
Towards Automated Facial Mimicry
Assessment Using RGB-D Data and a

commercial tracking software:
preliminary results on healthy and

parkinsonian subjects

Giacomo Saracino

Master’s Degree in Biomedical Engineering
Biomedical Instrumentation

Academic Year 2024/2025

Candidate: Giacomo Saracino
Supervisors: Prof. Andrea Cereatti

Dr. Diletta Balta



i



Abstract

Hypomimia, the reduction of spontaneous facial movements, is an
early and disabling symptom of Parkinson’s disease (PD). Its clini-
cal evaluation is currently subjective and based on qualitative rating
scales. Gold standard (GS) methods including manual visual ex-
pert inspection and surface electromyography (EMG) provide objec-
tive assessments but require expensive equipment, trained personnel,
and may interfere with natural facial expressivity. Recently explored
markerless (ML) methods using RGB and RGB-D cameras, combined
with deep learning-based facial landmark detection techniques, rep-
resent a non-invasive alternative. However, their clinical validation
remains debated.

This thesis aimed to (i) propose a low-cost ML method using a
single RGB-D camera to quantify facial muscle activity, (ii) validate it
against GS measures (manual measurements and EMG signals), (iii)
assess the impact of the depth sensor and RGB image resolution on
its performance and (iv) evaluate its applicability in discriminating
between young healthy (YH), elderly healthy (EH), and PD subjects
during emotions.

Participants included 17 YH (25.5±3.7 y.o.), 13 EH (69.7±4.2 y.o.),
and 11 PD patients (70.7±8.7 y.o.). Data were acquired using an Azure
Kinect RGB-D camera (1280×720, 30 Hz), and EMG signals were
recorded with a D360 amplifier (5 kHz). Each subject was recorded at
rest, during maximum voluntary contraction (MVC) of the depressor
anguli oris (DAO) muscle, and while expressing spontaneous hap-
piness and sadness. The MediaPipe Face Mesh algorithm was used
to extract 2D DAO landmarks, with depth data extracted from the
depth image. To identify any statistical differences between methods
(manual vs automatic) and patients’ groups, a Mann–Whitney test
(𝛼 = 0.05) was applied.
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For validation, the ML-derived DAO length variation (DAO-LV)
was compared with manual measures during MVC, resulting in a
Mean Absolute Error (MAE) of 1.5±1.6 mm (Mean Absolute Percent-
age Error = 27.9±27.2) across 41 subjects. No significant differences
were found between automatic and manual measures confirming
ML protocol validity. Both EMG RMS values and DAO-LV showed
no significant differences between YH and EH, while a significant
difference was observed between PD and EH, highlighting the ML
protocol’s sensitivity in distinguishing between groups during MVC.

To evaluate the adding value of the depth sensor with respect to
the use of RGB image only and the influence of image resolution on
the method’s performance, only 2D DAO landmarks were considered
and a static calibration phase was introduced to obtain DAO-LV in
millimeters. Those values were compared with manual measure-
ments. Removing the depth sensor and reducing image resolution to
640×480 resulted in an increase in MAE of 52% and 79%, respectively,
confirming that both factors are critical for accurate facial expression
analysis.

Emotional expression analysis showed no significant differences
between YH and EH for either emotion. Happiness expression re-
vealed significant differences between EH and PD for both DAO-LV
and DAO contraction velocity, as happiness elicited greater muscle
activation. On the other hand, during sadness, no significant differ-
ence between EH and PD were found likely due to high inter-subject
variability and low DAO-LV in PD patients.

In conclusion, the proposed RGB-D ML method is a valid tool
for the objective assessment of hypomimia in PD since it effectively
differentiates between subject groups, particularly during MVC and
happiness expression.
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Chapter 1

Facial Mimicry and Hypomimia
in Parkinson’s Disease

1.1 Introduction

Facial expressions represent one of the most important and complex
communicative tools of human beings, involving a sophisticated net-
work of facial muscles whose activity can reveal emotions, intentions,
and even pathological conditions. In this context, quantitative analy-
sis of facial movements has gained increasing importance in various
fields, from clinical diagnostics to emotion understanding, through
human-machine interaction and virtual reality.

Among the various pathological conditions affecting facial expres-
siveness, hypomimia stands out as one of the most prevalent and
socially impactful motor symptoms in Parkinson’s disease (PD) [16].
This condition is characterized by reduced facial expressiveness and
diminished spontaneous facial movements, significantly affecting pa-
tients’ ability to convey emotions through facial expressions and lead-
ing to what is often described as a "masked face" appearance. Beyond
the visible reduction in expression amplitude, Parkinsonian patients
exhibit markedly impaired response readiness when attempting to
express emotions, with muscle contraction velocities substantially
slower than those observed in healthy subjects.

This facial muscle bradykinesia creates a complex cascade of mo-
tor impairments: it not only delays the onset of emotional expressions
but also reduces their intensity and duration, ultimately resulting in
profound communicative difficulties that can severely impact social
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interactions and quality of life [2]. The underlying pathophysiology
involves the degeneration of dopaminergic neurons in the substan-
tia nigra, which disrupts the basal ganglia circuits responsible for
the initiation and modulation of voluntary and involuntary facial
movements. Consequently, the temporal dynamics of facial muscle
activation are severely compromised, with patients requiring signifi-
cantly longer latencies to initiate facial expressions and exhibiting re-
duced peak contraction velocities compared to age-matched healthy
controls. This motor impairment extends beyond simple expression
production to affect the entire spectrum of facial communication, in-
cluding emotional responsiveness and social signaling.

Despite the clinical importance of accurately assessing hypomimia,
traditional methodologies for the quantitative study of facial muscle
activity present significant limitations. Current approaches have been
based predominantly on invasive or semi-invasive techniques, rang-
ing from surface electromyography (sEMG), which requires the appli-
cation of electrodes on the skin, to optoelectronic systems (stereopho-
togrammetry) that necessitate reflective markers positioned on the face.
While these approaches offer undisputed precision, they present in-
trinsic drawbacks that limit their clinical applicability: they alter the
spontaneity of expressions, prove uncomfortable for examined sub-
jects, and require laborious setup procedures that hinder large-scale
clinical implementation.

To address these methodological challenges, the present thesis
work aims to overcome such limitations through the development
and validation of an innovative Python algorithm that enables the
identification and tracking of facial muscles in a completely marker-
less (ML) manner. The proposed algorithm integrates depth infor-
mation acquired through an RGB-D camera (Azure Kinect camera)
with facial landmark data provided by the Mediapipe library, thus
enabling accurate three-dimensional reconstruction of facial land-
marks and muscle movement analysis. This non-invasive approach
represents a significant advancement in the study of hypomimia in
Parkinson’s disease, as it preserves the naturalness of facial expres-
sions while providing precise quantitative measurements of muscle
contraction dynamics and response timing, potentially opening new
avenues for both clinical assessment and therapeutic monitoring.

2



Facial Mimicry and Hypomimia in Parkinson’s Disease

1.2 Thesis Objectives

Given the limitations of current assessment methods and the clin-
ical need for objective hypomimia evaluation, this thesis work was
designed with four specific and interconnected objectives that col-
lectively aim to establish a comprehensive framework for ML facial
expression analysis in Parkinson’s disease.

The first objective focused on developing a low-cost markerless ML
method using a single RGB-D camera to quantify facial muscle ac-
tivity. This involved creating an innovative algorithm that integrates
MediaPipe Face Mesh facial landmark detection with depth informa-
tion captured by an Azure Kinect camera. The method successfully
detected eleven facial muscles. Although, the methodological ap-
proach centered on the right depressor anguli oris (DAO) muscle,
given its critical role in facial expression. The algorithm was de-
signed to extract 2D DAO landmarks with MediaPipe and combine
them with corresponding depth data from Azure Kinect camera to
enable three-dimensional analysis of muscle contraction dynamics,
offering a non-invasive alternative to traditional assessment meth-
ods.

The second objective aimed to validate the proposed ML approach
against established gold standard (GS) measures. This validation pro-
cess involved two complementary comparisons: first, the algorithm-
derived DAO length variations were compared with manual DAO
length variations measurements performed by trained operators on
the same facial recordings (Maximum DAO Voluntary Contraction); sec-
ond, the consistency of the markerless method was assessed against
surface electromyography (EMG) signals recorded simultaneously
from the DAO muscle. This dual validation strategy was designed
to ensure both geometric accuracy and physiological relevance of the
proposed measurements, establishing the scientific credibility of the
ML approach.

The third objective sought to systematically assess the impact of
depth sensor specifications and resolution settings on method per-
formance. Recognizing that different hardware configurations and
imaging parameters could significantly influence measurement accu-
racy, this analysis involved comparing the performance of the RGB-D
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approach against purely 2D methods using pixel-to-millimeter cali-
bration. Multiple resolution conditions were tested, including RGB
1280×720 and RGB 640×480 configurations, to determine the mini-
mum technical requirements necessary for reliable facial expression
analysis and to provide practical guidelines for clinical implementa-
tion.

The fourth objective focused on evaluating the clinical applicabil-
ity of the developed method to distinguish between different subject
populations during emotional expression tasks. This involved re-
cruiting three distinct groups: young healthy YH subjects, elderly
healthy EH subjects, and Parkinson’s disease PD patients. Each par-
ticipant was recorded during spontaneous expression of happiness
and sadness emotions. The clinical evaluation was designed to assess
the method’s sensitivity in detecting the subtle differences in facial
expressiveness that characterize Parkinsonian hypomimia, while also
investigating the differential response patterns across various emo-
tional expressions.

These four objectives were pursued through a comprehensive ex-
perimental design that combines technological innovation with rigor-
ous clinical validation, ultimately aiming to establish a new standard
for objective, non-invasive assessment of facial expression disor-
ders in neurological conditions.
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Chapter 2

Literature Background

2.1 Anatomy and physiology of the facial musculature

A thorough understanding of the anatomy and physiology of facial
muscles is the foundation for any quantitative study of facial expres-
sions. The human face presents a complex network of more than 40
muscles, classified as muscles of facial expression, whose peculiar-
ity lies in the fact that they do not connect skeletal elements to each
other, but rather insert directly into the skin dermis. This anatomical
feature allows for the great variety and finesse of facial movements
that characterise human non-verbal communication.

Facial muscles have unique functional and anatomical specificities:
unlike skeletal musculature, they are not enveloped by well-defined
muscle bands and often intertwine with each other, creating an inte-
grated system of forces that act simultaneously to produce complex
expressions. Particularly relevant to the study of emotions are the zy-
gomaticus muscles (involved in smiling), the levator labii superioris
the frontalis muscles (crucial in expressions of anger and concentra-
tion), and the depressor anguli oris muscles, the specific object of the
study presented in this thesis, whose role is crucial in the expression
of sadness and disappointment.

The activity of these muscles is mainly regulated by the facial
nerve (7th cranial nerve), the impairment of which, as in the case of
peripheral paralysis or neurodegenerative diseases, can significantly
alter the expressive capacity. Understanding these neuroanatomi-
cal mechanisms is essential to correctly interpret alterations of facial
expressions in pathological contexts [6].
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2.2 Facial expression analysis systems

2.2.1 Traditional approaches

The quantitative analysis of facial expressions has a relatively recent
history in scientific research. The first standardised system for the
objective coding of facial movements was the Facial Action Coding
System (FACS), developed by Ekman and Friesen in the 1970s [8].
FACS identifies Action Units (AU) corresponding to the activation of
specific muscles or muscle groups, allowing any facial expression to
be decomposed into its elemental components. Despite its undoubted
validity, FACS requires expert coders and considerable analysis time,
limiting its applicability in clinical or large-scale research contexts.

Other traditional approaches to facial motion analysis include:

• Surface Electromyography (sEMG): considered the gold stan-
dard for measuring muscle activity, sEMG uses electrodes ap-
plied to the skin to detect electrical potentials generated by mus-
cle contraction. Despite its high temporal accuracy (≤1 ms) and
the ability to detect even the smallest contractions, this tech-
nique has intrinsic limitations related to invasiveness, cross-talk
between signals from adjacent muscles, and the difficulty of po-
sitioning the electrodes in particularly small or closely spaced
facial areas [7].

• Marker optoelectronic systems: these systems use multiple cam-
eras to track the three-dimensional position of reflective markers
applied to the face. Commercial systems such as Vicon, Qualisys
or OptiTrack offer excellent spatial (in the order of 0.1 mm) and
temporal accuracy, but require controlled environments, elabo-
rate setups and inevitably alter the naturalness of expressions
[9].

• Stereo-photogrammetry: an advanced method that, like opto-
electronic systems, uses multiple cameras to reconstruct facial
movements three-dimensionally. This technique is based on si-
multaneous imaging of the face from different angles, allow-
ing the precise measurement of deformations and muscle move-
ments. Unlike traditional optoelectronic marker systems, facial
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stereo-photogrammetry offers a more natural and minimally in-
vasive reconstruction, with spatial accuracy that can reach frac-
tions of a millimeter (≤0.1 mm). However, it presents challenges
related to the need for controlled lighting conditions, computa-
tional complexity in image processing and high equipment costs.

Figure 2.1: Traditional approaches: i) sEMG system acquisition, ii) stereo-
photogrammetry system

Figure 2.1 shows the complexity of the sEMG acquisition system
and the optoelectronic system acquisition protocol.

2.2.2 Recent markerless technologies

In recent years, technological evolution has led to the development
of ML systems that overcome many of the limitations of traditional
approaches:

• Depth Sensors: RGB-D cameras such as Microsoft Azure Kinect,
Intel RealSense or devices based on Time-of-Flight (ToF) tech-
nology have revolutionised the acquisition of three-dimensional
data, allowing the reconstruction of facial morphology without
the need for markers. These devices project infrared patterns or
light pulses onto the scene, measuring the return time to calcu-
late the distance to each point. Their accuracy, although lower
than optoelectronic systems (errors in the order of 2-10 mm de-
pending on distance), is sufficient for many facial motion analysis
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applications [28].

• Stereo-photogrammetry: uses two or more calibrated cameras
to reconstruct 3D coordinates by triangulating corresponding
points identified in different views. This technology has bene-
fited greatly from recent advances in computer vision algorithms,
enabling accurate reconstructions without marker.

2.3 Libraries and frameworks for facial landmark de-
tection

The field of automatic identification of facial landmarks has seen
tremendous progress in the last decade, mainly due to the adoption
of deep learning techniques. The main libraries available include:

• MediaPipe: developed by Google, this open-source library rep-
resents the state-of-the-art for real-time tracking of facial land-
marks. MediaPipe Face Mesh identifies 468 three-dimensional
points on the face with excellent robustness to variations in illu-
mination, pose and partial occlusions. Its lightweight architec-
ture allows it to run on mobile devices while maintaining high
frame rates (>30 FPS). The latest version integrates optimised
convolutional neural networks and accelerated inference tech-
niques that guarantee sub-millimetre accuracy in the localisation
of landmarks [14].

• Dlib: this Python-binding C++ library includes implementations
of algorithms for detecting 68 face landmarks based on Ensemble
of Regression Trees (ERT). Although less point-rich than Medi-
aPipe, Dlib has been a reference in the scientific community for
years for its robustness and accuracy, and continues to be widely
used in applications that do not require the point density offered
by more recent solutions [12].

• OpenCV: although not specialised in facial landmark detection,
this library provides implementations of fundamental algorithms
for computer vision and easily integrates with other solutions.
Recent versions include DNN (Deep Neural Networks) modules
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that allow the use of pre-trained models for facial detection and
landmark extraction [3].

• Face Alignment Network (FAN): based on convolutional neural
network architectures with hourglass networks, this academic so-
lution offers high accuracy in landmark identification even under
difficult conditions, but requires more computational resources
than mobile-optimised alternatives [4].

• OpenFace: comprehensive facial analysis framework integrating
face detection, landmark tracking, head pose estimation, action
unit recognition and gaze analysis. Particularly useful in appli-
cations requiring multimodal analysis of facial expressions [1].

2.3.1 Evaluation of MediaPipe and dlib for Facial Landmark De-
tection

For the main purposes of this thesis project, an evaluation of the main
open-source libraries for facial landmarks identification was required.
Of the libraries presented in Section 2.3, only two have been deepen
for this thesis purposes: MediaPipe and dlib. Both were tested for
facial landmark detection in video acquisitions, with the objective of
measuring parameters related to facial muscle mobility.

Here is a brief comparison between the two libraries:

• Number of landmarks: Since MediaPipe library offers 400 more
landmarks than Dlib (468 vs. 68), the first one is more suitable
for detailed analysis of expressions and micro-movements, such
as DAO contraction during expressions.

• Real-time performance: MediaPipe is optimized for video and
real-time applications, while maintaining a high frame rate. Al-
though accurate, Dlib may slow down with real-time video ac-
quisitions.

• Stability: MediaPipe better handles variations in facial position
and lighting, ensuring more stable detection in videos. Dlib tends
to be more sensitive to these variations, reducing reliability under
suboptimal conditions.

9



Literature Background

• Ease of use: MediaPipe provides preconfigured pipelines and in-
tuitive documentation, making integration into complex projects
easier. Dlib requires more code customization and familiarity
with its API.

• Accuracy and applicability: For applications requiring precise
measurement of facial muscles, MediaPipe offers higher granu-
larity thanks to its greater number of landmarks and ability to
track dynamic movements in videos. Dlib is more suitable for
basic detections or static contexts.

2.3.2 MediaPipe Face Mesh Architecture

MediaPipe’s Face Mesh architecture implements a two-stage approach
for precise facial landmark detection and localization [11]. The first
stage employs BlazeFace, a lightweight convolutional neural network
based on Single Shot MultiBox Detector (SSD) with MobileNetV1
backbone, optimized for real-time face detection. The BlazeFace net-
work operates on input images resized to 128×128 pixels and gener-
ates face bounding boxes using a composite loss function:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + 𝛼 · 𝐿𝑟𝑒 𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (2.1)

where 𝐿𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 employs focal loss to handle class imbalance
and 𝐿𝑟𝑒 𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 uses smooth L1 loss for coordinate regression. The
second stage consists of a landmark regression network that processes
normalized facial regions of 192×192 pixels, extracted using BlazeFace
predictions. This network directly predicts 3D coordinates (𝑥, 𝑦, 𝑧)
of the 468 characteristic points through a linear activation function in
the final layer:

p𝑖 = W𝑜𝑢𝑡 · h 𝑓 𝑖𝑛𝑎𝑙 + b𝑜𝑢𝑡 (2.2)

where p𝑖 ∈ R3 represents the coordinates of the 𝑖-th landmark,
h 𝑓 𝑖𝑛𝑎𝑙 is the feature vector from the final hidden layer, and W𝑜𝑢𝑡 ∈
R1404×𝑑 is the output weight matrix (1404 = 468 landmarks × 3 co-
ordinates). The architecture incorporates residual connections and
utilizes separable convolutions to reduce computational complexity
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while maintaining sub-pixel accuracy with mean error below 1.5 pix-
els on benchmark datasets. The complete pipeline operates at over
30 FPS on mobile devices through INT8 quantization and neural
accelerator-specific optimizations, enabling real-time augmented re-
ality applications and facial analysis.

2.4 Clinical applications of facial expression analysis

Neurodegenerative diseases are often associated with significant al-
terations in the ability to produce and control facial expressions,
which may manifest early in the course of the disease:

• Parkinson’s disease: A typical feature of Parkinsonian patients
is hypomimia, up to complete amimia. Quantitative studies have
shown asymmetries in muscle contractions, reduction in the am-
plitude and speed of movements, and alterations in the syn-
chrony between agonist and antagonist muscles. Of particular
interest is the observation that some of these alterations may
precede clinical diagnosis by several years, suggesting potential
for early disease identification. The evaluation of therapeutic
efficacy in PD through the analysis of facial expressions has re-
vealed important indicators of progression and response to treat-
ment. Quantitative analysis of facial movements has proven to
be a sensitive method for monitoring the effects of drug therapy,
particularly levodopa and dopaminergic agonists. Expression
analysis methods make it possible to assess not only the reduc-
tion of motor symptoms, but also the impact of treatments on
the patient’s emotional and communicative component. Some
studies have shown that improved facial expressiveness may be
an early indicator of therapeutic efficacy, even before clear motor
improvements appear.

• Alzheimer’s disease: patients show a progressive impoverish-
ment of emotional expressiveness, with particular impairment in
the production of spontaneous expressions in response to emo-
tional stimuli, although the ability to produce expressions on
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demand in the early stages is relatively preserved [5]. In the eval-
uation of therapeutic efficacy in Alzheimer’s disease, the analy-
sis of facial expressions has assumed a crucial role as a tool for
monitoring disease progression and the impact of therapeutic
interventions. Quantitative analysis techniques make it possible
to accurately document the decline in emotional and cognitive
expressiveness, offering an objective biomarker of disease pro-
gression. In particular, studies have shown that the reduction
in the ability to produce spontaneous expressions can be a more
sensitive indicator of cognitive decline than traditional neuropsy-
chological tests. Pharmacological and rehabilitation treatments
are now increasingly evaluated also through the ability to slow
down or partially recover facial expressiveness, considering it a
key element of the patient’s quality of life and emotional com-
munication.

2.5 Technical challenges in markerless facial motion
analysis

2.5.1 Calibration and standardisation of measurements

One of the most critical aspects in markerless quantitative analysis
concerns the calibration and standardisation of measurements across
different subjects and acquisition sessions:

• Spatial calibration: conversion from pixel coordinates to metric
units is a key challenge, particularly in 2D systems where the re-
lationship between camera distance and apparent size introduces
variables that are difficult to control. Recent approaches include
the use of reference objects with known dimensions, as proposed
in this thesis work, and self-calibration techniques based on an-
thropometric features [27].

• Morphological normalisation: significant anatomical differences
between individuals require normalisation strategies to make
measurements comparable. Techniques based on deformable
templates, statistical shape models and non-rigid registration
methods represent the state of the art in this field.
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• Compensation of head movements: even minimal head move-
ments can introduce significant artefacts in facial movement mea-
surements. Robust systems must implement compensation algo-
rithms based on 3D head pose estimation and registration tech-
niques that isolate intrinsic facial movements from those result-
ing from global head displacement.

2.5.2 Robustness to changing environmental conditions

The performance of markerless systems is strongly influenced by en-
vironmental conditions:

• Lighting variations: represent a major challenge, as they can
significantly alter facial appearance and compromise accurate
landmark identification. Modern approaches include data aug-
mentation techniques during model training, adaptive illumina-
tion normalisation and the integration of illumination invariant
sensors such as infrared cameras.

• Partial occlusions: masks, glasses, hair or hands partially cover-
ing the face can compromise tracking. More advanced solutions
use neural networks specifically trained to handle occlusions
and inference algorithms that reconstruct missing parts based
on anatomical models and temporal coherence constraints [10].

• Image resolution and quality: degradation of image quality in
low-light conditions or the use of low-resolution cameras signif-
icantly impacts tracking accuracy. Super-resolution techniques
based on deep learning are increasingly being integrated into
processing pipelines to mitigate these effects.

2.6 Future perspectives and emerging research direc-
tions

2.6.1 Multimodal integration

The integration of different sensory modalities is one of the most
promising directions:
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• Fusion of visual and thermal data: thermal cameras can provide
complementary information on muscle activation through the
detection of subtle changes in skin temperature associated with
muscle contraction, particularly useful in unfavourable lighting
conditions.

• Synchronised audio-visual analysis: integration of acoustic speech
analysis with lip movement tracking improves understanding of
communication dynamics, with applications in the early diag-
nosis of neuromotor disorders affecting both verbal articulation
and facial expressiveness [23].

• Integration with physiological data: the correlation between fa-
cial expressions and physiological parameters such as heart rate
variability, skin conductance or electroencephalographic activ-
ity opens up new perspectives in the holistic understanding of
emotional states and their manifestation [21].

2.6.2 Generative models and biomechanical simulation

The development of detailed biomechanical models of the face is a
rapidly developing field of research:

• Musculoskeletal models: physics-based simulations that explic-
itly model muscle anatomy, viscoelastic tissue properties and me-
chanical interactions between facial structures allow for a better
understanding of muscle activation patterns and their patholog-
ical alterations [25].

• Facial digital twins: the creation of customised digital twins of a
patient’s face allows predictive simulations of the effect of surgi-
cal or therapeutic interventions, optimising treatment planning
[17].

• Realistic synthesis of expressions: advanced generative mod-
els allow the synthesis of photorealistic facial expressions from
muscle activation parameters, with applications in the creation
of synthetic datasets for the training of more robust algorithms
[24].

14



Chapter 3

Materials & Methods

This chapter presents the materials and methodological framework
employed in the development of this thesis project. The discussion
covers the dataset proprieties, the characteristics of RGB-D video
acquisition systems, the machine learning algorithms implemented,
and the specific processes employed for data evaluation and analysis.
Each component of the experimental methodology is examined to
provide a comprehensive understanding of the research approach
and to ensure reproducibility of the results.

3.1 Dataset Description

The dataset comprised a total of 41 subjects, categorized into three
distinct groups to enable comparative analysis of facial muscle con-
traction patterns across different populations, Table 3.1.

Group n Years Old

Young Healthy YH 17 23.53 ± 3.71

Elderly Healthy EH 13 69.69 ± 4.21

Parkinsonian PD 11 70.72 ± 8.67

Table 3.1: Demographic characteristics of study participants

The gender distribution across the entire dataset consisted of 21
female subjects (F) and 20 male subjects (M).

The dataset provides comprehensive multimodal data for each par-
ticipant. Visual data consists of 123 total video acquisitions, with
each of the 41 subjects performing three distinct facial expressions:
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maximum voluntary contraction (MVC) of the DAO muscle, expres-
sion of happiness and expression of sadness. These specific ex-
pressions were selected to capture different patterns of DAO muscle
activation, ranging from isolated muscle contraction to complex emo-
tional expressions involving coordinated activation of multiple facial
muscle groups.

Electromyographic recordings of the DAO muscle were obtained
exclusively during the MVC expression, resulting in 41 EMG record-
ings across all subjects.

Manual measurements of the DAO muscle length were performed
for all 41 subjects under two different conditions, yielding a total of
82 measurements. These measurements were conducted during both
rest and DAO MVC conditions by trained operators using standard-
ized anatomical landmarks to ensure consistency and accuracy across
all subjects.

The manually obtained measurements and the EMG signals served
as the gold standard GS reference for the subsequent validation pro-
cess of the ML facial muscle tracking algorithm, providing a com-
prehensive dataset for validation and comparative analysis across
various demographic and pathological conditions.

3.2 Acquisition Protocol

Visual data acquisition was performed using an Azure Kinect RGB-
D camera positioned at approximately 50 cm from each subject, as in
Figure 3.1, maintaining consistent spatial configuration throughout
all recording sessions [26, 19]. The camera was consistently placed at
the subject’s face height and kept at a fixed distance to ensure mea-
surement consistency and accuracy. All acquisitions were performed
in the same room under identical lighting conditions to avoid any
bias due to surrounding factors.

The Azure Kinect camera is capable of producing RGB images
(color maps), depth maps, and three-dimensional point clouds si-
multaneously for each frame. The RGB image provides visual in-
formation about the surface of the face, the depth map indicates the
distances of points from the camera, and the point cloud reconstructs
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Figure 3.1: Acquisition Protocol Scheme

the 3D geometry of the scene. This combination of data is essen-
tial for obtaining precise measurements of facial muscle lengths and
conducting detailed motion analysis, with particular focus on key
parameters for studying patients affected by PD.

Each participant was instructed to perform the three facial expres-
sions in a controlled sequence, allowing for systematic data collection
across all modalities. The standardized protocol ensured consistent
data quality and comparability across different subject groups.

Figure 3.2: EMG Acquisition Setup

Electromyographic recordings were obtained using a D360 ampli-
fier (Digitimer Ltd, Welwyn Garden City, UK) and an EMG electrode,
Figure 3.2, exclusively during the MVC expression. The EMG signals
were amplified (×1000), filtered with a bandpass of 3-3000 Hz, and
sampled at 5 kHz using a 1401 power analog-to-digital converter and
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Signal 6 software (Cambridge Electronic Design, Cambridge, UK).
This configuration provided high-quality EMG data for quantitative
analysis of muscle activation patterns during MVC.

The manual measurement protocol involved trained operators
conducting measurements using standardized anatomical landmarks
during both rest and MVC conditions. This approach ensured con-
sistent and accurate reference measurements across all subjects, estab-
lishing reliable ground truth data for algorithm validation purposes.
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3.3 RGB-D Markerless Method

This section provides a detailed analysis of the code developed for
this thesis project, the core of this thesis project. The main pur-
poses and functionalities of the code will be presented, clarifying the
objectives of its execution. Subsequently, the crucial steps and the
reasoning behind achieving these goals will be examined, analyzing
the functions and techniques employed. The motivations behind the
programming choices will then be discussed, highlighting why cer-
tain solutions were preferred over others. Finally, examples of the
expected outputs will be shown to provide a clear idea of the code’s
capabilities.

Figure 3.3 represents the RGB-D ML algorithm pipeline, used for
the detection of the following muscle: the depressor anguli oris DAO
(left and right), levator labii superioris (left and right), orbicularis
oculi (left and right), zygomaticus major (left and right), orbicularis
oris, and the left and right frontalis muscles (measured as distance
between eyebrows and the center point). For the main objectives of
this thesis project, the DAO muscle is the most important.

The system requires as input a subject folder, which includes three
emotion acquisitions (DAO MVC, happiness, sadness). As output, an
image is generated showing the mentioned muscle lengths for each
frame of the acquisition, along with two Excel files: one contains the
spatial coordinates (xyz) of each landmark, while the other provides
the distance values for each frame. The Excel files were useful for
visualizing the landmarks in 3D via MATLAB, Figure 3.6, which offers
a dynamic and more intuitive representation of the patient’s face.

A step-by-step explanation is now provided on how the algorithm
uses the data acquired from the Azure Kinect acquisitions to achieve
these results.
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Figure 3.3: Algorithm’s Pipeline
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3.3.1 Image Pre-processing

The process begins with a subject folder, which contain the respective
acquisitions. Within each acquisition folder, for each frame, color
map, depth map, and point cloud files from the Azure Kinect camera
are available, as described in Section 3.2.

The algorithm processes each folder by identifying image files that
begin with the prefix "color" and end with the ".png" extension. These
files are sorted numerically to ensure the correct temporal sequence
of the frames.

The code processes the RGB images contained in the patient fold-
ers, focusing on a specific region of interest (ROI) defined within
each frame. As illustrated in Figure 3.4, the ROI is identified through
specific coordinates, defined to ensure that the analysis algorithm
uniquely detects the patient’s face. This guarantees that the face is
contained within a 500x600 pixel box, roughly positioned at the center
of the image. The RGB image is then cropped accordingly.

Figure 3.4: RGB Image Pre-processing

For each RGB image of the acquisition, the code checks the exis-
tence of the file and reads the corresponding image, crops the ROI
from the original frame, and finally processes the cropped image with
a chosen landmark detection library.

The pre-processing workflow shown in Figure 3.4 represents the
systematic approach where the algorithm focuses library’s evaluation
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on the area of interest. This operation reduces noise from external
areas and optimizes computational performance by focusing only
on the relevant region for the study and subsequently increasing
landmark detection accuracy.

3.3.2 Commercial Tracking Software

In addiction to the MediaPipe and dlib comparison, in Section 2.3.1,
here are two examples of how these two libraries work in cases similar
to the case in this thesis. Figure 3.5 i shows an application of the Dlib
library on a random female subject picture. While, Figure 3.5 ii shows
an application of the Mediapipe library on a picture of random men.

Figure 3.5: Application example of i) dlib library and ii) Mediapipe library

In light of this comparison, MediaPipe was selected as the most
suitable choice for this study. Its ability to detect 468 facial landmarks,
combined with optimization for real-time video processing and sta-
bility in detection, enables a more accurate and detailed analysis of
facial movements. These elements are crucial for studying facial mus-
cle mobility in patients with PD, where precision and the ability to
capture small movements are essential.

3.3.3 Landmarks’ Three-Dimensional Representation

After applying MediaPipe to the cropped image and obtaining the
2D pixel coordinates for 468 landmarks, the information related to
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the depth map and point cloud associated with each frame is in-
tegrated. This process represents the main innovation of this thesis
project. The integration of depth information (Azure Kinect) with the
2D landmark coordinates detected on the subject’s face (MediaPipe)
enables the 3D reconstruction of all 468 landmarks.

For each facial landmark detected by MediaPipe (468 in total), the
code proceeds as follows:

• Point Cloud Extraction: The corresponding point cloud file, for
the color file being analyzed, is located and read using a specific
Python function. The function returns an array containing the
three-dimensional coordinates (𝑥, 𝑦, 𝑧) in millimeters [mm] for
each pixel of the original frame.

• Depth Map Extraction: Similarly, the associated depth map file
is identified and read using another dedicated Python function.
This returns the distance of each pixel from the camera (in mil-
limeters).

• Landmark-Depth Association: For each detected landmark, the
corresponding (𝑥, 𝑦) coordinates are converted into linear indices
to directly access the corresponding data in the point cloud and
depth map. From the point cloud, the 𝑥𝑚𝑚 and 𝑦𝑚𝑚 values are ex-
tracted in millimeters. From the depth map, the associated depth
values are obtained, thus completing the three-dimensional in-
formation set (𝑥𝑚𝑚 , 𝑦𝑚𝑚 , 𝑧𝑚𝑚) for each landmark.

This approach allows for a precise three-dimensional represen-
tation of facial features, Figure 3.6, combining the geometric infor-
mation provided by the Azure Kinect camera (point cloud and depth
map) with the topological data obtained from Mediapipe (landmark
detection).

By studying the landmark-muscle correspondence, each facial mus-
cle can be uniquely identified and its length can be automatically com-
puted in every frame, using the RGB-D method. In this thesis project,
the landmark-muscle correspondence has been evaluated only for the
right DAO muscle.

To further develop this study, it would be necessary to establish
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Figure 3.6: MATLAB 3D Landmark Reconstruction: i) lateral, ii) frontal, iii) upper
view

the landmark correspondence for all relevant facial muscles identi-
fied by the algorithm. This would allow the creation of a more robust
dataset, allowing a comprehensive assessment of hypomimia in sub-
jects affected by PD.

3.3.4 Landmark-Muscle Anatomical Correspondence

Through an anatomical landmark-muscle correspondence approach,
specific facial muscles were approximately identified on the subjects’
faces using the 3D reconstruction of landmarks detected by Medi-
aPipe. This methodology enabled the precise localization and analy-
sis of key facial muscles responsible for emotional expression.

Figure 3.7 shows the identified muscles:

• Depressor anguli oris - left and right

• Orbicularis oris

• Levator labii superioris - left and right

• Orbicularis oculi - left and right

• Zygomaticus major - left and right

• Frontalis muscles - left and right

The 3D landmark reconstruction provided by MediaPipe facili-
tated the accurate mapping of these anatomical structures, allowing
for comprehensive analysis of facial muscle activation patterns during
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Figure 3.7: Muscles detected by the algorithm

emotional expressions. This landmark-based approach ensured con-
sistent identification of muscle regions across all subjects in the study,
providing a standardized framework for subsequent biomechanical
and kinematic analyses.

3.3.5 Missing Point Detection and Temporal Interpolation

In the MediaPipe identification of facial landmarks and the Azure
Kinect camera acquisition, it is inevitable that some data may be
missing or invalid. Such conditions can occur due to depth sensor
limitations, detection errors, or boundary effects inherent in depth
sensing technology. To effectively handle these issues, the method
implements an articulated strategy that combines the detection of
invalid and missing values with temporal interpolation techniques.

Depth sensors, including the Azure Kinect, commonly experience
challenges in accurately measuring depth values near object bound-
aries, a phenomenon known as the "invalid black area" problem,
green circle in Figure 3.8. This issue arises because depth sensors
use structured light or time-of-flight principles that can struggle to
provide reliable depth measurements at the edges of objects, where
the transition between foreground and background creates ambigu-
ous depth information. Additionally, areas with insufficient reflected
light or surfaces that absorb infrared light can result in missing depth
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data.
In such cases, some coordinates may be represented as missing

point to indicate invalid or missing values. Therefore, the code
includes a section for handling missing point values that follows
specific criteria to identify invalid or missing data:

• If all coordinates of a point (𝑥, 𝑦, 𝑧) are equal to 0, they are re-
placed with missing point to indicate that the point is com-
pletely invalid. This condition typically corresponds to the in-
valid black area problem, where the depth sensor fails to provide
any reliable measurement.

• If only the 𝑧-coordinate is equal to 0, it is set to missing point,
while 𝑥 and 𝑦 remain unchanged. This occurs when the 2D
position can be detected but depth information is unavailable
due to sensor limitations.

Figure 3.8: Invalid black area and noisy point examples

Another possible cause for the presence of missing point in the
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data is related to defining acceptable ranges for the facial landmark
coordinates, yellow circles in Figure 3.8 . The variables med (accept-
able mean value) and var (variable tolerance) define a range within
which the coordinates are considered valid. If a coordinate (𝑥, 𝑦, 𝑧)
falls outside of this acceptable range ([med−var,med+var]), it is set to
missing point. This approach is useful for filtering out anomalous
or erroneous values that may be caused by sensor errors or detection
issues.

The processing of each single frame allows to obtain a matrix of
dimensions 468 landmarks × (frame_number × 3), where the rows
represent the 468 detected landmarks and the columns represent the
three spatial coordinates (𝑥, 𝑦, 𝑧) for each frame. In this way, for each
landmark, its spatial position in xyz, expressed in millimeters (𝑚𝑚),
is provided throughout the entire acquisition. This data structure
allows for a detailed analysis of the trajectory and spatial variation of
each point detected over time and facilitates the resolution of missing
point values.

These precautions are helpful as they address the issue of missing
data. Following this data representation, the treatment of missing
point values, such as those caused by occlusions or detection errors,
can be addressed through a temporal interpolation method that
ensures the consistency of the data over time. The code performs
the interpolation of the missing point values and also applies a
Savitzky-Golay filter [18] to ensure that the variations in the data are
temporally coherent.

In summary, a function is used to interpolate the missing point
values in the dataset using linear interpolation, allowing to fill the
missing point gaps caused by small malfunctions of the camera. To
refine the temporal consistency, a Savitzky-Golay filter is then ap-
plied, which reduces noise and smooths the data. This integrated
approach ensures that the trajectory and spatial variations of the
landmarks remain consistent and do not present temporal anoma-
lies, guaranteeing temporal stability in the position of the landmarks
and enabling reliable analysis of facial movements throughout the
acquisition.
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3.3.6 Algorithm’s Outputs

At this point, the algorithm proceeds to compute all the previously de-
fined facial distances using the landmark numbering system provided
by MediaPipe. The processing generates a comprehensive visualiza-
tion consisting of a single figure with 11 subplots each dedicated to
one of the considered muscles, representing the temporal variation of
muscular length throughout the analyzed sequence. The main out-
put example of the method is displayed in Figure 3.9. In addition to
the graphical output, the same dataset is exported to an Excel file, en-
suring immediate compatibility and reusability with other software
platforms, such as MATLAB, for further analysis and post-processing
applications.

Figure 3.9: Output Muscular Distances during Happiness Expression
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3.4 MAE and MAPE Computing

To validate the RGB-D ML method and to evaluate any 2D-method
against manual DAO measurements (considered GS), the variation
in DAO length between rest and contraction was selected as the pri-
mary measure rather than the absolute DAO length. This approach
was adopted to eliminate any potential bias arising from individual
differences in muscle contraction patterns and general muscle ex-
pressiveness across subjects. Additionally, this methodology helps
reduce potential errors in landmark identification required for mus-
cle detection, as it focuses on the relative change rather than absolute
positioning accuracy.

Two main metrics were selected for evaluation: Mean Absolute Er-
ror (MAE) and Mean Absolute Percentage Error (MAPE). The math-
ematical formulations and computation procedures for both metrics
are presented below:

• DAO Length Variation: for both manual and automatic mea-
surements, the DAO contraction amplitude is calculated using:

Δ𝐷𝐴𝑂 = abs(𝐷𝐴𝑂rest − 𝐷𝐴𝑂contr) [mm] (3.1)

where DAOrest represents the DAO muscle dimension at rest and
DAOcontract represents the dimension during MVC.

• Mean Absolute Error MAE Assessment - The algorithm’s ac-
curacy is quantified by computing MAE between manual and
automatic measurements:

𝑀𝐴𝐸 =

˝𝑛
𝑖=1 abs(Δ𝐷𝐴𝑂𝑖 ,manual − Δ𝐷𝐴𝑂𝑖 ,automatic)

𝑛
[mm]

(3.2)

where 𝑛 is the number of subjects, Δ𝐷𝐴𝑂𝑖 ,manual is the i-th
DAO length variation derived from manual measurements and
Δ𝐷𝐴𝑂𝑖 ,automatic is the i-th DAO length variation derived from
automatic measurements.

This metric provides a quantitative measure of the discrepancy
between the DAO detection of the automatic method and the
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DAO GS manual measurements.

• Mean Absolute Percentage Error (MAPE) Assessment - In ad-
dition to MAE, the MAPE is calculated as:

𝑀𝐴𝑃𝐸 =

˝𝑛
𝑖=1

abs(Δ𝐷𝐴𝑂𝑖 ,manual−Δ𝐷𝐴𝑂𝑖 ,automatic)
Δ𝐷𝐴𝑂𝑖 ,manual

𝑛
× 100 [%] (3.3)

where 𝑛 is the number of subjects, Δ𝐷𝐴𝑂𝑖 ,manual is the i-th
DAO length variation derived from manual measurements and
Δ𝐷𝐴𝑂𝑖 ,automatic is the i-th DAO length variation derived from
automatic measurements.

Also this metric provides a quantitative measure of the accuracy
of the automatic method, by normalizing the MAE with respect
to the reference measurement magnitude. Unlike MAE, which
expresses the error in absolute units, MAPE enables comparison
across different contraction amplitudes and provides insight into
the proportional accuracy of the detection algorithm. So, these
two metrics give complementary information.
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3.5 Dynamic Contraction Parameters

To facilitate comparative dynamical analysis between different subject
groups, two key contraction parameters were computed from the
DAO muscle activity data. Using MATLAB visualization of DAO
contraction profiles, obtained from the RGB-D method application,
two critical time points were manually identified for each recording
acquisition:

• Contraction onset point 𝑡0: The temporal instant marking the
initiation of the requested emotional expression (DAO MVC, hap-
piness or sadness emotions)

• Peak contraction point 𝑡1: The moment of maximum muscular
activation during emotional expression

Figure 3.10: Time point identification and Parameters computing

Based on these manually identified time points, 𝑡0 and 𝑡1, the anal-
ysis software automatically computed two primary dynamic param-
eters:

• DAO Length Variation: Representing the total contraction range
of the muscle during expression.

𝐷𝐴𝑂 − 𝐿𝑉 = abs(𝐷𝐴𝑂𝑡1 − 𝐷𝐴𝑂𝑡0) [𝑚𝑚] (3.4)

where DAO is the length of the DAO muscle at the reference time.
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• Contraction velocity: Quantifying the rate of muscle activation,
thereby providing insight into the subject’s neuromuscular con-
trol capacity.

𝐶𝑉 =
𝐷𝐴𝑂 − 𝐿𝑉

𝑡1 − 𝑡0
[𝑚𝑚/𝑠] (3.5)

The DAO-LV serves as an indicator of an individual’s capacity
for emotional expression, with reduced values potentially reflecting
hypomimia commonly observed in subjects with PD.

The DAO CV measures the rate of change in facial muscle move-
ment over time, reflecting an individual’s intentionality and speed in
displaying emotions, with decreased velocity indicative of bradyki-
nesia characteristic of motor impairment in PD patients.

The experimental hypothesis predicts that PD subjects will demon-
strate significantly reduced DAO length variation and diminished
contraction velocity compared to healthy control groups, including
both YH and EH participants.

32



Materials & Methods

3.6 Statistic Test between two groups

To compare two generic data groups, a structured methodological
pipeline was implemented in two sequential phases, designed to en-
sure the application of the most appropriate statistical test based on
the distributional characteristics of the analyzed samples.

Phase 1: Assessment of Distribution Normality
Before proceeding with the comparative analysis, it was necessary

to determine whether the data from both groups followed a normal
distribution. This evaluation was carried out using a statistical testing
approach. Two complementary statistical tests were applied to verify
normality:

• Shapiro-Wilk Test: This was used as the primary test for normal-
ity assessment, particularly effective for small-to-medium sized
samples. The test verifies the null hypothesis that the data come
from a normal distribution by calculating the W statistic, com-
paring the observed distribution with the theoretical normal dis-
tribution [20].

• Lilliefors Test: This was employed as a supplementary test, rep-
resenting a variant of the Kolmogorov-Smirnov test specifically
adapted to test normality when the parameters of the normal
distribution are not known a priori. This test provides additional
verification of the normality assumption, increasing the robust-
ness of the preliminary analysis [13].

Phase 2: Application of Statistical Test
Based on the results obtained from the normality assessment, the

appropriate statistical test was selected and applied for the compari-
son between the two groups.

• Student’s t-test for normal distribution: When both groups
showed a normal distribution, the Student’s t-test for indepen-
dent samples was applied. This parametric test compares the
means of the two groups assuming that the data follow a normal
distribution and that the variances are homogeneous [22].

• Mann-Whitney Test: When one or both groups violated the
normality assumption, the non-parametric Mann-Whitney U test
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was used. This test compares the distributions of the two groups
based on the ranks of the observations, proving robust with re-
spect to the shape of the distribution and not requiring the nor-
mality assumption [15].

Figure 3.11 graphically shows the statistical test process.

Figure 3.11: Statistical test Pipeline
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Results

This chapter evaluates the proposed method across three key dimen-
sions. First, the method is validated against GS measurements to
establish its accuracy and reliability. Second, method performance is
assessed under reduced technical specifications to assess its robust-
ness under suboptimal conditions. Finally, method clinical utility is
examined through group discrimination during emotional expres-
sion tasks.

4.1 Method Validation Against GS Measurements

This section evaluates the performance of the proposed method under
optimal video specifications (RGB-D, 30Hz, 1280x720 resolution). The
method’s accuracy is assessed by comparison with GS measurements
provided in the dataset, Section 3.1, for the right DAO muscle. The
GS measurements include manual annotations of DAO muscle length
at rest and during contraction, as well as corresponding electromyo-
graphic (EMG) signals, both recorded during MVC expressions.

4.1.1 Validation Against Manual Right DAO Measurement

This subsection addresses the research question: ’What is the mea-
surement error of the RGB-D ML method relative to manual mea-
surements for right DAO Length Variation?’.

As described in the methodology section, Section 3.4, two compar-
ison metrics were used to evaluate the method performance against
the gold standard: Mean Absolute Error (MAE) and Mean Abso-
lute Percentage Error (MAPE). The comparison between automatic
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method measurements and manual GS measurements for right DAO
length variation produced a MAE of 1.5 ± 1.6 mm and a MAPE of
27.9 ± 27.2%.

Methods MAE [mm] MAPE [%]

Automatic vs. Manual 1.5 ± 1.6 27.9 ± 27.2

Table 4.1: Automatic vs. Manual Method

Statistical Differences between Manual and Automatic Measure-
ments

A statistical comparison was performed between manual and au-
tomatic right DAO length variation measurements. As described in
the statistical analysis section, Section 3.6, a Mann-Whitney test was
applied to assess potential differences between the two measurement
groups. As shown in Figure 4.1, the analysis revealed no significant

Figure 4.1: Statistic Test between Manual and Automatic DAO Measurements

differences between automatic and manual measures (p > 0.05).
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4.1.2 EMG Signals Analysis

As mentioned in Section 3.1, the available dataset includes EMG sig-
nals from subjects, specifically related to the DAO muscle in the exe-
cution of DAO MVC expression. This subsection presents a compre-
hensive analysis of the EMG data using three key parameters: EMG
Mean, EMG RMS, and EMG Amplitude. The complete dataset
was systematically divided into three distinct subgroups (YH, EH,
PD), then each EMG parameter analyzed through consistent statisti-
cal methodology by calculating the mean and standard deviation for
each group. Figure 4.2 presents the obtained results. The analysis

Figure 4.2: EMG Mean, EMG RMS, EMG Amplitude

showed that all three EMG parameters exhibit similar measurement
patterns across groups. The healthy control groups (YH and EH)
demonstrated consistent EMG RMS values. The pathological group
(PD) exhibited reduced EMG RMS values compared to the healthy
groups.

4.1.3 Method Validation Against EMG measurements

For additional validation of RGB-D ML method reliability, a compar-
ative analysis was performed between DAO Length Variation mea-
surements, method index, and EMG RMS signal trends during MVC
expression. The RMS was obtained as described in Section 4.1.2. The
analysis examined the correlation between the proposed method’s
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DAO Length Variation output and the average EMG RMS signals
across the three participant groups (YH, EH, and PD).

Statistical Correspondence
Figures 4.3 and 4.4 show the results of the statistical analysis be-

tween the two measurement approaches. The statistical analysis re-

Figure 4.3: DAO Length Variation during MVC expression

vealed:
Both DAO Length Variation and EMG RMS showed no significant

differences between Young Healthy (YH) and Elderly Healthy (EH)
groups (p > 0.05) Both measures demonstrated significant differences
when comparing PD patients with EH participants (DAO-LV p =
0.035, EMG RMS p = 0.0418)

Figure 4.4: EMG RMS during MVC expression
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Both measurement modalities demonstrated consistent group dis-
crimination patterns.

4.2 Method Performance Under Reduced Technical Spec-
ifications

This section presents the algorithm’s performance under various ex-
perimental conditions, including different dimensionality configura-
tions (2D vs 3D), frame rates (15 vs 30 Hz), and image resolutions
(1280x720 vs 640x480). The analysis aims to quantify how these pa-
rameters affect the algorithm’s accuracy in detecting DAO muscle
contractions.

The results are expected to demonstrate measurable performance
degradation in DAO muscle contraction identification as technical
constraints are introduced, providing insights into the algorithm’s
robustness and optimal operating conditions.

4.2.1 Calibration Method for 2D Analysis

The RGB-D ML method was not the only approach evaluated in this
study. To assess the robustness and practical applicability of the
proposed method, it was essential to evaluate its performance under
suboptimal conditions that deviate from the ideal experimental setup.
These challenging scenarios included the removal of depth sensor
information and the reduction of image resolution. Such evaluations
necessitated the development of alternative analysis pipelines and,
critically, the calculation of a pixel-to-millimeter conversion factor
to ensure dimensional consistency across different implementation
approaches.

The calibration approach differs significantly between the 2D and
3D implementations. For 3D analysis, no additional calibration was
necessary, since the Azure Kinect camera directly provides all re-
quired spatial coordinates in millimeters. However, 2D analysis re-
lied solely on RGB images without utilizing Kinect depth information.
Since Python’s MediaPipe library returns 2D coordinate values in pix-
els, a pixel-to-millimeter conversion factor was required to maintain
dimensional consistency.
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Figure 4.5: Calibration object

The conversion factor was calculated using a rigorous calibration
procedure with a reference object of known dimensions (535 x 440
mm) positioned at 50 cm from the Azure Kinect camera, maintaining
the same spatial configuration used for all facial acquisitions. Us-
ing a dedicated MATLAB script, two reference points were manually
selected on the calibration object within one acquired RGB image (Fig-
ure 4.5), and the Euclidean distance between these points was com-
puted in pixel coordinates. The conversion factor was determined by
dividing the known real-world distance (535 mm) by the measured
pixel distance, yielding a calibration factor of 0.833 mm/pixel. This
factor was subsequently applied to all 2D measurements to trans-
form pixel-based distances into metric units [mm], ensuring accurate
quantitative analysis and enabling proper validation against estab-
lished measurement standards.

After exploiting the 2D configuration specifics, the algorithm’s
performance was exploited under different experimental conditions
in 4.2.

Configuration Dim Frame Rate (Hz) Resolution
#1 3D 30 1280x720
#2 2D 30 1280x720
#3 2D 30 640x480

Table 4.2: Camera configuration parameters
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4.2.2 MAE and MAPE Across Video Configurations

The video configuration analysis focused exclusively on maximum
DAO contraction acquisitions, as these represent the only condi-
tions for which certified manual measurements are available. The
manual measurements of the DAO muscle at rest and during maxi-
mum contraction serve as the gold standard (GS) for validation, en-
abling objective assessment of the algorithm’s accuracy in detecting
DAO muscle contractions. MAE and MAPE were calculated for each
configuration described in Table 4.2. The comparative MAE analy-
sis across all tested configurations is presented in Figure 4.6, while
MAPE analysis in Figure 4.7. Configuration #1 (3D, 30Hz, 1280x720)

Figure 4.6: Mean Absolute Error MAE per configuration

achieved the lowest MAE value ( 0.15 cm) and MAPE value ( 27%).
Configurations #2 (2D, 30Hz, 1280x720) exhibited MAE values of
( 0.23-0.25 cm) and MAPE values of ( 45-47%), while Configurations
#3 (2D, 30Hz, 640x480) demonstrated the highest MAE values ( 0.27-
0.26 cm) and MAPE values ( 48-50%). The transition from 3D to 2D
acquisition (Configuration #1 vs #2) resulted in approximately 60%
increase in both parameters. The reduction from 1280x720 to 640x480
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Figure 4.7: Mean Absolute Percentage Error MAPE per configuration

(comparing #2 vs #3) produced MAE and MAPE increases of approxi-
mately 15-20%. A brief analysis on the impact of the frame rate on the
evaluation of DAO measurements indicated that temporal sampling
frequency has minimal influence on contraction detection accuracy.

Configuration MAE (cm) MAPE (%)

3D, 30Hz, 1280x720 0.15 ± 0.16 27.9 ± 27.22

2D, 30Hz, 1280x720 0.23 ± 0.21 45.91 ± 38.3

2D, 30Hz, 640x480 0.27 ± 0.22 49.31 ± 27.65

Table 4.3: Experimental results on different video configurations

4.2.3 DAO Measurements Statistical Analysis

To further validate the observed performance differences between
configurations, a statistical analysis was conducted using the Mann-
Whitney test. The analysis specifically compared the 3D configuration
(Configuration #1) against each 2D configuration to assess whether
the performance differences are statistically significant. The statistical
comparison results are presented in Table 4.4. Both p-values are below
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Configuration p-value
2D, 30Hz, 1280x720 0.037
2D, 30Hz, 640x480 0.002

Table 4.4: 2D configurations vs. RGB-D Method

the conventional significance threshold of 𝛼 = 0.05, confirming that
the observed performance improvements of the 3D configuration are
statistically significant.
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4.3 Clinical Application: Group Discrimination Dur-
ing Emotional Expression

This section presents a comprehensive statistical emotion analysis ex-
amining dynamic contraction parameters, calculated as in Section 3.5,
with particular emphasis on left and right DAO muscle contraction
differences across the study groups described in Section 3.1. To en-
hance the statistical power of the analysis, data from both left and
right DAO muscles were combined into a single expanded dataset,
effectively doubling the available sample size. Prior to conducting
the expressive emotion analysis, outlier detection and removal were
performed using the boxplot method, which identifies anomalous
values based on quartile calculations and removes data points falling
outside the range defined by 1.5 times the interquartile range from
the first and third quartiles.

In Section 4.1.3 the method capacity to discriminate between dif-
ferent study groups has been tested, comparing the method’s output
with the GS EMG signals. That assessment is now used to discrimi-
nate between study groups during happiness and sadness expression
analysis. The final objective of the analysis is to evaluate the clinical
application of the method, in assessing hypomimia and bradykinesia
in PD subject with respect to healthy subjects, YH and EH.

4.3.1 Happiness expression

Happiness expression represents a highly dynamic facial movement
that requires an elevated range of DAO muscle contraction compared
to other emotional expressions, such as sadness. The analysis of hap-
piness expression focuses on two key parameters: DAO Length Varia-
tion (DAO-LV) and Contraction Velocity (CV), as defined in equations
3.4 and 3.5.

Statistical analysis revealed distinct patterns across the study groups.
No significant differences were observed between Young Healthy
(YH) and Elderly Healthy (EH) subjects for both DAO-LV and CV pa-
rameters (p > 0.05). However, significant differences emerged when
comparing EH subjects with PD patients. Both DAO LV and CV
showed statistically significant reductions in the PD group compared
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Figure 4.8: DAO Length Variation - Happiness Dynamic Analysis

Figure 4.9: DAO Contraction Velocity - Happiness Dynamic Analysis

to the EH group (p = 0.03).

4.3.2 Sadness expression

Sadness expression involves minimal DAO muscle displacement that
closely resembles the resting facial condition. Statistical analysis re-
vealed no significant differences between Young Healthy (YH) and
Elderly Healthy (EH) subjects for both DAO-LV and CV parameters
(p > 0.05), consistent with the findings observed in happiness expres-
sion analysis. No significant differences were detected between EH
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Figure 4.10: DAO Length Variation - Sadness Dynamic Analysis

Figure 4.11: DAO Contraction Velocity - Sadness Dynamic Analysis

subjects and PD patients for either parameter (p > 0.05).
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Chapter 5

Discussions

5.1 Interpretation of Method Validation Results

MAE Performance Analysis. Considering that data acquisition was
performed at a 50 cm distance between subjects’ faces and the Azure
Kinect camera, a MAE of 1.5 mm demonstrates excellent performance,
as reported in Table 4.1. The RGB-D method shows high accuracy
in identifying DAO contraction compared to manual measurements,
with sub-millimeter precision that is remarkable for automated facial
muscle tracking at this distance.

MAPE Performance Analysis. The average DAO contraction range
during MVC expression is approximately 6-7 mm. Within this lim-
ited range, as reported in Table 4.1, an MAPE of 27.9% indicates
that while the absolute error is small, even minimal deviations can
result in disproportionately high percentage errors. This highlights
the critical importance of precise muscle identification and the in-
herent challenge of measuring such small physiological movements.
The relatively high percentage error reflects the sensitivity required
for accurate DAO contraction assessment rather than a fundamental
limitation of the method.

Statistical Validation Implications. As shown in Figure 4.1, the
statistical validation demonstrates that the automatic method pro-
duces measurements that are statistically equivalent to manual GS an-
notations, supporting the method’s validity for clinical and research
applications. This confirms the reliability of the muscle identifi-
cation method and establishes that this validation establishes the
fundamental accuracy of the method when operating under ideal
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technical conditions.
Interpretation of EMG Signals Analysis. The results in Figure

4.2 demonstrate that all three EMG parameters exhibit remarkably
similar measurement patterns across groups, thereby making the
selection of any single parameter for subsequent analysis essentially
equivalent in terms of discriminative power.

Focusing specifically on the EMG RMS parameter, several clini-
cally significant observations emerge from the comparative analysis
between groups. The healthy control groups (YH and EH) demon-
strate remarkably consistent EMG RMS values, indicating no sub-
stantial age-related differences in muscle activation patterns between
younger and elderly healthy subjects during standardized facial ex-
pressions. This finding suggests that normal aging does not signifi-
cantly compromise the electrical activity of the DAO muscle during
facial movement tasks.

In marked contrast, the pathological group (PD) exhibits signifi-
cantly diminished EMG RMS values when compared to their healthy
counterparts. This reduction in muscle electrical activity is particu-
larly pronounced in PD patients, providing quantitative confirma-
tion of the expected impairment in muscle contraction capacity that
characterizes this neurodegenerative condition.

These findings demonstrate strong alignment with established clin-
ical expectations, as the observed reduction in EMG activity within
pathological groups provides objective quantitative evidence for the
hypomimia documented in PD patients. The EMG data thus serves as
a valuable biomarker, offering measurable support for clinical obser-
vations of reduced facial expressiveness commonly associated with
neurodegenerative conditions.

Interpretation of EMG Validation Results
The cross-validation approach provides independent physiologi-

cal confirmation of the method’s accuracy by comparing mechanical
muscle movement detection, Figure 4.3, with electrical muscle ac-
tivity measurement, Figure 4.4. The statistical analysis revealed a
remarkable concordance between the two measurement approaches.
This parallel statistical behavior confirms that the RGB-D ML proto-
col captures physiologically meaningful muscle activity patterns that
correspond directly with EMG-detected electrical muscle activation.
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The method’s ability to distinguish between clinical populations
with the same sensitivity as EMG measurements validates its po-
tential as a non-invasive alternative for DAO muscle assessment and
demonstrates the RGB-D ML protocol’s sensitivity in discriminat-
ing between groups with different neuromuscular characteristics.

The consistent group discrimination patterns between RGB-D and
EMG measurements support the validity of the RGB-D approach,
providing evidence that the proposed method can reliably detect
physiological differences that correlate with established electrophys-
iological measures.

5.2 Interpretation of Method Performance Under Re-
duced Technical Specifications

The analysis of MAE, Figure 4.6, and MAPE results, Figure 4.7, across
different video configurations reveals significant insights into the
factors influencing the algorithm’s performance in detecting DAO
muscle contractions. Configuration #1, being the only one with the
depth sensor information, represented optimal performance condi-
tions. The results establish a clear hierarchical relationship between
technical parameters and measurement accuracy: dimensionality
emerges as the primary influence factor, with the transition from
3D to 2D acquisition resulting in approximately 60% increase in
both parameters. This substantial impact demonstrates that three-
dimensional data provides essential depth information for accurate
characterization of muscle tissue deformation during contraction,
which cannot be fully captured through planar imaging alone.

Image resolution represents a secondary influence factor. While
the reduction from 1280x720 to 640x480 represents measurable per-
formance degradation, the impact remains substantially lower than
the dimensionality effect, suggesting that the algorithm demonstrates
reasonable robustness to resolution variations within clinically rele-
vant ranges. The findings indicate that temporal sampling frequency
has minimal influence on contraction detection accuracy, suggest-
ing that lower frame rates can be employed without compromising
measurement quality. These findings have important implications
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for clinical implementation. The predominant influence of dimen-
sionality indicates that 3D acquisition should be prioritized when
maximum accuracy is required, while the moderate impact of spatial
resolution provides flexibility for different clinical scenarios when
3D acquisition is not feasible. The minimal frame rate dependency
offers practical advantages for system implementation, allowing for
reduced computational overhead and storage requirements without
significant accuracy compromise, which is particularly valuable in
clinical environments where real-time processing capabilities may be
limited.

DAO Measurements Statistical Analysis. The Table 4.4 results
provide strong statistical evidence supporting the superiority of depth
sensor-based acquisition over conventional 2D approaches. The highly
significant p-value for the Configuration #1 vs. #3 comparison (p
= 0.002) particularly emphasizes that the performance gap becomes
more pronounced as both dimensionality and resolution factors com-
pound their effects. This statistical confirmation reinforces the clin-
ical relevance of the observed differences, demonstrating that the
enhanced accuracy achieved through 3D acquisition represents a gen-
uine improvement rather than random variation, and establishes that
2D configurations cannot reliably match the measurement precision
achievable with depth sensor information.

5.3 Interpretation of Emotional Expression

Happiness Expression.
The finding that age alone does not significantly affect the dy-

namic characteristics of happiness expression in healthy individu-
als suggests that the facial muscle coordination required for express-
ing happiness remains relatively preserved during normal aging. The
significant differences between EH subjects and PD patients provide
quantitative evidence of hypomimia and bradykinesia in PD subjects
during happiness expression. The reduced DAO-LV, Figure 4.8, re-
flects the diminished capacity for emotional expression characteristic
of hypomimia, while the decreased CV, Figure 4.9,demonstrates the
motor slowness (bradykinesia) that affects facial muscle movement
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in PD patients. These results confirm the method’s sensitivity in de-
tecting the subtle motor deficits that characterize PD-related facial
expression impairments. This characteristic makes happiness a par-
ticularly suitable emotion for identifying inter-group differences, as
the more expressive nature of the movement amplifies the detection
of subtle motor impairments.

Sadness Expression.
Sadness expression presents a fundamentally different challenge

compared to happiness analysis due to its inherently subtle nature
and reduced movement amplitude. This similarity to the neutral
state introduces significant inter-subject variability in expression,
as individual baseline facial configurations and personal expressive
tendencies become more influential factors in the measurement out-
comes. The reduced movement range characteristic of sadness ex-
pression limits the method’s discriminative power between study
groups. The absence of significant differences, Figure 4.10 and Figure
4.11, between EH and PD groups in sadness expression can be at-
tributed to several factors. First, the minimal movement amplitude
required for sadness expression approaches the detection threshold
of the method, making subtle motor impairments less distinguishable
from normal inter-subject variability. Second, the proximity of sad-
ness expression to the resting facial state reduces the contrast needed
to identify bradykinesia and hypomimia effects. These findings high-
light the importance of selecting appropriate emotional stimuli when
assessing facial motor function in clinical populations, emphasizing
that more expressive emotions provide superior diagnostic sensitivity
for detecting PD-related motor deficits.
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Conclusions

In conclusion, returning to the main objectives of this thesis, the de-
veloped RGB-D method has proven to be more than reliable and clin-
ically valid. One of the main future development directions consists
in establishing a systematic association between facial landmarks and
muscles, to encompass all facial muscles that can be analyzed by the
method and not limit the analysis to the DAO muscle alone. In this
way, it would be possible to obtain real-time measurements of eleven
muscles during the execution of specific expressions or facial move-
ments. Having multiple muscular parameters would mean obtain-
ing more comprehensive information regarding the same expressive
movement, thus making the concept of a comprehensive evaluation
parameter a concrete prospect. By considering all muscles and inte-
grating them within an index that evaluates their contraction (both
in terms of range of movement and contraction velocity), it would
be possible to provide an indicator of subjects’ global contractile ca-
pacity, potentially reaching the definition of a Parkinson’s disease
progression parameter based exclusively on hypomimia and bradyki-
nesia symptoms. Naturally, for each identified muscle, it would be
necessary to perform specific validation of muscle identification, sim-
ilar to that carried out for the DAO (MAE = 1.51 mm and MAPE =
27.9%). This would require the acquisition of gold standard measure-
ments for all muscles to be included in the analysis. The method has
also demonstrated good discriminative capacity between different
groups (YH-EH-PD), as confirmed by comparison with DAO EMG
data, provided that the movement performed is sufficiently broad
and expressive (such as in happiness expression, rather than sadness
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expression). Regarding the technical specifications of the camera,
the depth sensor has proven to be the critical element in this type of
analysis, since the method’s performance without it decreases dras-
tically, resulting in an error increase of approximately 52% for both
MAE and MAPE. Concerning the image resolution used, the impact
is significant but of lesser magnitude. Indeed, resolution reduction
leads to a percentage error increase of approximately 79%, therefore
less influential than the absence of the depth sensor, but still relevant
for the overall system accuracy. The frame rate, as expected, is a
parameter that has limited influence in this type of application, deal-
ing with controlled and relatively slow movements, where a 30 Hz
frame rate does not substantially differ from a 15 Hz one in terms of
detection efficiency. Once all the proposed methodological improve-
ments have been implemented, it would be interesting to conduct a
more in-depth study of emotional expressions, including additional
emotions beyond happiness and sadness, such as anger, surprise,
or disgust. The objective would remain the quantitative evaluation
of how much the expressive movement of PD subjects is reduced
compared to healthy subjects, defining auxiliary parameters to un-
derstand disease progression and allowing the developed method to
be considered a full-fledged clinical evaluation tool.
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