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Abstract

Right Atrial Pressure (RAP) represents a fundamental hemodynamic parameter
in the evaluation of cardiac pathologies. However, the gold standard for assess-
ing this parameter remains an invasive measurement. The invasiveness of such
techniques limits their routine use, highlighting the need for reliable non-invasive
alternatives. The diameter and Caval Index (CI) of the inferior vena cava (IVC), de-
rived from ultrasound imaging, allow an indirect estimation of RAP through semi-
quantitative criteria defined by current international guidelines, which classify RAP
into three levels (low, intermediate, and high). While these recommendations of-
fer a practical and straightforward approach, their application is often limited by
suboptimal precision and reproducibility. Considering these limitations, a dedicated
software tool named “VIPER” has been developed. This semi-automatic algorithm
is capable of accurately tracking the borders of the IVC, from which it extracts key
parameters: vessel diameter, CI, Respiratory (RCI) and Cardiac (CCI) Caval Index.

In this thesis, two different algorithms of VIPER software, one developed on
Matlab and one on Python, were employed to analyze and segment the IVC from
ultrasound video recordings provided by expert clinicians at the Fondazione Toscana
Gabriele Monasterio, Pisa. No statistically significant differences were observed
between the two algorithm tools for either diameter or CI measurements, confirming
the consistency and reproducibility of the automated software. The IVC diameters
measured by the operator had a mean value of 17.244+4.03 mm, while the automated
estimates obtained from the Python and Matlab algorithms reported mean values of
15.894+5.20 mm and 16.13 +5.44 mm, respectively. Similarly, the CI computed from
the Python algorithm yielded a mean of 0.3140.16 mm, compared to 0.28+0.16 mm
from the Matlab-based version.

The study population consists of 37 patients (16 males and 21 females) with a
mean age of 67.49 + 16.81 years. For each subject, a comprehensive set of clinical,
echocardiographic and invasive variables were available, along with additional fea-
tures extracted by the two algorithm tools. Notably, invasive measurements were
excluded from the dataset to preserve the non-invasive nature of the prediction.

A range of linear and non-linear classification models was implemented with the
aim of assigning each patient to a RAP class. Among these, the best-performing
approach was a meta-classifier trained using features extracted by the Matlab ver-
sion of VIPER. This model integrates the predictions of two base classifiers: a linear
Ridge model and a non-linear Support Vector Machine (SVM). The meta-classifier
achieved an accuracy of 73%, as estimated through Leave-One-Out Cross-Validation
(LOO-CV). The same meta-classifier architecture, when applied to features derived
from the Python version of VIPER, achieved a LOO-CV accuracy of 65%. In com-
parison, when using the operator-measured diameter, the standard guideline-based
assessment methods achieved a lower accuracy of 54%, suggesting that algorithmic
approaches may offer a more reliable support for non-invasive RAP assessment and
may represent a promising advancement in clinical practice.
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Chapter 1

Cardiovascular System

In order to live, the human cells need to exchange substances with surrounding
areas. Every cell by performing the diffusion process embeds the substances they
need, such as oxygen and nutrients, and releases waste products like carbon dioxide.
The diffusion process itself is pretty slow, so in order to make the transportation of
substances faster, the cardiovascular system comes in help. This system is made up
of three main elements:

e the heart whose job is to pump the blood into the blood vessels
e blood vessels which are ducts where the blood flows
e the blood, a fluid which circulates in the blood vessels towards the whole body.

The general scheme of blood flow in the cardiovascular system is shown in Figure
1.1. The cardiovascular system consist of two main circuits:

e the pulmonary circulation formed by the lung vessels and all the vessels con-
necting the lungs to the heart

e the systemic circulation formed by all the remaining vessels directed from the
heart to the other body parts.

In both circuits, there is a dense network of capillaries where the exchange of nu-
trients and gas occurs. When blood flows inside the pulmonary capillaries, carbon
dioxide is released while oxygen flows inside the blood and so it is called oxygenated
blood. Whereas, when blood flows inside the systemic capillaries is rich in carbon
dioxide due to the consumption of oxygen from the cells of human body: in this
case the blood is called deoxygenated blood. [1]
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1.1 Heart

Heart pumps the oxygenated blood towards the organs through the blood vessels
and removes waste products and carbon dioxide. It is formed by four chambers:
atria are the upper chambers and they receive the blood coming from the veins,
while ventricles are the two lower chambers and they receive the blood from atria
and they generate a pressure big enough to push the blood towards the big arteries.
[1] It is located in the center of the chest, near the lungs and it is made of three
layers of tissues. The inner one is the endocardium, a thin epithelial layer which
also forms the surface of the valves followed by the myocardium, a thick layer of
muscular tissue that allows heart chambers to contract and relax to pump blood to
the whole body. Pericardium is the sac that surrounds the heart and it is made of
thin layers of connective tissue, it holds the heart in place and protects it. Heart
chambers are four and are separated by heart valves, which make sure that the
blood keeps flowing in the right direction. Heart valves help control the direction
the blood flows and they prevent blood from flowing backward.The heart has four
valves:

e the tricuspid valve separates the right atrium and right ventricle

e the mitral valve separates the left atrium and left ventricle

e the pulmonary valve separates the right ventricle and the pulmonary artery
e the aortic valve separates the left ventricle and aorta.

The valves open and shut in time with the pumping action of heart’s chambers.
Oxygen-poor blood from the body enters the heart through two large veins called



the Superior and Inferior Vena Cava (IVC). The blood enters the heart’s right atrium
and is pumped to the right ventricle, which in turn pumps the blood to lungs. Lungs
add oxygen to your blood which returns to your heart through the pulmonary veins
(Figure 1.2). [2]

Superior
Vena Cava

Pulmonary

..........

Pulmonary
Valve ~

Tricuspid
Valve

Inferior Vena Cava

Figure 1.2: Representation of heart and its parts

1.1.1 Electrical activities of heart

In order for the heart to pump the blood into the blood system, the cardiac muscle
needs to contract synchronously: first atria both contract and then ventricle both
contract. Contractions of cardiac muscle are generated by signals coming from the
muscle itself. There are two types of cells that are able to start and coordinate the
cardiac contractions:

e pacemaker cells that are able to start action potentials and control heart
rate,they are mainly located in two specific zones of myocardium which are
the sinoatrial node (SA) and atrioventricolar node (AV).

e conduction fibers lead action potentials generated by pacemaker cells and they
propagate them inside the heart. [1]

The impulse starts in the Sinoatrial (SA) node in the right atrium, then the
electrical impulse travels through the atria, causing them to contract and force
blood into the ventricles. The electrical impulse is then transmitted down to the
pacemaker cells in the Atrioventricular (AV) node, which is located between the
atria and the ventricles. The impulse is delayed here so that the ventricles have
time to finish filling with blood. The AV node fires another impulse that travels
along the walls of the ventricles, causing them to contract and push the blood out
of the heart. The ventricles relax, and a heartbeat process starts again in the SA
node (Figure 1.3).
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Figure 1.3: Representation of action potentials propagation inside the heart

The heart’s electrical activity can be monitored through electrodes placed on
the skin surface. The resulting signal, known as the Electrocardiogram (ECG), is
composed of positive and negative waves separated by isoelectric segments. This
waveform follows a repetitive pattern that recurs consistently with each cardiac
cycle, and its frequency is determined by the individual’s heart rate. ECG signals
is usually characterized by three types of characteristics waves (Figure 1.4):

e P wave, a positive deflection due to the atrial depolarization
e PQ interval which estimates the conduction time through the AV node

e QRS complex which includes a small negative deflection followed by a peak
positive deflection, it indicates the ventricular depolarization

e QT interval which estimates the releasing time of the ventricle, called ventric-
ular diastole

e T wave, a positive deflection due to the repolarization of the ventricle

The R-R interval indicates the time between two successive peaks of QRS com-
plex and it represents the time between a heartbeat and the following one. The
repolarization of the atrial chambers is not visible on the ECG trace since they are
hidden by the QRS complex. ECG signal amplitude varies from 0.5 to 4 mV with
a bandwidth between 0.01 and 250 Hz. [1]
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1.1.2 Cardiac cycle

The cardiac cycle is the period that begins with atrial contraction and ends with
ventricular relaxation (Figure 1.5). The heart goes through two broad phases during
this cycle:

e systole, the phase of contraction during which the blood enters the circulation

e diastole, the phase of relaxation by which the chambers of the heart get refilled
with blood.

Both the atria and the ventricles go through systole and diastole, and coordina-
tion between them is required for efficient ejection of blood and refilling.

Early in the cardiac cycle, atria and ventricles are in diastole: blood enters the
right atrium through the superior and inferior vena cava and the coronary sinus
while the left atrium simultaneously receives oxygenated blood via the four pul-
monary veins. The atrioventricular valves (mitral and tricuspid) are open, allowing
unimpeded flow of blood from the atria into the ventricles.The semilunar valves
(pulmonary and aortic) are closed, preventing backflow from the great arteries to
the ventricles.

Atrial contraction follows atrial depolarization, which is reflected by the P wave
in the ECG. Early in atrial systole, ventricles are already 70-80% filled with blood
passively during diastole. The additional 20-30% of ventricular filling comes from
the atrial contraction, or "atrial kick.” This lasts approximately 100 milliseconds and
ends before the onset of ventricular systole, when the atrial myocardium resumes
diastole.

Ventricular systole follows ventricular depolarization, as marked by the QRS
complex of the electrocardiogram (ECG), and has two phases (total duration of
about 270 ms):

e isovolumetric contraction where ventricular pressure rises, but is not high
enough to cause the semilunar valves to open. Since no blood is being ex-
pelled during this early phase, ventricular volume also doesn’t change.

e Ventricular ejection phase: ventricular contraction keep going, the pressure
within the chambers is higher than that within the aorta and pulmonary trunk,
forcing the semilunar valves open and blood out of the heart.

Finally, ventricular diastole begins with ventricular repolarization, represented by
the T wave of the ECG, the onset of muscle relaxation and beginning of the next
filling phase. [3]
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Figure 1.5: Phases of cardiac cycle

1.2 Blood vessels

Blood vessels can be classified based on their direction from the heart to the tissues
or vice versa and based on their caliber. Arteries transport oxygenated blood from
the heart to the capillaries, while veins bring back deoxygenated blood to the heart
(Figure 1.6). Every blood vessel has a cavity in which the blood flow, called lumen,
is surrounded by an epithelial layer, called endothelium. The wall of all vessels is
formed by endothelial cells, smooth muscle, and fibrous / elastic connective tissue
which allows the vessel to distend under pressure without breaking, thanks to an
extracellular protein called elastin.
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Figure 1.6: Section of a blood vessel

1.2.1 Arteries and veins

The largest size artery is the aorta whose diameter is 12.5 mm and thickness 2 mm,
while smaller arteries have a diameter between 2 and 6 mm and a thickness of 1 mm.
Bigger arteries offer small resistance to the flow and their main job is to carry the
blood: this function of the arteries is possible thanks to their elasticity and rigidity.
Arteries can be considered as blood reservoirs (Figure 1.7). During systole it occurs
an expansion of the arteries wall due to the flowing of the blood; part of the elastic
energy produced will be used to let the blood keep flowing during diastole. The

Arteries

Arterioles

To capillaries

From veins

a)Heart contracting and emptying

Arteries

=i e

Arterioles

From veins To capillaries

TR

b)Heart relaxing and filling

Figure 1.7: Arteries as blood reservoirs: a) during systole the entrance of the blood
through the aorta increase the volume, causing en expansion of the walls; b) during
diastole, the elastic component of the aorta’s walls keep pushing the blood ahead.

pressure inside the aorta is called arterial pressure whose value changes during the
cardiac cycle: the maximum value is achieved during systole and is called systolic
pressure while the minimum value is achieved during diastole and is called diastolic
pressure. [1]

While arteries have thicker walls, in order to sustain high blood pressure, veins
have thinner walls and they can distend much more easily. Even though the venous
pressure is much lower than the arterial pressure, veins contain a quantity of blood
much higher than the one contained in the arteries. In fact, in normal condition al-
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most 60% of the blood volume is contained inside the veins. However, this blood can
be moved towards the arteries when needed and for this reason veins are considered
as a volume reservoir.

1.2.2 Compliance

Every blood vessel tends to expand when the pressure inside the vessel increases and
to contract when the pressure decreases. To be more precise,the difference between
the internal and external pressure (Pj,- P,;) of the vessel determines the expansion
or contraction of the vessel: this pressure is called transmural pressure P,. [1]
When P,,, > 0 the volume of the vessel increases, while when P,,, < 0 the volume
of the vessel decreases. Vessel compliance is defined as

AV

¢= AP

(1.1)

where AV represent volume variation of the vessel, P, represent transmural pres-
sure. [1] The relation between AV and P, is generally represented by a volume-
pressure or capacitance curve (Figure 1.8) and shows an increase of the volume vessel
with increasing transmural pressure.The same change in P, will produce different
changes in vessel size, depending on the resting value of P, and volume vessel V: if
average Py, is low size changes will be large, while at a higher P,,, value the vessel
size will be larger and smaller phasic changes will be detected. [4]
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Figure 1.8: Volume-pressure curve of a venous blood vessel: point A high vessel
compliance, point B low vessel compliance

The primary distinctions between veins and arteries regarding compliance are
their mechanical properties: arteries are stiffer and subjected to greater pressure
fluctuations than veins. Pressure oscillations within the arteries are mostly due to
the pulsatile nature of the heart’s action, and also to peripheral vascular resistance.;
while P, changes in the veins are largely influenced by a variation of the external
pressure. [4] In order to perform as pressure reservoirs, compliance in the arteries
needs to be low: a high variation of the pressure cause a small volume variation. [1]
Veins,therefore,as said before are a volume reservoirs due to their high compliance:



a small increase of pressure inside the vessel cause a big increase of volume. In other
words, veins can adapt themselves to huge increase in blood volume and so they are
particularly efficient when it comes to storing blood.

1.2.3 IVC: Inferior Vena Cava

The vena cava is divided into IVC and Superior Vena Cava (SVC). They are the
body’s two largest veins (Figure 1.9), which drain deoxygenated blood to the right
atrium of the heart. Specifically, the IVC drains blood from the lower part of the
body (lower limbs and abdomen) to the heart, and the SVC drains blood from the
upper part of the body to the heart.

Superior
vena cava

A

Heart

L Filter inside
\[| the inferior
vena cava
(IVC filter)

Inferior
vena cava

Cross section of the
inferior vena cava

Figure 1.9: Representative scheme of the veins flowing in the human body

The IVC runs along the posterior abdominal wall, to the right of the aorta. It
arises from the convergence of the two common iliac veins at the sacral promontory.
It then connects to the posterior aspect of the heart and, after passing through the
hepatic diaphragm, empties into the right atrium. Since IVC represents two-thirds
of the venous return system, it can be clinically used as a marker of body volume
status, which is crucial for clinical evaluation. [5]



1.3 Right Atrial Pressure

RAP is referred to as the pressure of the blood in the right atrium of the heart.
This pressure is related to the volume of blood returning to the heart and to the
heart’s capacity to pump the blood into the arterial system. The RAP can often
correspond to the Central Venous Pressure (CVP). [6] RAP is related to Right Ven-
tricular (RV) diastolic function, volume status, and Right Atrial (RA) compliance.
Increased RAP is a predictor of mortality in patients with Heart Failure (HF) due
to acquired heart disease. [7] The RAP is measured conventionally after exhaling,
through invasive techniques (e.g., right atrium catheterisation) but some studies
have shown that the agreement between the RAP measured invasively and echocar-
diography is modest, even though there are issues related to the reproducibility
of IVC measurement by US. [6] In accordance with the recommendations of the
American Society of Echocardiography (ASE), the correlation between RAP and
echocardiographic indices of right ventricular (RV) diastolic function was assessed.
The indices considered were:

the ratio of tricuspid inflow early diastolic velocity to late diastolic velocity

(E/A)

the ratio of tricuspid inflow early diastolic velocity to tricuspid annular early
diastolic tissue Doppler velocity (E/E’)

the tricuspid inflow deceleration time (DT)
e the diameter of the IVC [7]

ASE also partitioned RAP into 3 categories:

Range Value [mmHg]
Normal 0-5
Intermediate 5-10
High 10-20

Table 1.1: Range of RAP according ASE guidelines

1.3.1 Techniques for RAP monitoring in clinical practice

Currently, pulmonary artery catheterization represents the standard method for the
estimation of RAP in clinical practice. Pulmonary artery catheterization (Swan-
Ganz or Right Heart Catheterization (RHC)) is an invasive diagnostic procedure
that involves the insertion of a catheter through a central vein, advancing it into
the pulmonary artery (Figure 1.10). This technique allows for the measurement of
right atrial, right ventricular, and pulmonary artery pressures, the estimation of car-
diac output, the detection of intracardiac shunts, and the calculation of pulmonary
vascular resistance. The hemodynamic data obtained are essential for a deeper un-
derstanding of the pathophysiology of heart failure and pulmonary hypertension.
The RHC procedure is usually a low risk procedure, but complications can occur
and can be fatal.[8]
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Figure 1.10: Swan-ganz catheter representation

Due to the limitations associated with invasive procedures, several non-invasive
methods have been developed to estimate RAP, with particular focus on the ul-
trasound assessment of the IVC. The dynamic changes in the diameter of the IVC
provide valuable information about the patient’s volume status and RAP. Among
the parameters used in clinical practice, the Caval Index (CI) derived from ultra-
sound recordings, is the standard indicator of IVC pulsatility. Nevertheless, its
measurement lacks a standardized protocol and is often affected by artifacts, mainly
due to the physiological movements of the IVC during respiration.[9]

1.3.2 Heart Failure and RAP

In the context of HF, congestion refers to the accumulation of fluid within the in-
travascular space and the interstitial tissues. This condition arises due to elevated
cardiac filling pressures, primarily driven by the kidneys maladaptive retention of
sodium and water. Congestion is the predominant cause of hospitalization in pa-
tients with acute HF (Figure 1.11). [10]

Given that fluid overload plays a central role in the pathophysiology and clinical
presentation of HF, therapeutic strategies are largely aimed at achieving effective
decongestion. Diuretics represent the primary pharmacological approach for pro-
moting sodium and fluid excretion in patients who are not candidates for renal
replacement therapies. Their primary function is to stimulate the kidneys to ex-
crete excess sodium and water. However, when renal response is inadequate, the
condition is referred to as diuretic resistance.

Despite the limited evidence supporting its impact on long-term outcomes, this
remains the first-line approach approved by cardiology guidelines. When conven-
tional diuretic strategies fail to relieve congestion, renal replacement techniques such
as ultrafiltration or hemofiltration offer an alternative method for rapid fluid removal
and may restore responsiveness to diuretics. One of the advantages of ultrafiltration
in the management of HF is its ability to remove excess fluid predominantly from
the extravascular compartment, while preserving the circulating blood volume. This
selective mechanism helps to avoid neurohormonal activation and the development
of renal dysfunction—adverse effects commonly associated with aggressive diuretic
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Figure 1.11: Impact of congestion on human body

therapy.[11]

Currently, most clinical markers of volume overload (e.g., Jugular Vein Distention
(JVD), peripheral edema, or ascites) reflect elevated RAP. Although it is true that
an elevation in RAP mirrors an elevation in PCWP in most patients with HF,
approximately 25% to 30% of patients have discordance between right- and left-sided
filling pressures, with an isolated elevation on either side.Discordance can occur in
those with preserved or reduced ejection fraction. [12] HF is further classified by
Left Ventricular Ejection Fraction (LVEF).The prognosis and response to treatment
of patients with HF differs significantly when patients are stratified based on LVEF.
HF can be classified based on LVEF":

e HF with Reduced Ejection Fraction (HFrEF): patients with an LVEF <40%

e HF with Preserved Ejection Fraction (HFpEF): patients with an LVEF >50%
more commonly affecting older women, with a history of hypertension and,
less commonly, coronary disease, than patients with HFrEF. [13]

Patterns of elevated filling pressures, right-sided only, left-sided only, or both,
tend to remain relatively stable over time. To enhance clinical assessment of conges-
tion, patients can be classified based on whether right-sided, left-sided, or biven-
tricular filling pressures are elevated (Figure 1.12). Although this classification
may better reflect the nature of volume overload, it remains unclear whether pa-
tients with isolated pressure elevation have different treatment responses or prog-
noses compared to those with concordant pressures. A disproportionately elevated
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RAP/PCWP > 0.67, referred to as the “right-left equalizer” pattern, has been asso-
ciated with impaired renal function and worse clinical outcomes, offering preliminary
support for this hemodynamic classification. This pattern should be considered when
a patient with persistently elevated JVD experiences worsening renal function dur-
ing diuresis. Further investigation is needed to fully understand the characteristics
and prognostic significance of these hemodynamic profiles. [12]

Elevated RAP

| Normal Right and Left Elevated RIGHT sided filling
sided filling pressures pressure

Elevated PCWP

Elevated LEFT sided filling Elevated Right and Left
pressure sided filling pressures

Figure 1.12: Classification of Congestion Based on Clinical Assessment of Elevated
Right- or Left-Sided Filling Pressure

1.3.3 Pulmonary Hypertension and RAP

RAP is a crucial marker of prognosis in Pulmonary Hypertension (PH), whether
the condition arises from pulmonary vascular pathology, such as Pulmonary Arte-
rial Hypertension (PAH) or from cardiac causes like HF. [14] PAH is a progressive
condition characterized by proliferative and fibrotic remodeling of the pulmonary
vasculature. This leads to increased Pulmonar Vascular Resistance (PVR), reduced
pulmonary vascular compliance, right ventricular dysfunction, and ultimately death.
Diagnosis of PAH relies on precise hemodynamic assessment of the right heart and
pulmonary circulation through RHC. [15] As the disease advances, clinical signs of
right ventricular failure emerge, including elevated filling pressures, diastolic dys-
function, and reduced cardiac output. In parallel, the IVC, which drains into the
right atrium, also adapts to these hemodynamic shifts, typically becoming dilated
and exhibiting reduced inspiratory collapse due to elevated pressure in the right
sided. [16]

1.3.4 1IVC as a predictor of RAP

The current gold standard for evaluating intravascular congestion involves measuring
RAP, typically ranging from 2 to 6 mmHg, and Pulmonary Capillary Wedge Pressure
(PCWP), usually between 3 and 8 mmHg, using RHC. However, due to its invasive
nature and the fact that it is not routinely performed, RHC is not suitable for the
long-term monitoring of patients. As a non-invasive alternative, the evaluation of the
IVC through ultrasonography provides a simple and effective method for estimating
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RAP. An increase in the diameter of the IVC has been shown to predict a higher risk
of hospitalization and mortality in patients with HF.[10] Nevertheless, the accuracy
of this method may be affected by several limitations, such as:

e variability in the anatomical site of measurement

e inspiratory movement of the IVC, potentially causing misalignment with the
original ultrasound imaging

e interindividual differences in respiratory maneuver

e the lack of integration of other hemodynamic parameters from both ventricles
in the current estimation approach

In clinical practice, RAP estimation via ultrasonography is commonly performed by
measuring the IVC diameter and calculating its percentage collapse during a brief
inspiratory effort(sniff), known as the collapsibility index or caval index. These mea-
surements are interpreted according to established guideline-based criteria, which de-
fine threshold combinations of IVC diameter and collapsibility for estimating RAP.
17

Spontaneous breathing and mechanical ventilation are based on distinct physio-
logical mechanisms. During spontaneous inspiration, negative intrathoracic pressure
develops, which facilitates venous return to the heart and leads to a temporary re-
duction in the diameter of the IVC. At end-expiration, intrathoracic pressure rises
toward atmospheric levels, decreasing venous return and resulting in an increase in
IVC diameter. This respiratory-driven variation in venous dimensions is commonly
assessed through the CI, which quantifies the degree of IVC narrowing during the
breathing cycle. [18]

However, certain physiological and pathological conditions may limit the accu-
racy of this method. In healthy young athletes, for instance, a dilated IVC may be
observed despite normal RAP, representing a benign physiological variant. Further-
more, in patients undergoing mechanical ventilation, the IVC is often persistently
dilated and may show minimal or absent respiratory collapse. These alterations
reduce the reliability of IVC measurements as indirect indicators of RAP in such
populations. The classification of RAP levels based on these parameters is summa-
rized in Table 1.2. [19]

RAP Normal Intermediate High
(0-5 mmHg) (5-10 mmHg) (1020 mmHg)
.IVC < 21 mm <21l mm , > 21 mm > 21 mm
diameter
Collapsibility > 50% < 50% , > 50% < 50%
index

Table 1.2: Classification of RAP levels based on IVC diameter and collapsibility
index, according to the ASE guidelines
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Chapter 2

Ultrasonography

UltraSound (US) is based on high-frequency sound waves and can be considered a
safe, generally non-invasive medical imaging and diagnostic tool. The frequencies of
these waves are between 1 to 20 MHz, higher than the band of human hearing, i.e.
above 20 kHz. Sound waves are longitudinal mechanical waves, which can propagate
through various materials such as fluids, soft tissues, and solids. The importance of
ultrasound techniques in medicine is due to three factors:

e complete safety for the patient due to the absence of ionizing radiation, so this
technique is reliable to perform long-term measurements, and it is applicable
to patients at risk

e high temporal resolution, US imaging is fast enough to document rapid phe-
nomena such as cardiac contraction

e reflection and diffusion based operation generated by acoustic interfaces [20]

2.1 Physics of ultrasound

The operating principle of ultrasound devices is based on the piezoelectric effect,
a property of materials such as Lead Zirconate Titanate (PZT), which can convert
mechanical stress into electrical signals and, conversely, deform when subjected to
an electric field.

Inside the ultrasound probe, a PZT piezoelectric crystal is exposed to high-
frequency electrical pulses from the generator that cause deformation of the crystal
and emit pressure waves into the biological tissues. The waves reflected back from
the tissue strike the crystal for the second time and get converted into electrical
signals by the same piezoelectric effect so that they aid in producing the ultrasound
image.

Once generated, these ultrasound waves travel through the body, and their speed
of propagation depends on the physical characteristics of the medium they pass
through. In general, the propagation speed of a wave is described by the following
relationship:

v=A-f (2.1)

where v is the velocity of sound waves in a specific tissue, A is the wavelength and
f is the frequency of the wave. The wavelength determines the minimum spatial
resolution required in an image. Higher frequencies result in shorter wavelengths,
which in turn provide better image quality. In ultrasonic devices, the speed of sound
is typically set at 1540 m/s. This value is considered an average for soft tissues in
the human body and is used as a standard reference.

Ultrasound waves interact with body tissues on the basis of their acoustic impedance
(Z), which represents the resistance that a sound wave encounters as it travels
through different types of tissue. The acoustic impedance is defined as the product
between the density of the medium (p) and the velocity of the US (v):

Z=p-v (2.2)
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The unit of measurement for acoustic impedance is the Rayl, defined as kag{S - 106,
Within the human body, the acoustic impedance of biological tissues typically ranges
from approximately 1.38 Rayl, as observed in adipose tissue, to about 1.62 Rayl in
kidney tissue. Significant deviations from this range are found in the lungs (0.26
Rayl), which exhibit very low impedance due to their air content, and in the bones
(7.80 Rayl), which demonstrate considerably higher impedance as a result of their
higher density.

When the wavefront meets an interface, that is a discontinuity in the value of
acoustic impedance, in the passage from a medium having a value Z; to one with a
value Zy, part of the energy is transmitted and part reflected back or diffused due
to irregularities of the encountered interface. The phenomenon can be described by
the Snell’s law (Figure 2.1):

sinf; v;

sinf,  wvys  m (2.3)
where the subscript i refers to the incident wave and r to the reflected one, while
vy and vy are the propagation speeds and 7; 7 are refractive indices in the two
media. If the velocities in the two media are equal, there is no refraction and the
US continues in a straight line without any deviation. If the acoustic impedance of
the crossed medium is equal, there is no reflection, and all the energy of the incident
wave is transmitted to the second medium. If the impedances are different, part of
the US energy is reflected.

incident

reflected ray

refracted ray

Figure 2.1: Snell’s law

In order to understand how much light is reflected and how much is refracted,
we need to focus on two components: the reflected (R) and the transmitted (T)

coefficients, defined as follows:
R= (—ZI_ZQY (2.4)
-\ Zi+ 2y ‘
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with0 < R < 1
T=1-R (2.5)

If Z1 > Z5 or Zy > 73, as in the case of the muscle-bone interface, all the incident
energy is reflected back. [20]

2.2 Ultrasound imaging

An ultrasound imaging system typically consists of a piezoelectric transducer, a
signal amplification circuit and a display device. The transducer is responsible for
generating US pulses and, immediately after transmission, switches to the receive
mode to capture the echoes reflected by acoustic discontinuities encountered as the
pulse propagates through the patient’s body. These discontinuities occur at inter-
faces between tissues with different acoustic impedances, giving rise to reflections
whose return times are directly related to their depth. The flowchart of a typical
echo pulse system is shown in Figure 2.2, and illustrates the signal path from pulse
generation to image display.

The time span between the pulse emission and the reception of the correspond-
ing echo is used to compute the spatial location (depth) of the reflecting surface.
However, since ultrasound signals are attenuated during their travels through bio-
logical tissues, echoes from deeper structures are inherently weaker than those that
are reflected from more superficial interfaces. To attempt to compensate for this
effect, the system employs time-dependent signal amplification as a function of the
echo delay, which is the same as the depth of the target. This action is accomplished
by the Time Gain Compensation (TGC) circuit that adds a time-increasing gain.
This action discriminately amplifies the backscattered echoes based on their time-
of-flight, which is related to the depth of the reflecting object. The TGC generally
functions as a logarithmic amplifier where the factor of amplification is a function
of the echo arrival time. As a result, the depth-dependent attenuation is mitigated,
allowing the final image to primarily reflect variations in acoustic impedance, which
are then encoded using grayscale or color to enhance visual interpretation.[20]

> Transmitter

Receiver

A 4

Demeodulator

A

Scan Converter

Figure 2.2: Flowchart of an echo pulse system
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2.3 Ultrasound probes and display modes

In ultrasound imaging, the interface between the skin and the ultrasound probe is
crucial to the effective transmission of sound waves. When tissues are examined
using ultrasound, microbubbles can form between the skin and the probe, leading
to a high reflection coefficient, severely reducing the quality of the image. The
presence of air disrupts the smooth transmission of sound waves, causing them to
scatter instead of penetrate the tissue effectively. To avoid this issue, a layer of gel
is applied between the probe and the skin. This gel, typically made of a water-
based substance, eliminates the air gap, ensuring that sound waves are efficiently
transmitted into the body, allowing for accurate imaging and better visualization of
internal structures.
Three main types of probes are commonly used (Figure 2.3):

e Linear are typically designed with higher frequencies and feature a rectangular
footprint. These probes are ideal for imaging superficial structures because
they provide high-resolution images

e (Clurvilinear are arranged along a convex face and generally operate at lower fre-
quencies compared to linear probes. The lower frequency allows these probes
to penetrate deeper into the body, making them suitable for imaging deeper
structures.

e Phased-array use an electronically steered beam within a compact array to
generate images. The beam is directed from a single point, which makes these
probes excellent for imaging in confined spaces. [21]

,

PHASED ARRAY LINEAR CURVILINEAR

Figure 2.3: Ultrasound probes type
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Four different modes of ultrasound are used in medical imaging;:

e A-Mode (Amplitude) is the most basic form of ultrasound, where a single
transducer scans through the body along a single line, and the resulting echoes
are displayed on a screen based on their depth.

e B-Mode (Brightness) uses a linear array of transducers to scan a plane through
the body simultaneously. A two-dimensional image is created on the screen
from the data collected, guaranteeing a detailed view of internal structures.
This mode is the most common used for general diagnostic purposes.

e M-Mode (Time Motion) captures a rapid succession of B-mode images that are
displayed in sequence, enabling the observation and measurement of movement
over time. This technique is particularly useful for assessing the motion of
organ boundaries. [22]

2.4 IVC echography

The assessment of the IVC by ultrasound is typically performed with the patient
lying in the supine position. The subcostal window is commonly used to obtain both
transverse and longitudinal views of the IVC (Figure 2.4). For the transverse view,
the ultrasound probe is placed just inferior to the xiphoid process, with the marker
oriented towards the patient’s right side. This orientation produces images where
anatomical structures on the patient’s right appear on the left side of the screen and
vice versa. In this configuration, both the IVC and the Aorta (AO) can typically be
visualized and differentiated.

To obtain a longitudinal view of the IVC, the probe is rotated 90 degrees from
the transverse orientation, aligning the marker cranially.

1

a) b)

Figure 2.4: a)Probe positioning for longitudinal view, b)Probe positioning for
transversal view

The probe is then shifted approximately 1-2 ¢m to the right of the midline while
maintaining visualization of the RA to view the IVC in its long axis. It is important
to sweep the probe carefully to the left of the midline in every patient in order to
clearly identify the AO and avoid confusing it with the IVC. There are very few
instances in which the IVC can be seen but not the AO, while if only the AO is
visualized, the IVC may be totally collapsed.[18]
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Chapter 3

Material and methods

3.1 Objectives and Expected Impact of the Study

The aim of this thesis is to estimate RAP using a non-invasive method. RAP is a
key hemodynamic parameter that provides valuable information about a patient’s
cardiovascular function and volume status. In this work, the focus is placed on the
IVC, whose diameter and respiratory variations have shown significant correlation
with RAP. By combining specific echocardiographic features with others related
to IVC morphology and dynamics, this study explores their predictive value in
estimating RAP. The proposed method is designed to be simple, repeatable, and
applicable in routine clinical practice, including in emergency and intensive care
settings where rapid, non-invasive hemodynamic assessment is crucial. The use
of VIPER software improves this approach by automating the extraction of key
parameters such as RCI, CCI, CI and IVC diameter, making the process faster,
more intuitive, and easily accessible to clinicians.

3.2 VIPER

VIPER is a semi-automated tracking algorithm for the IVC, specifically developed
to detect and track its boundaries in both longitudinal and transverse ultrasound
views, and it can operate in both real-time and offline modes. Its primary objective
is to provide more accurate and reliable estimations of CI and IVC diameters, which
are crucial parameters for the clinical assessment of a patient’s hemodynamic status.
The software offers several practical benefits for healthcare professionals:

e [t eliminates time-consuming manual measurements, providing accurate and
easily interpretable data for assessing a patient’s hydration status

e It delivers quantitative values that can be readily included in fluid therapy
reports

e [t serves as objective evidence to support clinical decision-making in fluid
management [23]

Among the most widely adopted non-invasive techniques in clinical settings for
assessing a patient’s volume status is the ultrasound-based evaluation of the IVC and
the subsequent estimation of the CI. The maximum and minimum IVC diameters
(min(D) and maxz(D) respectively) are measured over a respiration cycle and used
to compute the CI:
mazx (D) — min(D)

maz (D)
The CI provides information about the collapsibility of the investigated blood vessel,
reflecting its mechanical properties, compliance of the vessel and of the surrounding
tissues, transmural pressure. [6]

Despite its popularity, the ultrasound method has significant limitations. It is
time-consuming, subject to coarse approximations, and highly operator-dependent.

Cl=

(3.1)
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viper

Figure 3.1: VIPER logo

The result is that often the operator renounces to use this method by defining the
patient ”full” or "empty”, obtaining from ultrasound a measure only qualitative.
This leads to a substantial loss of clinically relevant information, potentially com-
promising the accuracy of fluid therapy. To address these limitations, VIPER was
specifically designed to provide a more robust and automated alternative. By per-
forming real-time semi-automatic segmentation of the IVC boundaries, the software
enables continuous and accurate tracking of the vessel throughout ultrasound video
sequences. This allows for the extraction of detailed time series, such as diameter
for each frame, offering a dynamic and quantitative view of the IVC behavior. [23]
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Figure 3.2: a) Whole diameter signal and the extraction of CI b) Respiratory com-
ponent and extraction of RCI ¢) Cardiac component and extraction of CCL.

The dynamics of the IVC are influenced by two primary sources of physiological
oscillation (Figure 3.2) : low-frequency fluctuations due to spontaneous respiratory
activity and higher-frequency variations induced by cardiac pulsatility. By apply-
ing frequency-based filtering techniques to the IVC diameter signal extracted from
ultrasound videos, VIPER enables the effective separation of the respiratory and
cardiac components of IVC pulsatility. This, in turn, allows for the computation of
two distinct indices:

e Respiratory Collapsibility Index (RCI) computed by low-pass filtering the
whole diameter time series with a cutoff frequency of 0.4 Hz
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e Cardiac Collapsibility Index (CCI) computed by high-pass filtering the whole
diameter time series with a cutoff frequency of 0.8 Hz [6]

In this thesis, two different algorithms of VIPER software, one developed in Matlab
and one in Python, were employed to analyze and segment the IVC from ultrasound
video recordings provided by expert clinicians.

3.2.1 Python

In the main interface of the VIPER software developed in Python, the user can
select the desired acquisition mode: either offline or live, as well as the ultrasound
view, longitudinal or transverse (Figure 3.3). For the purpose of this thesis, only
the longitudinal view in offline mode was utilized.

Viper

File  View  Settings  Help

> |8 BE B O o9 &8 RO

Offline Long | | Live Short Offline Short

.

USER CAN CHOOSE TO SEGMENT USER CAN CHOOSE EITHER
EITHER IN REAL TIME OR OFFLINE LONGITUDINAL OR TRANSVERSE
SEGMENTATION

Welcome to Viper!

Figure 3.3: Initial Screen of VIPER Software

After selecting the preferred configuration, the software requests the operator
to define a reference scale by selecting two points on the graduated scale adjacent
to the ultrasound image, corresponding to a 5 cm distance (Figure 3.4). This step
is essential for converting pixel-based measurements to real-world units (centime-
ters). The operator is then asked to manually select the center of the vessel to be
analyzed. Immediately after this input, VIPER performs automatic segmentation
of the selected vessel and displays the result on the screen. On the left side of the
interface, the software presents key parameters extracted from the ultrasound data:
mean diameter of the IVC, CI, RCI and CCI, along with a plot showing the temporal
variation of the vessel diameter, expressed in seconds (Figure 3.5).

The software also includes several auxiliary features to enhance usability and
flexibility during analysis. For instance, if the initial segmentation is unsatisfactory,
the user can reinitiate the process by clicking the “Restart” button.

Additionally, VIPER allows the placement of custom markers along the ultra-
sound timeline to annotate specific events or features of interest. Once the desired
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Figure 3.4: Selection of Reference Points on Python algortithm
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Figure 3.5: a)RAP level of the patient based on IVC diameter b) Temporal variations
of diameters c) Segmentation of IVC vessel on Echo Images

segmentation is achieved, VIPER automatically generates and saves an Excel file
containing the extracted data. This file includes 11 columns and a number of rows
corresponding to the video duration, sampled according to the acquisition frequency.
For each sampled time point, the Excel sheet records the following parameters: time,
marker, diameter, RCI and CCI. It also reports several statistical summaries com-
puted over the entire video, such as mean, maximum and minimum diameter, along

with the overall CI, RCI and CCI values.

3.2.2 Matlab

Unlike the Python implementation, the Matlab version of the software does not sup-
port real-time segmentation of the IVC; instead, it requires the ultrasound video to
be uploaded and processed offline. The segmentation process begins with the man-
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ual selection of two high-contrast reference points in the first frame of the video.
These points serve as reference markers for the subsequent tracking algorithm, which
is essential to compensate for positional changes of the vein that may occur during
recording. This step enhances the accuracy of diameter estimation by allowing the
algorithm to follow the vein’s movement throughout the video. Furthermore, the
user defines the upper and lower boundaries of the vein to ensure accurate identifi-
cation of its anatomical structure. A final step involves drawing a line perpendicular
to the vessel, which sets the distal limit of the region of interest and specifies the
IVC segment to be tracked and analyzed in subsequent processing. The mean diam-
eter was then computed by averaging across different diameters and frames, in order
to obtain a robust estimation of the IVC size.[17] As a result, a video is generated
showing the detailed tracking of the selected segment of the IVC throughout the
analysis (Figure 3.6).

PHILIPS MI 1,3 20/01/2025
4342708 FTGM CNR PISA T1S 0,3 13:02:18

i @

Figure 3.6: a)Selection of reference points on Matlab algortithm, b)Selection of the
portion of the vessel to be tracked, c)Tracking of the selected segment

3.3 Echography

The ultrasound videos were acquired using the Philips iE33 xMATRIX echocardio-
graphy system (Philips Healthcare, Andover, MA, USA) in longitudinal view of the
IVC (Figure 3.7). All acquisitions were performed by using a curvilinear probe in
B-mode (brightness mode), which is the standard imaging modality used in clinical
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ultrasound for anatomical visualization. In addition to the IVC ultrasound acqui-
sition, a complete echocardiographic examination was performed for each subject.
From these comprehensive cardiac assessments, additional clinical and functional
features were extracted, which were subsequently included in the dataset. These
features provide complementary information on cardiovascular function and enable
a more integrated analysis in conjunction with the IVC measurements.

Figure 3.7: Representation of Philips iE33 tMATRIX echocardiography system

3.4 Dataset

The final dataset consists of 37 subjects (16 males and 21 females; mean age 67.49
+ 16.81 years), each associated with an ultrasound video of the IVC at Fondazione
Toscana G. Monasterio (FTGM, Pisa, Italy). The analyzed ultrasound videos have
durations ranging from 0.900 to 19.433 seconds, with an average duration of 3.859
+ 4.131 seconds (mean + standard deviation) (Figure 3.8). However, due to the
short duration of several recordings, particularly those under 3 seconds, VIPER was
unable to compute the RCI, which requires a sufficient temporal window to capture
multiple respiratory cycles. As a result, RCI could only be calculated for a limited
number of videos and was therefore excluded from the analysis across the entire
dataset to ensure consistency. The dataset is moderately balanced among the three
RAP level classes, consisting of 15 subjects belonging to class 1, 13 to class 2 and 9
to class 3.

For each video, IVC segmentation was performed using the VIPER software,
implemented both in Matlab and Python, in order to enable a comparative analysis
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Figure 3.8: Histogram of video duration

between the two environments. In addition to the video data, each subject is char-
acterized by a set of complementary features, organized into three main categories:

e clinical variables:

Acronym Name Meaning

SEX Sex male or female

AGE Age categorical variable

BSA Body Surface Area indicator of metabolic mass and it is cal-
culated or measured considering weight and
height

TR Tricuspid Regurgitation | the tricuspid valve, between the right atrium
and ventricle, doesn’t close properly, causing
blood to leak backward

AR Aortic Regurgitation the tricuspid valve, between the lower left
heart chamber and the aorta, doesn’t close
properly, causing blood to leak backward

MR Mitral Valve Regurgitation | the valve between the left heart chambers
doesn’t close fully

DD Diastolic Dysfunction the heart’s ventricles (lower chambers) have
trouble relaxing properly between beats, pre-
venting them from filling with enough blood

Table 3.1: Clinical Variables explained
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e invasive measurements obtained via catheterization:

Acronym | Name Meaning
sPAP Systolic ~ Pulmonary | measure of blood pressure in
Artery Pressure the pulmonary arteries dur-
ing the heart’s contraction
dPAP Diastolic Pulmonary | pressure in the pulmonary
Arterial Pressure arteries during the heart’s
relaxation phase (diastole)
mPAP Mean Pulmonary | measurement of the aver-
Artery Pressure age pressure within the pul-
monary arteries
PCWP Pulmonary Capillary | pressure within the pul-
Wedge Pressure monary capillaries, which is
an indirect indicator of the
left atrial pressure and left
ventricular filling
PVR Pulmonary Vascular | measure of the resistance
Resistance that blood encounters as
it passes through the pul-
monary vasculature
RAP Right Atrial Pressure | RAP indicates the amount
of blood returning to the
heart and the capability of
the heart to pump the blood
into the arterial system

Table 3.2: Catheterization Variables explained

These parameters were both extracted via catheterization and echo.
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e echocardiographic parameters:

Acronym | Name Meaning
HR Heart Rate heart pulsing during echocardiograms
LAVi Left Atrial Volume in- | measurement of the volume of the left
dex atrium, one of the heart’s chambers,
adjusted for body surface area
LVEF Left Ventricular Ejec- | measurement of the percentage of
tion Fraction blood ejected from the left ventricle
with each heartbeat
LVMi Left Ventricular Mass | measurement that reflects the mass of
index the left ventricle of the heart, adjusted
for the patient’s body surface area
E/E’ E/E’ ratio ratio between early mitral inflow veloc-
ity (E) and early diastolic mitral annu-
lar velocity (E’), it is used to estimate
left ventricular filling pressures
CI Cardiac Input volume of blood entering the heart dur-
ing diastole, or the "filling” phase
TRV Tricuspid Regurgita- | speed at which blood flows back into
tion Velocity the right atrium from the right ventricle
through the tricuspid valve
RV FAC | Right Ventricular | percentage change in the right ventri-
Fractional Area | cle’s area during the heart cycle
Change

Table 3.3: Echo Variables explained

These features were further enriched by additional measurements extracted di-

rectly by the VIPER software: IVC diameter, RCI, CCI and CI.

3.4.1 Preprocessing

In order to make the dataset correctly structured and valid before model develop-
ment, a systematic data cleaning process was adopted. The important steps taken
are presented below:

1. Handling Missing Values: in each of the variables, the presence of missing
values (NaN) was tested. Any variable with more than 50% missing data with
respect to the total number of subjects was excluded from subsequent analysis
because their inclusion could compromise the robustness of the models.

2. Assessment of Distribution Symmetry:the skewness of each of the variables was
calculated to evaluate the symmetry of its distribution. Skewness is a measure
of the tendency of the distribution to be asymmetric relative to the mean.
A near zero skewness shows that the distribution is symmetric; positive and
negative values, however, represent right-skewed and left-skewed distributions,

respectively.
n

e ()

=1

(3.2)

Skewness =
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where:

e n is the total number of observations in the dataset

e 1; is the i-th data point

e 7 is the sample mean, defined as z =1 3" | x;

e s is the sample standard deviation, given by s = \/ﬁ Yoz, —x)?

3. Imputation of Missing Values: based on the previously computed skewness,
missing values were imputed using either the mean or the median. Variables
with approximately symmetric distributions (i.e., skewness near zero) were
imputed with the mean, while those exhibiting asymmetry were imputed using
the median, to better preserve the distribution’s characteristics.

4. Outlier Detection: outliers were identified using the Interquartile Range (IQR)
method, which creates a cutoff based on the 25th (Q1) and 75th (Q3) per-
centiles (Figure 3.9). Data points falling outside the range

(@1 —1.6-1QR, Qs + 1.6 - IQR] (3.3)
were considered outliers.

Outliers Detection
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Figure 3.9: Qutlier Detection

5. Outlier Treatment: outliers identified were not excluded but instead imputed
using the median of the individual variable. This approach reduces the influ-
ence of extreme values while maintaining the overall structure of the dataset.
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3.5 Statistical Analysis

Statistics is a discipline that combines elements of mathematics and logical reason-
ing to analyze and interpret data. While statistics is grounded in mathematical
theory, many of its key concepts are conceptually simple and based on a few es-
sential assumptions. Broadly, statistics can be divided into two main branches:
descriptive statistics, which are used to give a brief idea and description of the main
features of a dataset, and inferential statistics, which allow us to draw conclusions
and make generalizations about a larger population based on data obtained from a
representative sample. [24] In this thesis, descriptive statistics were employed as an
initial step to explore and better understand the structure and characteristics of the
dataset. Given the large number of variables, this approach was essential to gain a
deeper understanding of the distribution, central tendency, and variability of each
feature. In addition, descriptive analyses facilitated the identification of potential
patterns and relationships within the data, including the presence of correlations be-
tween variables. These preliminary investigations not only guided subsequent data
preprocessing steps but also provided a foundation for the development of more
advanced models.

3.5.1 Shapiro-Wilk test

Shapiro-Wilk test is used to test whether a sample is from a normal distribution.
The null hypothesis provides for normality of the sample: in case the resulting p-
value is below the level of significance needed (usually a@ = 0.05), then the null

hypothesis is not true, i.e., the sample is not likely to follow a normal distribution.
[25]

3.5.2 Ordinary Least Product Regression

Ordinary Least Product (OLP) regression, also known as standard major axis re-
gression, is a statistical method used to assess systematic disagreement between
two measurements when both are affected by random error. Unlike Ordinary Least
Square (OLS) regression, in which one variable is taken to be free from error, OLP
treats both variables equally and is therefore particularly well suited for method
comparison studies where there is not a clear dependent variable. OLP regression
minimizes the product of vertical and horizontal deviations of data points from the
regression line, rather than OLS where only the vertical deviations are minimized
(Figure 3.10).
The loss function is:
n n
e=Y dw-by=> (v;i—&)(y; — i) (3.4)
i=1

i=1
where

e 1; and y; are the observed values for i-th subject

e 1; and y; are the estimated values obtained with OLP regression

The general formula for the OLP regression line is:

y=a+bx (3.5)
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Data taken from:
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Figure 3.10: OLP Regression, minimisation of the product of x and y residuals [26].

where a represent the intercept and b represent the slope, but firstly it is necessary
to compute these two parameters. The simplest way to compute the slope b is to
use the ratio of the standard deviation of y and x

_ 5y _ > i (Wi — 9)?
g ¢2Lm—w2 .

where
e 5, and s, represent the standard deviation of y and x
e i and T represent the mean values of y and x

Finally, since the OLP regression line passes through the point ¢ and Z, the intercept
a, can be obtained from the formula:

a=17—bx (3.7)

OLP is especially useful when the goal is to detect fixed bias (a constant difference)
and proportional bias (a difference that changes with magnitude) between two meth-
ods. By analyzing the confidence intervals of the intercept and slope, researchers
can infer the presence of fixed or proportional bias: if the 95% Confidence Interval
of the intercept does not include 0, this indicates a fixed bias. If the 95% Confidence
Interval of the slope does not include 1, this indicates a proportional bias. In our
study confidence intervals of a and b were calculated considering Fisher’s distribu-
tion, the Pearson correlation coefficient r between the two methods and the number
of subjects. [27]
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OLP regression has been performed in order to confront the estimated diameter
extracted with both Python and Matlab algorithm and the measured diameter of
the operator. Even if the measured diameter of the operator represent the gold
standard of our study, it may be affected by error so that’s why OLP regression has
been chosen.

Finally, Pearson correlation coefficient » was calculated for all models: it is
defined as the product-moment correlation between two variables and quantifies the
strength and direction of their linear relationship. It is calculated using the formula:

r= > i (@i — ) (yi — ) .
VI 2P o - 0P (38)

3.5.3 Bland Altman Plot

The Bland-Altman plot is a well-established graphical method for evaluating the
agreement between two quantitative measurement techniques. It was originally pro-
posed to quantify the difference between paired observations and has since become
one of the most commonly used tools in method comparison studies. In this plot,
the differences between paired measurements are plotted against their average, pro-
viding a clear visual representation of systematic disagreement. [27]

Even in the presence of a fixed bias between the software-derived and operator-
derived measurements, the Bland-Altman plot remains a valuable tool for evaluating
measurement, agreement. Its primary role lies in the visualization of the limits of
agreement (LOA), defined as the interval where 95% of the differences between
methods are expected to fall. By plotting the individual differences against the
mean of the two methods, researchers can visually assess the consistency and spread
of the measurement differences. In this study LOA are computed by first calculating
the mean of the differences represented by the grey line in the middle:

n n

d;y = %Z(xz - yz) = %Z da:iyi (39)

i=1 i=1

Superior and inferior LOA are then calculated:

_ _ 1 <& _
Aoy + 254y = dpy + 2 \ - > oy, — day)? (3.10)
=1
_ _ 1 <& _
oy — 254y = dyy — 2 \ - > (duy, — day)? (3.11)
=1

Thus, despite a known fixed bias, the Bland-Altman plot contributes important
insights into the reliability and clinical interpretability of the agreement between
two measurement methods.

3.5.4 Wilcoxon Signed Rank Test

The Wilcoxon signed rank test, which is also known as the Wilcoxon signed rank sum
test and the Wilcoxon matched pairs test, is a non-parametric statistical test used
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to compare two dependent samples (in other words, two groups consisting of data
points that are matched or paired). As with other non-parametric tests, this test
assumes no specific distribution of the data being analyzed. Non-parametric tests,
also known as distribution-free tests, make no assumptions about the shape of the
distributions of your data. They are used to test hypotheses when the assumptions
for the normality of the data are not met. [28]

Paired data arise when observations from one independent sample are uniquely
matched or related to observations in another independent sample. In this study
a confront has been performed between the parameters extracted with Matlab al-
gorithm and the ones extracted with Phyton algorithm. The hypotheses for the
Wilcoxon signed rank test for paired data are as follows:

e the null hypothesis (HO) is that the difference between the paired observations
in the population is zero

e the alternative hypothesis (H1) is that the difference between the paired ob-
servations is not equal to zero

Based on the p-value obtained from the statistical test and using a significance
level of 0.05, it was determined whether the observed differences are statistically
significant. If the p-value was less than 0.05, this indicates that the null hypothesis
can be rejected, suggesting that a statistically significant difference exists between
the compared groups or conditions. Conversely, if the p-value was greater than
or equal to 0.05, the result is not statistically significant, and there is insufficient
evidence to reject the null hypothesis.

3.6 Models

Following the statistical analysis, Machine Learning (ML) models were developed
with the objective of non-invasively predicting RAP. To achieve this, all invasive
variables obtained through catheterization were excluded from the dataset (Table
3.2). Subsequently, two distinct datasets were created, differing in the set of features
used: one dataset included variables extracted using Matlab-based algorithm, while
the other included variables extracted using Python-based tools. Prior to model
training, both datasets were standardized using Z-score normalization in order to
ensure that each feature contributed equally to the learning process. This transfor-
mation centers the data around zero with unit variance, improving convergence and
performance in many ML algorithms.

="k (3.12)
where:
e 1; is the observed value for :—th subject,
e i is the sample mean,
e o is the sample standard deviation.
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3.6.1 Analysis of correlation between features

An initial exploration of the dataset was carried out to reduce redundancy among
the input features and improve model generalization. Pairwise correlations between
variables were calculated using the Spearman correlation coefficient, rather than
Pearson’s, because not all features were normally distributed, violating one of the
key assumptions of Pearson correlation. Spearman, being a non-parametric measure
based on rank-order, is more appropriate for this context, as it does not require the
data to follow a normal distribution and is more robust to outliers.

Following this, a high correlation threshold (approximately 0.8-0.9) was estab-
lished to identify strongly correlated feature pairs. For each pair exceeding this
threshold, one of the two variables was removed, based on their correlation with the
target variable (RAP). Specifically, the variable with the weaker association with the
target was discarded, while the more informative feature was retained. This method
helped ensure that the final feature set preserved the most predictive information
while reducing multicollinearity. This procedure was performed for almost all the
models described in the following sections.

3.6.2 Linear Model

The initial modeling approach was based on the use of the fitlm function, which fits
a standard ordinary least squares (OLS) linear regression. This method estimates
the relationship between a set of predictor variables and a response by minimizing
the sum of squared residuals:

mﬁin Z(yl —x,;0)* (3.13)

where:
e y; is the observed value of the target (dependent) variable for the i-th instance,

e 1; is the row vector of input features (independent variables) corresponding to
the i-th observation,

e (3 is the column vector of model coefficients (also called weights or parameters)
associated with the input features. These are learned during the training pro-
cess and define the linear relationship between the predictors and the response
variable,

e n is the total number of observations (samples).

While fitlm provides a simple and interpretable baseline, it relies on strong as-
sumptions(such as linearity, lack of regularization and independence of errors) and
can perform poorly in the presence of multicollinearity or irrelevant features. Although
a careful feature selection process was conducted, including pairwise correlation anal-
ysis and the removal of highly collinear variables based on the Variance Inflation
Factor (VIF), the linear model implemented with Matlab’s fitlm function yielded
limited predictive performance likely due to residual multicollinearity and the in-
ability of linear regression to capture complex, non-linear relationships.
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To address these limitations,regularized linear models were implemented: Ridge,
Lasso, and Elastic Net regression.These techniques modify the loss function of stan-
dard linear regression by adding a penalty term that discourages overly complex
models, promoting better generalization.

e Ridge Regression (L2 Regularization) Ridge regression adds a penalty
equivalent to the square of the magnitude of beta coefficients:

n p
min S - xB) A B (3.14)
i=1 j=1

where:
— A is the regularization parameter, which controls the strength of the
penalty term. A higher A imposes more regularization,
— fB; is the coefficient corresponding to the j-th feature,
— p is the number of features (predictors) in the dataset.
This technique does not set any coefficients exactly to zero, making it suitable

for situations where all variables are believed to have some effect on the variable
that wants to be predicted.

e Lasso Regression (L1 Regularization) Lasso regression employs L1 reg-
ularization, adding a penalty equal to the absolute value of the magnitude of
coefficients:

n p
min Y (y: = x8)* +AD_ 16| (3.15)
i=1 Jj=1

This approach can shrink some coefficients to exactly zero, effectively perform-
ing variable selection and yielding sparse models (it is used when only a few
predictors actually influence the response).

e Elastic Net Regression (L1 4+ L2 Regularization) Elastic Net combines
both L1 and L2 regularization penalties:

min} (= x:8)° + Aoy |5+ (1-a) 5 (3.16)
i=1 j=1 j=1

where « is a mixing parameter that balances L1 and L2 penalties:

— a=0 equivalent to Ridge (pure L2)
— a=1 equivalent to Lasso (pure L1)
— 0 < a < 1 combination of both
This hybrid approach retains the variable selection benefits of Lasso and the

coefficient shrinkage properties of Ridge, making it particularly useful when
dealing with datasets containing highly correlated predictors. [29]
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3.6.3 Random Forest

A Random Forest is an ensemble ML algorithm that merges several decision trees.
Each tree in the forest is trained on a random subset of the data (bootstrap sampling)
and only a random subset of features is considered when making splits (feature
randomization).

For classification tasks, the forest predicts by majority vote of trees, while for
regression tasks, it averages the predictions (Figure 3.11).

Random Forest Classifier

X dataset

o i "R

N, features N, features N, features N, features
TREE #1 TREE #2 TREE #3 TREE #4
CLASS C CLASS D CLASS B CLASS C

[ | | |

Figure 3.11: Random Forest Classifier

The model’s strength comes from its “wisdom of crowds” approach: while in-
dividual trees might make errors, the collective decision-making process tends to
average out these errors and arrive at more stable predictions. [30]

Feature selection was performed using Matlab’s predictor Importance function,
which is specifically designed for ensemble models such as Random Forests. This
function quantifies feature importance by analyzing how much each feature improves
the quality of the splits across all decision trees in the ensemble. The core idea is
based on measuring the reduction in node impurity (commonly using the Gini index
for classification or MSE for regression) whenever a feature is used to split a node in
a decision tree. Each split that involves a particular feature leads to a certain gain
in "purity,” meaning that the resulting groups are more homogeneous with respect
to the target classes. This gain is weighted by the number of observations affected
by the split, reflecting its overall impact. By summing these weighted gains across
all trees and all relevant splits, the algorithm assigns an importance score to each
feature. Features that consistently contribute to purer and more informative splits
are considered more important. [31]

3.6.4 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a powerful supervised learning algorithm used
for both classification and regression tasks, with a primary focus on classification.
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The core idea of SVM is to find the optimal hyperplane that best separates data
points belonging to different classes. This hyperplane is chosen in such a way that
it maximizes the margin between the nearest points of the two classes, which are
called support vectors (Figure 3.12c¢).
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Figure 3.12: a)One-vs-All: training of n classifiers, one for each class against all
others, b) One-vs-One: training of @ classifiers,one for each pair of classes,
c)SVM for classification task

A larger margin generally leads to better generalization performance for unseen
data. SVM is useful when it comes to handle high-dimensional spaces and can be
extended to many types of different data because the use of kernel functions allows
to map non-linearly separable data into a higher dimension where one can linearly
separate it. Linear, polynomial, and radial basis function (RBF) kernels are popular
kernel functions. [32] Even-though Support Vector Machines are meant to perform
binary classification, they can be modified to handle multi-class classification prob-
lems using two common strategies: One-vs-All (OvA) and One-vs-One (OvO). With
the application of the One-vs-All method, for every class, an SVM model is trained
with that class as the positive class and all the rest as negative (Figure 3.12a).During
prediction, the maximum trust score determines the class label. Contrarily, the One-
vs-One method will train a single SVM per possible pair of classes and thus result
@ classifiers for n classes.Each classifier votes for a single class out of its two
classes, and the overall prediction is achieved by majority voting(Figure 3.12b). Al-
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though One-vs-One can be computationally more intensive due to the number of
classifiers required, it often provides higher accuracy by focusing on class-specific
boundaries. [33]

3.6.5 MetaClassifier

Stacking is an ensemble learning technique that combines the outputs of multiple
individual models to enhance predictive performance. Rather than relying on a
single classifier, stacking uses the predictions from several base models as inputs for
a final model that learns how to best combine them, known as the meta-learner.

In this work, a Support Vector Machine (SVM) and a Random Forest were
trained using as input the predictions produced by two independently trained models
(Ridge Model and SVM Model).The idea is that each base model captures different
patterns or characteristics in the data, and the final classifier learns to interpret and
integrate their outputs in a more informed way. This approach can help mitigate
the limitations of each individual model and often leads to improved accuracy and
generalization. [34]

3.6.6 1D CNN

Convolutional Neural Network (CNN) is one of the most popular and used Deep
Learning (DL) networks. The advantage related to CNN is that it is capable to au-
tomatically detects the most relevant features without any human supervision, which
makes it the most used. The structure of CNNs takes inspiration from neurons in
human and animal brains. A commonly used type of CNN consists of numerous con-
volution layers preceding pooling layers, while the ending layers are Fully Connected
(FC) layers. [35]

The general architecture of a CNN, as shown in Figure 3.13, can be divided into
two main phases: feature extraction and classification. During the feature extraction
phase, the network automatically learns the most relevant features from the input
through a series of layers, including convolutional layers, ReLLU activation layers
and max pooling layers. These layers work together to identify spatial structures
and recognize patterns within the data. The second phase, classification, uses the
extracted features to assign the input to a specific category. This stage typically
involves fully connected layers that interpret the high-level features and produce the
final output.

Here’s a breakdown of the main layers in CNN architecture:

e convolutional layer: this layer performs a convolution operation, which is to
apply filters (kernel) to the input image to generate a feature map useful to
detect basic patterns, like edges, corners, and textures.

e pooling layer: this layer decreases the spatial dimensions of the feature map
while preserving the essential features. This reduces the risk of overfitting by
summarizing the features extracted in the convolutional layer and also lowers
computational costs.

e fully connected layer: this layer connects every neuron in one layer to every
neuron in the next. The flattening process is used to convert all the feature
maps into a one-dimensional vector.
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Figure 3.13: General architecture of a CNN

e dropout layer: this layer randomly deactivates a fraction of neurons during
training to avoid overfitting. This prevents the model from relying too much
on specific neurons, helping it generalize better on unseen data.

e activation function: this layer introduce non-linearity into the model,enabling
it to capture complex relationships in the data.The most common activation
function are ReLu,sigmoid,softmax. [36]

CNN can be distinguished based on the dimension of the convolutional layer.
While 2D convolutional layers are widely used in image processing, 1D convolutional
layers are network layer that performs convolution operations on one-dimensional
data. 1D convolutions are particularly useful for extracting local patterns from
sequential data, like peaks or valleys in time-series signals. [37]

In this thesis, a 1D CNN was employed to model the temporal dynamics of the
IVC diameter. The input data to the network consisted of time-series sequences of
IVC diameters automatically extracted using the VIPER software. This architec-
ture was chosen due to its ability to efficiently capture local patterns and variations
over time, making it particularly suitable for sequential medical data. To further im-
prove performance, a hybrid neural network architecture was developed. This model
combined two parallel input branches: one processing the temporal IVC diameter
signals via the 1D CNN, and the other receiving numerical features extracted from
the ultrasound data.

3.7 DMetrics

To evaluate which model offers the most accurate and reliable prediction of RAP,
a thorough performance assessment was conducted using a range of classification
metrics. As a first step, confusion matrices were generated for each model in order to
analyze the distribution of true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN). This allowed for a detailed understanding of the
types of errors made by each model. Subsequently, a set of standard evaluation
metrics was applied to quantify the predictive performance. These included:

39



Accuracy
TP+ TN

" TP+TN+FP+FN
This metric represents the proportion of correctly classified instances (both
positive and negative) over the total number of cases. It provides a general
measure of overall model performance but can be inaccurate in imbalanced
datasets where one class predominates.

ACC (3.17)

Precision

TP

PR— —
i TP+ FP

(3.18)
Precision measures the proportion of true positive predictions among all in-
stances classified as positive by the model.

Recall (or sensitivity)
TP

Recall = ——— 3.19
T TPYEN (3.19)
Recall indicates the ability of a model to correctly identify all relevant positive
cases. A high recall indicates that the model is able to detect most of the
positive instances, minimizing missed cases.

Specificity
TN

—_— 2
TN+ FP (3:20)

specificity =
Specificity indicates the ability of the model to correctly identify negative
instances, thus minimizing false positives which implies the reduction of false
alarms.

F1 score
Precision - Recall

FS =2 (3.21)

" Precision + Recall
The F1 score represents the harmonic mean of precision and recall, offering a
balanced metric that accounts for both false positives and false negatives. This
metric is especially useful when working with datasets that are not perfectly
balanced, since it provides a more balanced evaluation of model performance
and it mitigates the informations given by precision or recall alone.

Since the classification problem faced in this study is a multi-classification prob-
lem (three classes in consideration), evaluation metrics such as precision, recall,
specificity, and Fl-score were computed with a One-vs-All strategy. Here, every
class is individually considered to be the positive class while the other two are con-
sidered to be negative, thus allowing the computation of the respective metrics for
every class individually. To provide an overall estimate of the performance of the
model across the tree classes,the macro-average was employed, which computes the
unweighted mean of the metrics across all classes. In this manner, each class con-
tributes equally to the final assessment. Also, since the dataset employed in this
analysis is relatively well balanced over the three classes, the application of macro-
averaging is appropriate and does not introduce large bias.
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Chapter 4

Results

This chapter reports the results of the present study, which investigates a non-
invasive alternative for estimating RAP. The analysis focuses on identifying corre-
lations between RAP and echocardiographic parameters, particularly the diameter
of the IVC. The aim is to evaluate whether ultrasound-based measurements can
reliably reflect central venous pressure, thereby offering a potential substitute for
traditional invasive methods.

4.1 Statistical Analysis

4.1.1 Test
e Shapiro-Wilk test

This test has been performed on our final dataset to verify the normal dis-
tribution of each variable (using a significance level of o« = 0.05) and showed
that out of 32 variables, 22 of them have a normal distribution and the 10 left
have a NON normal distribution (Figure 4.1 and Figure 4.2).
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Figure 4.1: Histogram of Normal Variables
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e Wilcoxon Signed Rank test

To assess whether the measurements obtained from the Matlab and Python
algorithm differed significantly, a Wilcoxon signed-rank test was conducted for
each parameter. The resulting p-values are reported in Table 4.1.

15 20 25 30 35 40 45 50

Feature p-value
IvC 0.1561
Max Diameter 0.8034
Min Diameter 0.0801
Caval Index 0.1184
Cardiac Caval Index | 2.02 x 107

Table 4.1: p-values obtained from the Wilcoxon signed-rank test comparing the mea-
surements estimated by the Matlab and Python algorithm for each parameter.

4.1.2 Graphs
e OLP

Figures 4.3b and 4.3c illustrate the comparison between automated and man-
ual measurements of the IVC diameter. In both plots, each point represents
a paired observation, with the x-axis indicating the automatic estimate and
the y-axis showing the corresponding manual measurement performed by the
operator. Figure 4.3a further illustrates a direct comparison between the two
algorithm tools, with Matlab algorithm measurements plotted on the x-axis
and Python algorithm measurements on the y-axis. The red line represents the
best-fit OLP regression line that minimizes the loss function, while the dashed
line corresponds to the identity line (y = x), which denotes perfect agreement
between the two methods. The regression analysis yielded the following 95%
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confidence intervals, which are summarized in Table 4.2. The corresponding
Pearson correlation coefficients are reported in Table 4.3.

Algorithm Slope CI | Intercept CI
Python 0.58 - 1.04 0.77 - 8.02
Matlab 0.55 - 1.00 1.17 - 8.35

Matlab vs Python | 0.86 - 1.06 | -1.25 - 2.03

Table 4.2: 95% confidence intervals

Algorithm Pearson Correlation Coefficients r
Python 0.5149
Matlab 0.4839
Matlab vs Python 0.9507

Table 4.3: Pearson Correlation Coefficients r performed on each model

Operator

5 10 15 Pyt2:10n 25 30 35 5 10 15 MaZtOIab 25 30 35
Figure 4.3: a) OLP Regression of diameter estimated with Matlab vs diameter es-
timated with Python algorithm , b)OLP Regression of diameter measured from the
operator vs diameter estimated with Python algorithm, ¢) OLP Regression of diam-
eter measured from the operator vs diameter estimated with Matlab algorithm
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Bland Altman plot

Figures 4.4 display the Bland-Altman plots used to assess the agreement be-
tween the reference diameters and those estimated using the Python and Mat-
lab algorithm, respectively. For each pair of measurements, the mean of the
two values is reported on the x-axis, while the corresponding difference (refer-
ence — estimated) is reported on the y-axis. In both figures, the solid grey line
in the center represents the bias, i.e., the mean of the differences between the
reference and estimated values. This line indicates the presence of any sys-
tematic offset between the two measurement methods. The two dashed lines,
located above and below the bias line, represent the limits of agreement.
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Figure 4.4: a)Bland-Altman plot of Matlab and Python algorithm, b)Bland-Altman
plot of Operator and Python algorithm, ¢) Bland-Altman plot of Operator and Matlab

algorithm

Histograms and Boxplots

The figures below present a comparative analysis of the variables obtained from
the two algorithm tools, Matlab and Python algorithm. The left panel displays
overlaid histograms of the measured variables. The red bars represent the
values derived from Python, while the black bars correspond to those computed
with Matlab. The right panel shows boxplots of the values normalized using
z-score transformation. Each dot represents an individual measurement, and
the gray connecting lines link the values from the same subject across the two
methods. The red boxes illustrate the interquartile range, the median, and
potential outliers, marked as isolated points (e.g., the red asterisk)
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Figure 4.5: Comparison of IVC diameter measurements using Python and Matlab.
Left: overlaid histograms of diameter distributions. Right: boxplots with connections
per subject
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Figure 4.6: Comparison of IVC max diameter measurements using Python and Mat-
lab. Left: overlaid histograms of diameter distributions. Right: boxplots with con-
nections per subject
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Figure 4.7: Comparison of IVC min diameter measurements using Python and Mat-
lab. Left: overlaid histograms of diameter distributions. Right: boxplots with con-
nections per subject
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Figure 4.8: Comparison of CI measurements using Python and Matlab. Left: over-
laid histograms of diameter distributions. Right: boxplots with connections per sub-
ject
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e Correlation table

To assess the consistency between the two implementations, a Spearman corre-
lation matrix was computed, as shown in Figure 4.10. This figure presents the
correlation coefficients between corresponding variables obtained from Matlab
and Python. High correlation values indicate a strong agreement between the
two computational environments.

ivc_Python 0.8
0.6
dmax_Python
dmin_Python
10
Cl_Python| -0.45 | -0.26 | -0.51
1-0.2
CCIl_Python | -0.35 | -0.22 | -0.42 104
\\@’\\do \\@’\\@\0 @9’\\@\0 \\@’@\0 @a’\\@\o

.\\1‘0/ é«\@‘f-/ 6«\\(\/ O\/ 00\/

Figure 4.10: Spearman correlation matrixz between the wvariables of Matlab and
Python
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4.2 Model Comparison

4.2.1 Guidelines

Before performing the comparison between the developed models, it is shown how
the clinical guidelines traditionally used to estimate RAP based on IVC diameter
and collapsibility index (Table 1.2) are employed to assess the model performance.
Confusion Matrix (Figure 4.11) and metrics (Table 4.4) are shown below. This step
allows to validate the relevance of the models obtained with Matlab and Python
algorithm in the clinical context and to provide a baseline for comparing their pre-
dictive capabilities.

Metrics Value
Accuracy 0.54
Precision 0.58
Recall 0.52
Specificity 0.75
F1-Score 0.52

Table 4.4: Metrics of RAP guidelines
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Figure 4.11: Confusion Matrixz of RAP guidelines
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4.2.2 Matlab algorithm
e Linear Model

In this section are shown the results of each regularized linear model:

— Ridge Regression: to determine the optimal value of the regularization
factor A , a range of candidate values is explored using a grid search
approach on a logarithmic scale. For each candidate A, a ridge regression
model is trained using leave-one-out cross-validation (LOOCV), and the
corresponding mean squared error (MSE) is computed.The value of A
that results in the lowest average MSE across all folds is then selected as
the optimal regularization parameter (Figure 4.12).
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Figure 4.12: Cross-Validated MSE of Ridge Regression

The final model was then trained using this optimal A and validated again
using LOOCV. Finally, confusion matrix (Figure 4.13) and classification
performance metrics such as accuracy,precision, recall, specificity, and
F1 score were calculated to evaluate the model (Table 4.5). The features
selected for the model and their weights are also shown below in Table
4.6.
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Features Weight
PCWP_echo 2.0693
CI_Matlab 1.3442
ci 1.2490
IVC_Matlab 1.2382
Age 0.7042
Metrics Value PAPM _echo 0.5399
Accuracy 0.65 Lavi 0.5110
Precision 0.72 rv_fac 0.4919
Recall 0.67 hr 0.3844
Specificity 0.82 Dmin_Matlab 0.3445
F1-Score 0.67 BSA 0.2701
lvmi 0.2491
Table 4.5: Metrics of Ridge Model PVR _ocho 0.1908
lvef 0.1845
e_e’ 0.0463
CCI_Matlab 0.0108

Table 4.6: Feature ranking with the Ridge
model

True Class

Predicted Class

Figure 4.13: Confusion Matriz for Ridge Model
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— Lasso Regression: as in RIDGE regression, the optimal A value was
the one that minimized MSE during cross-validation. The final model
was then computed by using the optimal A value and validated with
a LOOCV. The feature selection results in the identification of only 6
features from the initial dataset (Table 4.8), in comparison to the 16 fea-
tures retained by the Ridge regression model. Finally, Confusion Matrix
(Figure 4.14) and metrics (Table 4.7) were computed.
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Figure 4.14: Confusion Matriz for Lasso Model

Features Weight
Metrics Value PCWP_echo 1.8347
Accuracy 0.54 ci 0.7598
Precision 0.70 IVC_Matlab 0.3357
Recall 0.56 Age 0.2927
Specificity 0.76 PAPM _echo 0.0682
F1-Score 0.55 e_e’ 0.0424

Table 4.7: Metrics of Lasso Model Table 4.8: Feature ranking with the Lasso
model

— Elastic Net Regression: a grid search was performed over a predefined
range of alpha values to identify the optimal alpha that minimizes the
mean squared error (MSE) in the Elastic Net regression. The final model
was then built using this optimal alpha (a= 0.1) along with the A value
that achieved the minimum MSE for that alpha. The feature ranking
obtained through this model constitutes a middle ground between the
results of the two preceding models, with a total of 13 features being
selected, as detailed in Table 4.10. Confusion Matrix (Figure 4.15) and
metrics (Table 4.9) are shown in the images below.
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Figure 4.15: Confusion Matriz for Elastic Net Model

Features Weight

PCWP _echo 0.8946

ci 0.6336

PAPM _echo 0.4870

Metrics Value ee’ 0.4475
Accuracy 0.54 Age 0.4420
Precision 0.69 IVC_Matlab 0.3904
Recall 0.56 CI_Matlab 0.3029
Specificity 0.76 rv_fac 0.2455
F1-Score 0.54 lvmi 0.2318
Dmin_Matlab 0.1996

Table 4.9: Metrics of Elastic Net Tvef 0.0463
Model PVR_echo 0.0445
lavi 0.0335

Table 4.10: Feature ranking with the
Elastic Net model

e Random Forest: feature selection was evaluated by how much each feature
improves the quality of the splits across all decision trees (Figure 4.16). Only
the features with an importance greater than a predefined threshold (the mean
of all importance values) were retained, as shown in Table 4.11.

These selected features were then used to train the final classification model us-
ing a Random Forest with 1000 trees. The model’s performance was evaluated
using the Out-of-Bag (OOB) prediction method, which provides an unbiased
estimate of the classification error by using the samples not included in the
bootstrap training sets. In the figure below is shown how OOB Error changes
by increasing the number of trees (Figure 4.17).
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Figure 4.17: OOB Error in function of tree number

These unused observations, referred to as ”out-of-bag” samples, can then be
used to evaluate the tree’s performance. The OOB predictions were used
to calculate the confusion matrix (Figure 4.18) and the overall classification
metrics (Table 4.12).
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Figure 4.18: Confusion Matrixz of Random Forest Model

Features Weight

PCWP _echo 0.5657 Metrics Value
e_e’ 0.2555 Accuracy 0.62
Age 0.2349 Precision 0.63
ci 0.1840 Recall 0.61
Dmax_Matlab 0.1654 Specificity 0.80
dPAP _echo 0.1493 F1-Score 0.62
sPAP _echo 0.1389

Table 4.12: Metrics of Random Forest
Table 4.11: Feature ranking with the Model
Random Forest model

e Support Vector Machine: feature selection has been performed with back-
ward sequential feature selection strategy, using a non-linear Support Vector
Machine (SVM) with a radial basis function (RBF) kernel as the evaluation
model. In this approach, features were progressively removed one by one
based on their impact on the classification error: at each step, the feature
whose removal caused the smallest increase or the greatest reduction in clas-
sification error was discarded. After identifying the optimal subset of fea-
tures (Table 4.14), the final classification model was trained using only the
selected variables. Model performance was then evaluated using a Leave-One-
Out cross-validation strategy. In the figure below are shown the Confusion
Matrix (Figure 4.19) and metrics (Table 4.13).
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Figure 4.19: Confusion Matriz of SVM model

Metrics Value
Accuracy 0.68 Features
—C - PCWP _echo
Precision 0.64
PVR_echo
Recall 0.62 CL Matlah
Specificity 0.83 —ard
F1-Score 0.61 Table 4.14: Feature selected with the
SVM model

Table 4.13: Metrics of SVM Model

e MetaClassifier To further improve classification performance, a stacking
strategy was implemented by combining the predictions of two base models: a
Ridge regression model and a Support Vector Machine (SVM) classifier. The
continuous predictions from the Ridge model were discretized into the same
three classes used for the SVM. These outputs were then stacked to form a
new feature set, which served as input for a meta-classifier (SVM model) . The
meta-classifier was trained using a leave-one-out cross-validation (LOO-CV)
approach. Confusion Matrix (Figure 4.20) and metrics are shown below (Table
4.15).
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True Class

10

8 Metrics Value
Accuracy 0.73

6 Precision 0.75
Recall 0.73

4 Specificity 0.86
F1-Score 0.74

2

Table 4.15: Metrics of Meta-
0 Classifier

Predicted Class

Figure 4.20: Confusion Matriz of MetaClassifier

e 1D CNN

True Class

To ensure data quality and consistency, ultrasound videos with a duration
shorter than 1.5 seconds were excluded from the dataset, resulting in the
removal of 7 samples. Model evaluation was conducted using a 5-fold cross-
validation strategy, with stratification constraints applied to guarantee that
each fold contained at least one subject from each of the three target classes.
The architecture of the CNN adopted in this study is depicted in Figure 4.21.
The left branch is designed to process the temporal sequences corresponding
to the 30 subjects and consists of 11 layers. Notably, both max pooling and
average pooling operations are implemented in parallel within this branch,
with the objective of enriching the feature representation and maximizing the
informational content derived from each subject. The output of this branch
is subsequently concatenated with that of the right branch, which receives
as input the numerical features extracted from the original dataset for each
subject.

10
Metrics Value
Accuracy 0.73
Precision 0.75
Recall 0.73
Specificity 0.87
F1-Score 0.73
Table 4.16: Metrics of 1D

CNN

Predicted Class

Figure 4.21: Confusion Matrix of 1D CNN
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4.2.3 Python algorithm

All considerations and procedures described for the Matlab dataset were also ap-
plied to the Python dataset. This includes data preprocessing, feature selection,
and model training and evaluation strategies. The only difference between the two
pipelines lies in the specific set of variables provided by each algorithm.

e Linear Model:in this section are shown the results of each regularized linear
model:

— Ridge Regression
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Figure 4.23: Cross-Validated MSE of RIDGE Regression
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Figure 4.24: Confusion Matriz of RIDGE Model
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Features Weight
PCWP _echo 1.8141
ci 1.4471
CI_Python 1.1305
mPAP _echo 0.7762
Lavi 0.7690
Metrics Value Age 0.7062
e’ 0.6764
Accuracy 0.57 -
— lvimi 0.6451
Precision 0.67
Rocall 059 rv_fac 0.5628
e : IVC Python 0.5080
Specificity 0.78
F1S 059 Dmax_Python 0.3488
~eore : Dmin Python 0.2387
Table 4.17: Metrics of RIDGE Model PVR_echo 0.2280
hr 0.1719
BSA 0.1702
CCI_Python 0.0774
lvef 0.0297

Table 4.18: Feature ranking with the
Ridge model

— Lasso Regression
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Figure 4.25: Confusion Matrixz of LASSO Model
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Metrics Value
Accuracy 0.49
Precision 0.63
Recall 0.51
Specificity 0.73
F1-Score 0.49

Table 4.19: Metrics of LASSO Model

Features Weight
PCWP _echo 1.8588
ci 0.6405
Age 0.2182
Dmin_Python 0.2099
PAPM _echo 0.1032
ee’ 0.0643

Table 4.20: Feature ranking with the
Lasso model

— Elastic Net Regression: the optimal value of o that minimizes the
MSE is 0.3 (a=0.3).

True Class
N

2 0
1 1
0 5
1 3

Predicted Class

Figure 4.26: Confusion Matrixz of ELASTIC NET Model

Metrics Value

Accuracy 0.49

Precision 0.63

Recall 0.51

Specificity 0.74

F1-Score 0.48
Table 4.21: Metrics of ELASTIC
NET Model

Features Weight
PCWP _echo 1.0585
ci 0.7052
e_e’ 0.4705
mPAP _echo 0.4371
Age 0.4212
Dmin_Python 0.2407
lvmi 0.2269
rv_fac 0.2171
CI_Python 0.2066
Dmax_Python 0.0594
lvef 0.0034

Table 4.22: Feature ranking with the
Elastic Net model



¢ Random Forest

OOB Error

Feature Importance

Number of Trees

Figure 4.28: OOB Error in function of tree number
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Features Weight
PCWP _echo 0.5595
Metrics Value ee’ 0.2602
Accuracy 0.65 Age 0.2327
Precision 0.66 ci 0.1989
Recall 0.63 dPAP _echo 0.1638
Specificity 0.81 sPAP _echo 0.1526
F1-Score 0.64 mPAP _echo 0.1297
lvmi 0.1189
Table 4.23: Metrics of Random Forest Dmax_Python 0.0921

Model
Table 4.24: Feature ranking with the
Random Forest model
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True Class
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Figure 4.29: Confusion Matriz of Random Forest Model
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e Support Vector Machine

True Class

Predicted Class

Figure 4.30: Confusion Matriz of SVM Model

Metrics Value
Accuracy 0.65
Precision 0.67
Recall 0.59
Specificity 0.81
F1-Score 0.59

Table 4.25: Metrics of SVM Model
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Table 4.26: Feature ranking with the
SVM model



e MetaClassifier : a meta-classifier (RF Model) was trained using as input the
prediction of 2 base models (RIDGE Model and SVM model)

12
10
Metrics Value
® 8 Accuracy 0.65
g Precision 0.67
© 6 Recall 0.63
- Specificity 0.81
4 F1-Score 0.64
2 Figure 4.32: Metrics of Meta-

Classifier

Predicted Class

Figure 4.31: Confusion Matriz of MetaClassifier

e 1D CNN: the architecture implemented was the same as the one shown in

Figure 4.21.
9
1 3 8
m ! Metrics Value
& 6 Accuracy 0.60
% 2 2 4 3 5 Precision 0.60
E 4 Recall 0.59
) Specificity 0.80
3 5 1 F1-Score 0.58
2
’ Figure 4.34: Metrics of 1D CNN
1 2 3

Predicted Class
Figure 4.33: Confusion Matrixz of 1D CNN
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Chapter 5

Discussion

5.1 Statistical Analysis

To provide a comprehensive understanding of the comparisons between Python and
Matlab, multiple statistical analyses and graphical representations were employed.
These complementary approaches help to elucidate the nature of the agreement,
biases, and variability between the two algorithm tools.

Starting with the OLP regression analysis, the results summarized in Table 4.2
of Chapter 4 indicate that for Python and Matlab, the slope CIs interval includes
1, while the positive intercept range does not include zero. Although the OLP
regression line crosses the identity line (Figure 4.3) the statistical analysis did not
confirm the presence of a proportional bias.

In the head-to-head comparison between Python and Matlab (Figure 4.3a), the
slope CI includes 1, which confirms that the proportional relationship between the
two algorithm outputs is strong and not significantly different from being in per-
fect agreement. The intercept CI includes zero, suggesting no significant fixed bias
between the two algorithm measurements.

The regression analysis results give information about the nature of the biases
in the measurements taken with Python and Matlab. For further clarification, the
Pearson correlation coefficients in Table 4.3 provide a quantitative indicator of the
linear relationship between the measurements taken by the two algorithm and the
manual measurement.

For Python, the Pearson’s correlation coefficient is 0.5149, while Matlab obtains
a Pearson’s correlation coefficient of 0.4839, showing a moderate positive correlation
with the manual measurements. This suggests that both automated measurements
are following the trends in the manual measurements with some fluctuations.

In addition, the direct comparison between Matlab and Python yields a far
higher correlation coefficient of 0.9507. The high positive correlation indicates that
the two algorithm tools provide strongly consistent measurements to each other,
measuring extremely similar patterns. Slight differences are only detected when the
two algorithm are compared separately to the manual measurement.

Building upon these insights, the Bland-Altman plots (Figures 4.4) provide a
visual representation of the agreement between each algorithm and the manual ref-
erence. The data points are relatively scattered around the mean bias line, which
appears to be slightly below zero, indicating a small systematic overestimation of
the estimated diameters with software. The limits of agreement are relatively wide,
suggesting a considerable variability between the algorithm estimates and the ref-
erence values. Some data points lie outside the LoA, indicating occasional large
discrepancies.

On the other hand, when comparing the Bland-Altman plots of Matlab vs Python
(Figure 4.4a) it is evident that the limits of agreement are narrower than the ones ob-
tained before. This indicates a higher level of agreement between the two algorithm
tools and the mean bias line lies very close to zero, denoting minimal systematic
differences between the two automatic system.
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Finally, the Wilcoxon Signed Rank test results in Table 4.1 shed light on specific
parameter differences between the two methods. Notably, the CCI shows a statisti-
cally significant difference between the two methods, with a p-value of 2.02 x 1075,
well below the threshold of 0.05. This result suggests that the estimates of this
parameter differ systematically between the two approaches.

For all other parameters, no statistically significant differences were detected.
In fact, the corresponding p-values exceeded 0.05, as shown below: p = 0.1561 for
IVC mean diameter, p = 0.8034 for maximum diameter, p = 0.0801 for minimum
diameter and p = 0.1184 for the Caval Index. This indicates that any observed
differences between the two measurement methods could be attributed to random
variation rather than systematic bias.

The results obtained from this statistical test are supported by the graphical
analysis (Figure 4.5 to Figure 4.9), which highlights that only the CCI parameter
exhibits minimally overlapping histograms and statistically distinct boxplots. To
reinforce these results, a Spearman correlation matrix (Figure 4.10) was also com-
puted, confirming a strong correlation among the mean, maximum and minimum
diameters, in contrast to the weak correlation observed between CCI and CI.

5.2 Model comparison

The main objective of this study was to evaluate the effectiveness of various classifi-
cation models for the non-invasive estimation of RAP, with a focus on each model’s
ability to accurately discriminate between the three different RAP classes.

Initially, the traditional guideline-based model currently adopted by clinicians
was considered. It had an overall accuracy of 54%, with great performance in classi-
fying class 1 while it was very poor in correctly classifying classes 2 and 3. Although
this approach is non-invasive and easy, its low accuracy makes it unsuitable for
precise RAP estimation, especially in more complex cases.

Linear models were then considered. In general, these models showed perfor-
mance around 50%, with the Ridge model working marginally better in terms of
accuracy. All linear models worked well to recognize classes 2 and 3, but struggled
with the correct classification of class 1. The Ridge model assigned a weight to
each variable, which was used to estimate the significance of each feature in model
development. The Lasso model used a similar approach, but assigned a weight of
zero to several features, thereby automatically selecting only those variables with
non-zero weights. Finally, the Elastic Net model was similar to Lasso but selected
a larger number of effective features, but still applied a level of regularization.

The Random Forest model obtained an overall accuracy above 60%. Although
class 1 was better predicted than classes 2 and 3, the model was still able to generalize
across all three RAP categories. An importance-based approach was used to perform
feature selection: a histogram was generated, and the mean of the importance values
was chosen as a threshold to retain only the most relevant features. This procedure
resulted in the selection of a restraint number of features considered fundamental
for model development.

The SVM algorithm outperformed previous models, with an accuracy above
65%. In particular, classes 1 and 2 were well recognized, while class 3 remained
more challenging. The feature selection method used in this case identified only
a small group of features as relevant, highlighting the model’s ability to achieve
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good performance even with a limited number of predictors. In the Matlab-based
model, three variables were selected, one of which was extracted by the software.
Conversely, in the Python-based model, only two variables were selected, none of
which derived from software outputs, suggesting that predictive information can also
be captured through alternative features.

The meta-classifier developed by combining the predictions achieved with the
best performance among all models considered (Ridge and SVM models), with an
overall accuracy around 65%. This approach aggregated the specific advantages of
each individual model: on the one hand, Ridge was able to correct classify classes
2 and 3; on the other, SVM performed well for classes 1 and 2. The integration of
the two allowed for a more balanced and productive classification across all three
classes, suggesting that merging different models could represent a valuable solution
for RAP estimation.

Ultimately, the deep learning model based on the CNN architecture achieved
performance comparable to that of the meta-classifier, demonstrating a good gener-
alization capability across the three RAP classes. This result was obtained despite
the exclusion of seven subjects with video durations below 1.5 seconds, a limitation
that appears to have been mitigated by the higher informational content provided
by the temporal sequences of IVC diameters.

The considerations done above apply to both Matlab and Python. However, the
models implemented in Matlab generally show slightly superior performance than
those developed with Python. The only exception to this trend is the Random Forest
model implemented with Python-extracted parameters which achieves marginally
higher performance than Matlab.

5.3 Limits of the study

Despite the promising results, this study presents several limitations that should
be acknowledged. A primary constraint lies in the relatively short duration of the
ultrasound video recordings, which limited the possibility of extracting the RCI in
a reliable manner. Moreover, the quality of the echographic acquisitions varied con-
siderably across patients, with several recordings affected by low image clarity or
suboptimal visualization of the IVC, potentially compromising the accuracy of auto-
mated segmentation. Another important limitation is that only longitudinal views
of the IVC were provided: no transverse plane acquisitions were available. This
prevented the use of an additional functionality offered by the VIPER software,
namely the segmentation and analysis of the IVC in the transverse plane.This limi-
tation reduced the scope of the investigation and prevented a more comprehensive
assessment of the IVC geometry, which may hold additional diagnostic value.

5.4 Future Development

Future work should focus on improving the quality and duration of ultrasound ac-
quisitions. Specifically, it is recommended that future recordings should last at
least 10 seconds to ensure sufficient temporal information for the reliable extraction
of dynamic indices such as the RCI. Longer acquisitions would also enhance the
robustness of both manual and automated analyses.

67



A further objective is to implement VIPER for real-time use, enabling simultane-
ous ultrasound acquisition and IVC segmentation directly during the examination,
thus improving efficiency and clinical applicability.

Another important direction for future work is to expand the current dataset.
Increasing the number and diversity of subjects would improve the generalizability of
the study and make the results more statistical significative. A bigger dataset would
also support the development of more robust machine and deep learning models and
allow for subgroup analyses across diverse patient cohorts.
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Chapter 6

Conclusion

This thesis proposed an innovative approach for the non-invasive estimation of RAP
through automated analysis of ultrasound imaging of the IVC. Two distinct algorith-
mic pipelines were implemented (one developed in Matlab and the other in Python),
both designed to perform semi-automatic segmentation of the IVC and extract clin-
ically relevant features, including IVC diameter, CI, CCI and RCI. These features
were used as input for classification models aimed at assigning each patient to one
of the three RAP categories. The results demonstrate that automated methods of-
fer superior performance compared to traditional guideline-based approaches, which
rely on manual diameter measurements. Notably, the level of agreement between
the Matlab and Python algorithms was higher than that observed between either
algorithm and the manual measurements performed by the operator. These results
suggest that, despite being independently developed, the two automated pipelines
exhibit greater reproducibility and systematic behaviour than human assessment,
which may be subject to inter- and intra-operator variability. All ultrasound videos
were processed offline. Consequently, the results obtained with the Matlab algo-
rithm were slightly better than those achieved with the Python version. This dif-
ference can be attributed to the fact that the Matlab implementation was tailored
for more accurate and refined segmentation of the IVC, while the Python algorithm
was optimized for real-time execution, favoring speed and simplicity over maximum
precision. Despite the slight differences in performance between the two software
implementations, statistical analysis revealed no significant differences in the same
features extracted by both algorithm , with the exception of the CCI, which was the
only variable to show a statistically significant discrepancy.

These results underscore the value of automated algorithmic solutions to improve
the reliability and consistency of RAP classification. By minimizing the subjectivity
inherent in manual measurements, these methods may contribute to more robust and
repeatable clinical evaluation.

However, achieving high segmentation accuracy still depends on the availability
of long enough and high-quality ultrasound videos, as low quality images can com-
promise the algorithm’s ability to accurately detect and track the IVC borders.This
level of image quality, however, cannot always be guaranteed in clinical settings
due to differences in patients’ physical characteristics such as: body size, tissue
composition, or how easily internal structures can be visualized during the scan.
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