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Abstract

In recent years, Robotic-Assisted Minimally Invasive Surgery (RMIS) has led to
significant improvements in surgical precision and patient safety. Accurate 6D pose
estimation of surgical tools is a fundamental enabler for several critical capabilities
that enhance both human-in-the-loop and semi-autonomous interventions. The da
Vinci Research Kit (dVRK) offers an open-source platform to study these tasks in
both simulated and real environments. As part of an ongoing research, this thesis
focuses on pose estimation as a key component in the automation of tasks such as
suturing using the dVRK. This work investigates and compares two strategies for
6D pose estimation of dVRK instruments: a Marker-based approach and a Model-
based, markerless solution based on Deep Learning. The Marker-based method uses
a printable cylindrical marker and the EPnP algorithm to compute 6D pose from
2D—-3D correspondences. It was applied in both simulated and real scenarios, deliv-
ering robust and accurate results. In addition to serving as a stand-alone solution,
it also provided ground truth (GT) annotations to evaluate the learning-based ap-
proach. The Marker-Less method is FoundationPose, a framework that compares
a cropped RGB image of the tool with its CAD model to regress its 6D pose. It
uses two networks: a pose refinement module that generates pose candidates from
image-model alignment, and a pose selection module that ranks and selects the best
hypothesis. In this study three dataset were used: two simulated ones (one per
tool-—Needle Driver and Cadiere Forceps) and a real world one.

In simulation, 150 frames per tool were generated using Unity, with the application
of realistic textures and anatomical backgrounds derived from real surgical scenarios.
GT was obtained via the Marker-based method. Unity also provided Foundation-
Pose requirements, including segmentation masks, absolute depth maps, and camera
intrinsics.

The real-world dataset consists of 150 frames of the Needle Driver, acquired in
a laboratory setting, using the dVRK system. GT was again computed using the
Marker-based approach, with a printed marker mounted along the tool’s shaft. Since
automated generation of segmentation and depth data is not available in this setting,
masks were manually created using Roboflow, while depth maps were generated us-
ing Depth Anything and then converted into absolute values. Results show that
the Marker-based method provided consistent and accurate pose estimates in both
domains, serving as a solid reference throughout the study. FoundationPose showed
promising performance in simulation, with rotational estimates corresponding to co-
sine similarity values between 0.83-0.87 (~ 9 — 21 rotational errors), and positional

errors of 1-1.5 ¢m on the X and Y axes. Depth estimation was less accurate, with
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errors of 6-7 cm. In real settings, performance declined moderately with a cosine
similarity of 0.78-0.81 (~ 21 — 27 rotational errors), positional errors increasing to
2-3 cm and depth errors of 16 cm, likely due to the approximated depth data. In
conclusion, the Marker-based method proved to be an effective solution for both pose
estimation and GT annotation. FoundationPose showed potential for markerLess
estimation but also revealed limitations, especially in real-world use. The small size
and fine structure of the instruments increase sensitivity to error, while symmetric
geometries can lead to rotational ambiguities. Nevertheless, targeted fine-tuning on
domain-specific data, and integration with geometric approaches or kinematic data

could improve performance.
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Introduction

1 Introduction

Minimally Invasive Surgery (MIS) has revolutionised the surgical field and has be-
come the standard in many countries. An overview of MIS and how robotic as-
sistance can improve it is provided in this section. It examines how robotics can
enhance surgical accuracy and patient outcomes, traces the evolution of robotic sys-
tems in MIS over time, and presents the Da Vinci Research Kit (dVRK), a widely
used research platform that has been used in this study. The significance of the
dVRK tool’s pose estimation for automation, safety, and surgical guidance is then
highlighted in this section. It gives a summary of current pose estimation methods

and discusses current and future surgical applications.

1.1 Minimally Invasive Surgery (MIS)

Minimally Invasive Surgery (MIS) is a modern approach that focuses on reducing the
physical trauma associated with traditional open surgery, thanks to smaller incisions
with specialized instruments. Laparoscopy was one of the first MIS procedures.
Essential components are the laparoscope, with a camera that provides real-time

visualization of the surgical site on a monitor, and other precision instruments.

Figure 1: Illustration of Minimally Invasive Surgery (MIS).
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Introduction

The starting point of MIS can be traced back to the ‘60s with the Hopkins rod-
lens endoscope. This laid the groundwork for several developments in the surgery
field, in particular the first laparoscopic cholecystectomy, performed by Erich Miihe
in 1985. This is the formal beginning of the MIS era: since then, MIS techniques
have been widely adopted and have become the standard approach over traditional
open surgery in a wide range of procedures. In general surgery, it is routinely em-
ployed for procedures such as cholecystectomies and hernia repairs. In gynecology,
it plays a central role in operations like hysterectomies and ovarian cyst removals.
The field of urology benefits from MIS in interventions such as prostatectomies
and nephrectomies, while orthopedic surgeons commonly use arthroscopy for joint-
related treatments. Even complex cardiothoracic operations, including valve repairs
and certain coronary interventions, have increasingly adopted minimally invasive
approaches. The versatility and patient-centered advantages of MIS continue to
drive its integration into modern surgical practice, reshaping operative standards
across disciplines. [I] One important development in the ongoing progress of MIS
has been the introduction of robotic surgical systems. Technologies such as the da
Vinci Surgical System have revolutionized the field by offering surgeons enhanced
visualization, increased dexterity through articulated instruments, and improved
precision in confined anatomical spaces. These systems mitigate many of the lim-
itations of conventional laparoscopy, such as restricted range of motion and poor
ergonomics, allowing for greater control and reducing surgeon fatigue during long or
complex procedures. Robotic-assisted surgery has now become a standard option in
many domains, including robotic prostatectomies in urology, robotic hysterectomies
in gynecology, and increasingly in colorectal, thoracic, and cardiac surgeries. As
robotic technologies continue to evolve, their role in enhancing the safety, efficiency,
and personalization of MIS is expected to grow. Together, MIS and robotic systems
represent a transformative shift in surgical practice, reshaping how procedures are

performed and improving patient outcomes.

1.1.1 Advantages and disadvantages of MIS

The main goal of MIS is to reduce both the number and size of incisions, thereby
minimizing the damage to soft tissues caused by large incisions. This approach offers

numerous advantages, including;:

e Less pain and blood loss: analyses in colorectal cancer show laparoscopic
patients bleed on average ~ 90 mL less than open cases [2]. This reduced trauma

to tissues results in less postoperative pain, which often translates to a reduced
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need for opioids.

e Shorter hospital stay and faster recovery: smaller incisions heal faster and
cause less stress on the body. This means that MIS patients tend to leave the

hospital sooner and return to normal activities more quickly [2} [3].

e Fewer complications: by minimizing wound size, MIS dramatically lowers
wound-related complications. Reviews report fewer wound complications and
a reduced risk of surgical-site infection in laparoscopy compared to open ap-
proaches [3]. Limiting tissue trauma also reduces formation of adhesions and
the risk of incisional hernias. Laparoscopic patients tend to have lower rates of

pneumonia and thromboembolism, likely due to earlier postoperative ambulation.

e Enhanced quality of life and satisfaction: less pain and scarring, coupled

with a quicker return to daily activities, translates into a better patient experience.

e Improved cosmetic outcome: MIS incisions are much smaller (often a few
millimeters instead of many centimeters). In one prospective comparison of her-
nia surgery, patients undergoing laparoscopic repair reported a superior cosmetic

satisfaction versus open surgery [4].
However, MIS also presents some challenges and limitations that must be considered:

e Challenging learning process: minimally invasive techniques, particularly la-
paroscopic and robotic procedures, require new technical skills. Surgeons must
learn new techniques to operate through small incisions while viewing the proce-

dure on a screen, which requires specific training and practice.

¢ Limited tactile feedback: unlike open surgery, where surgeons can directly feel
tissue texture and resistance, minimally invasive procedures provide only limited
tactile feedback through instruments. Researchers are working on developing tools
that can sense and give feedback about the force applied during surgery, to help

solve this problem.

e Technical constraints: visual limitations can restrict the surgeon’s dexterity [3].
Robotic systems limit some of these issues with their articulated instruments and

3D vision.
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1.2 Robotic assisted minimally invasive surgery
(RMIS)

1.2.1 Role of Robotics in MIS
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Figure 2: Examples of robotic MIS applications. [4]

The field of surgery is under constant evolution. Surgeons have steadily pursued in-
novative methods to improve patient outcomes, focusing on making surgeries safer,
less invasive, and more efficient. This pursuit has been ongoing for many genera-
tions, with early breakthroughs occurring in the 1860s with Lister’s seminal work on
antiseptic surgery. In traditional MIS, visual-motor alignment is obtained by a two-
dimensional display and the use of rigid instruments, which limit haptics, dexterity,
and coordination [4] [5].

Computer-enhanced surgery has already made significant progress and is set to
evolve rapidly in the future. Computers play a significant role by processing data,
offering image guidance, and providing real-time access to expert advice in different
situations. Additionally, they actively participate in surgical procedures through

robotic systems. The introduction of robotic-assisted surgery in the late 90s marked
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a significant milestone in the history of MIS. The surgeon skills combined with the
robot’s precision can address many challenges, representing a significant evolution
in surgical practice [5].

3D visualization, available in many robotic platforms, has enhanced depth percep-
tion and spatial awareness, making it easier to perform precise manoeuvres. Studies
show that task performance consistently exceeds the ones achieved with 2D visual-
ization, regardless of the level of surgeon experience, or the complexity of the task
[6]. Robotics also enhances dexterity, as robotic arms offer a broader range of motion
than human hands, enabling more intricate movements even in confined anatomical
spaces. Moreover, robotic systems help reduce tremors, ensuring steadier and more
precise movements.

To overcome the lack of haptic feedback, one of the primary drawbacks of tradi-
tional MIS, innovative solutions are being developed. For instance, Titan Medical
Inc. (Toronto, Ontario, Canada) is integrating force sensing directly at the tips of
surgical instruments. Another notable advancement in the field of telesurgery is
the RAVEN system (Fig. , developed by the Biorobotics Laboratory at the Uni-
versity of Washington (Seattle, WA, USA) [7]. This platform features lightweight,
cable-driven instrument arms with seven degrees of freedom (DoF), which can be
mounted directly onto the operative table. While the arms are rigid, the imaging
probe is designed to be flexible, enhancing visibility during procedures. Multiple
copies of RAVEN are being used to create a research network internationally to

investigate new approaches to robotically assisted MIS.

Figure 3: On the left: close-up photo of two RAVEN mechanisms. On the right: surgeons
manipulating conventional RAVEN tools. [7]
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In traditional laparoscopy, surgeons must deal with the fulcrum effect, where hand
movements result in the opposite motion of the instrument tip due to the pivot at
the entry point. This reversed control can be unintuitive and difficult to master.
Robotic systems eliminate this issue by translating the surgeon’s hand movements
into direct, mirrored motions of the instruments, thanks to a master-slave configura-
tion that replaces the mechanical setup, allowing instrument movements to directly
match the surgeon’s intentions for more intuitive control. Advances in imaging and
digital vision technologies, such as high-definition stereoscopic displays and aug-
mented reality, further enhance the functionality of the surgeon’s console. The most
widely recognized master-slave robotic system is the Da Vinci Surgical System (Fig.
[) by Intuitive Surgical Inc. (Sunnyvale, CA, USA) [8]. In addition to the benefits
mentioned, its primary advantage lies in restoring wrist articulation, which is lost in
conventional laparoscopy, providing surgeons with greater flexibility and precision

]

da Vl‘rn:!i (5

Figure 4: Refiguration of the Da Vinci System. On the left a surgeon using the surgeon’s
console of the system, on the right the patient-side and the vision cart.
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1.2.2 Evolution of robotics for MIS

Figure 5: Timeline of Minimally Invasive Robotic Surgery. [I]

In 1985, the PUMA 200, a conventional industrial robot developed by Unimation in
Danbury, CT, was experimentally utilized for a needle insertion procedure, marking
the first recorded use of a robotic system in surgery [9]. Since then, an ever-increasing
number of platforms, developed by both commercial and research entities, have been
created and successfully applied across a growing number of surgical fields, including
neurosurgery, ear-nose-throat (ENT), orthopedics, laparoscopy, and endoluminal
procedures. The 80s saw the development of the first generation of surgical robots,
designed primarily for procedures in neurosurgery and orthopedics. Two examples
are the Neuromate system (Renishaw, UK) was used for procedures like neuro-
endoscopy, biopsies, electrode placement [10] and Robodoc (Curexo Technology,
USA), created to enhance hip replacement [11].

The 90s saw a second generation of surgical robots designed for MIS. These systems
featured multiple rigid arms controlled by the surgeon through a remote console.
This approach was first introduced with the Zeus platform (Computer Motion, USA)
and later advanced with the da Vinci system after Computer Motion merged with
Intuitive Surgical in 2003. Since then, various versions of the da Vinci system have
been developed. These include the daVinci Xi, which became the most widely
used multiport robotic surgery system in the world, and the da Vinci SP, a single-
port system that uses three flexible, multi-jointed instruments along with a fully
articulated endoscope.

In the early 2000s, the innovations included compact and steerable tools like robotic
catheters, endoscopes, and snake-like robots, which are flexible enough to reach
and operate in tight areas of the human body that rigid laparoscopic instruments
couldn’t access before. These devices have been used in procedures such as endovas-
cular interventions, abdominal surgeries, and bronchoscopies. However, one major

drawback of these flexible robots is their limited ability to apply strong forces to
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tissues due to their structural design. To address this issue, concentric tube robots
(also known as active cannulas) were introduced around 2005 through the work of
researchers such as Furusho et al. [12], Sears and Dupont [13], and Webster [14].
These robots are composed of nested, pre-curved elastic tubes (often made of ma-
terials like Nitinol) that bend and deform when rotated and moved relative to each
other, providing greater stiffness and strength [5].

During the 2000s, a novel generation of robots emerged, focusing on untethered
microrobots designed to improve the intraluminal navigation in the human body,
enhancing diagnostics and treatment. One notable example is capsule endoscopy,
which enables fewer risks, discomfort, and pain than traditional flexible endoscopy.
The success of capsule endoscopy led to its commercialization, with systems like
the ENDOCAPSULE 10 (Olympus, Tokyo, Japan), which offers advanced imaging
and 3D tracking capabilities. Beyond this, various research groups have explored
alternative designs and movement techniques for these devices, including legged
systems [15] and worm-like locomotion [16].

Currently, untethered micro-/nano-surgical devices are emerging [17, [I8]. Current
surgical platforms in clinical use still face significant challenges, such as the size and
rigidity of mechanical components, which limit their ability to access and treat small,
early-stage lesions or areas of the human body that were previously unreachable.
Advancements in miniaturized, flexible robots, just a few micrometers in size, capa-
ble of navigating throughout the human body, hold the potential to enable highly

precise and localized (at the cellular level) treatments.

1.2.3 The Da Vinci Research Kit (dVRK) system

To help overcome the main limitations that have historically made minimally inva-
sive techniques difficult to apply in complex surgeries, Intuitive Surgical Inc. (Moun-
tain View, CA) developed the da Vinci System. The da Vinci System combines
high-resolution stereo visualization with a direct hand-to-instrument control inter-
face, allowing the surgeon’s movements to be mirrored precisely at the instrument
tips inside the patient’s body [19]. This alignment between the surgeon’s hands and
the visual field restores natural hand-eye coordination, thanks to an optical system
that overlays the 3D image of the surgical site on top of the surgeon’s hands. The
system also adapts the instrument movements to match the camera’s perspective,
enhancing spatial coherence and giving the surgeon the sensation of working directly

within the operative field. As mentioned before, it also overcomes the limitations of
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traditional laparoscopy by adding a wrist mechanism with three degrees of freedom
at each instrument tip, allowing for a total of seven degrees of motion (translation,
rotation, and grip) which enhances dexterity and precision [19]. In addition, the
system filters out hand tremors and allows for motion scaling, so that large move-
ments at the console can be translated into smaller, more controlled movements at
the surgical site. For example, a 3:1 scaling ratio would convert a 3 cm movement
by the surgeon into a 1 cm movement by the robotic instrument. When combined
with high-resolution close-up views, this feature makes delicate procedures signifi-
cantly easier to perform [20]. The da Vinci Surgical System is structured around a
master—slave configuration, composed primarily of two interconnected components:
the surgeon’s console (master) and the patient-side robotic system (slave). There
is also a vision cart that displays the surgical scene in real time. All the compo-
nents are shown in Fig. [0l At the surgeon’s console, the operator is seated in
an ergonomic position and interacts with the system through two hand controllers
known as masters. These are serial-link manipulators that capture the surgeon’s
hand, wrist, and finger movements, including grip commands. At the console, two
medical-grade Cathode Ray Tube (CRT) monitors, each dedicated to one eye, create
a stereo image with depth perception, shown in a display. Additionally, the user in-
terface has control buttons and foot pedals that let the surgeon change modes, move
the endoscope and the instruments, change focus, and do other tasks all without
leaving the console. Supporting this functionality is a custom-designed electronic
controller, built for speed, reliability, and safety. The patient-side cart houses the
slave robotic manipulators, which are responsible for translating the surgeon’s com-
mands into movements at the surgical site. This system typically includes three
robotic arms: two PSM (Patient Side Manipulators) for the surgical instruments
and one for the stereo endoscope ECM (Endoscopic Camera Manipulator), which
provides real-time visual feedback. The manipulators are positioned via multi-link
arms mounted to a stable base, allowing flexible setup around the patient. Each sur-
gical instrument offers four active degrees of freedom, including grip actuation, and
attaches to the robot via quick-connect mechanisms. These instruments are fully
sterilizable using FDA- and EU-approved protocols. To ensure immersive visualiza-
tion, the system uses a high-resolution stereo endoscope with dual optical channels,
each equipped with a three-chip Charge-Coupled Device (CCD) camera, enabling
accurate depth perception and clear imaging inside confined anatomical spaces. In
some versions of the surgical systems, only a monocular camera is used, which pro-
vides two-dimensional imaging and consequently reduces depth perception, making

precise spatial perception more challenging for the surgeon [§].
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Figure 6: DVRK principal components.

In 2014, the da Vinci Research Kit (dVRK) was formally introduced as an open-
source platform to facilitate advanced research in the field of robotic-assisted surgery [21]
22]. The publication presented the development of an open-source mechatronics
system composed of modular hardware, custom electronics, firmware, and software
(Fig. , designed to interface with components of the first-generation da Vinci
Surgical System. The electronic system utilizes a Field-Programmable Gate Ar-
ray (FPGA) to support a centralized computation framework with a distributed
input /output (I/0) architecture [21].
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Figure 7: Overview of telerobotic research platform. [§]

The authors designed a series of robotic tasks, including tissue grasping, palpa-
tion, and incision, which were performed by expert surgeons, medical residents,
and non-surgeons, both with and without haptic feedback. Although experienced
robotic surgeons are often thought to compensate for the absence of tactile sensation
through enhanced visual cues and extensive training, the study showed that force
reflection made a statistically significant difference, enhancing surgical outcomes,

particularly in tasks that place a high cognitive demand on the surgeon. Another
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study [23] confirmed the importance of haptic feedback by using a four-channel
teleoperation system with disturbance observers and sensorless force estimation en-
hanced through learning-based dynamic compensation. The results showed that
even without physical sensors, estimated haptic feedback can improve tissue palpa-
tion accuracy and significantly reduce unintended interaction forces during manip-
ulation. The dVRK is also widely used for image-guided and simulation research.
For example, in robotic-assisted partial nephrectomy (RAPN)—a kidney-sparing
procedure for renal cancer—ultrasound (US) imaging is employed intraoperatively
to delineate tumor margins and locate blood vessels. Since then, in the standard da
Vinci setup, the US probe has always been inserted through an auxiliary port and
manipulated by a robotic tool over the kidney surface. However, since the US im-
ages are displayed separately from the main surgical view, the surgeon is required to
mentally integrate the ultrasound and surgical views, which adds cognitive load and
increases the complexity of the procedure. The dVRK has been used as a research
platform to address these limitations. The dVRK can be equipped with stereo en-
doscopes and advanced imaging tools, such as 3D US probes, enabling research into
augmented-reality overlays and real-time image-guided interventions that enhance
spatial integration and procedural efficiency. For instance, a robotic rail was im-
plemented to automate intraoperative US acquisition in a RAPN study [24]. The
system enabled semi-autonomous placement and scanning of the US probe using
the dVRK setup, which included a stereo laparoscope to enable co-registration of
US and surgical views. Common experimental setups include bench-top rigs with
synthetic or animal tissue phantoms (porcine organs, biopsy simulators, etc.) and
simulation models where virtual instruments mimic dVRK motion. In these setups,
researchers simulate laparoscopic procedures such as suturing vessels, manipulating
soft tissue, or drilling bone. In summary, the dVRK serves as a versatile platform
for research and clinical simulation: it supports studies of surgical dexterity (skills
and training), development of semi-autonomous surgical subtasks, experimentation
with haptic interfaces, and integration of imaging into robotic workflow. Regarding
imaging, several datasets have been developed using the dVRK to support research
in robotic surgery [25] 26]. The use of large datasets is essential in surgical robotics
to advance in the field of recognition and automation of surgical tasks. Furthermore,
public datasets allow the comparison of different algorithms and methods to evalu-
ate their performance [26]. These resources support a wide range of applications,
including tool tracking, 3D pose estimation, force inference, and the analysis of sur-
gical workflows, while also providing training data for machine learning models and

validating new algorithmic approaches.
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1.3 Pose Estimation of dVRK tools

1.3.1 Current applications of tools tracking and pose
estimation in the surgery context

In the context of robotic-assisted surgery, accurate pose estimation of surgical tools
is a fundamental enabler for several critical capabilities that enhance both human-in-
the-loop and semi-autonomous interventions. The knowledge of a tool’s 6-DoF pose
relative to the camera allows the system to interpret and interact with the surgical
environment more safely. Maintaining the surgical instruments within the camera’s
field of view is fundamental for patient safety in robotic-assisted MIS. Medical er-
rors can be decreased by employing visual servoing techniques based on endoscopic
images to automate the movement of the endoscope holder arm. A study developed
a marker-based visual servoing system on the Da Vinci robot. In this work, the
pose of the instruments (obtained using ArUco markers on the PSMs) was used
as 3D feedback: the software calculates the spatial position of the instrument and
autonomously moves the camera arm (ECM) to keep the instruments continuously
in view. [20] Safety and collision avoidance are other domains where pose tracking
plays a key role. By continuously estimating the spatial configuration of multiple
instruments and anatomical models, the system can prevent unintended tool-to-tool
or tool-to-tissue collisions, which is particularly important in confined workspaces
such as those in minimally invasive procedures. In some studies, pose tracking is
used as a safety layer to prevent collisions between instruments and with sensitive
tissue. A common approach is to impose dynamic virtual fixtures (forbidden zones)
around tools and anatomy. Moccia et al. (2020) [27] implemented vision-based
forbidden-region virtual fixtures on the dVRK: they segment each tool and fuse
the visual tip position with the robot’s kinematics via an Extended Kalman Fil-
ter (EKF). This yields a real-time tool pose estimate that drives a repulsive force
whenever instruments go against each other or into forbidden regions. The sys-
tem “pushes back” against dangerous motions, so that even if the surgeon moves
the controls into a collision, the robot stops or changes direction. Pose tracking
is also applied to assess surgeon skill in context. For example, Pan et al. (2023)
introduced a framework that fuses video-based tracking of the instrument tip with
robot kinematics to extract each tip’s motion trajectory during a dVRK task. They
then classify these motion signals with a deep network to predict surgeon skill level

(novice vs. expert). [28]
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1.3.2 Future clinical integrations of Pose Estimation
of dVRK tools

One of the primary future applications of pose estimation is in the automation
of surgical sub-tasks. Within the research group where this thesis is conducted,
there is a strong focus on the automation of suture—a complex and clinically rel-
evant challenge that involves several interdependent modules. These include, but
are not limited to, tool pose estimation (the focus of this work), instrument and
parts segmentation, action recognition, and surgical step classification. Accurate
pose estimation of the robotic instruments is essential in this context, as it enables
the planning and execution of needle trajectories that comply with anatomical con-
straints and aim to minimize tissue deformation: autonomous suturing requires real-
time knowledge of the needle driver’s pose to compute motion paths that ensure safe
and effective manipulation. While current systems often rely on semi-autonomous
functionalities, assisting the surgeon in critical subtasks, the long-term goal is to
achieve full autonomy for specific procedures. The transition from surgeon-assisted
systems to fully automated execution represents a major advancement, as it has
the potential to significantly reduce human error, enhance consistency, and improve
surgical outcomes, particularly in high-precision tasks such as suturing. Another
potential future application of pose estimation lies in enhancing surgical action and
phase recognition. The use of instrument position information has already been ex-
plored in some studies [29], where the presence and trajectories of instruments are
extracted from stereo videos and combined with CNN-based features. This approach
has led to improved recognition of surgical phases, as incorporating kinematic data
(such as instrument motion and interaction) significantly enhances system perfor-
mance. However, in this case, pose information is derived from segmentation and
therefore lacks depth accuracy. The use of actual 3D pose data could further in-
crease the effectiveness of these systems.

Moreover, the pose of the instrument can be used to maintain alignment with mov-
ing anatomical structures, such as in heart surgery or lung interventions, ensuring
that the tool stays on trajectory despite physiological movements.

Furthermore, the need for reliable methods to assess a surgeon’s technical perfor-
mance is growing as robotic surgery continues to expand. Standardized pose-based
metrics can be useful for evaluating robotic skill levels and providing feedback during
training. Over time, such pose-based evaluations could help establish fair certifica-
tion standards across different institutions.

Lastly, with the growing adoption of dataset-driven methodologies in surgical robotics,
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real-time pose tracking plays a critical role in the automatic generation of large-scale
annotated datasets within clinical environments. Accurate 3D pose data of instru-
ments, captured in real time, can provide reliable ground truth (GT) annotations

for tasks such as tool segmentation, action recognition, and workflow analysis.

1.4 Overview of existing approaches for Pose

Estimation

This section provides a general overview of the main categories of pose estimation
techniques used in surgical robotics, focusing on marker-based and markerless ap-
proaches. A more detailed analysis of the most effective methods, covering both
traditional and learning-based solutions, will be presented in the subsequent State
of the Art chapter. Existing approaches for estimating the pose of surgical instru-
ments can be broadly categorized into marker-based and markerless methods. These
techniques differ in terms of precision, practicality, and suitability for deployment
in real surgical environments. Marker-based methods rely on the use of artificial
fiducial markers—such as AprilTags [21], B0], or ArUco [3I]—attached directly
to the surgical tools. These markers have well-defined visual patterns that can be
detected and processed using geometric algorithms to recover the tool’s 3D pose.
These methods are generally chosen for their high accuracy and low computational
requirements, making them well-suited also for real-time applications. However,
in surgical contexts, marker-based systems face critical limitations: markers can
compromise the sterility of instruments, become occluded by tissue or fluids, or
interfere with tool manipulation in constrained spaces. Their effectiveness also de-
pends on maintaining continuous visual contact with the marker, which is not always
guaranteed during surgery. To address these challenges, markerless methods have
been developed, eliminating the need for physical modifications of the instruments.
Traditional markerless approaches typically rely on known 3D models of the instru-
ments and attempt to match these models to visual cues extracted from the scene,
such as edges, silhouettes, or point clouds obtained from RGB-D cameras. More
recently, machine learning and deep learning have become increasingly popular in
the field due to their ability to learn complex patterns from data and enhance the
accuracy of pose estimation across various surgical scenarios. Convolutional Neural
Networks (CNNs), sometimes combined with temporal or depth information, can
learn to predict the pose of surgical tools directly from RGB or RGB-D images.

These methods have shown better generalization across different tool types and can
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be integrated with other perception tasks such as segmentation or action recogni-
tion. However, these methods are sensitive to partial occlusions, lighting changes,
specular reflections, and the complex backgrounds often encountered in surgical set-
tings. Nevertheless, they require large, annotated datasets for training, which are
scarce in surgical robotics. The cylindrical shape of the instruments can also lead to
pose ambiguities, such as 180-degree errors around the tool axis. Furthermore, deep
learning models are often challenging to interpret when they fail, as the reasoning
behind their predictions is not always transparent. Finally, deploying these models
in real-time scenarios typically demands powerful hardware and significant compu-
tational resources. In summary, the choice between marker-based and markerless
pose estimation methods involves trade-offs between accuracy, operational feasibil-
ity, and generalization. While marker-based approaches offer precision in controlled
environments, markerless solutions represent a promising direction for real-world
surgical applications, where adaptability and minimal hardware modification are

essential.

2 State of The Art

Building on the categorization introduced above, this chapter provides a detailed re-
view of the most representative and effective pose estimation methods applied—though
not limited—to surgical robotics. The analysis highlights not only the principles,
strengths and limitations of each approach, but also innovations and improvements

that have driven progress in the field.

2.1 Marker-based approaches for Pose Es-

timation

Marker-based pose estimation approaches provide great accuracy under controlled
environmental conditions. Thus, they are used in many fields such as robotics or
biomedical applications but are primarily implemented through classical approaches,
which require lots of heuristics and parameter tuning for reliable performance under

different environments [32].
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2.1.1 Fiducial Markers

Fiducial markers —artificially designed patterns placed in the environment— are
useful in robotics, computer vision, medical imaging, and related fields for 6D pose
estimation, mapping, localization, and other pose-related tasks. Tracking an ob-
ject’s pose by attaching a marker to it and using a vision system can be highly
accurate while still being a low-cost alternative when compared to other strategies
[33]. These markers are typically designed with high-contrast, easily distinguishable
patterns, such as black-and-white squares or circles, that facilitate fast and robust
detection by computer vision algorithms. Factors such as imaging noise and subtle
changes in illumination induce jitter on the estimated pose that impairs robustness
in vision and robotics applications [34].Unlike natural features, which depend on
the environment’s textures or lighting conditions, fiducial markers are artificial and
engineered specifically to ensure reliable detection under a wide range of imaging
conditions. They can encode information and support accurate localization even in
the presence of noise, partial occlusion, or challenging viewpoints. Fiducial markers
also provide better-defined features than the ones naturally available in the scene.
For this reason, they are widely utilized in computer vision applications where reli-
able pose estimation is required. To manage fiducial systems, it is common to use a
marker package, which is a comprehensive software toolkit that bundles the marker
designs with the routines needed to generate, detect, and decode them. ARTag,
AprilTag, ArUco, and STag represent the state-of-the-art and most widely used

fiducial markers.

(a) (b) (c)

Figure 8: (a) ARTag, (b) AprilTag, (c) ArUco, (d) Stag

/\

(d)

ARTag (Fig. [§a)), created by Fiala [34, B5], uses an array of black and white
squares that are interpreted as 0 and 1 by the detection algorithm. Although it was
originally designed for augmented reality, it can also be effectively used for accu-
rate 6D pose estimation of a camera or an object relative to the marker. ARTag
provides high contrast and precise corner localization, making it suitable for com-

puter vision systems that require reliable pose tracking. Although its popularity
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has decreased compared to more modern systems like AprilTag or ArUco, it laid im-
portant groundwork for marker-based pose estimation and continues to be cited in
different works in the field. ARTag is built on ARToolkit but enhances the internal
marker pattern using concepts from digital coding theory. It represents the inside
of each square marker as a 6x6 grid of bits, resulting in a unique 36-bit identifier
for every marker. The set of markers is designed to maintain a minimum Ham-
ming distance between each codeword to reduce recognition errors [36]. Hamming
distance measures how many bits differ between two codes; a higher minimum dis-
tance helps avoid confusion between similar markers. Furthermore, a gradient-based
method is used to detect lines that are later grouped into quadrilaterals of candi-
date markers. These improvements led to increased tag detection reliability and
enabled detections under partial occlusions. AprilTag (Fig. [§(b)) |37, 130] builds on
the framework established by ARTag, introducing several enhancements. It includes
a graph-based image segmentation technique that examines gradient patterns to ac-
curately detect lines, along with a quad extraction process capable of recognizing
non-intersecting edges as potential candidates. Additionally, it adopts a new cod-
ing scheme to overcome challenges associated with the 2D barcode system, such as
sensitivity to rotation and susceptibility to false positives in outdoor environments.
These enhancements make this marker more resilient to occlusions and distortions,
while also reducing the rate of incorrect detections [36]. In the context of surgical
instrument tracking, AprilTag can be attached to instruments to facilitate real-time
6D pose estimation using monocular cameras. This approach offers a low-cost and
flexible alternative to more complex tracking systems. However, it’s important to
note that certain limitations, such as sensitivity to viewing angles and lighting con-
ditions, can affect accuracy. AprilTag has also been investigated in a study [3§]
in which the authors propose a multi-scale strategy to accelerate marker detection
in video sequences. Their approach selects the most suitable scale at each stage
(detection, identification, and corner refinement), significantly reducing computa-
tional overhead. Experimental results demonstrate that this method achieves up
to a 40x speed-up compared to state-of-the-art techniques, without compromising
detection accuracy. Researchers have proposed further enhancements, including ge-
ometric corrections and probabilistic error models, to improve precision [39]. ArUco
(Fig. [§(c)) is a marker system based on ARTag and ARToolkit. It was initially
developed by Garrido-Jurado et al. in 2014 [40] and further extended in 2016 [41].
Similar to AprilTag, ArUco (Fig. [f(c)) uses markers represented by a square shape,
with information encoded in black and white patterns. One of the most notable

contributions of ArUco is that it allows users to create configurable libraries of
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markers. Instead of including all possible markers in a standard predefined library,
users can generate a library specific to their application needs. The generated li-
brary will contain only the specified number of markers that share the greatest
possible Hamming distance between their codewords. This reduces the probabil-
ity of misidentification and improves robustness. Additionally, the smaller size of
these custom libraries contributes to reduced computing time, which is beneficial
for real-time applications. Another advantage is that ArUco supports the genera-
tion of markers of various sizes depending on the needs of the application. Since
smaller markers contain less information, this can lead to improved performance of
the detection algorithm, especially in terms of speed and efficiency. Furthermore, the
ArUco system has an open-source detection algorithm, which has not only facilitated
its widespread adoption but also encouraged continued development. The ArUco
marker system has been widely used for tracking and pose estimation in surgical
robotics and other medical applications. For instance, J. Birch et al. [42] presented
a trocar localization method using a micro camera mounted on a vitreoretinal sur-
gical gripper to track two ArUco markers placed on either side of the trocar. In
another work, D. Tsui et al. [43] developed a low-cost stereoscopic optical tracking
system for computer-assisted surgery using ArUco markers. Moreover, ArUco has
been used in multimodal interactive systems for surgical robots, where marker-based
pose estimation is employed for fine adjustments of the manipulator’s position and
orientation, enabling the execution of 12 different operational commands by rotat-
ing and moving the marker in different directions [44]. To mitigate occlusion, some
systems use multiple planar tags arranged in 3D. For instance, a custom multi-face
ArUco board with 21 small markers on different faces of a probe was used in hybrid
tracking, resulting in improved performance [45]. In one study [46],two methods are
proposed for tracking square fiducial markers in challenging conditions. The first
relies on Discriminative Correlation Filters (DCFs), which are used to track visual
targets by learning filters that discriminate between the target and the background;
this approach is combined with adaptive scale selection and a corner refinement
strategy to enhance robustness and accuracy. The second method addresses effi-
cient camera pose estimation using marker maps by continuously tracking visible
markers and predicting the position of those about to enter the scene, enabling ro-
bust and low-cost pose estimation in dynamic environments. Another study [47]
introduces an improved method for enhancing the accuracy of pose estimation in
mobile robotics by utilizing multiple fiducial markers simultaneously. While tradi-
tional single-marker systems such as ArUco are easy to implement, their reliability

can degrade under challenging environmental conditions or in the presence of mea-
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surement noise. To overcome these limitations, the authors propose an algorithm
that combines two core strategies: spatial consistency checks to identify and reject
erroneous markers within a marker array, and temporal stability analysis to filter
out outlier measurements over time. By averaging pose estimates from consistent
and reliable markers, the method significantly improves overall estimation accuracy
while ensuring that no single marker disproportionately influences the final result.
STag [34] (Fig. [§[(d))is a recently introduced fiducial marker system designed with a
primary focus on enhancing the stability and reliability of pose estimation results.
The main difference between STag and the other marker systems discussed lies in the
use of a circular pattern at the center of each STag marker. Once line segmentation
and quadrilateral detection are performed, an initial homography is estimated for
the detected marker. This estimate is then refined by identifying the central circular
pattern and applying elliptical fitting, which has shown a greater accuracy in the lo-
calization. This refinement step enhances the overall stability of the pose estimation
measurements [36]. Given its focus on stability and the availability of open-source
ROS integrations, STag can be considered a valuable option for accurate and robust

pose estimation in robotic surgical scenarios.

2.1.2 Custom Markers

Besides standard fiducial markers, it is important to highlight systems that employ
customized markers specifically designed for laparoscopic tools. These custom mark-
ers are often useful to address the challenges of the surgical environment, such as tool
curvature, limited space, strong specular reflections, and frequent partial occlusions.
Gadwe et al. [48| proposed a novel intracorporeal endoscopic tracking approach us-
ing a printable and wrapable marker for tip pose estimation of cylindrical surgical
devices. The marker consists of a green band at the tip of the instrument and a pla-
nar square containing four white and one black circle. Twelve modules are wrapped
in a spiral fashion along the instrument’s length, ensuring that at least one module
remains visible from any camera orientation (Fig. @ The pose estimation pipeline
begins with the detection of these markers in RGB images using a combination of
geometric constraints and intensity-based heuristics(Fig. [10). Initially, candidate
quadrilateral regions are extracted through edge detection followed by contour ex-
traction and polygonal approximation using the Douglas-Peucker algorithm. Only
contours approximated to four-sided polygons with near-right angles and convexity
are retained. To further suppress false positives, each quadrilateral is analyzed to

verify the presence of a white circular region inscribed within a black square back-
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ground. This contrast-rich circular pattern not only facilitates reliable verification
through intensity thresholding and ellipse fitting but also improves corner localiza-
tion accuracy under noise, motion blur, or defocus. Once a valid marker is identified,
the four corners of the square are used as 2D-3D correspondences for solving the PnP
problem, which estimates the position and orientation of a calibrated camera given
a set of known 3D points and their 2D projections, and will be discussed in greater
detail in Section 3.1.3. The corresponding 3D coordinates of the corners are prede-
fined in the marker’s local coordinate system, assuming the marker lies on a planar
surface. Given the intrinsic camera calibration matrix, the rotation and translation
between the camera and marker are estimated using OpenCV'’s solvePnP function.
The estimated pose represents the transformation from the marker coordinate frame

to the camera frame.

(b)

Figure 9: (a) Planar printable marker view. (b) A front view of the tool with the marker
wrapped around it. [48)]
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An alternative design is a sparse array of dots. Pratt et al. [49] used an asymmetric
circular dot marker, specifically the KeyDot®) pattern. While the system is de-
signed for a US probe, its principles are general and extendable to other surgical
tools. The marker (Fig. consists of a grid of circular dots arranged asymmetri-
cally (3 rows x 7 columns), with a known spacing and diameter. This geometry was
intentionally chosen due to its robustness against image degradation effects (bloom-
ing or smudging), which commonly affect traditional square markers. The use of
circles also allows detection without relying on edge intersections, making tracking
more resilient to noise. For detection, the system employs OpenCV’s findCircles-
Grid() combined with a SimpleBlobDetector [50]. This method converts the input
image to multiple binary thresholded images, extracts contours, and identifies blobs
based on their geometric properties (area, inertia, convexity). The centers are then
aggregated across thresholds and refined through a weighted mean. To maintain
real-time performance in HD video, a rOnce the pattern is initially detected, a rect-

angular region surrounding it is computed and used to crop subsequent video frames.
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This significantly reduces the number of pixels to process, thereby improving per-
formance. The size of the cropping area is controlled by a scaling factor S. However,
this approach can fail if the marker moves too far between frames, causing the crop
region to miss part or all of the pattern. To address this, the system estimates
the marker’s velocity by computing the displacement between the last two cropping
rectangles (Fig. . This velocity is scaled and used to predict the next cropping
region’s position, increasing robustness to motion. Once the 2D dot positions are
identified, a standard PnP algorithm is applied using the known 3D layout of the

pattern and the camera’s intrinsic parameters to recover the probe’s pose.

Figure 11: Keydot marker. [49]
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Figure 12: Calculating the appropriate cropping area around the circular dot pattern. [49]

Jayarathne et al. proposed another type of marker [51]. Although originally de-
veloped for tracking a laparoscopic ultrasound (US) probe, the proposed system is
generalizable and can be adapted for 6DOF pose estimation of other surgical instru-
ments, such as those used with the da Vinci Research Kit (dVRK). Its reliance on
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Figure 13: Cropping rectangles with velocity estimation and weighted accumulation. [49]

a monocular endoscopic camera and vision-based methods makes it suitable for in-
tegration into a wide range of robotic-assisted surgical systems. The paper presents
a purely vision-based method that uses a standard monocular laparoscopic camera
to track a custom-designed 3D marker attached to the instrument. This marker
(Fig. [14)consists of multiple “X-corners” created from the intersection of black and
white squares arranged on a curved 3D surface that conforms to the shape of the
instrument. These corners are detected efficiently and with high precision using a

dedicated algorithm, then refined to subpixel accuracy.

Ee0,.. 3040 6
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(a) (b)

Figure 14: (a) a 3D X-corner pattern axed to a linear US probe, (b) the proposed method
is able to establish the 2D to 3D correspondence even in the presence of spurious (top
right) and missing features (those occluded by surgical grasper). [51]

To compute the pose, the system solves the Perspective-n-Point (PnP) problem
based on 2D-3D correspondences. However, to address practical challenges like
occlusions and visual noise, the method employs a Gaussian Mixture Model (GMM)

trained offline on a plausible range of poses. During inference, the most likely pose
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hypothesis is selected from this GMM. An Extended Kalman Filter (EKF) is then
used to project this hypothesis into image space and guide the search for matching
features. The process is iterative: each matched point updates the pose estimate and
informs the location of the next expected corner, making the search progressively
more efficient and accurate. After obtaining at least four correspondences, a globally
convergent PnP algorithm is used to refine the pose estimate. The result is passed
forward as a prior for the next frame, enabling sequential real-time tracking with

uncertainty propagation handled by the EKF.

2.2 Markerless Approaches for Pose Esti-

mation

In recent years, the problem of 6-DoF pose estimation for robotic surgical tools
has advanced in the research community, due to its importance in enabling accu-
rate tracking, autonomous control, and context-aware assistance in the operating
room. With the growing adoption of deep learning techniques, traditional geomet-
ric and feature-based approaches have increasingly been replaced or enhanced by
data-driven models that can handle occlusions, reflections, and complex anatomical
environments. markerless pose estimation approaches for articulated instruments

can be broadly categorized into three families:
e Direct methods, which regress pose parameters end-to-end;

e Indirect methods, which first detect keypoints and then infer pose geomet-

rically;

e Dense Correspondence methods, which establish fine-grained pixel-to-

model mappings.

Each one of them offers strengths and trade-offs, particularly in the context of

surgical robotics.
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2.2.1 Direct Regression

Figure 15: Direct Pose Estimation Process [52]

Direct approaches to 6D pose estimation use deep learning models to predict an
object’s 3D rotation and translation directly from image input, bypassing conven-
tional stages like feature extraction and correspondence matching. These methods
typically rely on convolutional neural networks (CNNs) to learn rich image repre-
sentations in an end-to-end fashion. The predicted pose parameters are refined by
minimizing the reprojection error between the estimated and actual object projec-
tions. This strategy is effective even in challenging scenarios involving cluttered
scenes and partial occlusions. [52] One of the early works in this category is by
Kendall et al. [53], who demonstrated that a CNN could regress camera pose di-
rectly from a single RGB image, achieving robust real-time performance in different
environments. Building upon this idea, Do et al. [54] introduced the Deep-6D Pose
framework, which integrates 6D pose estimation into the Mask R-CNN architecture.
This method simultaneously detects and segments objects, while a new branch is
added to directly regress pose parameters. The pose is decomposed into translation
and rotation, with the latter represented using Lie algebra to maintain differentiabil-
ity. The training is driven by a multi-task Loss combining classification, bounding
box regression, mask prediction, and pose estimation, enabling the model to learn
all tasks jointly in an end-to-end manner.

Although many direct 6D pose estimation methods have been primarily developed
and evaluated on generic objects, their core principles and network architectures can
be effectively adapted for pose estimation of surgical robotic tools, such as those
employed in the daVinci system. Among the earliest approaches in this category
is the SSD-6D method [55], notable for its discretization-based formulation of pose
estimation as a classification problem and its effective use of synthetic training data.
This approach treats the pose estimation task as a classification problem. It extends
single-shot detection networks (based on InceptionV4) to predict object class, 2D
bounding box, discrete viewpoints, and in-plane rotations. Each image is processed

through multiple feature scales to capture different object sizes, and pose hypotheses
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are generated from the combination of predicted views and rotation bins.

Another recent advancement in direct 6D pose estimation methods is represented by
FoundationPose [56], which leverages large pretrained vision models and CAD model
information to predict the 6D pose of novel objects without requiring retraining
on each new object. FoundationPose operates in an end-to-end manner, directly
regressing or classifying pose parameters from RGB or RGB-D input. This approach
benefits from the power of foundation models to generalize to unseen objects and
reduce the need for extensive labeled training data. This is the method used in this
work and will be described in detail later.

Some approaches have combined the use of neural networks with geometric modeling
and optimization techniques. Kamrul Hasan et al. proposed ART-Net [57], which
uses CNNs to predict geometric primitives such as shaft contours, midlines, and
tool tips directly from input images. These primitives are then used to initialize a
simplified 3D geometric model of the instrument, with the final 6D pose refined by

minimizing reprojection errors through Levenberg-Marquardt optimization.

2.2.2 Indirect Methods

o=
=

Figure 16: Indirect method for Pose Estimation using keypoints. [52]

Keypoint-based methods infer 6D pose by first detecting a sparse set of distinctive
2D points—such as tool tips or defined anatomical landmarks—in RGB images, and
then computing the 3D pose through PnP algorithms using known correspondences
to a CAD model. This two-stage pipeline balances modularity and interpretability
while leveraging geometric constraints to constrain the pose, making it well-suited for
surgical tools that can be modeled accurately. Among the generalized approaches
widely used for rigid objects are PVNet [58] and HybridPose [59], which predict
pixel-wise vector fields pointing toward keypoints and employ RANSAC-based vot-
ing to robustly localize them, even under occlusion.

In addition to general-purpose approaches, several keypoint-based methods have
been specifically developed for the pose estimation of surgical tools. For example,

Doughty et al. introduced an end-to-end CNN pipeline tailored for surgical drills,
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including integration with mixed-reality headsets [60]. Their method directly esti-
mates the 6-DoF pose from monocular RGB input and achieves a 3D vertex error
of approximately 11 mm in real-world scenarios, demonstrating its viability for real-
time instrument tracking. Xu et al. [6I] developed a technique that leverages a
high-resolution HRNet backbone to predict unit-vector fields from each visible pixel
toward sampled keypoints on the CAD model. These vectors are processed through
a RANSAC-PnP pipeline to estimate the 6D pose, exhibiting strong robustness to
heavy occlusions. On benchmark datasets of surgical tools, the method achieves

translation errors under 1 mm and rotation errors around 1°.

2.2.3 Dense Correspondence Methods

Convolutional
encoder-decoder

Object labels

RGB input image

PrP-RANSAC Fragment labels
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6D object poses

3D fragment coord.

_____________

Figure 17: Dense Correspondence method for pose estimation [52]

Dense correspondence-based methods approach 6D pose estimation by predicting
dense 2D-3D correspondences between image pixels and the surface of a known
3D object model. Typically, these methods operate on RGB images and recover
the pose using PnP with RANSAC, leveraging the geometric consistency between
predicted correspondences and the model.

Li et al. introduced the Coordinate-based Disentangled Pose Network (CDPN) [62],
which separates the prediction of object rotation and translation. This separa-
tion enhances robustness, particularly for textureless or partially occluded objects.
Park et al. presented Piz2Pose [63], a model that directly regresses dense object
coordinates from RGB images without relying on texture models. The approach

demonstrates strong resilience to occlusion and generalizes well to unseen poses.
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Zakharov et al. developed DPOD (Dense Pose Object Detector) [64], which infers
object ID masks and dense 2D-3D correspondences from RGB input. Final pose
estimation is achieved via a RANSAC-based PnP algorithm. Ausserlechner et al.
proposed ZS6D (Zero-Shot 6D Pose Estimation) [65], which eliminates the need for
per-object training by aligning 2D image features with precomputed colored object
coordinate templates. Other methods, such as those in [66], recover the pose by
establishing surface-level correspondences, often using deep networks to learn local
2D-3D mappings.

Although most dense correspondence-based approaches were developed on generic
object datasets, they can be adapted for surgical robotic tool pose estimation. Oth-
erwise, some approaches have been specifically designed for surgical tools. In 2024,
Barragan et al. proposed a method specifically designed for the dVRK [67]. The
approach processes a Region of Interest (ROI) of the input RGB simulated image,
containing the instrument. After that, it generates three geometric feature maps: a
visible mask, a dense correspondence map that links 2D pixels to 3D model points,
and a surface region attention map. These maps are then combined and passed
through a fully differentiable Patch-PnP module, which regresses the final 6D pose.
Haugaard & Buch introduced SurfEmb [68], which learns continuous surface em-
beddings to represent object geometry. SurfEmb trains a CNN to output dense
2D descriptors (from the image) and corresponding 3D descriptors (on the CAD
surface) for each pixel. Pose is then found by matching descriptors: many 2D-3D
correspondences are sampled and fed into a multi-hypothesis PnP solver. In the
recent SurgRIPE challenge (2025) [69], the winning IGTUM team applied SurfEmb
to da Vinci tool images (Large Needle Driver, Bipolar Forceps) and achieved the

best accuracy.

3 Materials and Methods

This section presents the methods analyzed for 6DoF (position and orientation)
pose estimation of surgical tools of the da Vinci Research Kit (dVRK), both in a
simulation scenario and in the real world. In particular, the following methods are

discussed:
1. Marker-based method designed for cylindrical objects [70].
2. FoundationPose, a unified foundation model for generic objects [71].

In the simulated environment, pose estimation was performed on two instruments:
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the Needle Driver and the Cadiere Forceps. In the real-world case, however, the pose
estimation process was carried out only on the Needle Driver. This choice was made
both to reduce the time required for data acquisition and because the simulation
results showed comparable performance across the two instruments.

Section 3.1 introduces a pose estimation method specifically designed for cylindri-
cal tools, which is used to generate the ground truth (GT) poses of the surgical
instruments.

To evaluate the foundation model, it is essential to have GT data to compare perfor-
mance and establish a reliable reference. For this reason, the marker-based method
was chosen, as it provides a robust and accurate solution for pose annotation. This
method was selected for GT generation in both the simulated surgical scene and in
the real-world scenario.

The foundation model FoundationPose is introduced in Section 3.2, with an overview
of its architecture and the methodology utilized. FoundationPose is based on trans-
former architecture and is trained on a large-scale synthetic dataset to predict object
poses from RGB-D images, given a CAD model of the object. Sections 3.3 and 3.4
describe the generation of annotated surgical image datasets in simulation and in
the real world.

To satisfy the input requirements of FoundationPose, the Unity Perception package
was used in the simulated environment, while Roboflow |?| and DepthAnything |?]
were used in the real-world setting.

As mentioned earlier, GT pose annotations in both cases were obtained using the
marker-based method, due to its robustness and reliability. In particular, Section
3.3.2 highlights the GT generation process for the simulated case, which was carried
out using Blender, an open-source 3D creation suite that supports the full pipeline of
modeling, texturing, and rendering. This platform facilitated the correct placement
and rendering of the marker texture on the instrument surface.

An essential aspect of ensuring consistency between the 3D annotations and the 2D
image data is camera calibration, along with the acquisition of distortion parameters.
In the simulated scene, this calibration process was performed within Unity, while
for the real-world setup, Zhang’s method [72] was employed, as described in Section
3.4.1.

Ultimately, the evaluation metrics used to assess the performance of the model-based

foundation model are defined.
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3.1 Marker-based method

This section describes the marker-based method used for estimating the pose of
dVRK surgical instruments, which serves as the basis for GT generation in both
cases. It introduces the marker design, which enables reliable detection of the in-
strument, and details the full pipeline leading to pose estimation. In particular,
Section 3.1.3 explains the method used to solve the Perspective-n-Point (PnP) prob-
lem, which involves estimating the pose of an object relative to a camera, given a
set of known 3D points on the object (in object coordinates), their corresponding

2D projections in the image, and the camera intrinsic parameters.

3.1.1 Marker Design

This approach uses a marker that contains a binary pattern made up of black features
placed on a green background. The green colour is chosen because it enhances the
segmentation process, which is a pre-step for pose estimation, as the green color
stands out clearly from most backgrounds. Segmentation is performed in the HSV
(Hue, Saturation, Value) color space, ensuring that only the marker’s features are
used in the pose estimation process. The marker pattern is characterized by features
that encode a binary pattern with two classes (0 and 1). The features on the marker
had to remain reliable under difficult surgical tool poses. For example, when the
tool is farther from the camera, its features appear smaller in the image, and when
viewed at a sharp angle, those features become more distorted. For this reason, the
shape of the features has been designed to ensure they can be easily classified in
binary terms and remain visually consistent even in challenging viewing conditions.
Elliptical blobs oriented in opposite directions have been chosen, providing a robust
solution since they were consistently detectable and distinguishable, even when the
tool was viewed from extreme angles or distances. The introduced pattern has a
total of 16 binary sequences. Each sequence corresponds to a row on the pattern
and is formed by 8 features, resulting in a total of 128 features in the marker. Each
of the 128 features is assigned an ID and a 3D coordinate (X, Y, Z) relative to the
marker’s coordinate frame. This 3D coordinate is calculated using the radius of
the tool and the position of the feature’s centroid in the marker. The IDs and 3D
coordinates of the marker features are used as input to a PnP solver to estimate the

pose of the marker.
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Figure 18: Marker design with binary pattern. [73]

3.1.2 Methodology

Starting from raw endoscopic images, the pipeline corrects lens distortion, segments
and identifies the marker’s features, and finally establishes 3D-to-2D correspon-
dences that enable pose estimation. The method relies on geometric features of the
marker and computer vision techniques. Each step of the pipeline is shown and

detailed below. The first step is the undistortion of the input laparoscopic image

Input image  Step | - Undistortion  Step I - Segmentation & feature detection

Step IV - Pose estimation

(a) feature grouping using (b} labelling using feature’s

angle between centroids direction & identilication

Figure 19: Surgical tool pose estimation using cylindrical marker [73]

using the tangential and radial camera’s distortion parameters. This step is essential
to ensure that the centroids of the marker features within the same sequence align
along a straight line. Then, the undistorted image is converted into the HSV colour

space to segment the marker and detect features on its pattern. Firstly, the marker is
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segmented using its green colour, which is done by thresholding the Hue, Saturation,
and Value channels. After segmenting the green marker, the black elliptical features
inside it are also segmented. The V channel alone is enough to differentiate black
from green, as black pixels exhibit much lower V intensity values compared to the
surrounding green pixels. All pixels within the marker area are classified as either
green or black. The black pixels are then clustered using a standard connected-
component labelling approach, where each resulting connected region represents an
individual detected feature. Once the features are detected, they need to be iden-
tified, which means knowing their 3D position relative to the marker’s coordinate
frame. The features are identified in groups of 8, which are located on a straight
line. To find which features lie on a straight line, the pixel centroid of each detected
feature is calculated using the image moments of the contours of each feature. Then,
using all the centroids, the features are grouped into sequences by finding 8 centroids
that lie on the same line. Given one of those centroids ¢, the angles that the other
centroids form with ¢ are calculated as the inverse tangent of the difference of their
image coordinates. Then, the angle values are sorted, and if there are 7 adjacent
angles in the sorted order that have approximately the same value, then those cen-
troids are grouped into the same sequence as ¢, forming a group of 8 features. After
grouping the centroids into sequences, each feature is classified as 1 or 0. To do
that, a 2D line is fitted to the shape of the feature, using a least-squares method, to
determine the feature’s direction. If the feature’s direction is aligned with the line
formed by the centroids belonging to the sequence, it is classified as 1; otherwise, as
0. After classifying all the features in a group, the features can finally be identified
by assigning an ID value from 1 to 128. A minimum of three sequences need to
be identified to estimate the marker’s pose. For each identified feature, a 3D-to-2D
correspondence of a feature’s centroid is obtained. The 3D corresponds to the po-
sition of the centroid in the marker’s coordinate frame, and the 2D corresponds to
the pixel coordinates of the detected feature’s centroid in the image plane. A 2D to
3D conversion is used to calculate each marker’s 3D coordinates on the cylindrical
tool surface. The horizontal coordinate in the 2D image corresponds directly to the
position along the tool’s longitudinal axis and is assigned as the X coordinate in 3D.
The angular position around the cylindrical surface is represented by the vertical
coordinate in the 2D map. First, this vertical value is scaled proportionately to the
entire circumference to obtain an angle alpha. Specifically, it is computed as:

o =

Y
72 (1)

where
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e y — vertical position,
e H = marker height.

Given the radius r of the tool, the Y and Z coordinates in 3D space are then computed

using standard Cylindrical-to-Cartesian conversion:

Y = rsin(a) (2)

Z = rcos(a) (3)

This process allows the 2D centroid of each marker in the flat layout to be accu-
rately mapped to its corresponding 3D position on the curved surface of the tool.
To estimate the marker’s pose, all the identified features and all the 3D-to-2D cor-
respondences are used as input to a RANSAC implementation of an EPnP solver
[Lepetit et al. 2009]. After this step, the tracking algorithm is repeated for the next

input image.

3.1.3 EPnP Solver

C,
® [ L
9] o @
/] " )
® ug o o
[V =]
@ @c

_oP; —4World
e coordinate
o system
-l”

Camera
coordinate

Figure 20: Perspective-n-Point (PnP) pose computation. [74]

The Efficient Perspective-n-Point (EPnP) Solver algorithm [75] provides a fast and

accurate solution for retrieving the object’s pose given the 2D-3D correspondences
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and the camera intrinsics, and is well-suited for this application due to its compu-
tational efficiency. The goal is to find the rotation R and translation t that align
the 3D points with their 2D projections when passed through the camera projection
model. EPnP, proposed by Lepetit et al. [71], is a non-iterative and highly efficient
method for solving PnP. This method is based on the notion that each of the n
points (which are called reference points) can be expressed as a weighted sum of
four virtual control points. Thus, the coordinates of these control points become
the unknowns of the problem. It is from these control points that the final pose of
the camera is solved for. Each of the n 3D reference points in the world frame, p}’,
and their corresponding 3D image points, p{, are weighted sums of the four control
points, ¢’ and cf, respectively, and the weights are normalized per reference point

as shown below. All points are expressed in homogeneous form.

pr= a;c! (4)

7j=1
4
> =1 (6)
j=1
4
Z Gijfﬁ? + a;;(up — ul)zj =0 (7)
j=1
4
Z CLijfny? + Q5 (UO — UZ)Z]C =0 (8)
j=1

Where:

e f., f, are the focal lengths in pixels,
e (up,vp) are the 2D coordinates of the optical center,
e x%,yj, 25 are the coordinates of the control point j in the camera frame,

e (u;,v;) are the observed 2D coordinates of the point in the image.

Using these two equations for each of the n reference points, the system Mx = 0

can be formed, where:
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The solution is expressed as:

N
=1

where N is the number of null singular values in M, and each v; is the corresponding
right singular vector of M. N can range from 0 to 4. After calculating the initial
coefficients f3;, the Gauss-Newton algorithm is used to refine them. The R and T
matrices that minimize the reprojection error of the world reference points p;’ and
their corresponding actual image points p§ are then calculated.

Standard EPnP takes all the given 2D-3D correspondences and estimates the pose
assuming that all the points are accurate. It is fast, with linear complexity, but it
is not robust to outliers: just one wrong point can significantly affect the result.
In this method, EPnP is used with RANSAC implementation. It randomly selects
small subsets of points, estimates the pose using EPnP, and then checks how many
of the total points agree with that solution by measuring the reprojection error. This
process is repeated multiple times, and the pose with the most consistent inliers is
selected. Although this approach is slower, it is much more robust to outliers. The
structure and explanation in this part are inspired and partially adapted from an
online source [74]. To understand how RANSAC works, we consider an example in
which the objective is to fit a line to a set of 2D data points (Fig. . This is
done by randomly selecting two data points from the dataset, which represent the
minimum number of points needed to estimate the model. This subset is referred
to as the Minimal Sample Set (Fig. [21D]). Using more than the minimum number
of points to generate a model is generally inefficient, as it decreases the probability
that all selected points are inliers and lead to a good initial estimate. In fact, the
larger the sample, the lower the chance that it contains only inliers. For this reason,
relying on a minimal sample set increases the probability of selecting inliers, which

improves the quality of the initial model.

45



Materials and Methods

(a) Set of 2D data points.

Once the model is estimated, the next step is to check how many of the remaining

data points—excluding the initial two—are consistent with the fitted line.

(b) Straight line fitting in a set of 2D data points.

Inliers =6

Inliers =12

(a) Case 1

Figure 22: Evaluation of points that lie on or close to the same line (Inliers).[76]

In the first case (Fig. 22al), six data points fall on or close to the estimated line,
indicating their consistency with the model. The rest, which deviate significantly
from the line, are considered outliers. As a result, the model receives a score of 6.

The procedure is then repeated by choosing a new pair of data points and evaluating

the corresponding score for the newly fitted model.

In the second case (Fig. [22bf), the score would be 12. This process is repeated a
predetermined number of times, and the model that achieves the highest score is

ultimately selected. This approach lies at the heart of the sampling algorithm.
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In summary, RANSAC follows a three-step procedure:
e Sample: Select a subset of data points and treat them as potential inliers.

e Model Estimation: Use the selected inliers to compute the model and its

parameters.

e Scoring: Evaluate the model by determining how many of the remaining data

points align with or support the model.
To determine how many samples to choose, the following formula is used:

_ log(1-p)
log(1L — (1 —¢)°)

(10)

Where:
e ¢ = probability that a point is an outlier (i.e., the outlier ratio in the dataset)
e s = number of points in a sample
e p = desired probability of selecting at least one good sample

e 1" = number of trials required to succeed with probability p

3.2 Model-based method: FoundationPose

This section presents the FoundationPose method. It begins by introducing the
concept of foundation models and explaining why such an approach was chosen
for the pose estimation of surgical instruments. The model architecture is then
analyzed in detail, with particular focus on the use of transformers and the role of
contrastive learning. The functioning of the two networks used for pose estimation
is described: a Pose Refinement network and a Pose Ranking network, along with

the corresponding loss functions employed by the authors in the training process.

3.2.1 What is a Foundation model?

A foundation model is an Al neural network trained on mountains of raw data,
generally with unsupervised learning or self-supervised learning, that can be adapted
to accomplish a broad range of tasks [72].

In unsupervised learning the model is trained on data without any labels: instead

of being told what to look for, the model tries to find hidden patterns, structures,
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or relationships within the data. Self-supervised learning is a form of unsupervised
learning where the model learns by solving a pretext task with labels automatically
generated from the data itself.

Initially, foundation models appeared in the context of natural language processing
[77, [78]. In the field of computer vision, these models outperform or match super-
vised models [72] [79, 80, 1), 82, 83 84]. For example, DINOv2 [82], based on the
Vision Transformer architecture [85], encodes both spatial information about object
parts and semantic information regarding object categories [86]. Additionally, it has
been successfully applied in zero-shot settings, enabling semantic correspondences
without any training [86], 87, [88 [89].

In the context of pose estimation, a foundation model is a model trained to under-
stand and predict object poses across various categories, environments, and view-
points. It captures general geometric, visual, and spatial patterns, making it more
robust and versatile compared to traditional task-specific models.

Using a foundation model for dVRK pose estimation can bring several benefits
compared to training a specific model from scratch. Because foundation models are
trained on large and diverse datasets, they can generalize better to unseen scenarios,
making them especially useful in surgical contexts where the appearance of tools and
scenes can vary a lot. This makes them transferable: they can be adapted to different
tools or camera setups. Another advantage is that foundation models reduce the
amount of annotated data needed, which is valuable in medical applications where

labelling is often not available.

3.2.2 Architecture

FoundationPose is a unified foundation model for 6D object pose estimation and
tracking. It can be tested on a novel object without unnecessary fine-tuning, as
long as its CAD model is given. Large-scale synthetic training, transformer-based
architecture, and contrastive learning led to the obtainment of strong generalizabil-
ity. A transformer-based architecture relies on the self-attention mechanism, which
allows each element in the input (image patch) to interact with all others, captur-
ing both local and global relationships. Each element is mapped into query, key,
and value vectors. The model computes attention scores by comparing queries and
keys, and uses these to produce weighted combinations of the values, resulting in
context-aware representations.

This is done across multiple attention heads (multi-head attention), allowing the

model to learn different types of interactions in parallel. Since transformers don’t
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have an inherent sense of order, positional encodings are added to preserve spatial or
sequential structure. In computer vision, images are split into patches treated like
a sequence of tokens. The transformer processes this sequence, enabling long-range
dependencies to be captured more efficiently than CNNs. This makes transformers
especially powerful for tasks like pose estimation, where understanding both fine
details and overall structure is fundamental.

Contrastive learning is a self-supervised approach that trains a model to distinguish
between similar (“Positive”) and dissimilar (“Negative”) pairs of examples, without
requiring manual labels. During training, the network embeds data points (images
or image patches) into a feature space and is rewarded when embeddings of two
augmented views of the same sample are pulled closer together, while embeddings
of different samples are pushed apart. By optimizing this objective, the model learns
representations that naturally cluster semantically similar inputs and separate dis-
similar ones, improving its ability to generalize to new poses, tools, or backgrounds.
The Pose Hypothesis Generation module (Fig. is responsible for producing an
initial, refined estimate of the object’s pose. The process starts by rendering a coarse
pose from a globally sampled distribution and extracting a corresponding crop from
the input RGB-D image. Both the rendered view and the input crop are encoded
using shared weights, meaning that the two encoders learn to extract features that
are comparable in the same semantic space.

These features are processed through convolutional layers and subsequently divided
into patches, each assigned positional embeddings to retain spatial information.
This step is fundamental, as transformers lack an inherent understanding of spatial
structure. The resulting patches are then passed through two separate transformer
encoders: one predicts rotation updates AR and the other predicts translation up-
dates At.

In this setup, At describes how much the object’s position should shift in the camera
frame, while AR describes how its orientation should change in the camera frame.

Starting from the coarse pose [R, t], the refined pose [RT,¢] is computed by
T =t+ At (11)

R*=AR-R (12)

[T

where indicates composition of rotations. Separating translation and rotation
updates in this way keeps everything expressed in the camera coordinate frame
and avoids having to apply translation in a rotated frame, which simplifies learning.

These updates are applied iteratively to refine the pose. During training, the network
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Figure 23: Pose Hypothesis Generation module of FoundationPose. [50]

is supervised with an Ly loss:
Lreﬁne :U)1||t_tgt||2—i_u)2||R_-Rgt||2 (13>

where t4, and Ry are the ground-truth updates, and the weights w; and ws are both
set to 1.

Using an Ls loss to supervise both translation and rotation updates is beneficial
in this context because it provides a direct and smooth optimization objective that
encourages the predicted updates to closely match the GT corrections. This for-
mulation is simple, stable, and effective for guiding the network to minimize the
difference between the predicted pose and the actual pose, leading to improved ac-
curacy in iterative pose refinement.

The Pose Ranking module (Fig. evaluates and selects the most plausible pose
among all the poses previously generated.

First, for each pose hypothesis, the rendered image previously generated is compared
against the cropped input observation, using the pose-conditioned cropping opera-
tion. The comparison is carried out using a pose ranking encoder that shares the
same backbone architecture for feature extraction as the refinement network. The
extracted features are concatenated, transformed into tokens, and passed through a
multi-head self-attention module, allowing the model to enhance the comparison by
taking into account the complete visual context of the image. The pose ranking en-
coder performs average pooling to output a feature embedding F € R52? describing
the alignment quality between the rendering and the image.

A second level of comparison across the K pose hypotheses is introduced to exploit
their global context and support a more informed decision.

Multi-head self-attention is performed on the concatenated feature embedding F =
[Fo,...,Fg_1] € RE*512 which encodes the pose alignment information from all
poses, ensuring a global comparison. Treating F as a sequence allows the gener-

alization to varying lengths of K. The attended feature is then linearly projected
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to the scores S € R¥ to be assigned to the pose hypotheses. After computing the
scores for all pose hypotheses using the ranking network, the final pose is chosen as

the one with the highest score.
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Figure 24: Direct Pose Estimation Process [56]

The training of the pose ranking network is guided by a pose-conditioned triplet

loss:
L(i",i7) =max (S(i7) = S(i*) + o, 0) (14)

where a denotes the contrastive margin; i* and i~ represent the positive and nega-
tive pose samples, respectively, which are determined by computing the ADD met-
ric [90] using GT data. While this loss can be computed over each pair in the list,
the comparison becomes ambiguous when both poses are far from the GT. There-
fore, to make the comparison meaningful, the pose pairs kept are only those whose

positive sample is close enough to the GT.

V*t={i:D(R;,R) <d} (15)
V- ={0,1,2,..., K — 1} (16)

Liank = > L(i*,i7) (17)

iteEV+ imeV - it #£im

where
o ite VTt im eV, it £,
e R; and R are the rotations of the hypothesis and ground truth, respectively;
e D(-) is the geodesic distance between rotations;

e ( is a predefined threshold.
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3.2.3 Methodology

Given the RGBD image, the object is detected using an off-the-shelf method such
as Mask RCNN [91] or CNOS [92]. The translation is initialized using the 3D point
located at the median depth within the detected 2D bounding box. To initialize
rotations, Ns viewpoints of the object are uniformly sampled from an icosphere
centered on the object with the camera facing the center. These camera poses
are further augmented with Ni discretized in-plane rotations, resulting in Ns -
Ni global pose initializations. To enable this, for each of these poses, the CAD
model is rendered using a rasterization process, which converts the 3D geometry
into pixel-based images from the sampled viewpoints, forming the set of coarse pose
hypotheses.

Since the coarse pose initializations from the previous step are often quite noisy,
the refinement module is needed to improve the pose quality. Specifically, the pose
refinement network takes as input the rendering of the object conditioned on the
coarse pose and a crop of the input observation from the camera; the output is a
pose update that improves the pose quality.

For the input observation, a pose-conditioned cropping strategy is performed. Con-
cretely, the object origin is projected to the image space to determine the crop center.
Then the object diameter (the maximum distance between any pair of points on the
object surface) is slightly enlarged and projected to determine the crop size that
encloses the object and the nearby context around the pose hypothesis. This crop
is thus conditioned on the coarse pose and encourages the network to update the
translation to make the crop better aligned with the observation. The refinement
process can be repeated multiple times by feeding the latest updated pose as input
to the next inference, to iteratively improve the pose quality.

Given a list of refined pose hypotheses, a hierarchical pose ranking network is used
to compute their scores. As mentioned before, the network adopts a two-stage com-
parison strategy to evaluate and select the best pose hypothesis. First, for each
pose, the pose-conditioned rendering is compared to the cropped input image using
a pose ranking encoder, which shares the same backbone as the refinement network.
The resulting features are tokenized and passed through a multi-head self-attention
module to capture global context. The pose ranking encoder performs average pool-
ing to output a feature embedding describing the alignment quality between the
rendering and the observation. The second level of comparison is conducted among
all the K pose hypotheses. Multi-head self-attention is used to analyze their mutual

relationships, enabling relative scoring, and the features are then projected into final
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scores for ranking the poses. The pose with the highest score is selected as the final

estimate.

3.2.4 Dataset generation in simulation

Real-world data collection in endoscopic and surgical settings presents several chal-
lenges. Strict sterility regulations, restricted access to operating rooms, ethical
concerns, and the acquisition of precise GT data for pose estimation are a few ex-
amples. To overcome these limitations, the model was evaluated on data generated
in a simulation environment. This enables precise annotation, but also repeatabil-
ity, and the possibility to test under a wide range of controlled conditions. This
section describes the steps involved in dataset generation in the simulated scenario.
Custom scripts and the Unity Perception Package are used to obtain Foundation-
Pose requirements, including the camera calibration matrix, segmentation masks,
and absolute depth maps. An established method involving a cylindrical marker is

used to generate GT annotations.

3.2.5 Generation of a simulated surgical scene with
Unity

Unity was selected as the simulation environment because it combines a high-fidelity
real-time renderer with an extensible scripting API (Application Programming In-
terface), allowing fast and reproducible simulation of surgical scenes. To maximize
visual realism, the project was built on Unity’s High Definition Render Pipeline
(HDRP), which provides advanced lighting features such as physical light units,
volumetric fog, screen-space reflections, and shadows. The CAD models of two da
Vinci Research Kit instruments (Needle Driver and Cadiere Forceps) were imported
into Unity’s asset pipeline. Each model was assigned a Physically Based Rendering
(PBR) material and high-resolution textures to capture metallic glints and realistic
color variations. To simulate a more realistic scenario, a background was added,
and a texture extracted from real surgical operation images was applied to it. Then,
to mimic the lighting conditions of an operating scene, multiple setups were ex-
perimented including the adjusting of directional lights, ambient probes, and point
lights. A custom C script iterates over 300 uniformly sampled poses for each tool,

constraining rotations and translations within different ranges.
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Figure 25: Simulation of Needle Driver with real surgical scene background.

Figure 26: Simulation of Cadiere Forceps with real surgical scene background.

Unity’s Perception Package was fundamental as it provides a variety of tools for
generating synthetic datasets intended for use in perception-based machine learning
tasks such as object detection, semantic segmentation, pose estimation, and so on.
These datasets are in the form of frames captured using simulated sensors. These
frames are annotated and are thus ready to be used for training and validating ma-
chine learning models. It provides a set of Camera Labelers that can be attached
to the Perception Camera, each responsible for generating a specific type of an-
notation. For instance, the Semantic Segmentation Labeler outputs segmentation

images in which each labeled object is rendered in a user-definable color (white,
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in this case) and non-labeled objects and the background are rendered black. The
BoundingBox2DLabeler produces 2D bounding boxes for each visible object with
a defined label. This configuration acts as a mapping between string labels and
object classes (currently colors or integers), deciding which labels in the scene (and
thus which objects) should be tracked by the labeler, and what color (or integer ID)
they should have in the captured frames. Two configuration files are needed: one
for semantic segmentation labels and one for all other annotations, to automatically
generate per-frame outputs including the coordinates of instrument segmentation

masks and absolute depth maps.

-
-
(a) (b)

Figure 27: Segmentation masks of (a) the Needle Driver, (b) the Cadiere Forceps
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Figure 28: Absolute depth maps of the recreated scene, with (a) the Needle Driver, (b)
the Cadiere Forceps

Beyond segmentation masks and depth maps, the Perception Package also logs pixel
counts, unique label IDs, and visibility fractions for each instrument, metrics that
are useful in case of retraining. In parallel, a separate calibration script computes

the camera intrinsic matrix K. It first retrieves the camera’s parameters, such as:

o f..: vertical field of view
e a: image aspect ratio

e W, H: image width and height (resolution)
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Using these values, it calculates the intrinsic matrix, which contains the focal lengths

(fx , fy) and the optical center (cy , ¢y).

H
by =y (18)
2 - tan (557)
fa=1fy-a (19)
w H
Cy = 7, Cy = E (20)
The resulting intrinsic matrix K is:
fo 0 ¢
K=10 f, ¢ (21)
0 0 1

By moving objects instead of the camera, data management is simplified: every
image shares identical camera parameters, and each pose record corresponds directly
to an object transformation, ensuring consistency. A Python script was used to
extract geometric properties, such as diameter and symmetries, that are used by

FoundationPose as part of its pose refinement process.

3.2.6 Ground Truth Generation

Ground Truth (GT) data, in this study, consists of the pose (position and orien-
tation) of the dVRK tools. It is used to evaluate the performance of the pose
estimation of the FoundationPose model and to provide a reference for comparison.
Initially, GT was generated using a script directly in Unity. However, it was later
observed that the axis configuration did not match the one expected by the Founda-
tionPose model. Several attempts were made to align Unity’s reference frame with
that of the model, but no consistent result was achieved. As a result, a robust and
well-tested method was adopted to define the GT. Consequently, it was also decided
to estimate the pose of the dVRK tools one at a time. The chosen method relies
on a cylindrical marker. To use this approach, the marker had to be adapted to the
dVRK tool.

To guarantee proper 2D-3D correspondences, a marker with a new pattern was
created, instead of the one provided, due to the scale discrepancy between the CAD
model and the actual surgical instruments. Blender was used to make additional

adjustments since applying the marker texture directly in Unity caused distortion,
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which would have compromised the marker-based model’s functionality. The mesh

that corresponded to the instrument’s handle was isolated in Blender so that the

marker could be applied to that area only.

(a) (b)

Figure 29: (a) Marker pattern. (b) Isolation of the instrument’s handle on Blender to
guarantee correct application of the marker.

A material and the corresponding texture for the newly created marker were gen-
erated. The texture is mapped onto the object using UV coordinates, allowing the
image to follow the surface geometry. The model was then exported in .fbx format

to be imported into Unity and so to generate the dataset with the marker applied.

Figure 30: Application of the marker in simulation scenarios on the Needle Driver.
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Figure 31: Application of the marker in simulation scenarios on the Cadiere Forceps.

3.3 Dataset generation in the Real World

A real-world dataset was generated to further evaluate the model’s performance un-
der non-simulated conditions. However, this data was not acquired during actual
surgical procedures. Instead, it was generated in a controlled laboratory setting
using the dVRK, where the robotic system was manually positioned through spe-
cific commands. This setup allows for realistic data acquisition while avoiding the
complexities and restrictions mentioned before. Moreover, obtaining accurate GT
data in real surgical settings is particularly challenging, and such datasets are rarely
available, which further motivates the use of controlled, reproducible setups. In the
real-world case, the pose estimation process is conducted only on the Needle Driver,
since experiments in the simulated scene show comparable performance across tools,
and this choice reduced the processing time. This section outlines the various steps
involved in real-world dataset generation. The first step is the calibration of the
camera and the acquisition of its distortion parameters. This is followed by the data
acquisition phase, which is further divided into four sub-steps. First, the RGB im-
ages are acquired and collected. Since FoundationPose requires both segmentation
masks of the instrument and depth maps of the scene, these are obtained respec-
tively using a widely adopted web-based platform for computer vision tasks and a
foundation model. Finally, to evaluate performance, the GT is generated using the

marker-based method used in the simulation case.

o8



Materials and Methods

3.3.1 DVRK Camera Calibration

This step is essential for acquiring the intrinsic parameters of the camera on the
dVRK, specifically the intrinsic matrix K and the distortion parameters. The K
matrix includes the focal lengths (fx, fy) and the optical center (¢, ¢y), which are
essential for converting between 3D world coordinates and 2D image coordinates.
The distortion parameters describe how the camera lens affects the image. Unlike
the simulation case, in this scenario, it is necessary to calibrate the camera manually.
Zhang’s method [70] is a widely used and robust approach for camera calibration.
It relies on capturing multiple images of a planar checkerboard (calibration pat-
tern) from different viewpoints. In each image, the 2D positions of the checkerboard
corners are detected, and since their 3D locations on the board are known, the algo-
rithm estimates how the camera projects 3D points into the 2D image plane. In this
work, the intrinsic calibration of the endoscopic camera is performed using Zhang’s
approach, through a pipeline based on ROS (Robot Operating System) that pro-
cesses multiple checkerboard images and uses the appropriate OpenCV calibration
function. First of all, the camera calibration pattern (100x125) mm was printed.
The pattern was then fixed to a rigid, flat surface to prevent any bending, and placed
approximately 20 cm away from the camera. The camera was focused at this work-
ing distance to ensure accurate calibration. Images are recorded from the camera in
a ROS environment. The camera feed is continuously displayed and updated, allow-
ing the user to manually save frames when the checkerboard is correctly detected.
50 pictures of the calibration pattern in different poses were taken, while keeping
the distance between the camera and the pattern around 20 cm and adjusting the
brightness of the light source, so that the pattern is well detected. The images had
to be without reflections and not too dark. The rectangular line had to be inside
the field of view of the camera, and the pictures had to be taken with the pattern
inclined with respect to the image plane (less than 45 °).

It’s important to note that the images are acquired with a 1920x1080 resolution,
but due to the high computational costs of FoundationPose, it was necessary to
reduce the resolution to 640x360, to preserve the original aspect ratio, avoiding
any distortion of the image. When applying resizing, the intrinsic camera matrix’s
focal lengths and optical center values need to be scaled by the same resizing factor.
Consequently, a scaled version of the original calibration matrix is obtained. The
distortion parameters, however, remain unchanged since they are independent of the

image resolution.
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(a) (b)

Figure 32: (a) Camera Calibration Pattern (b) Camera Calibration Process

3.3.2 Data Acquisition

To acquire the data, the marker was printed on green paper and attached to the
handle of the Needle Driver. With the camera on, the instrument was moved through
multiple poses, and each pose was recorded, resulting in a total of 15 acquisitions.
The marker was kept close to the camera throughout the process, at an approximate
distance of 10 cm. RGB images and the corresponding joint states of the robot are

recorded.
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(a) - (b)

Figure 33: (a) Application of the marker on the Needle Driver in real-world settings. (b)
Acquisition of the images in the real world.

At initialization, configuration parameters are loaded, including the ROS topics for
the camera and the robot’s joint states. The image and the corresponding joint
angles, indexed by a unique pose 1D, are stored. This allows for the creation of a
dataset where each recorded image has a matching robot configuration. After saving
the recorded poses, another script is used to extend the dataset. It begins by loading
previously saved joint states and interpolates a fixed number of intermediate steps
between each consecutive pair of poses. This interpolation is applied only to the
first three joints, while the wrist joints are kept fixed to avoid unwanted rotations
of the end-effector. During execution, the robot is commanded to move to each
interpolated pose sequentially. After each movement, the system waits for the robot
to stabilize and then records a synchronized RGB image from the camera and the
corresponding joint values and saves them. The approach allows for the generation
of a large number of diverse viewpoints of the tool and the attached marker. By in-
terpolating the motion, it also ensures smooth transitions and avoids sudden changes
that could introduce motion blur or inaccuracies in the data collection process. At
the end of the process, 150 unique poses are acquired.

To evaluate FoundationPose on real data, a preliminary data preparation step is

required, which involves generating both segmentation masks of the instrument and
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depth maps of the scene, for each frame. The images are segmented using RoboFlow
[93], a platform that simplifies and speeds up the creation and management of com-
puter vision datasets. It supports image annotation, dataset organization, and ex-
port in various formats, making it especially useful for tasks like object detection
and segmentation. Through its interface, it was possible to manually select and
label the relevant regions of interest within each image. RoboFlow then automat-
ically converted these annotations into precise segmentation masks. This platform
significantly streamlined the segmentation of the instrument, offering an efficient

and faster alternative to other annotation methods.

Figure 34: Selection of the area that represents the Needle Driver.

The segmentation masks are generated using a separate script, setting the back-
ground to black (RGB value [0, 0, 0]) and the instrument to white (RGB value [255,
255, 255|)
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Figure 35: Segmentation mask of the Needle Driver in real world settings.

For the generation of depth maps, the DepthAnything model [94] was employed.
DepthAnything is a deep learning model designed to estimate depth information
from images. It uses a single RGB image to predict the relative depth of each pixel.
The model is trained to recognize depth cues from the image, such as object size,
texture, and perspective, and generates a depth map where each pixel represents
the relative distance of objects from the camera. DepthAnything is designed as a
foundation model for monocular depth estimation (MDE). It is trained on labeled
and 62M unlabeled images to enhance the dataset. It uses a pre-trained DINO
model as an image encoder to inherit its existing rich semantic priors, and DPT
as the decoder. DINO (Distillation with No Labels) is a foundation model, based
on transformer architecture, that extracts features for applications such as image
classification and depth estimation. It learns visual representations from unlabeled
images, avoiding in this way the need for manual annotations. DPT (Dense Pre-
diction Transformer) is built on the same architecture but is specifically optimized
for dense prediction tasks (tasks in which the prediction is made for every pixel in
the image). Thanks to these two models, DepthAnything is able to recognize depth
cues from the image, such as object size, texture, and perspective, and generate
a depth map where each pixel represents the relative distance of objects from the
camera. However, FoundationPose requires absolute depth values. While the depth
information provided is highly useful, the values are relative and scaled to the scene,
meaning they do not correspond to absolute distances unless additional processing
is performed. To convert the relative maps into absolute ones, the distance from
the camera to a known point in the scene was manually measured and used as a

reference. The corresponding relative depth value at that pixel was then matched
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to the real-world distance, allowing all other values in the depth map to be scaled
accordingly and converted into metric units.
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Figure 36: Absolute Depth Map of the Needle Driver in real world settings.

The marker-based approach was employed for GT generation, as in the simulated
scenario. This approach requires only the captured images, the camera calibration
matrix, and the distortion parameters previously obtained. To guarantee precise
marker detection, the HSV values were manually modified considering the obtained
images. The method returned the transformation matrix representing the pose of

the Needle Driver relative to the camera.

Figure 37: Ground Truth (GT) pose generation of the Needle Driver in real world settings.
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3.4 Metrics

Positional and orientational accuracy are assessed using different metrics.
Position Estimation is evaluated through the Mean Translation Error, measured in
centimeters, representing the average Fuclidean distance between the predicted and

ground truth positions over N frames:

‘ 2

i i
pred — tgt

N
1
M Translation E = — E 22
ean Translation Error = — 2 | (22)

For orientation, the Mean Absolute Cosine Similarity is used to compute the angular
error between predicted and ground truth axes.

Given two normalized vectors u and v, the Absolute Cosine Similarity is defined as:

u-v

Absolute Cosine Similarity = ‘ = | cos(0)| (23)

[[all{[v]]
e A value of 1 indicates perfect alignment (parallel or antiparallel).

e A value of 0 indicates orthogonality (perpendicular directions).

Due to possible axis permutations in the predicted coordinate frame, the cosine
similarity is computed between each GT axis and all predicted axes. The axis with
the highest similarity is selected as the match.

The Mean Absolute Cosine Similarity across all frames is computed as:

N
P 1
Mean Absolute Cosine Similarity = N ; | cos(6;)] (24)

To complement this, the Mean Rotation Error is calculated as the average angular

deviation between aligned predicted and GT axes:

0; = arccos(cos(6;)) (25)

The average over all frames provides the final orientation error:

N

1
Mean Rotation E :—E 0, 26
ean Rotation Error = 2 (26)
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4 Results

This section presents both the qualitative and quantitative results of the thesis
work. It includes comparative visualizations of the estimated poses of the dVRK
tools in both simulation and real-world settings. A quantitative evaluation of the
performance is provided for the model-based approach FoundationPose using the
marker-based method as ground truth (GT), as mentioned in the Methods chapter.
The marker-based method is already solid and has been used in previous studies.
However, to provide additional visual confirmation of its reliability, the instrument
was placed in a known position in the simulation scenario, generating 50 identical
frames. The method proved to be robust and consistent, showing the same pose
across all frames, visually matching the one that was set. The current limitations
and challenges of the two approaches are then discussed, together with possible

future improvements.

4.1 Pose Estimation in Simulation

Several tests were conducted using different datasets, varying in the number of
images and the orientation of the CAD model’s reference frame. A recurring issue
was observed in FoundationPose’s estimations: the model irregularly swaps axes
with respect to the GT. Fig. shows a visualization of the pose estimated by
FoundationPose for a single frame, and Fig. shows the same visualization after
axis swapping according to G'T. Since the axis permutation is not consistent across

frames, applying a unified post-processing step becomes unfeasible.
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Figure 38: (a) Visualization of FoundationPose estimation w.r.t. GT in simulation sce-
nario. (b) Same visualization with FoundationPose estimated axes swapped according to

GT.

Another issue encountered was the ambiguity in the predicted axis signs. In several
frames, the predicted orientation appeared visually similar to the ground truth in
terms of direction, but the sign of one or more axes were reversed, as shown in
Fig. 39 and Fig. [40] (a) and (b). In (c) it’s shown a good orientation prediction.

Figure 39: Visualization of FoundationPose Estimation of the Needle Driver with respect
to GT in Simulation Scenarios.
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Figure 40: Visualization of FoundationPose Estimation of the Cadiere Forceps with respect
to GT in Simulation Scenarios.

Considering the issues encountered, absolute cosine similarity was chosen to quan-
tify orientation. The predicted axis with the highest cosine similarity to GT was
selected, as it represents the best alignment between axes. Initially, the comparison
focused only on the longitudinal axis, since it appeared to be the most accurately
predicted based on visual inspection. However, the evaluation was later extended
to all three axes. To resolve the axis sign ambiguity, the absolute value of the co-
sine similarity was used, allowing to focus on the predicted direction regardless of
sign. Cosine similarity provides a general indication of the quality of orientation
estimation. However, for a more precise evaluation, the Mean Rotation Error across
N frames is computed and reported. Given the considerable standard deviations
observed in the results, the average cosine similarity alone may not fully capture
the performance of the orientation estimation. Therefore, Fig. and show the
Cosine Similarity distribution and the per-frame Cosine Similarity values for the
three axes for the Needle Driver and the Cadiere Forceps, respectively, providing
a more detailed evaluation of the predictions. As previously mentioned, the Mean

Translation Error across N frames was used to evaluate position estimation.

Table 1: Results of position estimation evaluation for dVRK tools in Simulation
Scenario

Mean Translation Error (cm) 4+ STD
X Y Z

Needle Driver 092+ 077 158=+£0.75 7.21 +£1.44
Cadiere Forceps 0.94 + 0.91 144 + 1.27 6.98 + 1.35
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Table 2: Results of position estimation evaluation for dVRK tools in Simulation
Scenario, in terms of Mean Absolute Cosine Similarity.

Mean Cosine Similarity += STD
X - axis Y - axis Z - axis

Needle Driver 0.88 £ 0.10 0.90 + 0.07 0.84 £+ 0.10
Cadiere Forceps 0.89 + 0.11 0.87 +0.09 0.83 + 0.10

Table 3: Results of position estimation evaluation for dVRK tools in Simulation
Scenario, in terms of Mean Orientation Error.

Mean Orientation Error (°) £ STD
Roll Pitch Yaw

Needle Driver 12.22 £ 9.15 9.90 + 8.05 18.43 £+ 10.58
Cadiere Forceps 11.05 £+ 8.27 14.09 + 13.23 21.65 + 12.08

(a) X-axis (b) Y-axis (c) Z-axis

Figure 41: Visualization of Cosine Similarity Distribution and Cosine Similarity per Frame
in simulation scenarios, for each axis of the Needle Driver.

(a) X-axis (b) Y-axis (c) Z-axis

Figure 42: Visualization of Cosine Similarity Distribution and Cosine Similarity per Frame
in Simulation Scenarios, for each axis of the Cadiere Forceps.
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4.2 Pose Estimation in Real Environment

The same issues observed in the testing on the simulation dataset were also found
in the real-world pose estimation. As shown in Fig. 43| (a) and (b), the model often
predicts the correct axis direction, but with the opposite sign. (c) shows a good

axes alignment. In the figure, axis swapping has been already applied to account

for the permutation issues affecting the model.

(a) (b) ()
Figure 43: Visualization of FoundationPose Estimation of the Needle Driver in real world

settings w.r.t GT.

The metrics used for the quantitative evaluation are the same of the ones used for

the Simulation case and are reported above.

Table 4: Results of position estimation evaluation for dVRK tool Needle Driver
in Real World setting.

Mean Translation Error (cm) £+ STD
X Y Z

Needle Driver 3.24 +2.42 248 +1.96 16.86 £ 6.09

Table 5: Results of orientation estimation evaluation for dVRK tool Needle
Driver in Real World setting, in terms of Mean Cosine Similarity.

Mean Absolute Cosine Similarity &= STD

X-axis Y-axis Z-axis

Needle Driver 0.80 £ 0.09 0.81 £ 0.10 0.78 & 0.10
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Table 6: Results of orientation estimation evaluation for dVRK tool Needle
Driver in Real World setting, in terms of Mean Orientation Error.

Mean Orientation Error (°) &= STD
Roll Pitch Yaw

Needle Driver 23.68 £ 13.01 21.88 + 19.59 27.91 £ 13.92

As in the Simulation Case, visual representations of Cosine Similarity Distribution

and per-frame Cosine Similarity are shown in Fig.

ity Distributon (6T axis: )
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Figure 44: Visualization of Cosine Similarity Distribution and Cosine Similarity per Frame
in real world settings, for each axis, for the Needle Driver.

4.3 Discussion

4.3.1 Result Analysis

Regarding the tests of FoundationPose on Simulation scenarios, position errors on
the X and Y axes ranged from 0.9 to 1.6 cm across both tools, with the Needle Driver
showing slightly better performance overall. These results are promising; however,
in surgical scenarios, even small errors can be critical. dVRK tools are very small
(about 10 cm in length with an approximate radius of 8 mm), so while such errors
may be acceptable in general object pose estimation, higher accuracy is required in
this context. Depth estimation is the least accurate, with errors around 7 cm for
both tools. Considering the orientation estimation, both tools present similar rota-
tional errors. Specifically, errors of approximately 14° (with cosine similarity scores
between 0.88 and 0.89) were observed for Roll, corresponding to rotation around the
longitudinal X-axis; around 10° (cosine similarity between 0.87 and 0.90) for Pitch,

rotation around the Y-axis—which appears to be the most accurately predicted;
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and about 20° (cosine similarity between 0.83 and 0.84) for Yaw, rotation around
the Z-axis. The standard deviations indicate that the model occasionally performs
very well, with errors of 1°, but also shows peak errors of 30°. In particular, for the
Needle Driver, the cosine similarity distribution for the X and Y axes is more con-
centrated toward values close to 1. Specifically, the highest frequency is observed
at a cosine similarity of 0.97 for both axes. In contrast, the distribution for the
7 axis is more uniform, although it still peaks at 0.97. Overall, the visual distri-
bution suggests that the model generally performs well, but with some variability,
as confirmed by the spread of the individual frames. Some outliers deviate from
the average predictions. For the Cadiere Forceps, the cosine similarity distributions
appear slightly different, with a frequency peak at 0.97 for the X axis. The Y-axis
distribution is more uniform, but in this case, the peak reaches 1, which indicates
perfect alignment between the predicted and ground truth axes. The same holds for
the 7 axis, although its peak is lower, at 0.94. Outliers are also visible here when
looking at the per-frame distribution, particularly for the Y and Z axes.

In the real world setting, the performance in both position and orientation estima-
tion is slightly worse. Specifically, translation mean errors reach 3.24 cm and 2.48
cm for the X and Y axes, respectively, and 16.86 cm for depth prediction. This
significant drop in depth accuracy is most likely due to the approximate method
used to generate depth maps in the real setup, given the lack of access to absolute
depth data. Moreover, the Orientation Errors are higher for each axis, ranging in
values of 21-27° (cosine similarity between 0.78 and 0.81 ). The Cosine Similarity
distributions are more uniform across all axes compared to the simulation tests, with
peaks that are shifted to the left, indicating lower values (0.78 for the X-axis, 0.70
for the Y-axis, and 0.73 for the Z-axis). Outliers are more evident in the real-world
case, deviating more from the average cosine similarity compared to the simulation

setup.

4.3.2 Current Limitations

The performance gap between the simulation and real world scenarios can be at-
tributed to several factors. First, the image quality in the simulation is generally
higher, with more visual detail compared to the real-world data. Additionally, due
to the high computational cost of FoundationPose, it was not feasible to use high-
resolution images, which further affected the real world performance. In the simu-
lated dataset, the images only included the handle and the end-effector of the tool,

while the real-world images contained the entire instrument, introducing more vari-
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ability and visual complexity. In fact, in the real-world setup, the tool typically
enters the frame from one corner or one side, and is never fully isolated or centered
in the image. Instead, it is attached to the long insertion shaft of the dVRK, which
remains visible in the scene. This may negatively affect pose estimation, as the
model may struggle to correctly crop the image and therefore fail to focus on the
actual geometry of the tool. The performance is promising, but there is certainly
room for improvement. Even a ‘small’ error by the model can lead to a significant
prediction error, given the very small scale involved. Although the model was origi-
nally designed to avoid the need for retraining, fine-tuning it specifically for surgical
instruments and robotic tools could greatly enhance its performance, allowing it to
better adapt to the small size of the dVRK instruments.

One major challenge in estimating the pose of surgical robotic tools lies in their
geometry. These instruments have symmetries that can mislead the model, partic-
ularly in orientation estimation. As previously mentioned, the model often predicts
the correct axis direction but with the opposite sign. In addition to this, axis per-
mutation represents one of the main limitations of FoundationPose. These issues
are likely due to the model’s nature: it is not supervised, but instead works by
aligning the CAD model to the image. As a result, especially with cylindrical ob-
jects, the model may consider the alignment successful because the cylindrical part
of the tool in the image overlaps well with the CAD, even when the end-effector
is misaligned, particularly at angles where the end-effector is not clearly visible.
This issue is further amplified in the real-world case, where segmentation masks are
manually generated, although assisted by Roboflow, and may include imperfections
around the end-effector area. This often leads the model to rely on clearer features,
typically the cylindrical handle, for alignment. Moreover, the Loss functions used
during training do not explicitly penalize axis permutations, leading to inconsistent

behavior over frames.

4.3.3 Potential Improvements

Applying general-purpose models like FoundationPose in surgical robotics is still
a relatively unexplored but promising research direction. With some improve-
ments—such as a better definition of the reference frame used for prediction and
ensuring consistency across frames, image undistortion, and especially fine-tuning
with images from a surgical robotic context—the model’s performance could be
greatly enhanced. Additionally, using higher-resolution images, supported by more

powerful hardware, could further improve accuracy. Future improvements also in-
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clude the use of more suitable techniques for generating absolute depth maps, such
as leveraging stereo cameras (not used in this work due to incompatibility with
the marker-based model used for GT generation), possibly combined with optical
flow methods for depth estimation. Since the initial pose hypothesis is also gener-
ated from the depth map before being refined, any early-stage error can propagate
through the pipeline, leading to an inaccurate final estimate. In the context of simu-
lation, it’s easier to obtain RGBD images (RGB + Depth) of Robotic-Assisted MIS
scenes, although they are less generalizable. The marker-based approach remains the
most accurate among the evaluated methods, but it also presents typical limitations
of the use of markers, such as becoming dirty during surgery or partially occluded
in some frames. A possible future direction could involve combining strengths from
both approaches. For example, the image undistortion step used in the marker-
based pipeline could be adopted in the FoundationPose workflow to enable more
effective cropping, since it is based on the tool’s diameter extracted from the image.
There are already hybrid methods that combine direct regression approaches (such
as FoundationPose) with indirect regression (used in the marker-based method). A
similar strategy could be explored here, potentially incorporating keypoint detec-
tion (using keypoints from the instrument itself without the use of a marker) to help
address or mitigate the issues caused by object symmetries, by better aligning the
CAD models with the images. Other hybrid approaches could also be used, such as
integrating the robot’s kinematic data to establish relationships between different
parts of the tools and to constrain the pose estimation within physically plausible
ranges of motion. It may be interesting to explore the use of real-time pose esti-
mation. As mentioned in the introduction section, the common goal of my research
group is the automation of suturing, and in this case, real-time pose estimation
can be very useful in the actual surgical procedure. In a robot training phase, the
dVRK tools could be trained to reach a specific position and orientation based on
data collected from archives of various suturing procedures, allowing the method to
generalize, so in this part, it is not essential. However, real-time pose estimation
can be useful during the suture, providing feedback and helping to reduce tissue
damage. In the context of future full automation of surgical tasks, pose estimation
could be used not only for guidance but also as a way to verify whether a task or
sub-task has been completed. This feedback could then be leveraged to iteratively

teach and improve the robot’s behavior.
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5 Conclusion

In this thesis, two approaches were used for pose estimation of surgical robotic tools
in Minimally Invasive Surgery (MIS), specifically the da Vinci Research Kit (dVRK
instruments), but the approaches can be extended to other surgical robots. The task
involves predicting the position and orientation of the tools relative to the camera,
starting from image frames, in simulation scenarios and in real world settings, in
which the instruments are visible. The output is a transformation matrix, for each
frame, that includes the translation vector indicating the tool’s position, and the
rotation matrix indicating the orientation. In the simulation scenario, two dVRK
tools were used, in particular Needle Driver and Cadiere Forceps. In the real world,
only the Needle Driver was used. The first approach is a marker-based method that
estimates the tool’s pose by keypoint detection and PnP solving. The second method
is a markerless foundation model that uses two Al networks to generate, update and
rank the pose hypothesis. 150 frames in simulation were generated in Unity, for each
tool, with the help of Blender for the application of the marker. In Unity, essential
requirements such as depth maps, segmentation masks, and camera intrinsics were
also generated. In the real-world settings, the dVRK was used for the acquisition
of 150 images, depth maps were obtained using DepthAnything, and segmentation
masks were generated using Roboflow. Calibration was fundamental to obtain cam-
era intrinsics such as the camera intrinsic matrix and undistortion parameters. The
marker-based method was employed as the ground truth poses, both in simulation
and real world, for evaluating the second approach, given its higher reliability and
accuracy. The second model, a markerless foundation model, was applied to the
same set of images, and the performances were evaluated with metrics such as Mean
Translation Error and Mean Absolute Cosine Similarity, with an indication of the
corresponding Mean Rotational Errors to provide a clearer understanding. In simu-
lation, FoundationPose achieved reasonable accuracy, with translation errors on the
X and Y axes between 0.8 and 1.6 cm, around 7cm on the Z axis, and rotational
errors with cosine similarity between 0.83 and 0.90 (approximately 10-20°). In the
real-world case, performance decreased, with translation errors of 2.5-3.2 cm on the
X and Y axes, around 16 cm on the 7 axis, and rotational errors with cosine similar-
ity between 0.78 and 0.91 (approximately 21-27°). With improvements, fine-tuning,
or the integration of FoundationPose with other methods based on keypoints or
kinematic data, performance could be further enhanced. This work on pose esti-

mation of robotic tools in MIS can be applied to various surgical tasks to provide
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feedback and reduce tissue damage, and in the future, it could be used for the full

automation of surgical procedures.

AT use Disclosure
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