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Abstract

In patients affected by Complete Locked-In Syndrome (CLIS), all forms of volun-
tary communication are impaired due to total motor paralysis, despite preserved
consciousness and cognitive abilities. In this context, conventional communication
methods prove ineffective, highlighting the need for assistive devices that rely on
residual physiological signals that can still be voluntarily modulated. The pupil
accommodative response (PAR), which regulates pupil diameter based on the
distance of the visual focal point, is typically preserved even in individuals with
CLIS. This makes it a promising communication channel, as it can be voluntarily
triggered by focusing gaze on visual targets positioned at different depths. The aim
of this thesis is the design and development of a non-invasive, compact, and low-cost
interaction system based on real-time pupil area monitoring and the detection of
constriction events associated with PAR. The device is built around a Raspberry
Pi Zero equipped with an infrared camera and lighting system, and integrates
a segmentation algorithm capable of extracting pupil area in real time from the
video stream. Unlike previous approaches that exploit PAR as a binary signal,
the proposed system leverages its continuous nature by implementing a four-level
coding paradigm based on the combination of two focal distances and two possible
durations of the pupillary constriction. This strategy enables the transmission of a
larger amount of information, significantly enhancing the communicative potential
of the system. The device is supported by a computer responsible for processing
and hosting a modular graphical interface, through which the user can access
various applications. Among these, a text-based communicator has been developed,
enabling word composition by modulation of the PAR. The system was validated
through a series of experiments involving healthy subjects, virtually in the absence
of any external movement, including convergence/divergence movements of the
relevant eye. The results demonstrated effective pupil segmentation, with Dice
coefficient exceeding 92%, and an excellent detection of pupillary constriction
events, achieving both precision and recall values above 95%. Event classification
accuracy exceeded 80%, indicating a good capacity to discriminate the 4 different
patterns of response, despite the high intra and inter individual variability of the
signal. Nevertheless, to ensure a more robust interaction, higher accuracy would be
desirable and could possibly be achieved by future developments involving artificial
intelligence-based techniques. Overall, the device demonstrated promising capa-
bilities in supporting communication without requiring user training, suggesting
potential applicability in both clinical and home settings.
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Chapter 1

Introduction

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease that
selectively affects motor neurons in the brain and spinal cord, leading to a gradual
loss of voluntary muscle control resulting in the inability to walk, breathe and
talk. With a median survival time ranging from three to five years after symptom
onset [1], ALS ultimately results in severe physical disability and, in some cases,
culminates in a state known as Completely Locked-In Syndrome (CLIS). In CLIS,
patients lose nearly all voluntary muscle function, making them unable to perform
even the simplest motor tasks, including those required for traditional modes of
communication [2].

ALS patients typically rely on a variety of communication methods that leverage
their remaining motor abilities, such as eye-tracking systems, adaptive keyboards,
and speech synthesizers [3]. These technologies convert minimal voluntary move-
ments (like eye motions or facial gestures) into effective communication signals.
However, in the case of CLIS patients, the total loss of voluntary muscle control
makes these conventional methods impractical or even impossible to use. Although
brain–computer interfaces (BCIs) offer a promising alternative by translating neu-
ral signals directly to interpret patient intent and thereby restore a degree of
communication, these systems often face significant limitations. Signal variability,
calibration complexity, and reduced reliability in real-world conditions continue
to hinder their practical deployment [4]. Alternative approaches, such as BCIs
based on near-infrared spectroscopy (NIRS), have shown potential by detecting
hemodynamic responses associated with brain activity, enabling basic forms of
communication in CLIS patients [5]. Nonetheless, these systems tend to be techni-
cally complex, resource-intensive, and not always feasible for widespread clinical
use. Consequently, addressing the communication needs of CLIS patients is not
only a complex technical challenge but also an ethical imperative, as the inabil-
ity to communicate exacerbates isolation and limits participation in medical and
personal decisions. To overcome the limitations of existing technologies, there is
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Introduction

a growing interest in alternative, low-cost, and accessible solutions. One promis-
ing yet, relatively, underexplored avenue involves leveraging preserved autonomic
functions, particularly pupillary responses, as a channel for intentional commu-
nication. In this context, the present thesis introduces a novel communication
device based on the pupillary accommodative response (PAR), an involuntary
response that remains largely intact in ALS and CLIS patients. By harnessing
this reflex, the system enables users to generate interpretable signals without any
voluntary muscle activity. The PAR, integral to the visual accommodation process,
involves involuntary pupil size adjustments in response to voluntary focusing on
objects at varying distances [6]. Specifically, when shifting focus from distant to
near objects, the pupils constrict. Conversely, pupil dilatates during focus shifts
from near to distant objects. Notably, autonomic functions, including pupillary
responses, are generally preserved in ALS patients. Studies have indicated that
both sympathetic and parasympathetic pathways governing pupil dynamics remain
largely unaffected by the neurodegenerative processes characteristic of ALS [7].
This preservation suggests that pupillary reflexes can serve as reliable channels
for communication in individuals with CLIS. The feasibility of such paradigms
has been demonstrated in some studies. For instance, Stoll et al. [8] utilized
task-evoked pupillary dilation, elicited through cognitively demanding and self-
stressing tasks such as mental arithmetic. While this method demonstrated the
potential of pupillary responses for communication, it is inherently limited by
its reliance on the user’s cognitive effort, which can be variable, fatiguing, and
difficult to sustain over time. In contrast, the PAR, as employed in the study by
Villalobos et al. [9], provides a faster, more deterministic, and more reproducible
physiological response. However, despite its advantages, the PAR-based approach
is still constrained by its binary nature and the need for precise timing relative to
stimulus presentation windows, which limits the amount of information that can
be transmitted. In response to this constraint, a preliminary study was conducted
to investigate the relationship between pupil size and focal distance, with the aim
of assessing the feasibility of extending this approach into a multi-symbolic BCI
system. Using a professional grade pupillometric device (Pupil Core by Pupil Labs),
pupil size was recorded during accommodation tasks involving visual targets placed
at varying distances under controlled protocols. The findings revealed a pronounced
nonlinearity in the pupillary accommodation response and limited repeatability.
Notably, both the amplitude and detectability of the PAR increased significantly
as the visual target moved closer to the eye. These observations, consistent with
prior research [10], provided the foundation for exploring an expanded use of the
response beyond binary paradigms. Building on this insight, the present thesis
leverages the depth-dependent and reflexive nature of the PAR to design a novel
communication system capable of distinguishing multiple accommodative levels.
By doing so, the system seeks to expand the communication bandwidth available
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to individuals in advanced stages of ALS, offering a path toward richer and more
flexible user interfaces. Although external factors such as ambient lighting and
emotional arousal can influence pupil dynamics, accommodative constrictions are
typically distinguishable in both time and amplitude under controlled conditions.
Successfully implementing such a multi-symbolic communication paradigm requires
a hardware solution that is not only capable of tracking pupil size reliably, but also
accessible and affordable enough for widespread use. While the Pupil Core system
provides high sampling rates and robust eye-tracking capabilities, its high cost
limits its suitability for widespread. To address this, a low-cost, fully wireless, and
battery-powered wearable pupillometric system was developed using a Raspberry
Pi Zero and an OV5647 infrared camera mounted on an eyeglasses frame. This
custom setup significantly lowers costs while offering enhanced image quality and an
adequate sampling frequency to reliably detect accommodative responses, making
it a practical and scalable solution for both clinical and home-based use. In parallel
with hardware development, dedicated software was created to manage image pro-
cessing and accurately detect PAR events. A user-friendly graphical interface (GUI)
was also designed to facilitate intuitive interaction with the system. This interface
enables users not only to operate the communication module, but also to access a
selection of predefined applications, forming the basis of a modular and extensible
assistive platform. Potential future extensions include games, home automation
controls, and tools for calendar management or messaging. Particular attention
was given to usability, ensuring that the software is accessible and operable even
by non-technical caregivers.

Building on this foundation, the following chapters detail the context, devel-
opment, and evaluation of the proposed system. The remainder of this thesis is
structured as follows. Chapter 2 provides a comprehensive background covering the
clinical and physiological aspects of ALS, existing communication systems including
brain-computer interfaces, and the visual focusing mechanisms underlying the PAR
as well as relevant pupil segmentation algorithms. Chapter 3 details the materials
and methods employed in this work, describing the custom pupillometry hardware,
software components, image acquisition and processing pipelines, and the design
of the GUI along with its applications. Experimental protocols and performance
evaluation methodologies are also outlined. Chapter 4 presents the results obtained
from device performance testing, pupil segmentation accuracy, and PAR event
detection efficacy. In Chapter 5, these results are discussed in depth, comparing
them with previous studies, analyzing system limitations, and proposing directions
for future improvements. Finally, Chapter 6 summarizes the key findings and
concludes the thesis, highlighting the potential impact of the developed device.
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Chapter 2

Background

Understanding the clinical, technological, and physiological context is essential
to frame the motivations and objectives of this thesis. This chapter provides a
comprehensive overview of ALS, including its epidemiology, causes, pathophysiolog-
ical mechanisms, and the communication impairments that frequently arise as the
disease progresses. Given the critical need for alternative communication strategies
in patients affected by severe motor disabilities, an overview of both traditional and
emerging assistive technologies, such as BCIs, is presented, along with a discussion
of their current limitations. The chapter then shifts focus to the human visual
system, with particular attention to the accommodation mechanism and the PAR,
a physiological response that has gained interest as a potential communication
channel for patients in advanced stages of ALS. Previous studies utilizing the PAR
have been reviewed to highlight existing approaches and identify areas requiring
further development. Finally, the chapter concludes with an analysis of the state of
the art in pupil segmentation algorithms, which are critical for accurately detecting
and tracking pupillary responses in real-world applications.This multidisciplinary
background sets the foundation for the development of a novel communication
system based on the PAR, as explored in the subsequent sections of the thesis.

2.1 ALS Overview
ALS, also referred to as Lou Gehrig’s disease, is the most common form of a broader
group of disorders known as motor neuron diseases (MNDs), is a progressive and
invariably fatal neurodegenerative condition that selectively affects motor neurons,
namely nerve cells located in the brain and spinal cord responsible for the voluntary
control of muscles involved in movement, speech, swallowing, and breathing. The
gradual degeneration and loss of these neurons result in progressive muscle weakness,
paralysis, and ultimately, respiratory failure. Beyond its devastating clinical
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manifestations, ALS poses a substantial emotional, social, and economic burden on
patients, their families, and the healthcare system.

This section provides a comprehensive overview of ALS, beginning with the
current understanding of its potential causes, including genetic and environmental
factors. It then explores the pathophysiological mechanisms underlying the disease
and the typical clinical manifestations, with particular attention to the progression
toward conditions such as Locked-In Syndrome and Complete Locked-In Syndrome,
which severely impair communication. While ALS is not the sole condition that
can result in extensive paralysis, a focused analysis is warranted given that it
represents one of the principal causes of patients progressing to LIS and CLIS.
Finally, the chapter discusses epidemiological data on the incidence and prevalence
of ALS, highlighting global trends and future projections. By contextualizing
the growing burden of the disease, this overview underscores the urgent need for
assistive communication technologies, especially as increasing numbers of patients
experience profound communication challenges.

2.1.1 ALS Causes
The etiology of ALS is complex and remains only partially elucidated, reflecting
the contribution of both genetic and environmental factors. ALS manifests in two
principal forms: sporadic ALS (sALS), accounting for approximately 90–95% of
cases, arises in individuals without a known family history of the disease; conversely,
familial ALS (fALS) represents about 5–10% of cases and is directly associated
with inherited genetic mutations [11]. The existence of both sporadic and familial
forms highlights the multifactorial nature of ALS and suggests that a combination
of intrinsic genetic susceptibility and extrinsic environmental exposures underpins
its development.

Genetic factors

ALS cases classified as familial result from inherited genetic mutations. To date,
more than 40 genes have been implicated in the pathogenesis of ALS, highlighting
the considerable genetic heterogeneity of the disease [12]. Among these, mutations
in C9orf72, SOD1, TARDBP, and FUS are the most frequently identified. The
hexanucleotide repeat expansion in the C9orf72 gene represents the most common
genetic abnormality and is notably associated not only with ALS but also with
frontotemporal dementia (FTD), suggesting a shared pathogenic mechanism be-
tween the two conditions [13]. Mutations in the SOD1 gene were the first to be
discovered and are responsible for approximately 19% of familial ALS cases and
about 4% of sporadic cases, underlining their pivotal role in the early understand-
ing of ALS genetics [14]. Alterations in TARDBP and FUS, two genes involved
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in the encoding of proteins participating in mRNA transport and motor neuron
development, have further emphasized the critical importance of RNA processing
defects in ALS pathophysiology [15]. Moreover, evidence suggests that rare genetic
variants significantly contribute to disease susceptibility, supporting the notion that
ALS lies on a continuum from purely genetic to multifactorial origins [16]. Notably,
even in cases classified as sporadic ALS, genetic factors seem to play a substantial
role [17]. This growing body of evidence suggests that the traditional dichotomy
between familial and sporadic ALS may be overly simplistic. This distinction is
often confounded by ascertainment bias and the absence of a standardized definition
of fALS. Additionally, incomplete penetrance and the lack of a gold standard for
its assessment further complicate decisions regarding the appropriateness of genetic
testing in individuals without a clear family history, as well as the interpretation of
positive findings [18]. Beyond genetic factors, however, environmental and lifestyle
influences have also been increasingly recognized as important contributors to ALS
development, further supporting the multifactorial nature of the disease.

Environmental and lifestyle factors

Environmental exposures are believed to contribute significantly to ALS pathogene-
sis, particularly in sporadic cases. Several risk factors have been proposed [19] [20],
although definitive causal relationships are challenging to establish. These include:

• Toxin exposure: contact with heavy metals (such as lead or mercury),
agricultural chemicals, and other neurotoxins have been linked to a higher risk
of developing ALS.

• Military service: several studies report an increased incidence of ALS among
military veterans, potentially due to a combination of environmental exposures,
physical trauma, and intense physical exertion.

• Physical activity: while moderate exercise is generally beneficial, some
evidence suggests that elite athletes may have a higher incidence of ALS,
although the mechanisms remain unclear.

• Smoking: tobacco use has been consistently associated with an increased
risk in developing ALS.

• Dietary habits: diets high in saturated fats or low in antioxidants can
contribute to oxidative stress, mitochondrial dysfunction, and disrupted lipid
metabolism, all of which are implicated in the pathogenesis of ALS.
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Aging and other risk factors

Age is widely recognized as the most significant risk factor for the development of
ALS, with the incidence of the disease peaking between the age of 60 and 70 [21] [22].
Several biological processes associated with aging are believed to contribute to motor
neuron vulnerability, including a progressive decline in cellular repair mechanisms,
increased oxidative stress, mitochondrial dysfunction, and the accumulation of
genetic and epigenetic alterations [23]. Over time, these processes can impair
the ability of neurons to maintain homeostasis and respond to injury, ultimately
facilitating neurodegeneration. In addition to aging, a range of other potential risk
factors for ALS has been proposed, although their roles remain under investigation.
Chronic systemic inflammation and aberrant autoimmune responses have been
hypothesized to contribute to disease onset and progression by creating a hostile
environment for motor neurons [24]. Viral infections have also been suggested as
possible environmental triggers; certain neurotropic viruses could anticipate the
onset or accelerate the neuronal degeneration through persistent infection or by
inducing immune-mediated mechanisms [25]. However, while these associations are
biologically plausible, current evidence is inconclusive and often derived from small
cohort studies or preclinical models. Further large-scale, longitudinal studies are
needed to validate these findings and to better define the interplay between aging,
environmental exposures, and individual susceptibility in ALS pathogenesis.

2.1.2 Physiopathology and symptomatology

ALS is characterized by the progressive degeneration of both upper motor neurons,
located in the motor cortex, and lower motor neurons, located in the brainstem and
spinal cord. The mechanisms leading to motor neuron death are multifactorial and
self-reinforcing. This dual neuronal involvement leads to a distinctive clinical picture
combining features of spasticity and muscle weakness. From a pathophysiological
standpoint, multiple mechanisms contribute to neuronal death in ALS. These
include excitotoxicity mediated by excessive glutamate signaling, oxidative stress
due to an imbalance between reactive oxygen species and antioxidant defenses,
abnormal protein aggregation within motor neurons, and chronic neuroinflammation
[26]. These pathogenic mechanisms interact synergistically, creating a vicious cycle
that culminates in irreversible neuronal loss and denervation of skeletal muscles. As
motor neurons degenerate, their axons retract from the neuromuscular junctions,
leading to the progressive denervation of skeletal muscle fibers. This loss of neural
input results in muscle fiber atrophy, initially affecting fast-twitch fibers, and
triggers collateral sprouting attempts by surviving motor neurons, which become
increasingly insufficient as the disease advances [27].
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Clinical presentation

The clinical manifestations of ALS are heterogeneous and largely depend on the
distribution and predominance of upper versus lower motor neuron degeneration
leading to a spectrum of disease manifestation where two principal variants are
recognized based on initial symptomatology:

• Bulbar-onset ALS: affects the motor neurons of the cranial nerves, leading
to early symptoms such as dysarthria, dysphagia, tongue atrophy, and fasci-
culations. This form tends to progress rapidly and is often associated with
earlier respiratory compromise and a poorer overall prognosis.

• Spinal-onset ALS: typically presents with asymmetric weakness in the
limbs, starting distally, accompanied by muscle wasting, cramps, and fascicu-
lations. Disease progression leads to eventual involvement of proximal muscles,
contralateral limbs, bulbar muscles, and respiratory musculature.

In addition to the classic spinal and bulbar onset forms, studies have identified
fewer common variants of ALS onset, including mixed bulbar-spinal presentations,
thoracic onset, initial respiratory involvement, early cognitive or behavioral changes,
and presentations resembling dementia. However, these atypical forms are relatively
rare [28]. Regardless of the initial presentation, as the disease advances, patients
develop widespread muscle atrophy, spasticity, hyperreflexia, dysarthria, dysphagia,
and progressive respiratory insufficiency due to diaphragmatic weakness. Notably,
however, this widespread degeneration typically spares the oculomotor system.
The nuclei controlling eye movements and their associated motor neurons exhibit
a remarkable resistance to the pathogenic mechanisms that affect other motor
neuron populations. Several hypotheses have been proposed to account for this
selective vulnerability, including enhanced calcium-buffering capacity [29] and the
distinct expression of neuroprotective factors within oculomotor neurons [30] [31].
Consequently, patients usually retain voluntary control over eye movements even
in the advanced stages of ALS, making these movements an important channel for
communication in severely impaired individuals. Nevertheless, in rare and particu-
larly advanced cases, neurodegeneration may extend to the oculomotor system as
well, eventually leading to impaired eye movement control and complicating both
clinical management and patient communication.

Progression to LIS and CLIS

As ALS progresses, patients can enter a condition resembling the Locked-In Syn-
drome (LIS), characterized by near-total paralysis of voluntary muscles except for
partial retention of ocular mobility, typically limited to vertical eye movements or
blinking [32]. In this state, patients remain fully conscious and cognitively intact,
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and eye movements may serve as their sole means of communication through assis-
tive technologies or caregiver-mediated systems. In the most severe and terminal
phase of ALS, further neurodegeneration may affect the oculomotor nuclei or lead
to functional exhaustion of the remaining oculomotor neurons. This results in the
transition to Complete Locked-In Syndrome, a condition in which all voluntary
muscle activity, including ocular movements, is lost. Although the patient remains
fully aware and cognitively functional, the total absence of motor output renders
conventional communication impossible. In such cases, establishing even mini-
mal interaction with the external world requires the implementation of advanced
neurotechnological systems, such as BCIs, which are still under development and
not yet widely available in clinical practice. The progression from LIS to CLIS
exemplifies the devastating trajectory of ALS and highlights the importance of
preserving any remaining motor functions for as long as possible, not only for
maintaining autonomy but also for enabling communication and preserving dignity
in end-stage disease.

2.1.3 Global incidence
Epidemiological studies have provided significant insights into the global prevalence
and incidence of ALS. A comprehensive systematic review and meta-analysis
reported an overall crude worldwide prevalence of 4.42 cases per 100,000 population
and an incidence rate of 1.59 cases per 100,000 person-years [33]. However, these
figures represent global averages, and considerable variations exist across different
regions. For instance, the incidence of ALS ranges from 0.26 per 100,000 person-
years in Ecuador to 23.46 per 100,000 person-years in Japan [34]. These disparities
suggest significant environmental or genetic factors that may vary by geographic
location.

Analyzing trends over time reveals that the incidence of ALS has been rising
globally since 1957, however, this upward trend diminishes after adjusting for
age, suggesting that demographic shifts significantly influence these patterns [33].
According to the Global Burden of Disease Study, between 1990 and 2016 there was
an increase in the prevalence and mortality of MNDs, while the age-standardized
incidence remained stable in most regions of the world, except in those with a
high Sociodemographic Index (SDI), where it increased. This pattern suggests that
the rise in prevalence may partly be attributed to improved patient survival or
enhanced diagnostic capabilities [35]. One study projected a 69% increase in the
worldwide annual incidence of ALS within the next 25 years (based on 2015 data),
primarily attributed to the aging global population [36]. This projection aligns
with conservative estimates for the U.S., anticipating an increase of over 10% in
ALS cases between 2022 and 2030 [37].

9



Background

These demographic and epidemiological projections underscore the growing
global burden of ALS and highlight the increasing demand for healthcare resources
and support systems. As the number of ALS cases increases globally, a corre-
sponding rise in patients progressing to severe stages of motor impairment, such
as LIS or CLIS, can be logically anticipated. This trend inevitably leads to a
growing demand for assistive communication technologies tailored to individuals
with severely impaired voluntary motor control.

2.2 Communication systems
Effective communication is a fundamental human need, yet it becomes increasingly
challenging for individuals affected by ALS. As speech and limb movements deteri-
orate, alternative means of communication become essential to preserve autonomy,
express needs, and maintain social connections. This chapter provides an overview
of the main assistive communication systems available to ALS patients, focusing
on both traditional technologies and BCI solutions. Traditional systems, such as
low-tech solutions, eye-tracking devices, adaptive keyboards, and speech synthesiz-
ers, are examined for their operational principles and real-world applicability. In
parallel, BCI-based approaches, which bypass muscular activity by decoding neural
signals directly, are explored as promising alternatives, particularly for patients in
advanced disease stages.

2.2.1 Traditional communication systems
Traditional communication systems, which do not rely on BCIs, have historically
served as the foundation of assistive communication strategies for patients with ALS.
These methods fall under the broader category of Augmentative and Alternative
Communication (AAC), designed to leverage any residual voluntary motor abilities,
typically eye movements or subtle facial gestures, to enable meaningful interaction
with caregivers and the external environment. Technologically advanced AAC
solutions, such as eye-tracking systems and adaptive keyboards, are frequently
combined with speech synthesizers to generate real-time voice output from user
input. These synthesizers convert selected letters, words, or symbols into artificial
speech, with options for voice customization and the storage of commonly used
phrases to accelerate communication. While these AAC systems provide essential
communication channels, particularly when neural interfaces are not feasible, their
performance often depends on factors like proper calibration, consistent user input,
and optimal environmental conditions, such as sufficient lighting or stable posture.
Furthermore, their utility can decline as the disease progresses and voluntary
motor control diminishes. Nonetheless, due to their accessibility, reliability, and
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integration into commercially available platforms, traditional AAC systems continue
to play a crucial role in maintaining communication for individuals with ALS.

Low-tech solutions

Among the most fundamental tools are communication boards (Figure 2.1) and eye
transfer (E-tran) boards (Figure 2.2), which typically consist of grids populated with
letters, numbers, symbols, and frequently used phrases. The user communicates by
directing their gaze toward specific areas of the board, while a trained caregiver
observes and interprets these gaze patterns to identify the intended message. In
some cases, the patient may confirm or deny selections through predefined gestures
such as blinking, smiling, or raising an eyebrow. A commonly used variation of this
method is partner-assisted scanning, in which a communication partner sequentially
presents items, either aloud or by pointing to them on a board, and the patient
signals acceptance of the desired option through a simple response, such as a blink or
slight head movement. Although this method can be time-consuming and requires
the constant presence of a trained communication partner, it remains a highly
reliable and accessible technique. These low-tech solutions, while limited in speed
and complexity, have the advantage of being inexpensive, portable, and easy to
implement in various settings. They are often used as a first line of communication
support or as a backup when high-tech systems are unavailable or impractical due
to environmental constraints or disease progression.

Figure 2.1: Communication board Figure 2.2: E-tran board
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Eye-tracking systems

With the advent of modern technology, more advanced solutions have emerged,
including eye-tracking systems. These systems detect gaze direction and allow
users to control a graphical interface, select letters or words, and generate speech
output. Eye-tracking is non-invasive and highly intuitive, making it one of the
most widely adopted solutions in AAC for ALS.

Commercial eye-tracking systems typically employ near-infrared light sources
and high-resolution cameras to monitor reflections on the cornea and pupil. Using
advanced computer vision algorithms, these systems calculate the point of gaze
in real time with high spatial and temporal accuracy. Calibration routines are
often required to associate specific gaze directions with positions on the screen, and
modern systems can automatically adjust to head movement or lighting changes
to maintain precision. Some devices also support various input methods beyond
eye gaze, such as touch or switch inputs, which can be adapted to the user’s
remaining motor abilities. These adaptable controls are designed to accommodate
patients with varying levels of motor function, allowing for more personalized
interaction. The accompanying software typically includes features like predictive
text, customizable communication boards, and integration with environmental
control systems, all of which enhance the device’s overall usability and functionality.

Despite their widespread adoption and intuitive operation, eye-tracking systems
present several limitations, particularly in the context of progressive neurodegenera-
tive conditions like ALS. Accurate tracking requires a consistent ocular control that
can be compromised by ptosis, fatigue or limitations in perform ocular movements
due to degeneration [38] [39]. Calibration procedures, essential for maintaining
system precision, may need to be repeated frequently and can be challenging for
some users with central visual field loss, additionally not all eye types are easily
trackable due to uses of glasses or contact lenses, also pupil color seems to have
an impact on eye-tracking performances [40]. Furthermore, these systems are
highly dependent on the user’s ability to voluntarily move their eyes. As ALS
advances, some patients enter in CLIS state in which all voluntary motor functions,
including ocular movements, are lost. In such cases, eye-tracking technologies
become entirely ineffective, leaving patients without any conventional means of
interaction. Additionally, the high cost of commercial eye-tracking systems and the
need for specialized technical support may pose barriers to accessibility, particularly
in under-resourced settings.
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Adaptive keyboards

Adaptive keyboards represent another important category of assistive commu-
nication tools, particularly suited for individuals with residual motor function.
These devices are specifically designed to accommodate limited or highly localized
movement capabilities, enabling users to input text or control interfaces through
customized and accessible means. One widely used solution is the on-screen virtual
keyboard, which displays a full keyboard layout on a screen. Users can select letters
or commands through scanning input, a technique where rows or individual keys
are highlighted sequentially, and the user activates a switch (via a blink, finger tap,
cheek movement, etc.) when the desired option is selected. This method minimizes
the need for extensive motor control while still allowing full text generation. In
addition to virtual options, there are specialized physical keyboards designed with
enlarged keys, reduced key sets, or customizable overlays that simplify interaction.
These systems support various access methods, including sip-and-puff devices, head
pointers, and adaptive switches. They are often used in combination with single or
dual-switch setups, where one or two input signals, triggered by subtle voluntary
movements such as eyebrow raises or jaw clenches, are detected by electromyogra-
phy (EMG) system [41]. These setups can be tailored to the user’s specific motor
capabilities and can significantly improve communication speed compared to more
basic methods [42], mostly if associated with prediction algorithms integrating
also eye tracking features and customizable phrase banks that speed up text entry.
Moreover, many platforms can integrate with environmental control systems, en-
abling users not only to communicate but also to interact with their surroundings
(e.g., turning on lights, operating a TV, or controlling a wheelchair) through the
same interface.

Adaptive keyboards thus represent a versatile and effective solution for ALS
patients who retain minimal voluntary movements, offering both independence
and a means to maintain social interaction as the disease progresses. However,
these systems are not without limitations. Their effectiveness is highly dependent
on the presence and stability of at least one reliable voluntary movement, which
may deteriorate as the disease advances. Additionally, switch-based and scanning
interfaces can be slow and cognitively demanding, requiring sustained attention
and precise timing to select desired inputs. Additional factors, such as user posture
and fatigue, can further impact usability. Moreover, initial setup and customization
often require the involvement of trained professionals and caregivers, which may not
always be readily available in all care settings [42]. Despite these challenges, adaptive
keyboards remain a critical component of the assistive technology landscape for
ALS, especially when integrated with predictive text systems and multimodal
interfaces.

13



Background

2.2.2 Brain-Computer-interface systems
Brain-computer interface systems are emerging as powerful technologies designed to
restore communication and interaction for individuals with severe motor disabilities,
such as those suffering from ALS. By establishing a direct link between the brain
and external devices, BCIs allow patients to control computers, robotic systems,
or communication devices through neural activity alone. These systems have the
potential to significantly improve the quality of life for individuals who have lost
the ability to speak or move, offering a lifeline for communication and control in
daily activities.

This chapter will explore the functioning, advantages, and limitations of both
invasive and non-invasive BCI technologies, focusing on their application in enabling
communication for paralyzed patients.

Invasive systems

Invasive BCIs represents a frontier in assistive neurotechnology for communication
with patients affected by ALS, particularly in advanced stages of the disease
when voluntary muscle control is entirely lost. These systems typically rely on
intracortical microelectrode arrays or electrocorticography (ECoG) to record neural
signals directly from the motor or speech cortex. One notable example is the use of
Utah arrays, which penetrate the cortical surface to capture action potentials from
individual neurons. This high spatial and temporal resolution enables the decoding
of fine motor intentions or speech-related neural activity. In a recent development
at UC Davis Health, researchers have implemented a speech neuroprosthesis that
maps neural activity from the ventral premotor cortex to phoneme probabilities
using deep learning models, achieving real-time synthesis of intelligible speech
with up to 97% accuracy [43]. Invasive BCIs allow communication even in LIS,
using neuroelectrical activity from motor cortex or prefrontal region, respectively
triggered by motor task imagination and mental calculations [44].

Despite their high performance, invasive BCIs present critical limitations: surgi-
cal implantation poses risks such as infection, hemorrhage, and long-term biocom-
patibility issues like gliosis and electrode encapsulation, which may compromise
signal quality degrading device stability and potentially requiring re-implantation.
Moreover, these systems typically need a training phase to calibrate decoding
algorithms (e.g., recurrent neural networks or Kalman filters), which require time
and recalibration. Furthermore, ethical concerns also arise regarding informed
consent in vulnerable patients, as well as psychological effects and the protection of
sensitive neural data. These factors necessitate careful evaluation when considering
invasive BCIs for clinical applications [45].
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Non-invasive systems

Non-invasive BCIs constitute a promising approach for enabling communication in
patients with ALS, particularly in advanced stages where conventional motor output
is severely compromised. Among these, electroencephalography (EEG) systems
are the most widely used due to their high temporal resolution, portability, and
relatively low cost. EEG-based BCIs commonly leverage Event-Related Potentials
(ERPs), including:

• Visual Evoked Potentials (VEPs): VEPs are triggered by the conscious
recognition of visual targets presented through flickering stimuli with distinct
temporal characteristics (e.g., frequency, duration, coding, phase, or motion-
onset). Each stimulus has a unique temporal signature that can be detected
in the scalp EEG.

• Overt Spatial Attention (OSA): OSA paradigms rely on parietal cortex
activity associated with directing spatial attention. Similar to motor imagery,
OSA does not require external stimuli and typically induces localized alpha-
band activity.

• P300: The P300 is an endogenous ERP arising in the parietal cortex during
an oddball paradigm, where users respond to infrequent target stimuli amid
frequent non-targets. Commonly used in speller applications, P300-based
BCIs often present a flashing matrix of rows and columns, eliciting a P300
response when the attended item is highlighted.

• Movement-Related Cortical Potentials (MRCPs): MRCPs are broad-
band, time-domain potentials that reflect slow cortical changes associated
with both cued and continuous motor intentions. They are characterized by
low-frequency (delta band) activity that is time- and phase-locked to the onset
of voluntary movements.

• Event-Related (De)Synchronization (ERD/ERS): ERD/ERS describes
a decrease (desynchronization) or increase (synchronization) in EEG band
power relative to a baseline. Typically evoked by motor tasks, they manifest as
contralateral ERD and ipsilateral ERS in the alpha/mu (8–13 Hz) and/or beta
(14–30 Hz) bands. Time-frequency representations, such as ERD maps, are
used to analyze the spatial, temporal, and spectral features of these phenomena
[46].

15



Background

Complementary to EEG, functional Near-Infrared Spectroscopy (fNIRS) offers
a hemodynamic-based modality that measures changes in cortical oxygenation
linked to cognitive tasks. fNIRS-based BCIs commonly employ mental arithmetic
or spatial navigation tasks to elicit localized increases in oxyhemoglobin (HbO)
concentration, detectable through optodes placed on the prefrontal cortex. These
signals are processed using statistical or machine learning methods to classify
intentional binary responses. While fNIRS provides better spatial resolution and is
less sensitive to electrical noise than EEG, its lower temporal resolution limits its
applicability to slower communication rates. Hybrid systems that combine EEG
and fNIRS have been proposed to leverage the complementary strengths of each
modality [47].

Despite their non-invasive nature, these systems face several limitations: EEG
signals are highly susceptible to artifacts from eye blinks, muscle activity, and
environmental interference, requiring careful signal preprocessing and controlled
acquisition environments [48]. fNIRS systems, on the other hand, involve higher
equipment costs and are not yet widely available in clinical or home-care settings.
Moreover, both modalities often require user training, calibration sessions, and
supervision by trained personnel, which can limit accessibility and scalability. The
communication speed achieved is typically low, with bitrates often insufficient for
fluent conversation, especially in patients with reduced attention spans or cognitive
fatigue.

2.3 Visual focusing mechanisms and the PAR in
ALS

The human visual system is one of the most intricate and highly developed sensory
systems, enabling the perception of shapes, colors, movements, and depth. Among
its many functions, the ability to adjust focus according to viewing distance is
fundamental to our interaction with the environment. This dynamic adjustment,
known as accommodation, is not only a mechanical process involving the lens and
ocular muscles but also part of a broader, neurologically coordinated response that
includes pupillary constriction and eye convergence. This chapter explores the
mechanisms underlying visual accommodation with a particular emphasis on the
PAR. Understanding the neural pathways that control this response offers insight
into how the eye maintains clarity across different focal distances. Moreover, we
examine why this reflex remains functional in certain neurodegenerative conditions,
most notably ALS, and discuss the clinical and technological implications of this
preservation. In particular, the resilience of PAR in ALS patients presents a
valuable opportunity for developing non-invasive communication interfaces based
on pupillary responses.
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2.3.1 The near vision complex and neural pathways
The human eye focuses incoming light onto the retina through a coordinated
system of refractive components. The cornea, with its fixed curvature, accounts
for the majority of the eye’s total refractive power. In contrast, the crystalline
lens provides dynamic focusing capability, enabling the eye to adjust to objects
at varying distances. The lens is suspended by the suspensory ligament which is
anchored to the ciliary muscle. When the ciliary muscle contracts, it reduces the
tension on the suspensory ligament, allowing the lens to adopt a more spherical
shape. This increase in curvature enhances the lens’s refractive power, effectively
shortening its focal length, to accommodate near vision (Figure 2.3). Thus, while
the cornea performs the primary focusing role, the lens fine-tunes the focus through
the process of accommodation, with changes in its curvature actively regulated by
ciliary muscle activity to maintain sharp retinal imaging.

Figure 2.3: How the eye focuses light
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Accommodation of the lens is part of a broader physiological response called
the near vision complex or accommodation reflex, which involves three coordinated
actions:

• Convergence of the eyes: both eyes rotate medially through the action of
the medial rectus muscles, ensuring that their visual axes intersect at the near
target. This alignment is essential to maintain binocular single vision and to
prevent diplopia (double vision).

• Accommodation of the lens: activation of the ciliary muscles causes a
release of tension on the zonular fibers (suspensory ligaments), allowing the
lens to become more convex.

• Pupillary constriction (miosis): the sphincter pupillae muscles in the iris
contract, reducing the pupil diameter. This limits the entry of peripheral light
rays, reducing spherical aberrations and increases the depth of field (i.e. the
range where objects are on focus). As a result, the image appears sharper,
particularly on the central retina (fovea), which is responsible for high-acuity
vision.

These three actions (convergence, accommodation, and miosis) occur simultaneously
as part of a reflexive triad, allowing the eye to efficiently adapt to near vision [49].

Pupillary constriction during a far-to-near accommodation task or pupillary
dilatation elicited from shifting gaze oppositely represents the PAR. Neural control
of the PAR involves both afferent visual pathways and efferent parasympathetic
output. Afferent signals begin in the retina and travel through the optic nerves,
lateral geniculate body, to the visual cortex. Higher visual association areas detect
retinal defocus and send signals to midbrain centers for near vision (like superior
colliculus and pretectal areas). From there, impulses descend to the oculomotor
complex. The Edinger–Westphal (EW) nucleus (component of cranial nerve III) is
the key efferent relay. Fibers from EW travel via the oculomotor nerve to the ciliary
ganglion; postganglionic fibers then innervate two targets. One branch innervates
the ciliary muscle to adjust the lens; the other innervates the iris sphincter to
constrict the pupil (Figure 2.4). At the same time, somatic efferent fibers from
the oculomotor nucleus drive the medial recti for convergence [49].
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Figure 2.4: Diagram of the accommodation reflex neural pathways
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2.3.2 Preservation and application of the PAR in ALS

In ALS skeletal muscle function progressively declines while Autonomic Nervous
System (ANS) functions are largely preserved. Among these preserved autonomic
functions is the PAR, which is mediated by the parasympathetic branch of the ANS
and does not rely on voluntary muscle control. Since the PAR originates from the
retina and is processed through brainstem parasympathetic pathways, its circuitry
remains intact even in the most advanced stages of ALS. This preservation enables
patients to constrict their pupils reflexively when shifting focus from distant to near
targets, a phenomenon confirmed by both clinical observations and experimental
studies. Empirical data demonstrate that this preserved reflex can be leveraged
for communication in patients who have lost motor and speech abilities. For
example, in the e-Pupil study, a completely paralyzed ALS patient successfully
used focus-induced pupillary constriction to select "Yes" or "No" responses [50].
Such findings are supported by additional research showing that pupillary responses
can be decoded, even in cases of severely impaired eye movement, to enable binary
communication. While rare instances of autonomic dysfunction in fALS cases have
been documented [51], they remain exceptions; the vast majority of patients retain
normal pupillary size and reactivity, reflecting the functional integrity of the PAR.

These insights have significant implications for AAC technologies. Traditional
gaze-based AAC systems, which rely on corneal reflections or video tracking
to determine eye position, become ineffective when ocular motility is severely
compromised or unstable, conditions frequently observed in late-stage ALS or
in the CLIS. In contrast, pupillometry-based interfaces harness the preserved
PAR by detecting pupil constrictions triggered by voluntary shifts in visual focus.
Systems such as the low-cost e-Pupil have demonstrated that users can make
binary selections, interacting with scanning interfaces, simply by looking at targets
positioned at different depths, without the need for coordinated eye movements or
extensive training.

The PAR is a continuous response, meaning that its magnitude varies in pro-
portion to the proximity of the object being fixated. Specifically, closer targets
elicit stronger pupillary constriction. This relationship can be approximated by
a logarithmic function of viewing distance. Notably, for a given shift in target
position, the resulting change in pupil diameter is highly dependent on distance:
when the target is far, the pupil undergoes only minimal variation, whereas the
same displacement at a closer range induces significantly larger changes in pupil size.
This graded behavior offers the possibility of going beyond binary communication,
allowing for multi-level input detection. However, the limited repeatability and
physiological variability of the accommodative pupillary constriction introduces
challenges in robustly distinguishing among multiple focus levels. While binary
detection can be achieved with high reliability, accurately resolving three or more
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distinct levels requires more sophisticated signal processing and calibration and
may still be subject to error due to inter- and intra-subject variability.

Despite these challenges, even the addition of a single intermediate focus level
(i.e., moving from a binary to a ternary system) can significantly enhance the
information transfer rate. From an information theory perspective, a binary system
conveys 1 bit per selection, whereas a ternary system (with three distinguishable
levels) conveys approximately log2(3) ≈ 1.58 bits per selection, a 58% increase.
Moreover, if the system can detect sequences or combinations of inputs across
multiple time windows, the information throughput grows multiplicatively. For
example, two successive ternary inputs can theoretically encode 32 = 9 unique
commands, equivalent to log2(9) ≈ 3.17 bits. Thus, even modest increases in the
number of reliably distinguishable levels can yield substantial gains in expressiveness
and efficiency.

2.4 Pupil segmentation algorithms
Pupil segmentation is the crucial task of delineating the pupil region from an
eye image in a pupillometry system. Several classes of algorithms have been
developed, from simple intensity-based methods to advanced machine-learning
(ML) approaches. Each technique makes different assumptions and has distinct
advantages and limitations. Notably, there is no universally accepted gold standard
for pupil segmentation; instead, clinically validated commercial devices, such as the
Neuroptics® VIP-300 or the PLR-3000 pupillometer, are often treated as reference
systems due to their proven accuracy and reliability in clinical settings. In the
following subsections, the main categories of pupil segmentation algorithms are
reviewed, from classical vision methods and feature-based approaches to modern
deep-learning techniques, comparing their performance and applicability in real-
time pupillometry. Advantages and disadvantages of each approach are highlighted,
along with relevant references to the recent literature. This insight is necessary
since an accurate pupil segmentation is fundamental for the development of the
proposed device, as the system relies on detecting multiple response levels based on
changes in pupil size. Therefore, precise segmentation is essential to ensure reliable
detection of even subtle variations in pupil area.

2.4.1 Classical image processing methods
Classical image processing methods represent the foundational approaches to pupil
segmentation and have historically played a central role in early pupillometry
systems. These techniques rely on deterministic algorithms that exploit low-
level visual features such as intensity, gradients, and edges to isolate the pupil
region. Unlike deep learning-based approaches, they do not require prior training
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on annotated datasets and are generally lightweight in terms of computational
resources, making them attractive for real-time and embedded applications.

Despite their simplicity, classical methods often perform well under controlled
lighting and high-contrast conditions, where the pupil appears to be a dark, roughly
circular region surrounded by brighter iris and sclera. However, they tend to
degrade significantly in the presence of noise, variable illumination, occlusions (e.g.
eyelids or eyelashes), or non-ideal pupil shapes.

Intensity-based thresholding

Intensity thresholding is one of the most straightforward techniques for pupil
segmentation and consists in binarizing eye image based on pixel intensity values.
In systems employing Near-Infrared (NIR) illumination, typical of "dark-pupil"
imaging, the pupil appears significantly darker than the surrounding iris and sclera.
Under these conditions, global thresholding methods such as Otsu’s algorithm can
generate an accurate binary mask of the pupil with minimal computational effort
[52]. To address scenarios with gradual lighting variation across the image, adaptive
thresholding techniques, which compute local thresholds for different regions, are
often used as an alternative.

The principal appeal of thresholding lies in its simplicity and computational
efficiency, which make it particularly suitable for real-time applications or resource-
constrained platforms such as embedded systems. When operating under optimal
conditions, namely with uniform NIR illumination and minimal occlusions, this
approach can produce reliable and sharply defined pupil contours without the need
for complex preprocessing [53].

Nevertheless, thresholding methods exhibit significant limitations in practical,
unconstrained scenarios. They are highly sensitive to variations in illumination,
the presence of specular reflections, shadows, and dark-colored irises. In such cases,
the assumption that the pupil is the darkest region in the image may no longer be
held, leading to frequent mis-segmentation where eyelashes, eyelids, or background
areas are incorrectly identified as pupils [52]. Adaptive thresholding may partially
mitigate these issues but often fails in the presence of glints, contact lenses, or
significant non-uniformity in lighting. Consequently, the output masks are prone
to irregularities and false detections, typically requiring additional filtering or
post-processing to be usable in downstream analyses.

Edge-Detection

Edge-based segmentation methods aim to detect the boundaries of the pupil by
identifying regions of rapid intensity change in the image. Algorithms such as
Canny or Sobel operators are commonly employed for this purpose [54]. Typically,
the image is first smoothed, often via Gaussian filtering, to suppress noise, and
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then processed to locate high-gradient transitions corresponding to the pupil-iris
boundary. Unlike thresholding, which relies on absolute intensity values, edge
detectors are sensitive to local contrast, enabling the identification of pupil contours
even when the pupil region is not uniformly dark. This gradient-based approach
is particularly useful in cases where the pupil does not present a clear intensity
distinction from the surrounding iris, such as under non-uniform illumination.
For this reason, edge detection is frequently used as a preprocessing step in
more advanced segmentation pipelines, including the Hough Transform and active
contour models, where the edge map guides the search for the pupil boundary.
In addition, these methods are computationally inexpensive, thus applicable in
real-time contexts.

However, edge-based methods are inherently sensitive to noise, reflections, and
fine structures such as eyelashes or iris texture. The resulting edge maps often
contain fragmented or spurious contours that do not correspond to anatomical
features of interest. Therefore, substantial post-processing is usually required to
isolate the pupil outline, typically involving morphological operations, contour
filtering, or region linking [55]. Additionally, the performance of edge detectors
depends critically on the choice of algorithm parameters, such as gradient thresholds
and the standard deviation of the Gaussian kernel, which must be carefully tuned
to balance sensitivity and robustness.

2.4.2 Feature-based and hybrid approaches
Pupil segmentation has long relied on classical image processing techniques that
exploit features such as intensity gradients, shape regularity, and spatial consistency.
Before the advent of deep- and machine-learning, a wide range of feature-based and
hybrid algorithms were developed to detect and segment the pupil with reasonable
accuracy and speed, even under challenging conditions such as reflections, occlusions,
and non-uniform illumination. These methods often combine edge detection,
geometric modeling, and clustering to infer the pupil region based on domain-
specific assumptions.

In this section, several techniques are reviewed, ranging from Hough Transform
and active contours to more specialized methods like Starburst, ellipse selection, and
fuzzy clustering. While these approaches may not always match the performance
of modern deep networks, they remain highly relevant due to their simplicity,
efficiency, and suitability for real-time or resource-constrained applications.
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Hough Transform

The Hough Transform (HT) is a popular method for detecting parametric shapes,
most notably circles, within an image. In the context of pupil segmentation, the
HT is primarily used to detect the circular boundary of the pupil by transforming
the image space into a parameter space, where the shape of interest (i.e. a
circle) is represented by a set of parameters such as radius and center position. The
transformation allows the identification of potential circular regions that correspond
to the pupil, even if the pupil is partially occluded. In practice, the HT operates by
first detecting edges and then mapping these edge points into a parameter space
where each edge point contributes to the accumulation of votes for possible circle
parameters. The resulting accumulation map, often referred to as the Hough space,
highlights the most probable locations and sizes of the circle. By selecting the peak
in the Hough space, the center and radius of the pupil can be determined.

One of the advantages of HT is its robustness to incomplete or noisy edges.
Even when parts of the pupil boundary are missing or corrupted by reflections, the
HT can still detect the circle by finding a consistent accumulation of votes from the
available edge points. This makes it more tolerant to gaps or noise in the image
compared to raw edge detection [56].

However, the Hough Transform is computationally expensive, particularly when
searching over a large parameter space, and may become impractical in real-time
systems or resource-constrained devices. The performance also depends heavily on
accurate edge detection; poor edge maps can lead to false positives or incorrect circle
detections. Moreover, the method is limited in its ability to handle non-circular
pupil shapes, which can arise due to off-axis images or other factors such as optical
distortions [53].

Active Contours

Active contour models, also known as "snakes", are a class of techniques used for
boundary detection that aim to iteratively deform a curve to fit the contours of
an object within an image. These methods are particularly useful in applications
where the object boundary is not clearly defined by simple intensity or gradient-
based methods, such as in pupil segmentation under non-ideal conditions. The
active contour model starts with an initial curve placed near the object of interest
and evolves this curve to minimize an energy function that captures both the
image features (such as edges) and the internal properties of the curve (such as
smoothness). The energy function typically consists of two main components:
an image-based term, which forces the contour to align with strong gradients or
edges, and a geometric term, which penalizes irregularities in the contour shape to
maintain smoothness and avoid overfitting to noisy or irrelevant features. These
competing forces guide the evolution of the contour, with the goal of achieving an
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optimal boundary that corresponds to the pupil’s shape. Variants of the method,
such as geodesic active contours or level-set models, extend this framework to
better handle topological changes (e.g., splits or mergers of the contour) [57].

One of the key advantages of active contours is their flexibility in adapting to
irregular object shapes and their ability to accurately capture boundaries even
when the object is occluded or has non-uniform intensity. This makes active
contours particularly suitable for pupil segmentation in cases where the pupil
is not perfectly circular. Additionally, active contours are relatively robust to
noise and can incorporate prior knowledge (such as shape constraints) to improve
performance.

However, the active contour method has several limitations. First, it requires
good initial contour placement, which can be challenging in dynamic or poorly lit
environments. The evolution of the contour can also be computationally expensive,
especially in real-time applications, as it involves solving partial differential equa-
tions iteratively. Moreover, the choice of energy function is also a critical point [58].
Furthermore, active contours can struggle with large deformations if the initial
contour is too far from the true boundary, or if the image lacks clear edge features
to guide the process. In such cases, the method may fail to converge correctly or
may become trapped in local minima.

Starburst algorithm

Hybrid algorithms combine image features with model fitting to improve segmenta-
tion accuracy and robustness. One well-known example of such an approach is the
Starburst algorithm [59], commonly used in eye-tracking applications. Starburst
begins with an initial estimate of the pupil center (often the image center) and
casts multiple rays in all directions. Along each ray, it searches for significant
intensity gradients that indicate potential boundary points. Once these edge points
are detected, they are typically filtered through techniques like RANdom SAmple
Consensus (RANSAC) ellipse fitting to refine the pupil contour, and the center
is updated. This iterative process continues until the algorithm converges on an
optimal pupil model.

The efficiency of the Starburst algorithm lies in its approach of performing
one-dimensional searches along rays, which makes it computationally faster than
more exhaustive methods like voting in HT. By combining local feature detection
(such as intensity changes) with a global model (typically an ellipse), Starburst
achieves good performance even in the presence of moderate noise or occlusion.
The iterative refinement of the center further enhances its ability to adjust the
pupil’s location, making it well-suited for eye-tracking applications. This speed,
along with its robustness to noise, has led to its integration into several open-source
toolkits, highlighting its effectiveness in real-world scenarios.
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However, Starburst’s performance is highly dependent on the resolution and
quality of the image. It relies on the presence of sharp, uniform edges along the rays,
which can be problematic in situations with heavy eyelid or eyelash occlusion or
very low contrast images. In such cases, the rays may fail to accurately detect the
pupil boundary. Additionally, Starburst can struggle if the pupil moves suddenly
between frames, as the initial center estimate becomes invalid [60]. Moreover,
the algorithm requires careful tuning of parameters such as the number of rays,
thresholding for edge detection, and stopping criteria. Although modified versions
of Starburst have been proposed to address some of these limitations, the method
remains less reliable in challenging lighting conditions or when the pupil is partially
outside the image.

Ellipse selection

Another hybrid method is Ellipse Selection (ElSe), proposed by Fuhl et al. [61].
ElSe is a fast and efficient pupil detection method designed for resource-constrained
applications such as embedded systems and automotive environments. It begins
with a lightweight edge filtering process to emphasize the pupil region, followed by
the evaluation of candidate ellipses on the resulting edge map to identify the pupil.
According to authors, ElSe was created with a focus on conserving computational
resources while maintaining reliability under non-ideal conditions, including variable
lighting and reflections from eyewear. Its main strengths are speed and robustness,
enabling effective performance in real-world scenarios. In testing, ElSe achieved a
14.53% improvement in detection rates over the best-performing algorithms on a
large annotated dataset, underscoring its practical value.

However, like HT, ElSe assumes that the pupil is approximately elliptical in
shape, which can cause performance degradation in cases where the pupil is highly
distorted, such as off-axis or irregularly lit situations. Its effectiveness is also highly
dependent on the quality of the edge map; weak or discontinuous edges can lead to
failures in selecting correct ellipse candidates. Additionally, while ElSe is optimized
for speed and designed to be lightweight, this may come at the cost of accuracy in
challenging images where more detailed analysis is needed.

Other feature-based methods, such as the Sinusoidal Eye Tracker (SET) [62]
and graph-based methods [63], also employ similar principles. Some methods
enhance detection using polar coordinate projections [64] or corneal reflection
cues (the “bright-pupil” effect) [65]. While these hybrid methods often outperform
simpler thresholding techniques, they generally require careful integration of various
heuristics such as assumptions about shape, intensity gradients, or anatomical
constraints. In essence, feature-based methods trade off generality for speed: by
assuming a simplified pupil model, they achieve fast processing but may struggle
with unusual cases or extreme conditions.
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Region and Clustering Methods

Region-based segmentation methods, such as region growing, watershed, or clus-
tering, treat pupil detection as a problem of grouping pixels with similar intensity
values. Techniques like K-means clustering or fuzzy C-means have been widely
used, where pixels are categorized into different classes, typically foreground and
background, based on both intensity and spatial proximity. For instance, Bai et
al. [66] proposed a fuzzy clustering approach that iteratively refines the pupil
threshold. They found that clustering outperforms global thresholding, particularly
in low-contrast or noisy images, as it can better capture pupil features.

Fuzzy clustering, by allowing partial membership, can handle intensity in-
homogeneities within the pupil, making it highly adaptable to complex image
characteristics. Unlike strict thresholding, it is better equipped to tolerate noise
and irregularities, as it accommodates minor misclassifications or intrusions without
leading to complete failure. This ability to adapt to complex intensity distributions
is one of the key strengths of region-based methods. Moreover, such methods can
incorporate spatial smoothness or neighborhood constraints to enhance segmenta-
tion consistency, which helps avoid isolated misclassifications. These techniques
have demonstrated higher sensitivity and specificity compared to thresholding,
especially when dealing with challenging images.

However, region-based methods come with some trade-offs. They tend to be
computationally heavy and iterative, with techniques like K-means and fuzzy C-
means requiring multiple iterations to converge, which may not be suitable for
very high frame rates. Additionally, these methods require the setting of various
parameters, such as the number of clusters and fuzzy weights, and without proper
regularization, they may suffer from over-segmentation. Region growing algorithms
may also face issues where weak edges separate the pupil from the background.
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2.4.3 Deep learning methods
Convolutional neural networks (CNNs) and other architectures have become popu-
lar for pupil segmentation, leveraging large labeled datasets to output pupil masks
(segmentation). Common choices include U-Net variants, fully-convolutional net-
works (FCNs), and encoder–decoder architectures. These models excel at learning
spatial features and can handle complex variations in images. For instance, Chen
et al. [67] applied an FCN to pupil localization, achieving high accuracy, while
U-Net has been adapted for pupil and iris segmentation, further demonstrating the
power of deep learning in this area. With sufficient training data, deep networks
can effectively deal with occlusions, lighting artifacts, and varying eye charac-
teristics, outperforming traditional methods, thus systems like DeepVOG [68],
using an FCN, has shown strong performance in various datasets. More recently,
transformer-based models like the Segment Anything Model (SAM) have been
fine-tuned for pupil segmentation, signaling a shift toward large pre-trained models.
In particular, the second version SAM2, has demonstrated strong performance
on diverse eye-tracking datasets—achieving mean Intersection over Union (IoU)
scores of over 90% on both synthetic and real-world data, such as the NVGaze
and OpenEDS datasets. Without requiring any fine-tuning, SAM2 matches the
performance of domain-specific models, while drastically reducing annotation effort.
Thanks to its ability to propagate a single point prompt across an entire video,
SAM2 enables fast and scalable dataset annotation: for example, only one click was
needed to annotate over 12,000 images in the OpenEDS dataset. This capability
positions SAM2 not only as a high-performing segmentation tool but also as a
powerful enabler for accelerating dataset creation in eye-tracking research [69].

The main advantage of deep learning methods is their high accuracy and
robustness, as they can automatically learn complex features (e.g., reflections, eye
color variations) that traditional algorithms struggle with. Once trained, CNNs
can segment the pupil in a single forward pass, which, when run on a Graphics
Processing Unit (GPU), can be achieved in real time. Additionally, deep models are
flexible, allowing new training data to be incorporated, and recent innovations have
included shape priors, such as an ellipse-fit loss, to improve geometric accuracy.

However, deep learning approaches have significant drawbacks. They require
large annotated datasets and substantial computational resources for training,
which can be challenging for resource-constrained environments or embedded
systems. Even during inference, complex networks introduce a latency that may
not be acceptable for online applications. Furthermore, deep models are prone to
overfitting to the training distribution, and models trained for specific conditions
may require retraining or fine-tuning for new conditions. Additionally, these models
offer lower interpretability, with unpredictable failure modes when test images differ
from the training set.
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2.4.4 Comparative summary
To summarize, Table 2.1 compares the key characteristics of the main pupil
segmentation approaches.

Table 2.1: Comparison of pupil segmentation methods: key ideas, advantages,
and disadvantages.

Method Key Idea Advantages Disadvantages

Thresholding Binarize by inten-
sity.

• Very fast and simple

• Low computational cost

• Fails in variable light, low contrast, or noise

• Eyelid/glint artifacts easily cause misclassification

Edge Detection Detect strong gra-
dients to find pupil
boundary

• Precise localization of sharp
edges

• Low processing time

• Sensitive to noise and weak edges

• Fragmented contours require additional processing

Hough Trans-
form

Vote in parameter
space for circular
shapes

• Robust to broken or partial
edges and noise

• Directly yields center/radius

• Computationally intensive

• Assumes ideal circular/elliptical shape

• Slower on large images

Active Contours Iteratively deform
a curve by energy
minimization

• Flexible shape adaptation

• Captures boundary even with
weak edges

• Provides smooth, closed con-
tour

• Requires good initialization and parameters

• Iterative solving is slow and may miss the correct
boundary

Hybrid Feature-
Based (Star-
burst, ElSe)

Detect features and
fit geometric model

• Starburst is valued for speed

• ElSe is robust in real-world
conditions

• Dependent on initial seed/parameters

• Starburst can fail on rapid pupil motion

• ElSe struggles with severely distorted shapes

Region and
Clustering

Cluster pixels by in-
tensity or grow re-
gion

• Can handle non-uniform inten-
sities

• Iterative and slow

• Requires setting cluster parameters

• May over-segment or leak into background

Deep Learning Learn segmentation
from annotated
data

• Highest accuracy and robust-
ness

• Can learn complex features

• Requires a large training set

• GPU is necessary for real-time

• Heavy models may not run on low-power devices

• Generalization must be ensured for new conditions
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Chapter 3

Materials and methods

This chapter outlines the materials and methods used for the design, implementation,
and validation of the proposed system. It begins by presenting the architecture of the
pupillometry platform and the general setup, including the hardware components
and the custom modifications made. The procedures for image acquisition and data
transmission are described, followed by the development of the algorithm for pupil
segmentation and the detection of pupillary responses related to accommodative
effort. The software interface and its role in user interaction are also illustrated,
along with the functionalities integrated to support the intended communication
tasks. The chapter concludes with a description of the experimental protocols and
metrics adopted to assess system performance and functionality in realistic use
scenarios.

3.1 Pupillometry system
The pupillometry system developed for this thesis is a wearable, custom-built
solution specifically designed to meet the needs of high-resolution pupil monitoring
in a compact form and low-cost factor. At its core, the system is based on a
Raspberry Pi Zero microcontroller, which serves as the acquisition and transmission
unit, in combination with a camera module and a wireless communication protocol.
Unlike commercial eye-tracking devices, which are often characterized by high
frame rates and a broad set of features, this system has been tailored to focus
exclusively on pupillometry. In this context, high temporal resolution is not strictly
required. Instead, spatial resolution and image clarity are prioritized in order
to detect variations in pupil size, such as those associated with the PAR. This
choice makes it possible to significantly reduce both the hardware complexity
and overall cost of the device, without compromising the scientific goals of the
study and the applicability in the designed context. In addition, developing a
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custom system allows full control over hardware and software components, enabling
tailored optimization for specific experimental needs and facilitating testing with
novel algorithms. The overall architecture of the system follows a linear, modular
workflow represented in the subsequent schematic (Figure 3.1). Each stage will be
described in detail in the following subsections of this chapter.

Figure 3.1: General setup and architecture of the pupillometry system

3.1.1 Device hardware components
The device essentially consists of a modified eyeglass frame, from which the lenses
have been removed and the structure reshaped to preserve the nose pads while
eliminating the lower part of the lens housing. This modification allows for an
unobstructed view of the eye for image acquisition. A Raspberry Pi zero is mounted
on the left temple of the frame using a custom 3D-printed support. On the opposite
temple, a battery module is secured, serving as the power supply for the controller
and peripherals. The camera is housed in a 3D-printed capsule, whose spatial
position can be adjusted via a flexible arm to frame the left eye correctly. Two
infrared (IR) LEDs are embedded into the same capsule and can be activated
when needed through the microcontroller. The Raspberry operating system and
application software are stored on a MicroSD card inserted into the designated
slot on the microcontroller. A schematic representation of the device’s hardware
components is viewable in the following figure (Figure 3.2) while pictures of the
resulting prototype are in the appendix (Figures A.1, A.2). The total cost of the
proposed device was kept deliberately low to ensure accessibility and facilitate
potential large-scale deployment. In total, the approximate cost of the entire system
is around €40–€50, making it a highly affordable solution compared to commercial
alternatives, especially in assistive technology contexts.
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Figure 3.2: Device’s hardware components schematic

Raspberry Pi zero

The Raspberry Pi zero is a compact and cost-effective single-board computer, well-
suited for embedded applications where space, power consumption, and affordability
are critical constraints. It features a 1 GHz single-core ARM11 processor and 512
MB of RAM, providing sufficient computational power for lightweight real-time
image processing tasks. Despite its small footprint (65 mm × 30 mm), it includes
essential interfaces such as two micro-USB ports for data and power, and a Camera
Serial Interface (CSI), which enables direct connection with compatible camera
modules.

In this project, the Raspberry Pi zero serves as the acquisition unit for the
pupillometry system. Its ability to run a full Linux operating system (OS), combined
with GPIO pins for hardware interfacing and camera support via the CSI port,
makes it an ideal choice for integrating image acquisition, processing, transmission,
and control tasks within a compact wearable setup. Furthermore, its low energy
consumption is particularly advantageous for battery-powered mobile systems,
ensuring extended operational time without compromising performance.

However, the Raspberry Pi Zero also presents some limitations. Its relatively
low computational power and the shared RAM between the CPU and GPU can
significantly affect processing speed. This can result in slower performance compared
to more powerful embedded platforms. Nevertheless, these alternatives typically
come at a higher cost and larger form factor.
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Camera and IR LEDs

The image acquisition component of the system is based on the OV5647 infrared
camera sensor, a 5-megapixel CMOS image sensor widely used in embedded vision
applications for its compact form factor and compatibility with the Raspberry
Pi platforms via the CSI port. The OV5647 is capable of capturing images at
resolutions up to 2592×1944 pixels and supports video output at various frame
rates (up to 30 frames per second), making it suitable for real-time pupil detection.

To ensure high-contrast imaging of the eye, particularly under suboptimal
lighting conditions, the camera is supported by two IR LEDs positioned to evenly
illuminate the ocular surface. These LEDs emit light in the infrared spectrum,
which is invisible to the human eye and therefore does not interfere with natural
vision or cause discomfort. The infrared illumination enhances the contrast between
the pupil and the surrounding iris and sclera, facilitating pupil detection. The
two LEDs are connected in series along with a 330 Ω resistor, which is included
to prevent excessive current flow and protect the LEDs from potential damage.
This circuit is powered directly by the Raspberry Pi zero: the positive terminal is
connected to physical pin 12 (GPIO 18), which is controlled via software to enable
or disable the illumination as needed, while the negative terminal is connected to
physical pin 9 (Ground) (Figure 3.3). This configuration allows for programmatic
control of the infrared lighting, enabling activation only when required for image
acquisition, thus optimizing power consumption and thermal management in the
system.

Figure 3.3: Schematic of IR LEDs connection
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Battery module and power supply

The device is powered by a rechargeable lithium-polymer (Li-Po) battery with a
nominal voltage of 3.7 V and a capacity of 2000 mAh, chosen for its compactness,
light weight, and adequate energy density for wearable applications. To ensure
safe operation and satisfy voltage constraints, a TP4056 -based power management
module is used, it provides also information about battery charging state through
two small, incorporated LEDs. This module integrates essential protection features,
including overcharge, over-discharge, short-circuit protection, and provides a micro-
USB port for battery recharging. The efficiency during discharge is generally high
as the internal losses from the protection circuitry are minimal. However, since
the TP4056 is a linear charger, energy losses during the charging phase can be
more significant, especially at higher currents. Overall, the module introduces
only a small power overhead during operation, it was therefore excluded from the
calculation of power consumption. The battery is connected to the TP4056 module,
which regulates voltage raising it up to 5 V, as necessary for the functioning of
Raspberry Pi zero and its peripherals. An inline toggle switch is included in the
circuit, allowing the caregiver to manually power the system on or off. Importantly,
the TP4056 module allows the system to remain operational while the battery
is charging. Additionally, the Raspberry Pi zero features a secondary micro-USB
port, which can be used to power the device directly from a computer or from a
standard USB wall adapter, offering flexible powering options for both portable
and stationary use.

In the absence of precise and official documentation regarding the power con-
sumption of each component in the system, only approximate estimations can
be made based on available technical datasheets and community-reported mea-
surements. The Raspberry Pi zero has a variable current draw depending on
its workload, ranging from around 100 mA in idle conditions to 300 mA under
stress, according to both the Raspberry Pi Foundation and independent tests.
The OV5647 camera module, consumes approximately 200 mA when fully active,
as derived from the product documentation. Additionally, a pair of standard 5
mm infrared LEDs typically draw about 20 mA each, and USB Wi-Fi dongles
used for wireless transmission may consume up to 150 mA depending on the data
load. Taking together, these components result in a worst case power consump-
tion scenario estimated at 690 mA. However, due to the lack of standardized and
official measurements across all configurations, these figures must be regarded as
conservative approximations rather than definitive values. Under these conditions,
the estimated operational time, in the worst-case scenario, provided by the 2000
mAh battery is computed in the following equation:

Battery life = Battery capacity
Device consumption = 2000 mAh

690 mA ≈ 2.9 hours ≈ 2 h 55 m (3.1)
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this represents the estimated device’s consumption and serves only as an indication
to evaluate the suitability of the hardware components in relation to the application.
Real power consumption will be significantly lower than the value reported, mainly
because rarely all components work at maximum load simultaneously. Moreover,
as described in the following subsection, modifications were made to the system
configuration to enhance device performance. These changes likely lead to increased
power consumption; however, a theoretical estimation is not sufficiently accurate
due to factors such as dynamic frequency scaling and individual chip variability.
For this reason, an experimental verification of the actual power consumption has
been performed and will be reported in the Results chapter.

3.1.2 Raspberry Pi OS and modifications
For the implementation of the system, the Raspberry Pi OS Lite (Bullseye) was
chosen as the operating system. This version of the OS is a minimal Debian-based
distribution developed specifically for the Raspberry platforms. Unlike the full
version, the Lite edition does not include a graphical user interface, which makes
it particularly well-suited for headless, resource-efficient applications such as the
one described in this thesis. The operating system was installed on a microSD
card using the official Raspberry Pi Imager tool. During the installation process,
the advanced settings of the Imager were used to preconfigure several essential
parameters. In particular, the wireless network credentials were entered to allow
the Raspberry Pi zero to automatically connect to the Wi-Fi network on first boot.
Additionally, the Secure SHell (SSH) service was enabled to allow remote access
via terminal using PuTTY software. This was a crucial step to manage the device
entirely from a PC, without requiring a display, keyboard, or mouse connected to
the Raspberry.

In order to enhance the performance of the Raspberry Pi zero and ensure com-
patibility with camera-based applications, several modifications were made to the
system configuration file. These changes are aimed at improving both compu-
tational speed and graphical responsiveness while maintaining system stability.
Firstly, GPU memory allocation was increased to 256 MB, a crucial adjustment
for image processing tasks and real-time video streaming, especially when using
the option to enable camera support via the legacy firmware interface. Addition-
ally, the core and GPU frequencies were manually raised to 400 MHz to provide
better throughput for graphical operations. The ARM11 frequency parameter was
explicitly set to 1000 MHz enabling also the option that allows the CPU to scale
dynamically to its maximum supported frequency based on thermal and power
constraints. Furthermore, USB communication was enabled by activating the
option "dtoverlay" in the configuration file. This allows the Raspberry Pi zero to
behave as a USB gadget when connected to a host computer. These adjustments
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were specifically tailored to optimize the system for this application and to improve
the usability of the device. Collectively, these custom system settings are compared
with default settings in the following table (Table 3.1).

Table 3.1: Comparison between default and custom system settings on Raspberry
Pi zero.

Component Parameter Default Value Custom Value Description

CPU arm_freq 700 MHz 1000 MHz
ARM CPU clock

frequency determines
overall processing speed.

GPU core_freq 250 MHz 400 MHz

Clock frequency of the
GPU core handling

general-purpose
processing tasks.

GPU gpu_freq 250 MHz 400 MHz
Clock frequency of the
GPU graphics engine.

GPU gpu_mem 64 MB 256 MB

RAM allocated to the
GPU, required for video
capture and graphical

tasks.

Camera start_x 0 (disabled) 1 (enabled)

Enables legacy camera
interface and required
GPU features for video

handling.

USB dtoverlay Not present dwc2 (Enabled)
Enables USB OTG

support for device mode
communication.
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Additionally, a custom device label (via static USB descriptor modification)
was assigned, ensuring that the device is always recognized as “RPIZERO” by
connected systems, facilitating consistent identification across multiple sessions and
enabling automatic detection even when multiple peripheral USB are connected
to the computer. Moreover, a memory partition of 20 MB was created in the
MicroSD in order to store text files containing Wi-Fi credentials and computers
IP addresses with the aim of making it easier to connect the device to different
Wi-Fi networks. Furthermore, Bluetooth and HDMI output were disabled to reduce
power consumption as other various unnecessary services to minimize background
processes, ensuring the Raspberry Pi zero operates with optimal energy efficiency.

3.1.3 Computer hardware and Python libraries
In the proposed system architecture, the Raspberry Pi zero is responsible for
image acquisition, while all processing, user interaction, and graphical rendering
are delegated to an external computer. This design choice allows for greater
computational flexibility and simplifies the development of a user-friendly interface.

This section describes the specifications of the computer used during development
and testing, along with the Python libraries employed to implement the software
components.

Computer hardware components and OS

The computer used is the HP Pavilion Gaming Desktop TG01 series, introduced
in 2020, and is designed as a mid-range gaming and multimedia desktop. This
configuration cost around €850 at the release. The main hardware components,
along with OS are specified in Table 3.2.

Python libraries

The Python environment used for this project was based on version Python 3.9.13
and included several scientific and GUI libraries. A full list of packages and
versions is available in the following table (Table 3.3) to permit reproducibility and
compatibility between libraries.
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Table 3.2: Computer specifications.

Component Specification

Model HP Pavilion Gaming Desktop TG01

Processor Intel Core i5-10400F CPU @ 2.90 GHz

GPU NVIDIA GeForce GTX 1660 SUPER (6 GB)

RAM 16 GB DDR4

Storage 1 TB SSD

Operating System
(OS)

Windows 11 Home (22H2)

Display resolution 2560 × 1440 (2K)

Network Interface
Card (NIC)

Realtek Gaming GbE Family Controller
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Table 3.3: Python libraries and versions.

Library Installed Version

cv2 4.10.0.84

numpy 1.26.4

pandas 2.2.2

matplotlib 3.9.0

scikit-learn 1.5.0

scipy 1.13.0

pyqtgraph 0.13.7

PyQt5 5.15.11

pyttsx3 2.98

tkinter built-in (no version needed)

re built-in (no version needed)

os built-in (no version needed)

sys built-in (no version needed)

time built-in (no version needed)

subprocess built-in (no version needed)

socket built-in (no version needed)

threading built-in (no version needed)

queue built-in (no version needed)

glob built-in (no version needed)
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3.1.4 Images acquisition and transmission protocols
In the context of a low-power embedded system, reliable and efficient video trans-
mission plays a crucial role. The implementation described herein enables the
real-time streaming of video frames from a Raspberry camera module to a remote
computer using the Transmission Control Protocol/Internet Protocol (TCP/IP)
only after the connection via User Datagram Protocol (UDP) has been verified.
Notably, both communication protocols need the IP address of the host (PC), this
information is stored in the memory partition dedicated and is read at the beginning
during device startup. After checking the correct functioning of IR LEDs, images
are captured in the YUV format, cropped to ensure computational efficiency, and
sent to the computer for elaboration. The following scheme (Figure 3.4) represents
the overall functioning of the transmission protocols. Details are discussed in the
following subsections.

Figure 3.4: Schematic of transmission protocols.
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UDP-based device discovery and activation handshake

Before initiating the real-time video streaming over TCP/IP, the system must ensure
that the receiving computer is ready to accept and process the video stream. This
role is fulfilled by a lightweight discovery and handshake protocol implemented via
UDP. A secondary script is responsible for this phase, which precedes and triggers
the main streaming logic. Unlike TCP/IP, UDP is a connectionless protocol that
allows fast and efficient sending of small packets without the overhead of connection
setup or guaranteed delivery. In this application, UDP is used for broadcasting the
presence of the device on the network and waiting for an acknowledgment (ACK)
from the host PC. The Raspberry Pi zero continuously sends the message "Raspberry
Presente" to the PC at a predefined IP address and port. This packet acts as a
heartbeat or discovery message, announcing the microcontroller’s availability and
readiness to stream video. The receiving PC, upon being ready, replies with a
confirmation message (ACK) on a different UDP port. Key characteristics of this
approach include:

• Low latency and overhead: Since UDP does not establish a persistent con-
nection, communication is immediate and well-suited for lightweight signaling.

• Periodic retry with timeout: To avoid indefinite blocking in case the PC
is not yet ready or unavailable, a timeout mechanism is implemented. If no
response is received, Raspberry Pi zero try again after a 5-second pause.

• Robust initiation logic: Once the ACK is received, the microcontroller
launches the main camera acquisition script using a subprocess call. This
separation of concerns ensures that the camera is only activated after successful
coordination with the PC.

this modular two-step communication model improves both robustness and resource
management. The camera and LEDs are only activated when strictly necessary,
minimizing power consumption.
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TCP/IP protocol for data transmission

The (TCP/IP) suite is the fundamental communication protocol used across net-
works, ensuring reliable and ordered delivery of data. In this implementation,
Raspberry Pi zero acts as a TCP client, establishing a connection with a preconfig-
ured remote PC server. TCP offers several advantages for video data transmission
in this context:

• Reliability: TCP ensures that all data packets are delivered and reassembled
in order.

• Flow control and congestion handling: TCP adjusts the transmission
rate based on the network conditions, reducing the risk of packet loss and
jitter.

• Ease of implementation: TCP abstracts away lower-level error handling
and retransmission mechanisms, simplifying the development process.

To transmit frames captured from the Raspberry’s camera, a simple application-
layer protocol is implemented over TCP. Each image frame is encoded in JPEG
format and preceded by a 4-byte header, which encodes the frame length in bytes.
This header allows the receiver to know exactly how many bytes constitute the
current frame, avoiding data misalignment and ensuring that frame boundaries are
respected.

LEDs control

Before video transmission begins, the system performs a self-check of the LEDs
illumination, verifying its functionality by comparing the average luminance before
and after turning the LEDs on, in particular the system confirms LEDs functioning
if the average luminance on 10 frames after the lighting is at least 50% greater than
before. If the test confirms LED functionality, the system transmits over TCP a
status message (“LED_OK”) to the PC. Otherwise, an error code (“LED_FAIL”) is
sent, and further action can be taken. This ensures that lighting conditions are
well-controlled during acquisition, but in brightly lit environments the saturation of
the camera sensor could lead to false LEDs malfunctioning warning. This control
is essential, as LEDs illumination plays a critical role in the system’s operation,
and a malfunction could lead to a complete failure. For this reason, LED control is
performed prior to the transmission phase, allowing for immediate feedback in case
of a malfunction and enabling appropriate corrective actions.
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YUV and frames format

The images are captured in YUV format, specifically the YUV420 planar format
supported by the Raspberry’s PiCamera module. This format separates the
luminance (Y) from the chrominance (U and V) components of the image. The
system utilizes only the Y channel, directly extracted from the camera, for the
following reasons:

• Brightness-based processing: Pupil detection relies on brightness contrast.
The luminance channel contains all the brightness information, making it
well-suited for segmentation tasks such as thresholding or contour detection
performed afterwards.

• Performance: Capturing and processing only the Y channel reduces the
computational load significantly. On devices like the Raspberry Pi zero, this
efficiency is crucial to achieving real-time performance.

The YUV format is the preferred choice for this application over simple grayscale
images where 3 RGB channels are combined by software utilizing important com-
putational resources. Moreover, the extracted Y channel does not lose detail
capturing the same level of information as grayscale images. Frames were recorded
at a resolution of 640×480 pixels with a target rate of 30 frames per second (FPS).
However, the actual frame rate is influenced by system performance, particularly
the Wi-Fi transmission bandwidth and the computational load of the acquisition
and encoding process. After acquisition, each frame undergoes a cropping opera-
tion that removes 80 pixels from both the left and right sides, and 50 pixels from
the top and bottom borders. This processing step assumes that the eye remains
approximately centered within the frame. It allows the use of a standard and
supported camera resolution (640×480 pixels) while reducing the amount of data
transmitted, thereby optimizing system performance. Cropping the frames reduces
the data size by R, as explained by Equation 3.2:

R = No − Nc

No

· 100% = ∆B

No

· 100% (3.2)

where R is the data reduction in percentage, computed as the relative reduction
between the original number of pixels No and the cropped one Nc, and ∆B is the
difference in bytes, since the pixels/bytes ratio is 1:1 for single-channel images.
Applying the specific values of this application we obtain the quantities expressed
in the following Equation 3.3:

R = 307,200 − 182,400
307,200 · 100% = 124,800 bytes

307,200 · 100% ≈ 40.6% (3.3)

43



Materials and methods

thus, the reduction translates to a saving of around 122 KB per frame, in other
terms a percentage of saving approximately equal to 40.6%, which consistently
reduces the load on data transmission and image processing. Nevertheless, the
time required to perform the cropping operation on the Raspberry Pi zero must
be considered, as the system’s limited processing capability may impact on the
overall performance. On Raspberry Pi zero, this operation is estimated to require
0.35 milliseconds per frame (tcropping). Assuming a Wi-Fi transmission speed as the
maximum available of 65 Mbps (i.e. 8.125 MB/s), the transmission time saved by
cropping frames calculated as:

∆ttrasmission = ∆B

vt

= 124,800 bytes
8,125,000 bytes/s ≈ 15.4 ms (3.4)

where vt is the Wi-Fi transmission velocity. Considering the cropping operation,
the net time gain per frame becomes:

∆tnet = ∆ttrasmission − tcropping = 15.4 ms − 0.35 ms ≈ 15 ms (3.5)

this analysis demonstrates that the time required to perform the cropping operation
is significantly outweighed by the time saved during data transmission. Moreover,
as evident from Equation 3.4, a lower transmission speed (vt) results in a greater
transmission time difference ∆ttrasmission, while the cropping time (tcropping) remains
constant. Consequently, the relative impact of frame cropping on processing
time further diminishes as the transmission speed decreases, thereby reinforcing
the justification for adopting this approach. These considerations are relevant,
given that vt is influenced by various factors and may substantially decrease
under real-world operating conditions. Comparable reasoning can be extended to
segmentation processing; however, since this is performed on a host computer with
substantially higher computational capacity, the associated cost is negligible and
was not considered in this analysis.

3.1.5 Pupil segmentation algorithm
This section details the pupil segmentation pipeline; a computationally efficient
and robust method developed for identifying and characterizing the pupil within
video frames. The approach integrates several techniques, including spatial match
filtering, region-of-interest (ROI) extraction, histogram analysis, thresholding, edge
detection, and contour filtering. The workflow of this segmentation algorithm is
visually represented in the subsequent scheme (Figure 3.5), and each step will be
thoroughly explored in the following sections.
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Figure 3.5: Segmentation algorithm workflow, where: (a) original, (b) median
filtered, (c) heatmap, (d) ROI extraction, (e) original ROI, (f) thresholded ROI,
(g) contours filtering, (h) ellipse fitting.
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Median filtering

The processing begins with the application of a median filter to the original grayscale
image in order to reduce noise while preserving important structural details, such as
edges. In this implementation, a kernel of size 33×33 is employed. For each pixel, the
intensity values within the corresponding neighborhood are sorted, and the median
is assigned to the central pixel. This non-linear filtering technique is highly effective
in eliminating impulse noise and isolated intensity spikes, commonly referred to
as "salt-and-pepper" noise, without introducing significant blurring. Unlike linear
filters (e.g. Gaussian) that tend to smooth across boundaries and dilute edge
information, the median filter maintains sharp transitions between regions because
it does not average intensity values but instead selects a representative value from
the local neighborhood. In this context, the median filtering step is employed
exclusively as a preprocessing technique to attenuate unwanted reflections that
could interfere with the subsequent stage of ROI detection. Reflections located at
the center or along the boundary of the pupil are particularly problematic, as they
can distort the response of the kernel-based ROI localization method. In contrast,
reflections confined entirely to the iris or sclera tend not to affect the performance
of the algorithm. As illustrated in the following image (Figure 3.6b), after applying
the median filter, the edges of the pupil may appear partially distorted, especially
in the presence of strong central reflections. However, this does not compromise
the final result, since the actual segmentation step is performed on the original ROI
extracted from the unfiltered frame. Another confounding factor in ROI detection
is the presence of eyelashes. These structures may be misinterpreted as part of
the pupil or its boundaries leading to incorrect ROI positioning, also in such cases,
the median filter is effective. As further shown in Figure 3.6c, Gaussian filtering
fails to adequately suppress both reflection artifacts and eyelashes, confirming the
superior suitability of the median filter for this application.

(a) (b) (c)

Figure 3.6: Effect of median filtering (b) and Gaussian filtering (c) on the original
frame (a).

46



Materials and methods

Heatmap calculation and ROI extraction

The filtered image is convolved with a circular kernel specifically designed to
emphasize dark, circular regions resembling the pupil. The kernel is implemented
as a two-dimensional square matrix of size 133×133 pixels, where a circular region
centered within the kernel and with a radius equal to one fourth of the kernel size is
assigned negative weights, while the outer area is assigned positive weights (Figure
3.7.). The entire kernel is then normalized to have zero mean.

Figure 3.7: Representation of the circular kernel used for convolution: black area
(negative weights) and white area (positive weights).

The convolution operation involves sliding the kernel across the median filtered
image with a stride of one pixel both horizontally and vertically. At each position,
the kernel is element-wise multiplied with a corresponding patch of the same size,
and the resulting products are summed to produce a single scalar value. This
value becomes the intensity of the corresponding pixel in the output heatmap.
Mathematically, the convolution at position (i, j) can be expressed as:

H(i, j) =
kØ

u=−k

kØ
v=−k

I(i + u, j + v) · K(u, v) (3.6)

where:

• H(i, j) is the value of the heatmap at position (i, j),

• I is the median filtered image,

• K is the convolution kernel of size n,

• k = (n−1)
2 .
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In this context, the kernel is designed with a negative inner region and a positive
outer region. When this kernel overlaps with a pupil, the dark center of the
pupil aligns with the negative weights, and the surrounding brighter areas align
with the positive weights. This results in a strong response in the heatmap due
to the contrast in intensity and the structure of the kernel. The pixel location
corresponding to the global maximum in the heatmap is then identified, as it most
likely represents the center of the pupil. A square ROI centered at this maximum is
then extracted from the original image, with a side length equal to the kernel size.
This ROI, now centered around the likely pupil position, is passed to subsequent
stages for segmentation. A visual representation of this process can be seen in the
following schematic (Figure 3.8.).

Figure 3.8: Schematic representation of convolution for heatmap generation and
ROI extraction.

Although this approach yields satisfactory results in most cases, it relies on
the implicit assumption that the pupil’s size is known and relatively constant,
which is not always true in real-world conditions, moreover during accommodation
tasks. A more robust strategy would involve performing multiple convolutions
using kernels of varying sizes, enabling the detection of pupils across a broader
range of diameters. However, since the purpose of this step is not the precise
segmentation of the pupil but rather the localization of a candidate ROI, this
additional complexity is unnecessary. A single convolution with a fixed-size kernel
provides a good trade-off between accuracy and computational efficiency. In fact,
the convolution step represents one of the most computationally intensive parts
of the algorithm. For this reason, GPU-based acceleration was also evaluated.
However, the time required to transfer data between CPU and GPU offsets the
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benefits gained from faster convolution operations, resulting in no net performance
improvement.

As an alternative to the convolution-based approach, a faster method was tested
to estimate the pupil center by analyzing pixel intensity distributions. Specifically,
this strategy involves thresholding the grayscale image using a luminance value
derived from the image histogram to identify dark regions. Then, the number of
pixels below the threshold is counted along each row and each column, producing
one-dimensional projection profiles. The row with the highest count corresponds
to the estimated vertical coordinate of the pupil center, while the column with the
highest count indicates the horizontal coordinate. This method is computationally
efficient, as it relies on simple arithmetic operations rather than costly convolutions.
However, since it considers only pixel intensity and not shape, it is more susceptible
to errors under non-uniform lighting conditions or in images with large dark areas
unrelated to the pupil. Therefore, the convolution implementation with a fixed-size
kernel was adopted as the most effective and robust solution.

ROI thresholding and contours filtering

After identifying the ROI around the estimated pupil center, a segmentation step is
performed. This process involves thresholding the ROI to identify dark and bright
areas, and filtering the contours based on this classification. First, a local histogram
of the grayscale ROI is computed (Figure 3.9). Since the pupil appears as the
darkest region, a peak detection algorithm is applied to the inverted histogram to
estimate an appropriate threshold value. The first detected peak is interpreted as
the intensity valley between the pupil and surrounding structures; the threshold
is then set slightly above this value (by 10 gray levels) to better isolate the dark
region. This threshold is used to binarize the ROI: pixels below the threshold are
set to 0 (black), and others to 255 (white). This binarized ROI is used solely to
classify regions of the image based on their darkness levels, enabling the distinction
between contours that are likely to belong to the pupil and those that originate
from other structures such as eyelids or reflections. This step is essential because
using simple binarization alone to extract the pupil would often lead to incorrect
segmentations, especially in cases where a reflection overlaps the center or the
boundary of the pupil as it is viewable in the following figure (Figure 3.10).
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Figure 3.9: Example of an intensity histogram for an eye image, with the selected
threshold indicated by a vertical green line.

(a) (b)

Figure 3.10: Effect of thresholding on the ROI: (a) original region of interest
with a reflection overlapping the pupil; (b) corresponding binarized image after
thresholding.
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To perform the segmentation, the Canny edge detection algorithm is applied to
the original version of the ROI in order to extract prominent edges. The contours
corresponding to these edges are then identified and individually evaluated. Each
contour is assessed based on its spatial overlap with the binary mask obtained
from thresholding. Specifically, a contour is retained as a candidate for the pupil
boundary only if it includes at least a subset of 5 pixels that fall within the dark
regions identified by the thresholded mask. This filtering step effectively discards
contours associated with brighter areas, such as eyelids or reflections, thereby
reducing the likelihood of false positives and improving the robustness of the
segmentation process. Moreover, the contour filtering step proves effective even
in blurred images caused by eye movements. In such cases, the edges of the pupil
become indistinct or completely undetectable, but the Canny operator may still
detect spurious edges. Since these false contours generally do not overlap with the
dark regions identified by thresholding, they are naturally excluded by the filtering
process. This behavior enhances the robustness of the segmentation pipeline under
real-world, non-ideal imaging conditions. Examples of contour filtering under the
discussed conditions are shown in Figure 3.11, where green contours represent
accepted candidates, while red contours indicate those that have been rejected.

(a) (b) (c)

Figure 3.11: Effect of contour filtering: (a) eyelid occlusion; (b) reflection; (c)
blurred pupil due to movement. Green lines represents accepted contours while red
lines denote rejected ones
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Ellipse fitting and eccentricity controls

Among the valid contours, the one with the largest area is selected for further
analysis. This choice is based on the assumption that, under normal imaging
conditions, the pupil appears as the darkest and most prominent circular or
elliptical region within the eye image. Smaller contours are more likely to result
from partial shadows, reflections, or noise, and therefore are less reliable indicators
of the actual pupil boundary. Once the largest contour is identified, an ellipse
is fitted to it using a least-squares approximation method. This step is crucial
because the pupil, although not perfectly circular in every frame, typically exhibits
an approximately elliptical shape due to perspective distortion and anatomical
variability. Fitting an ellipse allows for a robust and geometrically meaningful
representation of the pupil, which can be easily used for subsequent analysis, such
as area calculation. Additionally, this approach smooths out small imperfections in
the detected contour, making the segmentation more stable across frames.

To ensure geometric plausibility, the ellipse is further evaluated based on its
eccentricity. The eccentricity is computed as:

ϵ =
ó

1 − b2

a2 (3.7)

where a and b are the semi-major and semi-minor axes of the ellipse, respectively.
Only ellipses with eccentricity below a predefined threshold, equal to 0.85, are
accepted, as this corresponds to near-circular shapes typical of the pupil. At the
end of the segmentation process, the area of the pupil is estimated by computing
the area of the fitted ellipse using the standard formula:

A = π · a · b (3.8)

in addition to the area, the center of the fitted ellipse is also extracted. This point
represents the estimated centroid of the pupil in the image plane and provides
valuable information for tracking the spatial position of the pupil over time. Mon-
itoring the position of the pupil center across frames is particularly important
during the testing phase of the system. It allows for the detection of excessive eye
movements that may compromise the validity of the measurements. In fact, the
target application of the system is to assist individuals in CLIS, a condition in
which voluntary eye movements are severely limited or absent. Therefore, trials in
which the pupil undergoes substantial displacements are not representative of the
intended use case and can be excluded from the analysis.

At the end of the segmentation process, if a valid ellipse has been detected, it is
transformed back from the coordinate system of the ROI to the coordinate system
of the original full-frame image. This transformation is necessary because the
ellipse fitting is performed on the cropped ROI, and its position must be realigned
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with the original image for visualization purposes. Once reprojected into the full
image, the fitted ellipse is superimposed on the original frame. The contour of
the ellipse is drawn in green, while its center is marked with a red dot. This
graphical overlay serves as immediate visual feedback to assess the correctness
of the segmentation and to intuitively verify whether the detected region aligns
with the pupil. An example of a resulting segmented frame, including the overlaid
ellipse and center marker, is shown in the following image (Figure 3.12). This
visual confirmation is especially useful during the development and testing phases,
as it allows rapid identification of segmentation errors or anomalies. Furthermore,
during the operational phase, it can also assist in the adjustment of the device’s
position. By visualizing the location of the pupil within the frame, the operator can
ensure that the eye remains properly centered in the field of view of the camera.

Figure 3.12: Example of final result of pupil segmentation algorithm.
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3.1.6 PAR events identification module

This module is designed to detect and classify pupillary constriction events in
real time, as part of the communication interface based on PAR. The system
operates in two main phases: a decoder configuration phase and an operational
phase. During the configuration phase, the user is asked to gaze at the screen
to allow the system to compute a stable pupil area, which serves as a reference
(baseline) for identifying future constrictions. After the baseline is established, the
user is prompted to perform two constrictions: the first associated with option 1
(far target related to a moderate constriction), and the second with option 2 (near
target linked to a pronounced constriction). These responses are used to calibrate
two adaptive levels necessary for distinguishing between the two command types.
Once configuration is successfully completed, the system enters the operational
phase, where it continuously monitors pupil size. The algorithm detects and
classifies constriction events in real time, analyzing features such as duration and
amplitude, enabling control of an external application through the execution of
specific commands. A schematic representation of the module’s overall workflow
is provided below (Figure 3.13). The following subsections of this chapter will
describe in detail the implementation of the main components of the module.

Figure 3.13: Flowchart of PAR identification module.
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Decoder configuration phase

The configuration phase is a crucial initial step that ensures the system can reliably
interpret future pupillary constrictions as intentional commands. It consists of
three stages: baseline acquisition, type 1 constriction, and type 2 constriction. The
system begins by recording the pupil area continuously for 30 seconds while the user
maintains a steady gaze at the computer screen that is associated with no command.
This period is used to compute a baseline signal, obtained by calculating the average
of the pupil area over time. The baseline serves as a dynamic reference, allowing
the system to account for the user’s physiological variability and environmental
conditions. To ensure the stability of the baseline during configuration phase, the
system evaluates the coefficient of variation, defined as:

CV = σ

µ
(3.9)

where σ is the standard deviation and µ is the mean of the pupil area signal during
the baseline window. If the computed CV exceeds a predefined threshold equal to
30%, the configuration is considered unsuccessful, and the baseline acquisition is
repeated. Throughout this process, the user receives audio feedback via a text-to-
speech synthesizer, which announces the start and end of the configuration, as well
as whether it was successful or needs to be repeated. Following a successful baseline
acquisition, the system proceeds with the collection of two reference pupillary
constriction events, corresponding to type 1 and 2. The user is first instructed, via
an audio command, to focus on target 1 (far target) and then on target 2 (near
target). Focusing on target 1 induces a moderate pupillary constriction due to the
PAR, as the eye shifts focus from the screen to a nearer point. The user is asked to
maintain focus on target 1 until a subsequent audio cue instructs them to return
gaze to target 0 (i.e., the screen, located beyond target 1). This change in focus
induces a pupillary dilation, causing the pupil area to return approximately to the
previously acquired baseline. The same procedure is then repeated for target 2,
which is placed even closer to the user than target 1. Focusing on target 2 induces
a stronger PAR, resulting in a more pronounced pupillary constriction. As before,
the user maintains gaze on the target until prompted to refocus on the screen.
After both constriction events have been acquired, the system proceeds to extract
the constriction levels associated with each target. These levels are estimated as
the mean pupil area over a small window (1 second) centered around the time in
which the audio cue for target 0 is issued. At this point, the pupillary constriction
is assumed to have been completed, and the pupil is about to begin re-dilating.
This ensures that the computed level corresponds approximately to the minimum
pupil area reached during the constriction task, provided that no significant user
errors occurred. Mathematically, let ni denote the sample index corresponding
to the audio cue to look back at the screen, following fixation on target i, with
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i ∈ 1; 2. The level Ai for Target i is computed as the average over a symmetrical
window of size 2k + 1 samples centered at ni:

Ai = 1
2k + 1

kØ
j=−k

P [ni + j] (3.10)

where P [n] is the pupil area signal at sample n, and k is the half-window size in
samples. Once both levels A1 and A2 are computed, the system checks whether they
are sufficiently separated to allow reliable classification. This is done by verifying
the following condition:

|A2 − A1| > α · σbaseline (3.11)
where σbaseline is the standard deviation of the baseline pupil area signal, and
α is a parameter that determines the minimum acceptable separation between
levels (equal to 0.5). If the condition is satisfied, the configuration is considered
successful and the system switches to the operational phase. Otherwise, the entire
configuration process, including baseline acquisition, is repeated. An example of
pupil area signal during configuration phase is provided in the following figure
(Figure 3.14).

Figure 3.14: Final segment of the configuration phase. The horizontal lines
represent the baseline (blue) and the levels target 1 (red), target (green). The
shaded areas indicate the baseline acquisition zone (blue), and the level calculation
zones.
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Operational Phase

Once the configuration is successfully completed, levels A1, A2, and the baseline have
been defined, the system enters the operational phase, during which it continuously
monitors the pupillary signal in real time to detect pupillary constrictions and
associate them with specific commands. Firstly, a constriction threshold is computed
as:

Thc = baseline − 0.5 · (baseline − A1) (3.12)
this value defines the minimum drop in pupil area required to consider a constriction
event and is defined as the middle area value between the baseline and the first
level A1.

All levels, the baseline, and consequently the threshold, are constantly updated
to follow the trend of the pupil signal, by vertically shifting their values according to
the average of the last 2.5 seconds, computed exclusively on those samples that lie
above the constriction threshold. This strategy ensures that the system adapts to
slow drifts or non-stationary behavior of the signal, while maintaining stability by
updating only during non-constriction phases. Moreover, with a similar mechanism,
levels and baseline values are updated when the pupil area falls below the second
level (A2) for at least 0.5 seconds. This mechanism ensures that more pronounced
constrictions, resulting in smaller pupil areas than those estimated during the
decoder configuration phase, do not interfere with the system’s logic, preventing
situations where the area fails to rise back above the constriction threshold and
potentially halts the overall functioning of the process.

The system continuously checks whether the most recent pupil area samples fall
below the constriction threshold. Once a drop is detected the system computes
the first positive zero-crossing in the derivative of the pupil area (i.e., where the
derivative changes from negative to positive), marking the point at which the pupil
begins to re-dilate or remains approximately constant, this is considered the end
of the pupillary constriction and is used to estimate the amplitude of the PAR
event. To do so, the system selects a small window of 0.5 seconds starting from the
identified end of the constriction and computes the average pupil area within this
window. This value is then compared to the pupil area at the end point itself, and
the lower of the two is taken as the minimum value reached during the constriction
as shown in the following equation:

Pmin = min(P [end], µwindow) (3.13)

where P [end] is the area value corresponding to the end of constriction, and µwindow

is the mean area value across the window. This dual approach is necessary due
to the typical morphology of the PAR, which is characterized by a rapid and
pronounced decrease in pupil area, followed by a stabilization phase where the
signal oscillates around a minimum level. Simply taking the value at the point
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of derivative inversion does not always guarantee that the true minimum has
been reached, as the pupil area may continue to decrease slightly after that point.
Conversely, relying solely on the average value computed in the window may also be
misleading, especially in cases where the constriction includes brief, sharp minima
followed by high-amplitude oscillations. In such scenarios, the mean tends to
overestimate the true minimum. By considering both the instantaneous value
and the short-term average, and conservatively selecting the lower of the two, the
system achieves a more robust and accurate estimation of the minimum pupil area
reached during constrictions. This, in turn, improves the reliability of the event
classification process. The estimated minimum Pmin is then compared with the
dynamic amplitude levels A1 and A2. The classification rules are:

A1 ≤ Pmin < Thc =⇒ E = 1

Pmin < A1 =⇒ E =

1, if |Pmin − A1| < |Pmin − A2|
2, otherwise

where E denote the classification type of the event. Once an event is classified, it
is stored along with its time, and type. The following figure (Figure 3.15) shows
an example of a pupil area signal with the zones relating to the classification of
constrictions highlighted in different colors. The area highlighted in blue represents
the dilation zone, where no constriction is detected, but the values of baseline and
thresholds are dynamically updated. The red and green areas correspond respec-
tively to the regions where events of type 1 and type 2 are detected, respectively.
Additionally, vertical lines represent the time when constrictions are detected by
the algorithm.
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Figure 3.15: Segment of the signal during the operational phase. Vertical lines
indicate detected events: type 1 (red) and type 2 (green). The horizontal bands
mark the regions where constrictions are classified (red and green), and the dilation
zone (blue).

In addition, the events are appended to a pending event queue, used to track
whether the user returns to look at the screen after each constriction. This pending
event queue is essential for determining the duration of a complete constriction
event, which is defined as the time interval from the start of the constriction
util the moment when the pupil area returns and remains consistently above the
constriction threshold for at least 1 second. This condition ensures robustness
against transient fluctuations or noise, confirming a true return to the baseline
dilation state. This definition captures both the sustained phase of the constriction
(the time during which the pupil remains constricted) and the recovery phase
(the time it takes to return to baseline). Since type 2 constrictions are associated
with a stronger PAR, resulting in a more pronounced decrease in area value, the
return to the constriction threshold tends to be slower. This leads to a systematic
overestimation of the type 2 event duration. To compensate for this effect, a
correction factor of 0.25 seconds is subtracted from the measured duration, only for
type 2 constrictions. The measured duration is then stored and associated with the
corresponding event type E, allowing the system to differentiate between short and
long constrictions for each of the two types. This temporal encoding significantly
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expands the communication bandwidth, enabling more expressive control. It is
important to note that, since the system waits for the pupil area to return above the
constriction threshold before measuring the event duration, the actual duration of
the event is registered with a delay compared to the classification of its type, which
occurs shortly after the derivative inversion. This temporal separation ensures
that the system remains responsive, immediately classifying the event type as soon
as a constriction is detected. As a result, short constrictions trigger commands
almost instantaneously. In contrast, longer constrictions are recognized at a later
stage, once the pupillary area recovery has been observed. In these cases, any
previously triggered action related to the short command is cancelled and replaced
with the long command associated with the same constriction type. This design
does not affect usability, since executing a prolonged constriction requires the user
to look at one of the targets, momentarily shifting their gaze away from the main
screen, where visual feedback and GUI actions occur. Consequently, the early short
command is typically not even perceived by the user, who is focused on maintaining
the gesture to elicit the intended long command. The cancellation thus happens
transparently, without introducing perceptible inconsistencies in user interaction.

3.2 GUI and applications
This section presents the graphical user interfaces developed for the configuration
and operation of the device, along with the implemented applications. The interface
plays a key role in the interaction between the user (or caregiver) and the system,
offering a seamless way to configure Wi-Fi connectivity and manage the various
operational phases. In addition to describing the visual layout and functional
components of each interface, this section also details the set of commands used
to control the GUI and govern the behavior of the applications, ensuring intuitive
and efficient user interaction.

3.2.1 USB vs WIFI connection
The device can be connected to a PC via two modes: USB or Wi-Fi. The USB
connection is intended solely for network configuration and enables subsequent
wireless connectivity. In contrast, the Wi-Fi mode, accessible only after successful
configuration, is used for the device’s primary assistive interface. Both modalities
are described in the following subsections.
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USB mode

When the device is connected to a computer via USB, it is automatically recognized
as a USB mass storage device. Upon detection, the host computer opens a graphical
interface for network configuration (Figure 3.16).

Figure 3.16: GUI for network configuration.

This GUI allows the caregiver to input the necessary Wi-Fi credentials required
for the device to connect to the local network. The interface includes the following
features:

• Credential entry: the user can manually insert the SSID and password of
the desired Wi-Fi network.

• Auto-detection of current network: as a convenience, the program can
automatically retrieve the SSID of the Wi-Fi network currently in use by the
host computer, thereby reducing the configuration time and the risk of input
errors.

• IP address retrieval: in addition to network credentials, the program
automatically detects the IP address of the host computer. This information
is crucial to enable communication between the device and the PC once the
device connects to the network

• Password visibility toggle: for security, the GUI allows the user to choose
whether to display the password in plain text or hide it for privacy.
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Once the credentials are entered and the user clicks the "Salva credenziali" button,
the information (SSID, password, and IP address) are stored in a plain-text
configuration file located in a dedicated partition of the device’s microSD card.
This partition is accessible both via the USB interface and by physically removing
the microSD card and reading it from any standard card reader. This design
ensures maximum compatibility and flexibility, allowing configuration even in the
absence of the GUI application. It is important to note that the configuration
interface is operated entirely via mouse and keyboard inputs. This design reflects
the assumption that configuration is typically carried out by a caregiver or operator,
as opposed to the operational phase, which relies on the patient’s control through
the PAR mechanism.

On Windows and Linux platforms, all functions are fully supported. On macOS,
however, due to system limitations and lack of certain API access, automatic
network detection and IP acquisition are currently not implemented. Nevertheless,
users can still manually modify the configuration file by accessing the memory
partition, as described earlier.

The Wi-Fi configuration procedure must be performed once during the initial
setup or whenever the device needs to connect to a different wireless network. It
can also serve as a troubleshooting mechanism in case the router’s DNS dynamically
changes the device’s IP address. However, given that the target environment is
typically a domestic setting, where the router and IP configuration are relatively
stable, such changes are expected to be infrequent. Nonetheless, the flexibility of
the system allows users to reconfigure the device with minimal effort. Once the
configuration file has been successfully written, the device stores the credentials for
future use. On the next boot, the system automatically initiates the connection
protocol described in Section 3.1.4. this is implemented using the wpa_supplicant
service on the Raspberry Pi, ensuring connection to the specified network. Upon
successful connection, the system starts the operational phase, detailed in the
following chapter, during which the user interacts with the main interface through
pupil-based commands.

Wi-Fi mode

Once the device successfully establishes a connection, a user interface is displayed
showing the live video stream acquired by the camera. The real-time pupil seg-
mentation is overlaid on the video feed, allowing the operator to verify the correct
positioning of the camera and ensure that the eye is properly framed. The same
interface also includes an animation that visually indicates the operational status
of the IR LEDs. When functioning correctly, an icon is briefly displayed to confirm
proper operation, then disappears automatically after a short time. If a malfunction
is detected, a warning icon is shown and remains visible until the issue is resolved.
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The indicator will automatically disappear following a system reboot, during which
a new functional check is performed. Alternatively, the caregiver can manually
disable the warning via a mouse input once the issue has been addressed. In the
top-left corner of the interface, a four-level indicator displays the quality of the
wireless connection reflecting the number of frames received by the computer within
a given time window. As such, it serves as a general performance index, providing
insight into the overall speed of image acquisition and transmission. If the frame
rate drops below a predefined threshold (8 frames per second), a warning message
is shown. It also presents a toggle switch placed on the upper right side of the
window allowing the caregiver to manually check the video stream. At the bottom
of the interface, a real-time graph displays the segmented pupil area signal. The
x-axis represents the sample index, while the y-axis indicates the segmented pupil
area in pixels. An image of this interface is represented in the figure below (Figure
3.17):

Figure 3.17: GUI during initial configuration.
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During this stage, the system prompts the user via audio commands to perform
a configuration procedure, as described in Section 3.1.6. Once configuration
is completed, the system displays the main menu screen automatically (Figure
3.18). This menu is graphically represented as a circular wheel, with each segment
corresponding to a selectable option. The GUI offers access to various applications,
including a virtual keyboard for communication ("SPEAKER"), and an exit button.
The interface is entirely controlled through the voluntary modulation of the PAR.
Specifically, type 1 command is used to scroll through the options (highlighted with
a darker color), while type 2 command is used to select the highlighted item. In this
primary interface, only signal levels, which are more reliable than duration-based
interpretations, are utilized, as only two distinct commands are required. This
structure forms the basis for the interaction system described in the following
subsection, which details the available application.

Figure 3.18: Main menu GUI.
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3.2.2 Possible applications: “SPEAKER”
In the context of this work, only one application was developed: a communication
aid named “SPEAKER”, which appears as a selectable segment on the menu wheel.
The user interface of the SPEAKER application is shown in Figure 3.19.

Figure 3.19: SPEAKER application GUI: vertical lines represents detected events
(cyan for type 1 events and magenta for type 2).

The on-screen keyboard is designed to include the most frequently used letters
in the Italian language, arranged in a layout that optimizes the speed of text
entry. The selection mechanism follows a scanning-based approach: columns are
automatically highlighted in sequence with a fixed interval of 1 second, while a
short type 2 input is used to move to row selection. The desired letter can then be
selected using a short type 1 input. A long type 1 input functions as backspace,
deleting the most recently entered character, while a long type 2 command is used
to confirm a suggested word or correction offered by the system. This command
mapping was informed by the experimental results on PAR detection accuracy
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discussed later in the Results section. More frequent actions were assigned to the
PAR events that the algorithm recognized with higher reliability, while less frequent
or secondary tasks were deliberately associated with inputs that showed lower
detection accuracy. Once the typed word is confirmed, the system vocalizes it using
a text-to-speech synthesizer through an audio output. To provide word suggestions
and spelling corrections in real time, the application integrates an Italian dictionary
and employs the difflib.get_close_matches() function from Python’s standard
library. This function compares the string being typed with words in the dictionary
and returns the closest match based on a similarity score. Specifically, the parameter
cutoff=0.75 ensures that only candidates with a similarity ratio of at least 75%
are considered. If no sufficiently close match is found, the function returns an empty
string, meaning no suggestion is shown. At the bottom of the keyboard interface,
an exit button is available. When selected, it closes the SPEAKER application
and returns the user to the main menu. While only the communication application
was developed in this work, the same interaction model can be extended to a wide
variety of use cases. The system architecture supports up to four distinct commands,
and by combining these with scanning mechanisms, such as the automatic highlight
cycling demonstrated in the SPEAKER interface, it becomes possible to implement
a broad range of accessible applications.

3.3 Experimental verification

In order to validate the functionality and reliability of the proposed device, a series
of experimental tests were conducted. This section presents the methodologies
adopted to assess the system’s performance across multiple parameters, both at the
hardware and software levels. Specifically, the evaluation focused on battery life and
processing performances. Importantly, the effectiveness of the pupil segmentation
algorithm and the system’s ability to detect PAR events were examined. The
following subsections describe the testing procedures, tools, and criteria used to
verify each of these aspects, while the outcome of these verification are presented
in the Results chapter.

3.3.1 Evaluation of device performances

These tests aimed to characterize the system in terms of energy efficiency and
computational performance. All measurements were conducted using the final
hardware configuration.
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Power profile assessment

The power profile of the system was measured using a USB digital multimeter,
which provides real-time readings of voltage, current, accumulated charge, and
elapsed operating time. The multimeter was placed between the output of the
TP4056 battery management module and the Raspberry Pi zero, thus enabling
direct monitoring of the current drawn by the device during operation. Two
operational states were considered:

• Active mode: the system is fully functional, performing continuous image
acquisition, cropping operation, and Wi-Fi transmission.

• Standby mode: the system is powered on and idle, sending UDP packages
and waiting for a PC response to initiate the connection.

For both operating conditions, a complete discharge cycle was monitored to estimate
the average current consumption and to evaluate the battery life per full charge.
Additionally, a complete charging cycle was performed to evaluate the charging
behavior and to estimate the time required for a full recharge. The charging
process follows a typical constant-current/constant-voltage (CC/CV) profile: during
the initial phase, the battery charges at a nearly constant current, and as the
battery approaches full capacity, the charging current gradually decreases while
the voltage remains constant. This behavior results in a significant increase
in the time required to complete the final portion of the charge, with only a
marginal gain in stored energy. To balance charging time and usable capacity,
a trade-off point was identified from the battery’s charging curve, allowing early
termination of charging while still retaining most of the total capacity. Since the
digital multimeter used in the experiments does not provide any digital output,
displaying measurements exclusively on a seven-segment screen, an alternative
method was adopted to reconstruct the charging profile. A smartphone was securely
positioned to continuously record the multimeter display during the charging process.
Subsequently, a custom algorithm was employed to extract numerical values from
the recorded video by recognizing digits on the seven-segment display. These
values were then associated with their corresponding timestamps to reconstruct the
charging current over time. The trade-off point was identified as the earliest time
at which the derivative of the charging efficiency curve consistently falls below a
fixed negative threshold (−0.005 mAh/min2), indicating the onset of a significant
decrease in charge efficiency.
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Computational load analysis and FPS measurement

The performance of the system was assessed in terms of computational load and
frame rate, with the goal of identifying potential bottlenecks and evaluating the
performances in real-time operation. The computational load analysis was divided
into two main components: the tasks executed on the Raspberry Pi zero and the
segmentation pipeline running on the host PC. Both analyses processed the same
5 recordings, each lasting 1 minute, using a similar profiling methodology based
on internal timestamp logging. On the Raspberry Pi zero, the average processing
time (and standard deviation) was measured for each of the following operations:
image acquisition from the camera, cropping, JPEG compression of the cropped
image, and transmission via TCP socket. On the host PC, each received frame was
processed through a multi-step pupil segmentation pipeline (detailed in Section
3.1.5). The execution time of each stage was logged to compute the average duration
and standard deviation across the 5 recordings, allowing identification of the most
time-consuming steps.

To assess the real-time performance of the system, an analysis was conducted
to evaluate the effective FPS during normal operation. Specifically, the frame
rate was calculated as the inverse of the time interval between the arrival of two
consecutive frames on the host PC. This measurement inherently includes the
entire processing chain, comprising pupil segmentation, PAR detection, potential
command handling, and graphical updates. Given the variability of these operations,
along with potential fluctuations in Wi-Fi transmission speed, the resulting frame
rate was not constant but followed a distribution. To characterize this behavior,
the mean and standard deviation of the frame rate were computed over a dataset
of 20,000 frames. This analysis provides an estimate of the actual responsiveness
of the system under typical usage conditions.

3.3.2 Evaluation of pupil segmentation performance
To evaluate the segmentation performance of the proposed algorithm, it was first
attempted to use a publicly available dataset of eye images. However, preliminary
tests showed that the algorithm performed poorly on this dataset, likely due
to substantial differences in image resolution, camera perspective, and lighting
conditions compared to the images acquired by the device developed in this work.
On the other hand, the segmentation algorithm yielded satisfactory results when
applied to frames directly acquired by the device itself.

Given the unsuitability of existing annotated datasets, a custom dataset was
constructed. Twenty subjects were recorded in different conditions using the
developed system, and a subset of frames was manually annotated by marking
the visible pupil region. To expand the evaluation beyond the manually labeled
subset, the Segment Anything Model v2 (SAM2), a recent artificial intelligence
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model for general-purpose image segmentation, was employed. This model was used
to semi-automatically segment the pupil across all recorded frames, providing a
broader ground truth for comparison. The segmentation quality was assessed using
two standard metrics: the Dice coefficient (Dice) and the Intersection over Union
(IoU), both widely used to quantify similarity between predicted and reference
masks. Additionally, the number of missed frames, defined as frames where the
tested algorithm failed to segment the pupil while SAM2 successfully did, was
computed.

Testing Procedure

The experimental setup was specifically designed to evaluate segmentation perfor-
mance under three different conditions:

• Static gaze.

• Pupillary constriction.

• Eye movements.

In the first phase (static gaze), the subject was instructed to fixate on a point
displayed on the monitor. This point had been previously aligned with a physical
target positioned halfway between the subject and the screen. The alignment
was performed by asking the subject to close the right eye (not recorded) and
to adjust their head position as the near target and the point on the screen
appeared superimposed. This alignment procedure was adopted to minimize the
vergence reflex of the measured eye, ensuring greater stability of the pupil position
during constriction task. During the second phase (pupillary constriction), the
subject received audio instructions to shift their focus from the screen to the
near target level and back, to simulate the PAR and evaluate pupil segmentation
performances under these conditions. In the third phase (eye movements), the
subject was asked to move their eyes by fixating on the four corners of the screen
in succession. Although this phase is not relevant for the final application, given
that patients in CLIS cannot perform voluntary eye movements, it was included
to evaluate the limitations of the segmentation algorithm when the pupil appears
off-center or blurred due to movements. Additionally, off-axis pupil results in
more elliptical shapes, which typically degrade the performance of segmentation
algorithms optimized for near-circular, centered pupils.
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Primary manual ground truth

To establish a reliable ground truth for the evaluation of the segmentation algorithm,
a subset of frames was manually annotated. Specifically, 15 frames per subject
were randomly selected, extracting 5 frames from each of the three phases. Each
selected frame was magnified by a factor of 5 to improve annotation accuracy.
The pupil contour was then manually traced using a graphics tablet and stylus
minimizing noise using a Gaussian smoothing filter. This subset of annotated
frames constitutes the primary ground truth dataset used to evaluate segmentation
performance with high precision. The overall workflow used for primary ground
truth creation is viewable in the following figure (Figure 3.20).

Figure 3.20: Primary ground truth creation workflow.
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Secondary deep learning-based ground truth

To enable a broader and more comprehensive evaluation across the entire set
of frames, an extended ground truth dataset was generated using SAM2, a deep
learning model that has been previously adopted in literature for pupil segmentation
[69]. The SAM2 model produces more accurate results when initialized with a
point located inside the target object. To automate this process, the center of
the ROI identified by the proposed algorithm was used as the input point for
initialization. Prior to this, the reliability of the ROI localization was validated by
checking whether the centroids of the manually annotated pupil areas consistently
fell within the corresponding automatically detected ROIs. As this condition was
always satisfied, the center of the ROI was considered a robust initialization point.
Nevertheless, if the custom segmentation algorithm developed for this device failed
to detect any pupil structure, it typically indicates a challenging frame, such as
one where the eye is closed, the pupil obstructed, or the image is blurred. In such
cases, manual intervention is requested: the user is prompted to either specify
a new initialization point or confirm that the pupil is not visible, in which case
an empty mask is assigned. For the construction of the dataset, empty masks
were only assigned to frames in which the eye was fully closed. In all other
scenarios segmentation was still attempted using the SAM2 model initialized from
user-defined point. Subsequent quality checks were applied to discard incorrect
segmentations. Manual point selection was also used when the segmented area
showed an abrupt variation exceeding 50% between consecutive frames. This
approach mitigates errors caused by reflections: for instance, the ROI center may
fall on a light reflection caused by the IR LEDs, leading to the segmentation of a
small circular shape that closely resembles the pupil in geometry but not in area
(Figure 3.21).

(a) (b)

Figure 3.21: Example of incorrect segmentation by SAM2: (a) original frame
with the ROI (red) and its center (green); (b) resulting segmentation mask.
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It is crucial to detect such errors during the model inference stage, as subsequent
post-processing operations, based on morphological and geometric criteria, are
not capable of reliably identifying this specific type of artifact. Failing to address
these cases at this stage would result in the loss of valid segmentation masks; by
intervening during inference, it is possible to reposition the initialization point and
obtain an accurate segmentation. The workflow for creating the raw secondary
ground truth dataset is represented in the figure below (Figure 3.22).

Figure 3.22: Secondary ground truth (SAM2) creation workflow.
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Once segmentation is completed, all masks undergo post-processing using a
morphological opening operation with a circular kernel of 75-pixel diameter to
remove small artifacts and refine the contours. Subsequently, a semi-automated
quality control step is applied based on geometric features of the segmented shapes.
Specifically, Circularity and Solidity are computed for each mask to assess its
plausibility. Circularity measures how closely the shape of an object resembles a
perfect circle, and is defined as:

Circularity = 4π · Area

Perimeter2 (3.14)

Values closer to 1 indicate a more circular shape, while lower values suggest
elongation or irregular contours.

Solidity = Area

Convexarea
(3.15)

A Solidity close to 1 indicates that the shape is mostly convex with few concavities.
Applying both metrics in combination is necessary because they capture com-
plementary aspects of shape quality. While Circularity is sensitive to perimeter
irregularities and elongated shapes, Solidity effectively detects internal concavities
and disconnected regions. Using only one metric could lead to false positives
or negatives; for example, a fragmented but roughly circular shape might pass
a Circularity check but fail the Solidity criterion. These metrics are evaluated
across all masks for each subject, and those with values lying beyond two standard
deviations from the mean are flagged as outliers (examples are viewable in Figure
3.23.). These are then visually presented, superimposed with the original frame, to
manually decide whether to accept or reject them. If rejected, the corresponding
mask is replaced with an empty one, indicating that SAM2 pupil detection process
was not successful.

(a) (b)

Figure 3.23: Examples of outliers discarded from dataset: (a) Circularity outlier;
(b) Solidity outlier.
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Segmentation accuracy metrics

To quantitatively assess the performance of the proposed pupil segmentation
algorithm, three main metrics were employed: the Dice Similarity Coefficient, the
Intersection over Union, and the percentage of missed frames. These metrics were
computed by comparing the binary masks generated by the algorithm with the
corresponding ground truth masks of both datasets (primary and secondary) for
each phase of the test (static, constriction and movement). The Dice coefficient
(Dice) measures the overlap between the predicted segmentation mask S and the
ground truth mask GT , and is defined as:

Dice(S, GT ) = 2|S ∩ GT |
|S| + |GT |

(3.16)

This metric ranges from 0 (no overlap) to 1 (perfect overlap). It is particularly
useful in medical image analysis where class imbalance is common, as it places
more emphasis on correctly identifying the relevant region. The Intersection over
Union (IoU), also known as the Jaccard index, is another widely used metric for
segmentation tasks and is defined as:

IoU(S, GT ) = |S ∩ GT |
|S ∪ GT

(3.17)

Like the Dice coefficient, the IoU ranges from 0 to 1. While both metrics reflect
the degree of overlap between the predicted and ground truth masks, IoU tends to
penalize over- and under-segmentation more heavily, making it a stricter measure.
Although accuracy is commonly used in classification tasks, it is not suitable for
evaluating segmentation performance in this context. This is due to the extreme
class imbalance inherent in pupil segmentation: the background occupies the vast
majority of the image, while the segmented pixels make up only a small fraction.

In addition to Dice and IoU , the percentage of missed frames was used to
evaluate the robustness of the algorithm across the different experimental conditions.
A frame was considered "lost" if the segmentation algorithm did not output any
ellipse, meaning no pupil contour was detected or the detected ones are discarded
due to controls. This metric was computed as follows:

Lostframes(%) = Nlost

Ntotal

· 100 (3.18)

where Nlost is the number of frames without a valid segmentation output, and Ntotal

is the total number of frames in the corresponding test phase (excluding frames
with empty ground truth mask). This additional metric helps capture failure cases,
providing a more complete assessment of the algorithm’s reliability in real-world
usage.
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3.3.3 Evaluation of PAR event detection performance
To validate the reliability of the developed system in detecting PAR events under
realistic conditions, a dedicated experimental protocol was designed. The goal was
to simulate typical operational scenarios while maintaining experimental control,
allowing direct comparison between algorithm-detected events and ground truth.

Experimental setup

The experimental evaluation involved 15 healthy adult volunteers and lasted 3
minutes. A custom-built support system was employed to ensure stable positioning
of the subject. The structure included a chin rest to keep the head still and at a
fixed distance from both the screen and the physical visual targets. This setup
allowed for consistent eye positioning and minimized involuntary head movements.
The targets, positioned at different distances, are two transparent panels each
presenting a visible point. The setup was designed to be adjustable, to ensure
that the targets fell at appropriate distances to elicit measurable and distinct PAR
events. The entire structure was secured to a table using a mechanical clamp,
with a computer screen positioned behind the most distant target. A schematic
representation of the structure is depicted in Figure 3.24.

Figure 3.24: Experimental setup with targets where T0 is the screen, T1 the far
target and T2 the near target.
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Prior to the recording, the subject was asked to close the right eye (which was
not being monitored) and align both targets so that they appeared colinear with
a highlighted fixation point displayed on the screen. This alignment procedure
ensured that only the right eye performed the vergence movement, leaving the left
eye (which was recorded) virtually motionless, effectively replicating the ocular
immobility expected in CLIS patients. To verify this condition, the stability of
the left eye was quantitatively assessed by tracking the center coordinates of the
ellipse fitted during pupil segmentation. Minimal variation in these coordinates
over time confirmed the absence of significant eye movement. Specifically, during
the baseline acquisition phase, in which the eye was maintained in a steady position,
the centroid of the pupil center was calculated, along with the standard deviations
on the horizontal and vertical direction. Based on these values, a tolerance ellipse
was constructed using a threshold of ±3 standard deviations from the mean. In the
subsequent operational phase, the pupil center displacement was monitored, and
the number of frames in which the pupil center fell outside the tolerance ellipse was
recorded. If this number exceeded 10% of the total frames in the operational phase,
the measurement was considered invalid and discarded. A visual representation of
this process is represented in the figures below (Figure 3.25).

(a) (b)

Figure 3.25: Example of pupil movement assessment. The blue line represents
the tolerance ellipse; green dots indicate valid pupil positions, while red dots denote
invalid ones. (a) Distribution of invalid pupil positions; (b) distribution of valid
pupil positions.
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Subsequently, the subject proceeded through the standard configuration phase,
followed by the operational test phase. An audio guidance system was integrated
to provide vocal instructions, specifying:

• The target type: (0 = screen, 1 = far target, 2 = near target).

• The duration: "long" or "short".

The participants were instructed to maintain sustained accommodation when
prompted with a long-duration stimulus for at least 5 seconds. Target commands
were delivered in a structured sequence, alternating between a stimulus (target 1 or
2) and the baseline (target 0), in order to ensure return to resting pupil diameter
before issuing the next command. This mimicked the dynamics of actual system
use and allowed multiple independent PAR events to be captured. The sequence of
target types and durations was pseudo-randomized, with probabilities progressively
adjusted based on prior data to ensure a balanced dataset across all classes. During
the test, the system logged all automatically detected constriction events, including:
the predicted event type (1 or 2), the predicted duration (short or long) and the
timestamp of detection. These logged events were subsequently compared to the
ground truth audio commands, which were generated by the PC and timestamped
during the experiment. In the figure below (Figure 3.26) is viewable a portion of
one of the signals recorded with the timestamp of both ground truth and detected
events along with the calculated duration.

Figure 3.26: Portion of a signal: ground truth sound timestamps labeled as T0,
T1, and T2; detected event times indicated by vertical lines, type 1 (red) and type
2 (green); and the event durations highlighted by shaded areas.
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Performance metrics

To quantitatively evaluate the effectiveness of the proposed system in detecting
PAR events, a set of standard performance metrics was computed. These metrics
compare the algorithm’s output against a predefined ground truth, derived from
the sequence of audio commands that indicate both the timing and type of stimulus
presented to the participant. An event detected by the system was classified as a
True Positive (TP) if it matched the correct stimulus class and occurred within a
predefined temporal window starting from the corresponding ground truth event
and ending to the next call to 0 target (screen). Conversely, detections that occurred
outside the valid time window, belonged to the incorrect class, or occurred in the
absence of any stimulus were labeled as False Positives (FP). Ground truth events
that were not detected by the system were counted as False Negatives (FN). In this
context, the absence of a stimulus does not require explicit detection; hence, True
Negatives (TN) are not well-defined. For this reason, binary accuracy (event vs not
event) was excluded from calculations and supplemented with more informative
metrics, including Precision, Recall, and F1 − score. In particular, Precision
quantifies the proportion of correctly detected events among all events reported by
the system:

Precision = TP

TP + FP
(3.19)

A high Precision score indicates a low rate of false detections, which is particularly
important in assistive communication contexts where erroneous detections could
lead to unintended commands.

Recall measures the proportion of actual events that were correctly identified:

Recall = TP

TP + FN
(3.20)

High recall ensures that most real PAR events are successfully captured, which is
critical for maintaining system responsiveness.

F1−score, the harmonic mean of precision and recall, offers a balanced indicator
of detection performance:

F1 − score = 2 · Precision · Recall

Precision + Recall
(3.21)

the score ranges from 0 to 1, with higher values reflecting better overall performance.
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To provide a comprehensive assessment of classification performance, three
distinct confusion matrices were constructed:

1. Type classification matrix: evaluates the system’s ability to distinguish
between stimulus types (i.e. far vs. near targets).

2. Duration classification matrix: assesses the classification between short
and long stimulus durations.

3. Joint type-duration classification matrix: a four-class matrix that jointly
considers both stimulus type and duration.

These matrices allowed for the quantification of the system’s performance in
classifying PAR, using accuracy as the evaluation metric.

In addition to classification performance, the events detection latency was
also analyzed. Latency analysis is particularly important since interfaces like the
communicator described in the possible applications section relies on timing, so the
responsiveness of the system must be adequate. During the recordings the system
saves the detection timestamp for each event. This timestamp was compared to the
corresponding stimulus onset time, as defined by the audio command, to compute
the raw latency for each detected event:

LRAW,i,j = tdetected,i,j − tstimulus,i,j (3.22)

where i and j are respectively subjects and events. However, this raw latency
measurement inherently includes delays introduced by the text-to-speech synthesizer,
as well as the lag associated with the Bluetooth audio output device. Additionally,
it accounts for the time required to "pronounce" the spoken word. The pronounced
words correspond to one of four possible combinations, defined by the event type
(1 or 2) and duration (short or long), each potentially affecting the total latency
due to differences in word length and synthesis time. To isolate and remove this
contribution from the initially computed raw latency, an experimental procedure
was performed. A wired microphone was used to precisely detect the actual moment
when the spoken stimulus ended, thus the instant when the subject receipts the
cue. This allowed the estimation of the latency associated with each of the four
combinations (Lspeech,cj

), which was then subtracted from the corresponding raw
latency values. The result is a refined latency (Lrefined,i,j) that reflects both the
subject’s reaction time and the intrinsic delay of the detection system for each
detected event:

Lrefined,i,j = LRAW,i,j − Lspeech,cj
(3.23)

Subsequently, the refined latency average value was calculated for each subject:

L̄refined,i = 1
Ei

EiØ
j=1

Lrefined,i,j (3.24)
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Where Ei is the number of events for the subject i. However, under normal operating
conditions, the subject initiates the response voluntarily, without reacting to an
external stimulus. Therefore, to further isolate the latency attributable solely to
the recognition system, the average human reaction time to auditory stimuli in a
choice task, approximately 283 milliseconds [70], was subtracted to the average
refined latency value for each subject.

Finally, the corrected latency is calculated as:

LC,i = L̄refined,i − treaction (3.25)

Corrected latencies were analyzed across all participants, reporting the mean and
standard deviation.

To conclude the grand average between subjects was calculated as:

Grand average = 1
N

NØ
i=1

LC,i (3.26)

Where N is the number of subjects.
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Results

This chapter presents the analysis of the experimental results obtained throughout
the validation of the device. The focus lies on evaluating several key performance as-
pects and examines the accuracy and reliability of the pupil segmentation algorithm
as well as the device’s capability to detect and classify PAR events.
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4.1 Device performances
This section presents the results related to the overall performance of the device,
focusing on operational parameters. Specifically, it analyzes battery profiles,
computational load and frame rate during system operation.

4.1.1 Power profile
In the following subsection, the results of the experimental tests conducted on the
battery during both charging and discharging phases are presented. Figures 4.1.
illustrates the charge level over time with the identified trade-off point highlighted
in red (approximately 3 hour and 30 minutes to nearly reach 88% of total capacity).

Figure 4.1: Charging power profile with identified trade-off point highlighted in
red.

Battery discharge tests were conducted over a complete discharge cycle, starting
from a fully charged state, analyzing both the active (operational) phase and
the idle (standby) modality. The values obtained are reported in the following
Table 4.1.

Table 4.1: Results of battery discharge tests in operational and standby conditions.

Modality Average current
drain (mA)

Delivered capacity
(mAh)

Duration
(hh:mm)

Operational 242 1250 5:10
Standby 60 1250 20:50
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4.1.2 Computational load and FPS
Computational load

This subsection presents the analysis of the computational load on the Raspberry
Pi Zero, the performance of segmentation on the PC, and the total number of
FPS achieved by the system. In the following image (Figure 4.2), the process-
ing times for each operation executed on the Raspberry Pi Zero are shown with
green bars: acquisition (ACQ), cropping (CROP), JPEG encoding (ENCODE),
and data transmission (SEND). For the PC (in sky blue), the analyzed steps
include median filtering (MEDIAN), heatmap computation for ROI identification
(HEATMAP), histogram calculation (HIST) and peak detection (PEAKS), thresh-
olding (THRESHOLD), Canny filtering (CANNY), and finally contour analysis
(CONTOURS).

Figure 4.2: Computational load for each processing step performed on Raspberry
(green) and during the segmentation pipeline on the PC (sky blue).
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FPS

The total average time for acquisition and transmission (Raspberry side) is roughly
0.0856 seconds, setting the maximum theoretical framerate limit to approximately
11.7 FPS. Additionally, the segmentation pipeline costs around 0.0125 seconds
in total, leading to a total time of 0.0981 second per frame, thus 10.2 FPS. The
histogram of the frame rate distribution is shown below (Figure 4.3). The average
framerate was found to be 10.04 ± 1.13 FPS.

Figure 4.3: FPS distribution.
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4.2 Pupil segmentation performance
This section reports the quantitative evaluation of the segmentation algorithm (S)
on data collected from 20 subjects. Performance was assessed against two ground
truths:

• GT1: manual segmentation (300 frames)

• GT2: semi-automatic segmentation using SAM v2 (all frames i.e. 3000)
Segmentation accuracy was measured using Dice and IoU , separately for three
experimental phases: static, constriction, and ocular movement. The agreement
between GT1 and GT2 was also quantified. Finally, the percentage of lost frames
was calculated for each phase.

4.2.1 Algorithm vs primary ground truth
Table 4.2 reports the Dice and IoU scores of S compared to the GT1, separately
for each phase.

Table 4.2: Algorithm performances on primary ground truth dataset.

Phase Dice (%) ± std (%) IoU (%) ± std (%)
Static 92.17 ± 9.18 86.22 ± 8.81

Constriction 92.54 ± 5.19 86.43 ± 6.34
Movement 81.62 ± 29.69 75.94 ± 27.95

Mean over phases 88.78 ± 14.69 82.86 ± 14.37

4.2.2 Algorithm vs secondary ground truth
Table 4.3 reports the Dice and IoU scores of S compared to the GT2, separately
for each phase.

Table 4.3: Algorithm performances on secondary ground truth dataset.

Phase Dice (%) ± std (%) IoU (%) ± std (%)
Static 91.73 ± 7.29 85.19 ± 7.07

Constriction 91.42 ± 6.24 84.55 ± 6.35
Movement 81.44 ± 28.52 75.10 ± 26.71

Mean over phases 88.20 ± 14.02 81.61 ± 13.38
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4.2.3 Agreement between ground truths
To quantify the consistency between GT1 and GT2, Table 4.4 reports the Dice and
IoU scores between the two ground truths, computed over the subset of frames
where both were available.

Table 4.4: Agreement between the two ground truths (primary and secondary).

Phase Dice (%) ± std (%) IoU (%) ± std (%)
Static 95.92 ± 1.21 92.19 ± 2.22

Constriction 95.48 ± 1.42 91.39 ± 2.57
Movement 92.70 ± 16.20 88.77 ± 15.83

Mean over phases 94.70 ± 6.28 90.78 ± 6.87

4.2.4 Frame loss rate
The percentage of frames for which the segmentation failed was computed for each
phase. Results are shown in Table 4.5.

Table 4.5: Percentage of lost frames for each phase.

Phase Loss frames (%)
Static 0.40 %

Constriction 0.30 %
Movement 8.38 %
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4.3 PAR identification performance
This section presents the classification performance of the proposed system in
detecting PAR events. The analysis is structured according to three criteria:
event type, event duration, and a combined classification. In addition, a detailed
evaluation of corrected latencies is provided, following the methodology described
in Section 3.3.3. The results aim to assess the accuracy, reliability, and temporal
responsiveness of the system.

4.3.1 Event classification performances
The following figures represent the confusion matrix obtained by the experimental
protocol. Specifically Figure 4.4. refers to the classification of event type, Figure 4.5
to the classification of duration and Figure 4.6 represent the combined classification
of the event. Table 4.6 summarizes the classification accuracy for each confusion
matrix.

Figure 4.4: Confusion matrix of event type classification.
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Figure 4.5: Confusion matrix of event duration classification.

Figure 4.6: Confusion matrix of combined (type + duration) events classification.
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Table 4.6: Summary of accuracy for each classification task.

Classification task Accuracy (%)
Event type 94.02

Event duration 88.03
Event type and duration 82.91

Additionally, Table 4.7 reports the metrics for the binary classification task,
which evaluates the algorithm’s ability to correctly detect the presence of an event
regardless of its type or duration. Moreover, In Table 4.8 the corrected latencies of
event detection are displayed for each subject along with the grand average value.
Table 4.9 contains the corrected latencies divided for event type.

Table 4.7: Binary classification task (Event vs not event) performance metrics.

Metrics Values (%)
Precision 95.90

Recall 94.35
F1-score 95.12
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Table 4.8: Average corrected latency values for each subject and grand average
value.

Subjects Average corrected latency (s) ±
std (s)

1 2.12 ± 0.53
2 1.17 ± 0.76
3 1.51 ± 0.61
4 1.07 ± 0.63
5 0.84 ± 0.51
6 1.45 ± 0.42
7 1.53 ± 0.53
8 1.04 ± 0.37
9 1.60 ± 0.65
10 1.45 ± 0.32
11 2.12 ± 0.54
12 1.38 ± 0.34
13 1.49 ± 0.43
14 2.05 ± 0.89
15 1.59 ± 0.58

Grand average 1.50 ± 0.55

Table 4.9: Average corrected latency values for each event type.

Event type Average corrected latency (s)
± std (s)

Type 1 (far target) 1.28 ± 0.58
Type 2 (near target) 1.70 ± 0.63
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Discussion

This chapter discusses the experimental results in relation to the goals of the study,
considering their significance, alignment with existing literature, and potential
implications for real-world applications. It highlights the system’s strengths and
limitations, both technical and physiological, and identifies areas where the approach
could be improved. The discussion also explores future directions for hardware
and software development proposing possible extensions of the system to broader
assistive and interactive scenarios.

5.1 Interpretation of the results
During the experimental testing phase, the overall performance of the system across
multiple dimensions was assessed, including power consumption, computational
load, FPS, segmentation accuracy, and PAR event detection capabilities. In this
section, the results obtained are interpreted.

5.1.1 Battery and power consumption
Contrary to the initial theoretical estimations described in Section 3.1.1., the
actual current consumption measured during typical operation turned out to be
significantly lower. This suggests that the energy requirements of the system were
overestimated in the design phase, leading to the selection of a battery with greater
capacity than strictly necessary.

The battery used for testing has a nominal capacity of 2000 mAh. However,
direct measurements during controlled discharge cycle revealed that only 1250 mAh
were effectively delivered. This discrepancy can be attributed to a combination
of factors, including the behavior of the power control module, which cuts off the
output to prevent over-discharge, thus leaving part of the battery’s capacity unused.
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Despite delivering only about 63% of the rated capacity, the battery still ensured
sufficient runtime for practical use. Additionally, analysis of the battery charging
cycle revealed that the charge-vs-time curve gradually flattens in the final phase.
This behavior is consistent with the CC/CV charging profile implemented by the
power module. Based on these observations, a trade-off point of approximately 3
hours and 30 minutes was identified, beyond which the gain in charge becomes
marginal. This partial charging level was found to be sufficient to deliver around
4 hours and 45 minutes of continuous operation. While this charging-to-runtime
ratio may be considered acceptable for a prototype, it would be less than ideal
for a commercial or clinical-grade device, where shorter charging times would be
expected. However, in the specific context of this application, such a long runtime
is not strictly necessary, as it is unlikely that a patient in a CLIS condition would
be able to engage with the system continuously for several hours. This further
supports the conclusion that the battery is oversized relative to the actual usage
requirements.

5.1.2 Pipeline analysis and FPS considerations
Experimental analysis revealed that the main performance bottleneck lies in the
Raspberry Pi Zero, which handles image acquisition and transmission. The real
frame rate was measured experimentally by analyzing the distribution shown in
Figure 4.3, resulting in an average per-frame processing time of approximately
0.01 seconds, 86% of which corresponds to operations executed on the Raspberry
Pi Zero. As shown in Figure 4.2, the majority of the total per-frame processing
time is spent on the image capture operation. Although the camera module
was configured for a frame rate of 30 FPS, the actual acquisition rate reached
only about 15 FPS. This discrepancy is probably due to the way image data is
transferred from the GPU to the CPU. The camera interface and image acquisition
are handled by the GPU, but further processing steps (such as cropping and
JPEG encoding) must be performed by the CPU, requiring the image data to be
copied from GPU-managed memory to system RAM. This architecture introduces
significant delays, ultimately reducing the effective frame rate. Moreover, although
the JPEG encoding step introduces an additional delay of approximately 0.02
seconds per frame, it proves advantageous in this context. Transmitting raw image
data would otherwise result in excessive bandwidth usage, potentially hindering
real-time communication between Raspberry and the PC. On the PC side, the
most time-consuming operations include median filtering and, more notably, the
convolution used for the generation of heatmap for ROI detection. These results
justified the attempt to develop an alternative, faster ROI detection method, as
described in Section 3.1.5. Although this method was ultimately discarded due to
its low accuracy on the current device.
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Despite the limitations in hardware performances, the achieved frame rate
is considered adequate for the intended application, since pupillary constriction
events are relatively slow and do not require high temporal resolution. This
characteristic was one of the motivations for developing a custom hardware solution,
as most commercial pupillometry systems are optimized for high-speed eye tracking,
leading to high cost and limited accessibility for deployment in domestic settings.
Additionally, the relatively low frame rate provides an inherent advantage by
filtering out eye blinks, which are typically fast. A blink occurring between two
frames is likely to be skipped, avoiding the risk of misinterpreting a partial eyelid
closure as a sudden drop in pupil size, a condition that could falsely trigger the
detection of a PAR event.

5.1.3 Segmentation accuracy
To evaluate the accuracy of the proposed segmentation algorithm (S), a compar-
ative analysis was performed against two distinct ground truths: GT1, obtained
through manual annotation, and GT2, generated semi-automatically using the
SAM v2 model. The evaluation was conducted across three distinct phases: static,
constriction, and movement.

When compared with GT1, S achieved a high overall performance, with a mean
Dice of nearly 89% and a mean IoU of 83%. Performance remained stable across
static and constriction phases (Dice > 92%, IoU > 86%) but dropped significantly
during the movement phase. A similar trend was observed in Table 4.3, comparing
S with GT2, where Dice and IoU both undergo a decrease of approximately 10%
from static and constriction phases to movement one. The agreement between
GT1 and GT2 was considerably higher across all phases (mean Dice: 95%, IoU :
91%), confirming that both reference masks are largely consistent and can serve as
reliable benchmarks. This strengthens the validity of the observed performance
gap under motion conditions as genuinely due to algorithm limitations, rather than
annotation inconsistencies. Complementary to the accuracy metrics, the analysis
of lost frames, further underscores the challenges posed by motion. The percentage
of lost frames was negligible during the static (0.40%) and constriction (0.30%)
phases. However, during movement, lost frames increased substantially to more
than 8%. This elevated loss rate in dynamic conditions is indicative of occasional
failures in frames where motion-induced blur hinder accurate segmentation.

In conclusion, the proposed segmentation algorithm achieves performance com-
parable to that of the SAM2 method (GT2) in scenarios characterized by limited
motion, despite operating in real time and requiring significantly lower computa-
tional resources. Its high reliability during both static and constriction phases, the
most relevant conditions for the intended assistive context, confirms the suitability
for the present application.
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5.1.4 PAR events detection and classification

The performance of the proposed algorithm in detecting PAR events was assessed
through a two-step classification task. The first step involved binary detection
of the presence or absence of an event, while the second focused on multiclass
classification, where the algorithm aimed to determine the event’s type, duration,
or both.

The binary classifier demonstrated excellent performance, achieving a Precision
of nearly 96%, Recall of 94%, and an F1 − score of 95%. These results indicate a
low false positive and false negative rate, suggesting that the system is reliable in
detecting whether a PAR event occurred, regardless of its specific type or duration.
This level of performance is particularly relevant in assistive contexts, where missing
an event (false negative) or misreporting one (false positive) could compromise
system utility or user trust.

In classifying the type of detected events, the system achieved an overall accuracy
of 94%. The confusion matrix in Figure 4.4. indicates a slight bias toward type 1
events, which were more accurately recognized compared to type 2. This discrepancy
may be attributed to the internal logic of the classification algorithm: the decision
boundary for type 1 spans a broader range of pupillary sizes, whereas type 2 requires
reaching a stricter threshold. As the experiment progresses, a gradual reduction
in pupillary excursion was observed in some subjects, likely due to fatigue or
habituation. This results in some type 2 constrictions falling short of the expected
amplitude, causing them to be misclassified as type 1.

The recognition of event duration yielded a lower accuracy of 88%. This can be
attributed to several contributing factors. First, the duration classifier employs a
relatively coarse decision mechanism that proves insufficient when applied to a signal
with high variability. Notably, in some cases, the pupil diameter may transiently re-
cross the constriction threshold after an initial PAR event, momentarily exceeding it
before returning below. This causes the algorithm to prematurely label the event as
short (particularly in type 1 events), even though the participant performed a long
constriction. Second, the experimental protocol allowed participants to voluntarily
control the constriction duration, which naturally introduces timing inconsistencies
and reduces the robustness of fixed temporal thresholds used to discriminate short
from long events. Furthermore, some participants reported difficulty in maintaining
a steady fixation on the visual target for the required duration to elicit a long event.
Some noted that their vision became blurred during sustained fixation. This may
be explained by the monotonous nature of the target, which remained static and
non-luminous, offering little visual stimulation. Such an effect could undermine the
subject’s ability to consistently maintain a strong accommodative effort, thereby
affecting both the amplitude and consequently the detected duration of the event.
Additionally, type 2 events involve deeper constrictions, which are followed by a
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slower return to baseline, causing the algorithm to systematically overestimate the
duration due to the extended recovery phase, a phenomenon that occurs despite
the compensatory strategy described in Section 3.1.6.

The most complex task, joint classification of both event type and duration,
yielded an accuracy of roughly 83%, which remains acceptable given the four-class
difficulty and the proof-of-concept nature of the work. The confusion joint matrix
in Figure 4.6. highlights several trends:

• The most accurate category was type 1 short, with very few misclassifications.

• Type 1 long events were occasionally misidentified as short, likely due to the
previously described mechanisms.

• Type 2 short was mainly confused with type 2 long, reflecting again the
tendency to overestimate duration in pronounced constrictions.

some other misclassifications suggest occasional ambiguities.
Additionally, the average corrected latency recorded across all participants was

1.50 s. This value was obtained by adjusting the raw latency based on the actual
end time of the auditory instruction and by subtracting an expected reaction
time derived from literature. As a result, the corrected latency reflects both the
system delay in detecting a pupil constriction and the duration of the constriction
itself. This latency is higher than initially expected, potentially limiting the
responsiveness of the system, particularly in applications that rely on timing-based
scanning interfaces, such as the one described in Section 3.2.2. However, a closer
look at the signal trends, such as the one shown in Figure 3.26, reveals that the
system correctly identifies the onset of PAR events at the end of the signal drop.
Moreover, since latency values were already corrected as outlined in Section 3.3.3,
the remaining delay can be reasonably attributed to two main factors. First, the
latency introduced by the Wi-Fi communication, which was not explicitly measured
but could contribute non-negligibly to the overall delay. Second, the pupillary
accommodation reflex itself is not instantaneous, and its physiological latency
inherently limits the speed of response. To this extent, different types of events
exhibit varying durations; for instance, type 2 constrictions, due to their greater
amplitude, require more time to reach completion, which in turn contributes to a
longer effective latency when compared to the quicker type 1 constrictions. This
difference is notable in Table 4.9, indicating that type 1 events, in addition to
being more reliably classified, also exhibit shorter latencies. This makes them the
preferred choice for implementing frequently used commands, where rapid response
is critical.
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5.2 Comparison with previous work
The use of PAR as a communication mechanism remains a relatively new area
of research, with a still limited body of literature. Nonetheless, several prior
studies have laid foundational groundwork. Notably, the work by Ponzio et al.
[6] demonstrated the feasibility of leveraging voluntary pupil constrictions for
communication, thereby providing a validated paradigm upon which the present
system is based. Their experimental methodology, particularly the use of auditory
cues to guide user responses, informed the design of the testing protocol adopted
in this thesis.

What distinguishes the present system from earlier approaches is the introduction
of a multi-symbolic communication framework, capable of classifying both the type
and duration of the PAR within a unified structure. This advancement allows for
the recognition of up to four distinct commands, representing a substantial increase
in information throughput compared to conventional binary systems. As such, the
current work constitutes a pilot study in multi-symbolic PAR-based interaction,
making direct quantitative comparisons with previous devices inherently limited due
to the increased complexity of the classification task. Earlier systems typically relied
on time-constrained paradigms, requiring users to trigger pupil constrictions either
within a fixed time window or for a specific duration, with each mode operating
independently. Despite their relative simplicity, such systems have shown high
robustness. For instance, the e-Pupil device [50] achieved up to 100% recognition
accuracy within its subject pool for binary classification tasks. While these results
are not directly comparable to those of the present system, they underscore the
reliability of the PAR as a control signal and its promise for the development of
assistive communication technologies.

A further key innovation introduced in this thesis is the use of the PAR not
solely as a binary selector, but as an active navigation trigger within a dynamic user
interface. The development of the SPEAKER interface along with the structure of
the main menu GUI illustrates how PAR-based control can extend beyond basic
yes/no commands to enable letter-by-letter output through structured selection
processes. This greatly expands the communicative potential, allowing users to
construct words and sentences, thereby supporting more expressive and functional
interactions.
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5.3 System limitations
While the proposed system demonstrates the feasibility of using the PAR as a
communication channel, several limitations must be acknowledged before consider-
ing its deployment in real-world contexts. The following subsections explore these
limitations in detail.

5.3.1 Robustness of pupil segmentation
A primary limitation concerns the reliability of the pupil segmentation algorithm.
Although the use of IR LEDs improves robustness in controlled environments,
performance may degrade significantly in the presence of intense ambient light,
particularly sunlight. In such conditions, IR illumination may be overpowered,
resulting in low contrast between the pupil and surrounding structures, which
prevents accurate contour detection. Additional segmentation issues arise in cases
where users wear eye makeup, which may introduce dark regions that interfere
with ROI detection. Some contact lenses can also cause light reflections or alter
the perceived border of the pupil, generating high-frequency noise in the pupil area
signal and reducing events recognition stability.

5.3.2 Visual impairments and focus limitations
The effectiveness of the PAR also depends on the user ability to focus on near and far
targets. Visual impairments, can hinder the ability to perform the accommodation
task correctly, often resulting in a reduced amplitude of the pupillary response.
While corrective solutions such as eyeglasses can improve focus, they may introduce
unwanted reflections that compromise image segmentation. Contact lenses might
be a more practical alternative, although, as mentioned, they too may negatively
affect segmentation performance, probably depending on their design and optical
properties. Moreover, sustaining prolonged constrictions, required for temporal
encoding, often proves challenging when fixating on visually unengaging and opaque
targets, as the user tends to lose focus over time. This limitation can reduce the
reliability of duration-based command recognition and highlight the importance of
carefully designing visual stimuli to support sustained accommodation.

97



Discussion

5.3.3 Algorithm limitations
From a technical standpoint, the current algorithm for detecting the duration
of the PAR event and classifying its type is intentionally kept simple, aligning
with the proof-of-concept nature of this work. While this approach has proven
functional for demonstrating the system’s feasibility, its precision and robustness
may not yet be sufficient for deployment in a finalized assistive product. In
particular, the estimation of the PAR duration is affected by a known physiological
characteristic reported in the literature: the re-dilation phase of the pupil often
begins before the user fully shifts their gaze back from the near to the far target.
This anticipatory behavior introduces intrinsic ambiguity in identifying the exact
end of the accommodation response, complicating reliable duration assessment,
particularly crucial in this system where temporal encoding is essential for command
selection.

Another limitation concerns the initial decoder configuration required by the
system, which must be performed at each startup and may need to be repeated
during extended sessions. This requirement stems from the algorithm’s sensitivity
to individual physiological characteristics and environmental variability, such as
lighting conditions. A more advanced solution would ideally eliminate the need for
calibration altogether or at least reduce its frequency by fitting itself to the user’s
specific features in a dynamic and adaptive manner, while maintaining robustness
against the primary sources of variability that currently necessitate re-calibration.
To ensure the level of precision required for real-world use, the integration of more
advanced signal analysis techniques or machine learning models appears essential.
Advancing the algorithmic core in this direction is therefore critical for evolving
the system from a proof-of-concept into a reliable assistive technology.

5.3.4 Quantitative benchmarking
To further validate the system’s effectiveness, it would be good practice to conduct
quantitative comparisons with commercial eye-tracking systems. Although the
low-cost nature of the device is a strength, demonstrating comparable performance
in capturing PAR events would substantiate the rationale behind this design choice.
In addition, a formal characterization of the system’s information rate, expressed in
bits per minute, would allow direct comparison with other assistive communication
devices in terms of throughput and efficiency, offering a more complete assessment
of its potential impact on the panorama of AAC technologies.
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5.4 Future work
This chapter outlines potential future developments of the system, both in terms of
hardware and software improvements, as well as possible applications. In addition,
it highlights the importance of conducting clinical testing on patients to gather
direct feedback on the user interface and to assess the overall usability of the
developed application in real-world conditions. These future steps are essential to
validate the effectiveness of the system and to ensure that it meets the practical
needs of its intended users.

5.4.1 Hardware and software improvements
The present prototype represents a functional starting point, but several improve-
ments are required to transition toward a robust and clinically viable system. First
and foremost, redesigning the hardware is necessary. The current use of Raspberry
Pi Zero has proven to be the bottleneck in the pupillometry pipeline, significantly
limiting the overall performance of the system. Additionally, the battery used has
shown to be oversized with respect to the actual energy demands, suggesting that
more compact and efficient power solutions could be adopted.

Given the intended use in clinical and domestic environments, the introduction
of a wired communication interface should also be considered. While Wi-Fi
connectivity offers flexibility, especially when the patient is moved or operates
outside a fixed setting, a wired connection would eliminate delays and potential
instability caused by network speed fluctuations during regular use. Wireless
functionality could be preserved as an optional mode for mobile or non-standard
contexts.

From a software perspective, future developments should aim at enhancing
the segmentation robustness, both against noise and occlusions (e.g., corrective
eyeglasses), as well as reducing computational load. An initial attempt has already
been made to replace the convolutional stage, the most resource-intensive element
of the segmentation pipeline, with a more efficient ROI detection strategy. However,
this alternative approach led to poorer performance under variable or low-light
conditions, highlighting the need for further optimization.

In terms of event recognition, more advanced algorithms could significantly
improve performance across all key aspects: classification of PAR type, duration
estimation, and detection latency. Preliminary work has already explored the
use of lightweight online models, such as Masked Autoencoders (MAE) adapted
to time series data, achieving excellent binary event detection with low latency.
Nevertheless, these models have yet to be evaluated for their ability to capture
constriction magnitude and to associate such information with specific PAR types
and durations. Despite these current limitations, the high intra- and inter-subject
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variability and the lack of event repeatability strongly support shifting the research
focus toward machine learning and deep learning approaches, which are better
suited to handle the complexity and variability inherent in biological signals.

Lastly, the development of additional applications represents the natural pro-
gression of this work. Expanding the system’s functionality to include assistive
interfaces, such as home automation controls, could greatly enhance user indepen-
dence. Moreover, the integration of interactive applications like video games may
offer substantial psychological and emotional benefits, particularly in patients af-
fected by neurodegenerative diseases such as ALS. In such cases, gaming, especially
when involving online interaction, can serve as a meaningful form of mental escape
for individuals physically constrained by their condition.

5.4.2 Clinical and usability tests
Another important aspect of the present work is the absence of clinical validation
in the target population, namely patients in CLIS. Although the experimental
detection of the PAR performed in this study is valid for assessing the technical
performance of the device, particularly in terms of its ability to detect and classify
PAR events with sufficient accuracy, it does not fully reflect the dynamics of
real-world use. In the controlled experimental setting, the initiation of PAR events
was externally guided through auditory cues, simplifying the task by removing the
cognitive load associated with decision-making. In a practical application, however,
the user must independently initiate the response, and may encounter additional
complexities: for instance, hesitations, last-minute changes in the selected target,
or corrective shifts in gaze during an already ongoing constriction. These scenarios,
common in real communication contexts, were not explored in this study, and the
system’s robustness in such situations remains unknown. As a result, the voluntary
and intentional nature of the interaction, which is central to assistive use, was only
partially addressed. This limitation becomes even more critical when considering
the use of the developed SPEAKER interface. This application introduces an
additional layer of complexity by requiring not only the recognition of a PAR
event but also its precise timing. Without usability testing on a subject pool,
including individuals with motor impairments, the intuitive use and accessibility of
the interface remain uncertain. Evaluating these aspects is essential to determine
the true applicability of the system as a communication aid in real-world assistive
scenarios.
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Conclusion
This thesis presented the design and development of a prototype pupillometric
communication device, addressing both hardware and software aspects, with the
aim of exploring its potential as an assistive communication tool for completely
paralyzed patients, such as those in CLIS due to the progression of ALS. The
system leverages the PAR to establish a human-computer interaction pathway.
Unlike previous approaches that relied on binary communication schemes, this
work aimed to investigate the feasibility of enabling multi-symbolic communication,
allowing for a broader set of commands and more expressive interaction. To this
end, a complete communication interface and a GUI for application selection were
developed. The system achieved excellent performance in pupil segmentation,
showed good reliability in detecting PAR events, and yielded acceptable results in
classifying these events based on their type and duration. This work represents the
first actual implementation of multi-symbolic interaction using the PAR mechanism,
laying the foundation for future advancements in this domain. In particular, this
thesis demonstrates that a major limitation of the binary communication, namely
its slowness, can be effectively solved by exploiting a multi-symbolic PAR. However,
several limitations remain. Most notably, the system has not yet been tested
on actual CLIS patients, and some technical constraints were observed, particu-
larly related to the robustness of the PAR event recognition algorithm, especially
concerning temporal encoding strategies. Future developments should therefore
include clinical validation of the device with CLIS patients and an enhancement
of the event recognition performance through more advanced and reliable signal
analysis techniques. Furthermore, the system architecture has been designed to
support the development of additional applications beyond the communicator
already implemented, potentially expanding the device’s capabilities towards areas
such as video games or smart home control to improve autonomy and quality of
life. In conclusion, this work demonstrates the viability of pupillometry-based
multi-symbolic interaction through the PAR and provides a solid groundwork for
the development of new assistive technologies aimed at enhancing communication,
interaction, and independence for individuals affected by severe paralysis.
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Appendix A

Device prototype

The following images show the prototype of the device from the right and left
sides. These views provide a clearer understanding of its physical structure and
component placement.

Figure A.1: The device prototype seen from raspberry side (left side)
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Device prototype

Figure A.2: The device prototype seen from battery module side (right side)

110


	Abstract
	Acronyms
	Introduction
	Background
	ALS Overview
	ALS Causes
	Physiopathology and symptomatology
	Global incidence

	Communication systems
	Traditional communication systems
	Brain-Computer-interface systems

	Visual focusing mechanisms and the PAR in ALS
	The near vision complex and neural pathways
	Preservation and application of the PAR in ALS

	Pupil segmentation algorithms
	Classical image processing methods
	Feature-based and hybrid approaches
	Deep learning methods
	Comparative summary


	Materials and methods
	Pupillometry system
	Device hardware components
	Raspberry Pi OS and modifications
	Computer hardware and Python libraries
	Images acquisition and transmission protocols
	Pupil segmentation algorithm
	PAR events identification module

	GUI and applications
	USB vs WIFI connection
	Possible applications: “SPEAKER”

	Experimental verification
	Evaluation of device performances
	Evaluation of pupil segmentation performance
	Evaluation of PAR event detection performance


	Results
	Device performances
	Power profile
	Computational load and FPS

	Pupil segmentation performance
	Algorithm vs primary ground truth
	Algorithm vs secondary ground truth
	Agreement between ground truths
	Frame loss rate

	PAR identification performance
	Event classification performances


	Discussion
	Interpretation of the results
	Battery and power consumption
	Pipeline analysis and FPS considerations
	Segmentation accuracy
	PAR events detection and classification

	Comparison with previous work
	System limitations
	Robustness of pupil segmentation
	Visual impairments and focus limitations
	Algorithm limitations
	Quantitative benchmarking

	Future work
	Hardware and software improvements
	Clinical and usability tests


	Conclusion
	Bibliography
	Device prototype

