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Abstract
In recent years, gait analysis has increasingly shifted its focus toward real-world
observations, which allow for a more comprehensive evaluation of individual motor
performance. However, the influence of daily-life activities on such performance,
and the consequent cognitive load are still scarcely investigated.
To address this gap, this study aims to investigate differences in gait parameters
based on the activities performed in real-world conditions. Considering that nav-
igation in real-world environments requires significant exploratory trunk and head
movements to manage multiple concurrent visual and auditory stimuli, this work
also includes the quantitative observation of head, trunk, and lower back move-
ments.
A total of 11 young adults (60% females, 20-31 years) wore a multi-sensor system,
including pressure insoles, distance sensors and 5 magneto-inertial measurement
units positioned on the head, chest, lower back, and feet (100 Hz), along with smart
glasses for video recording. Data from the feet and lower-back sensors were used to
segment strides.
Video data was used to identify and annotate six real-world walking situations: 1)
road crossing, 2) texting, 3) phone calls, 4-5) navigation through fixed and moving
obstacles and 6) visual search within a supermarket.
Each subject completed four straight walking trials in a lab setting and a 2.5-hour
real-world session.
Walking parameters along with head, trunk and lower back parameters were esti-
mated on a stride-by-stride basis, covering five characteristic domains: i) Amplitude,
ii) Attenuation, iii) Symmetry, iv) Smoothness and v) Regularity.
A comprehensive dataset was built from the collected data, associating information
on concurrent activities to quantitative information on walking and trunk motion
parameters on a stride-by-stride basis.
For each of the six annotated types of activity, the computed stride-by-stride pa-
rameters were averaged per subject. Real-world situations were compared with each
other and with lab walking for all parameters with a one-way repeated measures
analysis of variance.
Analysis showed that statistically significant differences are found in all the evaluated
domains except for Smoothness measures. Gait parameters (e.g., stride duration)
and amplitude measures (e.g., relative yaw angle between head and chest) showed
the greatest number of significant differences among activities. For instance, stride
duration distributions during visual search (median: 1.378 s, inter-quartile range:
0.268 s ) significantly differed from texting (median: 1.029 s, inter-quartile range:
0.094 s), while yaw angle distributions during road crossing (median: 20.762°, inter-
quartile range: 11.612°) differed from straight walking (median: 9.925°, inter-quartile
range: 1.168°).
These findings demonstrate that gait and trunk and head motion parameters vary
substantially depending on the specific activity performed in real-world contexts.
As such, aggregating movement data across heterogeneous daily-life situations risks
obscuring critical behavioral adaptations. This underscores the importance of in-
corporating contextual information into real-world gait analysis to ensure accurate,
ecologically valid interpretation of motor performance.
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Chapter 1

Introduction

1.1 General introduction and motivation

Human locomotion and head orientation are fundamental to navigate dynamic en-
vironments and engaging with the world. The ability to walk efficiently, main-
tain balance, and stabilize one’s gaze is crucial for independent living, occupational
performance, and overall quality of life. Understanding these processes is a cor-
nerstone of fields ranging from rehabilitation and sports science to robotics and
human-computer interaction. Notably, human movement is rarely a singular task;
individuals often simultaneously engage in cognitive or motor tasks while ambu-
lating, a phenomenon known as dual-tasking. These concurrent demands can sig-
nificantly affect gait parameters and head stability, often revealing subtle deficits
in motor control and cognitive-motor integration that may not be apparent under
single-task conditions. Or, more simply, they can highlight different strategies and
prioritization while handling an additional task while walking.

1.2 Knowledge gap

Despite extensive research into human gait already exists, a significant knowledge
gap persists due to a reliance on laboratory-based studies. Although controlled lab-
oratory environments offer precision and reproducibility, they often fail to replicate
the inherent complexity, variability, and ecological demands of daily life. The highly
constrained nature of lab settings can lead to ”white coat effects” on gait, where
individuals alter their natural walking patterns, and may not capture the adaptive
responses to unpredictable stimuli encountered in real-world scenarios. Moreover,
traditional motion capture systems, while highly accurate, are typically confined
to limited spaces, making long-term unconstrained monitoring outside the labora-
tory impractical. Although dual-task paradigms have been widely used to assess
cognitive-motor interference, secondary tasks often involve abstract cognitive de-
mands such as serial subtractions or memory recall. These tasks, while valuable
for assessing fundamental cognitive load, are often quite different from the rich and
varied multimodal stimuli and cognitive demands one encounters in daily activities,
such as avoiding obstacles, navigating a crowded street or exploring a supermarket.
In recent years, many studies have analyzed real world gait in order to get a more
comprehensive insight into individual motor performance, but the influence of daily
activities, and the consequent cognitive load, over this performance is still scarcely
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investigated. The usual approach based on aggregating movement data across het-
erogeneous daily-life situations risks obscuring critical behavioral adaptations.

1.3 Aim of the study

This thesis addresses these limitations by investigating the relationship between gait
and head movement in response to different activities in real world settings. Ex-
ploiting magneto-inertial sensors (MIMUs), paired with indirect monitoring through
scene-recording glasses, this research aims to explore this field of growing interest,
providing a comprehensive observation of human locomotion and head stabilization
in ecologically valid scenarios, focusing on conditions that are hard to reproduce in
controlled settings.
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Chapter 2

Background

2.1 Gait and postural control during walking

Gait, defined as the manner or style of walking or moving on foot[1], is the funda-
mental locomotor pattern in humans [2]. Its essential function is to provide efficient
and stable forward propulsion of the body, allowing for movement across various
surfaces while minimizing energy expenditure[2].

2.1.1 Gait Cycle

The gait cycle is the basic unit of human locomotion and represents the series of
events that occur as one limb moves from initial contact with the ground to the next
initial contact of the same limb.
The interval between these two events is also referred to as Stride. A Step is
the sequence of events that occurs within successive heel contacts of opposite feet,
therefore a stride is composed by two steps, left and right [2].

Figure 2.1: Graphic representation of step and stride

The gait cycle is divided into two principal phases: the stance phase and the
swing phase, which are further subdivided into specific subphases, each character-
ized by distinct biomechanical actions and temporal contributions.
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Figure 2.2: stride phases according to Neumann [2]

The stance phase constitutes approximately 60-62 % of the gait cycle, repre-
senting the period during which the foot is in contact with the ground, providing
support and facilitating propulsion [3]. This phase is divided into five subphases[4]:

• Initial Contact (Heel Strike) [0% to 2%]:
Its primary role is to establish contact with the ground and begin the process
of weight acceptance, effectively absorbing the initial impact of the limb’s
interaction with the surface[2].

• Loading Response (Foot Flat) [2% to 12%] :
During this period, the entire foot progressively makes contact with the ground,
and the limb functions as a crucial shock absorber, adapting to the terrain and
distributing weight. This interval also encompasses the first period of double-
limb support[2][3][4].

• Midstance [12% to 31%]:
The body’s center of gravity passes directly over the supporting limb, which
is the sole foot in contact with the ground [2][3][4]. The primary objective of
this subphase is to maintain stability and facilitate the forward progression of
the body over the fixed foot [5].

• Terminal Stance (Heel Off)[31% to 50%]:
The body continues its forward advancement over the forefoot, preparing for
the propulsive push-off. During this time, the heel continues to rise, and the
center of gravity shifts anteriorly relative to the foot [5].

• Pre-Swing (Toe Off) [50% to 62%]:
It signifies the transition from stance to swing, beginning with the initial con-
tact of the contralateral limb and concluding with the reference foot’s toe leav-
ing the ground [4]. This subphase is critical for generating the final propulsion
to clear the limb from the ground and is part of the second period of double-
limb support [4][5].
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The swing phase comprises the remaining 38-40% of the gait cycle, during
which the foot is not in contact with the ground and is actively advanced forward
[3]. It is composed of three significant subphases:

• Initial Swing [62% to 75%]:
This subphase begins immediately after toe-off and persists until the swinging
foot is opposite the stance limb, coincident with maximal knee flexion.The
essential function here is to ensure foot clearance from the ground and initiate
the forward advancement of the limb [2].

• Mid-Swing [75% to 87%]:
Mid-swing involves the continued forward progression of the swinging limb,
reaching a point where the tibia becomes vertical or perpendicular to the
ground [4]. The foot remains clear of the ground as the limb continues its
trajectory [2].

• Terminal Swing [87% to 100%]: begins when the tibia is vertical and ends
just before the next initial contact of the foot with the ground. During this
period, the limb decelerates, precisely positioning the foot for the subsequent
initial contact and completing the gait cycle [2][5].

Spatio-temporal gait parameters

Gait can be quantitatively evaluated in terms of local parameters (i.e., parameters
that quantify gait at the local level of joints or muscles) and global parameters (i.e.,
parameters that quantify gait globally). Among global parameters, spatio-temporal
parameters of gait provide critical insights into an individual’s movement patterns,
efficiency, and stability. Among these, stride speed, stride length, and stride
duration are cornerstone measurements, offering a comprehensive understanding
of its temporal and spatial characteristics.

• Stride length is defined as the distance covered by one foot during a gait
cycle i.e., the distance covered from the initial contact of the foot to the sub-
sequent initial contact of the same foot. It is a key indicator of mobility and
can be influenced by various factors, including limb length, muscle strength,
joint range of motion (particularly at the hip and knee), and balance [6]. In
clinical settings, a reduced stride length can be indicative of pain, weakness,
neurological impairment, or a strategy to maintain stability [7]. Maximizing or
optimizing stride length, without compromising stability or increasing energy
cost, is often a goal in rehabilitation to improve mobility and gait efficiency.

• Stride duration is the elapsed time of a gait cycle i.e., the time between
an initial contact of one foot and the following initial contact of the same
foot. It is directly related to stride frequency, being its mathematical inverse:
StrideDuration = 1/StrideFrequency. A shorter stride duration implies a
quicker turnover of the legs and a higher stride frequency, contributing to
faster gait speed [6]. In gait analysis, examining stride duration, along with
other temporal parameters like swing phase duration and stance phase du-
ration, provides detailed information about the timing and coordination of
movements within the gait cycle. Alterations in stride duration can denote in-
efficient motor control, compensatory strategies, or underlying neuromuscular
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impairments [8], making it an essential parameter for comprehensive assess-
ment.

• Stride speed, often expressed in meters per second [m/s], represents the ve-
locity of progression during one gait cycle. It is a direct indicator of locomotor
performance [9] and is intrinsically linked to both stride length and stride du-
ration. Physiologically, an optimal stride speed typically reflects an efficient
use of energy[10], and deviations can indicate underlying musculoskeletal is-
sues, neurological impairments, or even compensatory mechanisms [6]. For
instance, a significantly reduced stride speed might suggest pain, weakness, or
a deliberate effort to increase stability, while an unusually high speed could
point to a less controlled or rushed gait.

2.2 Head and trunk movements: physiological roles

During gait, the body can be modeled as two separate units with separate functions:

• The locomotor unit:
Constituted by the pelvis and the lower limbs, its role is to alternatively sup-
port the body and drive its progression forward. In addition to the propulsive
role, it also ensures the absorption of impact of the heel strike, vertical stability
and energy conservation, acting as an inverse pendulum.

• The passenger unit:
Consists in arms, head and Trunk. By maintaining the alignment between
upper and lower body segments, it reduces unnecessary oscillations of the
center of mass. The arms swinging counterweights the rotations induced by
the lower limbs [6].

(a) Locomotor Unit (b) Passenger Unit

Figure 2.3: Distinction between locomotor(a) and passenger unit(b) according to
Perry [6]

Head stabilization, a dynamic process of maintaining an equilibrium position of
the head-in-space [11], is achieved through coordinated head and trunk movements
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[12]. This coordination allows the sensory systems to orient for optimal function
and maintain a stable reference frame [13] [11].
In healthy gait, head rotates to compensate body traslations, in both sagittal and
horizontal plane [11][14]. Head-on-trunk rotations also ensure head stability in space,
particularly at higher frequencies of trunk motion where it is significantly challenged
[12]. For example, studies suggest that during locomotion, reflexive head movements
operate to minimize horizontal head translation and simultaneously compensate for
vertical translation by pitching the head [13]. The trunk plays a crucial role in min-
imizing head motion by attenuating gait-related oscillations, acting as a low-pass
filter for gait-related harmonics [14]. This attenuation process is gradual from in-
ferior to superior body segments. In healthy young adults, head accelerations are
smoother and have a greater proportion of power at lower frequencies compared to
trunk accelerations [15].
The differences in power spectral properties between the head and trunk are most
pronounced in the mediolateral direction. Head accelerations in the mediolateral
direction are characterized by a peak frequency corresponding to half of the peak
frequency for the vertical and anterior-posterior directions. This is due to the in-
trinsic biphasic nature of gait [16]: during a stride the center of mass endures two
perturbations on the vertical and anterior posterior axis, one for each step. On the
mediolateral instead the oscillation is monophasic (left-right-left or opposite) and
results in the frequency profile described before.
In addition, upper body coordination plays a crucial role in stabilizing and optimiz-
ing sensory inputs during walking. In particular visual and vestibular stability are
crucial for effective balance and locomotion [15].

2.2.1 Gaze and visual exploration

Visual exploratory movements are a complex, coordinated process involving the
eyes, head, and often the entire body, all working together to actively gather infor-
mation from the surrounding environment. This active information-seeking behavior
is crucial for perception, object recognition and spatial awareness [17].

Figure 2.4:
Visual exploration is a key part of environmental interaction (AI generated image)
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The primary components typically include:

• Eye Movements (Saccades and Fixations):
The eyes make rapid, jerky movements called saccades to quickly shift gaze
from one point to another, interspersed with brief pauses called fixations,
during which visual information is acquired [18]. These eye movements allow
for scanning and detailed analysis of specific areas of interest within a scene.
Saccades are one of the fastest movements produced by the human eye, with
normal speeds of about 300-400°/s [19].

• Head Movements:
For larger shifts in gaze beyond the oculomotor range of the eyes (approx-
imately ±40° horizontally), head movements become increasingly important
[17]. The head can rotate to expand the field of view and orient the eyes
more effectively towards a target. This coordination allows for more extensive
exploration of the environment [17].

• Body Movements:
In naturalistic settings, the entire body may contribute to visual exploration.
Reorienting the trunk or feet in space can facilitate even larger gaze shifts,
allowing an individual to survey a vast or complex environment with purpose
[17].

These components are not independent but rather operate in a coordinated and
adaptive manner, influenced by both bottom-up (cues and sudde stimuli) and top-
down (searching for a specific object) factors, as well as biomechanical and physio-
logical ones [17].
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2.3 Moving outside the lab: Walking in real world

conditions

2.3.1 Multitasking: definitions

In everyday life, human locomotion frequently involves the simultaneous perfor-
mance of a cognitive task, making multitasking during walking the norm rather
than the exception [20]. This concurrent engagement in two tasks, defined as ”dual-
tasking,” requires attention to be divided between motor and cognitive components,
even though gait control is often considered automatic [21]. The addition of a
cognitive load, which refers to the mental effort required to perform a task, can
significantly impact an individual’s ability to control dynamic balance and gait [22].
This competition for limited cognitive resources often leads to cognitive-motor in-
terference (CMI), characterized by a deterioration in the performance of either the
motor task (e.g., walking), the cognitive task, or both[23].

2.3.2 Multi-Tasks in controlled settings

Multi-task paradigms are designed to assess the impact of cognitive load on motor
performance, and the type of cognitive task employed can significantly influence the
observed interference [23]. These tasks generally fall into categories based on the
nature of the cognitive demand, as systematically reviewed in the literature [24][20]:

• Arithmetic Tasks:
Mental calculation is frequently used to impose a continuous cognitive load.
Common examples include serial subtractions (e.g., subtracting 7s or 3s con-
tinuously from a given number) or counting backwards.

• Verbal Fluency Tasks:
Assesses the ability to retrieve information from semantic memory. Partici-
pants are typically asked to generate words within a specific category (e.g.,
naming animals) or starting with a particular letter.

• Memory Tasks:
Challenge of working memory and recall abilities. Examples include recalling
a list of words or numbers, or spelling words backwards.

• Reaction Time Tasks:
Measuring of the speed of response to a stimulus, often involving simple or
choice reaction time to visual or auditory cues.
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• Executive Function Tasks:
These tasks engage higher-level cognitive processes such as inhibition, plan-
ning, and cognitive flexibility. In tests that rely on this kind of stimuli, usually
patients are asked to produce responses that are discordant with given visual
or auditory stimuli (ex. Stroop, Go/No-go test)

• Motor-motor interference:
In this category fall those tasks that involve the execution of two motor activ-
ities simultaneously.

It is consistently demonstrated that an increase in cognitive load can result in
altered walking patterns, such as reduced gait speed, increased gait variability, and
changes in stride parameters, indicating a decrease in walking stability. [25][26][21].
Understanding these interactions is crucial, as the trade-offs between automaticity
and cognitive control during walking have significant implications for various popu-
lations, particularly in assessing fall risk and designing effective preventive solutions
[22][27].

2.3.3 Multi-tasking: Ecological paradigms

Although numerous protocols have been developed to assess the effects of multi-
tasking in laboratory settings, they typically focus on high-level information pro-
cessing. While this approach effectively demands a redistribution of cognitive re-
sources, it represents only a narrow segment of the wide array of inputs encountered
in everyday life.
Most of the time, people do not walk while solving complex calculations or spelling
words backwards. Instead, they continuously gather and process the flow of sensory
information from the environment to navigate it efficiently. Therefore, capturing
the effects of environmental context becomes crucial to truly understanding how
walking tasks are managed in real-world conditions. However, traditional dual-task
paradigms often fail to reproduce the lower-level stimuli that are constantly present
in ecological settings.

Real world navigation

Considerable efforts have been devoted to addressing this critical issue by replicat-
ing specific walking conditions(such as street crossings) in controlled environments.
These experimental setups often include the simulation of ambient noise and the
projection of real-world videos [28], or alternatively, the use of virtual reality tech-
niques [29]. Such approaches aim to recreate realistic scenarios in a safe and con-
trolled manner, thereby enabling a more accurate analysis of pedestrian behavior
and the factors influencing it.
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(a) (b)

Figure 2.5: Experimental setups of the studies from (a) Vieira et al. [28] and (b)
Zito et al. [29]

Smarthone usage

Another important influencing factor in daily walking is phone usage. This ubiqui-
tous integration of mobile technology into our lives has made ”distracted walking”
a growing concern, transforming what was once a simple task into a complex, multi-
faceted behavior.
Consequently, understanding the impact of smartphone use on ambulation has be-
come an increasingly important area of study. Analyzing this condition in daily
walking is crucial due to its implications for pedestrian safety, public health, and
the design of urban environments.
For instance, some research involves collecting gait data during an instrumented
walk, typically lasting a few minutes, with young adult participants. During these
experiments, researchers compare normal walking conditions with walking while
texting, measuring spatio-temporal parameters, ankle and knee kinematics, and the
co-contraction of ankle antagonist muscles [30]. Other studies have been conducted
in outdoor environments to provide more ecological validity, investigating gait and
posture responses to various smartphone usage tasks with different cognitive loads.
These outdoor experiments aim to understand how real-world smartphone interac-
tions affect locomotion and posture [31]. The findings from such setups consistently
show that smartphone use while walking can reduce gait speed, shorten stride length,
and decrease toe clearance [30][31].

Context aware analyses

In recent years new datasets are providing recordings of human locomotion in var-
ious out-of-laboratory settings, including urban environments, public spaces, and
obstacle courses. These datasets include full-body kinematics alongside egocentric
vision and gaze data from everyday walk scenarios[32][33]. This shift acknowledges
that human gait is significantly influenced by the environment and external factors,
with individuals adapting their movements and gaze based on the complexity of
their surroundings.
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2.4 Wearable technologies for real world move-

ment analysis

Instrumentation for ecological gait observation must be portable and minimally
invasive. Wearable sensors are well suited to meet this need, as they enable the
acquisition of large amounts of data over extended periods of time, ideally without
interfering with the subject’s movement or being restricted by the environment in
which they are used.

2.4.1 Motion capture devices

Motion capture, often abbreviated as mocap, is a technology used to record the
movement of objects or people and translate it into digital data. This process
allows for the realistic animation of digital characters and the detailed analysis of
human movement.

Magneto-inertial measurement units

Inertial Measurement Units (IMUs) directly measure acceleration and angular ve-
locity, with respect to an inertial reference frame [34].Together with magnetometers,
they are often embedded within MIMUs. Inertial systems offer greater portability
and freedom of movement, making them suitable for outdoor or less controlled set-
tings, at the cost of lesser accuracy compared to laboratory-based technologies.

These sensors incorporate three different technologies:

• Accelerometer
Accelerometers measure acceleration along one, two, or three sensitive axes;
those capable of measuring in all three spatial directions are commonly referred
to as tri-axial accelerometers. They detect proper acceleration (⃗ap), which is
the vector difference between the coordinate acceleration (⃗ac, the rate of change
of the sensor’s velocity) and the acceleration due to gravity (g⃗).

a⃗p = a⃗c − g⃗

As a result, the output of an accelerometer does not reflect the total acceler-
ation experienced by the sensor, but rather the difference between that accel-
eration and gravity. For example, a 1D accelerometer in free fall, aligned with
the gravitational axis, will output 0 m/s2, while the same sensor at rest will
read approximately |⃗g| = 9.81m/s2.

An accelerometer can be modelled as a second order spring-mass-damper sys-
tem with proof mass m, elasticity constant k and damping factor β . When a
force F⃗ is applied to the system, the proof mass, the spring and the damper
tend to react with forces opposed to the applied force. According to the New-
ton’s second law - which states that the algebraic sum of all the forces equals
the inertial force of the proof mass - the vectorial sum of the applied force and
the forces exerted by the spring and by the damper (respectively F⃗k and F⃗β)

equals the inertial force acting on the proof mass F⃗I :
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Figure 2.6: 2nd order mechanical system

F⃗ + F⃗β + F⃗k = F⃗I

Linear displacement x, velocity ẋ and acceleration ẍ of the mass can be rewrit-
ten by expliciting the definitions of the damping, elastic and inertial forces:

F − βẋ− kx = mẍ

The applied force can be also written as the scalar product between the proof
mass and the acceleration of the system ac:

mẍ+ βẋ+ kx = F = mac

The acceleration ac represents the accelerometer input and - in absence of
gravity - it corresponds both to coordinate and proper accelerations. If the
sensitivity axis is parallel to gravity, the gravity acceleration exerts on the mass
a force proportional to the mass itself. Then, the accelerometer will measure
the proper acceleration ap, which includes the gravity contribution:

mẍ+ βẋ+ kx = m(ac − g) = map

Being the previous equation a second order non-homogeneous differential equa-
tion, its solution is hard to compute in the time domain, while it is easily done
in the Laplace domain:

kx(s) + bsx(s) +ms2x(s) = F (s) = ma(s)
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By rearranging the terms, the ratio between the output displacement x(s) and
the input acceleration a(s) can be easily obtained:

H(s) =
x(s)

a(s)
=

1

s2 + β
m
s+ k

m

=
1

s2 + ω0

Q
s+ ω2

0

H(s) is the system transfer function, while Q and ω0 correspond respectively
to the quality factor and to the resonance angular frequency:

Q =
mω0

β

ω0 =

√
k

m

The transfer function of an accelerometer describes its dynamic sensitivity,
which varies with the frequency of the input signal. Sensitivity decreases with
the square of frequency, from a maximum value H(0) for constant accelera-
tion, down to zero as frequency approaches infinity. To ensure accurate mea-
surements, accelerometers are typically operated well below their resonance
frequency(ω << ω0). A higher resonance frequency allows for a wider band-
width but reduces sensitivity, making accelerometer design a trade-off between
bandwidth and sensitivity.

• Gyroscope
Gyroscopes measure angular velocity along up to three sensitivity axis (gyro-
scopes that measure angular velocities in all the three directions are commonly
called tri-axial gyroscopes). Angular velocities measurements are generally ex-
pressed in degrees per second (dps). the most common type of gyroscopes is
based on the Coriolis force; hence, they are called Coriolis vibrating gyroscopes
or Vibrating forks gyroscopes. Every time that an object with mass m rotates
and translates respectively at angular rate ω⃗ and linear speed v⃗t, a force Fc

named Coriolis force is applied to the object.

Fc = 2mv⃗t × ω⃗

Vibrating forks gyroscopes include a pair of proof masses that oscillate with
the same amplitude, but in opposite directions. At rest, the tines resonate
in anti-phase in the plane of the fork (drive mode). When the sensor is put
into rotation, the tines begin to oscillate also along the orthogonal direction to
the plane. This oscillation generates a torque that triggers the torsional mode
around the gyroscope stem. Forks can feature with one, two or more tines:
the more the tines, the higher the sensitivity and rejection to common-mode
errors.
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Figure 2.7: Different types of tuning forks [35]

• Magnetometer
Magnetometers are instruments designed to measure magnetic fields. Their
fundamental principle of functioning relies on various physical phenomena that
are sensitive to the presence and strength of a magnetic field.One common
principle involves the Hall effect. When a charged particle q is moving in a
conductive plate with istantaneous speed v⃗ and is immersed in a magnetic
field with magnetic flux density B⃗, the particle experiences a force F⃗L known
as Lorentz force:

F⃗L = q(v⃗ × B⃗)

Under this force, charged particles move in transverse direction and generate
an electric field across the sides of the plate. The contribution of Lorentz force
and the one of the electric field balance the charge distibution.

F⃗TOT = q(v⃗ × B⃗) + qE⃗Hall

If those forces are at equilibrium F⃗TOT = 0:

(v⃗ × B⃗) = −E⃗Hall

The Hall effect results in a voltage difference that can be measured across the
sides of the plate.This voltage is directly proportional to the magnetic field
strength, allowing the magnetometer to quantify it.
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Figure 2.8: Visual scheme of the Hall effect

Pressure insoles

Pressure insoles are groups of force sensing resistors, usually embedded in a flexible
plastic substrate. Their shape allows to insert them directly into the subject’s shoe
and adhere to the foot shape. They allow to describe the distribution of force exerted
on the ground by the foot and identify heel strikes and toe offs during the gait cycle.

Figure 2.9: Pressure insoles from 221e

Barometers

Barometers measure the atmospheric pressure around them, usually used as en-
vironmental sensors or altimeters [36]. They are being recently included among
wearable technologies as vertical position detectors [36] and center of mass trackers
[37]. Pressure is measured through the deformation of a membrane using piezoresis-
tors (piezoresistive barometers) or capacitance variation of parallel plate capacitors
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(capacitive barometers) . In either case the pressure output P (Pa) can be converted
in the altimetric data z(m) bi resolving the following equation [36].

P (z) = P0 ∗ e−
z
H

Where P0 is the reference pressure at z = 0 and H is the pressure scahe height,
namely the distance (vertical or radial) over which a physical quantity decreases by
a factor of e.

H =
kb ∗ T
m ∗ g

(a) Piezoresistive barometer [38] (b) Capacitive batometer [39]

Figure 2.10: Difference in barometer principle of functioning

Proximity sensors

Infrared proximity sensors are used in gait analysis for event detection and distance
measuring [40] (e.g. base of support estimation[41]). The most recent technologies
employ IR-time of flight devices. The distance is estimated by measuring the phase
shift between the radiated and the reflected IR waves [42]. Emitter and receiver are
built in the same hardware component and and allow to reduce overall encumbrance
of the sensor.

Figure 2.11: VL6180X distance sensor schematics

2.4.2 Scene-recording devices

Scene-recording devices allow to monitor the subject actions and environmental
conditions without physically interfering with the activities. In order to grant eco-
logical validity those devices must be worn by the subject and have minimum to no
encumbrance.
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Smart glasses

In recent years, smart glasses have gained increasing popularity due to their potential
to seamlessly integrate digital information into user’s everyday visual experience.
Combining wearable technology with augmented reality capabilities, smart glasses
are being adopted across a wide range of fields, from healthcare and industrial
applications to research and personal use. Their ability to capture video, display
real-time data, and support hands-free interaction makes them a valuable tool for
both professional and everyday scenarios. They also find more and more applications
in motion analysis. Commercial devices include both simpler models with a frontal
camera in the glasses frame without other functionalities, and more complex ones
with integrated IMUs and gaze tracking. Smart glasses are the less invasive option
for context monitoring and provide an acceptable approximation of the user’s field
of view, but often have limited video resolution and reduced battery life.

(a) (b) (c)

Figure 2.12: Ray-Ban meta glasses(a), Doctorspy CAM.58 video recording glasses(b)
and Tobii pro 3 wearable eye trackers(c)

Body mounted cameras

Body mouted cameras are widely used in sports to capture a first person perspective
of athlete’s actions and environments.These devices offer valuable insights into per-
formance, technique, and decision-making by recording real-time visual and audio
data from the athlete’s point of view. They are widely adopted in training, perfor-
mance analysis, and even broadcasting. Body mounted cameras have great video
resolution and battery capacity, but are more bulky and heavy, making them less
suitable for head-mounting.

(a) (b) (c)

Figure 2.13: GoPro Hero 13 (a), GoPro Chesty body harness(b) GoPro Head Strap
2.0 head mount(c)
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Chapter 3

Materials and methods

The objective of this study was to acquire a comprehensive dataset of gait and upper
body motion parameters, with a particular focus on head and trunk dynamics during
real-world walking. To achieve this, a dedicated experimental setup and protocol
were specifically designed and implemented to enable the collection of high-resolution
motion data and the extraction of relevant biomechanical metrics. The following
sections describe in detail the instrumentation used, the data acquisition procedures,
the experimental protocol, and the processing steps applied to derive the parameters
of interest.

3.1 Participants

Twenty-one healthy young adults (10 females, 11 males; age range: 20–31 years)1

were enrolled in the study. All participants reported no history of neurological,
musculoskeletal, or vestibular disorders that could affect gait or postural control.
Prior to participation, each subject provided written informed consent. The study
protocol was conducted in accordance with the Declaration of Helsinki.

3.2 Experimental setup

3.2.1 The INDIP system: Overview

All participants were equipped with the multi-sensor INDIP (INertial module with
DIstance sensors and Pressure insoles) system [43]. The INDIP system is a multi-
sensor wearable system designed by Università degli Studi di Sassari, widely used as
a gold standard for the extraction of spatio-temporal parameters of gait in both lab-
oratory and real-world conditions[44][45][46][47]. The core of the INDIP system is
represented by 9-axes MIMU, serving as central gateaway for other peripherals. Pe-
ripherals can include other sensors for wearable motion capture, such as 16-channels
force-sensing resistor pressure insoles, time-of-flight proximity sensors, load cells, or
high-resolution barometers.

1Due to labeling or acquisition issues, only data of 11 subjects was analyzed.
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Figure 3.1: 3-D overview of an INDIP MIMU

TRI-AXIAL ACCELEROMETER
Measurement range Up to ±16 g selectable FSR

Zero-g offset ±40 mg
Rate noise density 1.8- 3.0 mg (Root Mean Squared (RMS))
Output data rate 1.6 to 6664 Hz

TRI-AXIAL GYROSCOPE
Measurement range Up to ±2000 dps selectable FSR
Zero-rate offset ±1 dps
RMS noise 0.075 dps

Output data rate 1.6 to 6664 Hz

TRI-AXIAL MAGNETOMETER
Measurement range U±50 G

Zero-G offset dynamically cancelled
Rate noise density 3 mG (RMS)
Output data rate 10 to 100 Hz

3.2.2 INDIP configuration adopted in this study

In this study, the INDIP system configuration included 5 MIMU units and 2 force-
sensing pressure insoles, positioned as follows:

• Head:
A MIMU unit placed on the left temporal side of the head right above the ear.
It was secured in position using a velcro strap or alternatively mounted on a
cap with a sewn plastic support.

• Chest:
A MIMU unit placed directly on the sternal manubrium and secured on cloth-
ing or directly on the skin with bi-adhesive tape.
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• Lower back:
A MIMU unit placed on the lower back in the correspondence of the 5th lumbar
vertebra with a velcro band of appropriate size.

• Feet
Two MIMUs secured to laced shoes via custom support modules.

– Left foot:
The support consists in a 3D-printed clip applied to the shoelaces.

– Right foot:
The support consists in a 3D-printed L-shaped support base that the
INDIP is secured to, along with two additional proximity sensors. The
base itself is secured to the shoe using adhesive velcro bands.

For both sides, a force-sensing pressure insole was connected to the hardware
and inserted inside the shoe. A protective leather insole was added to protect
the sensorized pressure insole.

All sensors sampled at 100 Hz.

(a) (b)

(c) (d)

Figure 3.2: Sensor positioning on the body (a), top view of the INDIP setup (b),
rear view of the right foot support (c) and view of both the instrumented feet (d)
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3.2.3 Collecting data with the INDIP system

To collect time-synchronized data from multiple INDIP MIMUs and peripherals, it
is necessary to set all the MIMUs’ internal clocks to a common computer’s times-
tamp. This can be done through a custom graphic user interface (GUI) previously
developed in Matlab. Once that all MIMU have their internal clock set, sensors can
be placed on the subject’s body and connected via bluetooth low-energy (BLE) to
a custom app developed in Matlab, which allows the user to trigger the acquisition
of all the connected sensors. Once that the acquisition has started, the participant
is free to move: the MIMUs disconnect when the participant walks too far from the
computer; however, once that the sensors have started recording, they continue to
log data offline. At the end of the recording, sensors may be reconnected to the
app via BLE to stop the acquisition and then connected via USB to the GUI to
download recorded data.
For more details regarding data collection with the INDIP system, see Section 3.4.

3.2.4 Scene-Recording Glasses

To enable contextual labeling of gait and motor behavior in naturalistic settings,
all participants were equipped with a pair of video-recording glasses (DoctorSpy
CAM.58). These glasses continuously captured both video and audio data from
the wearer’s point of view throughout all experimental sessions, without interfering
with natural behavior or obstructing the visual field. The collected footage was
later synchronized with sensor data and manually annotated to identify real-world
walking activities and environmental events relevant to the analysis (for more details
see Subsection 3.4.6). Table 3.1 summarizes the technical specifications of the scene-
recording glasses used in this study.

(a) (b) (c)

Figure 3.3: DoctorSpy CAM.58 Video Glasses (a), front (b),and side (c) view of the
head setup
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Table 3.1: Technical Specifications of the DoctorSpy CAM.58 Video Glasses

Feature Specification
Model DoctorSpy CAM.58
Resolution 1920 × 1080 pixels (Full HD)
Frame Rate 30 frames per second (fps)
Audio Recording Built-in mono microphone
File Format avi (H.264 encoding)
Storage Capacity MicroSD card up to 64 GB
Battery Life Approximately 120 minutes per charge
Charging Interface USB 2.0
Operating Temperature Range -10°C to 50°C
Weight 34 grams
Form Factor Integrated camera in eyeglass frame

3.3 Experimental protocol

The experimental protocol was designed to capture the natural variability of head,
trunk, and gait movements in response to both induced tasks and spontaneous
environmental stimuli and activities. To this end, data collection included both
controlled laboratory acquisitions and an extended free-living session in real-world
conditions. The laboratory trials ensured standardization and served as a reference
for baseline gait and upper-body motion. The 2.5-hour real-world session aimed to
reflect the complexity and unpredictability of daily-life contexts, enabling the obser-
vation of motor behavior under a wide range of sensory and cognitive demands. This
combined approach allowed for a comprehensive analysis of how different environ-
mental and activity-related factors influence locomotor and upper body dynamics.
All the acquisitions took place at the Department of Electronics and Telecommu-
nications at Politecnico di Torino and the surrounding neighborhood in the city of
Turin (TO, Italy).
All the recordings included a 5-seconds calibration phase at the start and end of the
trial during which the subjects were asked to maintain standing position while keep-
ing a neutral alignment between head, trunk and pelvis. This was done to ensure at
least one static interval at the beginning of each recording to remove the gyroscope
bias and initialize the head-MIMU orientation estimate.

3.3.1 In Lab

The In lab component consisted of a battery of standardized walking trials aimed
to elicit specific visual or auditory stimuli, designed to investigate the influence of
typical daily-life tasks on motor control. All tests (except for visual search) had
a duration of 1 minute and were conducted along a 12-meter walkway set up in a
university corridor.
In this time subjects were asked to walk back and forth at self selected speed,
performing smooth U-turns when reaching the extremes of the route.
During the acquisitions, no constraints were imposed on the participants’s head and
trunk motion.
Tests included:
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• Straight Walking
walking back and forth at self-selected comfort speed for one minute with no
additional stimuli.

• Texting
walking for one minute while typing text messages.

• Scrolling
walking for one minute while browsing a webpage or scrolling on their favorite
social network without text generation.

• Calling
walking for one minute while phone-calling a friend/colleague. The phone call
was initiated before the start of the recording and ended after its completion,
in order to avoid repetition of gestures similar to the previous two tasks.

• Audio track comprehension
Listening to an audio track through earphones while walking for one minute2.
The exact same audio was played for all participants. To ensure active listen-
ing, participants were informed that they would be asked questions about the
content of the audio track at the end of the recording session.

• Audio Disturb
This task was proposed to the subjects as a second straight walking trial.
During the acquisition, without any warning, and when they were facing away
from the experimenter, the latter called the subjects by their name in order
to get their attention and induce a response. After that, they were instructed
to continue to walk and the onset of the disturbance was annotated.

• Visual search
The visual search task consisted in walking while actively trying to distinguish
between tags reporting the letter ”O” and the number ”0” (Figure 3.4a and
3.4b) placed at different heights on the corridor walls where the tests were
conducted. In this test, participants began the recording facing away from
the walkway to prevent them from seeing the tag positions in advance. At
the start signal, they were instructed to turn around and walk the path back
and forth, while counting the tags of a predefined type. At the end of the
recording, the participant was asked to report the number of counted ”O”s
and ”0”s.

2The audio track was a listening exercise of an online Italian language course, available
on the webpage of the website ”lingua.com”: [https://lingua.com/it/italiano/ascolto/
mia-nuova-macchina/].

28



(a) (b)

Figure 3.4: Tags used in the visual search test. The font and text size have been
selected to make the distinction between the two types challenging but feasible.

These structured tasks were used to establish reference movement patterns under
repeatable conditions. The subsequent real-world session aimed to reflect the com-
plexity and unpredictability of daily contexts, enabling the observation of motor
behavior under a broader range of sensory and cognitive demands.

3.3.2 Out of Lab

The Out of lab session was designed to capture natural motor behavior in real-world
environments, allowing for the assessment of gait and trunk and head movement in
response to unstructured, ecologically valid stimuli.

Following a synchronization task3, participants were completely free to move and
behave naturally during a 2.5-hour unsupervised recording session. They were not
given specific instructions regarding the type or duration of the activities to perform,
in order to avoid altering their spontaneous behavior. The only required action was
to visit a nearby supermarket and purchase a predetermined item. This step ensured
that all participants were exposed to a similar visual search task, which was later
used as a reference condition for comparison.

Throughout the session, participants wore the multi-sensor setup, including the
INDIP system and scene-recording glasses, allowing for the continuous capture of
gait-related parameters, head and trunk motion, and the surrounding environment.
This protocol aimed to reflect the complexity, variability, and contextual richness
of everyday life, providing an authentic framework for the investigation of context-
dependent motor control.

3.4 Data Collection and Preprocessing

3.4.1 Data collection and synchronization

All data acquisition sessions were conducted using the custom-developed INDIP
App, which enables the simultaneous connection and data logging of multiple INDIP
MIMU via Bluetooth connection. This application allowed for efficient deployment

3At the start of the Out of lab recording, participants were asked to execute at least three full
rotations on the spot before engaging in further activities. This action was required to align video
and MIMU information for further analyses.
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of the full multi-sensor setup in both laboratory and real-world scenarios4 Once each
acquisition was completed, the data were manually retrieved from each device using
a custom USB-based graphical user interface (INDIP GUI). This interface was also
employed to synchronize the internal clocks of all INDIP units prior to data collec-
tion5.
Video recordings from the smart glasses were also retrieved and stored in a dedicated
folder associated with the participant’s ID.
Videos were downloaded and converted from .avi to .mp4 format and compressed
with lower resolution ( from 1080p to 720p) using the Handbrake open source soft-
ware, with a memory saving around 30-40%.

3.4.2 Anthropometric parameters

Alongside sensor data, various anthropometric parameters were recorded for each
participant (Table 3.2). These parameters were later used to personalize gait and
posture computations.

Table 3.2: Overview and description of the annotated anthropometric parameters.

Anthropometric parameters

Parameter Description

Foot length [cm] distance between big toe and heel on the lon-
gitudinal axis

Shoe width [cm] maximum medio-lateral distance of the shoe

Shoe length [cm] maximum antero-posterior distance of the
shoe

Participant age [years] participant’s chronological age at the time of
data collection

Participant height [cm] participant’s height at the time of data col-
lection

Participant weight [kg] participant’s weight at the time of data col-
lection

Shoe size [EU] size of the shoe reported using the European
sizing system

Posterior waist width [cm] width of the trunk at the height of the INDIP
sensor on the person

Lower back sensor height [cm] height of the MIMU on the lower back from
the ground

Inter A.S.I.S. distance [cm] distance between right and left Anterior-
Superior Iliac Spines (A.S.I.S.)

4Although INDIP devices are connected to the app via Bluetooth for setup and initialization,
they operate as standalone data loggers during recording. This approach is essential for Out of lab
sessions, where the distance between the sensors and the acquisition computer often exceeds the
Bluetooth range, rendering live streaming impractical.

5Synchronization was achieved by manually setting the timestamp of each device to match the
current system time of the host PC, ensuring temporal alignment across all sensor data streams.
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Anthropometric parameters (continued)

Parameter Description

Pelvis–Hip distance [cm] distance between right A.S.I.S. and the
greater trochanter

Thigh Length [cm] distance between the greater trochanter and
the lateral epicondyle

Shank Length [cm] distance between the lateral epicondyle and
the lateral malleolus

Foot Height [cm] height of the lateral malleolus from the floor
with the shoes on

Head-Chest sensor distance [cm] vertical distance between the MIMUs
mounted on the head and the chest

3.4.3 Data standardization

After retrieval, all raw data were standardized and organized into a hierarchical
data.mat structure using MATLAB R2024A (The Mathworks Inc.). This structure
consolidated all recordings and metadata related to a given participant into a sin-
gle, organized file, thereby facilitating streamlined processing and analysis in the
subsequent stages of the study. Inside this file, all sensor data are expressed in the
reference frame proposed by Palmerini et al. [48].

Figure 3.5: Sensors reference system orientation according to Palmerini [48].

The standardization process was performed using a custom written Matlab code.
It gathered all sensor data from each recording, applied pre-computed calibration
matrices for gain and drift correction, and synchronized them using a common times-
tamp. After that, data were resampled in order to have a sampling interval of exactly
0.01 s (sf = 100Hz), before being saved in an organized structure.

3.4.4 INDIP pipeline

Standardized data was processed with a validated algorithm pipeline for the es-
timation of spatio-temporal parameters of gait [43]. This pipeline processed the
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calibrated inertial sensors recordings and data recorded by pressure insoles stored
in the data.mat file to segment gait sequences and, for each gait sequence, derive
a comprehensive set of spatio-temporal parameters of gait (Figure 7.3). For each
processed recording, the output of the pipeline included:

• Gait sequences: Start and End timepoints of each continuous walking period
within each recording.

• Turns: Start and End timepoints of each turning interval within each gait
sequence.

• Strides: Start and End timepoints of each stride within each gait sequence.

• Stride duration, stride length and stride speed: Duration, length and
speed associated to each stride within each gait sequence.

For more details regarding the definition of the output parameters see [43].

Figure 3.6: Workflow that shows the principal steps of INDIP algorithm [43].

3.4.5 Orientation estimation

The orientation of the MIMU on the upper body segments (head, chest and lower
back) in the global reference system were derived using Madgwick’s sensor fusion
complementary filter [49]. The filter parameter β, representing the gyroscope weight
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in the algorithm, was preliminarily tuned by comparing the orientation of the head-
worn MIMU estimated by the algorithm against its orientation derived by a 14-
cameras stereophotogrammetric motion capture system. The resulting optimal value
of the parameter β was 0.04 (for more details regarding the procedures to tune β, see
the Appendix). By integrating data from accelerometer, gyroscope and magnetome-
ter, the orientation quaternions for each data point and segment were computed and
used to remove the gravity contribution from accelerometric data. As a final step,
the relative orientations between head, chest and lower back in the form of Euler
angles (roll,pitch and yaw) were computed.

Raw acceleration data are reoriented in the lower back reference system for fur-
ther elaboration. This choice is made in order to preserve the information of the
anatomical axes on which accelerations are perceived.

Previous laboratory studies used a fixed reference frame aligned with the labo-
ratory for acceleration data. However, this approach is only applicable to walking
observations in which the subject does not change direction, and was therefore dis-
carded. A global reference frame was also deemed unsuitable, as its horizontal
directions depend on the Earth’s magnetic field and cannot be effectively aligned
with anatomical axes.

3.4.6 Video Labeling

Video recordings from smart glasses were manually labeled in order to characterize
the activities and stimuli experienced by the subjects while walking. Both will be
referred to as contextual labels in the following discussion.
A total of 17 labels were defined in advance (see Table 3.3). The purpose of the de-
fined labels consisted in mapping the most relevant and frequent activities that could
potentially affect gait, as well as environmental stimuli and contextual disturbance
elements of that could alter motion pattern or the behavior of the subjects. The
start and end of each identified label were noted on a dedicated Labeling ID.xlsx

Excel spreadsheet. Those instants were retrieved from the timestamp overlaid to
the video interface and reported with a resolution of 1 second6.
Given the coarse temporal resolution, the minimum duration for a label to be consid-
ered as valid was set to 2 seconds. If two or more stimuli/activities were concurrent
(e.g., texting while avoiding moving pedestrians), all labels were annotated.
The video labeling was performed confidentially on anonymized data. Original video
recordings were securely stored on an encrypted local server, and only the derived
annotations were used for subsequent analysis, in accordance with data protection
and privacy regulations.

6The output video-format did not allow to access timestamps, therefore information regarding
the time instant associated to each frame was retrieved directly from the datetime overlaid to the
video (format: HH:mm:ss).
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Table 3.3: Overview of the contextual labels annotated from video recordings.

Labels

Activity/stimulus/disturb Abbreviation Description

Search SRC Searching for a target item (e.g., a
snack) in an indoor environment (usu-
ally a supermarket or shop), starting
with entry into the area of interest and
ending with target identification. This
event generally included the subject’s
entire stay inside the supermarket un-
til all the products to be purchased had
been located.

Turning in place ROT In-place rotations were used as align-
ment points between inertial signals
and video in case of signal distortion.
Subject turns or changes of direction
were not considered by this label.

Fixed obstacle OBF Planning and negotiation of various
fixed obstacles, such as signs, furni-
ture, and stationary people. This la-
bel included the planning phase when
the subject focused on the obstacle and
possibly analyzed its surroundings to
decide on the path to take in order to
pass by it.

Moving obstacle OBM Planning and negotiation of moving ob-
stacles such as vehicles, pedestrians,
and animals. This label included the
planning phase when the subject fo-
cused on the moving obstacle and mon-
itored its motion as well as the sur-
rounding environment.

Audio stimulus response AUX Rapid head movements to localize sud-
den sound sources, such as car horns or
other people calling the subject or at-
tracting their attention without prior
focused visual contact; a time window
starting at the occurrence of the audi-
tory stimulus and ending 2 seconds af-
ter its conclusion was reported.
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Activity/stimulus/disturb Abbreviation Description

Door/gates crossing PRT Planning and crossing of doors and
gates. The planning phase was ob-
served when the subject focused on the
door/gate to check for any people or
vehicles that might be approaching or
prepares to open the door. A necessary
requirement was that the subject phys-
ically passed through the door/gate.

Texting/scrolling/reading TXT Use of smartphones or other ob-
jects/devices (e.g., books or notes) to
read or write text, view images or
maps. This label also considered the
manipulation of objects that particu-
larly demanded the subject’s attention,
such as searching for items inside a
bag/backpack.

Calling CLL Answering to or making phone calls;
the actions of reading the caller ID or
dialing a number were considered as
texting/scrolling if lasting longer than
1 second.

Approach to stairs ASC Planning the ascent/descent of stair
ramps and/or ramps and slopes; con-
sidered as the moments when these be-
come the dominant part of the visual
field and when the subject raised or
lowered their gaze to observe the slope,
crowding, and any other relevant fea-
tures.

Ascent/descent of stairs SSC The actual action of ascending or de-
scending stairs and ramps, defined by
the traversal of the inclined section.
Separate ascending stair segments with
landings where the next ramp is not
visible were considered distinct. At the
labeler’s discretion, the descending sec-
tions of the same stairs was treated as
a single event, as they were easier to
observe and evaluate.
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Activity/stimulus/disturb Abbreviation Description

Targeted head movements TMV Head movements targeted towards an
object or point in space triggering the
subject’s attention could be identified,
such as observing a place the subject
was approaching to or prolonged obser-
vation of objects and people, whether
stationary or moving, that were not di-
rectly on the subject’s path. Separate
events were identified for different tar-
gets, especially if they involved oppo-
site head rotations.

Social interaction SIN Macro-event in which the subject walks
in the company of other people, ac-
tively interacting with them.

Static head STC Moments, even brief ones, in which
the subject was considered to be com-
pletely still. This is the only cate-
gory that could and had to be assigned
when the subject was not walking. The
purpose of this category was to iden-
tify static intervals of head motion (for
more details see Subsection ).

Irregular surfaces SIR Walking on irregular and/or uneven
surfaces with greater complexity than a
smooth floor or paved road. This cat-
egory included moments of walking on
grass or other natural surfaces.

Generic head movement GMV Head movements not related to visual
targets (e.g., cracking the neck, putting
on clothing, etc.).

Various VAR Events considered relevant that do not
fall into the previous categories. This
includes all events that could affect sen-
sor placement, such as impacts, stum-
bles, and similar occurrences.

For each participant, the result of the labeling process consisted in a table with
annotated start and ending time instants in seconds from the video recording start.

3.4.7 Synchronization Between MIMU and Video Data

To synchronize the data recorded by the MIMU sensors with the video data captured
by the scene-recording glasses, each participant was asked to perform a full rotation
on the spot at the very beginning of the recording session. This rotation served as
a common temporal reference across both modalities.

After data acquisition, the onset of this rotation was manually identified in the
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video footage. All subsequent activities were then temporally referenced to the start
of this rotation, establishing a common time zero.

In parallel, the IMU data from the head unit were inspected to identify the initial
point of the vertical angular velocity peak (around the yaw axis), corresponding to
the rotation performed by the participant. This peak was considered the MIMU-
equivalent of the video-detected rotation onset.

Figure 3.7: Algorithm interface plotting the vertical angular velocity from the head
sensor to identify the rotation onset. Three positive peaks are clearly distinguishable
and correspond to the three rotations performed by the subject.

The timestamp associated with this peak was aligned with time zero of the
annotated activities, thereby synchronizing the video-based annotations with the
inertial recordings.

Once that video-data was fully annotated, the starting sample of the in-place
rotations was manually identified and used to compute the boundaries in samples
of each label with respect to the in-place rotation.

To associate contextual information with locomotor data, a custom MATLAB
function was developed. This function processed the outputs of the INDIP reference
system, which detects walking bouts and identifies individual strides.

For each walking bout detected, the function retrieved the corresponding strides.
Then, using the manually annotated labeling table derived from video recordings,
the function assigned one or more contextual labels to each stride, as well as a yes/no
label that denoted whether a specific stride belonged to a curvilinear gait portion.

This step ensured that every stride in the dataset was associated with its rele-
vant real-world context, providing a rich basis for evaluating motor behavior under
varying cognitive and environmental conditions.

3.5 Extraction of gait and upper body parameters

The extraction of gait and upper body motion parameters was performed to quan-
titatively characterize motor control strategies during both structured and unstruc-
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tured walking. Particular attention was given to head and trunk movement, as they
play a key role in maintaining balance, navigating the environment, and managing
sensory inputs during real-world locomotion. Head and trunk movements were char-
acterized according to the five domains proposed by Buckley et al. [50], namely:
magnitude, regularity, attenuation, symmetry, and smoothness, which provide a
comprehensive framework for describing upper body motor control during gait. To
ensure consistency and reduce the influence of confounding variables, curved strides
were excluded from the analysis in both lab-based and out-of-lab sessions. Addition-
ally, the two strides immediately preceding and following each curvilinear walking
segment were also discarded to avoid transitional effects. This preprocessing step
allowed for a cleaner evaluation of steady-state, straight walking behavior.

3.5.1 Gait parameters

Gait parameters were extracted directly by the INDIP pipeline (see Subsection
3.4.4). For this study stride-by-stride duration, length and speed were considered.
In addition, the Froude number FN was computed as a speed metric (see Sub-
subsection 3.5.1).

Froude number

First introduced by William Froude (1810–1879) as a non-dimensional parameter
that served as the criterion for dynamic similarity when comparing boats of different
hull lengths [51], Froude number has been used also in bipedal locomotion studies
in recent years [15][51][52]. It is defined as the ratio between the square of velocity
v and the product of the gravitational acceleration g and a characteristic length L.

FN =
v2

gL

In this study Froude number is evaluated as a gait speed metric that takes into
account for possible differences due to stature differences. Total leg length [m] is
used for the L variable, and is obtained as the sum of foot height, shank length and
thigh length (see Table 3.2).

3.5.2 Magnitude

Magnitude parameters provide quantifiable information about the Intensity of move-
ment, fundamental to understanding its characteristics and quality across a wide
range of applications, from clinical diagnosis and rehabilitation to sports perfor-
mance and daily activity monitoring. All magnitude parameters were calculated on
a stride-by-stride basis.

Root mean square acceleration [m/s2]

Root mean square acceleration (arms) of head (HD), chest (CH), and lower back
(LB) was computed for each of the vertical (V), medial-lateral (ML) and anterior-
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posterior (AP) axes, using the following formula:

arms =

√√√√ N∑
k=1

a(k)2

Where a is the acceleration along a specific axis and N is the number of samples in
one stride.

Rotational range of motion [°]

Yaw and pitch range of motion (ROM) was computed for head-in-chest, head-in-
lower back and chest-in-lower back relative orientations. Given the relative orienta-
tion7 of the segments during a stride θ(k) expressed in degrees, the range of motion
was evaluated as:

ROM(θ(k)) = max(θ(k))−min(θ(k))

3.5.3 Attenuation

Attenuation parameters describe the coupling between head, chest and lower back
and how the gait-related accelerations are transferred from the lower limbs to the
segments above.

Attenuation coefficient [%]

The attenuation coefficient (AC) along the axis i is computed as the percentage
reduction of the rms acceleration of segment X compared to segment Y [52]:

ACiXY =

(
1− armsiX

armsiY

)
∗ 100

With i ∈ {AP,V,ML} and X and Y representing the lower-back, the chest or the
head segments (X ̸= Y ).

3.5.4 Symmetry

Improved harmonic ratio

In order to asses the symmetry of gait, improved harmonic ratio (iHR) was computed
using accelerometer data from the lower back. This index is based on the spectral
analysis of the aforementioned signal, and defined as the ratio between the sum of
its first 10 even harmonics and the sum of the first 10 even plus the first 10 odd
harmonics:

iHR =

∑10
k=1 f

even
i∑10

k=1 f
even
i +

∑10
k=1 f

odd
i

7In this study, the relative orientation in quaternions between segments was obtained using
a Madgwick complementary filter as described in 3.3 and then converted in the Euler’s angles
representation using the built-in Matlab function quat2eul available in the Navigation Toolbox.
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This definition is valid for vertical and anterior-posterior components of the signal,
but for the medio-lateral component the sum of even harmonics is used at the
numerator instead:

iHRML =

∑10
k=1 f

odd
i∑10

k=1 f
even
i +

∑10
k=1 f

odd
i

This metric , proposed by Pasciuto et al. [53], has been chosen over the traditional
harmonic ratio due to its limited value range (iHR ∈ [0; 1]), which makes it much
easier to interpret, as a value of iHR = 1 reflects the perfect symmetry of the signal
and iHR = 0 its perfect asymmetry.

iHR is calculated for each axis. Given the uncorrelation between gait and the highly
present exploratory movements of head and chest, the parameter was not computed
for those segments.

3.5.5 Smoothness

Movement smoothness is a key indicator in assessing motor control and detect-
ing sensorimotor impairments, offering important information about the quality of
movement. Defined by its continuity and lack of interruptions, smooth movement is
widely regarded as a marker of intact motor function and successful motor learning
[54].

Log dimensionless jerk

Jerk is defined as the first time derivative of acceleration or as the second time
derivative of velocity:

j⃗ =
d ⃗a(t)

dt
=

d2 ⃗v(t)

dt2

A metric that is effectively representative of the signal shape must be dimen-
sionless and independent of its amplitude and duration. Moreover, it must also be
sensitive in the physiological range in which is applied [55]. To resolve this issue,
log dimensionless jerk has been introduced:

LDLJv = −ln

t2 − t1
v2peak

∫ t2

t1

∣∣∣∣∣d2 ⃗v(t)

dt2

∣∣∣∣∣
2

dt


The values are normalized to the square of the signal peak velocity vpeak and the
logarithm operation reduces the ceiling effect of data in the physiological range, in-
creasing the sensitivity [55].

Generally LDLJv is applied to stereophotogrammetric data, where movement veloc-
ity is easily computed, however its estimation from inertial data is way less reliable
and prone to errors introduced by noise and drift. For this reason an alternative
normalization to the square of the signal peak velocity apeak has been introduced
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[54][56]:

LDLJa = −ln

t2 − t1
a2peak

∫ t2

t1

∣∣∣∣∣d ⃗a(t)

dt

∣∣∣∣∣
2

dt


LDLJa was computed from acceleration data from the head for each axis.

3.5.6 Regularity

Entropy defines the level of regularity (e.g. complexity) in a time series. Multi-
scale entropies determine the entropy as a function of scale and thus express how
complexity in a time series changes with its temporal resolution.

Refined composite multiscale entropy

This metric, proposed by Wu et al. [57] and implemented through the matlab codes
provided by Ihllen et al. [58], is computed throught the following steps:

• Coarse graining of the time series:
To obtain the coarse-grained time series at a scale factor of τ , the original
time series is divided into non-overlapping windows of length τ and the data
points inside each window are averaged. Given a data vector x⃗, values of its
k-th coarse-grained version y⃗(τ) are obtained as follows:

y
(τ)
k (j) =

jτ+k−1∑
i=(j−1)τ+k

x(i) , 1 ≤ j ≤ N

τ
, 1 ≤ k ≤ τ

• Calculation of matched vector pairs:
For a given time series y⃗

(τ)
k , template vectors with dimensionm are constructed

as:

y⃗mk,τ (j) = {y(τ)k (j) y
(τ)
k (j + 1) ... y

(τ)
k (j +m− 1)}

A match occurs when the distance between two template vectors (y⃗mk,τ (i) ,
y⃗mk,τ (j) ) is smaller than a predefined tolerance r.

dmij = ||y⃗mk,τ (i)− y⃗mk,τ (j)||∞ < r

For a given scale factor τ , the number of matched vector pairs, nm+1
k,τ and nm

k,τ ,
are calculated for all coarse-grained series.

• Averaging matched vector pairs:
The mean of nm

k,τ (denoted as n̄m
k,τ ) and the mean of nm+1

k,τ (denoted as n̄m+1
k,τ )

are calculated across all coarse-grained series for a given scale factor τ .

n̄m
k,τ =

1

τ

τ∑
k=1

nm
k,τ n̄m+1

k,τ =
1

τ

τ∑
k=1

nm+1
k,τ
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• RCMSE value definition:
The RCMSE value at a scale factor of τ is defined as the logarithm of the ratio
of n̄m+1

k,τ and n̄m
k,τ .

RCME(x⃗, τ,m, r) = −ln

(
n̄m+1
k,τ

n̄m
k,τ

)
= −ln

(∑τ
k=1 n

m+1
k,τ∑τ

k=1 n
m
k,τ

)

To avoid variations in the entropy result due to differences in signal length, all pro-
cessed accelerometric data were resampled to 2000 data points using a radial basis
function interpolation algorithm.
In this study RCME(x⃗, τ,m, r) was computed for head acceleration on each axis
using template vectors of size m = 2, τ = [1 : 6] and r = 0.2∗std(x⃗). In order to ob-
tain a single value that incorporates complexity information over the various scales,
for a given signal x⃗ the overall entropy, always referred as RCME, was computed as
the sum of RCME(τ) for each scale factor τ .

RCME(x⃗,m, r) =
6∑

τ=1

RCME(x⃗, τ,m, r)

3.6 Obtained Dataset

The completion of manual video labeling proved to be particularly time-consuming,
with a highly variable duration depending on the activity level of each subject. As
a result, labeling process was completed for 11 of the 21 acquired subjects.

For these subjects, two comprehensive datasets were organized in two separate .csv
file, reporting the previously described parameters for a total of 50718 strides for the
Out of Lab trial and 7587 strides for the In Lab tests. Information about the cor-
responding gait sequence and stride identified by the INDIP pipeline were added to
allow for quick identification and verification within the dataset against the pipeline
output.

3.7 Statistical analysis

In this study, the main effects of a subset of activities on the computed parameters
were investigated.
Road crossings, fixed and moving obstacle avoidance, texting, calling, and
visual search in free living conditions were compared to laboratory straight
walking.

Data from In Lab simulated tests were not analyzed in this work, but were in-
cluded in the produced dataset for future evaluations.
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3.7.1 Filtering

The dataset was filtered to include only straight walking strides.
For each subject and each of the selected labels, strides were isolated and aggregated
by computing the mean value of each parameter.
To guarantee the independence of the aggregated samples, strides with multiple la-
bels among the evaluated ones were neglected.

Due to the absence of strides without multiple labels or the missing execution of
specific activities, 3 more subjects were excluded, reducing the total number of valid
subjects for the analysis to 8.

3.7.2 Assumption checks

Given the number of valid subjects, a distribution of 8 values was obtained for each
parameter and label. Each distribution was checked for normality using a Shaphiro-
Wilk test.
If the normality hypothesis was confirmed for each distribution of a given parameter,
Mauchly’s W was also computed to ensure the sphericity of the distribution. If this
second condition was not satisfied, a Greenhouse-Geisser correction was applied to
the data.

3.7.3 Statistical tests

If the normality hypothesis was confirmed for each distribution of a given parameter,
a one way repeated measure ANOVA test was performed using the Jasp software.
Otherwise if the distributions were not normal a non-parametric analysis was per-
formed with a Kruskal-Wallis test. A Holm post-hoc correction was applied to each
analysis performed.

3.7.4 Effect size

If statistically significative difference were found among labels for a given parameter,
its effect size was evaluated as the Cohen’s D for each label combination.

43



Chapter 4

Results

4.1 Summary statistics by activity

Here are reported the values of each aggregated metric for all the subjects valid for
the analysis.

4.1.1 Gait parameters

Stride speed

Table 4.1: Mean ± standard deviation of stride speed

Stride speed [m/s]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 1.57 ± 1.57 1.38 ± 0.10 1.33 ± 0.13 0.88 ± 0.31 1.42 ± 0.28 1.57 ± 0.16 1.07 ± 0.08

5004 1.31 ± 1.31 1.25 ± 0.29 1.39 ± 0.09 1.04 ± 0.30 1.19 ± 0.32 1.18 ± 0.25 1.31 ± 0.12

5005 1.55 ± 1.55 1.54 ± 0.19 1.30 ± 0.36 1.08 ± 0.30 1.53 ± 0.19 1.41 ± 0.27 1.44 ± 0.11

5006 1.72 ± 1.72 1.68 ± 0.11 1.71 ± 0.11 0.91 ± 0.33 1.55 ± 0.42 1.70 ± 0.27 1.24 ± 0.07

5007 1.58 ± 1.58 1.39 ± 0.27 1.52 ± 0.18 1.09 ± 0.23 1.16 ± 0.51 1.34 ± 0.39 1.45 ± 0.12

5008 1.52 ± 1.52 1.24 ± 0.18 1.57 ± 0.10 0.72 ± 0.23 1.35 ± 0.26 1.41 ± 0.26 1.31 ± 0.10

5010 1.35 ± 1.35 0.88 ± 0.31 0.84 ± 0.34 0.71 ± 0.17 1.05 ± 0.41 1.29 ± 0.22 1.30 ± 0.12

5011 1.48 ± 1.48 1.52 ± 0.14 1.61 ± 0.21 0.81 ± 0.38 1.67 ± 0.22 1.65 ± 0.27 1.35 ± 0.11

Stride length

Table 4.2: Mean ± standard deviation of stride length

Stride length [m]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 1.50 ± 1.50 1.41 ± 0.09 1.33 ± 0.09 1.08 ± 0.25 1.42 ± 0.21 1.52 ± 0.14 1.20 ± 0.07

5004 1.34 ± 1.34 1.27 ± 0.28 1.36 ± 0.09 1.18 ± 0.27 1.24 ± 0.28 1.25 ± 0.24 1.40 ± 0.16

5005 1.57 ± 1.57 1.57 ± 0.13 1.38 ± 0.29 1.27 ± 0.24 1.57 ± 0.14 1.50 ± 0.18 1.50 ± 0.10

5006 1.76 ± 1.76 1.73 ± 0.10 1.77 ± 0.11 1.21 ± 0.31 1.62 ± 0.34 1.74 ± 0.27 1.50 ± 0.08

5007 1.53 ± 1.53 1.41 ± 0.21 1.48 ± 0.18 1.21 ± 0.10 1.25 ± 0.38 1.39 ± 0.28 1.47 ± 0.11

5008 1.53 ± 1.53 1.35 ± 0.12 1.58 ± 0.10 1.00 ± 0.22 1.42 ± 0.21 1.46 ± 0.19 1.39 ± 0.09

5010 1.47 ± 1.47 1.08 ± 0.30 1.09 ± 0.32 1.00 ± 0.19 1.19 ± 0.41 1.41 ± 0.22 1.41 ± 0.14

5011 1.69 ± 1.69 1.73 ± 0.13 1.78 ± 0.13 1.12 ± 0.42 1.79 ± 0.15 1.77 ± 0.18 1.61 ± 0.08
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Stride duration

Table 4.3: Mean ± standard deviation of stride duration

Stride duration [s]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 0.97 ± 0.97 1.02 ± 0.02 1.00 ± 0.05 1.35 ± 0.40 1.02 ± 0.11 0.97 ± 0.05 1.20 ± 0.07

5004 1.03 ± 1.03 1.02 ± 0.11 0.98 ± 0.03 1.18 ± 0.23 1.08 ± 0.23 1.08 ± 0.15 1.40 ± 0.16

5005 1.02 ± 1.02 1.03 ± 0.08 1.11 ± 0.24 1.22 ± 0.18 1.03 ± 0.05 1.09 ± 0.17 1.50 ± 0.10

5006 1.03 ± 1.03 1.03 ± 0.02 1.04 ± 0.02 1.41 ± 0.31 1.10 ± 0.24 1.02 ± 0.03 1.50 ± 0.08

5007 0.99 ± 0.99 1.03 ± 0.12 0.97 ± 0.02 1.14 ± 0.19 1.24 ± 0.44 1.09 ± 0.22 1.47 ± 0.11

5008 1.01 ± 1.01 1.10 ± 0.09 1.00 ± 0.02 1.48 ± 0.35 1.07 ± 0.11 1.05 ± 0.09 1.39 ± 0.09

5010 1.10 ± 1.10 1.26 ± 0.15 1.38 ± 0.25 1.45 ± 0.19 1.21 ± 0.31 1.11 ± 0.07 1.41 ± 0.14

5011 1.16 ± 1.16 1.14 ± 0.06 1.11 ± 0.10 1.53 ± 0.40 1.08 ± 0.08 1.08 ± 0.09 1.61 ± 0.08

Froude number

Table 4.4: Mean ± standard deviation of Froude number

Froude number [Fn]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 0.30 ± 0.30 0.22 ± 0.03 0.21 ± 0.04 0.10 ± 0.05 0.25 ± 0.08 0.29 ± 0.05 0.14 ± 0.02

5004 0.20 ± 0.20 0.18 ± 0.07 0.22 ± 0.03 0.13 ± 0.06 0.17 ± 0.07 0.16 ± 0.06 0.19 ± 0.03

5005 0.26 ± 0.26 0.26 ± 0.06 0.20 ± 0.09 0.14 ± 0.07 0.26 ± 0.06 0.22 ± 0.07 0.23 ± 0.03

5006 0.32 ± 0.32 0.30 ± 0.04 0.31 ± 0.04 0.10 ± 0.07 0.27 ± 0.11 0.32 ± 0.08 0.16 ± 0.02

5007 0.31 ± 0.31 0.24 ± 0.09 0.29 ± 0.07 0.15 ± 0.06 0.19 ± 0.13 0.24 ± 0.11 0.26 ± 0.04

5008 0.27 ± 0.27 0.18 ± 0.05 0.29 ± 0.04 0.07 ± 0.04 0.22 ± 0.07 0.24 ± 0.08 0.20 ± 0.03

5010 0.21 ± 0.21 0.10 ± 0.06 0.09 ± 0.06 0.06 ± 0.02 0.14 ± 0.09 0.19 ± 0.06 0.19 ± 0.03

5011 0.23 ± 0.23 0.24 ± 0.04 0.27 ± 0.07 0.08 ± 0.06 0.29 ± 0.07 0.29 ± 0.09 0.19 ± 0.03
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4.1.2 Magnitude

Vertical rms acceleration of the head (a-rms HD-V)

Table 4.5: Mean ± standard deviation of a-rms HD-V

a-rms HD-V [m/s2]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 3.26 ± 3.26 2.09 ± 0.40 2.02 ± 0.19 1.43 ± 0.45 2.69 ± 0.84 3.05 ± 0.62 1.44 ± 0.16

5004 2.00 ± 2.00 2.37 ± 0.54 2.12 ± 0.19 1.23 ± 0.39 1.68 ± 0.53 1.64 ± 0.49 1.69 ± 0.18

5005 2.29 ± 2.29 2.19 ± 0.43 1.86 ± 0.53 1.33 ± 0.41 2.19 ± 0.38 2.03 ± 0.50 1.67 ± 0.29

5006 2.28 ± 2.28 2.20 ± 0.64 1.45 ± 0.51 1.05 ± 0.45 2.02 ± 0.90 1.88 ± 0.72 1.09 ± 0.31

5007 3.17 ± 3.17 1.92 ± 0.68 2.81 ± 0.33 1.85 ± 0.36 2.23 ± 1.21 2.52 ± 1.04 2.77 ± 0.25

5008 1.85 ± 1.85 1.95 ± 0.45 1.60 ± 0.29 0.89 ± 0.49 1.65 ± 0.58 1.75 ± 0.63 1.99 ± 0.26

5010 2.52 ± 2.52 1.68 ± 0.66 1.69 ± 0.52 1.12 ± 0.31 1.81 ± 0.74 2.21 ± 0.57 1.89 ± 0.28

5011 2.22 ± 2.22 2.42 ± 0.33 2.25 ± 0.53 1.20 ± 0.43 2.54 ± 0.66 2.61 ± 0.76 1.28 ± 0.21

Mediolateral rms acceleration of the head (a-rms HD-ML)

Table 4.6: Mean ± standard deviation of a-rms HD-ML

a-rms HD-ML [m/s2]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 1.11 ± 1.11 1.03 ± 0.17 1.03 ± 0.20 0.93 ± 0.33 0.99 ± 0.24 1.04 ± 0.27 0.87 ± 0.19

5004 1.04 ± 1.04 0.79 ± 0.19 0.81 ± 0.10 0.81 ± 0.23 0.89 ± 0.22 0.99 ± 0.30 0.72 ± 0.11

5005 1.10 ± 1.10 0.96 ± 0.24 1.17 ± 0.35 0.87 ± 0.27 1.11 ± 0.31 0.97 ± 0.19 0.83 ± 0.24

5006 2.66 ± 2.66 2.18 ± 0.85 2.13 ± 0.55 1.20 ± 0.43 2.11 ± 0.93 2.42 ± 0.85 0.99 ± 0.17

5007 1.13 ± 1.13 0.89 ± 0.28 0.77 ± 0.10 1.03 ± 0.26 0.88 ± 0.31 0.86 ± 0.25 0.67 ± 0.17

5008 1.46 ± 1.46 0.92 ± 0.26 1.58 ± 0.23 0.78 ± 0.23 1.17 ± 0.33 1.18 ± 0.36 0.84 ± 0.19

5010 1.59 ± 1.59 1.20 ± 0.31 1.22 ± 0.27 1.03 ± 0.28 1.35 ± 0.37 1.48 ± 0.39 1.36 ± 0.26

5011 1.33 ± 1.33 1.09 ± 0.16 1.17 ± 0.32 1.21 ± 0.35 1.54 ± 0.52 1.61 ± 0.53 1.30 ± 0.17

Anterior-posterior rms acceleration of the head (a-rms HD-AP)

Table 4.7: Mean ± standard deviation of a-rms HD-AP

a-rms HD-AP [m/s2]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 1.72 ± 1.72 1.64 ± 0.36 1.43 ± 0.40 1.09 ± 0.26 1.40 ± 0.55 1.71 ± 0.58 1.08 ± 0.31

5004 1.71 ± 1.71 1.03 ± 0.42 1.50 ± 0.24 1.14 ± 0.34 1.39 ± 0.45 1.43 ± 0.38 1.66 ± 0.27

5005 1.45 ± 1.45 1.31 ± 0.30 1.21 ± 0.31 0.96 ± 0.28 1.30 ± 0.36 1.18 ± 0.27 1.45 ± 0.37

5006 2.08 ± 2.08 1.66 ± 0.46 2.69 ± 0.40 1.19 ± 0.44 1.74 ± 0.77 2.06 ± 0.86 1.54 ± 0.31

5007 1.72 ± 1.72 1.92 ± 0.49 1.57 ± 0.37 1.12 ± 0.24 1.25 ± 0.65 1.44 ± 0.63 1.09 ± 0.36

5008 2.88 ± 2.88 1.15 ± 0.36 3.21 ± 0.18 1.16 ± 0.53 2.20 ± 0.70 2.32 ± 0.71 1.51 ± 0.37

5010 1.85 ± 1.85 1.25 ± 0.51 1.29 ± 0.35 1.13 ± 0.32 1.48 ± 0.53 1.88 ± 0.52 1.78 ± 0.24

5011 1.72 ± 1.72 1.40 ± 0.31 1.93 ± 0.52 0.91 ± 0.14 1.89 ± 0.56 1.80 ± 0.52 1.79 ± 0.36
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Vertical rms acceleration of the chest (a-rms CH-V)

Table 4.8: Mean ± standard deviation of a-rms CH-V

a-rms CH-V [m/s2]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 3.39 ± 3.39 2.43 ± 0.26 2.35 ± 0.35 1.39 ± 0.44 2.87 ± 0.86 3.26 ± 0.55 1.63 ± 0.16

5004 2.42 ± 2.42 2.35 ± 0.51 2.37 ± 0.14 1.50 ± 0.51 1.99 ± 0.62 2.02 ± 0.44 2.05 ± 0.18

5005 2.43 ± 2.43 2.34 ± 0.39 1.82 ± 0.52 1.38 ± 0.43 2.36 ± 0.35 2.09 ± 0.48 1.99 ± 0.29

5006 2.15 ± 2.15 1.92 ± 0.29 2.05 ± 0.20 0.87 ± 0.31 1.91 ± 0.57 2.02 ± 0.35 1.32 ± 0.13

5007 3.71 ± 3.71 2.79 ± 0.61 3.14 ± 0.17 1.98 ± 0.38 2.51 ± 1.33 2.97 ± 1.11 2.83 ± 0.25

5008 2.68 ± 2.68 1.67 ± 0.41 2.52 ± 0.14 1.14 ± 0.55 2.17 ± 0.54 2.28 ± 0.57 1.91 ± 0.14

5010 2.56 ± 2.56 1.53 ± 0.65 1.59 ± 0.53 1.05 ± 0.35 1.82 ± 0.76 2.36 ± 0.55 2.09 ± 0.19

5011 2.18 ± 2.18 2.09 ± 0.29 2.11 ± 0.40 1.36 ± 0.54 2.52 ± 0.45 2.51 ± 0.59 1.78 ± 0.17

Mediolateral rms acceleration of the chest (a-rms CH-ML)

Table 4.9: Mean ± standard deviation of a-rms CH-ML

a-rms CH-ML [m/s2]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 1.33 ± 1.33 1.25 ± 0.21 1.16 ± 0.14 0.87 ± 0.17 1.18 ± 0.27 1.37 ± 0.23 1.01 ± 0.14

5004 1.18 ± 1.18 1.18 ± 0.20 1.16 ± 0.10 0.89 ± 0.20 1.07 ± 0.23 1.10 ± 0.26 1.16 ± 0.12

5005 1.22 ± 1.22 1.14 ± 0.25 1.14 ± 0.27 0.82 ± 0.23 1.24 ± 0.19 1.04 ± 0.22 1.30 ± 0.14

5006 1.64 ± 1.64 1.40 ± 0.21 1.46 ± 0.15 0.84 ± 0.25 1.52 ± 0.43 1.67 ± 0.36 0.92 ± 0.14

5007 1.08 ± 1.08 0.88 ± 0.21 1.02 ± 0.10 0.94 ± 0.18 0.96 ± 0.29 0.97 ± 0.22 1.01 ± 0.12

5008 1.58 ± 1.58 0.92 ± 0.29 1.42 ± 0.08 0.74 ± 0.26 1.34 ± 0.40 1.31 ± 0.40 1.30 ± 0.20

5010 1.39 ± 1.39 1.13 ± 0.24 1.02 ± 0.21 1.03 ± 0.21 1.18 ± 0.23 1.30 ± 0.19 1.27 ± 0.16

5011 1.42 ± 1.42 1.41 ± 0.19 1.33 ± 0.33 1.30 ± 0.43 1.67 ± 0.30 1.66 ± 0.43 1.28 ± 0.17

Anterior-posterior rms acceleration of the chest (a-rms CH-AP)

Table 4.10: Mean ± standard deviation of a-rms CH-AP

a-rms CH-AP [m/s2]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 2.39 ± 2.39 1.74 ± 0.26 1.31 ± 0.16 1.04 ± 0.31 1.85 ± 0.59 2.36 ± 0.45 1.20 ± 0.16

5004 1.30 ± 1.30 1.09 ± 0.21 0.92 ± 0.08 0.99 ± 0.20 1.05 ± 0.23 1.18 ± 0.25 1.67 ± 0.20

5005 1.81 ± 1.81 1.73 ± 0.26 1.63 ± 0.35 1.18 ± 0.27 1.76 ± 0.21 1.65 ± 0.24 1.71 ± 0.17

5006 3.33 ± 3.33 2.92 ± 0.34 3.07 ± 0.20 1.35 ± 0.52 2.77 ± 0.88 3.15 ± 0.45 1.61 ± 0.17

5007 1.85 ± 1.85 1.50 ± 0.26 1.59 ± 0.18 1.20 ± 0.15 1.43 ± 0.55 1.58 ± 0.39 1.63 ± 0.12

5008 2.63 ± 2.63 1.82 ± 0.39 2.96 ± 0.15 1.20 ± 0.52 2.19 ± 0.50 2.29 ± 0.53 2.13 ± 0.18

5010 2.29 ± 2.29 1.52 ± 0.47 1.60 ± 0.39 1.12 ± 0.26 1.71 ± 0.70 2.18 ± 0.46 2.22 ± 0.26

5011 2.03 ± 2.03 1.97 ± 0.27 2.25 ± 0.44 1.37 ± 0.48 2.34 ± 0.46 2.39 ± 0.55 1.75 ± 0.20
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Vertical rms acceleration of the lower back (a-rms LB-V)

Table 4.11: Mean ± standard deviation of a-rms LB-V

a-rms LB-V [m/s2]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 4.10 ± 4.10 3.06 ± 0.37 2.48 ± 0.36 1.45 ± 0.50 3.32 ± 0.97 3.87 ± 0.51 1.76 ± 0.21

5004 2.94 ± 2.94 2.95 ± 0.62 2.97 ± 0.19 1.71 ± 0.66 2.41 ± 0.79 2.37 ± 0.57 2.58 ± 0.22

5005 3.50 ± 3.50 3.31 ± 0.61 2.75 ± 0.85 1.88 ± 0.66 3.49 ± 0.59 2.92 ± 0.78 2.69 ± 0.35

5006 3.79 ± 3.79 3.41 ± 0.44 3.38 ± 0.24 1.46 ± 0.54 3.22 ± 1.00 3.56 ± 0.43 1.89 ± 0.19

5007 4.57 ± 4.57 3.32 ± 0.83 3.91 ± 0.34 2.05 ± 0.39 2.94 ± 1.73 3.49 ± 1.39 3.56 ± 0.37

5008 3.58 ± 3.58 2.40 ± 0.57 3.81 ± 0.20 1.31 ± 0.77 2.88 ± 0.73 3.04 ± 0.76 2.63 ± 0.19

5010 3.35 ± 3.35 1.97 ± 0.85 1.88 ± 0.69 1.14 ± 0.34 2.32 ± 1.00 3.03 ± 0.69 2.82 ± 0.28

5011 3.15 ± 3.15 3.27 ± 0.51 3.28 ± 0.85 1.37 ± 0.64 3.69 ± 0.84 3.83 ± 1.08 2.44 ± 0.29

Mediolateral rms acceleration of the lower back (a-rms LB-ML)

Table 4.12: Mean ± standard deviation of a-rms LB-ML

a-rms LB-ML [m/s2]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 1.87 ± 1.87 1.48 ± 0.15 1.39 ± 0.18 1.10 ± 0.22 1.62 ± 0.35 1.72 ± 0.24 1.07 ± 0.11

5004 2.34 ± 2.34 2.33 ± 0.51 2.45 ± 0.22 1.55 ± 0.38 2.04 ± 0.55 2.02 ± 0.46 1.97 ± 0.21

5005 1.77 ± 1.77 1.60 ± 0.29 1.40 ± 0.37 1.15 ± 0.25 1.81 ± 0.33 1.46 ± 0.31 1.58 ± 0.19

5006 2.10 ± 2.10 1.85 ± 0.36 1.82 ± 0.23 1.24 ± 0.22 1.71 ± 0.49 1.89 ± 0.36 1.33 ± 0.14

5007 1.74 ± 1.74 1.44 ± 0.38 1.65 ± 0.16 1.20 ± 0.15 1.37 ± 0.47 1.47 ± 0.40 1.48 ± 0.16

5008 1.58 ± 1.58 1.16 ± 0.29 1.69 ± 0.18 0.95 ± 0.24 1.39 ± 0.29 1.39 ± 0.35 1.50 ± 0.17

5010 1.72 ± 1.72 1.38 ± 0.30 1.19 ± 0.25 1.32 ± 0.28 1.50 ± 0.37 1.52 ± 0.25 1.57 ± 0.16

5011 1.89 ± 1.89 1.98 ± 0.35 1.78 ± 0.36 1.71 ± 0.37 2.10 ± 0.35 2.13 ± 0.46 1.82 ± 0.19

Anterior-posterior rms acceleration of the lower back (a-rms LB-AP)

Table 4.13: Mean ± standard deviation of a-rms LB-AP

a-rms LB-AP [m/s2]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 2.92 ± 2.92 2.22 ± 0.27 1.91 ± 0.19 1.56 ± 0.39 2.45 ± 0.60 2.83 ± 0.33 1.55 ± 0.15

5004 2.10 ± 2.10 1.96 ± 0.31 1.97 ± 0.21 1.53 ± 0.35 1.76 ± 0.46 1.73 ± 0.32 1.97 ± 0.16

5005 2.44 ± 2.44 2.35 ± 0.34 1.93 ± 0.45 1.51 ± 0.40 2.48 ± 0.41 2.15 ± 0.44 2.07 ± 0.24

5006 3.09 ± 3.09 2.88 ± 0.36 2.79 ± 0.19 1.39 ± 0.40 2.58 ± 0.79 2.94 ± 0.47 1.70 ± 0.18

5007 2.52 ± 2.52 1.96 ± 0.41 2.32 ± 0.28 1.60 ± 0.20 1.86 ± 0.71 2.08 ± 0.55 2.26 ± 0.22

5008 2.43 ± 2.43 1.58 ± 0.30 2.48 ± 0.22 1.14 ± 0.32 1.96 ± 0.45 2.06 ± 0.50 1.64 ± 0.12

5010 2.25 ± 2.25 1.46 ± 0.39 1.32 ± 0.46 1.25 ± 0.24 1.76 ± 0.67 2.06 ± 0.39 1.87 ± 0.20

5011 3.43 ± 3.43 3.65 ± 0.63 3.70 ± 1.05 2.29 ± 0.83 4.09 ± 0.87 4.15 ± 1.14 2.94 ± 0.28
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Head-in-lower back yaw range of motion (yaw ROM HD-LB)

Table 4.14: Mean ± standard deviation of yaw ROM HD-LB

yaw ROM HD-LB [deg]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 18.07 ± 18.07 11.24 ± 6.83 12.83 ± 3.56 38.35 ± 24.81 14.48 ± 10.98 14.43 ± 8.37 14.47 ± 5.61

5004 24.23 ± 24.23 10.36 ± 6.48 9.93 ± 3.04 23.91 ± 16.66 20.15 ± 16.68 23.74 ± 19.98 8.63 ± 2.16

5005 21.98 ± 21.98 16.44 ± 7.13 12.63 ± 5.46 23.80 ± 15.31 20.30 ± 9.04 16.91 ± 7.99 19.44 ± 12.51

5006 42.71 ± 42.71 26.03 ± 12.31 23.35 ± 8.05 44.49 ± 25.73 29.08 ± 20.54 30.11 ± 16.82 21.09 ± 7.51

5007 30.33 ± 30.33 15.96 ± 10.57 16.23 ± 3.42 48.82 ± 26.00 25.81 ± 18.35 21.15 ± 14.12 16.41 ± 4.08

5008 28.59 ± 28.59 14.32 ± 4.81 28.09 ± 4.05 28.10 ± 13.64 24.47 ± 8.66 21.44 ± 6.07 18.82 ± 3.46

5010 32.13 ± 32.13 18.90 ± 13.11 21.05 ± 10.00 44.33 ± 18.91 30.12 ± 18.59 26.98 ± 17.19 17.81 ± 6.96

5011 32.03 ± 32.03 17.58 ± 4.27 18.30 ± 7.31 35.24 ± 24.80 20.60 ± 7.29 19.27 ± 7.47 21.14 ± 4.52

Head-in-lower back pitch range of motion (pitch ROM HD-LB)

Table 4.15: Mean ± standard deviation of pitch ROM HD-LB

pitch ROM HD-LB [deg]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 17.05 ± 17.05 14.21 ± 12.49 10.41 ± 4.29 10.33 ± 5.70 15.02 ± 8.81 15.63 ± 10.74 10.25 ± 6.57

5004 12.35 ± 12.35 10.66 ± 6.70 8.48 ± 2.82 10.71 ± 5.69 11.68 ± 6.49 13.06 ± 7.74 8.29 ± 2.13

5005 13.99 ± 13.99 12.25 ± 8.88 13.30 ± 7.91 13.33 ± 8.96 14.74 ± 8.20 12.75 ± 6.84 13.84 ± 7.49

5006 20.70 ± 20.70 19.68 ± 10.53 15.89 ± 3.98 18.44 ± 8.24 16.38 ± 8.05 18.65 ± 8.06 8.51 ± 2.59

5007 18.15 ± 18.15 13.04 ± 10.92 15.83 ± 7.29 15.35 ± 5.96 16.68 ± 9.70 19.73 ± 11.67 7.50 ± 3.31

5008 9.34 ± 9.34 8.34 ± 7.77 7.52 ± 2.40 12.19 ± 7.37 10.23 ± 7.69 8.48 ± 4.86 7.85 ± 3.03

5010 13.10 ± 13.10 13.15 ± 10.50 14.54 ± 7.87 13.40 ± 6.48 12.50 ± 7.34 11.17 ± 7.79 8.59 ± 3.65

5011 15.00 ± 15.00 12.20 ± 6.12 12.59 ± 4.34 17.56 ± 6.50 14.93 ± 6.26 14.52 ± 5.78 12.20 ± 4.25
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Chest-in-lower back yaw range of motion (yaw ROM CH-LB)

Table 4.16: Mean ± standard deviation of yaw ROM CH-LB

yaw ROM CH-LB [deg]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 14.48 ± 14.48 14.22 ± 3.92 15.18 ± 1.95 10.84 ± 3.82 13.36 ± 3.44 16.84 ± 3.73 15.87 ± 2.53

5004 11.44 ± 11.44 7.85 ± 2.46 9.33 ± 1.22 8.86 ± 2.34 11.26 ± 3.98 12.77 ± 3.90 14.57 ± 1.41

5005 15.25 ± 15.25 15.01 ± 2.98 12.59 ± 3.25 11.20 ± 3.25 16.45 ± 2.59 13.43 ± 3.14 15.34 ± 2.91

5006 23.78 ± 23.78 24.39 ± 3.67 22.91 ± 3.03 19.16 ± 6.18 23.08 ± 6.26 26.18 ± 5.44 20.68 ± 2.06

5007 18.74 ± 18.74 16.33 ± 3.37 17.13 ± 1.83 15.00 ± 3.55 17.10 ± 5.33 16.67 ± 4.54 17.23 ± 2.29

5008 18.90 ± 18.90 18.06 ± 4.20 23.01 ± 2.82 12.55 ± 4.21 19.01 ± 3.80 18.37 ± 4.02 20.19 ± 2.57

5010 19.70 ± 19.70 14.02 ± 3.67 16.07 ± 2.97 14.74 ± 3.70 16.16 ± 5.43 18.74 ± 5.22 14.91 ± 2.20

5011 24.40 ± 24.40 22.78 ± 3.14 20.07 ± 4.43 24.00 ± 6.97 24.10 ± 3.66 23.71 ± 4.21 24.65 ± 5.12

Chest-in-lower back pitch range of motion (pitch ROM CH-LB)

Table 4.17: Mean ± standard deviation of pitch ROM CH-LB

pitch ROM CH-LB [deg]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 9.24 ± 9.24 7.41 ± 1.63 7.70 ± 2.99 7.72 ± 2.02 8.77 ± 2.62 9.17 ± 2.44 5.59 ± 1.70

5004 5.34 ± 5.34 4.30 ± 0.92 4.37 ± 1.04 4.28 ± 1.28 4.69 ± 1.69 4.71 ± 1.81 6.53 ± 1.28

5005 5.33 ± 5.33 4.85 ± 1.81 5.71 ± 1.80 4.57 ± 1.82 5.28 ± 1.72 4.79 ± 1.37 4.52 ± 1.34

5006 14.70 ± 14.70 14.97 ± 2.49 12.79 ± 1.70 11.53 ± 3.12 12.33 ± 3.84 14.67 ± 3.42 6.13 ± 1.23

5007 8.22 ± 8.22 5.91 ± 2.18 5.46 ± 1.45 6.99 ± 2.62 7.80 ± 2.74 7.70 ± 2.66 4.82 ± 0.91

5008 3.49 ± 3.49 3.34 ± 0.81 4.80 ± 0.98 3.72 ± 1.45 3.87 ± 1.67 3.47 ± 1.18 3.87 ± 0.95

5010 6.13 ± 6.13 5.22 ± 2.06 6.43 ± 2.14 5.30 ± 1.86 5.99 ± 3.58 5.63 ± 1.93 4.72 ± 1.20

5011 10.08 ± 10.08 9.63 ± 2.25 10.34 ± 2.74 8.38 ± 2.12 10.32 ± 2.88 10.91 ± 3.17 10.45 ± 2.03
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Head-in-chest yaw range of motion (yaw ROM HD-CH)

Table 4.18: Mean ± standard deviation of yaw ROM HD-CH

yaw ROM HD-CH [deg]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 13.51 ± 13.51 6.67 ± 5.48 8.93 ± 2.96 35.08 ± 21.96 10.52 ± 10.30 9.79 ± 8.41 8.97 ± 4.36

5004 20.24 ± 20.24 5.85 ± 5.86 5.64 ± 3.48 20.65 ± 14.53 16.71 ± 14.83 21.09 ± 15.96 10.51 ± 1.87

5005 13.50 ± 13.50 7.66 ± 6.63 9.48 ± 6.17 18.33 ± 13.27 10.80 ± 7.60 9.66 ± 7.18 10.64 ± 10.10

5006 24.12 ± 24.12 12.43 ± 10.76 6.17 ± 4.37 24.55 ± 15.52 14.29 ± 14.14 11.59 ± 8.99 11.04 ± 6.21

5007 26.12 ± 26.12 10.67 ± 11.32 11.48 ± 3.83 45.27 ± 23.10 23.53 ± 17.01 19.01 ± 15.06 10.08 ± 2.76

5008 12.67 ± 12.67 4.78 ± 2.67 7.10 ± 2.31 18.41 ± 11.27 11.55 ± 7.58 7.34 ± 3.75 9.60 ± 2.90

5010 27.01 ± 27.01 13.23 ± 13.22 14.80 ± 8.44 39.92 ± 18.24 26.12 ± 17.60 22.70 ± 14.92 9.21 ± 6.31

5011 21.28 ± 21.28 8.07 ± 5.01 8.58 ± 6.17 28.17 ± 20.66 11.41 ± 6.43 11.64 ± 7.26 9.77 ± 3.14

Head-in-chest pitch range of motion (pitch ROM HD-CH)

Table 4.19: Mean ± standard deviation of pitch ROM HD-CH

pitch ROM HD-CH [deg]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 17.56 ± 17.56 12.95 ± 12.47 11.09 ± 4.68 9.90 ± 4.47 15.53 ± 8.50 16.46 ± 9.93 10.27 ± 5.65

5004 11.10 ± 11.10 8.99 ± 6.77 6.09 ± 3.09 9.50 ± 5.14 10.49 ± 7.07 12.08 ± 8.14 6.15 ± 2.23

5005 11.89 ± 11.89 10.18 ± 8.19 9.52 ± 6.54 11.64 ± 7.99 12.45 ± 7.55 11.68 ± 6.67 12.21 ± 8.23

5006 16.55 ± 16.55 14.73 ± 10.90 8.90 ± 4.29 14.48 ± 9.02 12.61 ± 8.50 14.60 ± 9.06 6.16 ± 3.22

5007 18.85 ± 18.85 13.54 ± 11.10 15.84 ± 7.21 17.57 ± 5.65 17.88 ± 9.57 20.48 ± 10.66 9.13 ± 3.35

5008 9.55 ± 9.55 7.63 ± 7.63 6.46 ± 2.40 11.10 ± 6.73 10.27 ± 8.10 8.14 ± 4.72 6.98 ± 3.42

5010 12.74 ± 12.74 12.03 ± 11.00 14.64 ± 8.21 13.82 ± 7.36 12.83 ± 7.86 10.63 ± 7.56 8.42 ± 4.57

5011 12.33 ± 12.33 9.04 ± 6.40 7.59 ± 3.76 14.14 ± 6.34 11.45 ± 6.45 9.95 ± 5.64 8.43 ± 3.49
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4.1.3 Attenuation

Vertical attenuation coefficient head-chest (ACV HD-CH)

Table 4.20: Mean ± standard deviation of ACV HD-CH

ACV HD-CH [%]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 2.65 ± 2.65 14.08 ± 12.77 13.10 ± 7.46 -4.06 ± 13.59 6.12 ± 11.61 5.85 ± 14.26 11.16 ± 9.70

5004 16.45 ± 16.45 -1.04 ± 10.02 10.33 ± 6.43 13.57 ± 23.70 12.29 ± 22.68 18.91 ± 15.35 17.06 ± 7.86

5005 5.16 ± 5.16 6.43 ± 10.46 -4.37 ± 19.20 2.05 ± 13.60 6.98 ± 10.59 3.24 ± 9.41 15.04 ± 16.45

5006 -7.68 ± -7.68 -17.66 ± 38.25 29.57 ± 23.46 -28.29 ± 53.43 -9.40 ± 45.07 4.76 ± 36.33 17.49 ± 20.45

5007 13.54 ± 13.54 31.84 ± 16.43 10.39 ± 9.07 5.87 ± 9.80 7.39 ± 20.24 14.31 ± 14.86 2.18 ± 4.64

5008 30.64 ± 30.64 -18.67 ± 15.94 36.58 ± 10.52 19.20 ± 22.14 23.13 ± 21.56 22.01 ± 24.25 -4.54 ± 12.88

5010 1.51 ± 1.51 -12.83 ± 19.87 -8.29 ± 16.26 -11.34 ± 22.58 -2.69 ± 18.64 5.37 ± 17.06 9.08 ± 14.73

5011 -2.26 ± -2.26 -16.19 ± 9.07 -6.24 ± 12.35 9.14 ± 17.15 -0.73 ± 18.74 -3.41 ± 16.27 27.37 ± 14.15

Vertical attenuation coefficient head-lower back (ACV HD-LB)

Table 4.21: Mean ± standard deviation of ACV HD-LB

ACV HD-LB [%]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 20.15 ± 20.15 31.61 ± 10.87 17.66 ± 7.32 -1.01 ± 15.70 18.38 ± 11.68 21.26 ± 11.68 17.32 ± 8.32

5004 30.69 ± 30.69 19.68 ± 7.90 28.45 ± 5.67 20.80 ± 29.71 25.77 ± 23.15 30.20 ± 15.07 34.24 ± 6.73

5005 34.01 ± 34.01 33.34 ± 8.04 29.33 ± 14.92 26.37 ± 13.49 36.59 ± 8.14 29.53 ± 8.86 37.22 ± 11.37

5006 37.95 ± 37.95 34.18 ± 20.79 57.16 ± 14.61 21.17 ± 40.06 34.41 ± 26.86 46.51 ± 20.40 42.47 ± 14.45

5007 29.46 ± 29.46 41.97 ± 14.88 27.73 ± 9.43 8.59 ± 11.93 16.16 ± 23.67 25.60 ± 14.30 22.00 ± 5.31

5008 48.17 ± 48.17 17.80 ± 8.33 57.97 ± 7.24 24.59 ± 28.64 41.19 ± 18.44 41.51 ± 18.23 24.17 ± 8.59

5010 24.31 ± 24.31 11.79 ± 13.35 6.73 ± 16.84 -0.93 ± 18.62 18.31 ± 17.89 26.31 ± 12.40 32.70 ± 10.03

5011 27.04 ± 27.04 25.30 ± 7.59 30.29 ± 10.04 3.48 ± 38.95 30.15 ± 14.23 31.17 ± 11.70 46.67 ± 11.13

Vertical attenuation coefficient chest-lower back (ACV CH-LB)

Table 4.22: Mean ± standard deviation of ACV CH-LB

ACV CH-LB [%]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 17.72 ± 17.72 20.46 ± 4.50 5.13 ± 5.19 2.78 ± 8.88 12.85 ± 8.75 16.03 ± 8.00 6.70 ± 5.33

5004 17.05 ± 17.05 20.33 ± 5.29 20.18 ± 3.14 9.43 ± 10.39 15.56 ± 11.12 13.81 ± 9.05 20.65 ± 4.58

5005 30.34 ± 30.34 28.65 ± 5.04 32.04 ± 9.15 24.80 ± 8.47 31.59 ± 6.78 26.91 ± 8.63 25.75 ± 6.55

5006 41.98 ± 41.98 43.20 ± 9.61 39.28 ± 4.71 38.75 ± 14.29 38.53 ± 13.90 42.98 ± 9.12 30.12 ± 4.34

5007 18.36 ± 18.36 14.78 ± 7.86 19.50 ± 4.17 3.00 ± 6.09 8.68 ± 20.78 13.00 ± 9.28 20.21 ± 4.89

5008 24.95 ± 24.95 30.15 ± 6.63 33.73 ± 3.01 7.57 ± 15.35 23.71 ± 8.39 24.74 ± 5.95 27.26 ± 4.35

5010 23.14 ± 23.14 20.62 ± 12.28 13.76 ± 9.51 8.32 ± 11.89 20.06 ± 12.28 21.66 ± 7.27 25.43 ± 7.06

5011 28.53 ± 28.53 35.61 ± 5.59 34.19 ± 7.45 -5.48 ± 27.52 30.57 ± 7.64 33.23 ± 6.97 26.60 ± 6.33
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Mediolateral attenuation coefficient head-chest (ACML HD-CH)

Table 4.23: Mean ± standard deviation of ACML HD-CH

ACML HD-CH [%]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 13.89 ± 13.89 16.76 ± 14.78 10.25 ± 18.53 -10.92 ± 48.44 14.39 ± 19.19 22.80 ± 19.85 13.30 ± 14.83

5004 8.97 ± 8.97 31.82 ± 15.05 30.25 ± 8.67 9.09 ± 21.46 15.22 ± 22.06 7.20 ± 29.27 37.15 ± 9.28

5005 9.23 ± 9.23 14.40 ± 15.75 -5.22 ± 29.16 -8.32 ± 30.18 8.89 ± 26.34 2.39 ± 27.21 35.06 ± 20.84

5006 -67.80 ± -67.80 -55.30 ± 58.92 -46.36 ± 37.00 -49.80 ± 53.06 -39.90 ± 50.44 -48.87 ± 52.96 -9.20 ± 16.86

5007 -6.15 ± -6.15 -3.78 ± 28.30 23.94 ± 9.43 -14.39 ± 39.70 3.10 ± 33.81 6.90 ± 33.08 34.34 ± 13.70

5008 6.35 ± 6.35 -2.41 ± 16.24 -10.99 ± 14.30 -9.75 ± 27.01 9.87 ± 18.23 7.08 ± 20.04 34.22 ± 16.95

5010 -15.97 ± -15.97 -6.22 ± 18.67 -21.59 ± 19.83 -1.26 ± 23.48 -14.54 ± 22.20 -14.14 ± 25.97 -7.47 ± 17.57

5011 2.57 ± 2.57 21.75 ± 11.01 9.18 ± 23.26 1.64 ± 29.35 7.00 ± 29.65 1.05 ± 22.77 -2.30 ± 13.03

Mediolateral attenuation coefficient head-lower back (ACML HD-LB)

Table 4.24: Mean ± standard deviation of ACML HD-LB

ACML HD-LB [%]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 38.71 ± 38.71 30.15 ± 11.62 25.14 ± 15.80 13.11 ± 37.07 36.14 ± 19.14 38.50 ± 18.12 17.57 ± 17.02

5004 52.60 ± 52.60 64.69 ± 10.55 66.90 ± 5.10 46.11 ± 18.50 53.24 ± 17.19 47.83 ± 22.08 62.77 ± 6.91

5005 36.45 ± 36.45 38.89 ± 13.31 13.91 ± 22.46 23.52 ± 21.08 37.50 ± 16.82 30.47 ± 21.04 46.08 ± 18.18

5006 -30.05 ± -30.05 -19.19 ± 46.67 -17.86 ± 29.60 2.60 ± 31.75 -23.05 ± 43.92 -29.34 ± 43.63 24.19 ± 15.42

5007 31.51 ± 31.51 35.61 ± 21.40 52.55 ± 8.30 12.71 ± 23.70 29.00 ± 33.83 37.58 ± 23.78 54.60 ± 12.89

5008 5.32 ± 5.32 20.60 ± 11.11 5.58 ± 14.53 14.68 ± 26.99 14.97 ± 19.83 14.13 ± 15.88 43.56 ± 13.54

5010 3.49 ± 3.49 10.52 ± 27.52 -4.90 ± 24.15 20.36 ± 22.55 8.47 ± 22.43 1.50 ± 27.61 12.52 ± 17.32

5011 27.36 ± 27.36 44.17 ± 8.60 33.16 ± 15.85 26.99 ± 21.52 25.63 ± 24.94 23.51 ± 19.28 27.99 ± 12.10

Mediolateral attenuation coefficient chest-lower back (ACML CH-LB)

Table 4.25: Mean ± standard deviation of ACML CH-LB

ACML CH-LB [%]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 28.11 ± 28.11 14.78 ± 13.62 16.47 ± 7.84 19.87 ± 14.15 25.32 ± 15.30 19.44 ± 16.94 4.91 ± 11.12

5004 48.16 ± 48.16 47.60 ± 13.68 52.46 ± 5.28 40.89 ± 11.41 44.92 ± 13.74 44.12 ± 12.52 40.72 ± 6.70

5005 29.94 ± 29.94 28.30 ± 10.25 16.14 ± 18.28 28.04 ± 14.79 30.75 ± 9.90 28.15 ± 11.23 16.68 ± 7.76

5006 19.52 ± 19.52 22.35 ± 14.94 18.77 ± 11.13 32.49 ± 16.88 9.86 ± 20.29 10.05 ± 19.40 30.42 ± 10.23

5007 36.18 ± 36.18 37.64 ± 12.78 37.41 ± 9.88 20.69 ± 16.51 26.80 ± 20.32 32.16 ± 12.86 31.44 ± 9.03

5008 -1.84 ± -1.84 21.07 ± 14.32 14.87 ± 7.67 20.45 ± 23.64 3.86 ± 21.51 5.25 ± 18.22 13.05 ± 11.72

5010 16.10 ± 16.10 15.92 ± 18.76 13.22 ± 17.25 20.90 ± 14.63 19.42 ± 15.46 13.53 ± 14.18 18.32 ± 11.36

5011 24.49 ± 24.49 27.97 ± 10.86 24.67 ± 13.38 23.85 ± 19.99 19.89 ± 11.36 22.13 ± 12.03 29.19 ± 10.88
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Anterior-posterior attenuation coefficient head-chest (ACAP HD-CH)

Table 4.26: Mean ± standard deviation of ACAP HD-CH

ACAP HD-CH [%]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 24.34 ± 24.34 3.95 ± 22.00 -8.87 ± 25.10 -14.40 ± 40.90 18.81 ± 32.26 26.15 ± 26.23 10.54 ± 20.90

5004 -35.15 ± -35.15 5.37 ± 32.84 -63.36 ± 29.19 -15.85 ± 24.68 -34.19 ± 41.50 -23.29 ± 33.32 1.18 ± 9.88

5005 19.27 ± 19.27 23.88 ± 16.85 24.46 ± 19.81 16.89 ± 20.02 26.27 ± 16.22 27.81 ± 14.95 15.76 ± 17.93

5006 34.37 ± 34.37 42.75 ± 15.19 11.89 ± 13.63 5.94 ± 34.04 31.13 ± 32.82 33.82 ± 26.95 4.49 ± 14.32

5007 6.04 ± 6.04 -30.24 ± 33.90 -0.36 ± 28.38 5.98 ± 21.37 2.10 ± 54.50 7.62 ± 34.24 33.05 ± 20.89

5008 -9.57 ± -9.57 36.41 ± 13.79 -8.30 ± 4.17 1.41 ± 19.43 0.45 ± 18.81 -0.64 ± 17.45 29.73 ± 14.45

5010 17.59 ± 17.59 17.06 ± 24.68 18.05 ± 17.77 -5.31 ± 35.56 3.52 ± 38.51 12.78 ± 19.37 19.03 ± 11.14

5011 14.51 ± 14.51 28.83 ± 13.67 14.23 ± 17.06 25.66 ± 25.71 17.70 ± 21.79 23.13 ± 20.06 -1.87 ± 13.50

Anterior-posterior attenuation coefficient head-lower back (ACAP HD-
LB)

Table 4.27: Mean ± standard deviation of ACAP HD-LB

ACAP HD-LB [%]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 40.18 ± 40.18 24.79 ± 18.26 25.78 ± 17.04 24.76 ± 26.55 41.47 ± 20.76 39.05 ± 21.62 30.72 ± 17.83

5004 18.54 ± 18.54 48.17 ± 16.36 23.54 ± 13.81 24.73 ± 15.52 19.18 ± 26.66 16.58 ± 22.59 15.82 ± 13.94

5005 40.22 ± 40.22 43.67 ± 13.33 35.82 ± 15.69 34.17 ± 18.31 46.69 ± 15.14 42.79 ± 16.68 30.05 ± 16.40

5006 31.25 ± 31.25 41.84 ± 15.86 3.08 ± 15.26 11.33 ± 28.92 27.41 ± 32.35 27.86 ± 32.63 9.85 ± 14.43

5007 31.16 ± 31.16 -0.34 ± 26.36 31.58 ± 18.23 29.64 ± 14.35 25.33 ± 40.89 29.91 ± 25.14 51.31 ± 15.69

5008 -19.64 ± -19.64 27.52 ± 15.86 -29.82 ± 10.48 0.50 ± 23.95 -11.16 ± 22.01 -12.39 ± 21.09 8.44 ± 21.66

5010 16.99 ± 16.99 14.84 ± 27.14 -8.31 ± 44.88 7.43 ± 26.68 8.65 ± 33.82 7.97 ± 21.59 3.90 ± 15.36

5011 47.39 ± 47.39 61.10 ± 8.77 45.47 ± 15.96 55.44 ± 15.70 52.31 ± 14.35 54.57 ± 13.58 39.25 ± 10.11

Anterior-posterior attenuation coefficient chest-lower back (ACAP CH-
LB)

Table 4.28: Mean ± standard deviation of ACAP CH-LB

ACAP CH-LB [%]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 17.71 ± 17.71 21.43 ± 8.76 31.67 ± 4.55 33.62 ± 8.39 25.27 ± 15.09 16.62 ± 14.05 22.85 ± 6.69

5004 37.44 ± 37.44 44.28 ± 7.87 52.79 ± 6.01 34.53 ± 8.06 38.32 ± 11.63 30.25 ± 18.10 14.92 ± 10.28

5005 24.84 ± 24.84 25.63 ± 10.12 13.92 ± 14.02 20.74 ± 11.05 27.85 ± 11.03 21.07 ± 13.70 17.04 ± 6.85

5006 -7.75 ± -7.75 -2.15 ± 11.17 -10.30 ± 8.14 3.16 ± 19.61 -7.23 ± 18.21 -8.68 ± 16.62 5.38 ± 7.72

5007 25.97 ± 25.97 21.91 ± 13.87 30.79 ± 10.42 24.45 ± 9.15 22.12 ± 16.60 23.13 ± 10.68 27.51 ± 5.57

5008 -9.43 ± -9.43 -14.76 ± 15.14 -19.90 ± 8.89 -1.81 ± 19.78 -12.20 ± 12.83 -12.10 ± 11.81 -29.75 ± 9.30

5010 -2.09 ± -2.09 -3.87 ± 21.95 -30.99 ± 41.79 9.97 ± 15.11 3.00 ± 17.21 -5.90 ± 12.18 -18.68 ± 9.91

5011 38.30 ± 38.30 45.14 ± 8.55 37.02 ± 10.70 39.54 ± 8.47 42.11 ± 8.16 40.93 ± 8.98 40.22 ± 7.61
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4.1.4 Symmetry

Vertical improved harmonic ratio (iHR V-LB)

Table 4.29: Mean ± standard deviation of iHR V-LB

iHR V-LB [/]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 0.74 ± 0.74 0.76 ± 0.05 0.73 ± 0.06 0.65 ± 0.08 0.74 ± 0.08 0.77 ± 0.06 0.76 ± 0.05

5004 0.68 ± 0.68 0.71 ± 0.11 0.74 ± 0.08 0.68 ± 0.13 0.69 ± 0.12 0.69 ± 0.12 0.69 ± 0.12

5005 0.73 ± 0.73 0.75 ± 0.07 0.74 ± 0.09 0.71 ± 0.09 0.74 ± 0.08 0.74 ± 0.07 0.76 ± 0.07

5006 0.69 ± 0.69 0.71 ± 0.05 0.73 ± 0.04 0.60 ± 0.10 0.69 ± 0.09 0.71 ± 0.06 0.74 ± 0.04

5007 0.73 ± 0.73 0.75 ± 0.11 0.78 ± 0.07 0.71 ± 0.12 0.69 ± 0.13 0.74 ± 0.10 0.81 ± 0.05

5008 0.73 ± 0.73 0.73 ± 0.09 0.77 ± 0.08 0.65 ± 0.12 0.76 ± 0.10 0.75 ± 0.09 0.77 ± 0.07

5010 0.72 ± 0.72 0.66 ± 0.11 0.69 ± 0.10 0.60 ± 0.09 0.68 ± 0.11 0.73 ± 0.08 0.75 ± 0.08

5011 0.68 ± 0.68 0.72 ± 0.08 0.74 ± 0.07 0.60 ± 0.10 0.72 ± 0.07 0.71 ± 0.07 0.71 ± 0.04

Mediolateral improved harmonic ratio (iHR ML-LB)

Table 4.30: Mean ± standard deviation of iHR ML-LB

iHR ML-LB [/]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 0.67 ± 0.67 0.69 ± 0.06 0.70 ± 0.08 0.65 ± 0.08 0.68 ± 0.07 0.68 ± 0.05 0.72 ± 0.05

5004 0.66 ± 0.66 0.69 ± 0.11 0.72 ± 0.07 0.67 ± 0.11 0.68 ± 0.11 0.68 ± 0.12 0.67 ± 0.13

5005 0.63 ± 0.63 0.65 ± 0.06 0.65 ± 0.07 0.63 ± 0.07 0.64 ± 0.07 0.64 ± 0.07 0.68 ± 0.06

5006 0.63 ± 0.63 0.66 ± 0.07 0.67 ± 0.07 0.58 ± 0.06 0.64 ± 0.08 0.65 ± 0.09 0.64 ± 0.05

5007 0.58 ± 0.58 0.61 ± 0.09 0.66 ± 0.09 0.62 ± 0.09 0.58 ± 0.08 0.59 ± 0.07 0.67 ± 0.04

5008 0.63 ± 0.63 0.60 ± 0.09 0.68 ± 0.07 0.61 ± 0.10 0.65 ± 0.10 0.65 ± 0.08 0.67 ± 0.07

5010 0.65 ± 0.65 0.63 ± 0.09 0.63 ± 0.09 0.62 ± 0.07 0.64 ± 0.08 0.65 ± 0.08 0.68 ± 0.06

5011 0.64 ± 0.64 0.64 ± 0.10 0.66 ± 0.08 0.58 ± 0.09 0.67 ± 0.08 0.66 ± 0.09 0.68 ± 0.08

Anterior-posterior improved harmonic ratio (iHR AP-LB)

Table 4.31: Mean ± standard deviation of iHR AP-LB

iHR AP-LB [/]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 0.72 ± 0.72 0.73 ± 0.07 0.76 ± 0.06 0.68 ± 0.11 0.74 ± 0.09 0.77 ± 0.07 0.75 ± 0.05

5004 0.62 ± 0.62 0.63 ± 0.07 0.62 ± 0.04 0.64 ± 0.08 0.62 ± 0.08 0.62 ± 0.08 0.67 ± 0.09

5005 0.69 ± 0.69 0.71 ± 0.05 0.70 ± 0.08 0.67 ± 0.08 0.71 ± 0.05 0.70 ± 0.06 0.75 ± 0.06

5006 0.63 ± 0.63 0.64 ± 0.05 0.64 ± 0.05 0.55 ± 0.09 0.63 ± 0.07 0.64 ± 0.06 0.74 ± 0.04

5007 0.69 ± 0.69 0.70 ± 0.09 0.71 ± 0.05 0.67 ± 0.09 0.65 ± 0.11 0.69 ± 0.09 0.77 ± 0.04

5008 0.70 ± 0.70 0.68 ± 0.08 0.73 ± 0.08 0.64 ± 0.10 0.71 ± 0.09 0.70 ± 0.07 0.70 ± 0.04

5010 0.66 ± 0.66 0.64 ± 0.10 0.62 ± 0.10 0.63 ± 0.09 0.64 ± 0.12 0.67 ± 0.10 0.72 ± 0.08

5011 0.69 ± 0.69 0.69 ± 0.08 0.71 ± 0.07 0.58 ± 0.09 0.73 ± 0.09 0.72 ± 0.09 0.71 ± 0.05
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4.1.5 Smoothness

Vertical head log dimensionless jerk (LDLJ V-HD)

Table 4.32: Mean ± standard deviation of LDLJ V-HD

LDLJ V-HD [/]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 -4.74 ± -4.74 -4.65 ± 0.20 -5.09 ± 0.19 -4.89 ± 0.38 -4.77 ± 0.27 -4.81 ± 0.20 -4.91 ± 0.17

5004 -4.87 ± -4.87 -4.97 ± 0.28 -4.89 ± 0.20 -4.94 ± 0.33 -4.93 ± 0.37 -4.85 ± 0.29 -4.65 ± 0.21

5005 -4.90 ± -4.90 -4.99 ± 0.28 -4.96 ± 0.34 -4.96 ± 0.35 -4.87 ± 0.24 -4.92 ± 0.28 -4.63 ± 0.36

5006 -4.82 ± -4.82 -4.80 ± 0.19 -4.82 ± 0.18 -4.88 ± 0.55 -4.79 ± 0.34 -4.74 ± 0.24 -4.56 ± 0.17

5007 -4.97 ± -4.97 -4.83 ± 0.26 -5.05 ± 0.11 -4.78 ± 0.29 -5.05 ± 0.44 -4.97 ± 0.30 -4.83 ± 0.15

5008 -4.87 ± -4.87 -4.65 ± 0.25 -4.98 ± 0.19 -5.13 ± 0.51 -4.82 ± 0.25 -4.83 ± 0.24 -4.80 ± 0.20

5010 -4.92 ± -4.92 -5.04 ± 0.36 -4.71 ± 0.37 -5.20 ± 0.46 -4.95 ± 0.40 -4.85 ± 0.25 -4.68 ± 0.23

5011 -5.13 ± -5.13 -5.03 ± 0.21 -5.04 ± 0.20 -5.23 ± 0.39 -5.04 ± 0.20 -5.07 ± 0.23 -4.93 ± 0.19

Mediolateral head log dimensionless jerk (LDLJ ML-HD)

Table 4.33: Mean ± standard deviation of LDLJ ML-HD

LDLJ ML-HD [/]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 -4.15 ± -4.15 -4.00 ± 0.25 -3.63 ± 0.25 -3.64 ± 0.46 -4.07 ± 0.33 -4.07 ± 0.39 -3.99 ± 0.36

5004 -3.93 ± -3.93 -3.88 ± 0.32 -3.79 ± 0.24 -3.92 ± 0.45 -3.90 ± 0.45 -3.81 ± 0.47 -3.38 ± 0.42

5005 -3.96 ± -3.96 -3.84 ± 0.30 -4.03 ± 0.38 -3.83 ± 0.39 -3.89 ± 0.34 -3.93 ± 0.31 -3.78 ± 0.34

5006 -3.76 ± -3.76 -3.61 ± 0.54 -3.95 ± 0.22 -3.56 ± 0.62 -3.70 ± 0.50 -3.74 ± 0.39 -3.38 ± 0.38

5007 -4.17 ± -4.17 -4.19 ± 0.49 -4.34 ± 0.39 -3.94 ± 0.52 -3.87 ± 0.64 -4.27 ± 0.48 -3.54 ± 0.51

5008 -4.17 ± -4.17 -4.07 ± 0.27 -4.14 ± 0.18 -4.09 ± 0.41 -4.07 ± 0.42 -4.14 ± 0.32 -4.05 ± 0.36

5010 -3.97 ± -3.97 -3.67 ± 0.39 -3.88 ± 0.43 -3.82 ± 0.53 -3.84 ± 0.52 -3.93 ± 0.33 -3.76 ± 0.32

5011 -4.01 ± -4.01 -3.92 ± 0.22 -3.89 ± 0.36 -3.63 ± 0.51 -3.97 ± 0.35 -4.01 ± 0.25 -3.83 ± 0.19

Anterior-posterior head log dimensionless jerk (LDLJ AP-HD)

Table 4.34: Mean ± standard deviation of LDLJ AP-HD

LDLJ AP-HD [/]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 -4.42 ± -4.42 -4.23 ± 0.28 -5.00 ± 0.25 -4.23 ± 0.46 -4.48 ± 0.42 -4.40 ± 0.39 -4.66 ± 0.49

5004 -4.97 ± -4.97 -5.10 ± 0.44 -5.28 ± 0.34 -5.04 ± 0.37 -5.02 ± 0.45 -4.94 ± 0.46 -4.79 ± 0.40

5005 -4.93 ± -4.93 -4.83 ± 0.43 -5.05 ± 0.49 -4.90 ± 0.39 -4.88 ± 0.31 -4.94 ± 0.49 -4.58 ± 0.39

5006 -4.94 ± -4.94 -5.22 ± 0.46 -5.18 ± 0.33 -4.87 ± 0.45 -5.06 ± 0.47 -5.00 ± 0.42 -4.81 ± 0.35

5007 -4.67 ± -4.67 -4.47 ± 0.43 -4.71 ± 0.37 -4.30 ± 0.66 -4.75 ± 0.47 -4.59 ± 0.46 -4.90 ± 0.23

5008 -4.88 ± -4.88 -4.91 ± 0.31 -5.03 ± 0.25 -5.04 ± 0.39 -4.90 ± 0.34 -4.97 ± 0.31 -5.09 ± 0.33

5010 -5.07 ± -5.07 -4.88 ± 0.44 -5.03 ± 0.48 -4.85 ± 0.52 -5.07 ± 0.51 -5.03 ± 0.41 -5.09 ± 0.39

5011 -5.24 ± -5.24 -5.21 ± 0.35 -5.44 ± 0.30 -5.00 ± 0.41 -5.21 ± 0.42 -5.23 ± 0.39 -5.29 ± 0.34
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4.1.6 Regularity

Vertical head refined composite multiscale entropy (RCME V-HD)

Table 4.35: Mean ± standard deviation of RCME V-HD

RCME V-HD [/]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 1.15 ± 1.15 1.09 ± 0.15 1.34 ± 0.16 1.50 ± 0.52 1.22 ± 0.26 1.20 ± 0.15 1.30 ± 0.18

5004 1.19 ± 1.19 1.15 ± 0.20 1.27 ± 0.14 1.38 ± 0.34 1.29 ± 0.33 1.18 ± 0.22 1.24 ± 0.15

5005 1.28 ± 1.28 1.32 ± 0.17 1.47 ± 0.30 1.51 ± 0.32 1.30 ± 0.14 1.33 ± 0.25 1.23 ± 0.20

5006 1.25 ± 1.25 1.27 ± 0.13 1.29 ± 0.12 1.48 ± 0.42 1.31 ± 0.34 1.24 ± 0.14 1.00 ± 0.15

5007 1.22 ± 1.22 1.21 ± 0.18 1.31 ± 0.14 1.29 ± 0.31 1.48 ± 0.45 1.32 ± 0.33 1.18 ± 0.12

5008 1.11 ± 1.11 1.04 ± 0.20 1.29 ± 0.13 1.66 ± 0.49 1.18 ± 0.30 1.16 ± 0.19 1.18 ± 0.15

5010 1.17 ± 1.17 1.20 ± 0.28 1.17 ± 0.35 1.64 ± 0.34 1.36 ± 0.50 1.12 ± 0.20 0.95 ± 0.14

5011 1.15 ± 1.15 1.00 ± 0.14 1.06 ± 0.19 1.64 ± 0.56 1.11 ± 0.15 1.14 ± 0.18 1.20 ± 0.19

Mediolateral head refined composite multiscale entropy (RCME ML-HD)

Table 4.36: Mean ± standard deviation of RCME ML-HD

RCME ML-HD [/]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 0.91 ± 0.91 0.81 ± 0.15 0.55 ± 0.14 0.83 ± 0.28 0.90 ± 0.19 0.90 ± 0.23 0.87 ± 0.12

5004 0.87 ± 0.87 0.85 ± 0.20 0.82 ± 0.14 0.83 ± 0.23 0.82 ± 0.22 0.79 ± 0.20 0.70 ± 0.12

5005 0.79 ± 0.79 0.80 ± 0.18 0.96 ± 0.24 0.78 ± 0.21 0.76 ± 0.16 0.81 ± 0.18 0.76 ± 0.23

5006 0.82 ± 0.82 0.81 ± 0.16 0.82 ± 0.12 0.77 ± 0.30 0.80 ± 0.22 0.83 ± 0.16 0.51 ± 0.11

5007 1.02 ± 1.02 1.03 ± 0.22 1.10 ± 0.23 1.05 ± 0.31 0.94 ± 0.31 1.02 ± 0.23 0.90 ± 0.23

5008 1.00 ± 1.00 0.97 ± 0.17 0.82 ± 0.14 1.03 ± 0.26 0.96 ± 0.21 0.98 ± 0.17 0.91 ± 0.16

5010 0.76 ± 0.76 0.66 ± 0.17 0.78 ± 0.22 0.74 ± 0.20 0.73 ± 0.23 0.74 ± 0.16 0.74 ± 0.13

5011 0.94 ± 0.94 0.85 ± 0.10 0.92 ± 0.19 0.82 ± 0.23 0.95 ± 0.17 0.96 ± 0.15 0.80 ± 0.12

Anterior-posterior head refined composite multiscale entropy (RCME
AP-HD)

Table 4.37: Mean ± standard deviation of RCME AP-HD

RCME AP-HD [/]

ID Crossroad Texting Calling Search Fixed obstacle Moving obstacle In Lab SW

5001 1.21 ± 1.21 1.03 ± 0.19 1.46 ± 0.29 1.31 ± 0.32 1.28 ± 0.28 1.19 ± 0.26 1.41 ± 0.28

5004 1.33 ± 1.33 1.51 ± 0.27 1.50 ± 0.31 1.39 ± 0.28 1.35 ± 0.30 1.26 ± 0.28 1.27 ± 0.22

5005 1.40 ± 1.40 1.36 ± 0.28 1.62 ± 0.38 1.48 ± 0.29 1.33 ± 0.26 1.43 ± 0.32 1.21 ± 0.28

5006 1.39 ± 1.39 1.52 ± 0.23 1.55 ± 0.19 1.54 ± 0.40 1.48 ± 0.31 1.45 ± 0.22 1.19 ± 0.19

5007 1.13 ± 1.13 1.14 ± 0.23 1.31 ± 0.18 1.22 ± 0.46 1.37 ± 0.33 1.22 ± 0.31 1.24 ± 0.21

5008 1.11 ± 1.11 1.18 ± 0.23 1.12 ± 0.17 1.48 ± 0.41 1.17 ± 0.28 1.17 ± 0.23 1.13 ± 0.27

5010 1.50 ± 1.50 1.49 ± 0.32 1.64 ± 0.36 1.60 ± 0.40 1.56 ± 0.37 1.46 ± 0.30 1.31 ± 0.28

5011 1.61 ± 1.61 1.55 ± 0.22 1.67 ± 0.27 1.64 ± 0.31 1.62 ± 0.25 1.62 ± 0.27 1.40 ± 0.22
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4.2 Differences in parameters across activities

Several parameters showed statistically significant differences among labels.
In the following sections are reported the boxplots of the aggregated parameters
distributions that showed statistically significant differences.
They are described by their Median value (Mdn) and Interquartile range (IQR).

Table 4.38: Overview of statistical analyses performed, indicating the result of the
normality test performed and the statistical test chosen with its p-value.

Statistical analysis
Parameter Normality ANOVA Kruskal-Wallis p-value
stride speed ✓ ✓ <0.001
stride length ✓ ✓ <0.001
stride duration ✗ ✓ <0.001
Froude number ✓ ✓ <0.001
a-rms HD-V ✓ ✓ <0.001
a-rms HD-ML ✗ ✓ 0.01
a-rms HD-AP ✗ ✓ <0.001
a-rms CH-V ✓ ✓ <0.001
a-rms CH-ML ✓ ✓ 0.003
a-rms CH-AP ✓ ✓ 0.005
a-rms LB-V ✓ ✓ <0.001
a-rms LB-ML ✓ ✓ <0.001
a-rms LB-AP ✓ ✓ <0.001
yaw ROM HD-LB ✓ ✓ <0.001
pitch ROM HD-LB ✓ ✓ 0.005
yaw ROM CH-LB ✓ ✓ 0.011
pitch ROM CH-LB ✓ ✓ 0.154
yaw ROM HD-CH ✓ ✓ <0.001
pitch ROM HD-CH ✓ ✓ <0.001
ACV HD-CH ✓ ✓ 0.301
ACV HD-LB ✓ ✓ 0.008
ACV CH-LB ✓ ✓ 0.005
ACML HD-CH ✗ ✓ 0.257
ACML HD-LB ✓ ✓ 0.132
ACML CH-LB ✓ ✓ 0.64
ACAP HD-CH ✓ ✓ 0.263
ACAP HD-LB ✓ ✓ 0.256
ACAP CH-LB ✓ ✓ 0.227
iHR V-LB ✓ ✓ <0.001
iHR ML-LB ✓ ✓ <0.001
iHR AP-LB ✓ ✓ 0.001
RCME V-HD ✓ ✓ <0.001
RCME ML-HD ✓ ✓ 0.185
RCME AP-HD ✓ ✓ 0.011
LDLJ V-HD ✓ ✓ 0.04
LDLJ ML-HD ✓ ✓ 0.023
LDLJ AP-HD ✓ ✓ 0.044
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4.2.1 Gait parameters

Stride speed

Figure 4.1: Stride speed

Stride speed distributions during visual search (mdn 0.90 IQR 0.30 m/s) signifi-
cantly differed from all other labels (d>2.05).

Stride length

Figure 4.2: Stride length

Stride length distributions during visual search (mdn 1.15 IQR 0.17 m) significantly
differed from all other labels (d>1.69).
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Stride duration

Figure 4.3: Stride duration

Stride duration distributions during visual search (mdn 1.38 IQR 0.27 s) signifi-
cantly differed from crossroad (mdn 1.03 IQR 0.07 s, d=2.33) and calling(mdn 1.02
IQR 0.12 s, d=1.89). Distributions were significantly different also from Lab walking
(mdn 1.44 IQR 0.11 s) and crossroad (d=3.95),calling (d=2.69), texting (mdn 1.03
IQR 0.09 s, d=3.23) and moving obstacle (mdn 1.08 IQR 0.06 s, d=3.23

Froude number

Figure 4.4: Froude number

Froude number distributions during visual search (mdn 0.10 IQR 0.06) significantly
differed from all other labels (d>1.73).
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4.2.2 Magnitude

a-rms HD-V

Figure 4.5: a-rms HD-V

a-rms HD-V distributions during visual search (mdn 1.21 IQR 0.30 m/s2) signif-
icantly differed from all other labels (d>1.69) except lab walking (mdn 1.68 IQR
0.58 m/s2). Lab walking was instead significantly different from crossroad (mdn
2.29 IQR 0.74 m/s2, d=1,71).

a-rms HD-AP

Figure 4.6: a-rms HD-AP

a-rms HD-AP distributions during visual search (mdn 1.21 IQR 0.30 m/s2) signifi-
cantly differed from crossroad (mdn 1.72 IQR 0.25 m/s2, d=2.39), calling (mdn 1.53
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IQR 0.95 m/s2, d=1,40) and moving obstacle (mdn 2.29 IQR 0.74 m/s2, d=2.22).

a-rms CH-V

Figure 4.7: a-rms CH-V

a-rms CH-V distributions during visual search (mdn 1.37 IQR 0.35 m/s2) signif-
icantly differed from all other labels (d>1.83) except lab walking (mdn 1.95 IQR
0.36 m/s2). Lab walking was instead significantly different from crossroad (mdn
2.49 IQR 0.73 m/s2, d=1,68).

a-rms CH-ML

Figure 4.8: a-rms CH-ML
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a-rms CH-ML distributions during visual search (mdn 0.88 IQR 0.16 m/s2) signif-
icantly differed from crossroad (mdn 1.36 IQR 0.30 m/s2, d=2.11), fixed obstacle
(mdn 1.21 IQR 0.30 m/s2, d=1.68) and moving obstacle (mdn 1.31 IQR 0.44 m/s2,
d=1,85).

a-rms CH-AP

Figure 4.9: a-rms CH-AP

a-rms CH-AP distributions during visual search (mdn 1.19 IQR 0.20 m/s2) sig-
nificantly differed from crossroad (mdn 2.16 IQR 0.68 m/s2, d=1.90) and moving
obstacle (mdn 2.23 IQR 0.76 m/s2, d=1,70).

a-rms LB-V

Figure 4.10: a-rms LB-V
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a-rms LB-V distributions during visual search (mdn 1.46 IQR 0.45 m/s2) signifi-
cantly differed from all other labels (d>1.91).Lab walking (mdn 2.60 IQR 0.59m/s2)
was significantly different from crossroad (mdn 3.54 IQR 0.70 m/s2, d=2.06).

a-rms LB-ML

Figure 4.11: a-rms LB-ML

a-rms LB-ML distributions during visual search (mdn 1.22 IQR 0.31 m/s2) signifi-
cantly differed from crossroad (mdn 1.82 IQR 0.26 m/s2, d=1.97).

a-rms LB-AP

Figure 4.12: a-rms LB-AP
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a-rms LB-ML distributions during visual search (mdn 1.52 IQR 0.26 m/s2) sig-
nificantly differed from crossroad (mdn 2.48 IQR 0.67 m/s2, d=1.78) and moving
obstacle (mdn 2.11 IQR 0.49 m/s2, d=1,54).

Yaw ROM HD-LB

Figure 4.13: Yaw ROM HD-LB

Yaw ROM HD-LB distributions during visual search (mdn 36.80 IQR 18.41 deg) sig-
nificantly differed form all other labels except crossroad (d>2.00). Crossroad (mdn
29.46 IQR 8.98 deg) instead differed significantly from texting (mdn 16.20 IQR 5.46
deg, d=1.94), calling (mdn 17.26 IQR 9.47 deg, d=1.72) and lab walking (mdn 18.31
IQR 4.82 deg, d=1.81).
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Pitch ROM HD-LB

Figure 4.14: Pitch ROM HD-LB

Pitch ROM HD-LB distributions during crossroad (mdn 14.50 IQR 4.87 deg) signif-
icantly differed from lab walking (mdn 8.55 IQR 3.15 deg, d=1.72).

Yaw ROM HD-CH

Figure 4.15: Yaw ROM HD-CH

Yaw ROM HD-CH distributions during visual search (mdn 26.36 IQR 17.97 deg) sig-
nificantly differed form all other labels (d>1.57). Crossroad (mdn 20.76 IQR 11.61
deg) also differed significantly from texting (mdn 7.87 IQR 5.29 deg, d=1.94), calling
(mdn 8.76 IQR 3.85 deg, d=1.88) and lab walking (mdn 9.92 IQR 1.17 deg, d=1.71).
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Pitch ROM HD-CH

Figure 4.16: Pitch ROM HD-CH

Pitch ROM HD-CH distributions during crossroad (mdn 12.53 IQR 5.56 deg) sig-
nificantly differed from lab walking (mdn 8.43 IQR 3.13 deg, d=1.75).
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4.2.3 Attenuation

ACV HD-LB

Figure 4.17: ACV HD-LB

ACV HD-LB distributions during visual search (mdn 14.70 IQR 21.60 %) differed
from crossroad (mdn 30.07 IQR 10.31 %, d=1.65), calling (mdn 28.89 IQR 21.03 %,
d=1.69), moving obstacle (mdn 29.87 IQR 10.38 %, d=1.65) and lab walking(mdn
33.47 IQR 16.76 %, d=1.70).
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4.2.4 Symmetry

iHR V-LB

Figure 4.18: iHR V-LB

iHR V-LB distributions during visual search (mdn 0.65 IQR 0.09) differed signifi-
cantly from all other labels (d>1.91).

iHR ML-LB

Figure 4.19: iHR ML-LB

iHR ML-LB distributions during visual search (mdn 0.62 IQR 0.05) differed signif-
icantly from calling (mdn 0.66 IQR 0.04, d=1.76) and lab walking (mdn 0.68 IQR
0.01, d=2.00).
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iHR AP-LB

Figure 4.20: iHR AP-LB

iHR AP-LB distributions during visual search (mdn 0.64 IQR 0.07) differed signifi-
cantly from straight walking (mdn 0.68 IQR 0.05, d=2.14).
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4.2.5 Regularity

RCME V-HD

Figure 4.21: RCME V-HD

RCME V-HD distribution during visual search (mdn 1.50 IQR 0.21) differed signif-
icantly from all other labels (d>2.14).
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Chapter 5

Discussion

The statistical analysis revealed significant differences across all examined domains,
except for Smoothness. This highlights a widespread effect of the activities per-
formed by the subjects during walking on the extracted parameters. The absence
of differences in smoothness-related parameters could be attributed to the observed
sample, which consisted solely of healthy young adults. This suggests that head
movement fluidity may not be challenged or influenced by different activities in this
population.
The gait parameters mainly highlighted the strong difference between the visual
search task and the others. Several factors may have contributed to this result: the
visual search task was performed inside a supermarket, a confined environment with
limited space for movement and typically the presence of other individuals nearby,
which likely reduced walking speed and stride length during navigation. Addition-
ally, the increased cognitive load associated with actively searching for an item on
crowded shelves may have influenced the difference compared to the other tasks,
which involved a more passive interaction with the surrounding environment.
Stride duration in real-world was generally much shorter than in Lab walking,
suggesting that different walking behaviors were adopted even for similar walking
speeds.
RMS acceleration values exhibited patterns comparable to those of the gait pa-
rameters. Notably, accelerations were particularly elevated during street-crossing
activities across all segments. This was probably due to the exploratory movements
needed when checking incoming vehicles on the road. Generally people leaned for-
ward when approaching and crossing the street, and this could have led to increased
oscillations of head, chest and pelvis. The phenomenon described before could have
also been augmented by the relatively higher stride speed of the road crossing ac-
tivity.
Head yaw parameters showed the greatest number of significative differences among
groups, for both the head-in-chest and the head-in-lower back metrics. This was the
main indicator of difference in the active exploratory behavior that subjects adopted
in the different activities.
Also improved harmonic ratio and entropy differed significantly for the visual search
task, evidencing a reduction of gait symmetry and head motion regularity , especially
in the vertical direction. This result could be influenced by the broad vertical distri-
bution of products on supermarket shelves, that could have promoted the execution
of additional movements to reach and/or identify the groceries.
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Chapter 6

Conclusions

This study aimed to explore the integration of contextual information in the study
of gait and head motion in real world scenarios.
Data from twenty-one young adults were collected and eleven of them were used to
produce two highly detailed datasets for both the real-world, unconstrained acqui-
sition and the In Lab reproduced tasks, by employing the most advanced available
algorithms for event detection and orientation estimation.
Analysis of real-world gait showed many statistically significative differences across
many of the evaluated parameters, confirming the initial hypothesis that motor
behavior during walking is appreciably affected by the nature of the activities per-
formed and the environmental stimuli encountered.

6.1 Limitations

This study had some limitations that should be considered when interpreting the
results.

• The elaboration of video and audio data for the extraction of contextual infor-
mation was made manually. The resulting process was highly time consuming
and the label assignment was strongly influenced by the subjectivity of the
labeler, even though many evaluation criteria were thoroughly described in
the experimental protocol. Moreover, the temporal resolution of the labeling
was relatively coarse (1 s), which may have affected the accurate assignment
of labels to boundary strides and prevented the detection of very fast or brief
events (duration < 1s).

• The analyzed sample was very small (8 subjects) and constituted only by
healthy young adults, limiting the generalizability of the observations. More
subjects have been acquired and the elaboration of their data could improve
this aspect.

• Data collection was carried out primarily in urban environments, with few
or no observations conducted in domestic or natural settings. Expanding the
analysis to these environments would also raise additional issues related to
participant privacy.
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• The passenger unit was approximated using only the head, chest, and lower
back segments, neglecting the arms and other connecting parts such as the
neck. Including them could have uncovered additional patterns with potential
informational value.

• Visual exploration was evaluated only in terms of head and body motion,
without considering the contribution of saccades and other eye movements.
Accounting for the precise direction of gaze, rather than relying solely on head
and torso orientation, could offer more detailed insights into the subject’s
actual interaction with the environment.

6.2 Future works

There are several potential improvements that could be applied to this study:

• The remaining subjects acquired should be included in the dataset. The de-
velopment of an automatic labeling algorithm could be really useful and would
also allow for subject observation in environments where personal privacy is
an issue.

• Laboratory simulated activities have been acquired but were not included in
the analysis. Confronting the unsupervised data from ecological acquisitions
and lab tests for similar activities could confirm or confute the hypothesis that
lab protocols struggle to catch the precise motor patterns adopted in real life
situations.

• Older and pathological subjects could be observed using the proposed protocol,
potentially evidencing more differences caused by the various activities.

• Gaze tracking devices should be integrated in the experimental setup, allowing
a better evaluation of where and how the subjects attention is directed during
gait and how the visual stimuli are managed.

• Future studies could focus on the motor response to specific sensory stimuli
rather than on the type of activity performed. Stimulus-rich environments,
such as busy urban streets, may influence gaze behavior and motor control
differently compared to quieter indoor settings. Both the type and intensity
of visual and auditory stimuli could have distinct effects on walking behavior.
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Chapter 7

Appendix A - Orientation
estimation

This study employed a Magdwick complementary filter for the orientation estimation
from inertial data.

The used algorithm reliability was tested using a brief laboratory protocol that
measured the performances compared to stereophotogrammetry (SP).

Experimental setup

The sensor configuration was the same of the In Lab acquisitions described in the
study. A 3D-printed support housing the sensor and four markers for stereopho-
togrammetry was added to the head setup. Three of these markers were used to
define the origin and axes of the plane on which the sensor lay during data acquisi-
tion. The fourth marker was added to facilitate the identification of the other three.
The reference frame defined by the markers was aligned with the MIMu reference
frame.
Inertial sensors sampled at 100 Hz and the SP system at 200 Hz.

Figure 7.1: Support with INDIP sensor and markers

The experiment was conducted in the stereophotogrammetry lab of Politecnico
di Torino (Polito BioMedLab), equipped with a 12 camera Vicon system.

Experimental protocol

The experimental protocol consisted of a 12-minute acquisition of a single subject
performing the following activities:
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• 10 s slow head yaw

• 10 s standing, looking straight ahead

• 10 s slow head roll

• 10 s standing, looking straight ahead

• 10 s slow head pitch

• 10 s standing, looking straight ahead

• 10 s fast head yaw

• 10 s standing, looking straight ahead

• 10 s fast head roll

• 10 s standing, looking straight ahead

• 10 s fast head pitch

• 10 s standing, looking straight ahead

• 2 min standing, looking straight ahead

• 2 min walking with 90° turns, head aligned with trunk

• 2 min walking with 90° turns, free head movement

• 2 min walking in a figure-eight pattern

The tasks were selected to challenge the system and the orientation estimation
algorithm, adopting a conservative approach to error estimation.

Data collection and synchronization

All data acquisition sessions were conducted using the custom-developed INDIP
App, which enables the simultaneous connection and data logging of multiple IN-
DIP MIMU via Bluetooth connection.Once each acquisition was completed, the data
were manually retrieved from each device using a custom USB-based graphical user
interface (INDIP GUI). This interface was also employed to synchronize the internal
clocks of all INDIP units prior to data collection.
Simultaneously the position, in the lab reference frame, of markers on the head sup-
port was tracked with the Vicon system.
Using a custom matlab pipeline interfaced with the Vicon Nexus software, SP and
inertial data were synchronized and stored in an organized data.mat file. In thi pro-
cess SP data were downsampled to 100 Hz to match the MIMU sampling frequency.
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Processing

SP data were filtered with a 4th order Butterworth low-pass filter with a 4 Hz cutoff
frequency.
After this phase, the frame orientation was obtained with a geometric approach.
Data were refined with a singular value decomposition(SVD) algorithm and then
converted into quaternions.

The sensor orientation with inertial data was obtained applying the Magdwick algo-
rithm. Both gyroscope and magnetometer were used in input to update the sensor
angular position.
The computation was repeated with 17 different values of correction weight β ob-
taining a different quaternion matrix each time.

Error computation

For each β, the quaternion corresponding to the rotation from the first MIMU and
SP quaternion was computed.
MIMU orientation was rotated of that quantity in order to impose the same starting
orientation for both the MIMU and SP estimation. After that the orientation error
was computed as the absolute relative position between the two estimations in an
axis-angle notation.

Figure 7.2: Plot of the orientation error in [deg] for the different β values

The rms value of the orientation error was used to choose the best β:
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Figure 7.3: Root mean square value of the orientation error as a function of β

Results and Conclusions

The best β value was identified as 0.04 with and rms orientation error of 7.4°.
The result was considered adequate to the precision required by the main study.
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