p2
,F

7,
F3

,F
z,

F4
,

F8
,F

C
5,

FC
1,

FC
2,

FC
6,

T
7,

C
3,

C
z,

C
4,

T
8,

C
P

5,
C

P
1,

C
P

2,
C

P
6,

P
7,

P
3,

P
z,

P
4,

P
8,

P
O

3,
P

O
z,

P
O

4,
O

1,
O

z,
O

2,
A

F7
)

6
m

in

[2
5

s
R

el
ax

(2
5

s
St

re
ss

+
5

s
R

es
t)

3
tim

es
]

3
tim

es

N
or

m
al

iz
at

io
n

1-
ch

an
ne

lr
ed

uc
tio

n
Se

gm
en

ta
tio

n
C

on
v.

A
ud

io
Si

gn
al

M
al

-s
ca

le
d

FB

V
G

G
ish

-C
N

N
99

.2
5%

H
ig

h
pe

rfo
rm

an
ce

s
re

ac
he

d

Table 3.5: Literature Review (2/2); * indicates multiclass classification (number of
class in brackets).

27

Chapter 4

Materials and Methods

This chapter provides a detailed description of the materials and methods used in
this research. It begins by describing the dataset used in the training, validation and
testing of the proposed classifier, including the tasks designed to induce stress in the
subjects. Subsequently, it will explain in detail the preprocessing techniques used, as
well as the data augmentation strategy and the final steps to prepare the data for
the classifier. The chapter presents then the architecture of the chosen net, going
into detail about its structure and logic. In the end, it will treat the characteristics
of the new data collected, describing in detail the devices and software used in the
experimental protocol defined and the interfaces used to induce stress.

4.1 Computational Setup

All data analyses and model training were conducted on a computer equipped with a
Windows 11 Education N (version 24H2) operating system, running on an Intel Core
i5-7600K CPU @ 3.80 GHz with a 64-bit architecture. The system was configured
with 32 GB of RAM, ensuring sufficient memory for handling large EEG datasets
and DL computations.

For GPU-accelerated computations, the system utilised an NVIDIA GeForce
GTX 1080, which provided substantial processing power for training CNNs and fast
data classification. The torch.cuda.is_available() function confirmed GPU usage
during program execution.

The DL framework used was PyTorch, running on Python 3.10.16 within a
virtual environment managed by Anaconda. This setup ensured flexibility in package
management and reproducibility of the computational experiments.

The combination of high-speed SSD storage, a dedicated GPU, and a multi-
core processor allowed efficient execution of DL models for the EEG-based stress
classification.

28

Materials and Methods

Figure 4.1: Placement of the 32 electrodes for the SAM40 data acquisition, following
the 10-10 international system; image from [2].

4.2 Dataset

The SAM40 Dataset [2] has been used for this study. This EEG dataset, publicly
available, contains recordings from 40 healthy subjects (14 females, 26 males) aged
18-25 years (mean age: 21.5 years). The dataset has been specially designed to
monitor the short-term stress, induced through simple tasks. Below are the key
characteristics of the dataset.

4.2.1 Data Acquisition

The EEG signals have been recorded using an Emotiv Epoc Flex gel-based system
with 32 channels (Emotiv Inc., San Francisco, USA) with CMS/DRL references. Data
has been sampled at 128 Hz, with a dynamic range of ±4.12 mV and a resolution of
0.51 µV/bit. Electrodes have been positioned according to the 10-10 international
system, covering the frontal, central, parietal, temporal and occipital regions. Visual
stimuli have been shown on a 24-inch monitor, placed 70 cm from the participants.

The channels considered for recording the brain activity are presented in Fig. 4.1,
and were: Cz, Fz, Fp1, F7, F3, FC1, C3, FC5, FT9, T7, CP5, CP1, P3, P7, PO9, O1,
Pz, Oz, O2, PO10, P8, P4, CP2, CP6, T8, FT10, FC6, C4, FC2, F4, F8, Fp2.

4.2.2 Experimental Tasks

Each subject performed three trials, each composed of the following sequence of four
cognitive tasks, which correspond to the four classes with which the dataset has been
labelled:

• Initial Relaxation: subjects started each trial with a 25-second relaxation period,
during which they were asked to stay still, listening to calming instrumental
music.

• Stroop Colour-Word Test (SCWT): to induce cognitive interference and stress,
the subjects performed a Stroop test (on the left in Fig. 4.2). During this
task, they were asked to identify and verbally report the colour of the ink of

29

Materials and Methods

colour words, which could have been congruent (e.g. "GREEN" printed in green
ink) or incongruent (e.g. "GREEN" printed in red ink). The task included 11
different words visualised on the screen for 25 seconds. The task required a
fast cognitive elaboration and response selection, contributing to enhancing the
cognitive load.

• Arithmetic Task: after the SCWT, subjects had to perform 25 seconds of
arithmetical calculation (central image in Fig. 4.2). They were presented
with a series of mathematical equations, and they had to quickly determine
if the equations were correct. Each subject had to complete six arithmetical
operations in the 25 seconds. This task was designed to engage working memory
and problem-solving ability, increasing cognitive stress levels.

• Mirror Image Recognition: in the final tasks, the subjects were asked to evaluate
the symmetry of two mirror-reflected images (on the right in Fig. 4.2). A set
of eight images was shown sequentially, and the subject had to answer as fast
as possible, determining if the image was specular or not. Participants gave
their answers using predefined gestures, ensuring minimal movement artefact
in the EEG recordings. The task lasted 25 seconds and was designed to further
increase the cognitive workload by demanding visual attention and spatial
reasoning.

Figure 4.2: Examples of stress-inducing tasks: Stroop Test (left), Arithmetic Task
(middle), Mirror-Image Matching Task (right); images from [2].

During the experiment, a structured temporal sequence was implemented to
regulate the transition between the different tasks. A five-second relaxation period
was inserted between the stressful tasks, enabling the subjects to momentarily recover
from the cognitive load of the previous activity. Afterwards, a 10-second time interval
was taken before each task to explain and clarify the objective of the following task.

After completing each trial, the subjects were asked to self-evaluate their perceived
stress levels for each task, on a 1 to 10 scale, with 1 representing the lowest stress level
and 10 the highest. This subjective stress evaluation provided an additional measure
of the cognitive load beyond EEG recordings. In any case, since this self-evaluation

30

Materials and Methods

was a subjective measure, it was not used in this study as a criterion to label the
data, and it was not further used in the analysis.

To enhance the stress induction in the subject, an experimenter was present to
monitor and record the subject’s answers, giving real-time feedback on the perfor-
mance accuracy. This part of the protocol was intended to create an evaluative
pressure environment, further contributing to stress induction.

The experimental design ensured that EEG signals captured during the tasks
accurately reflected stress-induced neural activity. The SAM40 dataset thus offers a
comprehensive resource for studying stress-related EEG patterns under controlled
cognitive challenges.

4.3 Signal Preprocessing

Signal preprocessing is a crucial step in the classification task because it removes noise
and artefacts from the raw signals. This ensures that the classifier elaborates only
the relevant data, improving its performance. The following preprocessing techniques
were applied:

1. Z-normalisation:

Z-normalisation standardises a signal by subtracting its mean value and then dividing
by its standard deviation. This process yields a signal with zero mean and unit
standard deviation, and is mathematically expressed as:

z = x − µ

σ
, (4.1)

where x represents the original signal, µ is the mean, and σ is the standard deviation.
Normalisation is an important step for NNs because it ensures that all the

inputs have comparable scales, preventing a single characteristic from dominating
the learning process. This improves the stability and the efficiency of the training,
and it accelerates the convergence by avoiding issues related to vastly different
magnitudes and reducing the risk of vanishing or exploding gradients, particularly
in deep architectures. Moreover, z-normalisation is expected to help mitigate the
influence of intra-subject variability, ensuring that the model learns features related to
the condition (stress or no-stress, in this case) rather than subject-related features. In
the work, z-normalisation was applied channel-wise, so that every channel presented
a mean of zero and a unit variance.

2. Band-Pass Filtering:

In EEG stress analysis, the frequency band of interest is typically between 4 and 30
Hz (see Sec. 2.1). To focus only on this bandwidth and suppress lower and higher
undesired frequencies, a BPF has been applied. A fourth-order Butterworth filter
was used to attenuate frequencies lower than 1 Hz and higher than 40 Hz, and its

31

Materials and Methods

module is shown in the left panel in Fig. 4.3. The lower cut at 1 Hz helps remove the
slow drifts and the baseline fluctuations, while the higher cut at 40 Hz helps suppress
the high-frequency noise, including muscular and environmental artefacts. Although
the EEG information relevant to stress analysis lies in the 4-30 Hz range, the cut-off
frequencies have been chosen to ensure a minimal distortion in the bandwidth of
interest, preserving signal integrity for further analysis.

3. Notch Filtering:

A notch filter is used to remove a very narrow frequency bandwidth, such as power line
interference. Since the data has been collected in India, where the mains frequency
is 50 Hz, the notch filter has been set at this frequency. The iirnotch function from
the scipy library was used, with a quality factor of 30, defined as the ratio between
the central frequency and the 3 dB bandwidth (on the right in Fig. 4.3). Even if the
BPF had already been applied, also filtering the 50 Hz interference, the notch filter
was additionally used to ensure a more efficient suppression of power line interference.
This decision was made because the magnitude response of the previous BPF, at
50 Hz, was slightly below 10−1, meaning that residual power line interference could
still be considered present in the signal. Applying the notch filter ensured a more
effective suppression of this noise component without significantly affecting nearby
frequency bands.

4. Independent Component Analysis (ICA):

ICA is a computational method which separates a multivariate signal into additive
and statistically independent components. It realises this separation by finding a
linear transformation which statistically decorrelates the data, maximising the non-
Gaussianity of the final components. The assumption on which it works is that the
original sources of the mixed signals are statistically independent and non-Gaussian.
This technique is particularly useful and efficient for EEG signals, which often contain
various artefacts such as ECG, EMG and eye movements. ICA is usually performed
after filtering, so that big sources of noise, such as the 50 Hz power line, the EMG or
ECG interference, have already been removed from the signals.

The method works by estimating a linear transformation that maximises the
statistical independence of the components. Mathematically, given a set of observed
mixed signals x(t) = [x1(t), x2(t), . . . , xN (t)]T , where N is the number of observed
channels (e.g., EEG electrodes) and t represents time, ICA models these observations
as a linear mixture of M unknown independent source signals s(t):

s(t) = [s1(t), s2(t), . . . , sM (t)]T

x(t) = As(t) (4.2)

where A is an unknown N ×M mixing matrix. The goal of ICA is to find an unmixing

32

Materials and Methods

matrix W (which is ideally the inverse of A, i.e., W = A−1), such that the estimated
source signals ŝ(t) are obtained by:

ŝ(t) = Wx(t) (4.3)

The rows of ŝ(t) represent the estimated independent components. The process
of finding W involves maximising the statistical independence of the components,
often by maximising their non-Gaussianity, as a sum of independent non-Gaussian
variables tends to be more Gaussian (Central Limit Theorem).

However, it’s important to note that no ICA method perfectly removed artefacts
from all the datasets on which it has been applied. The approach detailed below
has been chosen for its efficacy, but many other techniques exist. For instance, the
combination of the WT with ICA offers another way to remove artefacts, although it is
computationally expensive, which is why it wasn’t applied in this work. Alternatively,
a visual inspection and manual removal of the artefactual components allows an
almost perfect artefact suppression. This option has been discarded because, in the
research, an automatic algorithm was needed.

Many methods have been tested on the dataset, and the specific method employed
in the study is described below.

ICA was performed using the FastICA function from the sklearn library with the
following parameters: n_components=32, max_iter=200, whiten=unit-variance.
This ensures that all the resulting independent components have zero mean and unit
standard deviation. The FastICA algorithm was chosen due to its prevalent use and
strong performance reported in the literature for EEG artefact removal [55].

To effectively remove the artefactual components, the kurtosis value was calculated
for each component. The kurtosis is a statistical measure that quantifies the tailedness
of a distribution, indicating whether the distribution is thin or broad [56].

Kurtosis(X) = E

C3
X − µ

σ

44D
This formula calculates the fourth standardised moment of a variable X. Here,

E[·] represents the expected value, µ is the mean of the distribution, and σ is its
standard deviation. The expression

1
X−µ

σ

2
standardises the variable, transforming it

to a scale-independent form, which allows for the comparison of the shape of different
distributions regardless of their original scale or location. By raising this standardised
variable to the fourth power, the formula gives more weight to extreme deviations
from the mean, thereby highlighting the presence of outliers or heavy tails.

High kurtosis indicates a distribution with a narrow peak, while low kurtosis
indicates a broader peak. EEG artefacts, especially ocular movements, usually present
higher kurtosis values compared to brain-originated signals, due to their transient,
high-amplitude characteristics [57]. In the algorithm, a component was automatically
marked for elimination if it satisfied both of the following conditions:

• Its kurtosis value was greater than 12. This threshold was determined through

33

Materials and Methods

a visual inspection of the eye movement artefactual components and their
respective kurtosis value in the SAM40 dataset, but it is important to notice
that, even if this threshold was effective for the dataset, it might need adjustment
if used for other datasets.

• The estimated number of blinks in the component was lower than two per
second. This criterion is based on the physiological assumption that a subject
in a normal situation blinks less than twice a second. To accurately calculate
the blinks and mitigate the high-frequency noise impact, which could lead to
a higher detection of peaks, one close to the other, each component was first
smoothed using a Low-Pass Filter (LPF) with a cut-off frequency of 15 Hz.
After this smoothing, the function find_peaks from scipy was applied, looking
for peaks whose amplitude was higher than half of the maximum value of the
component studied. This refinement ensured the counting of the significant
peaks alone, which probably corresponded to eye blinks.

Figure 4.3: Module of the Butterworth BPF (Left) and Notch Filter (Right) used
in the analysis.

Fig. 4.4 illustrates the progressive refinement of the EEG signal for subject 5,
channel F7, through the preprocessing steps: raw data, normalisation and filtering,
and ICA. In the top panel, the raw EEG trace shows multiple contaminations.
Low-frequency drifts are noticeable (for instance, at about 20 seconds), as well as
numerous sharp, high-amplitude transients, probably due to ocular artefacts such
as eye blinking. In addition, the signal contains high-frequency noise, potentially
coming from muscular activity (EMG) or other sources.

The middle panel shows the EEG signal after the normalisation and filtering.
These steps effectively attenuate the slow drifts and suppress part of the high-
frequency noise. However, some artefacts, in particular the transient peaks associated
with eye movement, remain accentuated. This confirms the fact that basic filtering is
not sufficient to eliminate non-stationary artefacts which are not strictly frequency-
localised.

The bottom panel shows the EEG signal after the application of ICA. Here, the
artefacts that were dominant in the first two panels, especially the sharp peaks, are

34

Materials and Methods

Figure 4.4: Signal comparison for subject 5, channel F7. Top panel: raw signal.
Middle panel: after filtering. Bottom panel: after ICA.

significantly reduced. ICA isolates and removes successfully the components related
to non-neural sources, exploiting their statistical independence from genuine brain
activity. As a result, the signal appears cleaner and more physiologically plausible,
revealing subtle fluctuations that are likely to reflect cortical processes.

Overall, this comparison highlights the complementary roles of filtering and ICA
in EEG preprocessing. While filtering aims to remove noise from specific bandwidths,
ICA excels in identifying and removing artefactual non-neural components. Together,
they improve the signal-to-noise ratio (SNR) and ensure the preservation of meaningful
electrophysiological schemes, which is crucial for a reliable classification.

4.4 Data Augmentation

In a preliminary phase of the model development, a data augmentation strategy
was applied to compensate for the limited data available. The chosen technique
is called Linear Surrogating. This approach generates new signals, keeping the
original amplitude spectrum while introducing random phase information. The idea
is to create new signals which have the same fundamental spectral properties of the
original signals, but with a different temporal structure, potentially useful to help
the generalisation of the NN.

The procedure is as follows:

1. Compute the FFT of the original signal to convert it into the frequency domain.

2. Retain the magnitude spectrum of the signal.

3. Generate a new set of phase values randomly, typically from a uniform distri-
bution.

35

Materials and Methods

4. Combine the original magnitude with the newly generated phase values to form
a modified frequency-domain representation.

5. Apply the inverse FFT (IFFT) to transform the modified signal back into the
time domain.

The algorithm was applied only on the training and validation sets, without mod-
ifying the test set, guaranteeing in this way its independence, and better simulating
a real application. By applying this procedure, the number of signals in the training
and validation sets was doubled. The new signals kept the same characteristics in
amplitude as the original ones, but with different phase properties.

Figure 4.5: Original signal (blue) and its linear surrogate (orange).

Fig. 4.5 illustrates an example of the original signal (blue) and its linear surrogate
(orange). At first, both signals show comparable amplitude envelopes, confirming that
the magnitude spectrum is preserved during the augmentation process. However, the
surrogate signal shows clear, distinct temporal characteristics due to the randomised
phase components.

The experimental results highlighted a drop in the accuracy on the test set, while
the training and validation sets kept performing well. For this reason, it was decided
not to use this technique, but only to use the non-augmented data for the training of
the model.

The observed phenomenon, called overfitting, can be explained by the fact that,
even by introducing some variability in the signal phase, the magnitude of the
signal is not changed. Since the classifier used is designed to capture the spectral
characteristics of the signal, especially the ones related to the power in certain
frequency bands, the surrogates are excessively similar to the original ones, in the
domain in which the model is learning. In this way, it recognises very well the
patterns in the augmented training, but struggles to generalise to new signals, such
as the ones present in the test set.

36

Materials and Methods

4.5 Data Preparation

The input to the NN consists of segments of the signal in the time domain. Fig.
4.6 and the following paragraph both describe the steps required to go from the
original 75-second-long signals to the 2-second-long subsegments used as input for
the classifier.

Figure 4.6: Data preparation steps from the 75-second signal to the 2-second
subsignals used as input for the classifier.

The recording of each subject, of a duration of 75 seconds, was initially divided into
15 subsignals without overlap, each with a duration of 5 seconds. These subsignals
were then split into a construction (training and validation) set and a test set, ensuring
that both contained segments from all the subjects, but no signal was repeated, not
even a single overlapped part, in the three sets. Then, these 5-second subsignals
were further divided into smaller 2-second segments of 2 seconds (256 timeframes).
To increase the number of samples in the construction set, an overlap of 50 % was
applied during the segmentation. No overlap was applied in the test set to maintain
independent samples. In the end, the 2-second-long segments were converted into
PyTorch tensors and loaded into DataLoader objects with a batch size of 32 for
efficient training.

The algorithm steps, from preprocessing to classification, are presented in Fig.
4.7.

Figure 4.7: Flowchart with the steps of the algorithm from the preprocessing to
the classifier.

Considering that the goal of this work was the binary classification of EEG data
into stress or relaxation states, and to prevent the problem of unbalanced classes, the
analysis was conducted exclusively using the Stroop Test as stress data. For a more
comprehensive classification, it could have been possible to consider all four original

37

Materials and Methods

classes (Relax, Stroop, Arithmetic, Symmetric). However, this in-depth analysis goes
beyond the main goal of the thesis, which is focused on basic stress detection.

4.6 Architecture Used

Recent studies demonstrated that CNNs are extremely efficient in EEG-based classi-
fication tasks, due to their capacity to extract complex temporal and spatial features
present in EEG signals [27, 44, 49, 51]. In this work, a variant of EEGNet [1] has
been adapted for the classification task, for fast stress detection. EEGNet is a CNN
structured as a sequence of three main convolutional blocks, followed by a fully
connected classification layer. Each block is designed to extract and progressively
refine the features, granting at the same time stable training dynamics and preventing
overfitting.

Layer 1: Temporal Convolution and Basic Regularisation. The first layer
starts with a Conv2D with a kernel dimension of (1, 64), which targets temporal
filtering by convolving the segment only in the temporal dimension. This design
allows the model to capture fundamental temporal patterns before any spatial
elaboration. After this, a Batch Normalisation layer follows, which stabilises the
learning process by normalising the activation distributions. This not only accelerates
convergence, but also the impact of the internal covariate shifts, indirectly contributing
to regularisation.

To introduce nonlinearity, an ELU (Exponential Linear Unit) activation function
is applied. ELU is defined as:

ELU(x) =

x if x > 0

α(ex − 1) if x ≤ 0
; ReLU(x) =

x if x > 0

0 if x ≤ 0
(4.4)

with α > 0 (in this work, α = 1). Unlike the classical ReLU function, which sets
to zero all the negative values, and might cause the dying neuron problem (meaning
that some neurons get stuck, with zero gradients), the ELU function allows small
negative outputs with smooth gradients. This reduces the bias shift, supporting
a more stable and efficient training. The comparison between the two activation
functions is shown in Fig. 4.8.

Finally, a dropout layer with a rate of 25% is used to randomly deactivate neurons
during training, encouraging the network to learn more redundant and robust features.

Layer 2: Spatial Filtering and Dimensionality Reduction. The second block
begins with a ZeroPadding operation, which pads the input with 16 pixels on the
left, 17 on the right, and 1 on the bottom. This padding ensures that the output
dimensions will be compatible with the next convolutional operation. A Conv2D
layer with a kernel (2, 32) then performs a spatial filtering. This level is designed
to extract spatial features by scanning both channels and temporal segments. The

38

Materials and Methods

Figure 4.8: Comparison of ReLU (blue) and ELU (orange) activation functions.
ELU smoothly continues into negative values, while ReLU is strictly zero for negative
inputs.

extracted features are normalised with a Batch Normalisation, and activated with the
ELU function. Then a new Dropout layer is applied to further prevent overfitting. In
the end, an Average Polling is performed with a kernel dimension of (2, 4), reducing
the spatial dimensions. This pooling not only reduces the computational load for
the following layers, but it also emphasises the most salient features, by aggregating
local averages, which can be particularly useful when little variations in EEG data
are indicative of stress.

Layer 3: Depthwise Separable Convolutions and Enhanced Feature Ex-
traction. The third convolutional block introduces another ZeroPadding with
the configuration (2, 1, 4, 3) to preserve the spatial dimensions needed for further
convolutions. A depthwise convolution is then applied. This is a convolution with
the number of groups equal to the number of channel inputs, meaning that each
input channel is convolved with its own filter, and so there are no connections be-
tween different input channels in this layer. This operation works as a spatial filter
applied independently to each feature map, allowing the net to learn channel-specific
patterns with a low computational complexity. After the depthwise convolution, a
pointwise convolution (1 × 1 convolution) is applied. This merges the information
across channels by linearly combining the outputs from the depthwise filters. This
2-phase strategy (depthwise followed by pointwise convolution) is called depthwise
separable convolution and is efficient in reducing the number of parameters while
still capturing rich features [58, 59, 60]. As in previous layers, Batch Normalisation,
ELU activation, and dropout are applied to maintain numerical stability, incorporate
nonlinearity, and prevent overfitting. An additional average pooling operation with
a kernel size of (2, 4) further extracts the features and compresses the final feature
map dimensions before classification.

Fully Connected Layer. After the convolutional blocks, each sample has a
4 × 8 × 12 feature map. These multidimensional feature maps are then flattened
into a 384-value unidimensional vector through a fully connected layer. This maps
the extracted features to two output neurons corresponding to the stress and non-

39

Materials and Methods

stress classes. Finally, a softmax activation function converts the logits into class
probabilities, thus enabling probabilistic interpretation of the results.

Parameter Summary:
For clarity and reproducibility, detailed layer parameters (such as specific padding
values and kernel sizes) are summarised in Tab. 4.1.

Block Layer Out #filters Out shape (C, H, W)
1 Input — (1, 32, 256)

Conv2D (1 → 16, kern=(1, 64)) 16 (16, 32, 193)
BatchNorm 16 (16, 32, 193)
ELU 16 (16, 32, 193)
Dropout (p=0.25) 16 (16, 32, 193)

2 ZeroPad2d (l=16, r=17, t=0, b=1) — (16, 33, 226)
DepthConv (16 → 4, kern=(2, 32)) 4 (4, 32, 195)
BatchNorm 4 (4, 32, 195)
ELU 4 (4, 32, 195)
Dropout (p=0.25) 4 (4, 32, 195)
AvgPool2d (kern=(2, 4)) 4 (4, 16, 48)

3 ZeroPad2d (l=2, r=1, t=4, b=3) — (4, 23, 51)
DepthwiseConv (4 → 4, kern=(8, 4), groups=4) 4 (4, 16, 48)
PointwiseConv (4 → 4, kern=1) 4 (4, 16, 48)
BatchNorm 4 (4, 16, 48)
ELU 4 (4, 16, 48)
Dropout (p=0.25) 4 (4, 16, 48)
AvgPool2d (kern=(2, 4)) 4 (4, 8, 12)

Classifier
Flatten — (384)
Linear (384 → 2) 2 (2)
Softmax (dim=1) 2 (2)

Table 4.1: EEGNet architecture Parameters Summary.

4.7 Training Hyperparameters

Table 4.2 summarises the key training hyperparameters and their values.

Parameter Value
Batch size 32
Number of epochs 101
Early stopping patience 20 epochs
Loss function Cross Entropy Loss
Optimizer Adam (η = 0.005, (β1, β2) = (0.9, 0.999), weight_decay = 10−4)
Scheduler CosineAnnealingLR

Table 4.2: Training hyperparameters and their values.

The classifier was trained for a maximum of 101 iterations with a batch size of
32. Each epoch includes one full forward and backwards pass through all training
examples, and the model’s generalisation was monitored through the validation set.

40

Materials and Methods

To prevent overfitting and reduce unnecessary computation, early stopping was
applied: training automatically concluded if the validation accuracy did not improve
for 20 consecutive epochs, and the model weights corresponding to the highest
validation accuracy achieved at that epoch were saved.

The loss function used is the Cross Entropy Loss, defined for binary logits z ∈ R2

and true label y ∈ {0, 1} as:

LCE(z, y) = − log
3 exp(zy)q2

j=1 exp(zj)

4
, (4.5)

This loss function penalises the misclassification, encouraging confident proba-
bilistic outputs, making it ideal for softmax-based classifiers.

Weight updates were performed using the Adam optimiser, selected for its ro-
bust, adaptive learning rate properties and its wide usage in the literature, with
hyperparameters tuned to further reduce overfitting and control update variance:

• Learning rate: η = 0.005; this controls the step size used in updating the model
parameters during gradient descent. A smaller η means slower but more stable
convergence.

• Weight decay (L2): λ = 1 × 10−4; this term is added to the loss function to
penalise large weights. It helps reduce overfitting and improve the model’s
generalisation ability by discouraging overly complex solutions.

• Momentum parameters: β1 = 0.9, β2 = 0.999; these are exponential decay
rates used in optimisers like Adam. β1 controls the decay rate of the moving
average of the first moment (mean of gradients), and β2 controls the decay rate
of the second moment (uncentered variance of gradients), helping to stabilise
and accelerate convergence.

To improve convergence and to have an automatic learning rate tuning, a cosine
annealing scheduler was employed:

ηt = 1
2 η0

!
1 + cos(tπ

Tmax
)
"
, (4.6)

where t is the current epoch and Tmax = 101. This schedule smoothly decays the
learning rate from η0 to zero, encouraging gradual exploration of the minimum value
of the loss function, without abrupt drops.

4.8 Data Collection

To evaluate the classifier and its ability to generalise across different individuals, a
new dataset was collected. To avoid any potential ethical concerns, all data were
acquired from a single subject, the author. From now on, this individual will be
referred to in general terms as the "subject of study".

41

Materials and Methods

4.8.0.1 EEG cap and Electrodes

To collect data, an OpenBCI device was used. This EEG cap had 16 channels
(while the SAM40 dataset used 32), positioned according to the 10-20 system. The
electrodes present on the cap were dry, and they included: Fp1, Fp2, F3, F4, Fz, C3,
C4, Cz, P3, P4, Pz, O1, O2, T3, T5, T6. The reference electrode was T4. In Fig. 4.9
it is shown a scheme of the electrode positions for the EEG cap used. In green, the
16 differential channels, while in red is the reference electrode.

Figure 4.9: Electrodes positioning in the EEG cap used for the data acquisition.
In green, the 16 recording electrodes, in red the reference electrode, in white the
other electrodes from the 10-20 international system, which have not been used in
this data collection.

4.8.0.2 Bioamplifier

The data acquisition system is shown in Fig. 4.10 and consists of a 32-bit Cyton
OpenBCI board, coupled with an OpenBCI Daisy module. This combined config-
uration allows for the acquisition of 16 differential channels of EEG signals. At
the core of the amplification system, there are two Texas Instruments ADS1299
Analog-Digital Converters (ADC): one for the Cyton board, and one for the Daisy
module, which guarantee a 24-bit resolution for each channel. Each channel supports
both active and passive electrodes. The Cyton board operates with a 3.3V digital
operating voltage and a ±2.5V analog operating voltage, accepting an input voltage
range of 3.3-12V. Similarly, the Daisy module has a 3.3V digital operating voltage
and a ±2.5V analog operating voltage. The sampling frequency is 125 Hz (while
the SAM40 dataset was sampled at 128 Hz), and the wireless communication with
the computer is achieved through an OpenBCI USB dongle, utilising RDFuino radio
modules, or Bluetooth Low Energy for mobile devices.

4.8.0.3 Software used

For the data acquisition, two main software programs were used:

1. OpenBCI GUI : this user interface is presented in Fig. 4.11, and it visualises
in real-time the signals from the 16 channels, calculating for each of them the

42

Materials and Methods

Figure 4.10: OpenBCI Cyton board coupled with the Daisy module, which together
form the bioamplifier system used for EEG data acquisition.

percentage of "railing", which indicates the proportion of the signal that has
exceeded the maximum or minimum measurable voltage range of the acquisition
system. A value of railing inferior to 75% typically indicates a good channel
recording. In Fig. 4.11, channel 15 (T6, in the 10-20 system) exemplifies a
railed signal: with a railing percentage of 81.94%, it is labelled as Near railed
and highlighted in orange to alert the user. This indicates that a large portion
of the signal is saturating the input range, and the electrode may need to be
repositioned to restore signal quality. The interface also shows the FFT of each
channel, allowing for a visual spectral analysis. In the plot, the signals are
already filtered, as can be seen by the minimal amplitude at 50 Hz. A significant
interference at 25 Hz is visible, probably due to the 50 Hz interference. In the
end, the User Interface allows for a connection through an LSL (Lab Streaming
Layer) Stream to external software for data recording. Although it was possible
to transmit 3 streams at the same time, only the raw data was sent to the
LabRecorder in the data acquisition. This means that all the interference that
was absent in the FFT plot in the GUI was still present in the acquired data,
and will still need a data preprocessing strategy before the classification.

2. LabRecorder : this software is responsible for receiving the data transmitted via
LSL, and saving it in the .xdf format in the directory specified by the user.
LabRecorder facilitates the organisation of the data acquired, allowing for the
automatic creation of a hierarchy of subfolders based on parameters such as
subject, session, type of measurement (e.g., EEG), and the progressive number
of execution.

4.8.0.4 Protocol Definition

The protocol used for the data is a replica of the one used to collect the data for the
SAM40 dataset, which consists of four sequential tasks: 25 seconds of relaxation, 25
seconds of SCWT, 25 seconds of Symmetrical Images, and 25 seconds of Arithmetical

43

Materials and Methods

Figure 4.11: OpenBCI GUI, showing the time-signals from the 16 channels (left),
the FFT of the 16 channels (top-right), and the networking block (bottom-right),
which allows sending the data to the LabRecorder.

Tasks. These tasks have already been explained in Sec. 4.2.2. The subject of
study repeated this protocol across five different sessions, resulting in a total of 50
recordings. Fig. 4.12 shows the subject during an arithmetical task. The EEG cap is
connected through the cables to the bioamplifier, which is on the desk. The amplifier
streams the data through Bluetooth to the USB dongle connected to the laptop,
which will collect and save it.

The tasks were explained to the subject, and subsequently, he was presented with
the screen showing the interfaces. These were demonstrated using an automated
Python script. An example of the 4 tasks is shown in Fig. 4.13.

4.8.0.5 New Data Processing

The new dataset was preprocessed, trained and tested in the same way as it was
done for the SAM40 dataset. The data was z-normalised, filtered with a BPF (cut-off
frequencies of 1 and 40 Hz) and a notch, and then ICA was performed. After this,
the data was divided into 2-second-long subsegments, as explained before (see Sec.
4.5), and tested on the EEGNet.

44

Materials and Methods

Figure 4.12: Experimental Setup. The subject is positioned in front of the screen
with the interfaces. The EEG cap is connected via cables to the amplifier, which is
connected via Bluetooth to the USB dongle in the laptop.

Figure 4.13: Example of the four tasks in the protocol. In the top-right corner of
each interface, the countdown before the next interface appears.

45

Materials and Methods

4.9 Evaluation Methods

For a comprehensive and rigorous evaluation of the proposed classification algorithm,
two primary criteria were employed: the classification accuracy and processing speed.
These methods allowed to quantify both the predictive efficiency of the model and
its computational efficiency, providing a complete summary of the performance.

4.9.1 Classification Accuracy

Accuracy is one of the most common and intuitive metrics for evaluating the perfor-
mance of a classification model. This represents the proportion of correct predictions
carried out by the model compared to the total number of predictions. In other
words, it measures how often the algorithm correctly "guesses" the state (stress or
relaxation) in which an EEG segment belongs.

Formally, the accuracy is calculated as:

Accuracy = Correct Predictions
Total Predictions (4.7)

A high Accuracy indicates that the model can reliably distinguish between the
different classes, which is fundamental for practical applications where the correctness
of the predictions is critical.

4.9.2 Algorithm Velocity

Beyond the accuracy, the processing speed is a crucial parameter, especially in contexts
which require real-time (or almost real-time) answers, such as BCI systems. To
quantify this metric, the time taken by each 2-second-long segment to complete the
entire inference process will be measured. This includes the following phases:

• Segment loading: time taken to recover the data segment from the memory or
the acquisition stream.

• Preprocessing: time taken to perform normalisation, filtering and ICA.

• Classification: time taken by the EEGNet to predict the class of the segment
studied.

After this, to provide a velocity measure comparable to other BCI studies, the
Information Transfer Rate (ITR) was calculated. ITR is a standard metric, mainly
used for BCI spellers, which quantifies the quantity of useful information which a
system is able to transfer in a certain time interval. It takes into account not only
classification accuracy but also the algorithm speed, offering an estimate of how
quickly the system processes information. A high value of ITR indicates a more
efficient system in translating the intention or the cognitive state into an action or
an estimate.

46

Materials and Methods

The general formula for the ITR [61] is:

ITR (bit/trial) = log2(N) + P · log2(P) + (1 − P) · log2

3 1 − P

N − 1

4
(4.8)

ITR(bit/min) = B · ITR (bit/trial) (4.9)

where:

• N is the number of possible classes (in this work, 2).

• P is the mean classification accuracy, expressed as a probability between 0 and
1.

• B is the number of classifications per minute, calculated as 60/T , where T is
the processing time for each classification (in seconds).

The combination of accuracy and ITR offered a robust evaluation of the perfor-
mance of the classification algorithm, allowing the comparison of the results with
other pre-existing methodologies, highlighting both precision and efficiency.

4.10 Acknowledgements

For this research, the author used an AI assistant to identify and correct errors in the
code. The main contribution was debugging and refining existing code segments to
improve robustness and accuracy. This ensured the reliability of the computational
results presented.

47

Chapter 5

Results

This chapter describes the techniques used for model optimisation, presents the typical
loss and accuracy curves of EEGNet training, and then examines its generalisation
through two different K-fold cross-validations on subjects and using a different dataset.
Ultimately, it focuses on the velocity of the classification algorithm.

5.1 Hyperparameter Optimisation via Fine-tuning and
K-fold Cross-Validation of EEGNet

To achieve optimal performance with the EEGNet model, a systematic process of
hyperparameter optimisation was conducted. This involved fine-tuning some key
model parameters and rigorously evaluating the resulting configurations through
K-fold cross-validation to ensure robust performance estimates.

5.1.1 Impact of Batch Size on Testing Accuracy

In the initial phase of the hyperparameter exploration, the influence of the batch size
on the testing accuracy of the EEGNet model was studied. The batch size represents
the number of training samples that the model processes in a single iteration. This
is a crucial hyperparameter that influences both the training dynamics and the
generalisation ability of the NN, as it determines the gradient estimate used for
weight updates.

Smaller batch sizes will provide a noisier gradient estimate, which could help the
model avoid the sharp minima and potentially generalise better. However, this leads
to slower training and requires more frequent weight updates. On the contrary, larger
batch sizes offer a more fluid and stable gradient estimate, potentially leading to a
more rapid convergence, but also risking a worse generalisation and a convergence to
sharper minima.

The following discrete values were examined: [16, 32, 64, 128]. These values were
chosen to cover a range of common batch sizes used in articles about DL.

The model was trained and tested ten times, and the average testing accuracies
± standard deviation obtained for each batch size are summarised in Tab. 5.1.

48

Results

Batch Size 16 32 64 128
Avg. Test Accuracy (%) 89.46 ± 1.37 91.04 ± 1.59 90.42 ± 0.58 86.59 ± 2.85

Table 5.1: Average ± standard deviation testing accuracy of EEGNet across different
batch sizes.

Results reveal that the batch size has a big effect on the model performance. In
particular, the average test accuracies achieved with batch sizes of 16 and 128 were
inferior by more than one percentage point compared to the accuracies achieved
with batch sizes of 32 and 64. In addition, the standard deviation of the accuracies
provides information about the consistency of the performances across the different
folds. The relatively lower standard deviation observed with a batch size of 64
indicates a more stable and consistent performance across different runs. Based on
these initial results, the following in-depth analysis about the other hyperparameters
was conducted, focusing only on the batch sizes of 32 and 64, parameters which had
shown superior and more stable performance in this initial evaluation.

5.1.2 K-Fold Cross Validation

To obtain an unbiased estimate of the generalisation performance of the EEGNet and
to guard against overfitting to any particular data split, the K-fold cross-validation
technique was applied. In this procedure, the available dataset is partitioned into K

folds of the same dimension. For each of the K iterations, a different fold is kept
aside as a validation set, while the remaining K − 1 folds are used for the training.
The model is trained from scratch on the training folds and then is evaluated on the
fold kept aside. After cycling through all the K folds, the average of the validation
accuracies is calculated. This approach ensures that each sample is used both for
the training and for the validation exactly once, providing a robust evaluation of the
model’s performance on the whole dataset and reducing the variance due to random
train-validation splitting.

In the experiments, K = 5 was used. This is a very common value in literature
since it balances the big training data needed by a DL net and a big enough test set
to have reliable results. In this way, the net is trained with 80% of the data, and
20% is used for testing. For each fold, a grid search was performed over the following
hyperparameter space:

• Batch size: {32, 64}

• Learning rate (η): {7.5 × 10−4, 1 × 10−3, 2.5 × 10−3, 5 × 10−3}

• Scheduler usage: {True, False}

• Weight decay: {0, 1 × 10−4, 1 × 10−3}

• Adam β coefficients (β1, β2): {(0.9, 0.999), (0.8, 0.98)}

49

Results

A total of 2 × 4 × 2 × 3 × 2 = 96 hyperparameter combinations were evaluated on
each of the 5 folds, yielding 480 training runs.

Table 5.2 lists the top 8 configurations ranked by their mean validation accuracy
± standard deviation over the 5 folds. These are the only configurations which
reached a mean accuracy greater than 90%. For the complete 96 combinations results,
see Appendix A.1.

Rank Batch LR Scheduler Weight β1, β2 µ

size use? decay (Acc.%)
1 64 5 × 10−3 True 1 × 10−3 (0.9,0.999) 90.79 ± 1.91
2 32 2.5 × 10−3 True 1 × 10−4 (0.8,0.98) 90.60 ± 1.30
3 32 5 × 10−3 True 1 × 10−4 (0.8,0.98) 90.56 ± 1.67
4 64 5 × 10−3 True 0 (0.9,0.999) 90.52 ± 1.79
5 32 5 × 10−3 True 0 (0.8,0.98) 90.25 ± 1.45
6 64 2.5 × 10−3 False 0 (0.9,0.999) 90.23 ± 1.49
7 32 2.5 × 10−3 False 0 (0.8,0.98) 90.15 ± 1.88
8 32 5 × 10−3 True 1 × 10−3 (0.9,0.999) 90.06 ± 1.91

Table 5.2: Top 8 hyperparameter configurations from 5-fold cross validation, ordered
by mean validation accuracy µ.

Analysing the results from the table, it can be seen that the top-performing
configuration (Rank 1) utilised a batch size of 64, a learning rate of 5 × 10−3,
employed a scheduler, a weight decay of 1 × 10−3, and Adam β coefficients of
(0.9, 0.999), achieving a mean accuracy of 90.79% ± 1.91%.

Interestingly, a learning rate of 5 × 10−3 appears more frequently in the best
configurations. This suggests its strong effectiveness for this model and dataset. The
second most frequent learning rate in the best eight configurations is 2.5 × 10−3.
These two learning rates are also the two highest values in the list of the learning
rates investigated in the K-fold cross-validation. The other possible values, 1 × 10−3

and 7.5 × 10−4, do not appear in the top eight configurations. This indicates that
the EEGNet, at least with the dataset analysed, needs a more aggressive learning
rate to effectively capture relevant features.

In addition, including a learning rate scheduler seems to be a significant factor in
achieving high performance. This is clear from the fact that the best five configurations
all include a learning rate scheduler.

In the best eight configurations, both batch sizes 32 and 64 are utilised. Although
there are slightly more configurations with a batch size of 32 in the top-8, the best
configuration utilises a batch size of 64, suggesting that both the values can be
used to achieve excellent results, depending on the other hyperparameter settings.
In the same way, both the weight decays and the tuples of Adam coefficients β,
demonstrated robust performance through different hyperparameter settings.

In light of these findings, it can be concluded that the learning rate and the use of
a scheduler are probably the most influential parameters to achieve a high accuracy
with an EEGNet. While batch size was crucial in initial optimisation steps to narrow

50

Results

down to the effective range of 32 and 64, within this pre-optimised range, its specific
value, along with weight decay and the β coefficients, played a comparatively less
critical role in determining the final performance.

5.1.3 Segment Length

The signal length is a crucial parameter that determines the duration of the segments
in which each signal is split before being fed into the EEGNet for training or
classification.

All the preceding experiments have been conducted with a signal length of two
seconds. To identify the most suitable signal length, another K-fold cross-validation
was implemented. The other hyperparameters utilised are the same of the best
configuration in the preceding cross-validation: batch size of 64, learning rate of
5 × 10−3, weight decay of 1 × 10−3, and β = (0.9, 0.999), with scheduler.

The following discrete values have been examined: [1, 2, 3, 4, 5] seconds. These
values were chosen so that the segments were neither too short, which could lack
sufficient temporal information to accurately capture physiological changes related
to stress, nor too long, which could lose temporal and non-stationary information
within the segment.

Segment Length (s) 1 2 3 4 5
Accuracy % (µ ± σ) 88.37 ± 3.15 90.36 ± 3.20 88.25 ± 3.32 83.83 ± 2.76 78.50 ± 4.25

Table 5.3: Accuracy % by Segment Length (s).

From the results presented in Tab. 5.3, it becomes evident that increasing
the segment length over a certain limit does not lead to an improvement in the
classification accuracy. Longer segments (4 and 5 seconds) seem to negatively
influence the performance, with the 5-second segments showing a noticeable drop in
the accuracy, reaching 78.50% ± 4.25%.

On the contrary, signal segmentation into shorter durations, in particular 2
seconds, produced higher average accuracy values, achieving 90.36%±3.20%. Segment
lengths of 1 and 3 seconds both resulted in slightly lower accuracies (88.37% ± 3.15%
and 88.25% ± 3.32%, respectively).

This trend suggests that shorter segments are generally more effective in capturing
relevant temporal dynamics related to stress. Longer segments might introduce
additional variability, not recognised by the EEGNet, thereby reducing the model’s
performance.

Overall, the best performance is achieved with a segment length of two seconds,
offering an optimal trade-off between capturing sufficient temporal context and
avoiding the dilution of stress-related features across long segments. For these
reasons, the final segment length used in the model is two seconds.

51

Results

5.2 Training and Validation Performance Analysis

After optimising the EEGNet parameters, it is possible to analyse the trend of the
training and validation curves for the loss function and accuracy as a function of the
number of epochs. This can provide insights into the stability and quality of the
EEGNet, as well as its capacity for generalising. Fig. 5.1 illustrates these trends for
the model trained with the optimised parameters.

Figure 5.1: Training and Validation Loss (left) and Accuracy (right) as a Function
of Training Epoch.

5.2.1 Analysis of Loss Curves

The left panel in Fig. 5.1 shows the trend of the loss function of training and
validation as a function of the training epochs. Both curves exhibit a characteristic
decreasing trend, indicating that the model is efficiently learning to minimise the
difference between its predictions and the real labels. The steeper initial decline in
the two curves suggests a rapid acquisition of the most salient features during the
first epochs. As training progresses, the reduction of the loss function becomes less
evident, eventually stabilising in the final epochs. This asymptotic behaviour implies
that the model has converged, and further training yields diminishing returns in
terms of reducing the overall error.

Interestingly, the validation loss curve closely follows the training loss function,
without a significant divergence. This suggests that the model is generalising well to
unseen data, and the net is not overfitting the training set with these hyperparameter
settings. A substantial increase in the validation loss, despite a continued decrease in
the training loss, would have pointed to overfitting, a phenomenon that seems not to
be present with this particular training configuration.

Even if the training loss curve is almost monotonically decreasing through all the
epochs, the validation loss presents occasional peaks. These indicate that not all the
weight modifications performed during the net training to reduce the training loss
are equally efficient on data outside the training set. However, this behaviour does
not seem to pose a significant problem, since, after a few epochs, the validation loss

52

Results

stabilises again, resuming its monotonic, decreasing trend it was following before. In
particular, in the last epochs, the validation loss appears to be constant and without
any significant fluctuations, suggesting that the modifications in the net weights are
minimal and lead to negligible variations.

5.2.2 Analysis of Accuracy Curves

The right panel in Fig. 5.1 shows the training and validation accuracy as a function
of the training epochs. Consistent with the trend of the loss curves, both accuracy
curves show a general increasing trend, indicating an improvement in the model
capacity of classifying correctly the EEG signals in time. The rapid initial increase of
the accuracy corresponds to the fast diminution observed in the loss curves, further
highlighting the efficient learning of discriminatory features in the initial training
phases.

The near-monotonic increase in both training and validation accuracy highlights
the stability of the learning process. In particular, the validation accuracy stabilises
and slightly fluctuates in the final epochs, suggesting that the model reached a point
of maximum generalisation performance. While the training accuracy still shows a
marginal increase, the stabilisation of the validation accuracy indicates that further
training might not lead to significant improvements in the model’s capacity to classify
new, unseen data, but it might reduce it. To avoid this, the patience of 20 epochs
without any improvement in the validation accuracy stopped the learning at around
85 epochs. The proximity of the training and validation accuracy also supports the
idea of good generalisation for this specific hyperparameter configuration.

As a parallel to what has been observed for the loss function, where the validation
loss presented some peaks, which indicated that not all the training improvements are
translated into benefits for unseen data, in this plot, a similar behaviour is presented.
While the training accuracy curve is monotone and does not show evident valleys, the
validation accuracy curve shows valleys which temporally correspond to the epochs
in which the peaks in the validation loss were present. This parallelism reinforces the
hypothesis that those peaks were the result of less effective modifications of the net
weights during the training. Similarly to the loss function, after these fluctuations, the
validation accuracy tends to stabilise again, continuing its monotone trend, reaching
a plateau of performance in the last epochs.

5.3 Evaluation on 10% of the Dataset

Following the K-fold cross-validation experiments and the EEGNet training and
validation loss and accuracy curves analysis, the net has been evaluated on a dedicated
held-out test set. This evaluation has used the hyperparameter configuration which
has been determined as optimal in the previous experiments: 2-second long segments,
learning rate of 5 × 10−3, weight decay of 1 × 10−3, and Adam parameters β =
(0.9, 0.999), with learning rate scheduler but without early stopping.

53

Results

In previous analyses, the training of the net always included a validation set.
This is fundamental to detect when the net is learning features which are too specific
to the training set, not relevant for external data, and so to prevent overfitting.
Training a net without a validation set has the advantage that more data is available
for the training, allowing the net to acquire more relevant and generalised features.
A downside of this is that there is no way to understand when the net is not correctly
generalising, meaning that there is no reliable variable which can be used to decide
when to stop the training. Tab. 5.2 did not definitively identify the superior batch
size between 32 and 64, and so both values were considered in this analysis.

The dataset was split into a training set of 90% and a test set of 10%, with
2-second-long segments from all subjects in both sets. The net was trained for a
fixed duration of 100 epochs on the training set. To get a more stable and reliable
estimate of the model’s performance on the test set, the entire training process was
run ten times for both batch sizes, 32 and 64.

The resulting test accuracies are presented in Tab. 5.4.

Acc.%, BS=32 91.25 94.17 92.92 88.33 90.83 91.67 93.75 91.25 89.17 87.92
Acc.%, BS=64 88.75 90.00 90.42 86.25 90.83 94.58 88.75 90.00 92.08 91.25

Table 5.4: Test Accuracies on 10% Held-Out Dataset for Batch Sizes 32 and 64.
Respective Mean and Standard Deviation are: 91.13% ± 2.04%, and 90.29% ± 2.10%

The average test accuracy for batch size 32 (91.13%) is slightly higher than for
batch size 64 (90.29%). Furthermore, the standard deviation for batch size 32 (2.04%)
is lower compared to the one from batch size 64 (2.10%). This indicates that the
results for batch size 32 are slightly more consistent in the ten repetitions, suggesting
that this batch size might provide slightly better and more reliable generalisation
performance on the held-out test set. For these reasons, the final network uses a
batch size of 32.

Tab. 5.5 shows the six optimised parameters and their final value.

Batch Size Learning Rate Scheduler Weight Decay Betas Segment Length
32 5 · 10−3 True 1 · 10−3 (0.9, 0.999) 2 seconds

Table 5.5: Optimised parameters and their value.

5.4 K-Fold Cross-Validation on Subjects

To further evaluate the model’s ability to generalise to unseen data, a K-fold cross-
validation at the subject level was performed. This approach guaranteed that
the training and test sets contained different individuals, providing a more robust
estimate of the model’s performance with new subjects. Two different values of K

were explored.

54

Results

5.4.1 K=5

A cross-validation with K = 5 is a very common choice, dividing the dataset into
five folds of the same dimensions. In each iteration, four folds (80% of the subjects)
are used for the model training, while the last fold (20% of the subjects) is used as a
test set. With a total of 40 subjects in the dataset, 32 subjects were used for the
model training, and 8 for the testing for each fold.

The test accuracies obtained for each of the five folds are presented in Tab. 5.6.

Fold 1 2 3 4 5 Mean ± std.
Accuracy 70.95% 71.79% 52.20% 71.96% 61.82% 65.74% ± 7.76%

Table 5.6: Test Accuracies for K=5 Cross-Validation.

The overall mean test accuracy across the five folds gives an estimate of the
expected performance of the model on new and unseen subjects.

Table 5.6 shows a mean test accuracy of 65.74%, with a standard deviation
of 7.76%. In particular, the third fold achieved a lower, almost random accuracy
(52.20%), while the other folds varied between 61.82% and 71.96%. The variability
in the accuracy between the folds suggests that the capacity of the model to learn
features that generalise to unseen subjects might be limited. To further investigate
the capacity of generalisation of the model, another K-fold cross-validation has been
performed, this time using K=40.

5.4.2 K=40

In this k-folding, the net is trained using 39 subjects, and is tested using one subject.
This simulates the application of a trained net on a new subject, that is, a potential
application of the net in the real world.

The test accuracies obtained for each of the folds are presented in Fig. 5.2.
Fig. 5.2 illustrates the net’s performance on the single subjects, highlighting the

huge variability in the test accuracies. These accuracies vary between a minimum of
4.05% for subject 21 to a perfect 100% for subject 32, highlighting the substantial
inconsistency of the net’s capacity to classify the data from different subjects. The
figure also indicates the comprehensive accuracy of the K = 40 cross-validation,
which is 67.03% ± 24.04%.

This average is similar to the 65.74% achieved in the K = 5 cross validation,
suggesting a limit in the net’s capacity to generalise on unseen individuals. The
high standard deviation of 24.04% confirms this, indicating a significant dispersion
in the predictive capability across the subjects. In other words, the model classifies
perfectly some subjects, while it struggles with others. This inconsistency raises
concerns about the practical applicability of the model to new populations.

This observation reinforces the hypothesis that the net, in this current con-
figuration or with the current available training data, might not be able to learn
features which are robust enough and invariant to the inter-subject variability. This

55

Results

Figure 5.2: Test accuracies for each subject in the K=40 cross-validation, illustrating
the variability of the model’s performance across individual subjects. In yellow, the
subjects who performed in the range mean ± standard deviation. In red, the subjects
with lower values. In green, the subjects with higher values.

suggests that the model might involuntarily learn patterns more subject-specific than
generalisable underlying characteristics relevant to the task.

5.5 EEGNet Applied on New Data

The preceding analyses were conducted utilising the SAM40 dataset, which comprises
EEG recordings from 32 channels sampled at 128 Hz. However, the data acquisition
device employed for the present study is limited to 16 EEG channels, sampled at 125
Hz.

Due to these two substantial differences, the author chose to retrain the EEGNet
using the new dataset. The same hyperparameters as the ones optimised in Sec. 5.1
were used, except for the learning rate, which was reduced to 4 × 10−5.

This modification was necessary because with the previous learning rate (5×10−3),
the model training was not effective. It is possible that the optimal learning rate does
not depend only on the specific hyperparameters of the net, but also on the intrinsic
properties of the dataset used. Data with different characteristics (for instance,
number of channels, sampling frequency, SNR) might require a lower learning rate to
allow the model to converge with more stability without losing the minima of the
loss function.

The division of training and test sets was tested in two different ways. In the
first case, the training and test sets both contained data from all five sessions. In the
second case, the test set was the data from the last session of recordings. In both
cases, the inputs for the EEGNet were 2-second-long segments, as was in the trials
based on the SAM40 dataset.

56

Results

5.5.1 Testing on the Data from all the Sessions

In this trial, the data from the five sessions was split into 2-second-long non-
overlapping segments and then divided into training, validation and test sets with an
80%, 10%, 10% split, chosen to maximise the data available for training.

In the preprocessing steps, which were the same used for the SAM40 dataset,
two different values of kurtosis were tested for the ICA to optimise the threshold of
the components to be eliminated. Tab. 5.7 shows the percentage accuracy values
achieved in ten different runs, with two different values for the kurtosis.

kurt=8 90,72 89,69 89,18 90,72 92,78 88,66 91,75 92,78 88,14 89,69
kurt=12 94,33 94,33 90,72 89,18 90,21 93,30 91,24 94,95 93,81 95,36

Table 5.7: Accuracy % for ten runs varying the kurtosis values. Kurtosis threshold
of 8 led to an average accuracy of 90.41% ± 1.55%, while a kurtosis threshold of 12,
to an average accuracy of 92.73% ± 2.08%

As it was expected, the testing accuracies are extremely high. This is mainly
because of two reasons:

• The net has been previously optimised (see Sec. 5.1). The optimisation of
the EEGNet ensured that the architecture and the parameters were suited for
the classification task. This means that the net was already able to efficiently
learn the complex patterns present in the data, achieving in this way higher
performance.

• Using the data from a single subject drastically reduces the inter-subject
variability. NNs tend to perform better on data coming from the same source on
which they have been trained, because they can learn and exploit characteristics
which are subject-specific. This is a significant factor which contributes to the
almost perfect accuracy, but could limit the generalisability of the model to
new subjects.

From Tab. 5.7, it is also evident that the best threshold between 8 and 12 for the
kurtosis is the second one. The corresponding average and standard deviation for the
two thresholds are: 90.41% ± 1.55% and 92.73% ± 2.08%. This result is intuitively
sensible for the following reasons:

• Lower threshold - 8 : a lower threshold in the ICA implies that a higher number
of components will be classified as artefactual and eliminated. There is a
significant risk that useful components, containing information about the brain
patterns which characterise stress and relaxation states, but presenting a high
value of kurtosis, will be removed. This will impoverish the data, thereby
reducing the model’s capacity to correctly distinguish between the two states.

• Higher threshold - 12 : a higher threshold is more selective and tends to
remove almost exclusively the artefactual components. This allows for better

57

Results

preservation of the most relevant brain components, achieving a higher final
accuracy.

By analysing these results, the default value for the kurtosis threshold function
was set to 12.

5.5.2 Testing on the Data from the Fifth Session

In this trial, the data from the first four sessions was used to train the EEGNet,
while the data from the last session was used to test the model. After 40 cycles of
training and testing, the net produced a mean accuracy of 67.65% ± 6.76%. The 40
accuracy values are presented in Fig. 5.3.

Figure 5.3: Percentage accuracies of the model over 40 trials, testing on the data
from the fifth session.

This value is considerably low, especially if compared to the 92.73% obtained
in the previous trial, where the training and the test sets included data from all
sessions. This drastic reduction in the performance is probably due to the incredibly
high variability of the EEG signal. It has been previously explained that the EEG
signal is subject-specific, meaning that it varies a lot across different subjects (see
Sec. 2.1). However, it seems that a similar phenomenon is happening on the same
subject across different sessions. Even if the brain is the same, and the external
stimuli are identical, the EEG signal can vary and modify its behaviour, its dominant
frequencies, or the patterns, with time. This intra-subject variability across sessions
makes the classification extremely difficult, because the model trained on the first
four sessions might not efficiently generalise the patterns, even if they are from the
same subject, of the fifth session. The model, having learnt the specific features
from the first sessions, struggles to adapt to the slight but significant differences that
emerged in the last recording, independently of the good preprocessing techniques.

Other factors that might have contributed to the accuracy reduction in this
configuration include:

• Contact between electrodes and scalp: a suboptimal contact of the electrodes in
some sessions can introduce noise or signal distortion, making the classification

58

Results

task harder for the EEGNet.

• Hydration of the subject: the hydration of the subject can influence the skin
impedance and, consequently, the quality of the EEG signal.

• Room condition: variations in the environmental conditions in the room (for
instance, temperature or humidity) can influence the quality of the recorded
data and their coherence between sessions.

These elements, especially if combined, together with the natural variability of
the EEG signal with time, even in the same subject, explain the drop in the accuracy
when the model is tested on a session never seen during the training.

5.6 Velocity of the Algorithm

The processing time is a crucial factor for real-time applications, especially in contexts
where an immediate answer is required. To evaluate this aspect of the algorithm, the
total time needed for the loading, preprocessing and classification of a 2-second-long
segment was measured. The measure was repeated ten times for more reliable results.

The total time recorded was 252.7 ms ± 45.5 ms. Analysing the phases of the
algorithm, these are the mean timings:

• Data Loading: 40.2 ms ± 7.6 ms

• Preprocessing and Data Preparation: 177.5 ms ± 47.2 ms

• Classification: 35.0 ms ± 5.6 ms

As can be noted, the preprocessing phase is the most computationally expensive
component, taking more than 70% of the total time. This was expected, since
this step includes ICA. This is fundamental for the artefact removal and for the
improvement of the signal quality, but is known to be computationally complex, and
this justifies the greater contribution to the total processing time. Inference in the
EEGNet, on the contrary, is extremely fast, demonstrating the efficiency of the model
in the classification phase.

5.6.1 ITR

Based on the processing times measured and on the accuracy achieved, the ITR
was calculated, utilising the formulas presented in Equations 4.8 and 4.9. For this
calculation, the following parameters were used:

• N = 2 classes.

• P = 0.9273 is the accuracy, calculated from the testing on all the sessions.

• B = 60 / 2.2527, resulting in 26.6 classifications per minute.

Applying the values to the formula, the ITR value obtained is 16.62 bits/min.

59

Results

5.6.2 Literature Comparison

The only article which showed potential for real-time applications was [13]. Here, the
preprocessing time was 320 milliseconds and the classification time 7.1 milliseconds
for each segment. The results proposed in this work are five times slower for the
classification (35.0 milliseconds), but took half of the time for the preprocessing
(178 ms instead of 320 ms). This trade-off between preprocessing and classification
time highlights a key aspect of system design for real-time EEG-based applications:
optimising the pipeline as a whole is more impactful than focusing on a single stage. In
this sense, the proposed method achieves a reasonable balance between computational
load and classification accuracy, and paves the way for future improvements aimed
at meeting the stringent constraints of fully real-time systems.

The research for scientific papers studying EEG-based stress analysis with ITR
as a measure for the algorithm velocity produced no direct reference in the field.
However, it is possible to compare the ITR value with studies from other BCI
domains. In literature, ITR values are extremely variable, reflecting the diversity in
methodology, applications, and EEG signal characteristics.

For instance, spellers based on Steady-State Visually Evoked Potentials (SSVEP)
can reach significantly higher ITR values, such as the 105 bits/min achieved in [62].
On the other hand, Motor Imagery (MI) tasks, which often present higher complexity
in decoding the intentions of the subject, achieve lower ITR values, such as the 5.99
bits/min reached in [63].

The ITR of 16.62 bits/min, even if it is not between the best ITR values in
literature, is in a reasonable range and shows a discrete capacity of information
transfer for an EEG-based stress analysis system. It is important to note that stress
analysis is an intrinsically more complex task compared to spellers, and this may
justify the lower ITR value.

5.6.3 Potential Improvement

Further preprocessing optimisation might lead to an increase in the ITR, making
the algorithm more reactive. However, it is important to see the trade-off between
velocity and accuracy of the system. A more aggressive or simplified preprocessing,
aiming to reduce the elaboration time, would potentially lead to a decrease in the
accuracy. This would compromise the model’s capacity to correctly distinguish stress
and relaxation states, due to the loss of useful data or components.

To conclude, every future velocity optimisation should be balanced with an
attentive evaluation of the impact on the accuracy.

60

Chapter 6

Discussion

Despite the promising performance of the classifier, particularly in the cases in which
training, validation and test sets contained segments from the same subjects (as in
the analysis with the SAM40 dataset), or from the same recording session (as in the
recorded dataset), many limitations reduce its practical applicability.

6.1 Classifier Performance and Generalisation Limits

The best results achieved with the EEGNet are slightly lower than those reported in
the literature (tables 3.4 and 3.5). However, many articles do not treat explicitly the
problem of the model generalisation on subjects not present in the test set. Those
models might show a significant drop in performance if tested on new data from
different subjects.

The accuracy drop observed in this work might also be due to the limited
dimension and the low variability of the dataset. Increasing the dataset dimension,
in terms of the number of subjects, sessions, and trials, might improve the classifier’s
capability to learn features independent of the subjects, more correlated to stress
and relaxation states.

Possible new data must maintain coherence in the acquisition parameters, such
as sampling frequency, number and type of channels, and electrode positioning. This
standardisation would facilitate the learning, improving the model’s capability to
find hidden patterns in the EEG signals.

6.2 Device Limitations

The EEG cap used for the data acquisition presents many limitations concerning the
realisation of a real-time stress detection system which could be used in daily life:

• Absence of real-time acquisition: the device does not support the real-time
EEG data stream. The Graphical User Interface (GUI) allows exclusively a
qualitative visualisation of the signals to verify the presence of particularly
active bands, or railed electrodes. To save the data, it is necessary to transmit

61

Discussion

it through LSL to an external software (Lab Recorder), making a live analysis
impossible.

• Discomfort in a prolonged use: the rigid electrodes directly press on the scalp,
causing discomfort to the subject even after less than one hour of usage. This
makes it inadequate for prolonged sessions.

• Scarce fitness for daily usage: the device is bulky and visible, resulting in
incompatibility with working or social environments. Its appearance might
generate embarrassment in the subject who wears that.

• Movement sensibility: some electrodes tend to become railed even in the pres-
ence of little cap movements. Even if it is possible to manually reposition them,
in the absence of the GUI, the problem might be unobserved, compromising
the quality of the acquired data.

Between the devices presented in Fig. 2.3, the Emotiv EPOC X represents a
better alternative for future applications. This system presents:

• Higher comfort: the soft electrodes better adapt to the scalp shape, without
causing discomfort, even for prolonged sessions.

• Lower impedance: the electrodes can be wetted with electrolytical solutions,
improving the conductivity and the SNR.

• Frontal focalisation: a higher number of electrodes is positioned in the frontal
lobe, an area which is particularly important for stress analysis [54].

• Discrete design: the device is less visually invasive, and can be more easily
hidden, making it suitable for an usage in daily contexts.

These characteristics make the Emotiv EPOC X, or other similar Emotiv EEG
devices, promising devices for future developments of real-time wearable stress
detection systems.

6.3 Ethical considerations

The proposed algorithm has the potential to improve the mental health and well-being
of individuals through an early detection of stress conditions and the activation of
personalised interventions. However, an improper use might generate grave ethical
problems.

One possible misuse scenario involves excessive monitoring in professional en-
vironments to optimise employee performance. In such a context, stress metrics
could be used not to improve well-being, but to enforce productivity targets, detect
moments of reduced concentration, or even penalise employees perceived as “not
stressed enough” to be working at full capacity. This risk of over-monitoring is not

62

Discussion

unique to stress detection systems but is common to many emerging technologies
involving biometric data.

Even in domestic individual usage, misuse of the stress analyser can be harmful.
Continuous self-monitoring of mental state might generate an anxiety or over-alert
state, leading the person to excessively worry about their stress levels, even in the
absence of real signs of danger.

It is important that the development and usage of these technologies are followed
by clear ethical guidelines, guaranteeing transparency, informed consent, privacy
and responsible use of data. The EEG-based stress detection systems should only
be employed in contexts that bring concrete and voluntary benefits to the subject,
respecting their rights and dignity.

63

Chapter 7

Conclusion

The purpose of the study was to build a fast, automatic, and accurate EEG-based
classifier for stress analysis. To do so, a preprocessing was needed, followed by data
preparation to feed the data into the model.

7.1 Summary

The first step consisted of building a robust preprocessing algorithm. It started
with a z-normalisation to normalise the data so that every channel had a zero
mean and a unit variance. Then, the literature suggested that the most important
frequency band to be studied was between 4 and 30 Hz, and so a BPF was applied.
The cut-off frequencies were 1 and 40 Hz, to minimise the signal distortion in the
useful bandwidth, but also properly remove low-frequency drifts and high-frequency
noise (EMG signal and power line interference). To further suppress the power line
interference, a notch filter was applied at 50 Hz. A powerful and automatic ICA
algorithm based on the FastICA function was used. This helped to remove visually
evident artefacts such as ocular movements, which were not filtered through the
previous filtering steps.

After this, the data was divided into 2-second-long subsegments and split into
training, validation, and test sets. The EEGNet [1] model was slightly modified, and
subsequently it was trained and tested. To maximise the performance of the model,
many K-fold cross-validation experiments were run. These experiments varied the
batch size, learning rate, scheduler usage, weight decay, Adam β coefficients, and
segment length, and were used to perform the fine-tuning of the EEGNet.

Testing the model achieved an accuracy of 91.13% ± 2.04% with the net trained
and tested with segments from all the subjects (but not repeated in the different
sets). However, if the model was trained on 39 subjects and tested on the last subject,
the EEGNet achieved only an accuracy of 67.03% ± 24.04%. This showed a low
generalisation ability for the model on new subjects.

To verify that the model was able to perform well on different datasets, new EEG
data was collected from a single subject. Using this, the EEGNet was trained and
tested. The test accuracy was over 92%, indicating that the model was efficiently

64

Conclusion

classifying the data into the two classes. However, when the net was trained on
data from the first recorded sessions and tested on the last recorded session, the
accuracy dropped to 68%. Knowing the stochastic behaviour of the EEG signal
between subjects, it was hoped that on the same subject, it would maintain the same
characteristics. This was revealed to be partially true, especially on data from the
same session, and not on data from different sessions.

In the end, to address the need for a fast algorithm, the velocity of the entire
process, from data loading to classification, was calculated, resulting in 252.7 mil-
liseconds. This can be considered to be fast enough for a real-time application. The
ITR value was also calculated and resulted to be 16.62 bits/min. Many comparisons
can be done with ITR values of SSVEP spellers, which can achieve ITR values higher
than 100 bits/min [62], and MI classifiers, with ITR values that can be lower than
10 [63]. Unfortunately, it was not compared to other stress-classifiers’ ITR values, as
in those analyses, the classification time is usually not calculated, since they often
aim to achieve high accuracy values, regardless of the time required by the process.

7.2 Limitations

Despite the promising results, this study is subject to several limitations that require
consideration for future research. Firstly, the generalisation capabilities of the
developed model are inherently tied to the characteristics of the datasets used
for training, which were primarily collected in controlled laboratory environments.
Real-world stress manifestations can be far more varied and complex. The scope
of stress-inducing stimuli was confined to SCWT, Arithmetical, and Symmetrical
Images tasks. Expanding to a broader range of ecological stressors would enhance
the model’s robustness. In addition, while the system demonstrated almost real-time
performance, the computational demands, particularly during the preprocessing
phase, could pose challenges for deployment on highly resource-constrained edge
devices, necessitating further optimisation. Future work should therefore aim to
address these limitations by validating the system in naturalistic settings.

7.3 Future Research

Future research should focus on four main topics:

• Applying the model in an online real-time application: to make this research
impactful, the EEGNet has to be tested in an online real-time application. This
implies the creation of an algorithm that takes real-time data from a subject,
preprocesses it, and classifies it. Due to the low performance of data from
different sessions, the idea would be to record the EEG signal at the beginning
of each session in both a stressed and a relaxed condition. Then, train the
model using this data and a dataset with the same characteristics in terms
of sampling frequency, electrodes number and positioning as the device used.

65

Conclusion

In the end, perform real-time classification of the new EEG signals using the
EEGNet model, with the weights from the previous training. This is expected
to achieve performance higher than the 68% achieved in this research, since
data from the same session would be present in the training set.

• Finding a faster artefact removal algorithm: the proposed algorithm is extremely
fast, but the data preprocessing is particularly time-consuming, especially due to
ICA. Finding and using a different algorithm to automatically remove artefacts,
especially ocular movements, would significantly help reduce the time required
by the pipeline.

• Analyse the impact of the segment length: experimental results showed that,
in the SAM40 dataset, a 2-second segment provided an effective compromise
between classification performance and temporal resolution, achieving higher
accuracies than longer segments. However, this duration might not be optimal
for other datasets, especially if the stress dynamics develop over longer periods.
Furthermore, on short segments, algorithms such as ICA might fail to converge,
degrading the quality of the artefact removal. A valuable direction for future
work would therefore be to investigate the performance of the algorithm on
longer segments, assessing the trade-off between preprocessing stability and
classification accuracy.

• Exploring alternative data augmentation strategies: the linear surrogating tech-
nique led to overfitting, and was therefore not implemented in the research.
Other data augmentation methods could be investigated to increase the robust-
ness and the generalisability of the model.

In conclusion, this work demonstrated the feasibility of an automatic system for
EEG-based stress analysis, using a light and fast architecture, fit for a real-time
application. Despite the highlighted limitations, the results achieved represent a
concrete step towards the development of wearable and customizable solutions for
mental state monitoring. Potentially, this approach is not limited only to stress
detection, but could be applied in mental health, fatigue detection, and cognitive
performance. Further developments in terms of generalisation, preprocessing optimi-
sation, and real-environment validation would offer efficient tools for the prevention
and management of stress in daily life.

66

Appendix A

K-Fold Cross-Validation Table

This chapter presents the table with all 96 hyperparameter combinations, coming
from the experiments presented in Section 5.1.2.

Rank Batch LR Scheduler Weight β1, β2 µ

size use? decay (Acc.%)
1 64 5 × 10−3 True 1 × 10−3 (0.9,0.999) 90.79 ± 1.91
2 32 2.5 × 10−3 True 1 × 10−4 (0.8,0.98) 90.60 ± 1.30
3 32 5 × 10−3 True 1 × 10−4 (0.8,0.98) 90.56 ± 1.67
4 64 5 × 10−3 True 0 (0.9,0.999) 90.52 ± 1.79
5 32 5 × 10−3 True 0 (0.8,0.98) 90.25 ± 1.45
6 64 2.5 × 10−3 False 0 (0.9,0.999) 90.23 ± 1.49
7 32 2.5 × 10−3 False 0 (0.8,0.98) 90.15 ± 1.88
8 32 5 × 10−3 True 1 × 10−3 (0.9,0.999) 90.06 ± 1.91
9 32 2.5 × 10−3 False 1 × 10−4 (0.9,0.999) 89.92 ± 1.93

10 64 5 × 10−3 False 1 × 10−4 (0.8,0.98) 89.83 ± 2.02
11 32 5 × 10−3 True 1 × 10−3 (0.8,0.98) 89.83 ± 1.61
12 32 2.5 × 10−3 True 1 × 10−3 (0.9,0.999) 89.73 ± 1.97
13 32 5 × 10−3 True 0 (0.9,0.999) 89.67 ± 1.54
14 32 2.5 × 10−3 False 0 (0.9,0.999) 89.63 ± 2.42
15 32 1 × 10−3 False 0 (0.8,0.98) 89.60 ± 1.59
16 64 2.5 × 10−3 True 1 × 10−3 (0.9,0.999) 89.60 ± 1.59
17 32 5 × 10−3 True 1 × 10−4 (0.9,0.999) 89.50 ± 1.48
18 64 2.5 × 10−3 False 1 × 10−4 (0.8,0.98) 89.50 ± 1.74
19 64 5 × 10−3 True 1 × 10−3 (0.8,0.98) 89.42 ± 1.64
20 64 5 × 10−3 False 0 (0.9,0.999) 89.38 ± 1.88
21 32 1 × 10−3 True 0 (0.8,0.98) 89.35 ± 1.56
22 32 5 × 10−3 True 1 × 10−4 (0.9,0.999) 89.31 ± 1.42
23 64 2.5 × 10−3 True 1 × 10−4 (0.8,0.98) 89.17 ± 1.73
24 32 2.5 × 10−3 True 0 (0.8,0.98) 89.12 ± 1.88
25 32 7.5 × 10−4 True 0 (0.8,0.98) 88.08 ± 1.87
26 64 2.5 × 10−3 False 1 × 10−3 (0.9,0.999) 88.02 ± 1.79
27 32 7.5 × 10−4 True 0 (0.9,0.999) 88.94 ± 1.87
28 64 5 × 10−3 False 0 (0.8,0.98) 88.92 ± 1.81
29 32 2.5 × 10−3 False 1 × 10−3 (0.9,0.999) 88.92 ± 1.21
30 64 1 × 10−3 True 1 × 10−4 (0.8,0.98) 88.87 ± 2.32
31 32 1 × 10−3 False 0 (0.9,0.999) 88.85 ± 1.68
32 32 1 × 10−3 True 0 (0.9,0.999) 88.73 ± 1.51
33 64 5 × 10−3 False 1 × 10−4 (0.8,0.98) 88.71 ± 1.93
34 32 2.5 × 10−3 True 1 × 10−4 (0.8,0.98) 88.60 ± 1.75
35 64 5 × 10−3 True 1 × 10−3 (0.9,0.999) 88.60 ± 1.54
36 64 1 × 10−3 False 0 (0.9,0.999) 88.58 ± 2.96
37 64 7.5 × 10−4 True 1 × 10−4 (0.9,0.999) 88.56 ± 1.95
38 64 7.5 × 10−4 False 1 × 10−3 (0.9,0.999) 88.54 ± 1.92
39 64 2.5 × 10−3 False 1 × 10−4 (0.9,0.999) 88.50 ± 2.25
40 32 5 × 10−3 False 1 × 10−3 (0.9,0.999) 88.48 ± 1.87

Table A.1: Hyperparameter configurations ranked 1-40 from 5-fold Cross-Validation,
ordered by mean validation accuracy µ.

67

K-Fold Cross-Validation Table

Rank Batch LR Scheduler Weight β1, β2 µ

size use? decay (Acc.%)
41 64 7.5 × 10−4 False 0 (0.9,0.999) 88.46 ± 1.68
42 32 2.5 × 10−3 True 1 × 10−4 (0.9,0.999) 88.44 ± 1.99
43 32 5 × 10−3 False 0 (0.8,0.98) 88.37 ± 1.77
44 32 7.5 × 10−4 False 1 × 10−4 (0.8,0.98) 88.35 ± 1.94
45 64 2.5 × 10−3 True 0 (0.8,0.98) 88.33 ± 1.83
46 64 2.5 × 10−3 True 1 × 10−4 (0.8,0.98) 88.33 ± 1.77
47 32 1 × 10−3 False 1 × 10−4 (0.9,0.999) 88.31 ± 1.80
48 32 2.5 × 10−3 True 1 × 10−3 (0.8,0.98) 88.27 ± 1.79
49 64 2.5 × 10−3 False 0 (0.8,0.98) 88.27 ± 3.46
50 32 7.5 × 10−4 True 0 (0.8,0.98) 88.25 ± 1.21
51 64 2.5 × 10−3 True 0 (0.9,0.999) 88.23 ± 2.60
52 64 5 × 10−3 False 0 (0.8,0.98) 88.23 ± 3.00
53 32 2.5 × 10−3 False 1 × 10−3 (0.8,0.98) 88.21 ± 1.69
54 32 7.5 × 10−4 False 0 (0.9,0.999) 88.19 ± 1.85
55 64 5 × 10−3 False 1 × 10−4 (0.8,0.98) 88.17 ± 2.78
56 32 5 × 10−3 False 1 × 10−3 (0.9,0.999) 88.15 ± 1.90
57 32 2.5 × 10−3 True 1 × 10−4 (0.9,0.999) 88.15 ± 1.85
58 64 1 × 10−3 False 1 × 10−4 (0.8,0.98) 88.13 ± 3.28
59 32 1 × 10−3 False 0 (0.9,0.999) 88.10 ± 1.85
60 32 1 × 10−3 True 0 (0.9,0.999) 88.00 ± 1.69
61 64 5 × 10−3 False 1 × 10−4 (0.9,0.999) 88.00 ± 1.77
62 32 2.5 × 10−3 True 1 × 10−4 (0.8,0.98) 87.94 ± 1.75
63 64 5 × 10−3 True 1 × 10−3 (0.8,0.98) 87.94 ± 1.54
64 64 1 × 10−3 Ture 0 (0.8,0.98) 87.87 ± 2.52
65 64 7.5 × 10−4 False 1 × 10−4 (0.8,0.98) 87.85 ± 1.97
66 64 7.5 × 10−4 False 1 × 10−3 (0.9,0.999) 87.81 ± 2.01
67 64 2.5 × 10−3 False 1 × 10−4 (0.9,0.999) 87.81 ± 3.09
68 32 5 × 10−3 False 1 × 10−3 (0.8,0.98) 87.75 ± 1.94
69 64 7.5 × 10−4 False 0 (0.9,0.999) 87.73 ± 1.95
70 32 2.5 × 10−3 True 1 × 10−4 (0.9,0.999) 87.71 ± 2.13
71 32 5 × 10−3 False 0 (0.9,0.999) 87.71 ± 2.29
72 32 7.5 × 10−4 False 1 × 10−4 (0.9,0.999) 87.69 ± 2.16
73 64 2.5 × 10−3 True 0 (0.8,0.98) 87.60 ± 2.01
74 64 2.5 × 10−3 True 1 × 10−4 (0.8,0.98) 87.54 ± 1.91
75 32 1 × 10−3 False 1 × 10−4 (0.9,0.999) 87.27 ± 2.03
76 32 2.5 × 10−3 True 1 × 10−3 (0.8,0.98) 87.15 ± 1.82
77 64 1 × 10−3 False 0 (0.9,0.999) 87.02 ± 2.58
78 64 7.5 × 10−4 True 0 (0.8,0.98) 86.96 ± 2.32
79 64 1 × 10−3 True 1 × 10−4 (0.9,0.999) 86.92 ± 2.42
80 32 1 × 10−3 True 1 × 10−3 (0.9,0.999) 86.92 ± 2.12
81 32 7.5 × 10−4 False 1 × 10−4 (0.8,0.98) 86.75 ± 1.98
82 64 1 × 10−3 True 0 (0.8,0.98) 86.63 ± 2.32
83 64 7.5 × 10−4 False 0 (0.8,0.98) 86.62 ± 2.17
84 32 7.5 × 10−4 True 0 (0.9,0.999) 86.17 ± 2.21
85 64 1 × 10−3 False 1 × 10−4 (0.9,0.999) 86.04 ± 2.49
86 32 5 × 10−3 False 1 × 10−4 (0.8,0.98) 85.96 ± 2.34
87 64 7.5 × 10−4 True 1 × 10−4 (0.8,0.98) 85.79 ± 2.47
88 64 7.5 × 10−4 True 1 × 10−3 (0.9,0.999) 85.67 ± 2.38
89 32 1 × 10−3 False 1 × 10−4 (0.8,0.98) 85.60 ± 2.45
90 64 1 × 10−3 True 0 (0.8,0.98) 85.58 ± 2.50
91 32 7.5 × 10−4 False 0 (0.9,0.999) 85.42 ± 2.51
92 64 7.5 × 10−4 False 1 × 10−4 (0.8,0.98) 84.69 ± 1.96
93 64 7.5 × 10−4 False 1 × 10−3 (0.8,0.98) 84.54 ± 2.22
94 32 1 × 10−3 True 0 (0.9,0.999) 84.46 ± 2.54
95 64 7.5 × 10−4 True 0 (0.8,0.98) 84.35 ± 1.94
96 32 7.5 × 10−4 True 1 × 10−3 (0.8,0.98) 84.17 ± 2.27

Table A.2: Hyperparameter configurations ranked 41–96 from 5-fold cross validation,
ordered by mean validation accuracy µ.

68

Appendix B

Codes

This chapter presents all the codes used for processing and classifying the data.

Preprocessing

1 # Applies z- normalization , BPF , notch filtering to raw EEG data
2 # %%
3 import os
4 import glob
5 import time
6 import torch
7 import numpy as np
8 import pandas as pd
9 import matplotlib . pyplot as plt

10 from scipy . signal import butter , filtfilt , iirnotch
11 from sklearn . model_selection import train_test_split
12

13 # %%
14 # set to false to not plot the signals
15 plot_data = True
16

17 # put False to avoid the Linear Surrogating Technique for data augmentation #
18 use_surrogate = False
19

20 # Data loading
21 path = "D:\\ Student_Projects \\ Thesis Gioele \\00 _04_RAW EEG STRESS DATASET "
22 relax_files = glob.glob(os.path.join(path , " Relax ", "*. csv"))
23 stroop_files = glob.glob(os.path.join(path , " Stroop ", "*. csv"))
24 arithmetic_files = glob.glob(os.path.join(path , " Arithmetic ", "*. csv"))
25 mirror_files = glob.glob(os.path.join(path , " Mirror_image ", "*. csv"))
26

27 # loading CSV files into a list of DataFrames
28 def load_csv_files (file_list):
29 data_list = []
30 for file in file_list :
31 df = pd. read_csv (file)
32 df = df.drop(df. columns [0] , axis =1) # Remove the first column (index

of timeframes)
33 data_list . append (df. values)
34 return data_list
35

69

Codes

36 relax_data = load_csv_files (relax_files)
37 stroop_data = load_csv_files (stroop_files)
38 arithmetic_data = load_csv_files (arithmetic_files)
39 mirror_data = load_csv_files (mirror_files)
40

41 fs = 128
42

43 start_filt = time.time ()
44

45 # z- normalisation
46 def z_normalization (data_list):
47 for i in range (len(data_list)):
48 data_list [i] = (data_list [i] - data_list [i]. mean ()) / np.std(data_list

[i]) # subtract avg , divide by std
49 return data_list
50

51 relax_data_avg = z_normalization (relax_data .copy ())
52 stroop_data_avg = z_normalization (stroop_data .copy ())
53 arithmetic_data_avg = z_normalization (arithmetic_data .copy ())
54 mirror_data_avg = z_normalization (mirror_data .copy ())
55

56 # %% Filtering
57 def bandpass_filter (data , lowcut =1, highcut =40 , fs =128 , order =4):
58 nyquist = 0.5 * fs
59 low = lowcut / nyquist
60 high = highcut / nyquist
61 b, a = butter (order , [low , high], btype =’band ’)
62 return filtfilt (b, a, data , axis =0)
63

64 def notch_filter (data , fs =128 , freq =50 , quality_factor =30):
65 b, a = iirnotch (freq , quality_factor , fs)
66 return filtfilt (b, a, data , axis =0)
67

68 def preprocess_data (data_list): # passband + notch filter
69 return [notch_filter (bandpass_filter (df , lowcut =1, highcut =40 , fs=fs), fs=

fs) for df in data_list]
70

71 relax_data_filt = np. stack (preprocess_data (relax_data_avg), axis =0)
72 stroop_data_filt = np. stack (preprocess_data (stroop_data_avg), axis =0)
73 arithmetic_data_filt = np. stack (preprocess_data (arithmetic_data_avg), axis =0)
74 mirror_data_filt = np. stack (preprocess_data (mirror_data_avg), axis =0)
75

76 end_filt = time.time ()
77 print ("Data filtered in ", end_filt - start_filt , " seconds ")
78

79 # %% Data Augmentation using Linear Surrogating Technique
80 if use_surrogate :
81 def linear_surrogate (signal_tensor):
82 fft_signal = torch .fft.fft(signal_tensor)
83 magnitude = torch .abs(fft_signal) # Module
84 phase = torch . angle (fft_signal) # Original phase
85 random_phase = torch . rand_like (phase) * 2 * torch .pi # New random

phase
86 fft_surrogate = magnitude * torch .exp (1j * random_phase) # New FFT

with the random phase
87 surrogate_signal = torch .fft.ifft(fft_surrogate).real # IFFT (take

the real part)
88 return surrogate_signal
89

90 def augment_linear_surrogating (data_list):
91 augmented_data = []

70

Codes

92 for subject_array in data_list :
93 surrogate_array = np. zeros_like (subject_array)
94

95 for ch in range (subject_array . shape [1]):
96 signal_tensor = torch . tensor (subject_array [:, ch]. copy () ,

dtype = torch . float32)
97 surrogate_signal = linear_surrogate (signal_tensor)
98 surrogate_array [:, ch] = surrogate_signal . numpy ()
99 augmented_data . append (surrogate_array)

100 return augmented_data
101

102 # Splitting into training and testing sets , then applying data
augmentation

103 def split_and_augment (data):
104 train_data , test_data = train_test_split (data , test_size =0.15 ,

random_state =42)
105 train_augmented = augment_linear_surrogating (train_data)
106 train_doubled = np. concatenate ((np. array (train_data), np. array (

train_augmented)), axis =0)
107 return train_doubled , test_data
108

109 relax_train_doubled , relax_test = split_and_augment (relax_data_filt)
110 stroop_train_doubled , stroop_test = split_and_augment (stroop_data_filt)
111 arithmetic_train_doubled , arithmetic_test = split_and_augment (

arithmetic_data_filt)
112 mirror_train_doubled , mirror_test = split_and_augment (mirror_data_filt)
113

114 relax_data_filt = relax_train_doubled
115 stroop_data_filt = stroop_train_doubled
116 arithmetic_data_filt = arithmetic_train_doubled
117 mirror_data_filt = mirror_train_doubled
118

119 relax_all = np. concatenate ((relax_data_filt , relax_test), axis =0)
120 stroop_all = np. concatenate ((stroop_data_filt , stroop_test), axis =0)
121 arithmetic_all = np. concatenate ((arithmetic_data_filt , arithmetic_test),

axis =0)
122 mirror_all = np. concatenate ((mirror_data_filt , mirror_test), axis =0)
123

124 else: # no data augmentation (full dataset)
125 relax_all = relax_data_filt .copy ()
126 stroop_all = stroop_data_filt .copy ()
127 arithmetic_all = arithmetic_data_filt .copy ()
128 mirror_all = mirror_data_filt .copy ()
129

130 # train - test splitting
131 relax_data_filt , relax_test = train_test_split (relax_data_filt , test_size

=0.15 , random_state =42)
132 stroop_data_filt , stroop_test = train_test_split (stroop_data_filt ,

test_size =0.15 , random_state =42)
133 arithmetic_data_filt , arithmetic_test = train_test_split (

arithmetic_data_filt , test_size =0.15 , random_state =42)
134 mirror_data_filt , mirror_test = train_test_split (mirror_data_filt ,

test_size =0.15 , random_state =42)

71

Codes

ICA

1 # Apply ICA to filtered EEG Data
2 # %%
3 import time
4 import torch
5 import numpy as np
6 import matplotlib . pyplot as plt
7 from scipy . stats import kurtosis
8 from sklearn . decomposition import FastICA
9 from scipy . signal import butter , filtfilt , find_peaks

10

11 # %%
12 # set to True if you want the plot
13 plot_signal = True
14

15 device = torch . device ("cuda" if torch .cuda. is_available () else "cpu")
16

17 # DATA LOADING
18 folder_path = "D:\\ Student_Projects \\ Thesis Gioele \\ Codes \\ Data \\00\\00 _"
19 end_path = " _zNorm_full_filtered_aug .npy"
20

21 # Load the filtered data (full dataset)
22 relax_data = np.load(folder_path + " relax " + end_path , allow_pickle =True)
23 stroop_data = np.load(folder_path + " stroop " + end_path , allow_pickle =True)
24 arithmetic_data = np.load(folder_path + " arithmetic " + end_path , allow_pickle =

True)
25 mirror_data = np.load(folder_path + " mirror " + end_path , allow_pickle =True)
26

27 fs = 128
28

29 # %%
30 start_ica = time.time ()
31

32 def clean_signal_ica (raw_data : np.ndarray ,
33 fs: float , # Hz
34 segment_duration : float = 2.0 , # s
35 peak_rate_max : float = 2, # Hz = 2 blinks per second
36 kurtosis_thresh : float = 12.0 ,
37 ica_n_components : int = None) -> np. ndarray :
38 """
39 Perform ICA - based cleanup of multi - channel signal .
40

41 Input shape must be (timeframes x channels). If the input shape is (
channels x timeframes),

42 it is automatically transposed .
43 """
44 transposed = False
45 if raw_data . shape [0] < raw_data . shape [1]:
46 raw_data = raw_data .T
47 transposed = True
48

49 n_samples , n_channels = raw_data . shape
50

51 if ica_n_components is None:
52 ica_n_components = n_channels
53

54 samples_per_segment = int(segment_duration * fs)

72

Codes

55 n_segments = int(np.ceil(n_samples / samples_per_segment))
56 cleaned = np. zeros_like (raw_data)
57

58 for seg_idx in range (n_segments):
59 start = seg_idx * samples_per_segment
60 end = min(start + samples_per_segment , n_samples)
61 segment = raw_data [start :end , :].T # shape (channels , segment_length)
62

63 # ICA decomposition
64 ica = FastICA (n_components = ica_n_components , random_state =0)
65 sources = ica. fit_transform (segment .T).T # (n_components , n_time)
66

67 # Check how many iterations were used
68 if ica. n_iter_ >= 200: # 200 is the default max_iter in FastICA . If it

reaches this threshold , it means it did not converge
69 print (f" Segment { seg_idx }: ICA did not converge (n_iter_ = {ica.

n_iter_ }). Skipping artifact removal .")
70 cleaned [start :end , :] = raw_data [start :end , :]
71 continue
72

73 else: # ICA converged , proceed with the artifact removal
74 # collect dropped components and their criteria
75 drops = [] # list of (component_idx , criterion)
76

77 for ic in range (sources . shape [0]):
78 src = sources [ic]
79

80 # Mid -band peak -rate
81 nyq = 0.5 * fs
82 b, a = butter (4, 15 / nyq , btype =’low ’)
83 filt = filtfilt (b, a, src) # filtering the component to remove

multiple peaks
84 threshold = 0.5 * np.max(np.abs(filt))
85 peaks , _ = find_peaks (np.abs(filt), height = threshold)
86 rate = len(peaks) / (filt.size / fs)
87

88 # Kurtosis artifact
89 k = abs(kurtosis (src))
90 if k > kurtosis_thresh and rate < peak_rate_max :
91 drops . append ((ic , ’Kurtosis ’))
92

93 # Zero -out dropped components and reconstruct
94 if drops :
95 drop_indices = [ic for ic , _ in drops]
96 sources [drop_indices] = 0
97 recon = ica. inverse_transform (sources .T).T # shape (channels ,

time)
98 cleaned [start :end , :] = recon .T # shape (time , channels)
99

100 if transposed :
101 cleaned = cleaned .T
102

103 return cleaned
104

105 relax_data_ica = [clean_signal_ica (subject_data , fs=fs) for subject_data in
relax_data]

106 stroop_data_ica = [clean_signal_ica (subject_data , fs=fs) for subject_data in
stroop_data]

107 arithmetic_data_ica = [clean_signal_ica (subject_data , fs=fs) for subject_data
in arithmetic_data]

73

Codes

108 mirror_data_ica = [clean_signal_ica (subject_data , fs=fs) for subject_data in
mirror_data]

109

110 end_ica = time.time ()
111 print ("ICA total time (full dataset): ", end_ica - start_ica)

74

Codes

Training and Testing the EEGNet on the SAM40 Dataset

1 # %%
2 import time
3 import torch
4 import numpy as np
5 import torch .nn as nn
6 import torch . optim as optim
7 import matplotlib . pyplot as plt
8 from torchmetrics import Accuracy
9 from torch . utils .data import DataLoader , TensorDataset

10 from sklearn . model_selection import train_test_split
11

12 # %% LOADING DATA
13 plot_results = False
14

15 device = torch . device ("cuda" if torch .cuda. is_available () else "cpu")
16

17 folder_path = "D:\\ Student_Projects \\ Thesis Gioele \\ Codes \\ Data \\01\\01 _"
18 end_path = " _ica_v0 .npy"
19

20 relax_data = np.load(folder_path + " relax " + end_path , allow_pickle =True)
21 stroop_data = np.load(folder_path + " stroop " + end_path , allow_pickle =True)
22

23 channels_32 = True
24 if channels_32 : num_channels = relax_data [0]. shape [1]
25 else: # to train the model for testing on the OpenBCI data , which has 16

channels
26 num_channels = 16
27 idx = [i - 1 for i in [3, 32, 5, 30, 2, 7, 28, 1, 13, 22, 17, 16, 19, 14,

25, 10]] # channels similar to the channels in the OpenBCI device
28 relax_data = [sub [:, idx] for sub in relax_data]
29 stroop_data = [sub [:, idx] for sub in stroop_data]
30

31 # %% data segmentation and division in train , val , test set.
32 # Divide each trial into 15 segments of 5 seconds each (6400 samples). Then

split these 5- second blocks into train , val , test sets.
33 relax_data_divided = []
34 stroop_data_divided = []
35 num_segments = 15
36 len_segment = len(relax_data [0]) // num_segments # 5 seconds = 6400 samples
37

38 for sub in relax_data : # for each sub -> 9600 x32
39 for i in range (num_segments):
40 relax_data_divided . append (sub[i* len_segment :(i+1)* len_segment , :])
41

42 for sub in stroop_data :
43 for i in range (num_segments):
44 stroop_data_divided . append (sub[i* len_segment :(i+1)* len_segment , :])
45

46 tot_divided = np. stack (relax_data_divided + stroop_data_divided , axis =0)
47 all_labels = np. array ([0]* len(relax_data_divided) + [1]* len(

stroop_data_divided))
48

49 # divide in construction and test set
50 trials_train_val , trials_test , labels_train_val , labels_test =

train_test_split (
51 tot_divided , all_labels ,

75

Codes

52 test_size =0.15 , random_state =42 ,
53 stratify = all_labels
54)
55

56 fs = 128 # sampling frequency
57 batch_size = 32
58 print (" Batch size:", batch_size)
59 num_class = 2
60

61 def segment_data_trials (data , trial_labels , segment_length , step):
62 segments , labels = [], []
63 for trial , lab in zip(data , trial_labels):
64 for start in range (0, trial . shape [0] - segment_length + 1, step):
65 seg = trial [start : start + segment_length , :].T # (channels , time)
66 segments . append (seg)
67 labels . append (lab)
68 return np. stack (segments), np. array (labels)
69

70

71 factor = 2
72 segment_length = factor * fs
73 print (" Segment length :", factor , " seconds ")
74 step_train_val = int (0.5 * segment_length) # overlap = 1 - step_ %
75 step_test = int (1 * segment_length) # putting overlap in the test will

only generate more samples for the test set , but not more information
76 print (" Train Overlap :", 1 - (step_train_val / segment_length))
77

78 segments_tv , labs_tv = segment_data_trials (trials_train_val , labels_train_val ,
segment_length , step_train_val)

79 segments_test , labs_test = segment_data_trials (trials_test , labels_test ,
segment_length , step_test)

80

81 # 3) Shuffle -and - split train +val segments into train and val sets
82 seg_train , seg_val , lab_train , lab_val = train_test_split (
83 segments_tv , labs_tv ,
84 test_size =0.15 , random_state =42 ,
85 stratify = labs_tv
86)
87

88 # 4) Convert to torch tensors and create DataLoaders ; add channel dimension
with unsqueeze (1)

89 signal_train = torch . tensor (seg_train , dtype = torch . float32). unsqueeze (1)
90 signal_val = torch . tensor (seg_val , dtype = torch . float32). unsqueeze (1)
91 signal_test = torch . tensor (segments_test , dtype = torch . float32). unsqueeze (1)
92

93 label_train = torch . tensor (lab_train , dtype = torch .long)
94 label_val = torch . tensor (lab_val , dtype = torch .long)
95 label_test = torch . tensor (labs_test , dtype = torch .long)
96

97 train_loader = DataLoader (TensorDataset (signal_train , label_train), batch_size
= batch_size , shuffle =True)

98 val_loader = DataLoader (TensorDataset (signal_val , label_val), batch_size
= batch_size , shuffle = False)

99 test_loader = DataLoader (TensorDataset (signal_test , label_test), batch_size
= batch_size , shuffle = False)

100

101 # EEGNet Model inspired from https :// github .com/ aliasvishnu / EEGNet /blob/ master
/EEGNet - PyTorch . ipynb

102

103 class EEGNet (nn. Module):
104 def __init__ (self , num_channels , segment_length , num_class =2):

76

Codes

105 super (). __init__ ()
106

107 self. num_channels = num_channels
108 self. segment_length = segment_length
109

110 # Layer 1
111 self. conv2d = nn. Conv2d (1, 16, kernel_size =(1 , 64) , padding =0)
112 self.bn1 = nn. BatchNorm2d (16)
113 self.elu = nn.ELU ()
114 self.drop = nn. Dropout (0.25)
115

116 # Layer 2
117 self.pad1 = nn. ZeroPad2d ((16 , 17, 0, 1))
118 self. depth_conv = nn. Conv2d (16 , 4, kernel_size =(2 , 32))
119 self.bn2 = nn. BatchNorm2d (4)
120 self. pool1 = nn. AvgPool2d ((2 , 4))
121

122 # Layer 3
123 self.pad2 = nn. ZeroPad2d ((2 , 1, 4, 3))
124 self. sep_dep = nn. Conv2d (4, 4, kernel_size =(8 , 4) , groups =4)
125 self. sep_point = nn. Conv2d (4, 4, kernel_size =1)
126 self.bn3 = nn. BatchNorm2d (4)
127 self. pool2 = nn. AvgPool2d ((2 , 4))
128

129 # use a dummy pass to infer flattened feature size
130 with torch . no_grad ():
131 dummy = torch . zeros (1, 1, num_channels , segment_length)
132 x = self. _forward_features (dummy)
133 n_features = x. shape [1]
134

135 # final classifier
136 self. classifier = nn. Sequential (
137 nn. Flatten () ,
138 nn. Linear (n_features , num_class),
139 nn. Softmax (dim =1)
140)
141

142 def _forward_features (self , x):
143 x = self. conv2d (x)
144 x = self.bn1(x); x = self.elu(x); x = self.drop(x)
145

146 x = self.pad1(x)
147 x = self. depth_conv (x)
148 x = self.bn2(x); x = self.elu(x); x = self.drop(x)
149 x = self. pool1 (x)
150

151 x = self.pad2(x)
152 x = self. sep_dep (x)
153 x = self. sep_point (x)
154 x = self.bn3(x); x = self.elu(x); x = self.drop(x)
155 x = self. pool2 (x)
156

157 x = torch . flatten (x, 1)
158 return x
159

160 def forward (self , x):
161 x = self. _forward_features (x)
162 x = self. classifier (x)
163 return x
164

77

Codes

165 model = EEGNet (num_channels = num_channels , segment_length = segment_length).to(
device)

166

167 # Functions for train and val
168 class AverageMeter (object):
169 """ Computes and stores the average and current value """
170 def __init__ (self):
171 self. reset ()
172

173 def reset (self):
174 self.val = 0
175 self.avg = 0
176 self.sum = 0
177 self. count = 0
178

179 def update (self , val , n=1):
180 self.val = val
181 self.sum += val * n
182 self. count += n
183 self.avg = self.sum / self. count
184

185 def train_one_epoch (model , train_loader , loss_fn , optimizer):
186 model . train ()
187 loss_train = AverageMeter ()
188 acc_train = Accuracy (task=" multiclass ", num_classes = num_class).to(device)
189

190 for i, (inputs , targets) in enumerate (train_loader):
191 inputs = inputs .to(device)
192 targets = targets .to(device)
193

194 outputs = model (inputs)
195 loss = loss_fn (outputs , targets)
196

197 loss. backward ()
198 nn. utils . clip_grad_norm_ (model . parameters () , 1)
199 optimizer .step ()
200 optimizer . zero_grad ()
201

202 loss_train . update (loss.item ())
203 acc_train (outputs , targets .int ())
204

205 return model , loss_train .avg , acc_train . compute ().item ()
206

207 def validate (model , val_loader , loss_fn):
208 model .eval ()
209 loss_val = AverageMeter ()
210 acc_val = Accuracy (task=" multiclass ", num_classes = num_class).to(device)
211

212 with torch . no_grad ():
213 for inputs , targets in val_loader :
214 inputs = inputs .to(device)
215 targets = targets .to(device)
216

217 outputs = model (inputs)
218 loss = loss_fn (outputs , targets)
219

220 loss_val . update (loss.item ())
221 acc_val (outputs , targets .int ())
222

223 return loss_val .avg , acc_val . compute ().item ()
224

78

Codes

225 loss_train = []
226 acc_train = []
227 loss_val = []
228 acc_val = []
229

230 num_epochs = 101
231 tot_epochs = num_epochs
232 loss_fn = nn. CrossEntropyLoss ().to(device)
233 optimizer = optim .Adam(model . parameters () , lr =0.005 , weight_decay =1e-3, betas

=(0.9 ,0.999))
234 use_scheduler = True
235 if use_scheduler : scheduler = torch . optim . lr_scheduler . CosineAnnealingLR (

optimizer , T_max = num_epochs)
236

237 best_val_acc = 0.0
238 if channels_32 : model_path = "D:\\ Student_Projects \\ Thesis Gioele \\ Codes // Data

//04//04 _model_2cl_EEGNet .pt"
239 else: model_path = "D:\\ Student_Projects \\ Thesis Gioele \\ Codes // Data //04//04

_model_2cl_EEGNet_16 .pt" # 16 channels
240

241 patience = 20 # Max epochs without val_acc improvement before early stopping
242 counter = 0 # Counts the epochs without any improvement
243

244 start_train = time.time ()
245 for epoch in range (num_epochs):
246 model , loss_train_ep , acc_train_ep = train_one_epoch (model , train_loader ,

loss_fn , optimizer)
247

248 loss_train . append (loss_train_ep)
249 acc_train . append (acc_train_ep)
250

251 loss_val_ep , acc_val_ep = validate (model , val_loader , loss_fn)
252 loss_val . append (loss_val_ep)
253 acc_val . append (acc_val_ep)
254

255 if acc_val_ep > best_val_acc :
256 best_val_acc = acc_val_ep
257 torch .save(model . state_dict () , model_path)
258 counter = 0
259 else:
260 counter += 1
261

262 if counter >= patience :
263 print (f" Early stopping ({ patience } epochs) triggered after { epoch +1}

epochs .")
264 tot_epochs = epoch + 1
265 break
266

267 if (epoch % 10 == 5) or (epoch % 10 == 0):
268 print (f’epoch { epoch }: ’)
269 print (f’ Loss = { loss_train_ep :.4} , Tr Accuracy = { acc_train_ep *100:.2

f}%, Val Accuracy = { acc_val_ep *100:.2 f}% (best_val_acc = { best_val_acc
*100:.4 f}%)\n’)

270

271 if use_scheduler : scheduler .step ()
272 end_train = time.time ()
273 print (" Train completed in {:.2f} seconds ". format (end_train - start_train))
274

275 start_test = time.time ()
276 model . load_state_dict (torch .load(model_path , weights_only = False))
277 test_loss , test_acc = validate (model , test_loader , loss_fn)

79

Codes

278 end_test = time.time ()
279 print (f"Test set - Loss: { test_loss :.4f}, Accuracy : { test_acc *100:.2 f}%")
280 print ("Test completed in {:.2f} seconds ". format (end_test - start_test))
281

282 # %% Plot Accuracy and Loss
283 if plot_results :
284 plt. figure (figsize =(12 , 5))
285

286 plt. subplot (1, 2, 1)
287 plt.plot(range (tot_epochs), loss_train , ’b-’, label =’Train Loss ’)
288 plt.plot(range (tot_epochs), loss_val , ’r-’, label =’Val Loss ’)
289 plt. xlabel (’Epoch ’)
290 plt. ylabel (’Loss ’)
291 plt. title (’Train vs. Val Loss ’)
292 plt. legend ()
293 plt.grid(True)
294

295 plt. subplot (1, 2, 2)
296 plt.plot(range (tot_epochs), acc_train , ’b-’, label =’Train Accuracy ’)
297 plt.plot(range (tot_epochs), acc_val , ’r-’, label =’Val Accuracy ’)
298 plt. xlabel (’Epoch ’)
299 plt. ylabel (’Accuracy ’)
300 plt. title (’Train vs. Val Accuracy ’)
301 plt.ylim (0.5 ,1)
302 plt. legend ()
303 plt.grid(True)
304

305 plt. tight_layout ()
306 plt.show ()

80

Codes

K-Fold Cross-Validation for the 96 Hyperparameter Com-
binations

1 # k-fold on: batch size , learning rate , weight decay , betas , use_scheduler
2

3 import torch
4 import numpy as np
5 import pandas as pd
6 from torch import nn , optim
7 from torch . utils .data import DataLoader , TensorDataset
8 from sklearn . model_selection import KFold
9 from torchmetrics import Accuracy

10

11 # ----- Parameters -----
12 k_folds = 5
13 batch_sizes = [32 , 64]
14 learning_rates = [7.5e-4, 1e-3, 2.5e-3, 5e -3]
15 use_scheduler_opts = [False , True]
16 weight_decays = [0.0 , 1e-4, 1e -3]
17 betas_opts = [(0.9 , 0.999) , (0.8 , 0.98)]
18 num_epochs = 90
19 fs = 128 # sampling frequency
20 segment_length = 2 * fs
21 step_train = int (0.5 * segment_length)
22 step_test = segment_length
23 num_class = 2
24

25 device = torch . device ("cuda" if torch .cuda. is_available () else "cpu")
26

27 # ----- Data Loading -----
28 folder_path = "D:/ Student_Projects / Thesis Gioele / Codes /Data /00/00 _"
29 end_path = " _full_filtered .npy"
30 relax = np.load(folder_path + " relax " + end_path , allow_pickle =True)
31 stroop = np.load(folder_path + " stroop " + end_path , allow_pickle =True)
32

33 # ----- Big segmentation -----
34 num_segments = 15
35 big_chunks , big_labels = [], []
36 for sub in relax :
37 for i in range (num_segments):
38 big_chunks . append (sub[i*(len(sub)// num_segments):(i+1) *(len(sub)//

num_segments), :])
39 big_labels . append (0)
40 for sub in stroop :
41 for i in range (num_segments):
42 big_chunks . append (sub[i*(len(sub)// num_segments):(i+1) *(len(sub)//

num_segments), :])
43 big_labels . append (1)
44 big_chunks = np. stack (big_chunks)
45 big_labels = np. array (big_labels)
46

47 def segment_windows (data , labels , seg_len , step):
48 segs , labs = [], []
49 for trial , lab in zip(data , labels):
50 for start in range (0, trial . shape [0] - seg_len + 1, step):
51 segs. append (trial [start : start +seg_len , :].T)
52 labs. append (lab)

81

Codes

53 return np. stack (segs), np. array (labs)
54

55 all_segs , all_labs = segment_windows (big_chunks , big_labels , segment_length ,
step_train)

56

57 # Precompute chunk index mapping
58 chunk_idxs = []
59 idx = 0
60 for _ in range (len(big_chunks)):
61 count = (big_chunks . shape [1] - segment_length) // step_train + 1
62 chunk_idxs . append (list(range (idx , idx+ count)))
63 idx += count
64

65 # ----- Model Definition -----
66 class EEGNet (nn. Module):
67 def __init__ (self , num_class =2):
68 super (EEGNet , self). __init__ ()
69

70 # Layer 1
71 self. conv2d = nn. Conv2d (1, 16, kernel_size =(1 , 64) , padding =0)
72 self. Batch_normalization_1 = nn. BatchNorm2d (16)
73 self.Elu = nn.ELU ()
74 self. Dropout = nn. Dropout (0.25)
75

76 # Layer 2
77 self. padding1 = nn. ZeroPad2d ((16 , 17, 0, 1))
78 self. Depthwise_conv2D = nn. Conv2d (16 , 4, kernel_size =(2 , 32))
79 self. Batch_normalization_2 = nn. BatchNorm2d (4)
80 self. Average_pooling2D_1 = nn. AvgPool2d (kernel_size =(2 , 4))
81

82 # Layer 3
83 self. padding2 = nn. ZeroPad2d ((2 , 1, 4, 3))
84 self. Separable_conv2D_depth = nn. Conv2d (4, 4, kernel_size =(8 , 4) ,

padding =0, groups =4)
85 self. Separable_conv2D_point = nn. Conv2d (4, 4, kernel_size =(1 , 1))
86 self. Batch_normalization_3 = nn. BatchNorm2d (4)
87 self. Average_pooling2D_2 = nn. AvgPool2d (kernel_size =(2 , 4))
88

89 # Layer 4
90 self. Flatten = nn. Flatten ()
91 self. Dense = nn. Linear (384 , num_class) # 384 for 2 seconds segment
92 self. Softmax = nn. Softmax (dim =1)
93

94 def forward (self , x):
95 # Layer 1
96 x = self. conv2d (x)
97 x = self. Batch_normalization_1 (x)
98 x = self.Elu(x)
99 x = self. Dropout (x)

100

101 # Layer 2
102 x = self. padding1 (x)
103 x = self. Depthwise_conv2D (x)
104 x = self. Batch_normalization_2 (x)
105 x = self.Elu(x)
106 x = self. Dropout (x)
107 x = self. Average_pooling2D_1 (x)
108

109 # Layer 3
110 x = self. padding2 (x)
111 x = self. Separable_conv2D_depth (x)

82

Codes

112 x = self. Separable_conv2D_point (x)
113 x = self. Batch_normalization_3 (x)
114 x = self.Elu(x)
115 x = self. Dropout (x)
116 x = self. Average_pooling2D_2 (x)
117

118 # Layer 4
119 x = self. Flatten (x)
120 x = self. Dense (x)
121 x = self. Softmax (x)
122 return x
123

124 # ----- Experiment Loop -----
125 results = []
126 kf = KFold (n_splits =k_folds , shuffle =True)
127

128 for bs in batch_sizes :
129 for lr in learning_rates :
130 for wd in weight_decays :
131 for betas in betas_opts :
132 for use_scheduler in use_scheduler_opts :
133 fold_accs = []
134 print (f" Config : BS ={ bs}, LR ={ lr}, WD ={ wd}, Betas ={ betas },

Scheduler ={ use_scheduler }")
135 for fold , (train_chunks , test_chunks) in enumerate (kf.

split (big_chunks), 1):
136 # build indices
137 train_idx = [i for fc in train_chunks for i in

chunk_idxs [fc]]
138 test_idx = [i for fc in test_chunks for i in

chunk_idxs [fc]]
139 X_train = torch . tensor (all_segs [train_idx], dtype =

torch . float32). unsqueeze (1).to(device)
140 y_train = torch . tensor (all_labs [train_idx], dtype =

torch .long).to(device)
141 X_test = torch . tensor (all_segs [test_idx], dtype = torch

. float32). unsqueeze (1).to(device)
142 y_test = torch . tensor (all_labs [test_idx], dtype = torch

.long).to(device)
143

144 train_loader = DataLoader (TensorDataset (X_train ,
y_train), batch_size =bs , shuffle =True)

145 test_loader = DataLoader (TensorDataset (X_test ,
y_test), batch_size =bs , shuffle = False)

146

147 model = EEGNet (num_class).to(device)
148 optimizer = optim .Adam(model . parameters () , lr=lr ,

betas =betas , weight_decay =wd)
149 if use_scheduler :
150 scheduler = torch . optim . lr_scheduler .

CosineAnnealingLR (optimizer , T_max = num_epochs)
151 loss_fn = nn. CrossEntropyLoss ()
152

153 # train
154 for epoch in range (1, num_epochs +1):
155 model . train ()
156 for inputs , labs in train_loader :
157 outputs = model (inputs)
158 loss = loss_fn (outputs , labs)
159 optimizer . zero_grad (); loss. backward ();

optimizer .step ()

83

Codes

160 if use_scheduler :
161 scheduler .step ()
162

163 # eval
164 model .eval ()
165 acc_metric = Accuracy (task=" multiclass ", num_classes =

num_class).to(device)
166 with torch . no_grad ():
167 for inputs , labs in test_loader :
168 preds = model (inputs)
169 acc_metric (preds , labs)
170 acc = acc_metric . compute ().item ()
171 print (f" Fold {fold} accuracy : {acc *100:.2 f}%")
172 fold_accs . append (acc)
173

174 avg_acc = np.mean(fold_accs)
175 results . append ({
176 ’batch_size ’: bs ,
177 ’lr ’: lr ,
178 ’weight_decay ’: wd ,
179 ’betas ’: betas ,
180 ’use_scheduler ’: use_scheduler ,
181 ’fold_accuracies ’: fold_accs ,
182 ’avg_test_acc ’: avg_acc
183 })
184 print (f"-> Avg acc: { avg_acc *100:.2 f}%\n")
185

186 # ----- Save Results -----
187 df = pd. DataFrame (results)
188 df = df. sort_values (’avg_test_acc ’, ascending = False). reset_index (drop=True)
189 print ("\n=== BEST CONFIG ===")
190 print (df.iloc [0])
191 df. to_csv (" kfold_results .csv", index = False)
192 print ("\ nResults saved to kfold_results .csv")

84

Codes

K-Fold Cross-Validation for the Segment Length

1 # k-fold on the segment_length
2 import torch
3 import numpy as np
4 import pandas as pd
5 import torch .nn as nn
6 import torch . optim as optim
7 from torchmetrics import Accuracy
8 from sklearn . model_selection import KFold
9 from torch . utils .data import DataLoader , TensorDataset

10

11 # Configuration
12 device = torch . device ("cuda" if torch .cuda. is_available () else "cpu")
13 fs = 128 # sampling frequency
14 batch_size = 64
15 num_class = 2
16 num_folds = 5
17 segment_factors = [1, 2, 3, 4, 5] # signal segment lengths in seconds
18 num_epochs = 80
19

20 # Data paths
21 folder_path = "D:/ Student_Projects / Thesis Gioele / Codes /Data /00/00 _"
22 end_path = " _zNorm_full_filtered .npy"
23 relax_data = np.load(folder_path + " relax " + end_path , allow_pickle =True)
24 stroop_data = np.load(folder_path + " stroop " + end_path , allow_pickle =True)
25

26 # Prepare trials by splitting each subject into folds
27 relax_trials = [seg for sub in relax_data for seg in np. array_split (sub ,

num_folds)]
28 stroop_trials = [seg for sub in stroop_data for seg in np. array_split (sub ,

num_folds)]
29 all_trials = np. array (relax_trials + stroop_trials)
30 all_labels = np. array ([0]* len(relax_trials) + [1]* len(stroop_trials))
31

32 kf = KFold (n_splits =num_folds , shuffle =True) # divide into 5 folds
33

34 # EEGNet definition
35 class EEGNet (nn. Module):
36 def __init__ (self , num_channels , segment_length , num_class =2):
37 super (). __init__ ()
38

39 self. num_channels = num_channels
40 self. segment_length = segment_length
41

42 # Layer 1
43 self. conv2d = nn. Conv2d (1, 16, kernel_size =(1 , 64) , padding =0)
44 self.bn1 = nn. BatchNorm2d (16)
45 self.elu = nn.ELU ()
46 self.drop = nn. Dropout (0.25)
47

48 # Layer 2
49 self.pad1 = nn. ZeroPad2d ((16 , 17, 0, 1))
50 self. depth_conv = nn. Conv2d (16 , 4, kernel_size =(2 , 32))
51 self.bn2 = nn. BatchNorm2d (4)
52 self. pool1 = nn. AvgPool2d ((2 , 4))
53

54 # Layer 3

85

Codes

55 self.pad2 = nn. ZeroPad2d ((2 , 1, 4, 3))
56 self. sep_dep = nn. Conv2d (4, 4, kernel_size =(8 , 4) , groups =4)
57 self. sep_point = nn. Conv2d (4, 4, kernel_size =1)
58 self.bn3 = nn. BatchNorm2d (4)
59 self. pool2 = nn. AvgPool2d ((2 , 4))
60

61 # use a dummy pass to infer flattened feature size
62 with torch . no_grad ():
63 dummy = torch . zeros (1, 1, num_channels , segment_length)
64 x = self. _forward_features (dummy)
65 n_features = x. shape [1]
66

67 # final classifier
68 self. classifier = nn. Sequential (
69 nn. Flatten () ,
70 nn. Linear (n_features , num_class),
71 nn. Softmax (dim =1)
72)
73

74 def _forward_features (self , x):
75 x = self. conv2d (x)
76 x = self.bn1(x); x = self.elu(x); x = self.drop(x)
77

78 x = self.pad1(x)
79 x = self. depth_conv (x)
80 x = self.bn2(x); x = self.elu(x); x = self.drop(x)
81 x = self. pool1 (x)
82

83 x = self.pad2(x)
84 x = self. sep_dep (x)
85 x = self. sep_point (x)
86 x = self.bn3(x); x = self.elu(x); x = self.drop(x)
87 x = self. pool2 (x)
88

89 x = torch . flatten (x, 1)
90 return x
91

92 def forward (self , x):
93 x = self. _forward_features (x)
94 x = self. classifier (x)
95 return x
96

97

98 # segment trials into windows
99 def segment_trials (trials , labels , segment_length , step):

100 segs , labs = [], []
101 for trial , lab in zip(trials , labels):
102 for start in range (0, trial . shape [0] - segment_length + 1, step):
103 segs. append (trial [start : start + segment_length , :].T)
104 labs. append (lab)
105 return np. stack (segs), np. array (labs)
106

107 # Main k-fold over segment lengths
108 results = []
109 for factor in segment_factors : # factor is the segment length in seconds
110 seg_len = factor * fs
111 step_train = int (0.5 * seg_len)
112 step_test = seg_len
113 fold_idx = 0
114 for train_idx , test_idx in kf. split (all_trials):
115 fold_idx += 1

86

Codes

116 X_train_trials = all_trials [train_idx]
117 y_train_trials = all_labels [train_idx]
118 X_test_trials = all_trials [test_idx]
119 y_test_trials = all_labels [test_idx]
120

121 X_train , y_train = segment_trials (X_train_trials , y_train_trials ,
seg_len , step_train)

122 X_test , y_test = segment_trials (X_test_trials , y_test_trials , seg_len ,
step_test)

123

124 train_ds = TensorDataset (torch . tensor (X_train , dtype = torch . float32).
unsqueeze (1) , torch . tensor (y_train , dtype = torch .long))

125 test_ds = TensorDataset (torch . tensor (X_test , dtype = torch . float32).
unsqueeze (1) , torch . tensor (y_test , dtype = torch .long))

126 train_loader = DataLoader (train_ds , batch_size = batch_size , shuffle =
True)

127 test_loader = DataLoader (test_ds , batch_size = batch_size , shuffle = False
)

128

129 model = EEGNet (num_channels = all_trials . shape [2] , segment_length =
seg_len).to(device)

130 optimizer = optim .Adam(model . parameters () , lr =0.005 , weight_decay =1e
-4, betas =(0.9 ,0.999))

131 scheduler = torch . optim . lr_scheduler . CosineAnnealingLR (optimizer ,
T_max = num_epochs)

132 loss_fn = nn. CrossEntropyLoss ().to(device)
133

134 # Training loop
135 for epoch in range (1, num_epochs +1):
136 model . train ()
137 for inputs , targets in train_loader :
138 inputs , targets = inputs .to(device), targets .to(device)
139 outputs = model (inputs)
140 loss = loss_fn (outputs , targets)
141 loss. backward ()
142 nn. utils . clip_grad_norm_ (model . parameters () , 1)
143 optimizer .step (); optimizer . zero_grad ()
144 scheduler .step ()
145

146 # Evaluation
147 model .eval ()
148 acc_metric = Accuracy (task=" multiclass ", num_classes = num_class).to(

device)
149 with torch . no_grad ():
150 for inputs , targets in test_loader :
151 inputs , targets = inputs .to(device), targets .to(device)
152 outputs = model (inputs)
153 acc_metric (outputs , targets)
154 test_acc = acc_metric . compute ().item ()
155 results . append ({" factor_s ": factor , "fold": fold_idx , " accuracy ":

test_acc })
156 print (" Factor :", factor , "Fold:", fold_idx , " Accuracy :", test_acc)
157

158 # Save CSV
159 import pandas as pd
160 out_df = pd. DataFrame (results)
161 out_path = " eegnet_kfold_results .csv"
162 out_df . to_csv (out_path , index = False)
163 print (f" Results saved to { out_path }")

87

Codes

Training and Testing the EEGNet on the Collected Data

1 import torch
2 import numpy as np
3 import torch .nn as nn
4 import torch . optim as optim
5 import matplotlib . pyplot as plt
6 from scipy . stats import kurtosis
7 from sklearn . decomposition import FastICA
8 from scipy . signal import butter , filtfilt , iirnotch , resample , find_peaks
9 from torch . utils .data import ConcatDataset , DataLoader , TensorDataset ,

random_split
10

11 # File paths
12 relax_path_1 = "D:\ Student_Projects \ Thesis Gioele \ Raw_data \sub -Gio\ses -S002 \\

npy \\ all_relax .npy"
13 stroop_path_1 = "D:\ Student_Projects \ Thesis Gioele \ Raw_data \sub -Gio\ses -S003 \\

npy_stress \\ all_stroop .npy"
14 relax_path_2 = "D:\ Student_Projects \ Thesis Gioele \ Raw_data \sub -Gio\ses -S004 \\

npy \\ all_relax .npy"
15 stroop_path_2 = "D:\ Student_Projects \ Thesis Gioele \ Raw_data \sub -Gio\ses -S005 \\

npy_stress \\ all_stroop .npy"
16 dir_r = "D:\ Student_Projects \ Thesis Gioele \ Raw_data \sub -Gio\ses -S007 \\

all_relax .npy"
17 dir_s = "D:\ Student_Projects \ Thesis Gioele \ Raw_data \sub -Gio\ses -S007 \\

all_stress .npy"
18 dir_r8 = "D:\ Student_Projects \ Thesis Gioele \ Raw_data \sub -Gio\ses -S008 \\

all_relax .npy"
19 dir_s8 = "D:\ Student_Projects \ Thesis Gioele \ Raw_data \sub -Gio\ses -S008 \\

all_stroop .npy"
20 dir_r9 = "D:\ Student_Projects \ Thesis Gioele \ Raw_data \sub -Gio\ses -S009 \\

all_relax .npy"
21 dir_s9 = "D:\ Student_Projects \ Thesis Gioele \ Raw_data \sub -Gio\ses -S009 \\

all_stroop .npy"
22

23 # Load arrays
24 stroop_data_1 = np.load(stroop_path_1)
25 relax_data_1 = np.load(relax_path_1)
26 stroop_data_2 = np.load(stroop_path_2)
27 relax_data_2 = np.load(relax_path_2)
28 stroop_data_3 = np.load(dir_s)
29 relax_data_3 = np.load(dir_r)
30 stroop_data_4 = np.load(dir_s8)
31 relax_data_4 = np.load(dir_r8)
32 stroop_data_5 = np.load(dir_s9)
33 relax_data_5 = np.load(dir_r9)
34

35 # Sampling rate (Hz)
36 fs_old = 125 # OpenBCI fs
37 fs_new = 125 # If needed
38 fs = fs_new
39

40 # number of samples for testing
41 test_samples = 50 * fs_old
42

43 # TESTING DATA
44 stroop_test_raw = stroop_data_5
45 relax_test_raw = relax_data_5

88

Codes

46

47 # 2) Concatenate rest per train +val
48 stroop_rest = np. concatenate ((stroop_data_1 , stroop_data_2 , stroop_data_3 ,

stroop_data_4), axis =0)
49 relax_rest = np. concatenate ((relax_data_1 , relax_data_2 , relax_data_3 ,

relax_data_4), axis =0)
50

51 # Preprocessing function (ICA , filtering , resample)
52 def clean_signal_ica (raw_data : np.ndarray ,
53 fs: float , # Hz
54 segment_duration : float = 2.0 , # s
55 peak_rate_max : float = 2, # Hz = 2 blinks per second
56 kurtosis_thresh : float = 12.0 ,
57 ica_n_components : int = None) -> np. ndarray :
58 """
59 Perform ICA - based cleanup of multi - channel signal .
60

61 Input shape must be (timeframes x channels). If the input shape is (
channels x timeframes),

62 it is automatically transposed .
63 """
64 transposed = False
65 if raw_data . shape [0] < raw_data . shape [1]:
66 raw_data = raw_data .T
67 transposed = True
68

69 n_samples , n_channels = raw_data . shape
70

71 if ica_n_components is None:
72 ica_n_components = n_channels
73

74 samples_per_segment = int(segment_duration * fs)
75 n_segments = int(np.ceil(n_samples / samples_per_segment))
76 cleaned = np. zeros_like (raw_data)
77

78 for seg_idx in range (n_segments):
79 start = seg_idx * samples_per_segment
80 end = min(start + samples_per_segment , n_samples)
81 segment = raw_data [start :end , :].T # shape (channels , segment_length)
82

83 # ICA decomposition
84 ica = FastICA (n_components = ica_n_components , random_state =0)
85 sources = ica. fit_transform (segment .T).T # (n_components , n_time)
86

87 # Check how many iterations were used
88 if ica. n_iter_ >= 200: # 200 is the default max_iter in FastICA . If it

reaches this threshold , it means it did not converge
89 print (f" Segment { seg_idx }: ICA did not converge (n_iter_ = {ica.

n_iter_ }). Skipping artifact removal .")
90 cleaned [start :end , :] = raw_data [start :end , :]
91 continue
92

93 else: # ICA converged , proceed with the artifact removal
94 # collect dropped components and their criteria
95 drops = [] # list of (component_idx , criterion)
96

97 for ic in range (sources . shape [0]):
98 src = sources [ic]
99

100 # Mid -band peak -rate
101 nyq = 0.5 * fs

89

Codes

102 b, a = butter (4, 15 / nyq , btype =’low ’)
103 filt = filtfilt (b, a, src) # filtering the component to remove

multiple peaks
104 threshold = 0.5 * np.max(np.abs(filt))
105 peaks , _ = find_peaks (np.abs(filt), height = threshold)
106 rate = len(peaks) / (filt.size / fs)
107

108 # Kurtosis artifact
109 k = abs(kurtosis (src))
110 if k > kurtosis_thresh and rate < peak_rate_max :
111 drops . append ((ic , ’Kurtosis ’))
112

113 # Zero -out dropped components and reconstruct
114 if drops :
115 drop_indices = [ic for ic , _ in drops]
116 sources [drop_indices] = 0
117 recon = ica. inverse_transform (sources .T).T # shape (channels ,

time)
118 cleaned [start :end , :] = recon .T # shape (time , channels)
119

120 if transposed :
121 cleaned = cleaned .T
122

123 return cleaned
124

125 def preprocess_signal (data , fs_old =125 , fs_new =125 ,
126 bp_low =1. , bp_high =40. , bp_order =4,
127 notch_freq =50. , notch_q =30.) :
128 n_samps , n_ch = data. shape
129

130 # Z- normalization
131 data_norm = (data - data.mean(axis =0)) / data.std(axis =0)
132 # Band & notch filters
133 nyq = 0.5 * fs_old
134 low , high = bp_low /nyq , bp_high /nyq
135 b_bp , a_bp = butter (bp_order , [low , high], btype =’band ’)
136 b_notch , a_notch = iirnotch (notch_freq , notch_q , fs_old)
137 data_filt = np. zeros_like (data_norm)
138 for ch in range (n_ch):
139 tmp = filtfilt (b_bp , a_bp , data_norm [:, ch])
140 data_filt [:, ch] = filtfilt (b_notch , a_notch , tmp)
141

142 data_ica = clean_signal_ica (data_filt , fs= fs_old)
143

144 # Resample
145 if fs_old != fs_new :
146 n_new = int(round (n_samps * fs_new / fs_old))
147 return resample (data_ica , n_new , axis =0)
148 return data_ica
149

150 # Funzione che estrae sliding windows di 2 s e applica preprocess su ciascuna
151 def sliding_preproc_subblocks (data_raw : np.ndarray ,
152 sub_secs : float ,
153 fs: int ,
154 overlap_frac : float ,
155 label : int) -> TensorDataset :
156 sub_size = int(sub_secs * fs)
157 step = int(sub_size * (1.0 - overlap_frac))
158 assert step > 0, " overlap_frac deve essere < 1.0"
159 subs = []
160 for start in range (0, len(data_raw) - sub_size + 1, step):

90

Codes

161 seg = data_raw [start : start + sub_size , :] # [sub_size ,
n_ch]

162 seg_p = preprocess_signal (seg , fs_old =fs , fs_new =fs) # preprocess
su 2 s

163 subs. append (seg_p . astype (np. float32))
164 if not subs:
165 raise ValueError (" Nessuna finestra generata : controlla dimensioni e

overlap ")
166 sub_tensor = torch . from_numpy (np. stack (subs)) # [N_sub ,

sub_size , n_ch]
167 labels = torch .full ((len(subs) ,), label , dtype = torch .long)
168 return TensorDataset (sub_tensor , labels)
169

170 # Parametri finestre
171 sub_secs = 2.0
172 overlap_train = 0.5 # 50% overlap per train /val
173 overlap_test = 0.75 # 75% overlap per test
174

175 # Creo i dataset direttamente da raw + preprocess a 2 s
176 relax_train_ds = sliding_preproc_subblocks (relax_rest , sub_secs , fs ,

overlap_train , label =0)
177 stroop_train_ds = sliding_preproc_subblocks (stroop_rest , sub_secs , fs ,

overlap_train , label =1)
178 relax_test_ds = sliding_preproc_subblocks (relax_test_raw , sub_secs , fs ,

overlap_test , label =0)
179 stroop_test_ds = sliding_preproc_subblocks (stroop_test_raw ,sub_secs , fs ,

overlap_test , label =1)
180

181 # Split train vs val
182 total_relax = len(relax_train_ds)
183 val_len_r = int (0.1 * total_relax)
184 train_len_r = total_relax - val_len_r
185 relax_train , relax_val = random_split (relax_train_ds , [train_len_r , val_len_r

],
186 generator = torch . Generator (). manual_seed

(42))
187

188 total_stroop = len(stroop_train_ds)
189 val_len_s = int (0.1 * total_stroop)
190 train_len_s = total_stroop - val_len_s
191 stroop_train , stroop_val = random_split (stroop_train_ds , [train_len_s ,

val_len_s],
192 generator = torch . Generator ().

manual_seed (42))
193

194 # Concat e DataLoader
195 train_ds = ConcatDataset ([relax_train , stroop_train])
196 val_ds = ConcatDataset ([relax_val , stroop_val])
197 test_ds = ConcatDataset ([relax_test_ds , stroop_test_ds])
198

199 batch_size = 32
200 train_loader = DataLoader (train_ds , batch_size = batch_size , shuffle =True ,

drop_last =True)
201 val_loader = DataLoader (val_ds , batch_size = batch_size , shuffle =True ,

drop_last = False)
202 test_loader = DataLoader (test_ds , batch_size = batch_size , shuffle =True ,

drop_last = False)
203

204 device = torch . device ("cuda" if torch .cuda. is_available () else "cpu")
205

206 # %%

91

Codes

207 class EEGNet (nn. Module):
208 def __init__ (self , num_channels , segment_length , num_class =2):
209 super (). __init__ ()
210

211 # keep basic hyper - params
212 self. num_channels = num_channels
213 self. segment_length = segment_length
214

215 # Layer 1
216 self. conv2d = nn. Conv2d (1, 16, kernel_size =(1 , 64) , padding =0)
217 self.bn1 = nn. BatchNorm2d (16)
218 self.elu = nn.ELU ()
219 self.drop = nn. Dropout (0.25)
220

221 # Layer 2
222 self.pad1 = nn. ZeroPad2d ((16 , 17, 0, 1))
223 self. depth_conv = nn. Conv2d (16 , 4, kernel_size =(2 , 32))
224 self.bn2 = nn. BatchNorm2d (4)
225 self. pool1 = nn. AvgPool2d ((2 , 4))
226

227 # Layer 3
228 self.pad2 = nn. ZeroPad2d ((2 , 1, 4, 3))
229 self. sep_dep = nn. Conv2d (4, 4, kernel_size =(8 , 4) , groups =4)
230 self. sep_point = nn. Conv2d (4, 4, kernel_size =1)
231 self.bn3 = nn. BatchNorm2d (4)
232 self. pool2 = nn. AvgPool2d ((2 , 4))
233

234 # use a dummy pass to infer flattened feature size
235 with torch . no_grad ():
236 dummy = torch . zeros (1, 1, num_channels , segment_length)
237 x = self. _forward_features (dummy)
238 n_features = x. shape [1]
239

240 # final classifier
241 self. classifier = nn. Sequential (
242 nn. Flatten () ,
243 nn. Linear (n_features , num_class),
244 nn. Softmax (dim =1)
245)
246

247 def _forward_features (self , x):
248 x = self. conv2d (x)
249 x = self.bn1(x); x = self.elu(x); x = self.drop(x)
250

251 x = self.pad1(x)
252 x = self. depth_conv (x)
253 x = self.bn2(x); x = self.elu(x); x = self.drop(x)
254 x = self. pool1 (x)
255

256 x = self.pad2(x)
257 x = self. sep_dep (x)
258 x = self. sep_point (x)
259 x = self.bn3(x); x = self.elu(x); x = self.drop(x)
260 x = self. pool2 (x)
261

262 x = torch . flatten (x, 1)
263 return x
264

265 def forward (self , x):
266 x = self. _forward_features (x)
267 x = self. classifier (x)

92

Codes

268 return x
269

270 # Model instantiation
271 tot_epochs = 40
272 num_channels = relax_data_1 . shape [1]
273 segment_length = int(sub_secs * fs)
274 model = EEGNet (num_channels = num_channels , segment_length = segment_length).to(

device)
275 loss_fn = nn. CrossEntropyLoss ().to(device)
276 LR = 0.00004
277

278 print ("LR:", LR)
279 optimizer = optim .Adam(model . parameters () , lr=LR , weight_decay =1e-4, betas

=(0.9 , 0.999))
280 scheduler = torch . optim . lr_scheduler . CosineAnnealingLR (optimizer , T_max =

tot_epochs)
281

282 # 4) Training / validation loop
283 train_losses = []
284 train_accs = []
285 val_losses = []
286 val_accs = []
287

288 for epoch in range (1, tot_epochs +1):
289 # TRAINING
290 model . train ()
291 train_loss = 0.0
292 train_acc = 0.0
293 for X, y in train_loader :
294 # X: [B, T, C] -> reorder for Conv2d : [B, 1, C, T]
295 X = X. permute (0, 2, 1). unsqueeze (1).to(device)
296 y = y.to(device)
297

298 optimizer . zero_grad ()
299 logits = model (X)
300 loss = loss_fn (logits , y)
301 loss. backward ()
302 optimizer .step ()
303

304 # accumulate
305 train_loss += loss.item () * X.size (0)
306 train_acc += (logits . argmax (dim =1) == y).sum ().item ()
307

308 train_loss /= len(train_loader . dataset)
309 train_acc /= len(train_loader . dataset)
310 train_losses . append (train_loss)
311 train_accs . append (train_acc)
312

313 # VALIDATION
314 model .eval ()
315 val_loss = 0.0
316 val_acc = 0.0
317 with torch . no_grad ():
318 for X, y in val_loader :
319 X = X. permute (0, 2, 1). unsqueeze (1).to(device)
320 y = y.to(device)
321

322 logits = model (X)
323 loss = loss_fn (logits , y)
324

325 val_loss += loss.item () * X.size (0)

93

Codes

326 val_acc += (logits . argmax (dim =1) == y).sum ().item ()
327

328 val_loss /= len(val_loader . dataset)
329 val_acc /= len(val_loader . dataset)
330 val_losses . append (val_loss)
331 val_accs . append (val_acc)
332

333

334 # SCHEDULER STEP
335 if scheduler :
336 scheduler .step ()
337

338 # LOG
339 print (f" Epoch { epoch :03d} | "
340 f" Train Loss: { train_loss :.4f}, Train Acc: { train_acc :.4f} | "
341 f"Val Loss: { val_loss :.4f}, Val Acc: { val_acc :.4f}")
342

343 # 5) After training , run test set
344 model .eval ()
345 test_acc = 0.0
346 with torch . no_grad ():
347 for X, y in test_loader :
348 X = X. permute (0, 2, 1). unsqueeze (1).to(device)
349 y = y.to(device)
350 logits = model (X)
351 test_acc += (logits . argmax (dim =1) == y).sum ().item ()
352 test_acc /= len(test_loader . dataset)
353 print (f"\ nTest Accuracy : { test_acc :.4f}")

94

Codes

ITR Calculation

1 import math
2

3 accuracy = 0.9273
4 num_classes = 2
5 signal_duration = 2.0 # seconds
6 processing_time = 0.2527 # 0.355 # seconds
7

8 trial_time = signal_duration + processing_time # seconds
9 trial_time_minutes = trial_time / 60.0

10

11 # Calculate the ITR (Information Transfer Rate)
12 # Formula : ITR = log2(N) + P * log2(P) + (1-P) * log2 ((1 -P)/(N -1)) bits/ trial
13 # Where N is the number of classes and P is the accuracy
14

15

16 bits_per_trial = math.log2(num_classes) + accuracy * math.log2(accuracy) + (1
- accuracy) * math.log2 ((1 - accuracy) / (num_classes - 1))

17 itr_bpm = bits_per_trial / trial_time_minutes
18

19 print (f"The ITR value is: { itr_bpm :.2f} bits/ minute ")
20 print (f"The ITR value is: { bits_per_trial :.2f} bits/ trial ")

95

Bibliography

[1] Vernon J. Lawhern, Amelia J. Solon, Nicholas R. Waytowich, Stephen M. Gor-
don, Chou P. Hung, and Brent J. Lance. “EEGNet: A Compact Convolutional
Network for EEG-based Brain-Computer Interfaces”. In: Journal of Neural
Engineering 15.5 (Oct. 2018). arXiv:1611.08024 [cs], p. 056013. issn: 1741-2560,
1741-2552. doi: 10.1088/1741-2552/aace8c. url: http://arxiv.org/abs/
1611.08024 (visited on 04/14/2025) (cit. on pp. I, 2, 38, 64).

[2] Rajdeep Ghosh et al. “SAM 40: Dataset of 40 Subject EEG Recordings to Mon-
itor the Induced-Stress while performing Stroop Color-Word Test, Arithmetic
Task, and Mirror Image Recognition Task”. In: Data in Brief 40 (Feb. 2022),
p. 107772. doi: 10.1016/j.dib.2021.107772 (cit. on pp. I, 2, 29, 30).

[3] Sheldon Cohen, Denise Janicki-Deverts, and Gregory E. Miller. “Psychological
stress and disease”. eng. In: JAMA 298.14 (Oct. 2007), pp. 1685–1687. issn:
1538-3598. doi: 10.1001/jama.298.14.1685 (cit. on pp. 1, 10).

[4] Ronald C Kessler. “THE ECONOMIC BURDEN OF ANXIETY AND STRESS
DISORDERS”. en. In: () (cit. on pp. 1, 10).

[5] Guidelines on mental health at work. en. url: https : / / www . who . int /
publications/i/item/9789240053052 (visited on 06/04/2025) (cit. on pp. 1,
10).

[6] Farzad Saffari, Kian Norouzi, Luis E. Bruni, Sahar Zarei, and Thomas Z.
Ramsøy. “Impact of varying levels of mental stress on phase information of
EEG Signals: A study on the Frontal, Central, and parietal regions”. en. In:
Biomedical Signal Processing and Control 86 (Sept. 2023), p. 105236. issn:
17468094. doi: 10.1016/j.bspc.2023.105236. url: https://linkinghub.
elsevier.com/retrieve/pii/S1746809423006699 (visited on 06/04/2025)
(cit. on pp. 1, 6).

[7] Frederico A. C. Azevedo, Ludmila R. B. Carvalho, Lea T. Grinberg, José
Marcelo Farfel, Renata E. L. Ferretti, Renata E. P. Leite, Wilson Jacob Filho,
Roberto Lent, and Suzana Herculano-Houzel. “Equal numbers of neuronal and
nonneuronal cells make the human brain an isometrically scaled-up primate
brain”. eng. In: The Journal of Comparative Neurology 513.5 (Apr. 2009),
pp. 532–541. issn: 1096-9861. doi: 10.1002/cne.21974 (cit. on p. 4).

96

https://doi.org/10.1088/1741-2552/aace8c
http://arxiv.org/abs/1611.08024
http://arxiv.org/abs/1611.08024
https://doi.org/10.1016/j.dib.2021.107772
https://doi.org/10.1001/jama.298.14.1685
https://www.who.int/publications/i/item/9789240053052
https://www.who.int/publications/i/item/9789240053052
https://doi.org/10.1016/j.bspc.2023.105236
https://linkinghub.elsevier.com/retrieve/pii/S1746809423006699
https://linkinghub.elsevier.com/retrieve/pii/S1746809423006699
https://doi.org/10.1002/cne.21974

BIBLIOGRAPHY

[8] M. M. Mesulam. “From sensation to cognition”. eng. In: Brain: A Journal
of Neurology 121 (Pt 6) (June 1998), pp. 1013–1052. issn: 0006-8950. doi:
10.1093/brain/121.6.1013 (cit. on p. 4).

[9] Matti Gärtner, Lea Rohde-Liebenau, Simone Grimm, and Malek Bajbouj.
“Working memory-related frontal theta activity is decreased under acute stress”.
In: Psychoneuroendocrinology 43 (May 2014), pp. 105–113. issn: 0306-4530.
doi: 10.1016/j.psyneuen.2014.02.009. url: https://www.sciencedirect.
com/science/article/pii/S0306453014000602 (visited on 03/19/2025) (cit.
on p. 5).

[10] John Edward Hall, Arthur C. Guyton, and Diego Tronca. Guyton e Hall
fisiologia medica. ita. 14. ed. / a cura di Pietro Baldelli [e altri]. OCLC:
1274124889. Milano: Edra, 2021. isbn: 978-88-214-5541-4 (cit. on p. 5).

[11] J. E. LeDoux. “Emotion circuits in the brain”. eng. In: Annual Review of
Neuroscience 23 (2000), pp. 155–184. issn: 0147-006X. doi: 10.1146/annurev.
neuro.23.1.155 (cit. on p. 5).

[12] Rashmi CR and Shantala C P. “Cognitive Stress Recognition During Mathemat-
ical Task and EEG Changes Following Audio-Visual Stimuli for Relaxation”. In:
2023 International Conference on Sustainable Communication Networks and
Application (ICSCNA). Nov. 2023, pp. 612–617. doi: 10.1109/ICSCNA58489.
2023.10370715. url: https://ieeexplore.ieee.org/document/10370715/
(visited on 02/04/2025) (cit. on pp. 6, 8, 15–17, 20, 26).

[13] Ubaid M. Al-Saggaf, Syed Faraz Naqvi, Muhammad Moinuddin, Sulhi Ali
Alfakeh, and Syed Saad Azhar Ali. “Performance Evaluation of EEG Based
Mental Stress Assessment Approaches for Wearable Devices”. English. In:
Frontiers in Neurorobotics 15 (Feb. 2022). Publisher: Frontiers. issn: 1662-5218.
doi: 10.3389/fnbot.2021.819448. url: https://www.frontiersin.org/
journals/neurorobotics/articles/10.3389/fnbot.2021.819448/full
(visited on 02/14/2025) (cit. on pp. 8, 15–19, 24, 26, 60).

[14] Girijesh Prasad, Pawel Herman, Damien Coyle, Suzanne McDonough, and
Jacqueline Crosbie. “Applying a brain-computer interface to support motor
imagery practice in people with stroke for upper limb recovery: a feasibility
study”. eng. In: Journal of Neuroengineering and Rehabilitation 7 (Dec. 2010),
p. 60. issn: 1743-0003. doi: 10.1186/1743-0003-7-60 (cit. on p. 8).

[15] Jiaqi Xiong et al. “Impact of COVID-19 pandemic on mental health in the
general population: A systematic review”. In: Journal of Affective Disorders 277
(Dec. 2020), pp. 55–64. issn: 0165-0327. doi: 10.1016/j.jad.2020.08.001.
url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7413844/ (visited
on 03/19/2025) (cit. on p. 9).

[16] Nina Vindegaard and Michael Eriksen Benros. “COVID-19 pandemic and
mental health consequences: Systematic review of the current evidence”. eng.

97

https://doi.org/10.1093/brain/121.6.1013
https://doi.org/10.1016/j.psyneuen.2014.02.009
https://www.sciencedirect.com/science/article/pii/S0306453014000602
https://www.sciencedirect.com/science/article/pii/S0306453014000602
https://doi.org/10.1146/annurev.neuro.23.1.155
https://doi.org/10.1146/annurev.neuro.23.1.155
https://doi.org/10.1109/ICSCNA58489.2023.10370715
https://doi.org/10.1109/ICSCNA58489.2023.10370715
https://ieeexplore.ieee.org/document/10370715/
https://doi.org/10.3389/fnbot.2021.819448
https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2021.819448/full
https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2021.819448/full
https://doi.org/10.1186/1743-0003-7-60
https://doi.org/10.1016/j.jad.2020.08.001
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7413844/

BIBLIOGRAPHY

In: Brain, Behavior, and Immunity 89 (Oct. 2020), pp. 531–542. issn: 1090-2139.
doi: 10.1016/j.bbi.2020.05.048 (cit. on p. 9).

[17] Hans Selye. “Stress and the General Adaptation Syndrome”. In: British Medical
Journal 1.4667 (June 1950), pp. 1383–1392. issn: 0007-1447. url: https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC2038162/ (visited on 03/19/2025)
(cit. on p. 9).

[18] Physiology and Neurobiology of Stress and Adaptation: Central Role of the
Brain. en. doi: 10.1152/physrev.00041.2006. url: https://journals.
physiology . org / doi / epdf / 10 . 1152 / physrev . 00041 . 2006 (visited on
02/14/2025) (cit. on p. 9).

[19] Hans Selye - Stress Without Distress-Lippincott Williams & Wilkins (1974)
PDF | PDF. it. url: https://www.scribd.com/document/442108406/Hans-
Selye-Stress-Without-Distress-Lippincott-Williams-Wilkins-1974-
pdf (visited on 02/14/2025) (cit. on p. 9).

[20] Susan Folkman. “Stress: Appraisal and Coping”. en. In: Encyclopedia of Behav-
ioral Medicine. Ed. by Marc D. Gellman and J. Rick Turner. New York, NY:
Springer, 2013, pp. 1913–1915. isbn: 978-1-4419-1005-9. doi: 10.1007/978-
1-4419-1005-9_215. url: https://doi.org/10.1007/978-1-4419-1005-
9_215 (visited on 02/14/2025) (cit. on p. 9).

[21] B. S. McEwen. “Stress, adaptation, and disease. Allostasis and allostatic load”.
eng. In: Annals of the New York Academy of Sciences 840 (May 1998), pp. 33–
44. issn: 0077-8923. doi: 10.1111/j.1749-6632.1998.tb09546.x (cit. on
p. 9).

[22] Depression and Other Common Mental Disorders. en. url: https://www.
who.int/publications/i/item/depression-global-health-estimates
(visited on 02/14/2025) (cit. on p. 10).

[23] Mental Disorders Cost Society Billions in Unearned Income. EN. Sept. 2015.
url: https://www.nih.gov/news-events/news-releases/mental-disor
ders-cost-society-billions-unearned-income (visited on 06/04/2025)
(cit. on p. 10).

[24] Lori L. Davis, Jeff Schein, Martin Cloutier, Patrick Gagnon-Sanschagrin, Jessica
Maitland, Annette Urganus, Annie Guerin, Patrick Lefebvre, and Christy R.
Houle. “The Economic Burden of Posttraumatic Stress Disorder in the United
States From a Societal Perspective”. In: The Journal of Clinical Psychiatry
83.3 (Apr. 2022). issn: 1555-2101. doi: 10.4088/JCP.21m14116. url: https:
//www.psychiatrist.com/jcp/economic-burden-posttraumatic-stress-
disorder-united-states-societal-perspective (visited on 06/23/2025)
(cit. on p. 10).

[25] Detection of Mental Stress through EEG Signal in Virtual Reality Environment.
url: https://www.mdpi.com/2079-9292/10/22/2840 (visited on 02/03/2025)
(cit. on pp. 11, 13, 15–19, 26).

98

https://doi.org/10.1016/j.bbi.2020.05.048
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2038162/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2038162/
https://doi.org/10.1152/physrev.00041.2006
https://journals.physiology.org/doi/epdf/10.1152/physrev.00041.2006
https://journals.physiology.org/doi/epdf/10.1152/physrev.00041.2006
https://www.scribd.com/document/442108406/Hans-Selye-Stress-Without-Distress-Lippincott-Williams-Wilkins-1974-pdf
https://www.scribd.com/document/442108406/Hans-Selye-Stress-Without-Distress-Lippincott-Williams-Wilkins-1974-pdf
https://www.scribd.com/document/442108406/Hans-Selye-Stress-Without-Distress-Lippincott-Williams-Wilkins-1974-pdf
https://doi.org/10.1007/978-1-4419-1005-9_215
https://doi.org/10.1007/978-1-4419-1005-9_215
https://doi.org/10.1007/978-1-4419-1005-9_215
https://doi.org/10.1007/978-1-4419-1005-9_215
https://doi.org/10.1111/j.1749-6632.1998.tb09546.x
https://www.who.int/publications/i/item/depression-global-health-estimates
https://www.who.int/publications/i/item/depression-global-health-estimates
https://www.nih.gov/news-events/news-releases/mental-disorders-cost-society-billions-unearned-income
https://www.nih.gov/news-events/news-releases/mental-disorders-cost-society-billions-unearned-income
https://doi.org/10.4088/JCP.21m14116
https://www.psychiatrist.com/jcp/economic-burden-posttraumatic-stress-disorder-united-states-societal-perspective
https://www.psychiatrist.com/jcp/economic-burden-posttraumatic-stress-disorder-united-states-societal-perspective
https://www.psychiatrist.com/jcp/economic-burden-posttraumatic-stress-disorder-united-states-societal-perspective
https://www.mdpi.com/2079-9292/10/22/2840

BIBLIOGRAPHY

[26] Aniana Cruz, Gabriel Pires, Ana C. Lopes, and Urbano J. Nunes. “Detection
of Stressful Situations Using GSR While Driving a BCI-controlled Wheelchair”.
In: 2019 41st Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC). ISSN: 1558-4615. July 2019, pp. 1651–
1656. doi: 10.1109/EMBC.2019.8857748. url: https://ieeexplore.ieee.
org/abstract/document/8857748 (visited on 01/31/2025) (cit. on p. 11).

[27] Kannadasan K, Lilly Pushparani M P, Jerina Stanis J, Haresh M V, Ambati
Rami Reddy, and B. Shameedha Begum. “StressDetect: A Deep Learning
Approach for Mental Stress Detection Using Time-Frequency Representation of
EEG Signals”. In: 2024 IEEE International Conference on Signal Processing,
Informatics, Communication and Energy Systems (SPICES). Sept. 2024, pp. 1–
6. doi: 10.1109/SPICES62143.2024.10779753. url: https://ieeexplore.
ieee.org/document/10779753/?arnumber=10779753&tag=1 (visited on
02/12/2025) (cit. on pp. 11, 15, 16, 19, 27, 38).

[28] Sadasivan Puthusserypady. 22053_Lecture_1_Introduction. English. 2025 (cit.
on p. 13).

[29] L. A. Farwell and E. Donchin. “Talking off the top of your head: toward a mental
prosthesis utilizing event-related brain potentials”. In: Electroencephalography
and Clinical Neurophysiology 70.6 (Dec. 1988), pp. 510–523. issn: 0013-4694.
doi: 10.1016/0013-4694(88)90149-6. url: https://www.sciencedirect.
com/science/article/pii/0013469488901496 (visited on 02/17/2025) (cit.
on p. 15).

[30] Jiahua Xu, Tung-Lung Liu, Zhenglei Wu, Zheng Wu, Yang Li, and Andreas
Nurnberger. “Neurorehabilitation System in Virtual Reality with Low-Cost BCI
Devices”. In: 2020 IEEE International Conference on Human-Machine Systems
(ICHMS). Rome, Italy: IEEE, Sept. 2020, pp. 1–3. isbn: 978-1-7281-5871-6.
doi: 10.1109/ICHMS49158.2020.9209560. url: https://ieeexplore.ieee.
org/document/9209560/ (visited on 02/17/2025) (cit. on p. 15).

[31] BCI controlled FES system for complete neurorehabilitation of post-stroke
patients - DTU Findit. url: https://findit.dtu.dk/en/catalog/5d2b0df4
d9001d018a233410 (visited on 02/17/2025) (cit. on p. 15).

[32] Sergi Bermúdez I Badia, Hani Samaha, Andrés García Morgade, and Paul F.M.J.
Verschure. “Exploring the synergies of a hybrid BCI - VR neurorehabilitation
system”. In: 2011 International Conference on Virtual Rehabilitation. Zurich,
Switzerland: IEEE, June 2011, pp. 1–8. isbn: 978-1-61284-475-6 978-1-61284-
474-9. doi: 10.1109/ICVR.2011.5971813. url: https://ieeexplore.ieee.
org/document/5971813/ (visited on 02/17/2025) (cit. on p. 15).

[33] A. Miladinovic, M. Ajcevic, P. Busan, J. Jarmolowska, G. Silveri, M. Deodato,
S. Mezzarobba, P. P. Battaglini, and A. Accardo. “Evaluation of Motor Imagery-
Based BCI methods in neurorehabilitation of Parkinson’s Disease patients”.
In: 2020 42nd Annual International Conference of the IEEE Engineering in

99

https://doi.org/10.1109/EMBC.2019.8857748
https://ieeexplore.ieee.org/abstract/document/8857748
https://ieeexplore.ieee.org/abstract/document/8857748
https://doi.org/10.1109/SPICES62143.2024.10779753
https://ieeexplore.ieee.org/document/10779753/?arnumber=10779753&tag=1
https://ieeexplore.ieee.org/document/10779753/?arnumber=10779753&tag=1
https://doi.org/10.1016/0013-4694(88)90149-6
https://www.sciencedirect.com/science/article/pii/0013469488901496
https://www.sciencedirect.com/science/article/pii/0013469488901496
https://doi.org/10.1109/ICHMS49158.2020.9209560
https://ieeexplore.ieee.org/document/9209560/
https://ieeexplore.ieee.org/document/9209560/
https://findit.dtu.dk/en/catalog/5d2b0df4d9001d018a233410
https://findit.dtu.dk/en/catalog/5d2b0df4d9001d018a233410
https://doi.org/10.1109/ICVR.2011.5971813
https://ieeexplore.ieee.org/document/5971813/
https://ieeexplore.ieee.org/document/5971813/

BIBLIOGRAPHY

Medicine & Biology Society (EMBC). Montreal, QC, Canada: IEEE, July
2020, pp. 3058–3061. isbn: 978-1-7281-1990-8. doi: 10.1109/EMBC44109.2020.
9176651. url: https://ieeexplore.ieee.org/document/9176651/ (visited
on 02/17/2025) (cit. on p. 15).

[34] Jiahua Xu, Tung-Lung Liu, Zhenglei Wu, Zheng Wu, Yang Li, and Andreas
Nürnberger. “Neurorehabilitation System in Virtual Reality with Low-Cost BCI
Devices”. In: 2020 IEEE International Conference on Human-Machine Systems
(ICHMS). Sept. 2020, pp. 1–3. doi: 10.1109/ICHMS49158.2020.9209560. url:
https://ieeexplore.ieee.org/document/9209560/?arnumber=9209560
(visited on 02/17/2025) (cit. on p. 15).

[35] Edgar P. Torres, Edgar A. Torres, Myriam Hernández-Álvarez, and Sang
Guun Yoo. “EEG-Based BCI Emotion Recognition: A Survey”. en. In: Sensors
20.18 (Jan. 2020). Number: 18 Publisher: Multidisciplinary Digital Publishing
Institute, p. 5083. issn: 1424-8220. doi: 10.3390/s20185083. url: https:
//www.mdpi.com/1424-8220/20/18/5083 (visited on 02/17/2025) (cit. on
p. 15).

[36] Haiyun Huang, Qiuyou Xie, Jiahui Pan, Yanbin He, Zhenfu Wen, Ronghao
Yu, and Yuanqing Li. “An EEG-Based Brain Computer Interface for Emotion
Recognition and Its Application in Patients with Disorder of Consciousness”.
In: IEEE Transactions on Affective Computing 12.4 (Oct. 2021). Conference
Name: IEEE Transactions on Affective Computing, pp. 832–842. issn: 1949-
3045. doi: 10.1109/TAFFC.2019.2901456. url: https://ieeexplore.ieee.
org/document/8651389/?arnumber=8651389 (visited on 02/17/2025) (cit. on
p. 15).

[37] Linxing Jiang, Andrea Stocco, Darby Losey, Justin Abernethy, Chantel Prat,
and Rajesh Rao. “BrainNet: A Multi-Person Brain-to-Brain Interface for Direct
Collaboration Between Brains”. In: Scientific Reports 9 (Apr. 2019). doi:
10.1038/s41598-019-41895-7 (cit. on p. 15).

[38] Rajesh P. N. Rao, Andrea Stocco, Matthew Bryan, Devapratim Sarma, Tiffany
M. Youngquist, Joseph Wu, and Chantel S. Prat. “A Direct Brain-to-Brain
Interface in Humans”. en. In: PLOS ONE 9.11 (Nov. 2014). Publisher: Public
Library of Science, e111332. issn: 1932-6203. doi: 10.1371/journal.pone.
0111332. url: https://journals.plos.org/plosone/article?id=10.
1371/journal.pone.0111332 (visited on 02/17/2025) (cit. on p. 15).

[39] Seung-Schik Yoo, Hyungmin Kim, Emmanuel Filandrianos, Seyed Javid Tagha-
dos, and Shinsuk Park. “Non-invasive brain-to-brain interface (BBI): establish-
ing functional links between two brains”. eng. In: PloS One 8.4 (2013), e60410.
issn: 1932-6203. doi: 10.1371/journal.pone.0060410 (cit. on p. 15).

[40] Günter Edlinger, Clemens Holzner, and Christoph Guger. “A Hybrid Brain-
Computer Interface for Smart Home Control”. en. In: Human-Computer In-
teraction. Interaction Techniques and Environments. Ed. by Julie A. Jacko.

100

https://doi.org/10.1109/EMBC44109.2020.9176651
https://doi.org/10.1109/EMBC44109.2020.9176651
https://ieeexplore.ieee.org/document/9176651/
https://doi.org/10.1109/ICHMS49158.2020.9209560
https://ieeexplore.ieee.org/document/9209560/?arnumber=9209560
https://doi.org/10.3390/s20185083
https://www.mdpi.com/1424-8220/20/18/5083
https://www.mdpi.com/1424-8220/20/18/5083
https://doi.org/10.1109/TAFFC.2019.2901456
https://ieeexplore.ieee.org/document/8651389/?arnumber=8651389
https://ieeexplore.ieee.org/document/8651389/?arnumber=8651389
https://doi.org/10.1038/s41598-019-41895-7
https://doi.org/10.1371/journal.pone.0111332
https://doi.org/10.1371/journal.pone.0111332
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0111332
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0111332
https://doi.org/10.1371/journal.pone.0060410

BIBLIOGRAPHY

Berlin, Heidelberg: Springer, 2011, pp. 417–426. isbn: 978-3-642-21605-3. doi:
10.1007/978-3-642-21605-3_46 (cit. on p. 15).

[41] Xiaoke Chai, Zhimin Zhang, Kai Guan, Yangting Lu, Guitong Liu, Tengyu
Zhang, and Haijun Niu. “A hybrid BCI-controlled smart home system com-
bining SSVEP and EMG for individuals with paralysis”. In: Biomedical Sig-
nal Processing and Control 56 (Feb. 2020), p. 101687. issn: 1746-8094. doi:
10.1016/j.bspc.2019.101687. url: https://www.sciencedirect.com/
science/article/pii/S174680941930268X (visited on 02/17/2025) (cit. on
p. 15).

[42] Andreas Pinegger, Hannah Hiebel, Selina C. Wriessnegger, and Gernot R.
Müller-Putz. “Composing only by thought: Novel application of the P300 brain-
computer interface”. en. In: PLOS ONE 12.9 (2017). Publisher: Public Library
of Science, e0181584. issn: 1932-6203. doi: 10.1371/journal.pone.0181584.
url: https://journals.plos.org/plosone/article?id=10.1371/journal.
pone.0181584 (visited on 02/17/2025) (cit. on p. 15).

[43] Guo Jun and K. G. Smitha. “EEG based stress level identification”. In: 2016
IEEE International Conference on Systems, Man, and Cybernetics (SMC) (Oct.
2016). Conference Name: 2016 IEEE International Conference on Systems,
Man, and Cybernetics (SMC) ISBN: 9781509018970 Place: Budapest, Hungary
Publisher: IEEE, pp. 003270–003274. doi: 10.1109/SMC.2016.7844738. url:
http://ieeexplore.ieee.org/document/7844738/ (visited on 02/11/2025)
(cit. on pp. 15–18, 21, 26).

[44] Amit Kumar, Barath J. K., Shanmukh P., and Deepak Joshi. “StreXNet: A
Novel End-to-End Deep-Learning-Based Improved Multilevel Mental Stress
Classification From EEG Sensors”. In: IEEE Sensors Journal 25.2 (Jan. 2025).
Conference Name: IEEE Sensors Journal, pp. 3538–3551. issn: 1558-1748.
doi: 10.1109/JSEN.2024.3506984. url: https://ieeexplore.ieee.org/
document/10780949/?arnumber=10780949&tag=1 (visited on 02/13/2025)
(cit. on pp. 15, 16, 19–21, 27, 38).

[45] Ruiqi Fu et al. “Symmetric Convolutional and Adversarial Neural Network
Enables Improved Mental Stress Classification From EEG”. eng. In: IEEE
transactions on neural systems and rehabilitation engineering: a publication of
the IEEE Engineering in Medicine and Biology Society 30 (2022), pp. 1384–1400.
issn: 1558-0210. doi: 10.1109/TNSRE.2022.3174821 (cit. on pp. 15, 20, 27).

[46] Heba M. Afify, Kamel K. Mohammed, and Aboul Ella Hassanien. “Stress
detection based EEG under varying cognitive tasks using convolution neural
network”. en. In: Neural Computing and Applications (Jan. 2025). issn: 1433-
3058. doi: 10.1007/s00521-024-10737-7. url: https://doi.org/10.1007/
s00521-024-10737-7 (visited on 02/12/2025) (cit. on pp. 16, 20, 24, 27).

101

https://doi.org/10.1007/978-3-642-21605-3_46
https://doi.org/10.1016/j.bspc.2019.101687
https://www.sciencedirect.com/science/article/pii/S174680941930268X
https://www.sciencedirect.com/science/article/pii/S174680941930268X
https://doi.org/10.1371/journal.pone.0181584
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0181584
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0181584
https://doi.org/10.1109/SMC.2016.7844738
http://ieeexplore.ieee.org/document/7844738/
https://doi.org/10.1109/JSEN.2024.3506984
https://ieeexplore.ieee.org/document/10780949/?arnumber=10780949&tag=1
https://ieeexplore.ieee.org/document/10780949/?arnumber=10780949&tag=1
https://doi.org/10.1109/TNSRE.2022.3174821
https://doi.org/10.1007/s00521-024-10737-7
https://doi.org/10.1007/s00521-024-10737-7
https://doi.org/10.1007/s00521-024-10737-7

BIBLIOGRAPHY

[47] Lokesh Malviya and Sandip Mal. “A novel technique for stress detection from
EEG signal using hybrid deep learning model”. en. In: Neural Computing and
Applications 34.22 (Nov. 2022), pp. 19819–19830. issn: 0941-0643, 1433-3058.
doi: 10.1007/s00521-022-07540-7. url: https://link.springer.com/10.
1007/s00521-022-07540-7 (visited on 02/12/2025) (cit. on pp. 16, 19, 20,
27).

[48] Chin-Teng Lin, I.-Fang Chung, Li-Wei Ko, Yu-Chieh Chen, Sheng-Fu Liang,
and Jeng-Ren Duann. “EEG-based assessment of driver cognitive responses in
a dynamic virtual-reality driving environment”. eng. In: IEEE transactions on
bio-medical engineering 54.7 (July 2007), pp. 1349–1352. issn: 0018-9294. doi:
10.1109/TBME.2007.891164 (cit. on p. 16).

[49] Swaymprabha Alias Megha Mane and Arundhati Shinde. “StressNet: Hybrid
model of LSTM and CNN for stress detection from electroencephalogram signal
(EEG)”. In: Results in Control and Optimization 11 (June 2023), p. 100231.
issn: 2666-7207. doi: 10.1016/j.rico.2023.100231. url: https://www.
sciencedirect.com/science/article/pii/S2666720723000334 (visited on
02/17/2025) (cit. on pp. 16, 19, 20, 24, 27, 38).

[50] Anum Asif, Muhammad Majid, and Syed Muhammad Anwar. “Human stress
classification using EEG signals in response to music tracks”. In: Computers
in Biology and Medicine 107 (Apr. 2019), pp. 182–196. issn: 0010-4825. doi:
10.1016/j.compbiomed.2019.02.015. url: https://www.sciencedirect.
com/science/article/pii/S0010482519300629 (visited on 02/12/2025) (cit.
on pp. 16–19, 21, 26).

[51] Muhammad Adeel Hafeez and Sadia Shakil. “EEG-based stress identification
and classification using deep learning”. en. In: Multimedia Tools and Appli-
cations 83.14 (Oct. 2023), pp. 42703–42719. issn: 1573-7721. doi: 10.1007/
s11042-023-17111-0. url: https://link.springer.com/10.1007/s11042-
023-17111-0 (visited on 02/13/2025) (cit. on pp. 16, 19, 20, 27, 38).

[52] Debashis Das Chakladar, Shubhashis Dey, Partha Roy, and Debi Dogra. “EEG-
based mental workload estimation using deep BLSTM-LSTM network and
evolutionary algorithm”. In: Biomedical Signal Processing and Control 60 (July
2020), p. 101989. doi: 10.1016/j.bspc.2020.101989 (cit. on pp. 17, 20, 26).

[53] Houtan Jebelli, Mohammad Mahdi Khalili, and SangHyun Lee. “Mobile EEG-
Based Workers’ Stress Recognition by Applying Deep Neural Network”. en. In:
Advances in Informatics and Computing in Civil and Construction Engineer-
ing. Ed. by Ivan Mutis and Timo Hartmann. Cham: Springer International
Publishing, 2019, pp. 173–180. isbn: 978-3-030-00220-6. doi: 10.1007/978-3-
030-00220-6_21 (cit. on pp. 19, 26).

[54] Bruce S. McEwen and Peter J. Gianaros. “Central role of the brain in stress
and adaptation: links to socioeconomic status, health, and disease”. eng. In:
Annals of the New York Academy of Sciences 1186 (Feb. 2010), pp. 190–222.

102

https://doi.org/10.1007/s00521-022-07540-7
https://link.springer.com/10.1007/s00521-022-07540-7
https://link.springer.com/10.1007/s00521-022-07540-7
https://doi.org/10.1109/TBME.2007.891164
https://doi.org/10.1016/j.rico.2023.100231
https://www.sciencedirect.com/science/article/pii/S2666720723000334
https://www.sciencedirect.com/science/article/pii/S2666720723000334
https://doi.org/10.1016/j.compbiomed.2019.02.015
https://www.sciencedirect.com/science/article/pii/S0010482519300629
https://www.sciencedirect.com/science/article/pii/S0010482519300629
https://doi.org/10.1007/s11042-023-17111-0
https://doi.org/10.1007/s11042-023-17111-0
https://link.springer.com/10.1007/s11042-023-17111-0
https://link.springer.com/10.1007/s11042-023-17111-0
https://doi.org/10.1016/j.bspc.2020.101989
https://doi.org/10.1007/978-3-030-00220-6_21
https://doi.org/10.1007/978-3-030-00220-6_21

BIBLIOGRAPHY

issn: 1749-6632. doi: 10.1111/j.1749-6632.2009.05331.x (cit. on pp. 21,
62).

[55] Houtan Jebelli, Sungjoo Hwang, and SangHyun Lee. “An EEG Signal Processing
Framework to Obtain High-Quality Brain Waves from an Off-the-Shelf Wearable
EEG Device”. In: Journal of Computing in Civil Engineering 32 (Oct. 2017).
doi: 10.1061/(ASCE)CP.1943-5487.0000719 (cit. on p. 33).

[56] Anders Kallner. “Formulas”. In: Laboratory Statistics (Second Edition). Ed.
by Anders Kallner. Elsevier, Jan. 2018, pp. 1–140. isbn: 978-0-12-814348-
3. doi: 10 . 1016 / B978 - 0 - 12 - 814348 - 3 . 00001 - 0. url: https : / / www .
sciencedirect.com/science/article/pii/B9780128143483000010 (visited
on 05/29/2025) (cit. on p. 33).

[57] M. A. Klados, C. Bratsas, C. Frantzidis, C. L. Papadelis, and P. D. Bamidis. “A
Kurtosis-Based Automatic System Using Naïve Bayesian Classifier to Identify
ICA Components Contaminated by EOG or ECG Artifacts”. en. In: XII Mediter-
ranean Conference on Medical and Biological Engineering and Computing 2010.
Ed. by Panagiotis D. Bamidis and Nicolas Pallikarakis. Berlin, Heidelberg:
Springer, 2010, pp. 49–52. isbn: 978-3-642-13039-7. doi: 10.1007/978-3-642-
13039-7_13 (cit. on p. 33).

[58] Harsh Srivastava and Kishor Sarawadekar. “A Depthwise Separable Convolution
Architecture for CNN Accelerator”. In: 2020 IEEE Applied Signal Processing
Conference (ASPCON). Oct. 2020, pp. 1–5. doi: 10 . 1109 / ASPCON49795 .
2020.9276672. url: https://ieeexplore.ieee.org/abstract/document/
9276672 (visited on 04/28/2025) (cit. on p. 39).

[59] Francois Chollet. “Xception: Deep Learning With Depthwise Separable Con-
volutions”. In: 2017, pp. 1251–1258. url: https://openaccess.thecvf.com/
content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_
paper.html (visited on 04/28/2025) (cit. on p. 39).

[60] Junxiu Liu, Mingxing Li, Yuling Luo, Su Yang, Wei Li, and Yifei Bi. “Alzheimer’s
disease detection using depthwise separable convolutional neural networks”. In:
Computer Methods and Programs in Biomedicine 203 (May 2021), p. 106032.
issn: 0169-2607. doi: 10.1016/j.cmpb.2021.106032. url: https://www.
sciencedirect.com/science/article/pii/S0169260721001073 (visited on
04/28/2025) (cit. on p. 39).

[61] J. R. Wolpaw et al. “Brain-computer interface technology: a review of the first
international meeting”. eng. In: IEEE transactions on rehabilitation engineering:
a publication of the IEEE Engineering in Medicine and Biology Society 8.2
(June 2000), pp. 164–173. issn: 1063-6528. doi: 10.1109/tre.2000.847807
(cit. on p. 47).

[62] (PDF) A high-ITR SSVEP-based BCI speller. en. url: https://www.rese
archgate.net/publication/269998531_A_high-ITR_SSVEP-based_BCI_
speller#fullTextFileContent (visited on 06/04/2025) (cit. on pp. 60, 65).

103

https://doi.org/10.1111/j.1749-6632.2009.05331.x
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000719
https://doi.org/10.1016/B978-0-12-814348-3.00001-0
https://www.sciencedirect.com/science/article/pii/B9780128143483000010
https://www.sciencedirect.com/science/article/pii/B9780128143483000010
https://doi.org/10.1007/978-3-642-13039-7_13
https://doi.org/10.1007/978-3-642-13039-7_13
https://doi.org/10.1109/ASPCON49795.2020.9276672
https://doi.org/10.1109/ASPCON49795.2020.9276672
https://ieeexplore.ieee.org/abstract/document/9276672
https://ieeexplore.ieee.org/abstract/document/9276672
https://openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_paper.html
https://doi.org/10.1016/j.cmpb.2021.106032
https://www.sciencedirect.com/science/article/pii/S0169260721001073
https://www.sciencedirect.com/science/article/pii/S0169260721001073
https://doi.org/10.1109/tre.2000.847807
https://www.researchgate.net/publication/269998531_A_high-ITR_SSVEP-based_BCI_speller#fullTextFileContent
https://www.researchgate.net/publication/269998531_A_high-ITR_SSVEP-based_BCI_speller#fullTextFileContent
https://www.researchgate.net/publication/269998531_A_high-ITR_SSVEP-based_BCI_speller#fullTextFileContent

BIBLIOGRAPHY

[63] Xiaotong Lyu, Peng Ding, Siyu Li, Yuyang Dong, Lei Su, Lei Zhao, Anmin Gong,
and Yunfa Fu. “Human factors engineering of BCI: an evaluation for satisfaction
of BCI based on motor imagery”. en. In: Cognitive Neurodynamics 17.1 (Feb.
2023), pp. 105–118. issn: 1871-4080, 1871-4099. doi: 10.1007/s11571-022-
09808-z. url: https://link.springer.com/10.1007/s11571-022-09808-z
(visited on 06/04/2025) (cit. on pp. 60, 65).

104

https://doi.org/10.1007/s11571-022-09808-z
https://doi.org/10.1007/s11571-022-09808-z
https://link.springer.com/10.1007/s11571-022-09808-z

Dedications

Thanks to my mum and my dad for supporting me in these 5 years of my life. Thanks
to Sabrina and Davide for inspiring me to go and finally see the world. Thanks to zia
ansia for the tagliata and the canteen food, either in Turin or in DTU. Thanks to all
my relatives, those who are still here, and those who helped me from Heaven. Thanks
to Silve for the deep talks and the bike trips together, always a source of peace in my
life. Thanks to Flu, Bob, Fede, Flucio for having the highest number of nicknames
in the world, and for bringing a touch of Cuneo to Copenhagen. Thanks to Jack for
the walks in Turin, always calming the spirits. Thanks to Santo for the psycology
walks to understand the purpose of life. Thanks to Bocca, Ribe, Mattia, and Ricky
for sharing moments in via Fratelli Carando 16 that will be unforgettable. Thanks
to Johnny and Sara for all the Biomedical Engineering lessons followed side-by-side.
Thanks to all the people from the Salesian Oratory, especially to don Thierry, don
Flaviano, don Alby, and don Eric, for guiding me through life.
Thanks to Gaia and all my Erasmus peers from PoliTO for sharing a nice year here
in Denmark. Thanks to Enrico, Marta and Martina for the mental support in the
lab.
Thanks to all CAYAC and the one and only dorm, especially to Fr. Daniel for the
laughs and serious moments, Maria, Sara and Juan Josè Maria for all the nights
spent at the guitar, and praying rosaries, and doing holy hours; these moments will
always be stuck in my mind. Thanks to Beni for the best music in the dorm, Cons
for being my tata, Darcy for being my favourite dane, Elias for Un dos tres and
Monopoli nights, Elis for not making me the worst cook in the dorm, Esther for the
peace you brought in the dorm, Francisca for having the best boyfriend, Maca for the
paella, Marta for the spanish lessons without wanting, Mix for the lunches together
and the breathtaking hugs, Pepe for being finally an Italian who can cook, Teresinha
for teching me that you can be in the dorm even if you’re not in the dorm, Tommy
for the crazy ideas that I don’t know how to say no; without your mental support, I
would have quit my thesis in February. Thanks to Pedro for being the most silent
roommate ever, and thanks to Luisa for 3 months of crazy puzzle, I have to come
back at least to do another one with you (this time, at least 4k). Thanks to you,
who are reading these dedications. You have or you will be changing my life in good,
for sure. Thanks! Thanks to God for all the months You’ve given to me and for
all the people You’ve made me meet. I’m ETERNALLY GRATEFUL. Thanks to
everyone whom I forgot. I love you all!

105

	Abstract
	Introduction
	Motivation and Public Health Relevance
	EEG and BCI as Tools for Stress Detection
	Limitations of Current Literature
	Project Objectives and Methodology
	Thesis Structure

	Background
	Brain and EEG signal
	Stress
	Neurobiology of Stress

	BCI

	State of the art
	Methods for inducing stress
	Classification methods
	Literature review
	Electrodes Chosen
	Public Datasets
	Preprocessing Steps
	Accuracy Performances
	Processing Time
	Limitations of Current Research

	Materials and Methods
	Computational Setup
	Dataset
	Data Acquisition
	Experimental Tasks

	Signal Preprocessing
	Data Augmentation
	Data Preparation
	Architecture Used
	Training Hyperparameters
	Data Collection
	EEG cap and Electrodes
	Bioamplifier
	Software used
	Protocol Definition
	New Data Processing

	Evaluation Methods
	Classification Accuracy
	Algorithm Velocity

	Acknowledgements

	Results
	Hyperparameter Optimisation via Fine-tuning and K-fold Cross-Validation of EEGNet
	Impact of Batch Size on Testing Accuracy
	K-Fold Cross Validation
	Segment Length

	Training and Validation Performance Analysis
	Analysis of Loss Curves
	Analysis of Accuracy Curves

	Evaluation on 10% of the Dataset
	K-Fold Cross-Validation on Subjects
	K=5
	K=40

	EEGNet Applied on New Data
	Testing on the Data from all the Sessions
	Testing on the Data from the Fifth Session

	Velocity of the Algorithm
	ITR
	Literature Comparison
	Potential Improvement

	Discussion
	Classifier Performance and Generalisation Limits
	Device Limitations
	Ethical considerations

	Conclusion
	Summary
	Limitations
	Future Research

	K-Fold Cross-Validation Table
	Codes
	Bibliography
	Dedications

