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Abstract

The brainwave entrainment (BWE) hypothesis suggests that it is possible to
induce neuro modulation through non-invasive auditory or visual stimulation,
enhancing the power of cortical activity around the stimulation frequency.
Numerous studies in the literature have explored the BWE effect of binaural
beats (BB), applying stimulation within the main EEG frequency bands with
the aim of modulating cognitive functions or inducing specific mental states.
However, experimental evidence regarding the efficacy of BB in altering brain
activity remains controversial and inconsistent.

One limitation of many existing studies is that they rely on a single acqui-
sition session, using a fixed stimulation protocol applied uniformly across
subjects. To address this, the present study introduces a protocol design to
assess both short and long term effects of BB stimulation. The primary goal
is to determine whether it is possible to differentiate cortical activity dur-
ing and after BB exposure compared to resting conditions, and to explore
changes within the frequency band targeted by the stimulation.

The study was conducted on a group of 11 university students (7 males and
4 females), with a mean age of 24,8 £+ 1,6 years. The experimental protocol
spanned two weeks and included three acquisition checkpoints, each lasting
20 minutes. Each session was divided into three phases (Baseline, Stimula-
tion, Post Stimulation) during which EEG and ECG signals were recorded
for each participant. During the first checkpoint, a personalized audio track
was created for each subject, and their initial response to the stimulation
was recorded. Over the following 10 days, participants were asked to listen
to the audio track daily for 10 minutes. At the end of this training period,
the second acquisition session was conducted. Between the second and third
checkpoints, home stimulation was discontinued. The audio track containing
the BB was designed using a carrier tone (fy) of 250 Hz, while the stimula-
tion frequency (df) was personalized for each subject, adapting it to their
Individual Alpha Frequency (IAF).



The EEG signals recorded during the various phases of the experimental
protocol were analyzed in both the time and frequency domains using linear
and complexity based measures. A multivariate approach based on Principal
Component Analysis (PCA) and k-means clustering was applied. Addition-
ally, a specific analysis focused on the alpha rhythm was conducted, based
on the morphological characterization of the alpha spindles and Detrended
Fluctuation Analysis (DFA) of the signal envelope.

The outcome of the K-means clustering on the PCA transformed data showed
a mean accuracy of over 81,68% in distinguishing stimulation from baseline
observations, and over 89,90% in the comparison between baseline and post
stimulation, across all acquisition sessions. Excellent results were also ob-
tained by conducting the analysis on an extended dataset aggregating data
from all three checkpoints, yielding accuracy values of 74,40% and 85,09%
for the stimulation and post stimulation phases, respectively. The statistical
significance of the K-means results was assessed at both levels of analysis us-
ing a non parametric permutation test. The alpha rhythm analysis revealed
statistically significant changes (at least p < 0.05) in the frontal region,
particularly F3 and F4. These included an increased incidence rate and a
decreased average duration of alpha spindles, accompanied by a reduction in
alpha band power. Moreover, the o exponent obtained via DFA decreased
significantly in almost all channels, both during and after stimulation.

The results suggest that BB are capable of modulating brain activity, en-
abling a clear distinction between the stimulation and post stimulation phases
compared to rest. The greater separation observed after stimulation suggests
that during listening, the effects of stimulation confirm the ability of BB to
modulate brain rhythms at the stimulation frequency, especially in the frontal
region. Furthermore, the lack of statistical significant differences between
stimulation and post stimulation phases suggests a prolonged entrainment
effect.
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Nervous System 1

1 Nervous System

The nervous system is primarily categorized into two main divisions: the
Central Nervous System (CNS) and the Peripheral Nervous System (PNS).

The CNS is composed of the brain and spinal cord, while the PNS includes
all the neural pathways that extend from the brain, called cranial nerves,
and spinal cord, called spinal nerves. Within the PNS, there are three key
subdivisions: the Somatic Nervous System (SNS), the Autonomic Nervous
System (ANS), and the Enteric Nervous System (ENS).

The ANS is further split into sympathetic and parasympathetic nervous sys-
tems, which are distinguished by the origin of their neurotransmitters and

the varying length of their preganglionic and postganglionic fibers.

The main focus of this section will be the brain which serves as the center
for mental activities such as learning, thought processing, memory, as well

as for carrying out essential regulatory and communication functions in the

body.

1.1 Brain’s Anatomy

The human brain is anatomically organized into four principal regions: the
cerebrum, diencephalon, cerebellum and brainstem. each of these regions
serves distinct functional purposes within the nervous system. Beyond this
classification, the brain is often further divided into forebrain, midbrain and
hindbrain. Additionally, the brain is split into two hemispheres, left and
right, each contributing differently to cognition and behavior. Developmental
abnormalities in these regions may result in serious neurological conditions

and impairments in brain function [1].
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Figure 1: Brain’s general structure.

1.1.1 General Structure

Among the brain’s regions, the cerebrum is the largest and most functionally
diverse. It manages critical processes such as voluntary movement, sensory
integration, olfaction, language, memory formation and learning. Divided
into left and right hemispheres, the cerebrum supports functional lateraliza-
tion, often associated with logical tasks on the left and creative processes
on the right. Its outermost layer, the cerebral cortex, is composed predomi-
nantly of grey matter and is segmented into four major lobes: frontal, pari-
etal, temporal and occipital. These will be addressed in more detail later.
Deeper within the cerebrum lie structures including the hippocampus, basal
ganglia and olfactory bulb, each contributing uniquely to brain operations.
The hippocampus, named for its resemblance to a seahorse, is integral to the
formation of long-term memories and includes both the hippocampus proper
and the dentate gyrus, the latter being a notable site of adult neurogenesis.
The basal ganglia, positioned lateral to the thalamus in the diencephalon,
work in tandem with this structure to regulate motor control, primarily via

glutamatergic transmission. As the brain’s main information messengers,
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neurons enable complex communication systems throughout the body. Dys-
function in the basal ganglia is associated with various neurological disorders,
such as Parkinson’s disease, ADHD, the olfactory bulb contains the neural
receptors necessary for processing smells and relays this sensory data to other

areas of the brain [1].

Located at the back of the forebrain, the diencephalon comprises two primary
components. the thalamus and the hypothalamus. The thalamus functions
as a critical relay station, receiving sensory information across the nervous
system and directing it to cerebral cortex. It also contributes to maintain-
ing awareness and alertness. The hypothalamus plays a regulatory role in
autonomic and endocrine systems, governing physiological processes such
as temperature regulation, hunger and hormone secretion. Impairments in
this region are linked to conditions including obesity diabetes and neuro-

degenerative diseases such as Alzheimer’s [1].

The brainstem, which includes elements of the midbrain and hindbrain,
serves as a conduit between the brain and spinal cord. It plays a fundamental
role in autonomic regulation and the transmission of motor and sensory in-
formation. Core physiological functions such as breathing and heart rate are
controlled by brainstem structures. It also influences consciousness and sleep
cycles. Because of its responsibility for involuntary vital functions, damage
to the brainstem can be fatal. Additionally, many cranial nerves that control
facial movement and sensation originate from this area. The medulla oblan-
gata, the brainstem’s lower section, continues as the spinal cord and oversees
critical involuntary functions like respiration and cardiac regulation. Injuries
in this region often result in life threatening outcomes. Another structure,
the pons, though small, plays an essential role in relaying messages between
the cerebrum and cerebellum and is also central to regulating REM sleep,

the phase associated with dreaming [1].
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Positioned in the posterior region of the brain and connected to the brain-
stem, the cerebellum primarily supports motor coordination and balance. It
ensures that voluntary movements are accurate and fluid. Damage to this re-
gion can result in ataxias, neurological disorders characterized by difficulties

in movement precision and postural stability [1].

1.1.2 Major Brain Regions

As previously discussed, the brain is divided in four main lobes, as shown in

Figure 2:

Parietal
Frontal Lobes
Lobes

Occipital
Lobes
Temporal
Lobes

Figure 2: Brain’s four main lobes.

e Frontal lobes
Positioned at the anterior portion of the brain, the frontal lobes are
considered the executive control due to their involvement in complex
cognitive and behavioral regulation. These lobes integrate sensory data
and association signals to plan and execute purposeful actions. They
are key in decision making, reasoning, organizing sequential behavior
and executing goal directed tasks. Their contribution also extends to
language and speech regulation, facilitated through connections with
motor planning networks. The orbitofrontal cortex, located in the lower
front part of this region, plays a major role in processing emotions and

in adapting behavior based on past outcomes. When damaged, the
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frontal lobes can cause profound deficits in emotional regulation, per-
sonality stability and cognitive judgment, reflecting their importance

in psychological functioning and executive behavior [2].

e Parietal lobes
Located posterior to the primary somatosensory cortex, the parietal
lobes are integral to integrating sensory input with cognitive processes,
supporting perception, spatial orientation and memory. These lobes
help individuals formulate action strategies and interact with their sur-
roundings through spatial awareness and motor planning. The poste-
rior part, in particular, is involved in constructional and spatial abilities
such as replicating shapes, assembling parts or coordinating tasks that
require visual-spatial reasoning. The right hemisphere of the parietal
is especially involved in body awareness and spatial cognition, helping
map the position of the body parts in space. Lesions in this region may
lead to deficits in spatial relationships and tactile processing, impacting

motor coordination and perception [2].

e Temporal lobes
Situated on the sides of the brain, the temporal lobes are responsible
for processing auditory stimuli and facilitating language understand-
ing. They allow the brain to interpret environmental sounds and spa-
tial properties such as distance and depth. At the core of this region
is the auditory cortex, which is vital for sound perception and closely
tied to memory formation. These lobes also support the connection
between auditory experiences and mental visualization, enabling inter-
nal reconstruction of head information. This auditory imagery link is
crucial in learning, as the temporal lobes play a significant role in creat-
ing and retaining long term auditory memories. Damage in this region
can impair auditory memory, resulting in conditions like amnesia or

disruptions in speech comprehension [2].



Nervous System 6

e Occipital lobes
Found in the posterior-inferior part of the brain, the occipital lobes
serve as the primary visual processing center. These lobes decode in-
coming visual information, transforming raw stimuli into coherent im-
ages that the brain can understand and store. Containing the brain’s
primary and secondary visual cortices, the occipital region supports
recognition, movement detection, spatial orientation and also contributes
to language comprehension through visual input. The visual memories
formed here connect past experiences to present observations, helping
to interpret and react to new stimuli. Damage to this area can signif-
icantly affect visual recognition, making it difficult to recognize faces,
identify objects or associate images meaning and language, resulting in

various forms of visual agnosia [2].

1.1.3 Neurons

Neurons are the primary operational units of the nervous system, structured
with specialized regions that support their functional role. These cells are
inherently asymmetrical, possessing distinct parts dedicated to receiving in-
coming signals and sending information onward. Communication between
neurons occurs through the release of chemical messengers called neuro-
transmitters, which are discharged into the synaptic cleft, the small space

separating two neurons.

Neurotransmitters, which can be proteins, peptides or small molecules, carry
messages across this gap to the adjacent neuron, where they are received
through endocytosis. The neuron dispatching the signal is called the presy-
naptic neuron, while the one receiving it it is called postsynaptic neuron.
Inside each neuron, messages are conveyed via action potentials, brief and
rapid electrical events triggered by shifts in the cell’s membrane potential.
These electrical signals allow for fast and efficient transmission throughout

the nervous system.



Nervous System 7

The neuron’s ability to transmit these signals relies on its key components:
dendrites, a cell body (soma) and an axon, as shown in Figure 3. Dendrites,
which are short, branching extensions, collect information from other neu-
rons. The extent and complexity of these branches influence how signals are

received and processed[1].
\ Dendrites
\ o

Cell body A

= / ~, ' Presynaptic
Axon ~ ' terminal
/ / hillock S p
l ~--
Axon

Figure 3: Neuron’s components.

These dendritic structures emerge from the soma, which contain the nucleus
and is responsible for producing proteins like neurotransmitters. These sub-
stances must be transported to precise locations within the neuron, especially
to sites where they are secreted into synapses to influence neighboring neu-
rons. The axon, a long and narrow projection, carries these signals away
from the cell body. It originates at the axon hillock, a region crucial for
both protein synthesis and the initiation of action potentials once sufficient
stimulation has been received. The axon hillock also controls which proteins
enter the axon, maintaining tight regulation of signal transmission. Neuro-
transmitters are ultimately released from the presynaptic terminals at the

end of the axon.

Neurons can be categorized in several ways based on their form and function.

The three main types are sensory neurons, motor neurons and interneurons.
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Sensory neurons, typically unipolar in structure, have two short extensions,
a dendrite and an axon, that facilitate the relay of sensory input. Motor
neurons are multipolar, featuring numerous extensions that allow them to
transmit motor commands. Interneurons, which connect sensory and mo-
tor neurons and also contribute to memory and decision making, generally
display a bipolar form. While sensory and motor neurons operate both the
central and peripheral nervous systems, interneurons are found exclusively
within the central nervous system. Additionally, neurons may be classified
based on whether they stimulate, excitatory, or inhibit, inhibitory, signal

transmission, or by the specific neurotransmitters they release [1].

1.2 Electroencephalogram

Electroencephalography (EEG) is a non-invasive method used to record the
brain’s electrical activity by measuring potential fluctuations on the scalp.
This technique offers a dynamic representation of brain function and is widely
used in both clinical and research settings. It is particularly valuable for
diagnosing neurological conditions as epilepsy, brain tumors, head trauma,
sleep disorders, dementia and for monitoring anesthesia depth during surgical
procedures. EEG can also assists in assessing behavioral and developmen-
tal conditions like autism, attention deficits, learning challenges and speech

delays.

The history of EEG dates back to 1929, when Hans Berger first introduced a
device capable of recording the brain’s electrical signals. Berger, a neuro psy-
chiatrist, coined the term 'Elektrenkephalogram’ to describe these recording
and proposed that brain activity varies depending on the brain’s functional

state, including sleep, anesthesia and pathological conditions.

EEG recordings are obtained by placing multiple electrodes on the scalp,
typically using conductive paste or temporary adhesives. These electrodes

detect the tiny voltage changes generated by neurons, which are then am-
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plified and visualized as waveforms on a computer screen. Depending on
the setup, an EEG may involve from just a few electrodes to over 250, in
what are called multichannel recordings. Each recording channel reflects the

voltage difference between two points on the scalp [3].

There are two main EEG recording types: scalp EEG, where electrodes are
placed externally on the scalp, and intracranial EEG, which involves the
insertion of electrodes directly into the brain tissue. A variant of intracra-
nial EEG called electrocorticography (ECoG) involves placing electrodes on
the cortical surface during surgery. The typical amplitude of EEG signals
recorded from the scalp ranges from 1 to 100 4V, whereas subdural record-

ings can reach amplitudes of 10-20 mV.

The positioning of the scalp electrodes is crucial, as the brain’s anatomical
regions are functionally specialized. The internationally accepted 10-20 sys-
tem standardizes electrode placement using proportional distances (10% or
20%) between specific cranial landmarks, namely the nasion (bridge of the
nose) and the inion (lower back of the skull). Electrode labels indicate both
their cortical location (F for frontal, T for temporal, C for central, P for
parietal, O for occipital) and hemisphere (even numbers for the right, odd
for the left and 'z’ for the midline).
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Figure 4: 10-20 % international system used to place electrodes on the scalp.

Various electrode configurations are used to display EEG signals. In a bipolar
montage, each channel represents the voltage difference between two adjacent
electrodes. A referential montage uses a single reference electrode for compar-
ison against all other electrodes. The average reference montage calculates
the mean signal across all electrodes as the baseline, while the Laplacian
montage subtracts a weighted average of surrounding electrodes from each

electrode’s signal to improve spatial resolution [3].

The underlying signals captured in EEG recordings are generated by synchro-
nized activity in large groups of neurons, primarily in the cerebral cortex. The
cortex is the most significant contributor due to its proximity to the scalp
and its role in higher cognitive processes such as decision making, language,
movement and complex visual processing. The primary electrical events rele-
vant to EEG are postsynaptic potentials (PSPs), which result from ion flows
in dendrites and soma of pyramidal neurons. These low-frequency PSPs can
summate and generate dipolar fields strong enough to be detected on the

scalp. Conversely, action potentials, although fundamental to neuronal com-
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munication, do not substantially influence EEG recordings because they are

too localized and short lived.

Amplifier EEG
i)
— o
= . - EEG electrode
st ERA OSSO & i d g .
O e S SR e e Scalp
O R S R S 5 T
Tt TSR s
A | TSR Dura
= = mater
Arachnoid
- — = = — Subarachnoidl
= ~— space
\/\) Pia mater
Active synapses
i e
( \’k Efferent
| axon

Figure 5: Generation of small electrical fields by synaptic currents in pyra-
midal cells.

Neural activity is governed by action potentials, where ion channels alter
membrane potentials to create fast electrical impulses along axons. Neuro-
transmitters released at synapses allow neurons to communicate. If a post-
synaptic potential is strong enough to reach a threshold, it may initiate a
new action potential in the receiving neuron, continuing the cycle of neural

signaling [3].

EEG signals are typically analyzed in terms of frequency, which helps charac-

terized different mental and physiological states. Human brain rhythms are
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divided into five major frequency bands: delta (0,5-4 Hz), theta (4-8 Hz),
alpha (8-13 Hz), beta (13-30 Hz) and gamma (>30 Hz). Each band is associ-
ated with specific brain states: delta with deep sleep and certain pathologies,
theta with drowsiness and emotional processing, alpha with relaxed wake-
fulness, beta with active thinking and focus and gamma with higher level
cognitive functions. In healthy adults, EEG frequencies and amplitudes vary

based on the mental state.

h \/A/
0.0 0.2 0.4 0.6 0.8 1.0
. /MN\/\/\
0.0 0.2 0.4 0.6 0.8 1.0
Alpha
0.0 1.0
0.0 1.0
Gamma M w
0.0 1.0

Figure 6: EEG frequencies band.

Delta waves are the slowest and highest in amplitude, commonly seen during
deep sleep or in some abnormal brain states. Theta waves are associated with
creativity, emotional responses and meditation. Alpha activity is typically

observed when the eyes are closed and the subject is relaxed, especially in the
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occipital regions. Beta activity is linked to alertness and active cognition,
especially in the frontal lobes. Gamma oscillations, which may reach 80-
100 Hz, are thought to reflect processes related to perception, memory and

consciousness [3].

Despite its utility, EEG recordings are susceptible to various artifacts that
can obscure true brain signals. Artifacts may arise from eye movements,
poor electrode contact, swallowing or issues with the reference electrode.
These often manifest as large-amplitude, slow waves or broad disruptions
across channels and must be carefully managed during data pre-processing

to ensure pathological interpretation.

In summary, EEG is a powerful tool for exploring brain function and di-
agnosis neurological and psychiatric conditions. By capturing the brain’s
rhythmic electrical activity across multiple channels and frequencies, EEG
enables researchers and clinicians to gain insights into both normal brain

function and pathological states.
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2 Cardiac System

The heart is a vital organ for the human body, understanding its anatomy is
essential for comprehending how electrical impulses are generated and prop-
agated, which is reflected in the electrocardiogram (ECG) signal. The ECG
serves as an important tool in monitoring the heart’s electrical activity, offer-
ing insights into both normal and cardiac function and various pathological

conditions.

2.1 Heart Anatomy

The heart is a muscular organ located within the thoracic cavity, specifically
in the middle region of the mediastinum, just above the diaphragm. It sits
at a slightly tilted angle, with the apex directed forward, downward and to
the left. The heart is enclosed in a protective double layered sac known as
the pericardium. This sac includes an outer fibrous layer and an inner serous
layers. The serous pericardium is further divided into two parts: the visceral
layer (epicardium), which adheres to the heart surface, and the parietal layer,
which lines the inner surface of the fibrous pericardium. Between these layers
lies a thin film of pericardial fluid that acts as a lubricant, reducing friction

during heart contractions [4].

The heart wall is composed of three primary layers. The outermost layer, the
epicardium, is followed by the myocardium, thick muscular layer responsible
for contraction, and the innermost endocardium, a thin lining of endothelial
tissue. The myocardium varies in thickness across different chambers, being
particularly robust in the left ventricle and the inter-ventricular septum,
where is organized into sub-epicardial, middle and sub-endocardial muscle
layers. This muscular tissue also houses specialized conductive fibers and

nodal tissue vital for initiating and transmitting electrical impulses.
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Figure 7: Heart’s layers.

Structurally, the heart is divided into four chambers: two upper atria and
two lower ventricles. The atria have thinner walls and function primarily to
collect blood returning from the body and lungs, passing it into the ventricles.
These ventricles are muscular chambers tasked with pumping blood either to
the lungs (right ventricle) or to the systemic circulation (left ventricle). Four
valves, tricuspid, pulmonary, mitral and aortic, ensure unidirectional blood

flow through these chambers.
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Figure 8: Heart’s chambers and valves.

Embedded within the heart is a fibrous skeleton that provides structural
support and electrically isolates the atria from the ventricles. This skeleton
also serve as an anchoring framework for the cardiac valves. Within this
fibrous structure is the central fibrous body, which includes the right and left
trigones and the membranous part of the inter-ventricular septum. It plays
a vital role in housing and protection the conduction system as it penetrates

the septum [4].

Cardiac muscle fibers contain specialized contractile units called sarcomeres,
composed of action and myosin filaments. These fibers are striated and
mono-nucleated and are connected via intercalated discs, which facilitate
synchronized contraction. The contraction mechanism relies heavily on cal-
cium ion dynamics. T-tubules transmit action potential deep into the muscle
fibers, triggering calcium release from the sarcoplasmic reticulum and initi-

ating contraction.

The electrical activity of the heart is coordinated by the cardiac conduction

system, which includes the sinoatrial (SA) node, atrioventricular (AV) node,
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bundle of His, bundle of branches and Purkinje fibers. The SA node, located
in the right atrium, acts as the heart’s natural pacemaker, initiating electrical
impulses that spread through the bundle of His and into the ventricles via

the Purkinje network, ensuring synchronized contraction.

Sinoatrial
Node (SA)

Right Atrium

Atrioventricular Left Bundle Branch

! ' Left Atrium
2

A
Node (AV)

Left Ventricle

Bundle of His

Right Ventricle /
Right Bundle Branch

Figure 9: Heart’s electrical conduction system.

Autonomic regulation of the heart is managed by the cardiac plexus, which
contains sympathetic and parasympathetic fibers. Sympathetic stimulation
increases heart rate and contractility, while parasympathetic input, primarily
via the vagus nerve, exerts an inhibitory effect. This balance is modulated
by central nervous system structures such as the medulla and hypothalamus,

responding to feedback from baroceptors and chemoceptors throughout the

body [4].

Functionally, the heart operates in a cycle of contraction (systole) and re-
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laxation (diastole). The cycle begins with atrial contraction, followed by
ventricular contraction and subsequent ejection of blood. Electrical impulses
precede these mechanical actions, observable on an electrocardiogram as the
P wave, QRS complex and T wave . Heart sounds generated during this

cycle are indicators of normal or abnormal cardiac function.

Finally, the heart’s performance is tightly linked to its structural and electri-
cal integrity. Disruption in any anatomical or physiological component can
result in impaired cardiac output, arrhythmia, or systemic complications.
The comprehensive understanding of heart anatomy is therefore essential in

diagnosing and treating cardiovascular conditions effectively.

2.2 Electrocardiogram (ECG)

The electrocardiogram (ECG) is a fundamental diagnostic tool in cardiac
electrophysiology, used to monitor the electrical activity of the heart in both
clinical and critical care settings. It provides a non invasive way to observe
and evaluate the rhythmic and conduction properties of cardiac function over
time. This electrical activity is primarily generated by specialized pacemaker
cells, which possess the intrinsic ability to depolarize and repolarize sponta-
neously, functioning similarly to a relaxation oscillator. These impulses, once
generated, propagate through the cardiac tissue, ensuring coordinated con-

traction.

The SA node, serving as the heart’s primary pacemaker, under normal phys-
iological conditions sets the rhythm of the heartbeats. The AV node acts as
a secondary pacemaker, possessing slower intrinsic rhythm that only initiates
impulses when the SA node fails or is delayed. Once an impulse originates
in the SA node, it travels across the atrial muscle. The atria and ventricles
are connected through the AV node, a region that conducts impulses slowly
to allow a delay between atrial and ventricular activation. From there, the

signal proceeds into the bundle of His , which divides into left and right
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bundle branches. These branches further distribute through Purkinje fibers,

facilitating efficient excitation of the ventricular myocardium [5].

The ECG represents the voltage differences detected by electrodes placed
on the body surface in specific configurations called leads. These electrodes
capture the electrical signals resulting from cardiac depolarization and repo-
larization. Classical limb leads (leads I, II, IIT) record potential difference
between pairs of electrodes on the limbs, following Einthoven’s triangle and

satisfying Einthoven’s law :

Leadll = Leadl + LeadIIl (1)

In addition to the standard limbs, augmented leads (aVR, aVL, aVF) are
derived by comparing each limb electrode to a calculated average potential
known as the Wilson Central Terminal (WCT), created by connecting equal
resistors to the three limb electrodes. Precordal or chest leads ( V1,...,V6)
further complement the recording by providing spatial information from the

anterior chest wall overlying the heart [5].
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Electrodes

V/1: right sternal edge - 4th ICS
V/2: left sternal edge - 4th ICS
V3: between V2 and V4
V4: mid-clavicular line - 5th ICS
V5: between V4 and V6 - 5th ICS
V6: mid-axiliary line - 5th ICS
RA: right arm
LA: left arm

RL: right leg
[ LL: left leg

Figure 10: Leads electrodes placement.

A typical ECG trace consists of several characteristics waveforms correspond-
ing to different phases of the cardiac cycle. The P wave reflects atrial depolar-
ization. The QRS complex represents rapid ventricular depolarization and is
usually the most prominent feature. The T-wave follows, indicating ventricu-
lar repolarization. In some cases, a U wave appears after the T wave, though
its origin remains debated; it is thought to be linked to after-depolarizations
or late phases of repolarization. The atrial repolarization is usually masked

by the QRS complex due to its smaller amplitude.

The components of the QRS complex include the Q wave (initial negative
deflection), the R wave (first positive peak) and the S wave (subsequent
negative deflection). Not every component appears in all leads and additional
notches or deflections may also be observed depending on the individual

cardiac morphology [5].
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Figure 11: ECG waves.

ECG analysis involves evaluating both the morphology of the waveforms and
their temporal relationships. Variations across multiple cardiac cycles can
reveal valuable insights into rhythm abnormalities, conduction disturbances,
or myorcardial damage. Moreover, factors influencing the signals may be
intrinsic ( changes in action potential, propagation) or extrinsic ( changes in
tissue conductivity). In some clinical cases, internal electrodes (placed in the
esophagus or directly on the heart) are used for higher resolution recordings,

particularly to diagnose arrhythmia or conduction defects.

Ultimately, the ECG remains an indispensable tool in cardiovascular medicine,
offering critical diagnostic information with broad applicability across health

care and research settings.
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3 Binaural Beats

This section is dedicated to the discussion of the Binaural Beats (BB), with
the aim of providing a clear definition and a deeper understanding of how they
work. Initially, research on BB focused on understanding the functioning of
the binaural auditory system. However, over the past couple of decades, the
focus has shifted toward investigating their effects on cortical activity. These

aspects will be discussed in a more detailed way in the following sections.

What has sparked growing interest in this field is the fact that BB are an
illusory perception that manifests when two sine waves, played separately
to each ear, differ by an amount between 2-30 Hz, allowing to stimulate the
cerebral activity within a range of frequencies that covers most of its spectral

content [6].

Specifically, this research was motivated by the Brainwave Entrainment Hy-
pothesis associated with BB, which refers to the possibility of modulating
brain’s electro cortical activity thanks to the application of a visual or audi-
tory stimulus, making it oscillate at or around the frequency of stimulation
[7]. Based on this theoretical framework, BB were employed in this study as

a non invasive brain stimulation technique.

3.1 Description

The BB phenomenon was described for the first time in 1839 from a german
experimenter H.-W. Dove, and he referred to slow modulation that were per-
ceived after a neural elaboration of particular mechanisms of the auditory
binaural system, when two pure tones (sine waves) with slightly different

frequencies were presented simultaneously, separately to each ear. [8].

To clarify the concept, let’s consider what is shown in Figure 12. If the
right ear is presented with a pure tone at a frequency of 400 Hz, and the

left ear simultaneously receives a pure tone at 410 Hz, a third one (known
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as a beating tone) will be perceived. This tone will have amplitude that

fluctuates cyclically with a frequency of 10 Hz.

Pure tones differing by 10 Hz

A
AN

Figure 12: Visual description of the beat effect.

3.2 State of the Art

A large portion of literature on BB has developed during the second half
of the 20th century. Authors such as Oster, Licklider, Perrott and Nelson
have significantly contributed to the field through systematic studies aimed
at better understanding the relationship between stimulation parameters and

auditory perception [9].

The perception of BB depends on several factors, primarily related to the
design parameters of the auditory stimulus. These include the carrier fre-
quency, the frequency difference between two sine waves (also referred to as
stimulation frequency, beat frequency, or interaural frequency), the intensity

of the tones, and the duration of the signal.

One of the most investigated aspects concerns the identification of the fre-

quency range of the carrier tone within which binaural beats are perceptible.
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Some studies suggest that below 90 Hz, participants tend to confuse the
beat with the tones used to generate it, making the phenomenon difficult to
detect as a distinct percept [8]. However, Licklider et al. reported a lower

perceptual threshold of approximately 63 Hz for BB [10].

As for the upper limit, there is general agreement in the scientific community
that the ability to perceive BB, gradually decreases as the carrier frequency
exceeds 1000 Hz [10][8]. In this context, the study by Perrott and Nelson
is particularly noteworthy: they assessed beat perception as the carrier fre-
quency (fp) increased, and found that at frequencies of 1000 Hz, 1200 Hz,
1500 Hz and 1800 Hz, the percentage of recognized beats was below 35% [11].
Nevertheless, the literature presents a high degree of heterogeneity regarding
the absolute upper limit of BB perception. Above a certain carrier frequency,
the beats may no longer be perceived, and this threshold can vary depending
on several factors, including the specific stimulation parameters used in differ-
ent experimental protocols and individual differences in auditory processing.
Licklider also highlighted that one of the key factors influencing BB percep-
tion is the frequency difference (§f) between two tones. Another important
finding from his research was the identification of the maximum frequency
difference at which binaural beats remain clearly perceptible. Specifically, it
was shown that BB could be correctly identified with frequency differences

up to 35 Hz, particularly when the carrier frequency was around 400 Hz [10].

The difference between the two tones not only influences the upper frequency

limit for the perception of BB, but also affects the way the sound is perceived.

If the frequency difference between the two sine waves is too small, the listener
perceives a singles auditory image that appears to move from one ear to the
other at a rate equal to the interaural frequency difference. This phenomenon
is known as a rotating tone. As the frequency differences increases, the
listener begins to perceive periodic fluctuations in sound intensity. Within

the range of approximately 2 to 10 Hz, a single tone is perceived that seems
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to pulse, modulating in amplitude. This response is generally associated with

the perception of BB.

If the frequency separation continues to increase, the intensity fluctuations
become progressively less distinct. When the interaural frequency difference
exceeds 20 Hz, the perceived tone acquires a rough quality, and the beat
becomes too rapid to be interpreted as an amplitude modulation in the way

BB are typically understood.

Finally, when the frequency difference between the two tones surpasses a
certain threshold, the tones are no longer fused centrally, and the listener
perceives the mas two distinct sounds, each localized separately in one ear
[10][12].

The relationship between 0 f and fy in the perception of binaural beats has
been further explored by David R. Perrott and Michael A. Nelson [11]. In
their study, the authors produced a series of curves illustrating the efficiency
of BB identification as a function of both the carrier frequency and the in-

teraural frequency range for BB perception is between 250 and 500 Hz [11].

Other factors that actively influence the perception of BB include the inten-
sity difference between the two tones and the duration of the stimulus. It has
been shown that, when the signal is presented continuously, the two tones
must have equal amplitude in order for BB to be perceived. This require-
ment, however, doesn’t apply when the stimulus is presented alternately with

a reference tone [13].

Regarding the influence of signal duration, it has been observed that binaural

fusion typically occurs for durations exceeding 320 ms [14].

Since each brain wave frequency band can be directly correlated to specific
psychological and physiological states, the idea has been to specifically se-
lect the oscillation frequency of BB in order to guide the subject towards a

particular mental state [15].
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This has recently led research efforts to investigate the psychological effects
induced by the stimulation through BB [16]. Specifically, studies examined
the effects of listening to BB on information processing and elaboration [17]
[18] [19], mood [20] [21], pain perception [22] [23], increased concentration
[24], meditation [25] and relaxation [26].

Although it is easy to understand how the brain’s cortical activity can adapt
and synchronize with an external stimulus, if its frequency falls within one
of the EEG bands, leading to constructive interference increasing the power
within the specific band, the evidence and the results presented in the liter-
ature appear to be controversial and contradictory [27], making it difficult
to confidently assert that BB can interfere with cortical activity, modulating

actively brain waves.

In the cited studies, BB were applied using a fixed stimulation frequency
without personalization to individual characteristics, and were administered
in a single session, thereby excluding the possibility that their effects might

require a training period.

3.3 Experimental Question

The study conducted within this thesis aims to answer the following experi-

mental questions:

o “Can FEG signals show real changes in brain activity or physiological

state during or after listening to BB?”

e “Is the BB effect on the cerebral rhythm immediate or does it require
a training period in which the subject can synchronize more efficiently
with the rhythm of the beats?”

e "Does BB stimulation modulate the cerebral rhythm in the target fre-

quency band?”
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Therefore, the goal of the study is to understand if BB can interact with
cerebral rhythm and to examine their long term-effects. To answer all of it a
experimental protocol has been created, which will be discussed in the next

section.
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4 Materials and Methods

This chapter will provide a detailed overview of the protocol design phase and
of the techniques and instrumentation used for the acquisition and processing

of EEG and ECG signals recorded during the various acquisition sessions.

4.1 Instrumentation and Software

4.1.1 Enobio

The Enobio 8 is the main instrument used in this study, enabling the ac-
quisition of EEG data through its channels. Specifically, this experimental
protocol employs the Enobio 8 version, which consists of the Enobio Necbox
(Neuroelectronics Control Box) the central unit that contains all the elec-
tronics components and communicates with the computer via Bluethooth
connection, eight Ag/AgCl electrodes known as NG Geltrodes shown in Fig-
ure 14, which are placed inside a neoprene cap, and a 10 channel connector,
of which 8 are used for the active signal acquisition and 2 channels serve
as references (CMS and DRL). The neoprene cap features 64 slots, corre-
sponding to the positions defined by the international 10-10 system, allowing
for custom electrode placement based on experimental needs. The Enobio 8
system records the EEG signals at a sampling frequency of 500 samples per
second (SPS) and operates within a frequency bandwidth ranging from 0 to
125 Hz. The configuration of the system is shown in Figure 13 [28]. EEG
data acquisition is managed through the NIC2 software, which allows real

time signal analysis.
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Figure 14: NG Geltrode.

Figure 13: Enobio 8 setup.
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4.1.2 NIC2

The NIC2 software is essential for operating the Enobio 8 system. It commu-
nicates with the Necbox via a Bluetooth connection, allowing the real-time

streaming of recorded EEG data.

The software enables users to configure the recording protocol by customiz-
ing several parameters such as the duration of the acquisition, the insertion
of event triggers, the assignment of specific channels to defined scalp posi-
tions, the reference configuration and the use of notch filters to reject power
line interference at 50 Hz or 60 Hz, depending on the recording environment.
Regarding the electrodes assignment caution is required: as previously men-
tioned, the neoprene cap follows the international 10-10 system, whereas the
software interface is based on the international 10-20 system, as shown in
Figure 15. Therefore, when selecting electrode positions within the software,
it is essential to choose slots that are common to both systems, in order to

ensure correct correspondence between physical and virtual placement.
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Figure 15: Taken from the NIC2 software, this interface shows the electrodes
positions of the 10-10 system: selected electrodes are highlighted in purple,
while unused ones in green.

Specifically during the acquisition, it is possible to visualize the live EEG sig-
nals, selecting specific channels of interest, adjusting the preferred amplitude
scale, choosing the referencing method and inserting event triggers to mark
specific occurrences, which facilitates offline data analysis. Real time signal
evaluation is further supported by the presence of a indicator called Qual-
ity Index (QI), which informs the user whether the acquisition is proceeding

correctly, as shown in Figure 16.
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Figure 16: Live stream of the EEG recording.

The software allows EEG data to be saved the in various formats, including
.easy, .edf, .nedf and .sdeeg. In this study, the .easy format was used, and
an additional .info file is generated containing the metadata related to the

acquisition parameters.

The .easy file is organized into 13 columns. The first 8 contain the tempo-
ral samples expressed in nV of the EEG signal recorded from each channel
selected during the protocol design phase. Columns 9 to 11 report the accel-
eration values along the three axes of the reference system by the acquisition
device, located inside the Necbox. Lastly, columns 12 and 13 respectively

contain the event trigger, if any, and the Timestamp expressed in ms.

4.1.3 Matlab

This software is fundamental for the offline analysis of the signals recorded

with the Enobio 8. It provides a virtual environment where custom algo-
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rithms can be programmed using the software’s proprietary language. In
this study, it was used as the main platform to implement the entire signal
analysis pipeline, starting from pre-processing to feature extraction, cluster-
ing using a k-means algorithm and statistical analysis. This is made possible
by built-in functions and toolboxes that support specific algorithms tailored
to particular data. Specifically, the EEGLAB toolbox was used, which is
dedicated to EEG signal analysis and offers advanced tools for managing,

visualizing and processing electroencephalographic data.

4.1.4 Polar H10

The Polar H10, shown in Figure 17, is a high precision heart rate equipped
with the Polar Pro chest strap. It is considered by numerous sources to be
one of the most accurate heart rate monitors available, capable of delivering

high quality readings with minimal interference.

The sensor allows for data connection and transfer via Bluetooth® e ANT+™
connected, offering a wide range of connectivity options with compatible

sportwatches, smartwatches and training apps [29].

Figure 17: Polar H10.
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4.1.5 Visual Studio Code

Visual Studio Code (VS Code) is a source code editor developed by Microsoft,
compatible with most operating systems currently available on the market,

including Windows, macOS and Linuzx.

This editor is widely used among developers thanks to its appealing features:
it is free to use, supports various programming languages such as Python,
C++, JavaScript and HTML, and offers an integrated debugger, built-in

syntax checking, and intelligent code completion based on IntelliSense.

In addition, it allows developers to work on remote environments, all through

a versatile and user friendly graphical interface.

4.2 Data Analysis Techniques
4.2.1 ICA

Independent Component Analysis (ICA), originally proposed by Pierre Comon
in 1992 [30], is a widely adopted signal processing approach used to recover
hidden source signals that have been linearly combined and recorded across
multiple sensors. This methods belongs to the category of blind source sep-
aration techniques, as it functions without requiring prior knowledge about
the mixing mechanism or the nature of the original signals. ICA aims to iso-
late latent components by minimizing statistical dependencies among them,
relying solely on the temporal dynamics of the input data to apply a linear

transformation that maximizes independence [31] [32].

The ICA model assumes that, at any given time point k, the observed sig-
nal vector z(k) = [z1(k), ..., z,(k)]T, is generated by a linear mixture of m

unknown source signals s;(k)such that :
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Where s(k) = [s1(k), ..., sn(k)] represents the statistically independent sources
and A = [ay,...,an,| represents the unknown mixing matrix. ICA seeks to
estimate these sources §(k) through an un-mixing matrix B = A~! allowing

source reconstruction:

s(k) = Bx(k) (3)

To function correctly, ICA relies on several assumptions. First, the source
signals must be mutually statistically independent. Additionally, it is typ-
ically required that both the mixing process and the distributions of the
source signals remain stationary during the analysis window. A further con-
straint is that the number of sources doesn’t exceed the number of sensors,
ensuring the mathematical tractability of the model and the invertibility of

the mixing matrix [33].

In electroencephalography (EEG) studies, ICA has proven especially valu-
able. Scalp EEG signals are thought to reflect linear mixtures of underlying
cortical activity, where each neural source contributes with varying strength
across different electrodes. These projections are influenced by factors like
the electrode-source distance, dipole orientation and conductive properties

of the brain and surrounding tissues.

Due to the predominance of short range cortical connections and limited long
range connectivity,a biologically plausible assumption is that cortical regions
tend to act as relatively independent sources over time. This supports the
application of ICA to EEG data under the assumption of spatial and temporal

independence between such patches [32].

Key applications of ICA in EEG include the removal of non neural artifacts,
such as eye blinks or muscle activity, and the decomposition of EEG data for
the analysis of brain responses to stimuli. Multiple ICA algorithms exist for
this purpose, including JADE [34], Infomax [35] and FastICA [36]. In this
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study, the algorithm used is the extended Infomax ICA variant developed by
Lee et al. 1999 [31].

Extended Infomax ICA

The extended version of the Infomax algorithm builds upon the original
framework introduced by Bell and Sejnowski, maintaining its foundational
architecture. The core principle behind the Infomax approach is grounded in
the observation that independent sources in real-world signals, such as EEG,
tend to exhibit non Gaussian distributions. However, when multiple sources
are combined linearly, their resulting mixture approximates a Gaussian dis-

tribution, as predicted by the central limit theorem [35].

The algorithm’s objective is to reverse this mixing process by identifying a
transformation that separates the recorded signals into statistically indepen-
dent components that are as non Gaussian as possible. To achieve this, the
observed signal vector x is linearly transformed into a new vector u, using

weight matrix W and a bias term W,:

u=Wsxz+W, (4)

A non linear activation function g() is then applied to u produce the system’s

output y:

y = g(u) (5)

The use of a non linear function is crucial, as it enables access to higher
order statistical features of the data, which are essential for assessing and

enhancing the non Gaussianity of the recovered sources [35].

The process of making the sources independent in Infomax revolves around
maximizing the mutual information between the system’s input x and output

y, defined as:
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I(Y, X) = H(Y) = H(Y|X) (6)

Where H(Y) is the entropy of the output and H(Y'|X) is the conditional
entropy of the output given the input. When the transformation from x to y
is deterministic, the conditional entropy term vanishes, and maximizing the

mutual information becomes equivalent to maximizing the output entropy.

In practice, the algorithm also seeks to reduce redundancy aiming outputs
by minimizing mutual information between them. For two outputs, y; and

Y2, the joint entropy is expressed as:

H(y1,y2) = H(y1) + H(y2) — I(y1,92) (7)

Hence, by maximizing the joint entropy through reducing mutual information
I(y1,y2) the algorithm ensures that the outputs are statistically independent.
The ultimate goal is to determine a weight matrix W that produces an output
vector y whose components are both maximally informative and mutually

independent.

The extended Infomax algorithm, developed by Lee, Girolami and Sejnowski
[31], introduces an adaptive learning mechanism that extends the original
model’s capabilities. Unlike the standard Infomax, which uses a fixed non
linearity, this version dynamically adjusts the activation function based on
the statistical properties of the sources. This adaptability allows it to effec-
tively separate both super Gaussian sources, characterized by sharply peaked
distributions with heavy tails (positive kurtosis), and sub Gaussian sources,
which typically exhibit flatter, sometimes bimodal distributions (negative

kurtosis).
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4.2.2 PCA

Principal Component Analysis (PCA) is a foundational tool in multivariate
data analysis [37], commonly used for purposes such as reducing data dimen-
sionality, visualizing underlying structures, filtering noise, selecting relevant
features and constructing interpretable models. Moreover, PCA serve as a
preliminary step in tasks such as clustering, classification, and outlier detec-
tion. While Pearson originally introduced PCA from a statistical standpoint
[38], it was Hotelling who formalized the technique into its modern from in
1913 [39]. Although many variants have been proposed over time [40], this

section focuses on the classical formulation of PCA.

At its core, PCA seeks to transform a set of correlated variables into a new
set of uncorrelated variables known as Principal Components (PCs). Given
a data matrix X € Rnp), where n is the number of observations and p
the number of variables describing each observation, the goal is to find lin-
ear combinations of the original variables that capture the highest possible

variance. These combinations are of the form:

p
Z ajr; = Xa (8)
j=1

where x; is the observation vector for the j-th variable, and a is a vector of

coefficients [a1, ..., a;, ..., a,]. The variance of this linear combination is:

var(Xa) = a’ Sa 9)

with SR®P) being the covariance matrix of the dataset.

To determine the direction a that maximizes this variance, a constrain a’a =

1 is imposed to ensure a unit norm. This leads to the optimization of the

following Lagrangian:



Materials and Methods 39

a’Sa — Aa"a —1); (10)

Where ) is a Lagrange multiplier. By differentiating with respect to a and

setting the gradient to zero, we obtain the classic eigenvalue problem:

Sa = \a (11)

Thus, the principal components correspond to the eigenvectors of the covari-
ance matrix S, and their associated variances are the eigenvalues A. Each
principal component Xa; represents a new variable, where a; contains the
PC loadings, and the corresponding projections for all observations are called

PC scores.

An equivalent approach to PCA involves applying Singular Value Decom-
position (SVD) to the mean centered data matrix X*. The decomposition

takes the form:

X*=ULA" (12)
Where:
e A € RP") contains the right singular vectors (PC loadings),
e U € R™) contains the left singular vectors (PC scores),

e L € R"™7) is a diagonal matrix with the singular values of X*.
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The variance of each principal A; component can be derived from the singular

values [; of X™* as follows:

A= — (13)

To project the data onto a reduced g-dimensional space (where g < r), one

may retain only the first ¢ components of the SVD:

Xy =U,LgA] (14)

This projection provides the best rank-q approximation to the original data
in terms of minimizing the mean squared reconstruction error. Among all
such projections, this one preserves the greatest amount of variance, full-

filling Pearson’s criterion for optimal linear approximation [38].

From this perspective, PCA is a specific case of SVD applied to the column
centered data matrix. The PCs correspond to the right singular vectors,
and projecting the data along these directions yields the optimal reduced

dimensional representation in a linear subspace.

4.2.3 K-Means

Clustering is a fundamental task with widespread applications in areas such
as pattern recognition, data mining, vector quantization, knowledge discovery
and data compression. Among the various clustering techniques, k-means
clustering stands out as one of the most widely used and well established

approaches [41].

The core goal of the k-means algorithm is to partition a dataset X € R,
containing n elements, into k& clusters such that the within cluster variance
is minimized. This typically expressed through an objective function, often

referred to as potential function ©, which computes the sum of squared
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distances between each data point and the nearest cluster centroid. The

function is formally defined as:

©= Z mineec|r — cf? (15)
reX
Where C' = ¢y, ¢y, ..., ¢, denotes the set of centroids.

The aim of k-means clustering is to identify the optimal configuration of
centroids C' hat minimizes ©. Once the centroids are initialized, data points

are assigned to the closest centroid, forming a partition of the dataset.

A commonly used algorithm to find such a solution is known as Lloyd’s
algorithm, which iteratively converges to a local minimum of the potential

function [42] [41]. This algorithm proceeds in four primary steps:
1. Initialize k centroids cy, co, ..., k.

2. Assign each data point to the nearest centroid, forming clusters C; € X
fori=1,...,k.

3. Update each centroid ¢; to be the mean of the points in cluster Cj,

using the formula:
G = —— Z x (16)

4. Steps 2 and 3 are repeated iteratively until the set of centroids C' sta-

bilized and no longer change.

The rationale behind the algorithm is that both the assignment step (Step
2) and the update step (Step 3) are guaranteed to decrease the potential

function O, which measures the within cluster variance.
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4.3 Protocol Design

The study has been conducted on a single group of 11 university students,
with a mean age of 24,8 + 1,6 years. Since there is evidence that, below
a carrier frequency of 595 Hz there are no differences in terms of BB per-
ception based on sex [43], both male and female participants were recruited,

specifically the 4 females and 7 males.

To be included in the experimental study, participants were required to meet

the following criteria:
e No hearing impairments or related auditory issues

e No history of neurological conditions, concussions, head trauma, or

clinically diagnosed psychological disorders

e No prior experience with binaural beats

1° ACQUISITION

2° ACQUISITION

3° ACQUISITION

e BASELINE (5 min)
N° ACQUISITION o STIMULATION (8 min)
o POST STIMULATION (7 min)

Figure 18: Experimental protocol flowchart.




Materials and Methods 43

The experimental protocol was organized into three sessions during a two
week period. The first meeting was used to extract the ‘Individual Alpha
Frequency’, necessary to create a personalized audio track for each subject.
More details about the creation of the audio tracks will be provided in the
‘Stimulus Track’ section. Moreover, during the first session, EEG and ECG
signals were recorded for the first time while the subjects were listening to

their personalized audio stimuli.

During the ten days period between the first and the second acquisition
session, each subject was asked to listen to their personalized audio track
containing BB once per day for ten minutes, trying to reproduce the same
listening conditions as during the first meeting. Home stimulation was mon-
itored by reminding participants daily to complete the task and by having

them log their completion in a diary.

During the second acquisition session, the same kind of physiological signals
as in the previous meeting were recorded, with the difference that this time
the participants had completed a ten day training period. For the following
four days, the daily BB listening task was suspended, concluding the training

period. On the fourteenth day, the last acquisition session was conducted.

The final phase of the experimental protocol aimed to verify if the training
had induced a lasting adaptation to the stimulation or if the effect would
result more similar to the initial condition once the training period was in-

terrupted.
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Each acquisition session lasted 20 minutes and was divided in three different

steps:

e Baseline: in this phase, which lasted 5 minutes, no auditory stimuli
was provided. Participants were asked to relax while keeping their eyes

closed using a sleeping mask.

e Stimulation: during this step, the same audio track containing BB
used for the daily listening task was administered to the subjects, short-

ened to a duration of 8 minutes while keeping their eyes closed.

e Post-Stimulation: after the end of the stimulation an additional 7
minutes of signals were recorded. Participants were instructed to re-

main in the same position and keep their eyes closed.

During each acquisition session the EEG signal was recorded using the Enobio
8 system, while the Polar H10 chest strap was used to collect both ECG data.
On the headset of the instrumentation used to record the EEG data there
is the possibility to position the electrodes inside dedicated slots, enabling a

custom configuration that aligns with the international 10-10 system.

Since literature doesn’t provide information regarding which cerebral area
was most influenced by BB, the electrodes were placed to capture signals from
all major cortical areas allowing to assess possible symmetries or asymmetries
of the cortical activity. Specifically, the following positions were chosen: F3
and F4 for the frontal area, T7 and T8 for the temporal area, P3 and P4 for
the parietal area, and O4 and Ob5 for the occipital area, as shown in Figure
19.

Before each session participants were asked to avoid consuming nicotine and
alcohol because those substances could create excitatory or relaxing effects

that could interfere with the final interpretation of the results.
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Figure 19: Illustration of all possible electrodes positions on the neoprene cap.
The electrodes actually used during the experimental protocol are highlighted
in yellow.

4.3.1 Acquisition Steps

For all three acquisition sessions, the participants underwent the same prepara-

tory steps.

The first step of the experimental protocol involved positioning the Polar
H10 band, following the instruction provided in the ‘Polar H10 user manual’.
After sanitizing the electrodes on the strap with a solution of water and
90% pure alcohol, the strap was placed around the subject’s chest tightening
the elastic so that the electrodes would adhere properly to the skin while
remaining comfortable. Particular care was taken to ensure that the R peak

of the ECG signal had a positive polarity.

Next, participants were seated in front of an empty desk. They were asked
to prepare their personal smartphone and headphones, placing the device in

front of them with the audio track ready to play and the volume already
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set to ensure clear audibility without discomfort. However, the volume level
varied among subjects because the stimulation track was played on different
devices. Both the audio playback system and the volume of the audio track

were kept the same for throughout the entire study.

The next step consisted of mounting the EEG signal recording instrumenta-
tion on the subject. Two patch electrodes were positioned behind each ear,
at the level of the mastoid processes, for the connection of CMS and DRL
electrodes. These respectively measure the common average potential and
inject an inverse signal, with the aim of improving the signal to noise ratio
(SNR) of the recorded EEG signal.

Subsequently, the subject was fitted with a neoprene cap with pre-inserted
electrode holders, ensuring that electrode Cz was correctly positioned at the

intersection of the sagittal plane and the line connecting the ears.

Each electrode was then prepared by gently moving the hair aside to expose
the skin at the base of the NG Geltrodes. The area was cleaned with alcohol
to ensure optimal contact with the scalp, reducing potential signal attenua-
tion caused by the hair. Each electrode cup was then filled with conductive
gel, making sure to avoid air bubbles, thus ensuring proper conductivity

between the scalp and the electrode’s conductive plate.

Once the subject was fully prepared, conductive cables were connected ac-
cording to a specific mapping scheme, ensuring that during the analysis
phase, the precise origin of the recorded signals could be accurately identified.
Additionally, cable placement was carefully arranged to minimize clutter and
prevent contact between different cables, reducing the risk of interference and
noise. For last a sleeping mask was positioning on the subject’s eye to help

them to keep them closed.
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4.3.2 Stimulus Tracks

To generate the audio track containing the binaural beats (BB) used to stim-
ulate the subjects in the Stimulated Group, it was necessary to define the
carrier frequency (fy) and the frequency difference(d f), which represent the

stimulation frequency.

Since in literature does not provide a clear consensus on the optimal configu-
ration that maximize the effectiveness of BB, these parameters were selected

following studies by David R. Perrot on BB perception [44].

In particular, the d f used in the study was personalized for each participant
and corresponded to the individual alpha frequency (IAF) derived from their
EEG recordings during the baseline phase of the first acquisition session.
The §f value remained constant throughout the training period, as the IAF
in healthy individuals tends to be stable, at least in the short term [45].

The most commonly used estimators to calculate IAF are the Peak Alpha
Frequency (PAF) and the Center of Gravity (CoG). Since PAF estimation
can be limited by two main problems, the spectral resolution used to evaluate
the power spectral density (PSD) and the possible absence of a dominant
alpha peak [46]. For each channel the value of IAF has been calculated using

the CoG estimation, which formula is reported in Equation (17):

>, f - PSD(f)

AFg, =
A =5 Pso()

(17)

Where f is a variable value within the frequency limits of the alpha band.
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Given that a multichannel acquisition system was used, the global IAF value

was calculated as the average of the IAFs across all EEG channels:

N
1
TAF mean = - > IAF, N =38 (18)

ch=1
Where N is the number of channels used.

Once the subject-specific Af value was obtained, the carrier frequency fy

was defined based on the BB perception curve shown in Fig. 2.

Although the literature suggests that a carrier frequency around 500 Hz
maximizes BB perception near the center of the alpha band, a value of 250
Hz was chosen in this study. The choice was made because it still ensures
a good BB perception while providing a more pleasant and less intrusive

listening experience.

Once defined the parameters for the BB, the audio track was generated with a
duration of 10 minutes using the software MATLAB. Specifically, two distinct
sine waves were generated, one at 250 Hz and the other at 250 + 0 f Hz. The
track was produced in stereo format, so that each sine wave could be played
separately to the left (fy) and right (fy + df) ear using earphones, inducing,
during the listening, the illusory perception of BB.

While in many previous studies BB are masked with white noise, colored
noise or embedded with music tracks [47] [27] [48], in this study it was decided
to keep them pure without any background noise or sound. This choice aimed
to avoid potential acoustic interference that could compromise the perception

of BB or alter its neural processing, as music is also an auditory stimulus.
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4.4 Signal Analysis Pipeline

This section presents the core of the thesis work, that consists of the analysis
method that allowed to extract the final results, which will be described in

the following chapters.

The section begins presenting the analysis of the EEG signal, detailing the
pipeline used to clean the raw data, the feature extraction process, and the
implementation of a clustering algorithm used for handling multivariate data.
The focus will be shifted to the analysis of the alpha rhythm and, finally,
concludes with the ECG analysis.

All signal processing was performed offline using MATLAB software.

4.4.1 EEG signal pre-processing

Following the recording and the saving of the EEG signals, the raw data were
imported on MATLAB to perform the pre-processing and cleaning phase,
following the analysis steps in the works done by Subhra Chakraborty [49],
Fazlul Karim Khondakar [50], Amer [51]. The complete EEG signal pre-

processing pipeline is shown in Figure 20.

AVERAGE FILTERING
REFERENCING PHASE
(CAR FILTER) (BANDPASS 0.5-45HZ)

VISUAL
ARTIFACT
REMOVAL

NOISE/PHYSIOLOGICAL
ARTIFACT REMOVAL

Figure 20: EEG signal pre-processing pipeline.
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The first step of analysis consisted of converting the signal values to V' and
creating a data structure compatible with MATLAB’s toolbox EEGLAB.

This data structure included all the necessary information to characterize

each acquisition, such as:

e The number of channels used and their positions on the scalp, consis-

tent with the montage used during recording.
e The sample frequency, set at 500 Hz.

e The matrix containing the EEG signals from all the channels, along

with duration expressed in number of samples.

The recorded signals were referenced to a single common reference, which can
introduce a residual noise component shared across all channels, affecting the

quality of the recordings.

To address the issue presented by the presence of one common reference,
the average referencing technique (or common average reference, CAR) was
applied to re-reference the EEG signals before proceeding to the filtering
phase [52].

This method is based on the assumption that all the active channels are
similarly affected by the noise component and are symmetrically distributed
on a spherical surface, like the human scalp. Specifically, the technique in-
volves calculating the average activity across all the active electrodes and

subtracting it from each channel.

This approach is based on the theoretical principle that the integral of the
potential distribution over a sphere, that includes the current dipoles, is zero.
The use of an average reference allows for the removal of the DC component
from the spatial frequency spectrum, thus producing potential maps centered
around zero. This makes the average of the signals a good approximation of

a neutral reference potential [53].
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On the resulting signals, a band pass filter was applied: a fifth-order, zero-lag,
anti-causal Butterworth filter, with a high-pass cut-off frequency of 0.5 Hz
and a low-pass cut-off frequency of 45 Hz. This step ensures the preservation
of the EEG signal’s relevant frequency components. The filter’s frequency
response is shown in Figure 21, while Figure 22 shows the filtered signals
with the CMS reference and Figure 23 shows the filtered signals with the

average reference.
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Figure 21: Frequency response of the bandpass filter applied to the EEG
signal: the magnitude response is shown above and the phase response below.
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Figure 22: EEG signals based on CMS reference.
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Figure 23: EEG signals based on average reference.

The last step of the pre-processing pipeline consists in detecting and removing
artifacts and noisy components, both physiological and not physiological,
overlapped with the EEG signal spectrum. The aim is to extract a signal

that reflects, as closely as possible, only cortical activity.
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The EEG traces from each channel were segmented into consecutive 1-second
epochs by introducing artificial events to mark the start and the end of each
signal block. This segmentation allows, through visual analysis, to evaluate
and in case exclude signal fragments clearly affected by motion artifacts, that
exhibit more chaotic activity and wider amplitude ranges than average, as

shown in Figure 24.
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Figure 24: Visual artifact removal through selection of the specific epoch.

This was possible using the EEGLAB toolbox, which allows to select and

remove portions from continuous data directly from the graphical interface.

At this stage an Independent Component Analysis (ICA) was performed
using the algorithm ‘Extended Informax’, which is already implemented in
EEGLAB. After decomposition, each Independent Component (IC) could be
inspected based on several characteristics, including the time course of its
amplitude, power spectral density, and spatial distribution, corresponding to

the contribution of each component to each acquisition channel.

The set of independent activities from the decomposition algorithm was then
analyzed by the plug-in ICLabel, included in EEGLAB, which classifies each
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IC as either brain-related or as noise/physiological artifact, which some ex-

amples are shown in Figure 25.

Brain : 99.8% Brain : 98.0% Eye: 68.9% Brain : 99.9%

Figure 25: Classification of all the IC.

To obtain a broader understanding of the noise classification, ICA algorithm
implemented in EEGLAB can be used to extract the features that character-
ize the behavior of specific components. Figure 26 presents the topographics,

temporal and spectral characteristics of the IC classified as noise or artifact.
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Figure 26: A: 1/f noise component, B: ocular artifact, C: muscular artifact.

The components labeled as non neuronal activity were selected and sub-

tracted from the EEG signal, as pictured in Figure 27.
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Figure 27: Noise/physiological artifact removal from EEG signals, in blue
the original traces while in red the cleaned ones.
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4.4.2 Features extraction

After the signal cleaning phase resulting in EEG traces that closely reflect
the actual cortical neural activity the focus shifted to the extraction of de-
scriptive parameters of brain activity. These parameters aim to translate
complex and hard-to-interpret time series into measurable quantities that

are representative of the subject’s neuro physiological state.

To obtain a comprehensive and detailed representation of the EEG signal,
the time series were analyzed using both linear techniques (in the time and
frequency domains) and nonlinear techniques, which are capable of capturing

the dynamic and more complex aspects of cortical activity.

The following section describes all the metrics used to quantify the EEG

signal:

¢ Frequency bands power
The power of the EEG signal in its various frequency bands was ob-
tained from the estimation of its power spectral density (PSD). In par-
ticular, Welch’s direct and non-parametric method was used, as im-
plemented in MATLAB. The EEG time series was windowed using a
1-second Hamming window with a 50% overlap between consecutive
epochs. The final PSD estimated was obtained with an apparent fre-

quency resolution of 0.25 Hz.
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The formula used to calculate the power content of the signal in a

specific frequency band (Ppgnq) is:

fhigh
Prana = [ PSD()df (19)
flow

Where:
— fhign is the upper frequency limit of the specific band,
— fiow 18 the lower frequency limit of the specific band.

Using the same method, the power within a subrange of the alpha
band was also evaluated, defined as a +1 Hz window centered on the
Individual Alpha Frequency (IAF):

TAF+1
Pae = [ PSD()r (20)
IAF—1

e Power ratio
In addition to the absolute power values in each band, the relative
percentual contribution of each band to the total signal power (Pjyza1)

was also computed:

Poand 19 (21)

total

Power Ratio =

In the case of the IAF power, however, the ratio was not calculated
with respect to the total EEG power, but specifically with respect to
the overall alpha band power (Pyphq):

IAF Ratio — IAF

x 100 (22)

alpha
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This decision was motivated by the nature of the auditory stimula-
tion used. In fact, this metric allows to assess the extent to which
the spectral power within the alpha band is concentrated around the

stimulation frequency.

e Alpha band centroid
To evaluate potential entrainment effects induced by listening to the au-
dio track containing the BB, the temporal evolution of the alpha band
centroid, was analyzed. This value represents the spectral “center of
gravity” of the alpha band power distribution within each signal epoch.
This metric, defined by the following equation, effectively reflects the
time-varying behavior of the Individual Alpha Frequency:

XS PSD()
centroid Zf PSD(f)

(23)

e Alpha asymmetry index
Some scientific studies based on EEG signal analysis provide evidence
that the left anterior region of the brain is involved in emotions that
drive us toward approach behaviors, such as enthusiasm, desire, or cu-
riosity, whereas the right anterior region is associated with withdrawal-
related emotions like sadness and fear. The EEG Asymmetry Index
is a robust metric used to evaluate stress, as it reflects the emotional
activation of a person. Numerous studies have reliably used it to dis-
tinguish different psychological states, as it varies depending on the

emotion experienced.
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Specifically, the Alpha Asymmetry Index (AAI) is defined as the dif-
ference between the natural logarithm of the alpha power in the right
frontal lobe (Pyiphq,right)and the left frontal lobe (Pyphaieft), as shown in

the equation:

P, ri

AAT=1n <_) (24)
P, alpha,left

The most commonly used EEG electrodes positions for assessing the

alpha asymmetry are F3 and F4, as they are located over the dorsolat-

eral prefrontal cortex, a brain area directly involved in stress regulation

[54].

e Hjorth Parameters
The Hjorth parameters are widely used to describe the temporal vari-
ations of the statistical properties of EEG signal. In addition to pro-
viding an overview of time-domain characteristics, they also have an
equivalent in the frequency domain as they associated to the statis-
tical moments of the signal’s power spectrum. These parameters can
be arbitrarily calculated in either the time or frequency domain, this
possibility is ensured by the Paserval’s Identity, which states that the
total power in the frequency domain is equal to the average power in

the time domain.
The Hjorth parameters are as follows:

— Activity: it provides a measure of the squared standard deviation
of the signal’s amplitude, often is referred to as the variance or
mean power. Activity is strictly related to the zero order statistical

moment of the signal’s power spectrum:

N
Activity = % Z(XZ- - X)? (25)

=1
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Where:
x N is the total number of signal samples,
x X is the value of i-th signal sample,
* X is the mean value of the signal.

— Mobility: it is defined as the ratio between the standard deviation
of the signal’s first derivative and the standard deviation of the
signal itself. This parameter is independent of the signal’s ampli-
tude and depends only on the shape of the waveform. Mobility
provides information about the rate of variation of the EEG signal
and is associated with the second order statistical moment of its

power spectrum:

5 (X — Xi)?
% Zij\il(Xi - X)2

Mobility = (26)

— Complexity: it is defined as the ratio between the mobility of the
signal’s first derivative (X) and the mobility of the signal itself
(X). Complexity gives insight into the sharpness of the wave-
form and quantifies the degree of deviation from a pure sine wave,
which has a complexity value of 1. This parameter corresponds
to the fourth order statistical moment of the EEG signal’s power
spectrum in the frequency domain:

Mobility(X)

Mobility(X) (27)

Complexity =

Together, these three parameters characterize the EEG signal in terms

of amplitude, temporal dynamics, and morphological complexity [55].
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e Phase Locking Value (PLV)
The Phase Locking Value (PLV) is one of the most commonly used
metrics to measure the level of phase synchronization between two
narrow-band signals. If the two signals are completely independent,
the PLV will be zero; conversely, if the signals are highly correlated,
the PLV will approach one.

=

PLV (t

Z 5 (01(t:)—

(28)

Where 6,(t;) and 65(t;)) are the instantaneous phase value of both

signals at time instant ¢;.

In this study, PLV is used as a functional connectivity metric to eval-
uate potential variations in synchronization between different pairs of
electrodes. When assessing synchronization across channels, it’s cru-
cial that the recorded signals don’t share a common reference. The
presence of a shared reference between channels can lead to artificial

synchronization, thus overestimating the PLV [56].

The metrics described so far belong to traditional EEG analysis technique
commonly used to characterize the signal. In the following paragraphs com-
plexity metrics will be introduced, which allow to investigate the dynamics

hidden in a complex signal like the EEG recorded at the cortical level.

The complexity metrics reflect on two important aspects of a dynamic sys-
tem, its predictability and its regularity. The predictability of a dynamic
system refers to the temporal evolution of the system’s states, while the reg-
ularity describes the overall amount of pattern repetition within the system’s
trajectory. Although both concepts refer to different aspects, they are strictly

correlated in practice [57].

Specifically, the metrics used to estimate EEG signal complexity in terms
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of predictability, are represented by Higuchi Fractal Dimension (HFD) and
by Katz Fractal Dimension (KFD), while regularity is estimated by Spectral
Entropy (SE).

e Higuchi Fractal Dimension (HFD)
The method proposed by Higuchi is one of the most diffused and ef-
fective techniques for estimating the fractal dimension of a time series,
such as an EEG signal. The analysis steps for computing Fractal Di-

mension (FD) using Higuchi’s method are as follows:

Let’s start considering a time series composed of a finite number of

samples V:

(X(1), X(2), X(3),..., X(N)) (29)

This series is decomposed into a set of subsequences X", each repre-

senting a under-sampling of the original time series:

X,;”:{X(m),X(m+k),X(m+2k),...,X(m+ {N_mJ -k)}

conm=12,....k

Here m and k represent the starting offset and the sampling interval,

respectively.
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Each subsequence X} is associated with a length measure, computed
as the sum of absolute differences between consecutive points of the
under-sampled series normalized by a scale factor to allow comparison

across different scales:

N -1

Ln(k)=| Y |X(m+ik)— X (m+ (i —1)k)|

i=1

(31)

The term in the parentheses represents the normalization factor, which
ensures that signal lengths computed at different scales are comparable.
For each sampling interval k, it is obtained m values of signal length.
The average of these values is defined as the curve length for interval

k, denoted as L, (k) [58].

The fractal dimension of the original time series is then estimated as
the slope of the line obtained by performing a linear regression in a

log-log plot of L(k) versus k:
log(L(k))
log (k)

Where 1 < HFD < 2. In conclusion, the HDF provides a multi-

scale analysis of the signal allowing to evaluate how the signal’s length

HFD = — (32)

changes as the observation scale increases.
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e Katz Fractal Dimension (KFD)
The KFD is a robust and computationally efficient method for quanti-
fying the complexity of a signal. The technique, introduced by Michael
J. Katz [59], interprets an arbitrary waveform as a geometric figure to

which a traditional fractal dimension can be assigned:

_ log(L)
log(d)

FD (33)
Where L represents the total length of the waveform, calculated as the

sum of the Euclidean distances between successive points:

N-1

L= dist(i,i+ 1) (34)
=1
withi=0,1,...,N

while d represents the planar extent of the curve. For a waveform,
which is an ordered set of points pairs with a natural starting point, d
is defined as the distance between the first point of the time series and

the farthest point from it:

d = max(dist(1,17)) (35)

The fractal characterization assumes that the dimension of a geometric
figure is independent of the scale at which is represented. Therefore,
normalization is required. In the case of a waveform, a scale factor a
is introduced, defined as the average distance between all points in the

time series. The KFD is finally computed as:

log(L/a)

KD = etd/a)
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e Spectral Entropy
Spectral entropy (SE) is a low computational cost metric that quanti-
fies the uncertainty of a signal in the frequency domain, based on the
concept of entropy introduced by Shannon [60]. The underlying idea
is that, starting from the signal’s power spectral density (PSD), it is
possible to define a probability distribution function (p(f)) as follows:

p(f) = PSDY)

=5, PSD(f) (37)

Once the probability distribution function is defined, the spectral en-

tropy can be computed as:

N

SE = - p(f;)logp(f;) (38)

=1

where p(f;) represents the probability associated with the frequency
component f;, and N is the total number of frequency bins considered

in the signal’s spectrum.

SE reaches high values when the signal has a broad and uniform power
distribution in the frequency domain, such as in the case of white or
colored noise. Conversely, SE takes on low values when the signal’s
power is concentrated around a specific frequency, as with sinusoidal

signal.
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4.4.3 K-means Clustering on Principal Components Space

In this section, the analysis method implemented to address the main exper-

imental question of this thesis work will be described:

“Can EEG signals show real changes in brain activity or physio-

logical state during or after listening to BB?”

Following a preliminary analysis of the extracted features, described in the

previous section, the following critical issues were identified:

e An univariate analysis of the signals recorded during the different phases
of the acquisition protocol, aimed at highlighting potential effects of

BB, turned out to be a laborious and inconclusive strategy.

e The response to BB is highly heterogeneous, meaning that not all sub-

jects respond to the stimulation in the same way.

To better interpret the characteristics of cortical activity and detect poten-
tial variations from the baseline condition during the administration of the
BB stimulus, a multivariate analysis technique was adopted, specifically the
Principal Component Analysis (PCA). Subsequently, a clustering algorithm
was implemented between baseline and stimulation or post stimulation con-

ditions.

All steps involved in implementing and optimizing a fully automated algo-
rithm for assessing the discrimination between different experimental con-
ditions will be described below, the flowchart representing all the steps is

shown in Figure 28.
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Figure 28: Analysis pipeline flowchart.

The information characterizing cortical activity during each phase of each

acquisition session was organized into a data structure. Specifically, for each

subject, three matrices were created, one for each acquisition session in the

experimental protocol.

Each matrix has a bidimensional structure of size N x M, where N is the

total number of observations across all three conditions (baseline, stimula-

tion, post-stimulation). Each observation correspond to a 15 second EEG

segment. The number of columns M is determined by the product of the

number of acquisition channels and the number of extracted features de-

scribing the cortical activity.
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At this point, to better understand and manage the set of features that
represent the cortical response to the stimulation, PCA was applied. In this

context, PCA offers two main advantages:

e [t reduces dimensionality of the data, enabling better management of
the multivariate dataset by identifying an orthonormal basis onto which
data can be projected. Each observation is represented along the prin-

cipal components as a linear combination of the original variables.

e Projecting the observations onto the fist two or three principal compo-
nents allows to represents the original dataset in a lower-dimensional
space, where a visual assessment of potential separation between exper-
imental conditions is possible. This offers a useful preliminary analysis
to whether the BB stimulation induces noticeable changes in cortical

activity compared to the baseline.

In this study, the comparison between experimental conditions is carried out

on two levels:

1. At the level of individual acquisition, by considering each recording

session separately for each subject.

2. At the level of the entire subject, by integrating information on cortical

activity across different acquisition sessions.

Specifically, since the aim is to understand how cortical activity changes
during and after the administration of BB, comparisons were performed in
pairs, considering separately the baseline-stimulation and the baseline-post

stimulation conditions.

The PCA technique was applied separately to each subject. This means that
the vector space used to project the different EEG signal observations was
generated from a matrix obtained by concatenating, along the row dimension,

the matrices corresponding to the three acquisitions for the same subject.
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Creating a global vector space that represents the entire subject’s dynamics
allows for the evaluation of the temporal evolution of the brain’s response
to BB, making the comparison between acquisitions more robust. Applying
PCA independently to each acquisition would be equivalent to representing
the temporal variation of an event using a different reference system at each

sampling point.

Conversely, projecting the observations from the different phases of the acqui-
sition protocol, across all three acquisition sessions for a given subject, into
a reference space enables the evaluation of the reproducibility of the cor-
tical response to the stimulation. The simultaneous comparison across the
three acquisitions makes it possible to determine whether consistent changes
occurred relative to the baseline condition, before listening to BB, and to
verify whether the stimulation causes the EEG signal observations tend to

align along coherent directions in the principal components space.

Before applying PCA, each matrix underwent a standardization process.
Specifically, the standardization was performed separately for each acqui-
sition, meaning that each value in the original matrix was transformed as
follows [61]:

by = A1 (39)

Where:
e 1;; is the value of variable j for observation 7 in a given acquisition;

e 4  is the mean of variable j computed across all observations in that

acquisition;

e 0; is the standard deviation of variable j for the same set of observa-

tions.
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This standardization ensures that all features associated with a single acqui-
sition are represented on a comparable scale and exhibit a distribution with
zero mean and unit standard deviation. This step is essential, as it prevents

differences in scale across variables from affecting the PCA projection.

Following the projection into the PCA space, to quantitatively assess the
degree of separation between the experimental conditions pairs, both at the
level of individual acquisitions and for the entire subject, the K-means clus-

tering algorithm was applied [62].

Since the aim was to determine whether the observations from the stimula-
tion and post stimulation conditions form distinct clusters compared to the
baseline, the K-means algorithm was initialized with K = 2, corresponding
to the number of conditions being compared. The initial centroids were set
based on the mean characteristics of the two distributions to facilitate the

convergence toward a solution, which was visually observed in the PC space.

Once clustering was completed, a supervised evaluation of the results was
conducted by comparing the cluster assignments returned by k-means with
the true condition labels of the observations. The separation performance

was measured using accuracy, defined as:

N
1
Accuracy = = 3" 8(7i. 1) (0
=1

Where:
e N is the total number of observations;
e 7; is the predicted label from clustering for observation 7;
e y; is the true label for observation ¢;

e 0(¥;,y;) is the Kronocker delta function, equal to 1 if the labels match

and 0 otherwise.
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The analysis method described so far, based on uniform data processing for
all subjects, provided a general overview of the potential to separate the
different experimental conditions. However, since the objective is to evalu-
ate changes in cortical activity relative to each subject’s own baseline, an
optimization pipeline is needed. This pipeline aimed to maximize the sepa-
ration between the different phases of the experiment while considering only
intra-subject variability. Given that this form of sensory stimulation, percep-
tion may play a key role. This implies that the response to the stimulation
could be highly subjective, shaped by the individual’s interpretation. Con-
sequently, brain activity may not change uniformly across subjects, making

a personalized approach necessary to adapt the analysis to each individual.

The optimization pipeline was implemented with the goal of enhancing clus-

tering performance and is structured as follows:
e Feature selection using Fisher Score

The way in which the cerebral activity responds to BB stimulation can
vary significantly between subjects. Consequently, not all the features
extracted from the EEG signal are equally informative for each individ-
ual. Furthermore, the response to stimulation may change over time.

Therefore, a feature selection step based on Fisher Score was applied

[63]:

(,ul - ,u2>2 (41)

Fisher Score = 5 5
o]+ o3

where 1 and ps represent the mean values of the i-the feature distri-
butions for the two classes being compared, and o, and o, are their

respective standard deviations.

The Fisher score is a robust metric that provides insight into a feature’s

ability to discriminate between classes. It was applied to the matrices
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containing the features of the two experimental conditions under com-
parison, separately for each acquisition. A threshold of 0.8 was set to
select only the most informative features; specifically, features with a
Fisher Score higher than 0.8.

As a result, a set of features was selected for each of the three acqui-
sitions for every subject. However, as previously mentioned, to ensure
robust comparison across acquisitions, a unified PC space was needed.
Therefore, for each subject, PCA was performed on a unified set of
features obtained by merging those selected by the Fisher Score across

all three acquisitions, as shown in Figure 30.
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Figure 29: Projection of data on PC space relative to a single subject.

This approach has two main advantages: it enables the analysis to
be performed on a lower-dimensional but highly informative dataset,
and it ensures that each acquisition is analyzed in a feature space that

includes the most relevant characteristics for that specific recording.
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e Principal Component Selection using Random Forest

After projecting the observations into the principal component space,
a Random Forest algorithm was employed to identify the most infor-
mative principal components, those along which class separation was

more pronounced [64].

This step was necessary because, although PCA orders the components
by explained variance, high variance doesn’t necessarily imply high

discriminative power.

Random Forest assigns an importance score to each principal compo-
nent based on its ability to distinguish between classes. Components

ranked in the top 50% of importance were selected for further analysis.
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Figure 30: Projection of data on PC space after principal components selec-

tion.
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e Outlier removal with Mahalanobis distance

Once the analysis space was optimized for each subject, the next step
was to identify observations that deviated significantly from the av-
erage behavior of their respective class. To detect such outliers, the
Mahalanobis distance was used, which is a widely adopted method for
identifying anomalies in multivariate spaces, such as the one created
through PCA.

Mahalanobis distance was calculated between each observation and the

centroid of its class distribution [65]:

Da(asspic) = 1/ (@ — ne)"Se @, — e (42)

Where:

— x; € RP is the i-th observation from class C' in a P-dimensional
space,
— po is the centroid of class C,

— Y is the covariance matrix of class C.

For each condition a vector of Mahalanobis distances was computed.
Only the between the observations falling within the 90th percentile
of this distribution were retained, effectively excluding those that were

too far from the class’s average behavior.
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Figure 31: Projection of data on PC space with the outlier highlighted.

e Laplacian Kernel Application

An additional improvement in the separation between different exper-
imental conditions was obtained by applying a non linear transform
to the observations projected in the PC space, using a kernel function

[66]. Specifically, a Laplacian Kernel was used, defined as:

K(zi,2) = exp (——”Zi — Zﬂ'”Ll) (43)

Where:

— ||z — %]/, represents the L; norm calculated between all the pos-

sible pairs of observations z; and z; in the PC space,
— o is the scale parameter that controls the width of the kernel.

The Laplacian Kernel, once the value of ¢ is set, acts on the basis
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of the ||z; — zj||, distance between observations: it tends to bring

closer those points that are already near to each other and amplify

the distance between those that are further apart. This non linearity

introduced by the kernel allows for increased separability between the

different experimental conditions, as shown in Figure 32.
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Figure 32: Laplacian kernel applied to the projection of data on the PC

space.

These transformations generate a new feature space, optimized for each

subject, in which the k-means clustering algorithm is applied to quan-

tify the separation between stimulation and post-stimulation conditions

relative to the baseline, as shown in Figure 33.
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Figure 33: K-means clustering algorithm output.

To demonstrate that the observed separation isn’t due to randomness, but
rather likely reflects a cortical response to the BB stimulation, a non para-
metric permutation test was performed to assess the statistical significance

of the clustering result.

This test involves randomizing the class labels that are associated with each
observation /N times, while preserving the original data structure, that is the

location of each observation in the analysis space.
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For each permutation, a new clustering accuracy value is computed using
the shuffled labels. As with any statistical hypothesis test, the significance
is expressed by the p-value. Specifically, for a permutation test the p-value

is defined as:

p= 3" 1w > w0) (44)

Where:
e 1z is the clustering accuracy obtained from the n-th permutation,
e 1 is the original clustering accuracy,

e /() is the indicator function, equal to 1 if the condition is true, other-

wise 0.

The resolution of the estimated p-value is 1/N, meaning that the larger the
number of permutations, the better the precision of the p-value estimated.

In this study, N = 10.000 permutations were performed.

The Null Hypothesis (Hy) assumes that the labels are interchangeable, im-
plying that there is no actual effect related to the BB stimulation.

If the test yields a low p-value (p < 0.05), the null hypothesis is rejected,
supporting the conclusion that the observed class separation reflects a real

and systematic effect induced by the stimulation [67].

4.4.4 Alpha Rhythm Analysis

One of the goals of this thesis is to investigate whether the frequency band
of the EEG signal affected by stimulation undergoes any modulation that
can be attributed to the action of BB. This section describes the analysis

pipeline developed for the characterization of the alpha rhythm.
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The alpha rhythm, even in the absence of external stimulation, is character-
ized by periodic amplitude fluctuations, commonly described as ‘waxing and
waning’ or ‘beats’ [68] [69].

Therefore, by observing the oscillations of the alpha rhythm, one can notice
that they appear as a succession of ‘spindles’, where the amplitude gradually
increases, reaches a peak and then decreases. It has been hypothesized that
variations in the characteristics of the alpha spindles reflect changes in the
underlying neural dynamics; thus, to verify whether BB interfere with the
spontaneous modulation of the alpha rhythm amplitude, alpha spindles were
extracted and characterized both morphologically and statistically. Finally,
a non linear analysis was conducted to highlight possible variations in the dy-
namics of amplitude fluctuations, with the specific aim of providing insights

into changes in the temporal structure of the alpha rhythm.

To extract detailed information on how the type of stimulation interacts
with the subject’s natural alpha rhythm, an automated procedure for alpha

spindle extraction was implemented.

The signal z(t), representing the cleaned EEG trace, was filtered using a 4th
order zero lag anti causal Butterworth bandpass filter between 8 and 12 Hz,
obtaining a narrow band process x®(t), representing the alpha activity. The

real signal z(t) was then converted to a complex analytic signal:

2(t) = 2°(t) + ji(t) (45)

where 2%(t) represents the Hilbert transform of the signal x*(t):

s t—T

+00 (T
() = L. (V.P) / ) 4 (46)

[e.e]

Where V.P. is Cauchy principal value.
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From the complex signal, the envelope of the alpha rhythm was obtained:

env(t) = [z(1)] = [2(t) + 52 (t)] (47)

A mobile average filter with 200 ms window was then applied to the envelope
to retain the slower components of amplitude modulation while attenuating
high frequency fluctuations. Figure 34 shows a segment of the alpha rhythm

with its envelope superimposed.
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Figure 34: Alpha Rhythm’s envelope, in red, superimposed on the filtered
signal, in blue.

Once the envelope of the alpha rhythm amplitude was obtained, the pipeline

for alpha spindles extraction was carried out.

An alpha spindles is defined as a portion of the alpha rhythm characterized
by ‘waxing and waning’ amplitude fluctuations, where the signal activity is
above average. The algorithm identifies the alpha spindles based on these

characteristics.

The first step involved calculating the first derivative of the envelope to detect
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local maxima (peaks) and minima (valleys) by analyzing the zero crossings.

d
If —

d
o lenv(t —1)] >0 A E[env(t)] < 0= tis apeak

d
—[env(t)] > 0 =t is a valley

d
If —Jenv(t—1)] <O0A p

dt
To consider the detected peaks and valleys as valid, an amplitude thresh-
old was applied, specifically a moving threshold ,corresponding to the mean
value of the alpha rhythm envelope within a 20 second window. Peaks were
accepted if their amplitude was higher than 7(¢), While valleys were consid-
ered if their amplitude was below k - 7(t) with k = X2, ensuring a sufficient
separation between local maxima and minima. Flgure 35 shows the mobile

threshold as well as the local peaks and valleys.
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Figure 35: Local peaks and valleys of the envelope with the mobile threshold
for alpha spindles identification.
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At this point, each alpha spindle was extracted by considering the portions of
the alpha rhythm between two consecutive valid valleys, containing at least
one valid peak. This ensures that the extracted time series exhibit the typical
‘waxing and waning’ morphology of the alpha spindles. Figure 36 shows the
extracted alpha spindles in a segment of the Alpha Rhythm.
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Figure 36: Alpha spindles extracted from a segment of the Alpha rhythm.

Once the alpha spindles were extracted,the next step was their morphological
characterization. Alpha spindles were described using the following parame-

ters:

e Duration: the time interval, expressed in seconds, between two con-

secutive valleys that define the start and end of the event:

Alpha Spindle Duration = tena; — tstart.i (48)

Where:
— tlstart,i 1S the starting instant of spindles ¢,

— tena,i 1s the ending instant of spindles 7,
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e Amplitude: the mean value of the amplitude envelope of the alpha

rhythm within each oscillatory event:

lend,i
: 1 ’
Amplitude = N, E envn| (49)

n=tstart,
Where:
— enw[n] represents the amplitude envelope of the alpha rhythm
— N; = tend,i — tstart; + 1, is the number of samples in spindle s.

e Incidence rate: the occurence frequency of oscillatory events, ex-
pressed as the total number of detected alpha spindles relative to the

total signal duration in seconds:

N
Incidence rate = T (50)

Where:
— N is the total number of detected spindles

— T is the total duration of the recorded alpha rhythm, expressed

in seconds.

Since the alpha rhythm manifests as a succession of transient oscillatory
events, variations in the average morphological features of the alpha spindles
may influence the behavior of the EEG oscillations in the alpha band. In par-
ticular, an increase in any of these parameters would reflect a global increase
alpha rhythm’s power. From a physiological perspective, each parameter

highlights a specific aspect of the underlying neuronal dynamics [70].

In addition to the morphological characterization, the alpha spindles were
also statistically described through the Alpha Control Ratio (ACR):
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e Alpha Control Ratio
The Alpha Control Ratio (ACR) is defined as the ratio between the
average spindle duration and the standard deviation of the spindle du-

rations:

%Zi]\ildi :i_

Alpha Control Ratio = =
7 o
\/Ni—l Zi:l(di —d)? d

(51)

Where:
— d; is the duration of spindle i,
— d is the mean spindle duration,
— 04 is the standard deviation of the spindle durations.

The alpha control ratio, as defined, is a indicator of the alpha rhythm
variability. Higher ACR values indicate a more regular alpha rhythm,
associated with a more homogeneous distribution of spindles durations.
Conversely, lower values indicate a greater variability in the generation

of oscillatory events [71].

Following the same methodology applied to the full EEG signal, a complexity
analysis was also conducted on the amplitude envelope of the alpha rhythm

x%(t) using the ‘Detrend Fluctuation Analysis’.

e Detrend Fluctuation Analysis (DFA)
The DFA method, first introduced by Peng and all [72], quantifies in-
trinsic long- range temporal correlations within a time series, providing
valuable information about the complex dynamics of amplitude fluctu-

ations in the alpha rhythm.
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The analysis steps are the following:

1. From the amplitude envelope of the alpha rhythm, the integrated
signal Y (t) is computed:

Y(t)=> env(t) (52)

2. The integrated time series is divided into non overlapping seg-
ments of length 7 window, where the values are logarithmically
spaced. The 7 values space between 200 ms (the minimum dura-

tion of an alpha burst) and half the total signal length.

3. The local trend is subtracted from the integrated signal to obtain

the detrended signal series €,(7):

en(T) =Y (1) =Y, (7) (53)

4. The mean squared fluctuation F?(7,v) of each segment is com-

puted:

F(r) = Ni S F2(r0) (54)

Where N is the number of elements in the segment v.

5. To obtain a representative value of the alpha rhythm in the 7

scale, F%(7,v) is averaged over all segments:

Fi(rv) = % Y ey (55)
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Where N, is the number of segments of the alpha rhythm at the
7 scale. Typically the relationship between F(7) and 7 is linear

on a double logarithmic scale and can be described by:

log F(1) =a-logT+C (56)

Where the angular coefficient « is the scaling exponent of the
original series. Scaling exponents in the range 0.5 — 1 indicate
the presence of persistent long range correlations. A signal with
no correlations, such as white noise, has a scaling exponent of 0.5
[73].

4.4.5 ECG Analysis

A dedicated algorithm computed by the research group, operating indepen-
dently of the Polar band, enables the visualization and storage of relevant
signals into Excel tables. In particular, the first column contains the times-
tamp in milliseconds, while the following columns record either the Heart
Rate, the accelerations along the three axes of the reference system used by

the heart rate monitor, or the ECG signal.

The Matlab software enables, through a simple command, the loading of
these Excel files, recreating a data structure identical to that of the original

.csv file.

Initially, the acquisition algorithm didn’t specify the sampling frequency.
However, using the timestamp information, it was observed that the sampling
rate was not constant, fluctuating around 130 Hz. Therefore, all signals were
resampled at 125 Hz to obtain evenly spaced samples both in time and among
different subjects. The analysis of the chest-strap output focused especially
on the ECG signal, as this was only a secondary aspect of the thesis, whose

main focus was on the effects of BB stimulation on EEG signals.
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Once the ECG signals were loaded and resampled, they were realigned with
the respective EEG signals to ensure that the analyzed time intervals matched.
Specifically, the first timestamp of the .easy file was taken as reference, with
a one-second delay applied, considering the EEG sampled at 500 Hz as it was
preferable to start from the first complete second. The duration of each phase
was then added to the initial timestamp, minus two seconds, to compensate
for the initial delay and to ensure that only complete seconds were consid-
ered, thus defining the temporal boundaries of interest. Once the temporal
limits corresponding to the different acquisition phases were established, the
ECG signals were divided into three parts according to the phases and saved

into a data structure.

The realigned signals were then processed by Pan Thompkins algorithm,
which extracted the QRS complexes from the ECG signals, allowing for the
calculation of features based on these intervals by obtaining the positions

and the amplitude values of the R waves.

Specifically, the algorithm consists of a series of three digital filters: the first
is a bandpass with integer coefficients composed of cascaded low pass, with
a cutoff frequency of 15 Hz, and high pass, with a cutoff frequency of 5 Hz,
filters to reject noise the second is a derivative filter and the third involves
squaring the signal’s amplitude followed by passing it through a moving
window integrator. Finally, adaptive thresholds and temporal control of the
interval between peaks are applied to accurately detect the positions of the

QRS complexes, every step is shown in Figure 37 [74].
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Figure 37: Effects of each Pan Thompkins algorithm step on the ECG data.

With the position of the R peaks identified, the main feature extracted based

on the R-R intervals was as follows:

e Heart Rate

The Heart Rate is calculated from the time interval between two con-

secutive R peaks in the ECG signal, known as the R — R interval. This

interval is expressed in seconds and represents the time between two

successive heartbeats.

expressed in beats per minute (bpm), is

60

HR = —
R=2r

The formula used to calculate the heart rate,

(57)
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Where HR is the heart rate and RR is the average time interval com-
puted over R — R intervals extracted from the ECG signal. This ap-
proach provides immediate and precise estimate of heart rate based on
the detected R peaks [75].
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5 Results and Discussion

In this section, the results obtained from the EEG and ECG signals recorded

during the different acquisitions of the experimental protocol are presented.

The results, which will be the focus of the following sections, are organized
in a way that provides systematic answers to the experimental questions

introduced at the beginning of this work.

The discussion will first address the results related to the clustering task,
and then move on to analyzing the impact of the stimulation on brain oscil-
latory mechanisms, with particular attention to the modulation of the alpha
rhythm.

After completing the analysis concerning the effects of continuous stimulation
through BB on cerebral activity, attention will shift onto the analysis of the

results related to the activation of the autonomic nervous system.

5.1 Clustering Output

The implementation of a clustering algorithm operating in a multivariate
space, generated following the principal components analysis, represents the

strategy adopted to address one of the central questions of this study.

Clustering was used with the aim of verifying whether continuous stimulation
through BB is capable of influencing cortical activity to such an extent that
observations from the stimulation or post stimulation phases were clearly

distinguishable from those associated with the baseline condition.

Figures 38 and 39 report the accuracy percentages achieved by the k-means
clustering algorithm in correctly classifying observations from the experimen-
tal conditions being compare. Specifically, Figure 38 refers to the comparison
between the stimulation and baseline phases, while Figure 39 presents the

results of the comparison between post stimulation baseline phases.
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Clustering accuracy during the training period
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Figure 38: Stimulation accuracy across the acquisition sessions.

For each of the three acquisition sessions planned in the experimental proto-
col, a boxplot is shown representing the distribution of accuracy values for
each participant. Markers corresponding to the same subject are connected
across the different acquisitions, providing not only information related to
individual sessions but also an overview of the evolution of each participant’s

response to the stimulation.

Observing Figure 38, which shows the comparison between the stimulation
and baseline phases, it can be seen that the accuracy values, indicating how
well each phase is correctly classified, are very high across all sessions, with
a mean accuracy of 83,63% for the first acquisition, 81,68% for the second
and 85,63% in the third and final one.

However, a clear inter subject variability is evident in all three acquisition
sessions: for some subjects, the distinction between stimulation and rest

conditions is very clear, with accuracy values close to 100% while for others
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the separation is much less pronounced, with significantly lower accuracy

values.

In the second acquisition, recorded at the end of the training period, and
in the third one, the distribution of accuracy values appears more dispersed
compared to the first acquisition, where participants experienced the stimu-

lation for the first time.

Between the second and third acquisition sessions, an average of four days
passed during which participants were asked to suspend daily stimulation

sessions.

What emerges from comparing the clustering performances in discriminating
between the two experimental phases is that, after the interruption of the
training period, there is an improvement or no change in accuracy, which
except for one subject remains at least unchanged compared to that observed

during the second acquisition.
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Figure 39: Post-Stimulation accuracy across the acquisition sessions.
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During each data acquisition session, in addition to recording the subject’s
response while listening to the audio track containing BB, an additional seven
minutes of EEG signal were recorded, corresponding to the post stimulation

phase.

The goal of acquiring EEG recordings after the stimulation phase is to un-
derstand whether the effect induced by BB is transient, limited solely to the

exposure period, or whether the evoked mental state persists over time.

In this regard, similarly to what was described for the stimulation phase,
Figure 39 shows the distributions of accuracy values with which the k-means
algorithm correctly separates the post-stimulation and baseline observations

across all three different acquisition sessions.

What emerges from the figure is that, also in this case and across all three
sessions, the clustering algorithm is able to distinguish the two phases with

high precision.

Furthermore, when analyzing the temporal trend of the clustering algorithm’s
performance, it is observed that accuracy values remain essentially stable
between the first and second acquisition sessions. Moreover, in most cases,
the precision with which the post stimulation condition is separated from
the resting condition exceeds 90%. The only notable exception is subject 11,
for whom a sharp decrease in model accuracy is recorded between the two
sessions. During the third acquisition, although the overall accuracy remains

high a greater dispersion in the distribution of accuracy values is observed.

As mentioned in the previous sections, the comparison between the phases
of the experimental protocol in this study was carried out on two levels.
The first level focused on analyzing each acquisition session individually,
examining the separability between phases the observations within a single
session, which results have been just presented. The second level of analysis

aimed to provide a broader evaluation of the capability of BB to influence
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brain activity by altering cortical dynamics relative to the baseline condition.

To obtain a more comprehensive and robust understanding of the effects of

BB on neural activity, all observations from the experimental conditions un-

der comparison were projected into a shared multivariate space that included

data from all three acquisition sessions.

Figure 40 shows the distributions of accuracy value with which the k-means

clustering algorithm was able to separate the experimental conditions. The

boxplot on the left corresponds to the comparison between the stimulation

and the baseline phase, while the one on the right shows the results for the

comparison between the post stimulation phase and the baseline phase.
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Figure 40: Accuracy of baseline vs. stimulation and baseline vs. post stim-
ulation for the entire subject, comprehending all three sessions.

The analysis of the results reveals a significant difference in the clustering

algorithm’s ability to distinguish both the stimulation and post stimulation
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conditions from the baseline. Specifically, the average accuracy obtained
when comparing the stimulation condition to the baseline is 74,40%, while the
comparison between the post stimulation condition and the baseline yields a

noticeable higher average accuracy of 85,09%.

This result, supported from the observation that at the single acquisition level
analysis the clustering algorithm show a superior capacity to separate the
observations relative to post stimulation respect to stimulation, suggesting
that the induced effect by BB, not only persists in time but can consolidate

after the exposition period to the stimulus.

One possible explanation for this result may lie in the cognitive processes
involved during the stimulation phase. Due to the sensory nature of the
stimulus, participants may perceive the binaural beats differently while lis-
tening to the audio track. This perception introduces variability in the actual
effect of the stimulation, influenced by factors as attention, subjective inter-
pretation of the sound, or the degree of engagement. Conversely, during the
post stimulation phase, the perceptual component is no longer present, and
what is observed may be a cleaner expression of the effect of BB, no longer

influenced by perceptual processes activated during listening.

Despite the observed differences between the stimulation-baseline and post
stimulation-baseline comparisons, the algorithm’s ability to reliably separate
the different experimental conditions, even when considering a much larger
dataset spanning temporally distant acquisition sessions, suggests that the
effects of BB on neural activity modulation are robust and sufficiently sta-
ble to emerge beyond individual sessions. Furthermore, the fact that such
changes are evident even in aggregate analysis, which is inherently more com-
plex and subject to increased variability, indicates that the effects of BB are
strong enough to ensure good separability between conditions even in the

presence of noise introduced by inter subject and temporal variability.
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To support the validity of the results discussed so far, the outcomes of the
permutation test are presented below. This test was conducted to evaluate
the statistical significance of the separation between the different experimen-
tal conditions, both at the level of individual acquisitions and at the entire

subject.

Figures 41 and 42 specifically illustrate the results of the statistical test
applied to single acquisition session. In particular, Figure 41 refers to the
stimulation condition compared to baseline, while Figure 42 refers to the post

stimulation condition compared to baseline.
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Figure 41: Permutation accuracies for baseline vs stimulation across all the
acquisition and subjects.
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Mean Permutation Accuracy & Real Accuracy per Acquisition

100 — (o] ® (¢] o o

95~ © ) ) © o (] o)

85 — o

75—

© Original Accuracy (p < 0.05)
® Original Accuracy (p > 0.05)
70 - Mean Permuted Accuracy

65 —

55—

Figure 42: Permutation accuracies for baseline vs post stimulation across all
the acquisition and subjects.

In each figure, every barplot represents the distribution of accuracy values
obtained through the random permutation of the class labels of between the
two conditions being compared. The original accuracy value, calculated with-
out permuting the labels, and indicating how well the clustering algorithm
correctly assigns observations to their actual class, is marked with a green
dot if the corresponding p-value is less than 0.05, indicating statistically sig-
nificant separation. If the p-value exceeds the significance level, the original

accuracy value is shown in red.
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In a similar manner to the analysis conducted for individual acquisitions,
Figures 43 and 44 report the results of the statistical test performed on the
clustering outcome obtained from aggregating observations across all three
acquisition sessions. Specifically, Figure 43 corresponds to the comparison
between stimulation and baseline, while Figure 44 shows the results for the

comparison between post stimulation and baseline.
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Figure 43: Permutation accuracies for baseline vs stimulation of the entire
subjects.
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Mean Permutation Accuracy & Real Accuracy per Subject

100 — © Original Accuracy (p < 0.05)
® Original Accuracy (p > 0.05)
o (] Mean Permuted Accuracy
95 —
90 — ° (o)
85— o
[ ]
[0}
80 — (0] [e) [o)
[
75—
70 —
65 —
60 — ——
) m U U mﬂm
50
N 42 S > H © A o 3 Q N
N O N Y Y Y NS Y ¥ N N
% % %° > > > 24 4 > & P

Figure 44: Permutation accuracies for baseline vs post stimulation of the
entire subjects.

The statistical test results show that, for the single acquisition analysis, the
separation between stimulation and baseline is statistically significant in 29
out of 33 cases. Regarding the post stimulation vs baseline comparison,
statistical significance is confirmed for all acquisitions except for the third
session of subject 9 and the second session of subject 11. Notably, the few
cases where statistical significance isn’t reached correspond to acquisitions

with low clustering performance in classifying the observations correctly.

When analyzing data at the subject level, statistical significance is consis-
tently achieved when comparing the post stimulation condition to baseline.
In contrast, for the stimulation condition, significance isn’t reached in two

subjects, being observed in 9 out of 11 cases.

The results suggest that the observed separability between the stimulation

and post stimulation conditions, compared to the baseline, isn’t due to ran-
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dom phenomena. On the contrary, it can be confidently stated that BB have
a consistent and measurable impact on cortical activity, sufficient to enable
a clear distinction between experimental phases. This effect appears to be

particularly evident and robust during the post stimulation condition.

5.2 Alpha Rhythm Modulation

In this section the results of the analysis aimed at understanding how BB
stimulation influences the spontaneous modulation of the alpha rhythm are

presented and discussed.

To verify whether the administration of BB induces a significant change
in the dynamics of the alpha rhythm, a statistical analysis was performed
on both the morphological parameters used to characterize the extracted
alpha spindles and the temporal complex metrics related to signal amplitude
fluctuations. These metrics were compared across the different experimental

conditions.

Specifically, a statistical approach was chosen that would provide an over-
all view of how BB affected the alpha rhythm. This was done through a
repeated-measures analysis, incorporating within each experimental condi-

tion the values derived from all three acquisition sessions of each subject.

The analysis focused on pairwise comparisons between conditions: stimula-
tion vs baseline, post stimulation vs baseline and stimulation vs post stimu-
lation. The observations from the different experimental phases were treated
as paired data, as they originate from the same subjects and are therefore
intrinsically correlated. The use of repeated measures tests was necessary
to account for the dependent structure of the data, which includes within

subject correlations introduced by the experimental design.

The choice of statistical test for comparing the different experimental con-
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ditions was based on the assessment of normality of each distribution. To
this end, the Lillieforst test was applied separately to each distribution corre-
sponding to the baseline, stimulation and post stimulation conditions. When
comparing pairs of conditions, a paired t-test was used if both distributions
met the assumption of normality. If at least one of the distributions vio-
lated this assumption, a non parametric paired test, specifically the Wilcoxon

signed rank test, was used instead.

Finally, statistical significance was evaluated based on the p-value. Differ-
ences between conditions were considered significant at p < 0.05(x), highly

significant at p < 0.01(xx) and very highly significant at p < 0.001(x * ).

Figure 45, shown below, is divided into three panels, each representing a
different metric used to characterize the alpha rhythm over the frontal chan-
nels F3 in light blue and F4 in orange, across the three experimental phases:

baseline, stimulation post stimulation.
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Figure 45: Alpha rhythm parameters extracted on the frontal channels.
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In detail, a significant increase in the incident rate of alpha spindles was
observed during the stimulation phase compared to the baseline, in both
F3 and F4 channels. This increase tends to persist, particularly in channel
F3, even during the post stimulation phase. At the same time, a significant
reduction in the mean duration of alpha spindles was observed during and
after the stimulation in both channels. This suggests a decreased stability in
the spontaneous oscillatory processes generated by neuronal activity, favoring

shorter and more transient events.

Another noteworthy finding concerns the significant reduction in alpha band
power of the EEG signal during stimulation. While this reduction persists
into the post stimulation phase for channel F3, a return toward baseline

values is observed in channel F4.

No significant changes were found in the mean amplitude of the alpha spin-
dles, suggesting that the effect of the stimulation primarily acts on the fre-
quency of occurrence and duration of the oscillatory events associated with

the alpha rhythm, rather than their intensity.

Overall, the results suggest that the BB stimulation can significantly modu-
late the morphology of the spindles underlying the amplitude fluctuations of

the alpha rhythm, and alter its overall energetic content.

Furthermore, an important observation is that the modulation of the alpha
rhythm does not appear to be transient, but rather prolonged over time:
indeed, no statistically significant differences were found between the stimu-

lation and post stimulation conditions.

To provide a comprehensive overview of the morphological analysis of alpha
spindles, the graphs showing the variation of each metric used to characterize
the alpha spindles across the different experimental conditions are reported

in Appendix.
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The discussion on the modulation of the oscillatory activity of the alpha
rhythm concludes with the analysis of the temporal complexity of its ampli-

tude, performed using the Detrend Fluctuations Analysis.

The Figure 46 displays the trend of the DFA exponent « calculated from the
alpha rhythm envelope extracted from all eight EEG recording channels. It
reveals that, during the stimulation phase, the DFA exponent o undergoes
a significant reduction across all channels, suggesting a widespread modi-
fication, extending throughout the entire cortical region, of the temporal
organization of alpha fluctuations as a result of the stimulation. Interest-
ingly, and consistent with the morphological analysis, the most pronounced

changes are again observed in the F3 and F4 channels, located in the frontal

region.
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Figure 46: DFA parameter extracted on all the electrodes.

Moreover, the DFA exponent remains lower than baseline levels even during
the post stimulation phase, indicating a lasting effect that persists after the

acoustic stimulation ends. This is confirmed by the fact that, in almost all
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channels except for T8, the distribution of a values during post stimulation

differs significantly from those observed during baseline.

Similarly, the absence of statistically significant differences between the stim-
ulation and post stimulation phases in all channels suggests that these two

conditions tend to adopt a similar configuration.

Overall, the findings indicate that BB stimulation significantly alters the
temporal structure of spontaneous alpha oscillations in a widespread man-
ner across all examined brain regions, with effects that persist beyond the
stimulation period. Specifically, the reduction in the DFA exponent suggest
a reorganization of the fluctuation dynamics of the alpha rhythm, making

them more irregular and less predictable under the influence of stimulation.

5.3 Heart Rate Variability

The ECG signal analysis focused specifically on extracting the heart rate of
the subjects by identifying the R peaks using the Pan Thompkins algorithm.

This analysis was conducted alongside the EEG signal investigation to as-
sess whether other physiological signals were influenced by BB stimulation.
In particular, evaluating the heart rate can provide insight into potential
changes in the subject’s psychophysiological state. For instance, an increase
in heart rate may indicate a stress response, whereas a decrease may suggest

a relaxation effect.

The Heart Rate considered was the average value calculated over the entire
duration of each experimental phase. Figures 47, 48 and 49 display the

evolution of this parameter across the three phases of each acquisition.

In Figure 47, representing the first acquisition, all participants, except for
two, showed heart rates within a normal physiological range that remained
stable over time. The two exceptions started with elevated heart rates that

progressively decreased throughout the session. This may attributed to a
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HR value (bpm)
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Figure 47: Heart Rate across the phases of the first acquisition session.

white coat effect, where the initial stress related to the experimental context
gradually faded, not necessarily due to BB stimulation but rather to natural

adaption.

In Figure 48, referring to the second acquisition, all patients maintained
a stable heart rate throughout the session, with no significant fluctuations
attributable to BB stimulation.

Similarly, Figure 49, which presents data from the third acquisition, shows
a consistent heart rate trend across all subjects, again without meaningful

changes that could be linked to the stimulation.

In conclusion, based on the heart rate data across the different acquisitions,
there is no clear evidence of a physiological effect induced by binaural beats

stimulation.
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Mean HR value during the single phase of Acquisition 2
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Figure 48: Heart Rate across the phases of the second acquisition session.
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Figure 49: Heart Rate across the phases of the third acquisition session.
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6 Conclusion

In this chapter, a clear and structured overview of the effects induced by
binaural beat stimulation will be presented, based on the results obtained
through the adopted analysis protocol. First, precise answers will be pro-
vided to the initial research questions. This will be followed by a critical
interpretation of the findings, comparing them with the existing literature
on the topic and highlighting the specific contribution of this study within
the broader context of research on binaural beats. Finally, the limitations of
the study will be discussed, and possible directions for future developments
will be proposed, with the aim of advancing the understanding of the effects

of BB on cortical electrical activity.

6.1 Answer to Experimental Question

“Can FEG signals show real changes in brain activity or physio-

logical state during or after listening to BB?”

The results obtained from the analysis method described in the Materials and
Methods section show that both during and after the administration of BB,
cortical electrical activity exhibited behavior that differed from that recorded
during the baseline condition. Moreover, the ability to discriminate between
the different experimental conditions wasn’t limited to single-sessions analy-
ses; excellent results were also obtained when the analysis was extended to

include data from all three acquisition sessions.

The effectiveness of the multivariate approach in identifying a cerebral re-
sponse to the stimulation suggests that the observed variations in cortical
activity cannot be attributed to a single feature of the EEG signal. Instead,
they point to a more complex modulation mechanism that emerges from the

combination of multiple variables describing brain activity as a whole.
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The results also highlighted an interesting aspect: the high heterogeneity in
cortical responses to this type of stimulation. No consistent patterns emerged
in how EEG signal characteristics changed in response to BB. Furthermore,
there was no consistency either across subjects or across different sessions for
the same individual in terms of which features showed the most significant
variations between experimental conditions. The features contributing to the
cortical response to binaural beat stimulation varied and didn’t necessarily

originate from the same brain areas.

Another surprising finding is that the separation between experimental condi-
tions was even more pronounced when comparing the post stimulation phase
to the baseline, compared to the separation observed during the stimula-
tion phase itself. This result was confirmed both in analyses conducted on
individual acquisitions and those extended across the full dataset for each

subject.

This result suggests that during stimulation, cognitive processes related to
auditory processing are activated, with their intensity and nature varying
significantly among individuals. These differences are presumably linked to
how the BB are perceived and to the level of engagement the stimulus pro-
duces. Once the stimulation ends and the audio stops, the mechanisms tied
to active sound perception cease. Therefore, the post stimulation phase may

more directly reflect the effects of BB on each subject’s neural activity.

From a physiological perspective, the analysis of heart rate variability didn’t
reveal significant changes indicative of parasympathetic system activation
or deactivation. This could be attributed to the experimental setup: par-
ticipants were seated comfortably and relaxed, with eyes covered, in a low
stimulation environment. Under such conditions, it is plausible that the au-
tonomic nervous system was already in a relatively calm and stable state,
reducing the likelihood of observing marked variations induced by the stim-

ulation.
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"Is the BB effect on the cerebral rhythm immediate or does it re-
quire a training period in which the subject can synchronize more
efficiently with the rhythm of the beats?”

Since the effects of stimulation through BB aren’t yet clearly understood, the
effectiveness of the daily stimulation period was evaluated based on the varia-
tion in the degree of separability between experimental conditions, measured

through the accuracy of the clustering algorithm.

From the analysis of the results, both in the comparison between the stim-
ulation and baseline phases, and between the post stimulation and baseline
phases, it emerges that excellent separation between different experimental
conditions was achieved as early as the first recording session, in which sub-

jects experienced BB stimulation for the first time.

Examining the evolution of accuracy values across the different acquisition
sessions, no clear evidence emerges to suggest that the effectiveness of BB
stimulation requires a prolonged exposure period to induce a stronger brain
response. What can be observed is a greater heterogeneity in the degree
of the separability between stimulation and baseline phases when compar-
ing the first and second sessions: some subjects show improvement, other

deterioration, and others no significant change.

The fact that the largest variations occur during the stimulation phases, while
in the post stimulation phase, except for a single case, the differences between
sessions are minimal, suggests that the training period may have influenced
how each subject perceives and processes the binaural betas. This subjective
change in the mode of stimulus processing could explain the greater vari-
ability observed in the distribution of accuracy values during the stimulation

phase.

However, it wasn’t possible to determine with certainty whether daily listen-

ing to BB progressively enhances the response to stimulation, or whether, on
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the contrary, it leads to a saturation effect, thereby reducing the impact of

BB and the ability to distinguish between experimental conditions.

The comparison between the initial and final acquisition sessions was ex-
pected to clarify whether the effectiveness of the stimulation depends on
consistent training, or whether the effects persist even after the daily ex-
posure is discontinued. Nevertheless, even in this case the results appear
inconclusive and difficult to interpret, making it complex to establish with
certainty whether repeated listening enhances the response over time, or in-

stead causes a saturation effect that reduces efficacy.

“Does BB stimulation modulate the cerebral rhythm in the target

frequency band?”

The results of the analysis conducted on the modulation of alpha rhythm
amplitude fluctuations induced by BB reveal that both during and after the
stimulation, significant changes occur in the morphological characteristics of
the alpha spindles, particularly in the frontal region, especially in channels
F3 and F4. Specifically, the observed increase in the incidence rate of alpha
spindles along with a reduction in their average duration, suggests a possi-
ble attempt to synchronize the alpha rhythm in the frontal channels with
the BB. These beats manifest as short duration amplitude modulations that
occur at a high temporal frequency. Furthermore, a reduction in the EEG
signal’s frequency content within the alpha band was observed, which proved
to be statistically significant, specifically in the frontal channels. These find-
ings appears to contrast with the hypothesis underlying the concept of brain
entrainment, according to which stimulation at a specific EEG frequency
should generate an increase in the power of the signal around the stimula-
tion frequency. However, these findings support previous results from two
existing studies in the literature, which showed that continuous, unmasked
stimulation using pure beats primarily affects the frontal region of the cere-

bral cortex, and that stimulation within the alpha band leads to a reduction
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in the overall power of the alpha rhythm [76] [25].

Finally, the o exponent derived from DFA appears to be a robust metric
for identifying the effect of binaural beats on the alpha rhythm. The results
showed a statistically significant reduction in this parameter across almost
all brain areas from which the EEG signal was recorded, both during and
after stimulation, suggesting that BB are capable of altering the temporal
dynamics of alpha rhythm fluctuations. Specifically, it has been shown that
in healthy subjects, a reduction in « exponent is observed during focused at-
tention meditation tasks [77]. This finding suggests that stimulation through
BB may effectively induce a state of relaxation and contribute to enhance

attentional capacity.

In conclusion, the study carried out in this thesis contributed to clarify-
ing some key aspects regarding stimulation with binaural beats, particularly
when the stimulation frequency is calibrated to each subject’s IAF. The re-
sults obtained from the analysis of EEG recording from the various partic-
ipant highlighted an often overlooked aspect in studies involving BB: the
subjectivity of individual response to stimulation. Moreover, the in depth
analysis of the alpha rhythm allowed for a more accurate exploration of the

brain entrainment mechanisms associated with binaural beat stimulation.

6.2 Limitations and Future developments

Despite the results obtained, this study presents several important limitations
that should be considered for a potential methodological improvements and

future investigations on the subject.

From a technical analysis perspective, one of the main issues concerns the
lack of clear and widely accepted information regarding the specific cerebral
response to binaural beat stimulation. This has made in particularly chal-
lenging to evaluate the long term effects of BB, as it is not yet clear which

parameter should be used to demonstrate the effectiveness of the stimulation.
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Additionally, the experimental design used to assess the training effects could
be further improved. Firstly, the number of EEG and ECG recording sessions
per subject should be increased by implementing daily monitoring. Further-
more, to conduct a longitudinal study capable of providing insights into how
binaural beats affect the brain over increasing exposure time, the duration of
the experimental protocol should be extended, lengthening both the training

period and the phase in which home administration of BB is suspended.

Another valuable addition could have been the use of self assessment ques-
tionnaires, allowing participants to report their emotional responses to the
stimulation. The integration of subjective data alongside the quantitative
analysis of physiological signals would have allowed consideration of per-
ceived effects during and after stimulation, which didn’t emerge from the

neuro physiological analysis alone.

Another limitation of the study concerns the equipment used to record EEG
signals. Employing a high density acquisition system with a larger number
of electrodes would have enabled a more detailed topographic analysis. This,
in turn, would have allowed for the full exploitation of the ICA algorithm’s
potential to identify with greater accuracy the brain ares involved in the
response to stimulation. Moreover, higher spatial resolution would have sup-
ported a more in depth analysis of changes in functional connectivity across

different cortical regions.

It is also important to highlight the lack of standardization in the audio play-
back system. Each participant used their own personal devices, earphones
and smartphones, to listen to the BB, inevitably introducing variability in
sound quality and volume intensity. However, this choice was dictated by
the longitudinal nature of the study, which required daily BB administra-
tion, making it essential to adopt a flexible protocol that could be easily

integrated into the participants’ daily routines.

In addition to the limitations related to the instrumentation and experimen-
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tal design, another crucial aspect concerns the lack of shared guidelines in
the scientific community regrading the optimal parameters to be used when
designing audio tracks containing BB, in order to maximize the effectiveness
of the stimulation. Specifically, there is no consensus on the ideal values
for the carrier frequency, the beat frequency, or the degree of lateralization,
depending on the intended neuro physiological target, such as relaxation or

enhanced attention.

Another area that requires further investigation concerns the mode of BB ad-
ministration. It is still unclear whether stimulation should be continuous and
prolonged, whether it is more effective when delivered in blocks, or whether
in a intermittent, burst like presentation yields better results. Additionally,
it would be interesting to explore whether integrating BB with background
music or with white or colored noise could amplify or modulate the effects

of the stimulation.

Given these open issues, future studies should focus on a systematic anal-
ysis of binaural beats, with the aim of clarifying the mechanisms of action
and identifying the optimal conditions for effective stimulation. In light of
the results obtained in this work, which suggest a marked inter individual
variability in the response to BB, it may be promising to move toward per-
sonalized stimulation protocols, possibly by employing biofeedback based
approaches. Such methods could help tailor the technical parameters of the
stimulation to the specific neuro physiological characteristics of each individ-
ual. Although this study already attempted to adapt the stimulation to the
subject’s characteristics using the IAF, implementing a real time adjustment

of the parameters could further enhance the effectiveness of the BB.
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Subjects’ IAF

Patient | IAF (Hz) | Earphones model
1 9,82 Airpods series 2
2 10,80 Airpods series 2
3 9,83 Airpods Pro
4 9,90 Airpods series 3
5 11,03 JBL 230 nc
6 9,84 Airpods series 3
7 10,88 Airpods series 3
8 10,51 Airpods series 2
9 10,54 QCY T1C
10 10,15 Apple EarPods
11 11,16 Airpods series 2

Table 1: Subject’s IAF and earphones used.

Validation of optimization steps

The optimization pipeline, described in detail the Material and Methods

section, was applied to a surrogate dataset with a number of elements com-

parable to that of the original dataset. Specifically, three different conditions

were analyzed.
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Figure 50: Optimization steps onto PC space for two Ny(0, 1) distributions.

In the first case, the analysis algorithm was applied to a dataset in which the
two classes were represented by two standard normal distributions Ny (0, 1),
with no structural differences. As shown in Figure 50, particularly observing
panel A, the projection of the data onto the PC space reveals a complete over-
lap between the two distributions. After the optimization steps, which mod-
ify how the different observations of the two groups are represented within
the PC space, the overlap between the two classes remains evident. This
demonstrates that the proposed algorithm doesn’t produce artificial separa-
tions between classes when no real differences exist between the distributions

being compared. To complete the control analysis and further validate the
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method, two additional tests on surrogate dataset were conducted, aiming
to verify that the algorithm is capable of detecting a separation in the pro-
jection within the PC space real differences exist in the characteristics of the

two compared distributions.

A o 00 PC space B

Figure 51: Optimization steps onto PC space for N;(0,2) and Ny(1,1).

In the second condition, two gaussian distributions N;(0,2) and Na(1,1)
were compared, characterized by different means and standard deviations,
and represented in blue and green respectively in Figure 51. As shown in
panels A-D, the optimization pipeline preserves the separation between the
two classes throughout the various steps, confirming the sensitivity of the

method to the presence of structural differences in the distributions.
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Figure 52: Optimization steps onto PC space for N1(0,2) and Ny(0.5,1).

In the third condition, two gaussian distributions, N1(0,2) and N5(0.5,1),
were analyzed. These were characterized by a lower degree of separation
compared to the distributions examined in the previous case, and are repre-
sented in blue and green respectively in Figure 52. As shown in panel A of
the figure, the simple projection of the data onto the space generated by PCA
reveals a partial overlap between the two distributions, even though they are,
by construction, statistically distinct. However, panels B-D show that the
optimization pipeline is capable of detecting these structural differences and
correctly assigning the observations their respective classes, grouping them

around their true centroids. This result further confirms the sensitivity and
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reliability of the method in discriminating between different classes, but only
when the data distributions being compared are intrinsically characterized

by a real structural difference.

In-depth analysis of Permutation test

To correctly interpret the results obtained from the statistical test, it is im-
portant to consider that the mean value of the accuracy distribution derived
from the label permutations is subject to a systemic bias. This bias arises
from the imbalance in sample size between the two compared classes, given
that both stimulation and post stimulation conditions include a higher num-

ber of observations than the baseline condition.

Therefore, in order to demonstrate that the null (random) condition leads to
an accuracy distribution systemically shifted above chance level, permutation
tests were conducted under the constrain of balanced class sizes. Specifically,
for each pairwise comparison, the class with the smaller number of observa-
tions was identified, and an equal number of samples were randomly selected

from the larger class to ensure balanced distributions.

Figures 53 and 54 display the results of the permutation tests performed
for the stimulation vs baseline and post-stimulation vs baseline comparisons,
respectively, after balancing the class size. Panel A refers to the single acqui-
sition analysis, whereas panel B presents the results based on the full-subject
data.

What emerges is that, unlike the previous condition in which the classes
were unbalanced, the mean of the accuracy distribution after permutation
now centers around 50%, as expected under conditions of randomness. More-
over, in the comparison between stimulation and baseline, a reduction in the
number of non significant cases is observed. This suggest that, in those
cases, the class separability can be attributed more reliably to the effect of

stimulation.
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Mean Permutation Accuracy & Real Accuracy per Subject
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Topoplot of Alpha Rhythm Features
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Figure 55: Topoplot of Alpha Rhythm Features showing statistical signifi-
cance difference between different phases.
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