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Summary

In recent years, binaural beats (BBs) have attracted growing interest in the scientific
community for their potential to non-invasively modulate brain activity, based on
the brainwave entrainment hypothesis. BBs are an auditory phenomenon that
occurs when two tones of slightly different frequencies are presented separately
to each ear, and the brain perceives a third tone corresponding to the frequency
difference. Numerous studies suggest that such stimulation can influence neuro-
physiological parameters and mental states related to relaxation, attention, and
emotional regulation. However, current literature is highly heterogeneous in terms
of protocols, frequencies, duration, and results, with most studies focusing on
prolonged stimulation (>10 minutes).

This study aims to explore the efficacy of a brief (1-minute) alpha-band (7-13 Hz)
stimulation to evaluate the emergence of short-term neurophysiological effects
and gain insights into rapid activation mechanisms. The experiment involved 14
subjects (mean age: 23.8 4+ 2.5 years) who participated in two sessions separated
by a 5-minute rest period, with simultaneous electroencephalography (EEG) and
electrocardiography (ECG) recordings during exposure to BBs and a sham condi-
tion, using a personalized protocol based on each participant’s Individual Alpha
Frequency (IAF).

Each 10-minute session alternated BBs and sham segments, delivered via JBL
headphones in a quiet room, with participants’ eyes closed and monitored to avoid
drowsiness. EEG signals were acquired using the Enobio 8 system and ECG
via a Polar H10 chest strap. Data were preprocessed through filtering, artifact
rejection, and segmentation. EEG features related to spectral activity, functional

connectivity, and signal complexity were extracted, along with heart rate variability
(HRV)-related ECG parameters.

The experimental setup was supported by the Neuroelectrics Instrument Con-
troller 2 (NIC2) for data acquisition and MATLAB for audio generation and signal
analysis. After preprocessing, several feature selection techniques were explored,
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and Recursive Feature Elimination (RFE) was selected to retain the most relevant
features for each subject, reducing the total to 10%.

Among all participants, the most significant features were related to signal complex-
ity (Higuchi Fractal Dimension, HFD) and brain synchronization (Phase Locking
Value, PLV). Subsequently, a subject-specific Support Vector Machine (SVM) clas-
sifier was implemented to track prediction trends over time during both sessions.

The analysis revealed two diverging trends: an increasing trend for BBs recogni-
tion and a decreasing one for sham. However, the classification accuracy did not
show significant deterioration, maintaining good overall recognition rates (Sham =
70.54% =+ 8.00%, BBs = 68.75% + 7.54%). Wilcoxon signed-rank tests showed no
significant differences between the two sessions (p > 0.05).

In conclusion, the study demonstrated the presence of short-term effects induced by
BBs stimulation, although it did not clearly distinguish between conditions across
all sessions. Future studies could aim to determine the minimum duration of BBs
stimulation required to produce a consistent and significant effect by modifying
the experimental protocol. Additionally, increasing the sample size and employing
a high-density EEG system would be necessary to reduce inter-subject variability
and improve the overall quality of the analysis.
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Chapter 1

Introduction

1.1 Nervous System

The nervous system monitors and responds to changes in the internal and external
environment of the body. It controls perception, behavior, memory, and voluntary
movements. Comprising all neural tissue, it transmits information throughout
the body. The central nervous system (CNS), made up of the brain and spinal
cord, handles integration and coordination. The peripheral nervous system (PNS)
includes all neural tissue outside the CNSM!,

1.1.1 Anatomy and Physiology of the Brain

The brain is divided into two distinct hemispheres and four primary lobes: the
parietal, frontal, temporal, and occipital lobes, each with specialized functions that
contribute to various aspects of cognition, sensory processing, and motor control:

o The frontal lobe lies in front of the central sulcus and is divided into key
areas: the prefrontal cortex, the premotor cortex and the primary motor
cortex, which is essential for motor function. Damage in this area can impair
motor tasks on the opposite side and affect expressive language (Broca’s area),
higher functions such as emotions, personality and decision-making. It also
houses the brain’s micturition center and the frontal eye fields, which control
saccadic eye movements. Lesions in the frontal lobe can cause disinhibition,
cognitive deficits, and regression to primitive reflexes, with eye movement
changes depending on whether the cause is a lesion or a seizurel?.

o The temporal lobe processes sensory input for emotions, memory, and lan-
guage comprehension. It houses the primary auditory cortex and Wernicke’s
area, responsible for language understanding, with lesions causing receptive
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Introduction

aphasia. The medial temporal lobe includes key structures like the hippocam-
pus, where damage leads to anterograde amnesia, and is a common site for
epilepsy, with seizures causing emotional changes, déja vu, or olfactory hallu-
cinations. Bilateral amygdala damage can result in Kluver-Bucy syndrome,
characterized by disinhibited behaviors. Damage to the optic radiation in the
temporal lobe may cause a "pie in the sky" visual defect, and posteromedial
lesions can lead to achromatopsial?.

o The parietal lobe integrates sensory input with the visual system and is
involved in perception and sensation. The primary somatosensory cortex,
located in the postcentral gyrus, processes contralateral sensory information.
Damage to the dominant parietal lobe can cause Gerstmann’s syndrome, with
symptoms like agraphia, acalculia, finger agnosia, and left-right disorientation.
Lesions in the non-dominant parietal lobe result in hemispatial neglect, leading
to difficulties in self-care 2.

» The occipital lobe is the primary center for visual processing in humans. Its
primary visual cortex, located in Brodmann Area 17 within the calcarine sulcus,
is essential for vision. Damage to one occipital lobe may cause homonymous
hemianopsia and visual hallucinations, while bilateral damage can lead to
cortical blindness, marked by loss of sight with preserved light reflexes. Anton
syndrome, a condition where patients deny their visual loss despite being
blind, is associated with cortical blindness. Other effects of occipital damage
include visual illusions, such as altered object size or abnormal coloration.

Central sulcus Postcentral gyrus

Precentral gyrus.

motor cortex
A Central sulcus
-

Primary somatic sensory cortex

Lateral

Prefrontal
association
cortex

vorsal

Primary
visual
cortex

Interhemispheric
fissure Prefrontal
association

cortex

Medial

ventral

27 Lateral

A sulcus

Lateral

Primary auditory

cortex \——Brainstem

Anterior Posterior _ Anterior Posterior
>

<
" Rostral Caudal

() (b)

Figure 1.1: Cerebral Anatomy: (a) Dorsal view and (b) Lateral view. Adapted
from).

"% Rostral ‘Caudal



Introduction

1.1.2 Cerebral Cortex

The cerebral cortex is the outermost layer of the cerebrum, measuring approxi-
mately 1.5 to 4 mm in thickness. It consists of gray matter, which is the most
functionally important layer as it contains neuronal cell bodies and unmyelinated
axons responsible for processing information. Beneath it lies the white matter,
composed primarily of myelinated axons that facilitate communication between

different brain regions.

Figure 1.2: Gray matter and white matter. Adapted from!*.

In newborns, the cerebral cortex grows rapidly, adapting to the constraints
of a small skull. Because the skull is not completely fixed at birth, the cortex
develops a highly convoluted structure with gyri and sulci, maximising the surface
area for cognitive and sensory processing. This unique convolution is essential
to accommodate the large number of neurons required for the brain’s complex

functions?!.

Figure 1.3: Illustration of gyri and sulci in the human brain. Adapted from!®.
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1.1.3 Subcortical areas

The main subcortical areas of the brain that interact with the cortex and are
intimately involved in motor and sensory functions include:

o The brainstem serves as a bridge connecting the cerebrum and cerebellum
to the spinal cord. It houses key centers responsible for autonomic functions
like breathing, heart rate, temperature regulation, digestion, and wake-sleep
cycles. Composed of both white and gray matter, its white matter contains
fiber tracts that relay voluntary motor signals from the cerebral cortex and
somatosensory information from the spinal cord to the brain!™.

e The cerebellum coordinates voluntary movement and refines motor activity
by processing sensory input from the brain and spinal cord. It also plays a
role in cognitive functions like attention, language, pleasure response, and fear
memory!®.

o The thalamus, a gray matter structure of the diencephalon, acts as a relay
station between the brain and body, processing sensory and motor signals
and regulating consciousness, sleep, and wakefulness. It consists of nuclei
that handle sensory input, with specific nuclei dedicated to visual, auditory,
and somatosensory information. The thalamus also connects to the limbic
system, playing a role in memory and learning. While primarily gray matter,
it contains white matter structures like the medullary laminae. The reticular
nucleus modulates signals from other thalamic nuclei but does not project to
the cortex. Advances in neuroimaging have improved the understanding and
surgical accessibility of the thalamus®.

o The basal ganglia, a cluster of subcortical nuclei, primarily regulate motor
control and also influence cognition, reward, and emotion. Key structures
include the striatum (caudate and putamen), globus pallidus, subthalamic
nucleus, and substantia nigra. Motor control is managed through two opposing
pathways: the direct pathway, which promotes movement, and the indirect
pathway, which inhibits movement. Dopamine from the substantia nigra
modulates these pathways by exciting the direct pathway (via D1 receptors)
and inhibiting the indirect pathway (via D2 receptors). Dysfunction of the
basal ganglia is linked to motor disorders such as Parkinson’s and Huntington’s

diseases,

1.1.4 Neurons and Glial Cells

Neurons are the cells which are considered to be the core of nervous tissue. They
are responsible for electrical signals that transmit information about sensations
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and produce movements in response to these stimuli, as well as inducing thought
processes within the brain. An important part of the function of neurons lies in
their structure, or shape. The three-dimensional shape of these cells makes the
immense number of connections within the nervous system possible.''! Neurons
consist of a cell body (soma) with a nucleus and organelles, along with specialized
structures for communication. Dendrites receive signals from other neurons at
synapses, while the axon hillock integrates these signals and propagates them
through the axon to axon terminals, where chemicals transmit signals to other
cells. Myelin, produced by glial cells, insulates axons to increase signal speed,
with nodes of Ranvier “recharging” the signal along the way. Neurons rely on
extensive networks of connections, with some, like Purkinje cells, receiving inputs
from thousands of other neurons!*?.

VN
. \\ y, Qy‘} Axon Oligodendrocy
Cell memblane—;_—-—_i O
Sl .. TNy
Dendrite ——————io 7 ) \ Q . g{ =
A — <
LK\\“\ \g\l
Node of Ranvier
oy
Myelin sheath s——
~ A\
LFe \
N

SyNapse ———

Figure 1.4: Neurons contain organelles common to many other cells, such as a
nucleus and mitochondria. They also have more specialized structures, including
dendrites and axons. Adapted from!?.

Glial cells, which outnumber neurons by tenfold, are essential for nervous system
function. They guide developing neurons, buffer harmful ions and chemicals, and
produce myelin sheaths to insulate axons and enhance signal speed. Glia also
play active roles in responding to nerve activity and modulating communication
between neurons. Without glial cells, neurons could not function properly. Their
importance is further underscored by the fact that many brain tumors result from
glial cell mutations. Neurons, meanwhile, rely on dendrites, axons, and synapses
for communication, with extensive networks like Purkinje cells receiving thousands
of inputs'® 12,
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1.1.5 Synapses

The human brain contains about 86 billion neurons that communicate through
electrochemical signals at specialized junctions called synapses. A synapse consists
of a presynaptic terminal, where an electrical signal (action potential) triggers
neurotransmitter release, and a postsynaptic terminal containing receptors that
bind these neurotransmitters. Synaptic connections can range from a few to
hundreds of thousands per neuron!3.

Signal direction

T -
g Coane®
&
L Post-synaptic cell

Dendrites

Figure 1.5: Signal transmission from the presynaptic neuron to the postsynaptic
neuron. Adapted from!'

Chemical synapses, the most common type in mammals, involve neurotrans-
mitters crossing a synaptic cleft, with a delay of 0.5-1 ms. Synaptic types include
axodendritic (usually excitatory), axosomatic (inhibitory), and axoaxonic (modu-
latory). In contrast, electrical synapses use gap junctions for direct current flow
between neurons, enabling faster communication with minimal delay!*3.

-+— Plasma

Action | |
/ membrane of
Presynaptic potential — Axon terminal
e /’ i presynaptic cell
4y
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O] / 2D

Voltage-gated

@ Ca2* channel \
< v, Synaptic
\¥‘ ":‘ vgsicfes
‘% Ca?+ __—7

©) ©)
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LK @
Vpd | —» v
S ti : v
y;z'p' c Na* ¥ Neurotransmitter
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f’ i @ L. \— Plasma membrane
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Figure 1.6: Synaptic transmission from presynaptic to postsynaptic neuron via

neurotransmitter release and receptor activation. Adapted from['?.
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Neurons rely on glial cells for development, growth guidance, and reuptake
of excess neurotransmitters. Axons transport neurotransmitters to presynaptic
terminals, while dendrites receive and integrate signals. During development,
synapses form in a precise sequence, starting with large motor neurons, followed by
sensory neurons and glial cells. This orchestrated process ensures accurate neuronal
communication and network functionality in the central nervous system!!3,

1.2 Electroencephalogram (EEG) signal

1.2.1 Background and Historical Development

An electroencephalogram (EEG) records the electrical potentials generated by
cortical neurons through scalp electrodes. This methodology was first demonstrated
by Richard Caton in 1875 and later applied to human subjects by Hans Berger
in 19240'! Despite significant advancements in neuroimaging techniques, EEG
continues to serve as the cornerstone paraclinical tool for seizure evaluation!6!.

Modern digital EEG systems capture data from at least 128 channels at sampling
rates above 10 kHz with 24-bit resolution and can detect synchronous discharges
from cortical regions of roughly 10 cm?.

Well-trained technicians and experienced clinical neurophysiologists are needed
to collect and correctly interpret EEG signals.

Figure 1.7: Hans Berger’s first encephalograph. Adapted from!'"

1.2.2 Physiology of EEG Signals

As mentioned above, scalp electrodes detect the summated dipolar fields produced
by synchronized excitatory and inhibitory postsynaptic potentials in cortical pyra-
midal cells. These signals arise from ionic currents flowing in the extracellular space
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of dendritic membranes in cortical layers III to V, where pyramidal neurons are
densely packed. Since cell membranes act as electrical insulators, only extracellular
currents pass through the brain tissue and skull to the scalp electrodes, unfor-
tunately intracellular currents remain inaccessible. The biophysical phenomenon
that allows propagation of these local field potentials is known as volume conduction.

Excitatory postsynaptic potentials, driven by sodium influx into distal dendrites,
generate a local extracellular negativity at the synapse (an active sink) and a
compensating positivity at a distance (a passive source). Inhibitory postsynaptic
potentials produce the opposite pattern, with chloride influx creating extracellular
positivity at the synapse (active source) and negativity at the passive sink.

The anatomical arrangement of pyramidal neurons in palisades, with apical
dendrites aligned perpendicular to the cortical surface, enables coherent dipole
formation across large neuronal populations. When tens of square centimeters of
cortex are synchronously activated, these individual dipoles summate into electrical
currents detectable by scalp electrodes. In contrast, action potentials are brief,
spatially discrete, and largely asynchronous, contributing minimally to surface
EEG recordings. The requirement for widespread, synchronized activity and the
smearing effect of volume conduction impose limits on EEG’s spatial resolution.

Recording
electrode and
intervening tissues
of head <

Pyramidal neuron <
dipoles

Figure 1.8: Representation of the electric dipole formed by pyramidal neurons
through the scalp. Adapted from!'®.

The resulting dipole orientation and cortical location shape the scalp potential
topography, which can be visualized through voltage or amplitude maps.
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In a relaxed, awake state, the dominant EEG rhythm is the 7-13 Hz posterior
alpha rhythm, a product of oscillatory interactions between cortex and thalamus.
Engaging in mental tasks desynchronizes this alpha activity, producing lower-
amplitude, higher-frequency beta waves in the 13-30 Hz range. During sleep and
under encephalopathic conditions, slower theta waves (4-7 Hz) and delta waves (<
4 Hz) predominate, as will be explained later in subsection 1.2.5.

In the process of development, EEG patterns evolve from discontinuous neonatal
rhythms to continuous adult-like rhythms detected at about eight years of age.
The primary neuronal sources of these rhythmic waveforms reside in cortical layers
III and V, where pyramidal cell bodies and the extensive dendritic tree generate
dipolar fields.

Together, the interplay of synaptic anatomy, neuronal synchronization, and
volume conduction underlies the rich tapestry of EEG signals recorded at the
scalp. Understanding these anatomical and physiological principles is essential for
interpreting EEG patterns in both clinical and research settings!'*!.

1.2.3 Overview of Non-Invasive Scalp EEG Electrodes

Scalp EEG electrodes serve as the non-invasive interface between the patient and
the recording system!’0!. Each electrode consists of a cup-shaped disc made of
inert metal (commonly silver /silver-chloride or gold) filled with electrolytic paste,
ensuring stable ion exchange and a consistent electrode potential™®l. When voltage
is applied at the metal-paste interface, current flows according to Ohm’s law (V =

[ - R), while in alternating-current circuits impedance (Z) replaces resistance (V =
I- Z).[lg}

To minimize thermal noise and avoid salt-bridge artifacts, electrode impedances
should be maintained between approximately 100 €2 and 10 k2 through meticulous
skin preparation and the use of a high-sodium-concentration conductive pastel'.

Electrode placement follows the International 10-20 system as extended by
the IFCN, relying on cranial landmarks (nasion, inion, pre-auricular points) and
spacing electrodes at 10% or 20% intervals of the measured distances between
them!'”. Each site is labeled with a letter denoting the underlying brain region
(e.g., Fp for frontal-polar, T for temporal) and a number (or “z”) for midline
electrodes; odd numbers indicate left-hemisphere sites, even numbers right, and
higher numbers more lateral locations. The addition of the inferior temporal
chain beyond the classic array extends coverage to basal temporal regions, thereby

improving diagnostic yield and localization accuracy of epileptic discharges!'!. For
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studies requiring greater source-localization precision, high-density configurations
with 5% spacing can be used, though these are less practical for routine or long-term
monitoring.

Nasion
.—__1_9 %

Pre-auricular
point

Figure 1.9: 10-20 EEG system. Adapted from[%.

Modern EEG amplifiers feature high input impedances that tolerate electrode
impedances up to 10 k{2 without compromising signal fidelity, provided that elec-
trode contact remains stable. Semi-invasive sphenoidal electrodes—stainless-steel,
silver, or platinum wires inserted lateral to the foramen ovale via the zygomatic
arch—allow deeper temporal recordings but at the expense of increased patient dis-
comfort and procedural risk[". Finally, ground and reference electrodes, together
with auxiliary ECG, EMG, and respiratory channels, are essential for identifying and
removing physiological artifacts, and impedances should be checked immediately af-
ter application, at the start and end of recording, and whenever stability is in doubt.

1.2.4 EEG acquisition methods

EEG signals can be acquired using various montages and referencing strategies,
which influence the quality, interpretability, and spatial resolution of the recorded
data. The main acquisition configurations include monopolar (referential), bipolar,
and common average referencing, each with specific technical and physiological
implications.

In a monopolar (or referential) configuration, each electrode records the poten-
tial difference between a scalp location and a common reference electrode, which is
typically placed on an electrically neutral site such as the mastoid, earlobe, or the
vertex (Cz)?!). This method provides high signal amplitude and is widely used in
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clinical applications, although it can be susceptible to reference contamination and
common-mode artifacts.

The bipolar montage involves calculating the potential difference between two
adjacent scalp electrodes. This approach improves the location of cortical activity
and reduces common noise, as artifacts common to both electrodes tend to cancel
each other out. Bipolar recordings are particularly useful for detecting localised

discharges[??.

A more refined technique is differential acquisition, where signals are measured
between a pair of electrodes, often processed with high common-mode rejection
ratio (CMRR) amplifiers. This configuration improves signal quality by reducing
ambient noise and is commonly used in research-grade EEG systems and dry
electrode setups!?3.

Other methods include common average referencing (CAR), where the
average of all electrode signals is used as a dynamic reference. This strategy can
mitigate reference bias and is beneficial in dense-array EEG recordings(®4.

Bipolar
single-channel EEG

——

AMP

- Ground
electrode

Unipolar
single-channel EEG

@ =
Reference = Ground
electrode electrode

Figure 1.10: Differences between bipolar and unipolar eeg acquisition. Adapted

from[2?]

Modern EEG caps (electrode caps) often support flexible referencing config-
urations through integrated active or passive electrodes, enabling high spatial
resolution and adaptability for specific experimental paradigms. Understanding
the implications of each acquisition method is critical for optimizing data quality
and ensuring the reliability of EEG-based analyses.
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1.2.5 Brain Rhythms

EEG signals consist of distinct frequency bands, each associated with different
brain states. The primary EEG rhythms include:

» Delta (0.5-4 Hz) : Predominant in deep sleep, especially in the frontocentral
regions. Pathological delta waves in awake states indicate encephalopathy or
focal cerebral dysfunction!?®,

o Theta (4-7 Hz) : Common in drowsiness and early sleep stages (N1, N2),
originating in the frontocentral regions. It shifts posteriorly with increasing
drowsiness. Emotional states can enhance theta activity in young individuals,
while focal theta in awake states suggests cerebral dysfunction!?®,

o Alpha (7-13 Hz) : The dominant rhythm in awake adults, seen in the
occipital regions with eyes closed. It disappears with eye opening or mental
effort. Slowing of alpha indicates cerebral dysfunction. Mu rhythm, a central
variant, attenuates with motor activity but not eye opening!?%.

» Beta (13-30 Hz) : Most prominent in the frontal and central regions, increasing
with drowsiness and sedative use. It is typically low in amplitude but can be

suppressed by cortical injury or fluid collections?®.

« High-Frequency Oscillations (HFOs) (>30 Hz) : Includes gamma (30-80
Hz), ripples (80-200 Hz), and fast ripples (200-500 Hz). Gamma rhythms
aid sensory integration, while HFOs are linked to epileptic activity, with fast

ripples indicating epileptogenic regions!26.
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5 HUMAN BRAIN WAVES FREQUENCY
Alpha - 13+z)

Theta ¢ -3z \/\/\/\/\/\\/\/\/v\_/ Beta (13- 301z)
Delta (0.3 - 4Hz) I l | Gamma (30Hz and above)

Figure 1.11: Quadrant diagram depicting the five principal brain rhythms—delta
(0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-100
Hz)—along with their frequency bands and associated cognitive functions. Adapted
from!?7.

1.3 Cardiovascular System

The cardiovascular system is a closed circulatory network comprising the heart,
blood, and vessels, responsible for transporting oxygen, nutrients, hormones, and
waste products throughout the body®. The heart functions as a dual pump: the
right side drives deoxygenated blood through the pulmonary circuit, while the left
side propels oxygenated blood into the systemic circulation?”. Arteries and arteri-
oles conduct blood under high pressure, while capillaries facilitate exchange with
tissues, and veins return blood under low pressurel?. Cardiac output, determined
by stroke volume and heart rate, adapts dynamically to metabolic demands®!.
Neurohormonal control mechanisms, including autonomic inputs and endocrine
signals, ensure homeostatic regulation of blood pressure and tissue perfusion®.
Efficient cardiovascular function is critical for maintaining internal balance and
supporting cellular metabolism!??.
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Figure 1.12: Cardiovascular system. Adapted from/®?.

1.3.1 Anatomy of the Heart

The heart is a midline, cone-shaped muscular pump about the size of a fist, weighing
roughly 300 g and nestled in the middle mediastinum, with its base formed mainly
by the left atrium and its diaphragmatic surface resting on the central tendon of
the diaphragm/®?. Its fibrous pericardium, continuous with the great vessels and
diaphragm, envelops two serous layers whose reflections create the transverse and
oblique pericardial sinuses®¥. Internally, an obliquely oriented interventricular
septum bulges rightward—owing to the left ventricle’s thicker wall—and divides the
right ventricular chamber (characterized by trabeculae carneae, pectinate muscles,
and the moderator band) from the left ventricle (noted for its robust trabeculae
and aortic vestibule)®3. The right atrium, receiving the superior vena cava (SVC)
and inferior vena cava (IVC) and housing the fossa ovalis and crista terminalis,
conducts blood through the tricuspid valve into the right ventricle, which outflows
via the pulmonary valve into the pulmonary trunk®?. The left atrium, forming
the heart’s base, receives four pulmonary veins into its smooth chamber and
channels blood through the mitral valve into the high-pressure left ventricle, which
then ejects through the aortic valve into the ascending aortal®®l. A figure-of-eight
fibrous skeleton anchors all four valves and electrically isolates atria from ventricles,
ensuring coordinated contractions®¥. Impulses originate at the sinoatrial node in
the right atrium, pass to the AV node at the septal tricuspid cusp, then travel
via the His—Purkinje system to elicit ventricular contraction, all finely tuned by
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sympathetic and parasympathetic innervation®. Finally, the coronary arteries

arise from the aortic sinuses—right and left—supplying myocardium whose venous
return drains via the great, middle, and small cardiac veins into the coronary sinus,
with additional drainage through Thebesian veins directly into the chambers[®3.

Aorta

Superior vena cava Left pulmonary artery

Right pulmonary artery Left atrium

Pulmonary trunk Left pulmonary veins

Right pulmonary

veins Mitral (bicuspid) valve
Right atrium

. Aortic valve
Fossa ovalis

Tricuspid valve Pulmonary valve

Right ventricle Left ventricle

Chordae tendineae Papillary muscle
Interventricular septurmr
Epicardium
Myocardium
Endocardium

Trabeculae carneae
Moderator band

Inferior vena cava

Figure 1.13: Heart Cross-section (frontal view). Adapted from[4.

1.3.2 Physiology of the Heart

The cardiovascular system hinges on the heart’s role as a dual pump: its chambers
generate the pressure necessary to propel blood through both pulmonary and
systemic circuits, and they adjust stroke volume to match venous return via the
Frank-Starling mechanism. Within this closed loop, arterial and venous networks
distribute blood to every tissue, with total peripheral resistance determined by ves-
sel diameter and blood viscosity®®. Under resting conditions, venous return largely
governs cardiac output, but during intense activity or in disease states, the heart’s
intrinsic contractile capacity can become the limiting factor. Exchange across
capillary beds ensures that oxygen and nutrients reach cells while metabolic byprod-
ucts are removed, driven by the balance of hydrostatic and oncotic pressures?.
Short-term regulation of arterial pressure depends on the interplay between cardiac
output, peripheral resistance, and rapid baroreceptor reflexes, whereas long-term
pressure homeostasis is achieved through renal control of fluid volume and the
renin-angiotensin-aldosterone axis”.
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Figure 1.14: Capillary and lymphatic exchange. Adapted from!3¢).

Locally, tissues fine-tune blood flow to match metabolic demand via functional
hyperemia and autoregulation, safeguarding oxygen delivery even when systemic
pressures fluctuate. The coronary circulation exemplifies this, employing robust
autoregulatory mechanisms and collateral vessels to maintain perfusion despite
changing loads. Endothelial and smooth muscle cells integrate mechanical forces
(such as shear stress) and chemical signals (including nitric oxide and metabolic
autacoids) to modulate vascular tone. Autonomic innervation further refines
cardiovascular responses: sympathetic and parasympathetic pathways swiftly adjust
heart rate and vessel diameter to meet moment-to-moment demands®®. Blood
composition—hematocrit and plasma protein levels—affects viscosity and oncotic
pressures, thereby influencing cardiac workload and capillary filtration!®!. In
parallel, cardio-renal feedback loops link changes in arterial pressure and flow
to renal salt and water excretion, closing the integrative control circuit®®. The
lymphatic system complements these processes by returning interstitial fluid to
the bloodstream, preventing edema and maintaining fluid balancel®. Finally,
chronic stimuli such as regular exercise or sustained hypertension drive structural
remodeling of the heart and vessels, enabling the system to adapt to altered
hemodynamic demands over timel3?.

1.4 Electroencephalographic (ECG) signal

The electrocardiogram (ECG or EKG) is a non-invasive recording of the heart’s
electrical activity obtained through electrodes affixed to the skin®”. First described
by Willem Einthoven in 1902, it quickly became indispensable for diagnosing and
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monitoring cardiovascular disorders®.

Figure 1.15: Einthoven’s first ECG machine. Adapted from[*.

A standard 12-lead ECG employs six limb leads (I, II, 111, aVR, aVL, aVF)
and six precordial leads (V1-V6) to capture electrical vectors in both frontal
and horizontal planes®”. During normal sinus rhythm, impulses originate at the
sinoatrial (SA) node and propagate through the atria, generating the P wavel",
A brief delay at the atrioventricular (AV) node produces the PR interval on the
tracing. Rapid, synchronous depolarization of the ventricles yields the QRS complex,
which reflects coordinated contraction. Ventricular repolarization follows as the T
wave, completing the main waveform sequence. Proper skin preparation—cleaning,
shaving, and application of conductive gel—minimizes artifacts and ensures high-
fidelity tracings?®".

Accurate electrode placement is critical for reliable regional assessment of my-
ocardial electrical activity.

Modern ECG machines convert the analog cardiac signal into digital form
using front-end analog-to-digital converters, typically sampling at rates ranging
from 1,000 to 15,000 Hz. These high sampling rates are essential for preserving
the fine temporal structure of the electrocardiogram and enhancing the detec-
tion of pacemaker spikes as well as high-frequency components within the QRS
complex!”). Signal fidelity is further maintained through digital filtering techniques:
low-frequency filtering with a cutoff at 0.05 Hz, implemented via zero-phase digital
filters, effectively reduces baseline wander without compromising the integrity of
the ST segment, while high-frequency filtering—using cutoffs of at least 150 Hz in
adults and up to 250 Hz in infants—allows accurate representation of the rapid
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Figure 1.16: 12-leads ECG placement. Adapted from!®.

upstroke velocities and subtle notches that are often clinically relevant.

To minimize beat-to-beat variability and background noise, digital electrocardio-
graphs construct representative average or median complexes for each lead. This
template-based approach facilitates more stable measurements, especially when
combined with time-coherent, simultaneous acquisition across all twelve leads,
which allows for global determination of intervals by identifying the earliest onset
and latest offset of any waveform in any lead*”. Automated algorithms then
process these templates to derive key diagnostic parameters such as the P-wave
duration, PR interval, QRS duration, and QT interval, supporting diagnostic
classification workflows. However, despite the sophistication of digital analysis, the
involvement of a trained clinician remains essential to interpret subtle abnormalities
and to distinguish pathological signals from artifacts that automated systems might
overlook.

The interpretative process typically follows a structured approach, beginning
with an evaluation of heart rate, rhythm, and electrical axis, and proceeding to
detailed analysis of waveform morphology and interval durations.
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Figure 1.17: Normal ECG signal with his different features. Adapted from!*!,

Beyond the confines of the clinic, continuous ECG monitoring is increasingly
performed through telemetry systems, Holter monitors, and wearable devices,
which extend the temporal window for arrhythmia detection and support long-term
management strategies®”. To facilitate storage and transmission, digital compres-
sion techniques are routinely applied, generally without significant degradation of
diagnostic fidelity.

As technology advances, standards for template fidelity and interval measurement
algorithms continue to evolve, with promising developments on the horizon including
adaptive filtering and machine learning—based interpretation systems. However, in
the context of these innovations, the fundamental principles of electrocardiography
remain unchanged: thorough understanding of the origin of the waveform, accurate
identification of morphological features, and a methodical approach to interpretation
are still the cornerstones of ECG analysis.

1.5 Reconstructing Sound in the Auditory Path-
way

Sound waves enter the outer and middle ear, where the ossicles amplify vibrations
and transmit them into the fluid of the cochlea. Within the cochlea, pressure
waves travel along the basilar membrane, bending hair-cell stereocilia against the
tectorial membrane and opening potassium channels to convert mechanical energy
into receptor potentials. Spiral ganglion neurons bundle into the auditory nerve,
carrying frequency-specific and intensity-dependent signals first to the cochlear
nuclei, which preserve the tonotopic map. From there, fibers ascend to the superior
olivary complex, where interaural time and level differences are computed for spatial
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localization. The lateral lemniscus and inferior colliculus integrate these binaural
cues and begin scene analysis by segregating overlapping sound sources. The medial
geniculate nucleus of the thalamus relays and refines auditory patterns before they
reach the primary auditory cortex. In cortex, tonotopic organization persists, with
clusters of neurons tuned to similar frequencies reconstructing complex features
such as speech envelopes and phonemes. Higher-order auditory areas then extract
speaker identity and other salient sound characteristics through distributed neural
networks. Finally, descending pathways from the auditory cortex dynamically
modulate hair-cell responsiveness and brainstem processing to adapt reconstruction
based on attention and context!*?

Moreover, the medial olivocochlear (MOC) efferent system exerts a feedback
control on outer hair cell electromotility, improving signal detection in noise and
protecting the cochlea from acoustic overstimulation(*?). Corticofugal fibers orig-
inating in layer V of the primary auditory cortex project to both the superior
olivary complex and the cochlear nucleus, mediating rapid plasticity and sharp-
ening frequency tuning at peripheral and brainstem levels*¥. These descending
pathways operate on multiple timescales, from fast oscillatory modulation in the
delta—theta bands linked to attentional shifts to longer-term synaptic changes
underlying auditory learning and memory*4. In cortex, belt and parabelt regions
are organized into parallel ventral and dorsal streams: the ventral stream analyzes
sound identity and phonemic structure, while the dorsal stream integrates auditory
with sensorimotor information for spatial and sequence processing!*®. Moreover,
corticothalamic projections to the medial geniculate nucleus form recurrent loops
that refine temporal precision and context-dependent gating of incoming signals(l.
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Figure 1.18: From the ear to the cerebral cortex. Adapted from!*".

21



Chapter 2

Binaural Beats

2.1 Understanding Binaural Beats: Fundamen-
tals and Mechanisms

Combining two pure tones that differ slightly in frequency produces amplitude
fluctuations at a rate equal to their frequency difference. If both tones reach
the same ear, these physical intensity modulations are heard as acoustic beats.
Presenting two tones with a slight frequency mismatch to each ear separately creates
a perception of a third tone—a binaural beat—that oscillates at the absolute
difference between the tones!*®). However, when one steady-frequency tone is
delivered to each ear, listeners still perceive beats—even though there are no
intensity changes at the ears themselves*”. These “binaural beats” arise in the
brain, where neural signals from the two ears converge in central auditory pathways,
with origins thought to lie subcortically in the medial nucleus of the superior olivary
complex®. Oster (1973) showed that, within the medial superior olive, each
cycle of the presynaptic signal evokes a synchronized spike potential (“microphone
theory”), whereas groups of fibers discharge in volley at higher frequencies (“volley
theory”), thus enabling phase information to be conveyed up to 1 kHz despite
the limits of neural phase-locking®l. The perceived modulation depth of binaural
beats is very low (approximately 3 dB), well below the intensity variations required
for monaural beats, and this value establishes the minimum detection threshold
for binaural beats in the brain®!l. Furthermore, adding white noise enhances the
sensation of beats via a stochastic resonance mechanism, whereby random noise
reinforces subthreshold phase fluctuations without altering the physical intensity of
the soundY. Finally, studies using evoked potentials reveal significant differences in
waveform amplitude and latency between monaural and binaural beats, confirming
two distinct processing pathways within central auditory pathways®!l. Binaural
beats can entrain cortical activity at both the specific frequency of the beat!*? and
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cross-frequency modulations, such as theta beats driving interhemispheric alpha
synchronization®?. They also seem to modulate mood®3, pain perception®¥, and
cognitive performance in memory tasks!®!.

In addition, these percepts align with canonical EEG rhythms—Delta (0.5-4 Hz),
Theta (4-7 Hz), Alpha (7-13 Hz), Beta (13-30 Hz) and Gamma (>30 Hz)—each
associated with different cognitive states such as deep sleep, meditation, relaxation,
and active consciousness. Acoustically, binaural beats can be framed as the
sensation of a moving sound source generated by an interaural phase difference:
two ear-specific signals

si(t) = sin (27 ft), (2.1)
sp(t) = Sin(27rf2t), (2.2)

are equivalent to a single carrier at
fcarrier - fl ;_ f2 (23)

with amplitude normalization at
fmod - |f2 ; f1| (24)

because

so(t) =sim(2nfit + 0(1)),  B(t) = 2r(fo — fi)t (2.5)

This linear phase shift implements an interaural time-difference cue that listeners
interpret as lateralized motion. Perception is optimal for carrier frequencies below
1.5 kHz(ideally <1 kHz[®) and modulations under 35-40 Hz, beyond which beats
are poorly resolved7.
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Figure 2.1: This diagram(adapted from®) illustrates binaural beats:

Top: two pure sine waves at slightly different frequencies (f; and f5), same ampli-
tude but out of phase.

Bottom: their sum—a carrier at the average frequency whose amplitude is modu-
lated by a slow “beat” at |fs — fi].

2.2 The Brainwave Entrainment via Binaural
Beats

The brainwave entrainment hypothesis proposes that rhythmic auditory or visual
stimulation at a given frequency can induce the brain’s electrical activity to
oscillate in time with that external rhythm or its harmonics®®. Early support
came from studies showing time-locked auditory steady-state responses (ASSRs)
and frequency-following responses (FFRs) during binaural-beat presentation % 69,

What makes entrainment via binaural beats especially attractive is the well-
established mapping between EEG frequency bands—Delta (0.5-4 Hz), Theta (4-7
Hz), Alpha (7-13 Hz), Beta (13-30 Hz), Gamma (>30 Hz)—and distinct physiologi-
cal and psychological states, from deep sleep and meditation to active concentration
and arousall!l. Consequently, researchers have tested whether delivering binaural
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beats at target frequencies can induce corresponding changes in cognition, emotion,
and autonomic function: effects on working memory, attention, mood regulation,
pain perception, relaxation, mind wandering, creativity, and hypnotic susceptibility
have all been reported!©.

2.3 Binaural Beats in Research: A State-of-the-
Art Review

Several studies have investigated the neurophysiological and psychological effects
of binaural beats (BBs), yet the results are highly variable depending on many
factors such as frequency range, protocol, and measures used. Some experiments
reported promising results in terms of brain entrainment and emotional modulation,
while others failed to find significant effects, highlighting inconsistencies that merit
further examination. Indeed, a substantial number of foundational experiments
failed to observe significant shifts in EEG spectral power, phase coherence, or event-
related potentials in response to binaural-beat stimulation—raising doubts about
true entrainment(% 63 64 Furthermore, stimulation parameters vary dramatically
across studies—in carrier frequency, beat rate, tone duration, and presentation
mode (continuous versus pulsed, focused listening versus distraction)—and control
conditions range from pure tones and monaural beats to pink noise, silence or single-
tone carrier®® %!, Despite these methodological challenges, recent neuroscientific
work continues to explore this phenomenon, emphasizing the need for standard-
ized stimulation protocols and empirical validation of entrainment within each study.

Many studies aimed to examine if BBs can entrain cortical oscillations and
induce measurable changes in EEG or behavioral markers. For example, research
using low-frequency BBs (4-7 Hz) generally reported more consistent effects than
those using higher frequencies. Shamsi et al. showed that exposure to 7 Hz theta
BBs resulted in a decrease in EEG complexity and increased theta power, suggest-
ing reliable cortical entrainment, especially when analyzed using Higuchi fractal
dimension®”. One MEG study, instead, found that slow BBs at 4 and 6.66 Hz
caused auditory steady-state responses localized primarily to auditory and parietal
cortices, indicating successful entrainment!68l.

Conversely, protocols that make use of BBs in the alpha or beta ranges (10-20
Hz) showed more ambiguous results. For instance, Kasprzak et al.[% demonstrated
that exposure to 10 Hz alpha-range binaural beats elicited a narrow EEG spec-
tral peak precisely at the stimulus frequency in 4 out of 18 subjects, providing
evidence of cortical entrainment. However, this effect was accompanied by a
significant overall reduction in alpha-band (8-12 Hz) spectral power, suggesting
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that entrainment at this frequency might coexist with general alpha suppression.
Solca et al.b¥further observed that 10 Hz binaural beats significantly enhanced
interhemispheric coherence specifically within the alpha band (9-11 Hz) between
auditory cortices, an effect interpreted as binaural integration rather than direct
entrainment, as it occurred without corresponding amplitude changes or behavioral
effects. Consistent with this, loannou et al.l"l showed that alpha-band (9-12 Hz)
binaural beats elicited robust steady-state responses in the EEG alpha band and
significantly modulated cortical connectivity patterns, enhancing global synchro-
nization (PLV) but reducing direct cortico-cortical connectivity (PLI), specifically
in musicians. In contrast, a study designed to evoke alpha (10 Hz) and beta (20
Hz) entrainment found no reliable frequency-following response in EEG signals,
suggesting that continuous moderate-intensity tones may be insufficient for driving
oscillatory activity in these bands[™. This aligns with the findings of a personalized
BB study, which tailored theta and beta frequencies based on heart rate, but failed
to produce frequency-specific changes in EEG power, instead showing generalized
modulations predominantly in auditory areas!™.

Some studies incorporated behavioral or physiological measures in addition to
EEG. In one EEG-fMRI experiment, alpha BBs overlaid on vehicle noise produced
mood alterations and alpha-band entrainment, offering multimodal evidence for
BB-induced changes. Similarly, a case report using inaudible BBs embedded in
brown noise and ambient music found EEG relaxation effects and improved pe-
ripheral physiology in all participants, reinforcing the utility of BBs for emotional
regulation (.

However, not all BB protocols produced successful results. A study using
gamma (40 Hz) BBs didn’t yield changes in attention or anxiety as measured by
the Attention Network Test, suggesting that high-frequency BBs may not influence
cognitive performance in this context. Similarly, to assess cortical responses to
BBs in the alpha and beta band, no consistent entrainment was found across
participants, and in some cases, exposure to BBs led to opposite effects such as
alpha desynchronization. On the other hand, targeted applications of theta BBs
showed more promise in modifying cognitive characteristics. For instance, theta
BBs increased anterior theta activity and enhanced hypnotic susceptibility in low-
and medium-susceptible individuals, underscoring the interaction between baseline
traits and BB efficacy™.

In terms of methodology, the diversity in EEG analysis techniques (power spec-
tral density, phase-locking value PLV and fractal dimension) also plays a role in
the observed variability. While spectral analyses often failed to detect entrainment,
more subtle measures such as connectivity (PLV/CMI) and EEG complexity showed
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BB-related effects even in the absence of clear spectral peaks!™!.

In conclusion, the current state of the art suggests that theta and delta BBs are
more likely to produce robust and replicable changes in brain dynamics, especially
when combined with sensitive analysis methods or with behavioral tasks. In
contrast, higher-frequency BBs (alpha, beta, gamma) show ambiguous outcomes,
often failing to entrain the brain unless protocol parameters (e.g., carrier frequency,
duration, intensity) are optimised. Further experiments are needed to establish
the conditions under which BBs can be reliably used for cognitive and emotional
modulation.
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Chapter 3

Machine Learning

Machine Learning (ML) is a subfield of artificial intelligence that focuses on the
design and study of algorithms capable of learning from data and improving perfor-
mance on a given task through experience. As defined by Tom Mitchell (1997), “A
computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured

by P, improves with experience”[70.

In practice, machine learning involves the construction of mathematical models
capable of making predictions, classifications or pattern recognition on the basis of
complex and often high-dimensional data. Unlike traditional programming, where
rules are explicitly encoded by a human, machine learning systems automatically
deduce patterns and decision logic from observed datal™.

Machine learning algorithms are typically classified into supervised learning and
unsupervised learning, depending on the type of data and feedback available during
training. In supervised learning, the algorithm is trained on labeled data, where
both the input and the corresponding output are defined. The goal is to learn a
mapping function that can generalise well to unseen data. Common supervised
methods include linear regression, support vector machines, decision trees, and
neural networks™!.

In contrast, unsupervised learning deals with unlabeled data. The algorithm
attempts to uncover hidden patterns or intrinsic structures in the data without
explicit guidance. This includes tasks such as clustering (e.g., k-means) and dimen-
sionality reduction (e.g., principal component analysis), which are widely used for
data exploration, visualization, and preprocessing[™!.
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3.1 Random Forest

Random Forests are a supervised learning method introduced by Leo Breiman!®"!
in 2001. The core idea is to construct an ensemble of decision trees, denoted by
{h(z, 6}, where each tree is trained using a random vector 0, drawn independently
from the same distribution. For classification tasks, each tree casts a vote, and the
forest outputs the class receiving the majority of votes. In regression, the output is
the average of the predictions of the trees.

Formally, a random forest is a collection of classifiers {h(z, 0))}_ |, with the 0
acting as sources of randomness, such as sampling the training set (bagging) or
selecting a random subset of features at each split. These mechanisms guarantee
that individual trees are different from each other, which is crucial to reduce
overfitting and improving generalization.

To assess how confident the forest is in its predictions, Breiman introduces the
concept of the margin function, defined as:

mg(X,Y) = B [[((X) = V)] - maxBu [1(e(X) =), (3)
where I(-) is the indicator function, X is an input vector, and Y is its true class
label. The margin measures how often the correct class is predicted compared to
any other class. A higher margin results in a higher confidence and a lower chance
of misclassification.
Using this, the generalization error of the forest is defined as the probability
that the margin is negative:

PE* =Py y(mg(X,Y) <0). (3.2)

An important theoretical result is that, under the Strong Law of Large Numbers,
the generalization error of a random forest converges almost surely as the number
of trees increases:

PE* — Pxy <]P’9(h(X, 0) =) — maxPo(h(X,0) = j) < 0) . (3.3)

Breiman further analyzes the performance of the forest in terms of two key
quantities: the strength of individual classifiers and the correlation between
them. The strength s is defined as the expected margin:

s=Exy ng(h(X, 0)=Y)— I&a)gIF’g(h(X, ) = j)‘| . (3.4)
J
The average correlation p quantifies the similarity in prediction errors across
trees. The generalization error admits the following upper bound:
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pl—s%)

PE <5y

(3.5)

This inequality illustrates that to minimize error, one should aim for strong
individual classifiers (high s) and low correlation between them (low p).

In practice, each tree is trained using a technique called bagging (Bootstrap
Aggregating), where the training set is sampled with replacement. Furthermore,
at each node, a random subset of the input features is selected to determine the
best partition, a method known as random feature selection. These sources of
randomness are essential for reducing the correlation between trees and enhance
the ensemble’s robustness.

A particularly elegant feature of random forests is the use of out-of-bag (OOB)
samples. Since each tree is trained on a bootstrap sample, roughly one-third of
the data is not used for that tree and can be used as a validation set. This allows
estimation of the generalization error, strength, correlation, and even variable
importance, without needing a separate validation set.

For regression problems, the structure remains the same, except that the output
of each tree is a real-valued prediction. The overall forest prediction is given by:

fa) =+

=

> bz, 0y). (3.6)
k=1

The mean squared prediction error also converges:

Exr | (V= ()] > By [V — Boh(X,0))7] (3.7)

and satisfies an analogous upper bound:

PE?orest < ﬁ ’ PE’t>k (38)

ree’

where PEY . is the average error of the individual trees.

In summary, Random Forests combine simplicity, flexibility, and strong empirical
performance. They are accurate and robust to overfitting, handle noisy data well,
scale effectively to high-dimensional inputs, and are competitive with boosting
methods such as AdaBoost. Furthermore, they require little parameter tuning
and can be easily parallelised, making them a practical choice for many real-world

applications.

3.2 Support Vector Machine

The Support Vector Machine (SVM), as introduced by Cortes and Vapnik in
their seminal 1995 paper®!l. is a supervised learning model designed for classification
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problems. The central idea of SVMs is to find a decision boundary that not only
separates the data but does so with the largest possible margin, thereby improving
the model’s generalization ability. The core intuition is to first map the input vectors
x € R™ into a high-dimensional feature space Z via a non-linear transformation
¢(z), and then to find a hyperplane in this new space that best separates the
data. The decision function is linear in the feature space, and takes the form
f(z) = sign(w - ¢(x) + b), where w is the weight vector and b is the bias term.

The optimal hyperplane is defined as the one that maximizes the margin between
the two classes, where the margin is the distance between the hyperplane and the
nearest data points from each class, known as the support vectors. For linearly
separable data, the optimization problem can be written as minimizing 3 |lw||?
subject to the constraints y;(w - x; + b) > 1 for all i, where y; € {—1,+1} are
the class labels®!l. This is a convex quadratic programming problem, and the
solution vector w can be expressed as a linear combination of the training inputs:
w = Y'_, ayyix;, where a; > 0 are Lagrange multipliers, and only the points that
lie on the margin (i.e., the support vectors) have non-zero «;. The classification
function thus becomes f(z) = sign (Zle QYT - T+ b).

In the more general case where the data is not linearly separable, the formulation
is extended with the introduction of slack variables & > 0 that allow for some
margin violations, leading to the soft margin SVM. The corresponding optimization
problem becomes minimising 1||w||*> + C'Y0_, &, subject to y;(w - 2; +b) > 1 — ¢
and & > 0. Here, the regularisation parameter C' > 0 controls the compromise
between maximising the margin and minimising the classification error on the
training data.

One of the most powerful aspects of the SVM is the so-called kernel trick, which
enables the algorithm to operate in the high-dimensional feature space Z without
explicitly computing ¢(z). This is done by replacing all dot products ¢(x;) - ¢(x;)
with a kernel function K (z;,z;) = ¢(z;) - ¢(x;). This allows efficient computation
even when Z is extremely high- or even infinite-dimensional. Common choices of
kernel functions include the linear kernel K (z,z') = z - 2/, the polynomial kernel
K(z,2') = (z -2’ +1)%, and the radial basis function (RBF) or Gaussian kernel
K(z,2') = exp (—%) 52], The final classification function using kernels is then
f(x) = sign (Zle oy K (x, ;) + b).

From a theoretical perspective, Vapnik established a generalization bound based
on the number of support vectors. Specifically, the expected error rate is bounded
above by the ratio of the expected number of support vectors to the number of
training examples:

E[number of support vectors|

Elerror] <

number of training samples

3] This implies that the fewer the support vectors, the better the generalization,
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independent of the dimensionality of the feature space. Therefore, a well-constructed
SVM with a small support set can generalize well even in spaces with millions or
billions of dimensions.

The paper also presents extensive experimental results that compare SVMs with
classical learning algorithms such as neural networks and k-nearest neighbors. In
tasks such as handwritten digit recognition using the USPS and NIST datasets,
SVMs with polynomial kernels of degrees up to 7 achieved error rates around 4.2%—
4.3%, outperforming more complex neural networks like LeNet-1 and LeNet-434.
Remarkably, even with high-degree polynomials corresponding to feature spaces
with 10 dimensions, the SVMs showed no signs of overfitting, largely due to
their margin-maximizing nature and the sparsity induced by the support vector
expansion.

In conclusion, the support-vector network introduced by Cortes and Vapnik
represents a significant progress in supervised learning, combining a solid theoretical
foundation in VC theory, margin maximization, and convex optimization. It offers
high flexibility through kernel functions, robustness to overfitting even in high
dimensions, and consistently strong performance across a wide range of real-world
classification problems. The use of the support vector expansion, kernel substitution,
and soft margin formulation together forms a cohesive and powerful framework for
statistical learning.

Figure 3.1: An example of a separable problem in a 2 dimensional space. The
support vectors, marked with grey squares, define the margin of largest separation
between the two classes. Adapted from (1.
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Chapter 4

Materials and Methods

4.1 Instrumentation and Software

The instrumentation used in this research includes the Enobio 8 EEG headset by
Neuroelectronics, equipped with eight channels to record EEG signals from partici-
pants. Real-time EEG visualization, data acquisition, and transfer between the
Enobio headset and the computer were facilitated by NIC2 software. Participants
listened to binaural beats using JBL TUNE 660NC headphones, while their ECG
signals were recorded using a Polar H10 chest-strap heart rate sensor. Finally,
MATLARB software, enhanced by several specialized toolboxes, was employed for
audio generation and for the filtering, preprocessing, and analysis of the acquired
EEG and ECG data.

4.1.1 Enobio 8

The Enobio 8, developed by Neuroelectrics, is a flexible and high-precision EEG
device designed to meet the need for research and clinical applications. It features
eight recording channels and supports DC coupling, offering a bandwidth that
ranges from 0 Hz to 125 Hz. The system operates at a sampling rate of 500 samples/s
and delivers a 24-bit dynamic range, allowing for the detection of EEG signals as
small as 0.05 V.

To ensure data fidelity, the Enobio 8 maintains measurement noise below 1 nVgus
and features an input impedance greater than 1 G€2, optimizing signal quality across
all channels. In addition to EEG recording, the device incorporates a built-in three-
axis accelerometer, capable of capturing movement data at 100 samples/s, which is
particularly useful for monitoring subject motion during experiments!®®

The Enobio kit includes a neoprene cap (Figure 4.1) designed with 39 electrode
positions, arranged following the international EEG 10-20 system. If additional
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electrode positions are required, users can conveniently add new openings using
the provided neoprene punch tool.

Figure 4.1: Enobio8 Neoprene cap[®.

The device supports wireless data transmission via Wi-Fi and includes a recharge-
able battery that provides an operating time of approximately 16 h, facilitating
unconstrained, mobile EEG sessions. The Enobio 8 is compatible with a variety of
electrode types (Figure 4.2) | including Drytrodes (dry electrodes), NG Geltrodes
(wet electrodes with conductive gel) and Foretrodes, which can be used either dry
or with gel. This versatility allows for greater flexibility in experimental design and
enhances participant comfort across different use cases.

For this research, NG Geltrode electrodes (Figure 4.2b) were chosen due to
their advanced design, which allows direct scalp access after positioning the cap.
This feature significantly simplifies skin preparation and gel application, improving
the quality of the EEG signal. These electrodes are constructed from sintered
silver /silver chloride (Ag/AgCl) pellets, each measuring 4 mm in diameter, ensuring
excellent electrical conductivity, reliability, and superior signal integrity. The
electrode contact surface is circular, covering an area of 1.75 cm?. Furthermore, NG
Geltrode electrodes show exceptional operational longevity, specifically designed to
support continuous EEG recordings of up to 50 hours. This makes them especially
suitable for extensive and intensive monitoring sessions, ensuring reliable and
consistent EEG data collection.
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J | a :
oy oo

(a) Drytrode. (b) NG Geltrode.

(c) Foretrode.

Figure 4.2: Types of electrodes compatible with the Enobio 8[8%.

The conductive gel used was Neurgel (Figure 4.3) because of its advantageous
properties suitable for application on intact skin. It serves as an effective medium
between the body and the recording equipment, ensuring low impedance, high
signal stability, and minimizing the risk of bridging effects between electrodes!®®.

Figure 4.3: Conductive gell®,
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To facilitate the direct connection of the mandatory reference electrodes, Com-
mon Mode Sense (CMS) and Driven Right Leg (DRL), onto the mastoid skin,
disposable oval-shaped FIAB electrodes (Figure 4.4) measuring 36x45 mm were
selected. These electrodes feature a silver chloride (SSC) sensor, snap connection,
foam backing, and solid gel, thus ensuring optimal electrical reference quality during
EEG signal acquisition!®".

Figure 4.4: FIAB electrodes (F9089/100 - 36x45 mm )7,

The electrodes are connected to the NecBox (Figure 4.5) through a dedicated
connector (Figure 4.6) that provides eight channels for EEG electrodes and two
additional channels for the CMS (Common Mode Sense) and DRL (Driven Right
Leg) reference electrodes. The NecBox functions as the central unit of the Enobio 8
system, enabling signal acquisition, initial data processing, and wireless transmission
to a computer. It operates on a self-contained, rechargeable battery with an
approximate runtime of 6.5 hours. The device is securely attached to the neoprene
cap using a Velcro patch, allowing for quick and efficient mounting!®®
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Figure 4.5: Necbox!®.

e d

Figure 4.6: Dedicated connector!8?.

\

4.1.2 NIC2 Software

The Neuroelectrics Instrument Controller (NIC), specifically the NIC2 version, is
an integrated software environment designed for the comprehensive management
of both Starstim and Enobio devices. It offers both basic and advanced operating
modes, allowing users to design and monitor experiments involving electroen-
cephalography (EEG) and/or non-invasive brain stimulation through transcranial
current stimulation (tCS).

Once the NecBox is connected to the NIC software, the settings interface
becomes available, enabling users to manage TCP connections to and from NIC2,
activate double-blind mode, enable the synchronizer, or invert EEG signal polarity
for display purposes. The software also provides the option to apply EEG line
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noise filtering, with a 50 Hz filter for use in Europe and a 60 Hz filter for North
America. Additionally, a bandpass filter can be applied to the EEG signal solely
for visualization purposes®®.

My devices Settings

TGP Connection
Double blind

Enable Synchronizer

Invert polarity

Line Noise Filter

Enable at recording

Default visualisation filter (Hz)

-
-

-

2.0
-

to 40,0

Enable visualisation filter

Figure 4.7: Setting used during registrations.

After configuring the initial settings, the next step involves creating the protocol
(Figure 4.8), which may consist of one or multiple phases. In multi-phase protocols,
the electrode montage must remain consistent across all phases, regardless of the
specific function assigned to each channel. During this stage, users define the
duration and electrode placement. A head diagram is displayed, illustrating the
standard 10-10 coordinate system used in EEG recordings, accompanied by a
predefined color-coding scheme:

Green: Available positions under the current montage configuration;

Purple: Channels assigned to EEG in the current phase;

Green with border: Available positions currently assigned to EEG in other
phases of the same protocol,

White: Positions not available in standard montage models[®l.
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Figure 4.8: Protocol Design!®®.

Once the protocol is loaded, the LiveView panels are launched (Figure 4.9), from
which data recording can be initiated. These panels display the subject’s EEG
signals in real-time, even before the actual recording begins. Users can define a
custom time window for signal visualization (with a default duration of 10 seconds),
and this window is continuously updated in real time. The amplitude scale can be
manually adjusted or set to automatic mode, which adapts the scaling dynamically
based on the incoming signal.

In NIC2, EEG signal quality is evaluated using the Quality Index (QI), which is
recalculated every two seconds. The QI is derived from four key parameters:

« Line Noise: Signal power (1V?) within the line noise frequency band (50 Hz
+ 1 in the EU; 60 Hz + 1 in the US);

« Main Noise: Signal power within the standard EEG frequency band (1-40
Hz);

o Offset: Mean value of the EEG waveform,;

o Drift: Although drift is measured, it is not included in the QI calculation due
to high inter-subject variability. High drift values do not necessarily indicate

poor signal quality®®.
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The QI is computed based on the parameters listed above, using the following
formula:

Offset(t) 2 MainNoise(t) 2 LineNoise(t) 2
I(t) = tanh —_— _— _— 4.1
QI(t) = tan J ( 280 mV ) * ( 250 pV T\ 00 (41)

The QI follows a color-coded scheme:

- Green (QI: 0.0-0.5): Excellent signal quality;
- Orange (QI: 0.5-0.8): Good signal quality, sufficient for recording;
- Red (QI: 0.8-1.0): Poor signal quality.

However, occasional poor signal quality (red) during a recording session does
not necessarily compromise the integrity of the ongoing test/®8l.

2 X EEG Pr | =10" i 04
Liveview Nm?:;(,;woj 00:10:00 @y 00:04:51 o\ .5 py

Drrift: -102.420 uVs
e Offset: 34.3 mV ¥ v Temposal window (sec.) ; # &) zoom 10 pvydiv auro ([l

Line noise level: 0.0 u¥

Main noise level: 10.3 uV

Timee (secendi)

Figure 4.9: Example of EEG recording session(®.

In addition to real-time visualization of EEG signals, the LiveView panel provides
access to several other graphical representations. Specifically, it allows real-time
monitoring of the accelerometers embedded within the NecBox, the EEG spectro-
gram, band power distributions, a scalp map illustrating the spatial distribution of
signal power, and a cortical map displaying the distribution of electrical dipoles
across the brain surfacel8®).
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Figure 4.10: Example of EEG graphical features!®®.

4.1.3 JBL TUNE 660NC

The headphones (Figure 4.11) used for the reproduction of binaural beats in this
study were characterized by a frequency response range of 20 Hz to 20 kHz and an
impedance of 32 €). They offer a sensitivity of 100 dB SPL at 1 kHz with an input
power of 1 mW, and a maximum sound pressure level (SPL) of 96 dB. Furthermore,
the device supports high-quality wireless audio streaming via Bluetooth 5.0, enabling
a cord-free connection to smartphones or tablets, thereby enhancing usability and
minimizing physical constraints during experimental sessions!®.
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Figure 4.11: JBL TUNE 660NC[.

4.1.4 Polar H10

The Polar H10 is a high-precision heart rate sensor used in this study for the
acquisition of electrocardiographic (ECG) signals. It is paired with the Polar
Pro chest strap, which ensures top-quality and interference-free electrical signal
measurement. The sensor supports dual connectivity via Bluetooth® and ANT+™,
enabling compatibility with a wide range of external devices and the possibility
of two simultaneous Bluetooth connections. It also features an internal memory
capable of storing one complete training session, which can be synchronized with
the Polar Beat application after data acquisition. The device operates at a sampling
frequency of 125 Hz, making it suitable for precise physiological monitoring.

The Polar H10 operates within a temperature range of ~10 °C to +50 °C (14 °F
to 122 °F), and is powered by a CR 2025 battery with an approximate lifespan of
400 hours. Its battery compartment is sealed using a silicone O-ring (20.0 x 0.90
mm) to ensure durability and resistance to moisture. The connector components are
made of ABS, ABS reinforced with glass fiber, polycarbonate (PC), and stainless
steel, offering both robustness and lightweight performance. The accompanying
Polar Pro chest strap is machine-washable and constructed from a blend of 38%
polyamide, 29% polyurethane, 20% elastane, and 13% polyester, with integrated

silicone prints to enhance fit and stability during usel®?.
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Figure 4.12: Polar H10%,

4.1.5 MATLAB

MATLAB is a high-level programming platform widely used by engineers and
scientists worldwide to analyse data and design systems that shape modern in-
novation. Its applications span a wide range of domains, including active safety
systems in automotive engineering, interplanetary space missions, medical moni-
toring devices, smart power grids, and LTE cellular networks. Within academic
and research contexts, MATLAB is a fundamental tool for tasks such as machine
learning, signal and image processing, computer vision, communication systems
design, computational finance, robotics, and control systems engineering.

What makes MATLAB particularly effective in scientific and engineering work-
flows is its matrix-based language, which provides a natural and expressive way to
perform complex numerical computations. The platform features a highly interac-
tive desktop environment that supports iterative exploration, design, and problem
solving. Integrated graphics and data visualization tools make it possible to quickly
generate plots and gain insights from experimental results. In addition, MATLAB
includes dedicated apps for activities such as curve fitting, data classification, signal
analysis, and control system tuning.

To support a broad spectrum of research demands, MATLAB offers a large
ecosystem of add-on toolboxes that cover specialised applications across engineering
and science. These toolboxes provide pre-built algorithms that accelerate develop-
ment and reduce the need to code from the beginning. Moreover, users can build
custom applications using graphical user interfaces, further enhancing interactivity
and usability.

MATLARB?’s interoperability is another key advantage: it interfaces seamlessly
with languages such as C/C++, Java®, .NET, Python, SQL, and Microsoft® Excel®,
allowing for the integration of MATLAB algorithms into broader software systems.
The platform also supports high-performance computing workflows by enabling
code execution on large datasets, computing clusters, and cloud environments.
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Finally, MATLAB offers royalty-free deployment options, making it possible to
share applications with end users without additional licensing requirements!®!.

4.2 Experimental Protocol

4.2.1 Partecipants

The experimental sample consisted of 14 university students (7 males and 7 females),
aged between 20 and 30 years, recruited from the University of Turin and the
Polytechnic University of Turin. All participants reported no hearing loss or
auditory disorders. The male subgroup had a mean age of 25.3 years (SD = +1.4),
while the female subgroup had a mean age of 22.3 years (SD = 42.9), ensuring
balanced gender representation in the sample.

Prior to participation, all subjects were instructed to abstain from recreational
drug use for at least 24 hours, avoid caffeine intake for at least 12 hours, and ensure
a minimum of 8 hours of sleep the night before the experiment. These requirements
aimed to reduce the influence of external factors on EEG signal quality.

None of the participants had prior familiarity with binaural beats and were not
informed in detail about the nature of the study or the experimental protocol,
in order to minimize potential placebo effects. Informed consent was obtained
from all participants for the processing and use of the data collected during the
experimental sessions.

4.2.2 Experimental Setup

Participants were seated on a chair in a quiet room between 3:00 PM and 6:00
PM. This time window was chosen to ensure that subjects were not overly fatigued
by daily activities. Throughout the entire duration of the test, participants were
instructed to keep their eyes closed and to wear a sleep mask in order to minimize
external distractions and maintain focus on the experimental task.

Once the neoprene EEG cap was fitted, access to the scalp was achieved through
the predefined holes in the cap, where the electrodes were to be positioned. To
prepare these sites, specialized plastic-tipped syringes (Figure 4.13) provided with
the Enobio 8 kit were used. These syringes allowed for precise application of the
conductive gel, after which the electrodes were inserted into place. The electrodes
were selected to provide broad scalp coverage, enabling a comprehensive mapping
of the participant’s brain activity. Following the international 10-20 system, eight
electrodes were placed: two frontal (F3, F4), two parietal (P3, P4), two temporal
(T7, T8), and two occipital (O1, O2). The two reference electrodes, CMS (Common
Mode Sense) and DRL (Driven Right Leg), were positioned on the left and right
mastoid processes, respectively.
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Figure 4.13: Curved plastic-tipped syringel?.

To record the ECG signal, the Polar H10 chest strap was employed. It was
positioned directly below the sternum and securely tightened to ensure optimal
skin contact, while taking care not to overtighten, in order to avoid discomfort or
restriction.

The setup used during the stimulation phase differed from the baseline configuration
due to the addition of headphones, which were necessary for the delivery of the
binaural beats.

Figure 4.14: Test Figure 4.15: Baseline
setup. setup.
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4.2.3 Baseline

Once the instrumentation setup was completed, baseline EEG recording was ini-
tiated. The protocol involved a 5-minute recording session conducted in a quiet
room, with participants instructed to keep their eyes closed and wear a sleep
mask. Subjects were asked to relax and remain as still as possible to minimize
motion-related artifacts, such as eye blinks and muscle movements, which could
compromise signal quality.

Acquiring a clean baseline was a crucial step in the experimental procedure, as the
resulting EEG data were subsequently used to determine the subject’s Individual
Alpha Frequency (IAF). IAF served as the customised frequency reference for
generating subject-specific binaural beats in the following stages of the experiment.

Figure 4.16: Side view during Baseline Registration.

4.2.4 Estimation of Individual Alpha Frequency

The Individual Alpha Frequency (IAF) was computed using a custom MATLAB
function, designed to analyze pre-filtered baseline EEG signals recorded from eight
channels. The function takes three input parameters: the filtered EEG signal,
the number of channels, and the sampling frequency. It returns the mean IAF
across channels, the per-channel IAF values, the power spectral density, and the
corresponding frequency vector.

To begin, the mean of the EEG signal was removed to eliminate DC offset. The
power spectral density (PSD) was then estimated using Welch’s method, with a
Hamming window of length equal to the sampling frequency, an overlap of 50%,
and an FFT length of 500.

IAF was determined by analyzing the alpha frequency band, defined in the range
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of 7-13 Hz. The corresponding indices in the frequency vector were identified, and
the PSD values within this band were extracted for each channel.

The TAF for each channel was computed as the spectral center of gravity using the
formula:

_ X fie Pilfi)

IAF;
Sty Pi(fr)

(4.2)

where:

IAF; is the individual alpha frequency for channel ¢,

fr is the k-th frequency in the alpha band,

P;(fr) is the power spectral density of channel i at frequency fy,

N is the number of frequency points in the alpha band.

After calculating TAF; for all channels, the final IAF value for the subject was
obtained by averaging the individual values:

C
TAF oun = — S IAF, (4.3)
C =1

where C'is the number of EEG channels considered (C' = 8 in this case). The result-
ing TAF value was then rounded to two decimal places to facilitate interpretation
and subsequent use in the experimental protocol.

4.2.5 Custom Binaural Beats

After acquiring the baseline EEG and computing the IAF, a customised MATLAB
script was implemented to generate an auditory stimulation protocol composed of
alternating sham and BBs segments. The main goal of this code was to produce a
composite stereo audio signal used during the stimulation phase of the experiment,
with BBs centered around each subject’s IAF to ensure individualised neuromodu-
lation.

The stimulation protocol alternates between sham audio segments and binaural
beat impulses. Each impulse lasts 60 seconds and is followed by a sham signal of
equal duration, repeated for a total of five cycles. The carrier frequency for the
binaural beats was fixed at 250 Hz.

Sham Signal Generation:
The sham signal is defined as a stereo sinusoidal waveform with both channels
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oscillating at the same frequency, set to the carrier frequency offset by half of the

subject’s TAF":
IAF
fsham = fcarrier + T

This signal is generated over a time vector corresponding to the specified sham
duration (60 seconds), and is duplicated across both audio channels to ensure no
interaural frequency difference is present, thereby eliminating the binaural effect.

(4.4)

Binaural Beats Impulse:

Each binaural impulse is generated using the custom function, which creates a
stereo sound signal by assigning different frequencies to the left and right channels:

o Left channel: a pure tone at the carrier frequency (fearier = 250 Hz)
o Right channel: the same tone modulated by the subject’s IAF (feamier + [AF)

The difference in frequency between the two channels produces the perceptual
illusion of a beat frequency equal to the IAF. The function returns a two-channel
matrix, corresponding to the stereo signal.

Left ear 250 Hz

fx”ﬂh'\m i M,“’“fu"fﬂﬂﬁ\gﬂh(tﬁ‘%wz i f,HﬁMW T
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Figure 4.17: Example of BBs signal.

Signal Composition:
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The complete stimulation signal is built by sequentially appending sham and
BBs segments. A total of five repetitions are concatenated into a single stereo
audio track, as follows:

signal = [sham, BBs, sham, BBs, . . .|

This alternating structure ensures controlled exposure to both conditions while
maintaining consistent timing and frequency properties across subjects. The final
signal is suitable for playback during EEG recording sessions and is designed to
test the effects of [AF-based binaural stimulation under carefully matched control
conditions. Additionally, the use of alternating stimuli aims to assess the immediate
and acute effects of binaural beats, while minimizing the risk of drowsiness or sleep
onset in participants during the session.

4.2.6 Experimental Procedure

Upon generation of personalized binaural beats, two identical 10-minute experi-
mental sessions were conducted (Figure 4.19).

The participant was instructed to relax and remain motionless—as during the base-
line recording—while listening to the generated signal. Throughout each session,
the EEG signal was continuously monitored in order to promptly terminate the
trial if adverse acquisition conditions arose (e.g., by tracking the signal QI to avoid
prolonged periods of poor-quality data, and by observing the participant to prevent
drowsiness or microsleeps that could compromise the results).

Between the two sessions, the participant removed both headphones and the eye
mask for at least five minutes to reestablish baseline conditions and avoid any
carry-over effects from the first session.

4.3 Signal Preprocessing and Analysis

In this chapter, we provide a detailed description of the preprocessing steps applied
to EEG and ECG data. This procedure is critical for removing noise and artifacts,
transforming raw signals into cleaner and more reliable forms from which relevant
and representative features can be effectively extracted.

The selected features will be presented together with a detailed explanation of
their types and the rationale behind their inclusion. This will be followed by a
description of the feature selection method applied. Special emphasis will also be
placed on the handling of outliers, a critical step aimed at improving the robustness
of the analysis and ensuring the reliable detection of meaningful signal patterns,
thereby minimizing the risk of drawing inaccurate or misleading conclusions.
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Figure 4.18: EEG traces recorded during the testing sessions. Particular attention
is drawn to channels P3-P4-O1-02, in which the alpha-wave frequency is clearly
discernible.
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Figure 4.19: 10 minutes session used.

To facilitate this process, several MATLAB scripts were developed to automate the
preprocessing workflow. These scripts consistently convert the raw signals from each
subject into a structured data set containing the top features selected, simplifying
subsequent analyses through improved data organisation and consistency.
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4.3.1 EEG filtering

To effectively filter the EEG signal, a fifth-order Butterworth bandpass filter was
implemented. This type of filter was selected for its ability to significantly attenuate
frequency components outside the desired frequency band, while simultaneously
preserving the temporal structure and shape of the original EEG signal. Specifically,
the bandpass range was set between 4,Hz and 40,Hz, corresponding to a sampling
frequency (Fc) of 500 Hz (Figure 4.20).

The filter was applied using MATLAB’s fi1tfilt function, which performs forward-
backward filtering to achieve zero-phase distortion (Figure 4.21). This characteristic
is particularly important for EEG analysis, as it prevents temporal misalignment
that could otherwise compromise subsequent analytical procedures. The outcome
of this filtering process is a clean EEG signal, substantially free from high-frequency
noise, such as electrical interference, and low-frequency components arising from
baseline drift or movement-related artifacts. Consequently, this approach effec-
tively retains the spectral integrity of the EEG within the target frequency range,
facilitating reliable feature extraction and advanced statistical analyses.

It should be noted that during EEG acquisition, the Enobio8 device inherently
applies a notch filter at 50,Hz, further reducing interference from the electrical
mains.

Following bandpass filtering, any remaining artifacts were identified by apply-
ing a threshold corresponding to three times the standard deviation of the signal.
Detected outlier points were subsequently removed and replaced via linear interpo-

lation between the adjacent signal segments, ensuring continuity and integrity of
the EEG data.
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Figure 4.20: EEG frequency response filter.
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Figure 4.21: EEG phase response filter.

4.3.2 ECG filtering

The electrocardiographic (ECG) signal required resampling at a consistent fre-
quency of 125 Hz due to the inherent variability in the sampling rate provided
by the Polar H10 device, which typically records data slightly above 125 Hz but
without a constant sampling interval. This resampling step leads to only a negligible
loss of data points, which does not significantly impact the quality or subsequent
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analyses of the ECG signal.

Following resampling, the ECG recordings were filtered to remove unwanted noise
while preserving physiological features essential for accurate analysis. Specifi-
cally, a sixth-order Butterworth bandpass filter with a passband ranging from
0.5 Hz to 50 Hz was implemented. The characteristics of this filter were selected
to effectively eliminate baseline wander (low-frequency noise below 0.5 Hz) and
high-frequency interference (above 50 Hz), without distorting the clinically signifi-
cant components of the ECG signal, such as the P wave, QRS complex, and T wave.

This implementation ensures minimal phase distortion, particularly when applied in
forward-backward mode (zero-phase filtering), thus maintaining the integrity of the
ECG waveform for accurate interpretation and subsequent analytical procedures.
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Figure 4.22: ECG filter response.

4.3.3 Signal Segmentation

The signals were segmented while maintaining the distinction between recordings
acquired during the Sham condition and those recorded during the presence of
Binaural Beats. This choice was made to analyze the two events separately and
highlight the characteristic values associated with each condition. As a result, 10
"Sham" and 10 "BBs" recordings (divided into Test 1 and Test 2) were obtained for
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each subject.

An additional segmentation step was carried out to significantly increase the
amount of available data, evaluate potential Brainwave Entrainment effects 58,
and observe the temporal evolution of the features computed in subsequent steps.
To this end, each of the previously obtained recordings was divided into 4 segments
of 15 seconds each, resulting in a total of 80 recordings per subject across both
'BBs" and "Sham" conditions.

4.4 Feature Extraction

One of the key steps of the project is undoubtedly feature extraction. The main
objective is to extract features that are as representative as possible of the phe-
nomenon being analyzed, aiming to highlight distinctive aspects. To achieve this,
a thorough analysis of the relevant literature was necessary.

In this chapter, we will analyze in detail the calculated features and the criteria
employed for their selection. Overall, 148 features were computed from EEG and
ECG signals, distributed as follows:

« EEG: 16 features (many of which are multi-channel);
« ECG: 4 features.

Subsequently, after feature selection (See Section 4.5), these features will be
employed in the construction of classifiers aimed at identifying the two experimental
conditions, namely BBs and Sham.

4.4.1 EEG Features

EEG signals are characterized by considerable randomness and variability due to
the complex nature of brain activities and their sensitivity to physiological and
external conditions. Thus, selecting robust and distinctive features becomes crucial
to effectively capture meaningful information and patterns from EEG recordings.
The chosen features reflect both temporal and frequency domain characteristics,
ensuring comprehensive representation of the underlying neurological processes.

- Time Domain Features

e« Hjorth Parameters

Hjorth parameters are statistical descriptors originally introduced by Bo
Hjorth in 1970 to quantify the time-domain characteristics of EEG signals [93).
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They provide a compact representation of signal dynamics through three mea-
sures: Activity, Mobility, and Complexity. These features are computationally
efficient and widely used in EEG signal processing.

Given a discrete EEG signal x(t) from one channel, the Hjorth parameters
are defined as follows:

— Activity (HA) : Represents the signal variance and is a measure of its
power. It reflects the overall amplitude of the signal fluctuations.
High Activity indicates a signal with large amplitude fluctuations and
is typically associated with states of increased neural engagement or the
presence of artifacts (e.g., muscle activity or eye blinks).
Low activity, conversely, may suggest a relaxed state or low signal
variance due to noise suppression or inactivity.

HA = var(x(t)) = 1 > (i = ) (4.5)

=1

where p is the mean of the signal and N is the number of samples.

— Mobility (HM): Represents the mean frequency or the proportion of
the standard deviation of the signal’s first derivative to that of the signal
itself.

High Mobility suggests the presence of higher frequency components in
the EEG signal, potentially indicative of alertness or attention.

Low mobility denotes a signal dominated by low-frequency content, such
as those observed during sleep or drowsiness.

var(z(t))

HM =\ Sar ()

(4.6)

where #(t) denotes the first derivative of the signal.

— Complexity (HC): Reflects the change in frequency or the deviation
from a pure sine wave. It is calculated as the ratio of the mobility of the
first derivative of the signal to the mobility of the signal itself.

High Complexity reflects a more irregular or rapidly changing waveform,
indicating that the signal contains more intricate frequency modulations.
This is often seen in cognitive tasks or when the brain is responding to
dynamic stimuli.

Low complexity implies that the signal is closer to a pure sinusoidal
form or exhibits relatively uniform oscillatory behavior.
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HC = — ; (4.7)

where Z(t) is the second derivative of the signal.

These parameters were computed independently for each of the 8 EEG channels
in order to characterize the local temporal dynamics of the brain activity.

Higuchi Fractal Dimension

The Higuchi Fractal Dimension (HFD) provides a quantitative measure of
complexity and self-similarity in biomedical signals, particularly EEG signals.
Introduced by Higuchi in 1988 ¥4, HFD has been widely adopted due to
its effectiveness in characterizing the intricate dynamics of EEG waveforms,
offering insights into neurological conditions, cognitive states, and pathologies
[95]

The fundamental idea behind HFD involves segmenting the original EEG signal
into multiple subsets and evaluating their fractal-like behavior. Specifically,
given a discrete EEG time series , subsets are formed according to an integer
parameter , defined as follows:

N —
XE ax(m), z(m+ k), z(m +2k),... <m+ { ’ mJ k:> , m=12 ... k.
(4.8)
For each subset, the length is computed as:
No1 FE | |
L, (k)= W ; |z(m +ik) —x(m+ (i — 1)k)]. (4.9)
The average length of all subsets is then calculated by averaging over :
1 k
L(k) = z Z L, (k). (4.10)
m=1

Ultimately, the Higuchi fractal dimension is obtained from the slope of the
linear regression of against , mathematically represented as:

S\ eAa))

- d(log(1/k))
56
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In this analysis, the parameter is typically selected based on the resolution and
length of the EEG data segments analyzed. For the present study examining
alpha-band EEG activity under sham and BBs conditions, K., was set to 125.
This value ensures a balanced compromise between computational efficiency
and accurate estimation of complexity, allowing sufficient detail to differentiate
subtle changes in alpha-band dynamics between conditions.

HFD values typically range from 1 to 2, with higher values indicating increased
signal complexity and lower values reflecting more regular or deterministic
behavior. Thus, higher HFD values may be associated with enhanced neural
processing or states of increased cognitive engagement.

Katz Fractal Dimension

The Katz Fractal Dimension (KFD) is a widely utilized nonlinear metric
that quantifies complexity and self-similarity characteristics of biomedical
signals, including EEG data. Initially proposed by Katz in 1988 9 this
metric is particularly valuable in analyzing temporal dynamics of EEG signals,
enabling the discrimination of physiological and pathological states.

KFD quantifies signal complexity based on the waveform’s length and diameter.
Given a discrete EEG time series , KFD calculation involves several steps.
First, the total length of the EEG waveform is computed as the sum of the
Fuclidean distances between successive data points:

L=} V0@ +1) — 2(@)? + 1. (4.12)

Subsequently, the waveform’s diameter , defined as the maximal Euclidean
distance between the first data point and any other point of the series, is
calculated:

_ N 24 (5 —1)2
d= max V0@(@) — (1) + (i — 1)2. (4.13)
Finally, the Katz Fractal Dimension is obtained by:

log,4(n)
KFD = ,
IOglo(”) + IOglo(d/L)

For EEG signal analysis, KFD typically yields values greater than or equal to
1, with a perfectly linear signal corresponding exactly to a value of 1. Higher
values of KFD indicate increased complexity, irregularity, or randomness in the
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EEG signal, reflecting enhanced neural dynamical processes or pathological
conditions. Thus, KFD is frequently employed to differentiate cognitive states,
detect neurological disorders, or characterize EEG alterations induced by
various stimuli.

Petrosian Fractal Dimension

The Petrosian Fractal Dimension (PFD) is a fast and efficient algorithm
for estimating the fractal complexity of time series. Originally introduced by

Petrosian in the context of signal classification, this metric captures subtle

variations in signal irregularity and structural changes 7.

Given a discrete EEG time series X = {x1,2s, ..., 2N}, the Petrosian Fractal
Dimension is calculated based on the number of sign changes in the first
derivative of the signal. The steps are as follows:
1. Compute the length N of the signal.
2. Compute the first-order difference (approximate derivative):
A$i2$i+1—$i, Z:].,,N—l (415)
3. Count the number M of sign changes in Az, i.e., the number of times the
signal changes direction:
N—2
M = > [sign(Az;y1) # sign(Az)). (4.16)
i=1

4. Compute the Petrosian Fractal Dimension:

IOglo(N)

PFD = ~ .
logyo(IV) + logy, (m)

(4.17)

This measure provides a balance between simplicity and sensitivity to signal
irregularity:.

Low PFED values indicate more regular, less complex signals—often associated
with synchronized neural activity or resting states. Higher PFD values reflect
increased signal irregularity and complexity, which may indicate more dynamic
or desynchronized neural states.

Skewness

Skewness is a statistical measure that quantifies the asymmetry of a probability
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distribution around its mean. In the context of EEG signal analysis, skewness
provides insights into the temporal distribution characteristics of brain activity,
particularly useful in detecting deviations from normal physiological behavior.

Given a discrete time series X = {xy, za,...,Zx}, the skewness v is computed
as:

= (o (115

i=1 o

where p is the sample mean and o is the standard deviation of the signal.
Skewness values can be interpreted as follows:

— ~v = 0: Symmetrical distribution of EEG amplitudes around the mean,
often associated with normal or baseline brain activity.

— > 0: Indicates a distribution with a longer or fatter tail on the right
side. In EEG, this may reflect transient bursts or artifacts leading to
higher amplitude deviations.

— v < 0 : Indicates a distribution with a longer or fatter tail on the left
side. This could correspond to prolonged low-amplitude activities or
suppression in EEG signals.

In this study, skewness was calculated using MATLAB’s built-in skewness
function, which computes the sample skewness by applying the standardized
third moment of the EEG signal segments. This approach ensures consistent
and accurate estimation of signal asymmetry across different experimental
conditions.

Skewness can reveal underlying nonlinearities and distributional biases in EEG
activity, particularly in responses to stimulation or altered cognitive states.

Kurtosis

Kurtosis is a higher-order statistical moment that quantifies the “tailedness” of
a probability distribution. In EEG signal analysis, it serves as a valuable met-
ric for identifying sharp transients or outlier behavior, such as those associated
with artifacts or epileptic spikes.

Given a discrete time series X = {x1, s, ..., 2N}, the kurtosis  is defined as:

n:ij%(mi_“){ (4.19)

i—1 o

59



Materials and Methods

where g is the sample mean and o is the standard deviation of the signal. This
equation captures the normalized fourth central moment of the distribution.

The interpretation of kurtosis in EEG data is as follows:

— Kk > 3: leptokurtic distribution, indicating sharp peaks and heavy tails—oftenl
associated with artifacts or transient neural events.

— k < 3: platykurtic distribution, indicating flatter peaks and lighter
tails—suggesting a more uniform signal.

— Kk & 3: mesokurtic, similar to a normal distribution—indicative of typical
background EEG.

Kurtosis was computed using MATLAB’s built-in kurtosis function, which
standardizes the fourth moment by the square of the variance and adjusts
for sample bias. This automated calculation enables efficient assessment of
amplitude variability and rare events across EEG segments.

e« Permutation Entropy

Permutation Entropy (PE) is a robust complexity measure introduced by
Bandt and Pompe (2002)1!, widely used in the analysis of nonlinear and
chaotic time series such as EEG signals. It quantifies the disorder or unpre-
dictability of a signal by examining the relative ordering of values within short
subsequences.

Given a univariate discrete time series X = {1, s, ..., 2y}, the PE algorithm
relies on two main parameters:
— Embedding dimension m: the length of the ordinal patterns.
— Time delay 7: the lag between successive elements in the embedding
(commonly 7 = 1).

From these parameters, a sequence of overlapping vectors is formed:

V;' = {xi,$i+7,.ﬁl’i+27,...,l‘i+(m,1)7}, 1= 1,2,...,N— (m— 1)7' (420)

Each vector is mapped to a permutation pattern based on the relative ranking
of its values. The relative frequencies p; of each of the m! possible patterns
are then computed.

The Permutation Entropy is defined as:

m!

PE = =) pjlog,(p;), (4.21)

Jj=1
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with the convention that 0log(0) = 0.

A custom MATLAB was implemented to calculate PE, where m = 5 and 7 =
1 were chosen as appropriate values for 15-second EEG segments, following
standard practices.

PE values typically range from 0 to log,(m!). In EEG analysis, low PE values
indicate a more ordered, regular, and predictable dynamic of the EEG signal.
This may reflect increased neuronal synchrony or a state of reduced cortical
activation, while high PE values may reflect disorganized neural activity,
increased cortical activation, or physiological noise because the signal becomes
more complex and unpredictable.

- Frequency Domain Features

o Alpha band power

The alpha band power (typically defined as the spectral power in the 7—
13 Hz frequency range, f,) quantifies the amount of neural activity occurring
in this rhythm, which has been associated with relaxed wakefulness, closed
eyes, and reduced cognitive workload ). It is computed as:

P, = /f I FI2df, where X(f) = Fla(t)} (4.22)

where z(t) is the EEG signal in the time domain and X(f) is its Fourier
Transform. The squared magnitude | X (f)|? represents the Power Spectral
Density (PSD), and the integral yields the total power within the alpha band.

Alpha band power is commonly used in EEG analysis because it reflects cortical
idling and inhibition, and is modulated by attentional and emotional states
109 In the context of auditory stimulation using BBs, alpha power serves
as a reliable biomarker of neural entrainment and relaxation. Binaural beats
designed in the alpha range aim to induce or enhance alpha oscillations in the
brain, and a measurable increase in alpha power during or after stimulation
suggests a successful modulation of endogenous rhythms 481, Therefore, alpha
power is a relevant and physiologically meaningful index for evaluating the
effects of binaural beat stimulation in neurophysiological studies.

« Alpha/Beta Power Ratio

The Alpha/Beta Power Ratio (ABR) is defined as the ratio between the
total power in the alpha band (7-13 Hz,f,,) and the total power in the beta
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band (typically 13-30 Hz,f). It provides a normalized index reflecting the
balance between relaxed () and alert or cognitive (3) neural activity 10U,
The ABR is calculated as:

ABR = Lo _ Jres [ X(f)[ df (4.23)

Py Jyes, X (N)I?df

where X (f) = F{z(t)} is the Fourier Transform of the EEG signal z(¢), and
| X (f)|? denotes its PSD.

This ratio is particularly relevant when studying the effects of BBs, especially
those targeting alpha entrainment. An increased ABR may indicate a shift
toward a more relaxed or meditative brain state, as alpha power increases
relative to beta, which is often associated with active thinking, anxiety, or
arousall'®? . As such, the ABR is a useful index for evaluating brain states
influenced by rhythmic auditory stimulation and can complement absolute

power analyses by providing a relative measure of cortical activity balance
[103]

Alpha/Theta Power Ratio

The Alpha/Theta Ratio (ATR) is a commonly used EEG metric that quanti-
fies the balance between alpha (7-13 Hz, f,) and theta (4-7Hz, fy) oscillatory
activity. It is defined as:

ATR — Po Jyep | X () df (4.24)

Py Jyes, IX(P)12df

where X (f) = F{x(t)} is the Fourier Transform of the EEG signal z(t), and
| X (f)]? is its Power Spectral Density (PSD).

The Alpha/Theta Ratio has been widely employed to evaluate meditative
states, relaxation, and cognitive transitions. A high ATR is generally associ-
ated with a relaxed yet alert mental state, whereas a low ATR may reflect
drowsiness, hypnagogic states, or decreased arousall!%4.

In the context of binaural beats, the ATR is a sensitive indicator of neurophys-
iological changes induced by low-frequency auditory stimulation. For example,
binaural beats designed to entrain alpha oscillations can result in an increased
ATR, signaling a shift from internally focused or sleepy states (theta) toward
more relaxed wakefulness (alpha). This makes the ATR particularly suitable
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for assessing cognitive and emotional responses to auditory stimulation and
neurofeedback.

Spectral Centroid

Spectral centroid is a feature that represents the weighted average frequency
of a power spectrum and is often interpreted as an indicator of the spectral
"center of gravity"'. In EEG analysis, it provides insight into the overall fre-
quency shift of brain activity and can reflect changes in cortical activation or
arousal states. It is defined as:

S L PO
iy P(fi)

where f; represents the i-th frequency bin and P(f;) is the corresponding PSD.

O:

(4.25)

In the context of this research using, the spectral centroid can help identify
global shifts in EEG frequency content, such as increased high-frequency activ-
ity (e.g., beta) or enhanced low-frequency rhythms (e.g., alpha or theta), which
are often associated with cognitive modulation, relaxation, or entrainment
effects induced by the auditory stimulation. Thus, it serves as a complemen-
tary feature to traditional band-specific power measures for capturing broader
spectral dynamics.

Shannon Entropy

Shannon entropy provides a single-value measure of the complexity and unpre-
dictability of an EEG signal’s amplitude distribution!'%%!, it is especially useful
to detect changes in neural dynamics induced by binaural-beat stimulation. 16
Because EEG complexity reflects the richness of underlying brain activity,
Shannon entropy can capture subtle modulations in amplitude patterns during
auditory entrainment paradigms'%%,

Moreover, binaural beats modulate low-frequency power and phase dynamics,
producing measurable shifts in entropy that correlate with perceptual and
cognitive effects07.

Entropy computation is efficient and robust to noise.

n

H(X) =— ZP(%) log, p(z;) (4.26)

i=1
In this equation:
H(X) denotes the Shannon entropy of the discrete random variable X, repre-
senting the EEG amplitude or power values over time.
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p(z;) is the probability of observing the value z;, estimated from the empirical
distribution of EEG data.
log, p(x;) quantifies the information content (in bits) of the outcome x;.

The summation runs over all possible discrete states x; in the support of X,
and the negative sign ensures that entropy is non-negative.

Spectral Coherence

Spectral coherence quantifies the linear correlation between two EEG sig-
nals at a specific frequency, reflecting the degree of phase synchrony between
cortical regions1%%.

It is particularly relevant in EEG studies involving binaural beats, where
neural entrainment and connectivity patterns may be modulated by rhythmic
auditory stimulation!™!,

[Say ()2

Call) = 5. 05 Sy

(4.27)

In this equation:

Cyy(f) is the magnitude-squared coherence between signals x(t) and y(t) at
frequency f.

Suy(f) is the cross-spectral density between x and y, representing their shared
power at frequency f.

S (f) and Sy, (f) are the auto-spectral densities of x and y, respectively.
The coherence value ranges from 0 (no linear relationship) to 1 (perfect phase
locking) at the given frequency.

Phase-Locking Value(PLV)

The Phase Locking Value (PLV) quantifies the stability of phase differences
between two EEG signals over time, serving as a robust index of neural syn-
chrony that is independent of signal amplitude!*®?,

It is particularly useful for capturing frequency-specific functional connectivity
between cortical regions, especially during cognitive or sensory tasks where
oscillatory coordination plays a key rolel'1%,

PLV is frequently employed in studies of brain-brain and brain-stimulus
interactions, and is sensitive to modulations induced by rhythmic auditory
stimulation such as binaural beats(™).

64



Materials and Methods

N
prv - | L 3 eI(6a(R)=6u(4) (4.28)
N k=1

In this equation:
¢,(k) and ¢, (k) denote the instantaneous phase of EEG signals = and y
at time point k, typically extracted using the Hilbert transform or complex
Morlet wavelets.

N is the number of samples in the analysis window, and j is the imaginary unit.

The resulting PLV ranges from 0 to 1: a value near 1 indicates highly consistent
phase differences (strong phase synchrony), while values near 0 reflect a lack
of stable phase relationship.

Because PLV focuses solely on phase information, it is robust to artifacts in
amplitude and useful in noisy or low-SNR EEG environments.

Binaural beats, by presenting slightly different frequencies to each ear, can
entrain brain oscillations in specific frequency bands. PLV is a suitable
measure to detect the emergence of phase-locked neural activity across regions
in response to this rhythmic stimulation, making it an effective tool for studying

large-scale synchronization phenomenal®?.

4.4.2 ECG Features
e Heart Rate

Heart rate (HR), typically measured in beats per minute (bpm), is a key indi-
cator of autonomic nervous system (ANS) activity and physiological arousal.

In the context of binaural beat stimulation (BBS), HR monitoring provides
insight into how auditory-induced entrainment affects bodily relaxation or
alertness states.

Heart rate is commonly extracted from electrocardiogram (ECG) or photo-
plethysmographic (PPG) signals using peak detection algorithms that identify
successive R-waves or pulse peaks.

From this, the instantaneous HR is computed as:
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60
" RR;

HR(t) (4.29)

where RR; is the interval (in seconds) between two consecutive heartbeats at
time ¢ (also known as the RR interval).

Binaural beats, particularly in the alpha band (7-13 Hz), are often associated
with relaxation and reduced mental workload!!!.

Multiple studies report that listening to alpha-frequency BBs can lead to
a modest decrease in heart rate, suggesting a shift toward parasympathetic
dominance and reduced arousal.

This effect supports the use of BBs as a tool in stress reduction, mindfulness

practices, and cognitive recovery protocols!!*?).

Standard Deviation of NN Intervals(SDNN)

Heart Rate Variability (HRV) refers to the variation in time intervals be-
tween successive heartbeats and reflects the dynamic balance of sympathetic
and parasympathetic activity within the autonomic nervous system (ANS).

A commonly used time-domain measure of HRV is the SDNN, the standard
deviation of normal-to-normal (NN) intervals:

1 N

N—-1:5

SDNN = J (RR; — RR)" (4.30)

In this equation:

RR; is the duration of the i-th normal beat-to-beat interval,
RR is the mean of all RR intervals, and

N is the total number of intervals within the analysis window.

SDNN is expressed in milliseconds and represents overall heart rate variability
— higher values generally indicate greater parasympathetic modulation and
cardiovascular flexibility.

Studies have shown that binaural beat stimulation, particularly in the alpha
or theta frequency range, can influence SDNN values. Exposure to alpha-
frequency BBs is often associated with increased SDNN, suggesting a shift
toward parasympathetic dominance and a more relaxed physiological statel!'?).
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This makes SDNN a useful non-invasive marker for assessing the relaxation or
stress-modulating potential of auditory entrainment protocols.

Root Mean Square of the Successive Differences(RMSSD)

The Root Mean Square of the Successive Differences (RMSSD) is a widely
used time-domain measure of Heart Rate Variability (HRV).

It captures the short-term variability in beat-to-beat intervals and is considered
a reliable index of parasympathetic (vagal) activity''?.

The RMSSD is calculated as follows:

N-1

=1

In this equation:

RR; represents the duration (in milliseconds) of the i-th normal beat-to-beat
(NN) interval, and

N is the number of valid RR intervals in the recording window.

Unlike SDNN, which reflects both sympathetic and parasympathetic influences,
RMSSD is more sensitive to vagally mediated changes in heart rate.

Exposure to binaural beats in low-frequency ranges, such as alpha (7-13 Hz)
or theta (4-7 Hz), has been associated with increased RMSSD values in several
studies'1?.

This suggests enhanced parasympathetic tone and supports the use of BBs
for stress reduction, relaxation, or meditation support.

RMSSD is especially useful in short-term recordings and is less influenced by
slow trends or respiration rates.

Coefficient of Variation of RR intervals (CVRR)

The Coefficient of Variation of RR intervals (CVRR) is a normalized measure
of heart rate variability that reflects the relative dispersion of RR intervals
around their mean.

It is calculated as the ratio between the standard deviation of NN intervals
(SDNN) and the mean RR interval:

SDNN
RR

CVRR = (4.32)
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In this equation:

SDNN is the standard deviation of normal-to-normal (NN) intervals, as defined
in classical HRV analysis.

RR is the mean duration of RR intervals over the analysis window.

CVRR is dimensionless and often expressed as a percentage. It allows for
inter-individual comparisons by removing the dependency on absolute heart
rate values.

The CVRR provides insight into autonomic regulation of cardiac rhythm, and
higher values typically reflect more flexible, adaptive physiological states.

In the context of binaural beat stimulation, particularly in the alpha and
theta frequency bands, increased CVRR has been interpreted as a marker of
parasympathetic activation and emotional regulation4.

Due to its normalization, CVRR is particularly useful when comparing across

individuals with different baseline heart rates or in longitudinal designs.

4.5 Feature Selection

For each individual subject, the initial feature set was defined by considering all
measured variable indices. Experiments were conducted to reduce the feature set
to 10% of the original dimensionality.

Next, until each target was reached, the following iterative procedure was applied:

e A linear SVM classifier was trained on the subject’s current dataset.

o The feature weight vector from the model was extracted as a measure of each
feature’s importance in defining the separating hyperplane.

o The weight vector was sorted in ascending order, and in each iteration a small
block of the least influential features was removed, gradually eliminating only
those with the lowest discriminative contribution.

This Support Vector Machine-Recursive Feature Elimination approach was chosen
for its effective balance between predictive accuracy and dimensionality reduction,
ensuring robust and stable variable selection while minimizing the risk of overfitting.
Finally, once the number of features fell below the predefined threshold, the final
subset of indices corresponding to the most informative features for the classification
task was obtained for each subject.
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4.6 Model Training

For each subject, using their individual pre-selected feature set, two classifiers were
trained: a Support Vector Machine (SVM) with an RBF kernel and a Random
Forest. First, the 40 segments from both the sham and BBs conditions were merged,
and any outliers were interpolated. This procedure was applied consistently for
both Test 1 and Test 2. The full dataset (Test 1 + Test 2) was randomly divided
into five segment-based folds, with a balanced representation of sham and BBs
classes. This partitioning held out entire segments in each fold to avoid temporal
dependence and ensure independent validation. Within each fold, the training
data were normalized with min—max scaling (and the same transformation ap-
plied to the held-out segments), and only the subject-specific features were retained.

For the SVM classifier, hyperparameters C' and v were tuned via an exhaus-
tive grid search over logarithmically spaced values from 1072 to 102, evaluated
through an internal three-fold cross-validation on the training portion to find the
combination that maximized accuracy. The chosen SVM model was then retrained
on the full training fold and tested on the held-out segments to calculate accuracy,
build the confusion matrix, and list misclassified segments. Additionally, point-
by-point predictions were recorded across the time series to assess the classifier’s
temporal discrimination ability.

For the Random Forest classifier, a model tuning process was performed to iden-
tify optimal hyperparameters. Specifically, combinations of the number of trees
(NumTrees = [50, 100, 200]) and the minimum leaf size (MinLeafSize = [1, 5, 10])
were evaluated using out-of-bag (OOB) predictions to estimate training accuracy
without the need for additional validation splits. The best-performing configu-
ration was then used to train the final model using bootstrap aggregation. This
tuned model was subsequently evaluated on the held-out segments by computing
accuracy, generating a confusion matrix, and identifying misclassified segments. As
with the SVM, point-by-point predictions were also recorded to assess temporal
discrimination.
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Figure 4.23: K-fold used to evaluate classificators’ performances.

Finally, averaging these results across all five folds provided robust estimates of
each classifier’s ability to distinguish between the two experimental conditions.

4.7 Statistical Analysis: Sham vs BBs Compari-
son

To assess the significance of the differences between the Sham and Binaural Beats
(BBs) conditions across the full experimental duration, a subject-specific statistical
analysis was performed by aggregating data from both sessions (Test 1 and Test
2). For each subject, the three most informative features were selected based on
prior feature selection rankings, ensuring that the most relevant descriptors of the
individual’s neurophysiological response were used in the analysis.

For each selected feature, all available segments (four 15-second windows per
block, across five blocks and two sessions) were grouped by condition (Sham or
BBs), resulting in up to 20 paired samples per feature and condition. The Wilcoxon
signed-rank test was then applied to compare the two conditions, as it is a non-
parametric test suitable for dependent samples without assuming normality. The
test statistic is defined as:

W = zn: sgn(x; —y;) - Ry (4.33)

i=1
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where x; and y; are the paired observations under the two conditions (e.g., Sham
and BBs), R; is the rank of the absolute difference |z; — y;| among all non-zero
differences, and sgn(z; — y;) denotes the sign function.

This approach allowed us to statistically evaluate whether the most discriminative
features showed consistent and significant differences between stimulation types
across the entire protocol, while respecting the heterogeneity of individual subject
responses.
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Chapter 5
Results and Discussion

This chapter presents and discusses the results obtained from the protocol by
analysing the collected data. The main objective is to identify the effect of brief,
repeated stimulation with BBs, using the subjects’ physiological parameters as a
reference. An effort is made to shed light on the effects generated by binaural beats
using pure alpha-band tones and their potential relaxing benefits, considering that
the existing literature shows great heterogeneity in both the results obtained and
the application of BBs.

The analysis will begin with the differences recorded between individual subjects
and will then focus on the on-time predictions produced by the selected classifiers.
The aim is to provide both a general overview of the presence and nature of the
effect and to understand how the stimulation may be perceived differently by each
subject, sometimes leading to very diverse outcomes.

5.1 Selected Features

Feature selection plays a crucial role in problems involving classifiers, as it is
essential to reduce the number of features considered in order to mitigate issues
such as redundancy, low representativeness, and overfitting.

Following a series of evaluations, Recursive Feature Elimination (RFE) was se-

lected— as previously mentioned in Section 4.5 — to reduce the number of features
per subject to 10% of the total, resulting in 15 selected features out of 148.

72



Results and Discussion

L | L L L

a
5
@
8
2
g

30
Number of Occurrences

Figure 5.1: Most frequently selected features across all subjects (without distin-
guishing channels).

In Figure 5.1, it can be seen that, when considering the features most frequently
selected across all subjects (without distinguishing individual channels), the PLV
stands out with the highest number of occurrences (51). This is likely due to two
main reasons: first, PLV is inherently overrepresented since it involves combina-
tions across all available EEG channels; second, and more importantly, it reflects
inter-regional brain synchronization, a phenomenon frequently associated with the
effects of binaural beats in the literature. Indeed, previous studies such as [™® have
shown how BBs can influence neural synchrony, supporting the interpretation that
such high selection frequency reinforces the presence of a tangible neural effect
even under short stimulation durations.

Fractal dimension metrics such as Higuchi and Katz were also prominently selected,
with 17 occurrences both. This aligns with expectations, as both features are
well-established indicators of EEG signal complexity. Their recurrent selection
adds weight to the hypothesis of a meaningful modulation of the EEG trace in-
duced by BB stimulation, suggesting changes in the nonlinear dynamics of the signal.

Features like AB (a/f power ratio), AT («/6 power ratio), and Centroid are
directly related to the spectral content of the EEG and its shifts across frequency
bands. These metrics are crucial when investigating possible alterations in power
distribution, particularly under the hypothesis of brain entrainment or modulation
via auditory stimuli. Their relevance among the selected features confirms that
detectable changes in the power spectrum occurred during the protocol.

Regarding ECG-derived metrics, 3 out of the 4 features considered were selected
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(HR, SDNN, RMSSD, leaving out CVRR), although with a markedly lower fre-
quency (up to 3 occurrences). This is most likely due to their single-channel nature,
resulting in fewer candidate features overall. Nevertheless, their presence among
the selected set suggests a certain degree of discriminative power, highlighting a
possible secondary effect of BB stimulation on cardiac autonomic regulation.

Finally, the Hjorth parameters (HA, HC, and HM) were also selected multiple
times, particularly HC, which appeared 12 times. This indicates that the complex-
ity and structural characteristics of the EEG signal, as captured by time-domain
descriptors, were affected by the experimental conditions, further supporting the
hypothesis of BB-induced modulations.

o per Channel
T

Figure 5.2: Number of selected features per channel.

Figure 5.2 shows the number of features selected during the feature selection
phase, grouped by EEG channel. As can be observed, there is a high degree of
homogeneity across the different channels. The most frequently selected channels
are O1, P4, and T7, each with 14 occurrences, while the least selected channel is F4,
with 11 occurrences. This relatively uniform distribution is somewhat unexpected,
considering that the literature typically reports a stronger involvement of parietal ar-

eas (P3 and P4) and occipital areas (O1 and O2) during alpha-band stimulation!!*®),

The observed results suggest that the effect produced by binaural beats may
not be limited to the areas typically associated with alpha-band activity—such as
occipital and parietal regions, as commonly reported in the literature—but instead
appears to involve a broader and more distributed network of cortical regions. This
finding indicates that the neural modulation induced by the stimulation could ex-
tend beyond localized effects, potentially engaging more widespread brain dynamics
(see also Figure 4.18).
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5.2 On-time Predictor

While distinguishing between Sham and Binaural-Beat stimulation is fundamental
to understanding the immediate effects of auditory entrainment on EEG patterns,
the present study extended its focus beyond these static comparisons. In partic-
ular, this investigation sought to determine how repeated, alternating exposures
to sham and BBs over an extended session modulate neural responsiveness and
classifier discriminability over time. Given that neural entrainment may exhibit
cumulative, residual, or habituation effects, it is crucial to characterize not only
the binary classification performance at each block but also the temporal evolution
of these effects across successive stimulations. By examining minute-by-minute
and sub-block trends, the study aimed to uncover whether progressive exposure
enhances the detectability of BBs-induced activity, diminishes recognition of sham
blocks due to carry-over, or reveals subject-specific variations in adaptation. This
temporal perspective allows for a more nuanced interpretation of how ongoing
stimulation protocols interact with endogenous brain dynamics and informs the
design of future neuromodulation studies.

Classifier recognition: Comparison
RF

Recognition Percentage (%)

Figure 5.3: Recognition Percentage: SVM vs RF.

First, the overall performance of two classifiers—Support Vector Machine and
Random Forest —was compared by computing the mean accuracy across all subjects
and time points for both Test 1 and Test 2 sessions. When aggregating over the two
tests, the SVM yielded a mean recognition rate for the sham condition of 70.54 %
(£ 8.00%) and for the BBs stimulation of 68.75% (+ 7.54 %), whereas the RF
achieved 60.71 % (£ 10.10 %) for sham and 64.46 % (£ 9.50 %) for BBs. Not only
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does the SVM exhibit a higher overall average accuracy, but it also demonstrates a
lower standard deviation across both conditions—indicative of greater classification
stability. As illustrated in Figure 5.3, these differences underscore the SVM'’s
superior balance of sensitivity and reliability in discriminating between sham and
Binaural-Beat blocks across participants and sessions. Therefore, the SVM classifier
was selected for further, more in-depth analysis, and the Random Forest approach
was set aside.

Next, the classifier’s minute-by-minute accuracy was examined separately for
Test 1 and Test 2 by averaging each subject’s performance at each one-minute
interval (Figure 5.4).

The accuracy at each minute was computed by averaging the classifier’s predic-
tions over four consecutive 15-second blocks, and subsequently averaged across all
subjects.

In Test 1, sham accuracy declined from 85.71% + 10.10% (block 1) to 69.64% +
20.52% (block 5), while BBs recognition increased from 57.14% + 8.25% (block
1) to 71.43% =+ 15.43% (block 5). This divergence likely reflects a combination of
factors: during the first sham block, participants were responding to very distinct,
unmodulated stimuli, yielding crisp, near-ceiling performance, whereas the initial
entrainment to the binaural beats was still nascent and did not yet produce a
robust neural signature. As the session progressed, however, repeated exposure to
the BBs led to a gradual strengthening of alpha-band synchrony, producing more
pronounced phase-locking and clearer perceptual differentiation of BBs stimuli.
Simultaneously, these accumulating entrainment effects persisted into subsequent
sham blocks, subtly biasing neural processing and thereby attenuating sensitivity
to the now relatively unmodulated sham trials.

In Test 2, sham accuracy was 66.07% + 10.71% in block 1, whereas BBs recognition
rose from 58.92% + 12.20% (block 1) to 82.14% =+ 7.14% (block 5), following a
similar upward trend as observed in Test 1. The lower initial sham performance
here suggests that the inter-test rest interval may have been insufficient to fully
dissipate residual entrainment from the first BBs exposure. Consequently, lingering
alpha-band resonance likely persisted into the start of Test 2, both depressing early
sham detection by reducing the contrast between sham and BBs neural signatures,
and simultaneously sharpening the fidelity of BBs-specific patterns. Over successive
BBs blocks, these residual effects would compound with new entrainment, yielding
the robust increase in BBs discriminability noted across the session.
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Figure 5.4: Minute-by-minute recognition accuracy for sham and BBs conditions
in Test 1 and Test 2 (averaged across all subjects).

Classifier accuracy within each stimulus block was then investigated at 15-second
resolution (Figure 5.5) to detect transient carry-over effects at block transitions:
in both tests, the very first 15-s bin of a new block often showed a marked drop
in recognition (e.g. sham; — BBs;, BBsy —shamg in Test 1; shams — BBsg,
shamy — BBsy in Test 2), consistent with residual activity from the preceding
condition. Following these initial drops, performance typically rebounds within
the next 15-30 seconds, reflecting a rapid recovery phase during which classifier
performance re-stabilizes. This intra-block recovery may indicate the gradual
dissipation of residual neural activity, an adaptive shift in attentional focus, or
classifier recalibration. Quantitative analysis of this recovery trajectory—possibly
through fitting an exponential decay or linear model—could help determine whether
recovery rates differ systematically between conditions (sham vs. BBs) or between
individuals. Furthermore, some internal-block anomalies (e.g. the second sham block
of Test 1 and the third sham block of Test 2) warrant subject-specific investigation
to discern if individual variations in susceptibility, fatigue, learning effects, or
attentional states contribute to these deviations. This deeper exploration may
facilitate more nuanced interpretations and enhance the robustness of conclusions
drawn from classifier performance across experimental blocks.
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Figure 5.5: 15-second bin recognition accuracy at block transitions for Test 1 and
Test 2.

Finally, the time courses of the subject with the highest overall recognition
accuracy (Subject 12, 75% for Test 1 and 87.5% for Test 2) and of the subject with
the lowest accuracy (Subject 2, 62.5% fo Test 1 and 55% for Test 2) are highlighted
to illustrate the pronounced heterogeneity of EEG responses to the alternating
sham and BBs protocols.
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Figure 5.6: Recognition time-course for the subject with highest overall accuracy
(subject 12).
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Figure 5.7: Recognition time-course for the subject with lowest overall accuracy
(subject 2).

5.3 Inter-Subject Feature Comparison

This section focuses on the analysis of features obtained under sham and BBs condi-
tions across different subjects. The aim is to investigate whether consistent effects
can be identified despite inter-subject variability, and whether specific features are
able to reflect a shared neural or physiological response to the stimulation.

By comparing the distribution of features between conditions, the analysis seeks to
highlight distinguishing elements that may indicate the presence of a systematic
effect induced by binaural beats. Particular attention is given not only to individual
variability, but also to the potential emergence of condition-specific trends that
are recurrent across subjects. This approach allows for a broader evaluation of
how generalizable the observed responses are, and whether they align with findings
reported in previous studies.

The features shown in this section are selected among those used to train the
classifiers on a single-subject basis, ensuring that the analysis focuses on the most
relevant and informative variables for distinguishing between conditions.

5.3.1 Neural Synchronization and Spectral Coherence

Overall, the boxplots reveal a general trend of increased synchronization between
brain regions when subjects are exposed to BBs, compared to the sham condition.
This increase is especially evident in adjacent cortical areas.
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Figure 5.9: PLV between P4 and F4 for Subject 0.
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Figure 5.10: PLV between T7 and F3 for Subject 5.
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For instance, in subject 0, significant enhancements in phase locking are observed
between the pairs P4-F4 and F4-T8. A similar local increase is noted in subject
5 between T7 and F3. These results suggest that BB stimulation may effectively
facilitate local neural entrainment (Figures 5.8, 5.9 and 5.10).

In particular, subjects 9 and 12 show notable increases in synchronization be-
tween homologous regions across hemispheres, especially in the F3-F4 pair (Figures
5.11 and 5.12). This cross-hemispheric enhancement supports the hypothesis that
BB stimulation may promote the spreading of synchronized activity across wider
cortical areas. Such findings are consistent with the idea that the brain, under
BB exposure, tends to synchronize its rhythmic activity across multiple regions,
leading to a broader entrainment effect.

Boxplot pairPLV F3 F4 - soggettod
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Figure 5.11: PLV between F3 and F4 for Subject 9.
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Figure 5.12: PLV between F3 and F4 for Subject 12.

Interestingly, in subject 12, an elevated synchronization is also observed between
distant regions, such as T7-P4, suggesting that the effect of BBs may not be limited
to anatomically adjacent areas. This could point to a more global mechanism of

functional connectivity modulation, potentially involving large-scale brain networks
(Figure 5.13).
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Figure 5.13: PLV between T7 and P4 for Subject 12.

However, not all observations align with this expected pattern (Figures 5.14
and 5.15). Subject 3, who was later identified as one of the least responsive indi-
viduals in terms of distinguishing between conditions, shows a clear decrease in
synchronization for both F3-F4 and T7-P3. This behavior starkly contrasts with
the rest of the cohort, further underlining the variability in individual responses to
BB stimulation.
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Figure 5.14: PLV between F3 and F4 for Subject 3.
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Figure 5.15: PLV between T7 and P3 for Subject 3.

With regard to spectral coherence, although it was considered a secondary
feature for discriminating between conditions, some informative patterns emerge.
Subject 9 shows an increase in coherence between F3-F4 under BB stimulation
(Figure 5.16), while subject 3 displays a decrease for the same channel pair (Figure
5.17). This dichotomy highlights the subject-dependent nature of the BB effect
and suggests that spectral coherence, although less consistent, may still provide
valuable complementary insights into the dynamics of brain response to auditory
entrainment.
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Figure 5.16: Spectral Coherence between F3 and F4 for Subject 9.
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Figure 5.17: Spectral Coherence between F3 and F4 for Subject 3.

5.3.2 Fractal Dimension Analysis

Overall, across subjects and recording sites, both Higuchi’s and Katz’s fractal
dimensions exhibited a consistent reduction under BBs stimulation compared to the
sham condition. This decrease in fractal dimension was an anticipated finding, given
that alpha-band entrainment by BBs is expected to drive the EEG signal toward a
more regular, sinusoid-like waveform—and thus reduce its intrinsic complexity.

84



Results and Discussion

Boxplot Higuchi P4 - soggetto3

T T
189 f
g .
188 |
!
187/~ I
186| * —t‘—
[]
i ;
184 i
! :
1831 —— !
!
182/ o:
S .
181 I |
Sham BBs
Figure 5.18: Higuchi P4 subject3 .
' Boxplot Higuchi T8 - soggetto1 y
189 - —
188 i
¢ —
1.87 i I
¢ 4
[ |
1.86 4’7 \
be i
%185— ‘ 4%*
" |
i i
183 ! [ (|
! !
182 S [ — !
181 !
I I
Figure 5.19: Higuchi T8 subjectl.
i Boxplot Higuchi T7 - i
1
1.88— 4
|
186 ;‘ 4?7‘
i 4
: —
L ‘ ! ‘
> v: N
182}~ .
) 1
. |
e i 3
178 %
L L

Figure 5.20: Higuchi T7 subject6.
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Focusing first on Higuchi’s dimension, the decline was observed in multiple
cortical areas, suggesting a globally distributed effect of rhythmic BBs stimulation.
For example, subject 1 showed a clear decrease at electrode T8 (Figure 5.19), subject
3 at P4 (Figure 5.18), and subject 6 at T7 (Figure 5.20). These reductions point
to a widespread simplification of signal structure when the brain is coerced into
its individual alpha rhythm. Nevertheless, not every individual conformed to this
pattern: subject 0 at P3 (Figure 5.21) and subject 2 at O1 (Figure 5.22) actually
displayed a slight increase in Higuchi dimension under BBs. Such exceptions likely
reflect inter-individual variability in responsiveness to external rhythmic driving,
perhaps related to baseline alpha power or phase-locking propensity.

Boxplot Higuchi P3 - soggettod

Figure 5.21: Higuchi P3 subject0.
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Figure 5.22: Higuchi O1 subject2.

A parallel picture emerged for Katz’s dimension: most subjects again showed
lower fractal dimensionality under BBs, implying a more stereotyped waveform
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shape. Notably, subject 1 at T7 (Figure 5.23), subject 6 at O1 (Figure 5.24), and
subject 12 at P3 (Figure 5.25) all exhibited this effect. Taken together, these
results support the hypothesis that alpha-frequency BBs stimulation reduces the
complexity of spontaneous EEG activity across widespread cortical regions—while
also highlighting the importance of individual differences in neurophysiological
entrainment.
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Figure 5.23: Katz T7 subjectl.
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Figure 5.24: Katz O1 subject6.
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Figure 5.25: Katz P3 subject12.

5.3.3 Spectral Analysis

In the context of spectral analysis, we focused on three EEG features: the o/
power ratio (AB), the a/6 power ratio (AT), and the spectral centroid, defined as
the power-weighted mean frequency. These measures help characterize brain states
linked to arousal, relaxation, and attention.

When comparing the same cerebral areas across different subjects, we observed a
consistent increase in the AB ratio in region F4 for subjects 3 and 14 (Figures 5.26
and 5.27), as well as in region O1 for subjects 8 and 10 (Figures 5.28 and 5.29). This
increase is indicative of a spectral shift toward the alpha band, characterized by a
significant enhancement of alpha power accompanied by a corresponding reduction
in beta activity. Such a pattern is typically associated with a relaxed mental state,
suggesting that the auditory stimulation may have induced a generalized relaxation
response.

A similar phenomenon is evident in subject 0 in region P4, reinforcing the idea of
a distributed effect spanning multiple cortical regions (Figure 5.30).
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Figure 5.26: o/ power ratio F4 subject 3.
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Figure 5.28: «/f power ratio O1 subject 8.
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Figure 5.29: «/f power ratio O1 subject 10.
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Figure 5.30: a// power ratio P4 subject 0.

Analysis of the alpha/theta ratio revealed a more heterogeneous pattern. Specif-
ically, subject 1 showed an increased AT ratio in region O2 (Figure 5.31), while
subject 4 exhibited a marked decrease in the same region (Figure 5.32). This di-
vergence highlights inter-subject variability, with opposing trends emerging within
the same cortical area. A plausible interpretation is that subject 4 may have
experienced a further reduction in cortical activity, with spectral energy shifting
toward the theta band — a hallmark of deep relaxation or even drowsiness.
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Boxplot AT 02 - soggetto1

Figure 5.31: Increase of o/ power ratio O2 subject 1.
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Figure 5.32: Decrease of a/f power ratio O2 subject 4.

However, the most compelling findings pertain to the behavior of the spectral
centroid. As illustrated in the figures, subjects 1 and 10 — in regions O1 and
T8, respectively — exhibit a narrowing of the spectral distribution toward lower
frequencies (Figures 5.33 and 5.34). Notably, the centroid values converge around
the subjects’ Individual Alpha Frequency (IAF), with subject 1 displaying an
IAF of 10.26 Hz and subject 10 an IAF of 9.69 Hz. This observation strongly
suggests a frequency-locking effect, whereby brain activity becomes increasingly
aligned with the externally imposed stimulation frequency. Among all metrics, this
shift in the spectral centroid provides the most robust evidence for entrainment,
underscoring the capacity of rhythmic auditory stimulation to modulate ongoing
neural oscillatory dynamics in a frequency-specific manner.
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Boxplot centroid; O1 - soggetto1
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Figure 5.33: Centroid O1 subject 1.
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Figure 5.34: Centroid T8 subject 10.

5.3.4 Heart Rate Analysis

Among the ECG-derived features selected during the feature selection process, heart
rate (HR) emerged as the most significant. As illustrated in the boxplots, both
Subject 10 and Subject 13 exhibited a clear reduction in HR during the binaural
beats (BBs) stimulation phase compared to the sham condition. Specifically,
Subject 10 showed a decrease from approximately 70 bpm to 67 bpm (Figure 5.35),
while Subject 13’s HR dropped from around 80 bpm to 72 bpm (Figure 5.36).
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Boxplot Heart Rate - soggetto10
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Figure 5.35: Heart rate subject 10.
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Figure 5.36: Heart rate subject 13.

These findings are particularly noteworthy as they suggest that the effects of
BBs are not confined to cortical activity but extend to the autonomic nervous
system, specifically influencing cardiac function. The observed reduction in heart
rate is indicative of enhanced parasympathetic activation, a physiological marker
commonly associated with a relaxed state. This supports the hypothesis that BBs
may induce a general relaxation response, reinforcing the potential of this auditory
stimulation as a modulator of both brain and cardiovascular dynamics.
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5.4 Interpretation of the Wilcoxon Test Results

subject feature p_value significative
0 HC_ch3 1.229e-05 yes
0 pairPLV_P4_F4 1.3898e-05 yes
0 AB_ché 2.8639e-05 yes
1 Pa_ch4 1.229e-05 yes
1 AT _ch5 0.00023991 yes
1 SE_ch5 0.0011858 yes
2 Higuchi_ch4 6.451e-05 yes
2 Kurtosis_ch5 0.00023991 yes
2 HM_chl 0.010181 yes
3 Higuchi_ch6 0.006848 yes
3 pairPLV_T7_P3 0.0026987 yes
3 AB_ch7 0.006848 yes
4 pairPLV_O1_F4 0.0035071 yes
4 permutation_entropy_ch3 0.051087 no
4 pairPLV_01_02 0.065311 no
5 HA_ch4 0.10355 no
5 pairPLV_T7_F3 0.00029577 yes
5 pairPLV_P4_T8 0.024657 yes
6 Pa_ch5 0.0022586 yes
6 Higuchi_chl 0.011876 yes
6 Higuchi_ch3 0.0020642 yes
7 SE_chl 0.0035071 yes
7 AB_ch4 0.45934 no
7 pairPLV_P3_P4 0.88235 no
8 SE_ch4 3.2229e-05 yes
8 AB_ch4 0.00014048 yes
8 centroid_f_ch2 0.011 yes
9 pairCoh_T7_T8 0.00040277 yes
9 pairPLV_F3_F4 0.00010105 yes
9 permutation_entropy_ch8 0.00021585 yes
10 centroid_f_ch8 1.7735e-05 yes
10 HR_mean 1.5705e-05 yes
10 AB_ch4 1.7735e-05 yes
11 AB_ch7 1.3898e-05 yes
11 HM_ch6 0.003822 yes
11 Higuchi_ch1 0.006848 yes
12 pairPLV_T7_P4 0.0094174 yes
12 centroid_f_ch5 0.0007333 yes
12 Katz_ch3 0.021418 yes
13 pairCoh_T7_T8 0.00019407 yes
13 HR_mean 1.229e-05 yes
13 HC_ch4 0.0015693 yes

Figure 5.37: Wilcoxon signed-rank test results for the top three features per
subject, comparing Sham and Binaural Beats (BBs) conditions. Most subjects show
statistically significant differences (p < 0.05), indicating distinct neurophysiological
responses between conditions

The statistical analysis performed using the Wilcoxon signed-rank test revealed
that, for the majority of subjects, the top three individually selected features
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exhibited statistically significant differences between the Sham and BB conditions.
As illustrated in Figure 5.37, nearly all subjects demonstrated at least two features
with p-values well below the conventional threshold of 0.05, indicating a robust
difference in neurophysiological responses across conditions. Notably, subject 4
represents a borderline case: although only one of the three features reached
statistical significance, the remaining two features displayed p-values (0.051087
and 0.065311) that were very close to the 0.05 threshold, suggesting a potential
underlying effect that may not have reached significance due to sample variability
or individual response characteristics. Subject 7, on the other hand, showed no
significant differences across the selected features. Overall, the consistency of
significant results across subjects supports the hypothesis that BBs stimulation
elicits measurable changes in EEG-derived features when compared to the Sham
condition.
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Chapter 6

Conclusion and Future
Developments

6.1 Conclusion

This study has provided compelling evidence that alpha-band (7-13 Hz) auditory
stimulation induces a pronounced relaxation effect, reflected in a widespread de-
crease in cortical activation across multiple regions. Such an outcome is particularly
noteworthy given that, in much of the existing literature, alpha rhythms have
been leveraged primarily to enhance concentration or memory performance—with
limited or inconsistent success. Here, by contrast, alpha entrainment reliably
suppressed spontaneous EEG power in parietal and occipital areas and extended
this inhibitory influence into temporal and frontal cortices, highlighting a genuinely
global modulatory capacity.

Importantly, the observed neural entrainment emerged rapidly: even brief, 60-
second exposures to binaural-beat stimulation produced measurable increases in
phase coherence that persisted and compounded over successive blocks. This cumu-
lative effect underscores the capacity of the thalamo-cortical network to lock onto
externally imposed rhythms even under low-duration protocols, thereby accelerating
the onset of relaxation. Such rapid entrainment not only confirms the feasibility of
short-duration neuromodulation but also suggests practical applications in contexts
where time constraints or subject tolerance limit prolonged exposure.

The spatial distribution of entrainment further revealed that neighboring cortical
regions synchronize readily, as expected, but that homologous areas across hemi-
spheres also exhibit significant coherence increases. Moreover, distal sites—such
as frontal poles, which are conventionally considered less amenable to alpha-band
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modulation—demonstrated clear phase alignment with posterior areas. These
findings challenge the prevailing assumption that alpha-entrainment effects remain
confined to parieto-occipital sources and open the possibility that broader networks
can be engaged via auditory stimulation.

At the individual level, substantial heterogeneity was evident in both the features
selected for classification and the temporal dynamics of response. Some participants
exhibited rapid and robust entrainment, while others required multiple exposures
to reach comparable coherence levels. This variability likely reflects anatomical
differences—such as skull conductivity and cortical folding patterns—and functional
factors, including baseline alpha power and attentional state. Consequently, the
SVM classifier’s accuracy varied markedly across subjects, and its generalizability
was limited when trained on a pooled dataset.

Indeed, the limited generalizability of the SVM underscores the necessity for
subject-specific models. Given the sparse eight-electrode montage deployed, the
classifier could sample only a fraction of the cortical manifold, making its perfor-
mance highly sensitive to individual electrode—brain configurations. This constraint
highlights the importance of dense coverage for future applications and suggests that
personalized calibration of detection algorithms is essential when using low-density
EEG systems. Despite these limitations, the temporal progression of classifier
performance revealed two salient trends. First, recognition accuracy for binaural-
beat blocks increased progressively across the session, suggesting either residual
entrainment that carried over between blocks or a rapid habituation that sharpened
neural responsiveness to the stimulus. Second, recognition of sham blocks declined
over time, providing direct evidence of carry-over effects that reduce sensitivity to
sham conditions. Together, these patterns emphasize that alternating protocols
induce not only acute but also cumulative effects that must be considered when
designing neuromodulation interventions.

6.2 Future Developments

Building on these results, several avenues for future research emerge. A primary
goal should be to identify the minimal stimulation duration capable of eliciting
a robust, reproducible alpha-entrainment effect across a heterogeneous subject
pool. Systematic variation of block length—coupled with high-temporal-resolution
measures of phase coherence—would elucidate the dose-response relationship and
optimize protocol efficiency.

Enlarging the population is fundamental to minimizing subject-specific biases
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and achieving the widest possible generalizability of the results. By recruiting
individuals across diverse age ranges, gender identities, and neurophysiological
profiles, the study can better account for inter-individual variability in alpha-band
responsiveness. A larger sample size also increases statistical power, enabling the
detection of subtle effects that may be obscured in smaller cohorts. Moreover,
broader inclusion criteria facilitate the identification of subgroups with distinct
entrainment patterns, thereby informing personalized stimulation protocols. Ul-
timately, a more extensive and heterogeneous participant pool will strengthen
the external validity of the findings and support the development of universally
applicable neuromodulation tools.

In parallel, increasing the density of EEG coverage—from eight electrodes to
a high-density (> 64 channels) array—will enable comprehensive mapping of
network-level entrainment patterns. Denser montages will mitigate the confounding
influence of individual skull and brain morphology, as more electrodes can capture
signal from regions with optimal conductivity. Moreover, full-scalp recordings will
facilitate source-level analyses, revealing the interplay between cortical generators
and allowing for more precise localization of entrainment effects.

These methodological improvements will pave the way for developing a universal
classification framework capable of detecting the presence of binaural-beat en-
trainment in real time, regardless of individual differences. By leveraging large
datasets, transfer learning techniques, and individualized calibration procedures, it
should be possible to train a single model that adapts dynamically to each user’s
individual alpha frequency (IAF). Such a system could operate in closed-loop fash-
ion—continuously monitoring EEG and adjusting stimulus parameters to sustain
optimal entrainment—thereby delivering targeted relaxation on demand.

In conclusion, this work lays the groundwork for next-generation neuromodulation
tools that combine the rapid onset and global reach of alpha-band stimulation
with adaptive, personalized algorithms. Through optimized protocols, expanded
populations, and advanced analytics, future studies can transform binaural-beat
entrainment from a promising experimental paradigm into a clinically viable and
user-friendly technology for stress reduction, wellness promotion, and beyond.
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