a2tV Politecnico
Jiiw iy di Torino

Politecnico di Torino

Master’s Degree in Biomedical Engineering

Academic Year 2024/2025

Master’s Degree Thesis

Development of Deep Learning
Integrated Mobile Frameworks for
Dermatological Image Analysis

Supervisors: Candidate:
Prof. Massimo Salvi lbrahim Ghadre
Prof. Kristen M. Meiburger
Ing. Francesco Branciforti

July 2025

Table of Contents

L 75 ES] 0 e <Y 5
List Of TableS.cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinrrr e e e e ae 8
7 N 0] 5 2 T 1 e 9
INtroduction ..ocoeveviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiirrrr e e 11
1.1 DermatolOgy . oeeeeeiiiiiiiiiee e 11
1.1.1 Skin Cancer and the Importance of Early Diagnosisccccccvviiinnnniiie. 12
1.1.2 Teledermatology: Opportunities and Challenges................cccccviiiiiiinn 15
1.1.3 Existing Mobile Applications for Dermatological Supportccuunn.e. 16

1.2 Artificial Intelligence in Diagnostic SUPPOTtcooeeiiiiiiiiiiiiiiniiiiiiiiiiiieeeee e 19
1.2.1 Artificial Neural Networks (ANNS)cccociiiiiiiiiiiiiiiiceiccc 19
1.2.2 Convolutional Neural Networks (CNNS)ccccooiiiiiiiiiiiiiii, 23
1.2.3 Generative Adversarial Networks (GANS) ...ccoooviiiiiiiiiiniiiciiciece 26
1.2.3.1 GAN Fundamentalsccooiiiii 26
1.2.3.2 Deep Convolutional GAN (DCGAN)ccoiiiiiiiiiiiiiiiiiiiiiccceicce, 27
1.2.3.3 Progressive Growing GAN (ProGAN)ccoooiiiiiiiiiiiiiiii, 28
1.2.3.4 Style-Based GANS (StyleGAN)....cccciiiiiiiiiiiiiiiiiiiei e 29
1.2.3.5 Conditional GANS (CGAN)....coiiiiiiiiiii e 29
1.2.3.6 Image-to-Image Translation: CycleGAN and Pix2Pix..........coooeeeiiiinii. 30

1.2.4 Image Super-Resolution and Clinical Applicationsccccccvvviiiiieieininnnn. 31
1.2.4.1 Learning-Based Super-Resolution Methods.............cccccoiiiiii . 33
1.2.4.2 GAN-Based Super-Resolution: The SRGAN Model.................cccns 33
1.2.4.3 Clinical Relevance and Applicationscccccoveviviiiiiiiiiiiiiiininicini, 34

1.2.5 The Real-ESRGAN Model...........uuuiiiiiiiiiiiiiiiiiiiiiiiee 34
1.2.5.1 Underlying GAN Frameworkccooeiiiiiiiiiiiiiiiiiiiieec e 35
1.2.5.2 Degradation Modeling and Training Processcccccooviiiiiiiiiiiiiin.... 36

3

1.2.5.3 Model Architecture and Evolution.....cccoo.vuvee i 37

1.3 Frameworks for Mobile Deployment................uoiiiiiiiiiiiiiieeeee 37
1.3.2 NONN Frameworkooiiiiiiiii e 38
1.3.3 ExecuTorch Framework ... 39

Materials and Methodsccceviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiinireeenees 41

2.1 DAbASEE ettt 41

2.2 Image Preprocessing Pipeline.........ccccooiiiiiiiiiiii i, 42

2.3 Architecture and Configuration of the Real-ESRGAN Model.............cceeeeiiin. 44

2.4 Model Conversion: from PyTorch to NCNN and ExecuTorch........................... 45

2.5 Android App Development with NCNN and ExecuTorch................co.oooiiinil. 47
2.5.1 NCNN-Based Applicationcooeiiiiiiiiiiiiiiiiiiiie e 48
2.5.2 ExecuTorch-Based Applicationcooooeiiiiiiiiiiiiiiiiiiiicieecci e, 49

2.6 Inference Benchmarking on Google Colab and Android Devices....................... 49

RESUIES 1eviiiiiiiiiiiiiiiiiiiiiii e 52

3.1 Qualitative ASSESSINEIIEciiiiiiiiiiiiii e 52

3.2 Quantitative Benchmark: Inference Timeccooooiiiiiiii, 53

3.3 Quantitative Image Quality Metricsoviviiiiiiiiiiiii i, 54

3.4 Visual Analysis of TMagesoviiiiiiiiiiiiii e 59
3.4.1 Histogram COMPATISOTL «....uuiiiiiiieeiiiiie et 59
3.4.2 Pixel-by-pixel Difference Maps.......c...uoviiiiiiiiiiiiiiiiiiiiiiiciie e, 62

3.5 Consistency and Reliability........ccooiiiii e, 63

CONClUSIONS tviviiiiiiiiiiiiiiiiiiiiiii e e e ae e e e 65

4.1 Results ANalysSis.....ccoiiiiiiiiiiiiie e 65

4.2 Improvements and Future Developmentsccoooooiiiiiiiiiiini 66

4.3 CONCIUSIONS ..ttt 68

250 0 0 <5 1= o) 11 69

List of Figures

Figure 1: Structure of the human skin. [2]........ccocoiiiiiiiiiii 11
Figure 2: Incidence rates of skin cancer in the U.S. from 1999 to 2021, by gender (per
100,000 popUlAtIon). [B] «eeeeeeeeiiiieeiiie et 12
Figure 3: The five stages in melanoma evolution process. [8]........cccceevviiiiiiinnnn.. 13

Figure 4: Dermatoscopic imaging setup and example. (A) Illuco IDS-1100

dermatoscope; (B) dermoscopic image of a malignant melanocytic lesion
(ISIC__0000283). cv..veeeeeeeeeeeeee e eeeeeee e 14

Figure 5: Example of a teledermatology workflow.ccoooooii 15

Figure 6: Example of a mobile dermatology application prototype (eSkin) designed
for skin lesion analysis and risk assessment. [8]..........cccceviiiiiiiiiiiiiiiiiiiiiiis 18

Figure 7: Nurugo™ Derma smartphone dermatoscope: (A) device structure, (B)
attachment to a mobile phone, and (C) real-time image acquisition. [12].................. 18

Figure 8: Structure of an artificial neuron.cooiiiiiii 20

Figure 9: Example of a deep neural network architecture. The input layer receives
image features, two hidden layers perform feature extraction, and the output layer
assigns the images to one of possible diagnoses. [26]..........cccccooiiiiiiiiiiiiiiiiiiin. 21

Figure 10: Schematic representation of a convolutional neural network (CNN). The
input image undergoes feature extraction through convolution and pooling layers, is
flattened, and processed by fully connected layers to produce class probabilities. [29]

Figure 11: Comparison of different explainability techniques that highlight which
regions of the image most influenced the prediction of the model. [34]...................... 22

Figure 12: Sliding filter operation in convolutional layers. A 3x3 kernel moves across

the input matrix, computing local features that are used to build activation maps in a
O\ A\ 1215 PSPPSR PPRR PP 24

Figure 13: Max-pooling process in convolutional neural networks. From left to right:
(1) input matrix, (2) selected region proposal, (3) division into pooling sections, (4)
identification of maximum values within each section, (5) resulting output matrix after
MAX POOING. [B0] .oeiiiiiiiiiiiiiiii e 24

Figure 14: Examples of model fitting behaviors. Balanced fitting reflects an optimal
model with good generalization. [37].......ccccciiiiiiiiiiiiiiiiii e 25

Figure 15: Architecture of a Generative Adversarial Network (GAN). The generator
produces synthetic samples from a latent space, while the discriminator evaluates their
authenticity by comparing them to real data. Training proceeds through adversarial

fine-tuning of both netwoks. [39]......cccooiiiiiiiiiii 27
Figure 16: DCGAN generator architecture. [33]ccccccoviiiiiiiiiiiiiiiiiiiiiiiiceens 28
Figure 17: ProGAN generator architecture. [33].......c.cccooiiiiiiiiiiiiiiiniiiciens 28
Figure 18: StyleGAN generator architecture. [33].......cccoovviiiiiiiiniiiiniiiiiiiiecienn 29

Figure 19: cGAN architecture. The label vector m is provided as extra information to
both the generator and the discriminator. [40]coooiiiiiiiiiiiiiiiis 30

Figure 20: Training mechanism of CycleGAN. Generators G and F translate between
domains X and Y, with cycle-consistency loss guiding the reconstruction of the original
input from its translated form. [33].......cccooiiiiiiiiiiiiiii 30

Figure 21: Pix2Pix architecture. The generator learns to translate input sketches (x)
into realistic images (G(x)), while the discriminator distinguishes between generated

pairs (x, G(x)) and real pairs (X, ¥). [33] .ccoeeeriiiiii 31
Figure 22: An example of nearest neighbor interpolation. [42]ccccoooviiiiiinnnnne. 32
Figure 23: An example of bilinear interpolation. [42]cccccoiiiniiiiiiiniiiiiiiiin. 32
Figure 24: An example of bicubic interpolation. [42]cccooviiiiiiiiiiiiiiiiiiiieii, 33

Figure 25: Architecture of SRGAN. The generator upsamples a low-resolution image
through residual blocks and sub-pixel convolutions, while the discriminator
distinguishes between real and generated high-resolution output. [45]......cc..cccoouniie. 34

Figure 26: The Real-ESRGAN generator adopts the same architecture as ESRGAN,
featuring residual-in-residual dense blocks and upsampling through pixel-shuffle layers.

[AT] e e 35
Figure 27: Structure of a Residual-in-Residual Dense Block (RRDB), composed of
three dense blocks with residual and skip connections. [46]cccoceiiiiiiiiniiinnnn. 36

Figure 28: Degradation pipeline used for training the Real-ESRGAN model. [47] ..36

Figure 29: Benchmark of deep learning frameworks on mobile CPUs. The chart

reports the framework achieving the lowest inference latency for each combination of
model and mobile device. [49]ccouviiiiiiiiiiiii e 39

Figure 30: High-level overview of the ExecuTorch deployment pipeline. A PyTorch
model is exported and compiled into an optimized ExecuTorch program, which is
executed at inference time through a lightweight runtime on edge devices. [51] 40

Figure 31: High-resolution dermoscopic images selected from the ISIC archive.
Specifically, the chosen images are ISIC 0000062, ISIC 0000206, and ISIC 0000271.

Figure 32: Degraded version of the dermoscopic images obtained as an output of the
Preprocessing PIPELIIE. «oo.uui i 42

Figure 33: Preprocessing pipeline applied to the dermoscopic images before inference.

.. 44
Figure 34: NCNN conversion and deployment pipeline. [54].........cccccovviiiiiinnnnnne. 46
Figure 35: Executorch conversion and deployment pipeline. [52]......c.cccccooviiinnncns 47

Figure 36: User interface flow of the two Android applications (NCNN above,
ExecuTorch below). Each row shows the main steps performed by the user: (A) app
launch, (B) image selection, and (C) inference result after image enhancement. 51

Figure 37: Qualitative comparison of the outputs obtained across different
frameworks. Each row shows the degraded input and the corresponding results for the

SAINIE ITXLAZEC. ©evuueiitintiiii ettt ettt et e et ettt e et et et ettt e et et e ettt e ettt e ettt e ettt e ettt e eaaeeaaaes 52
Figure 38: Pixel intensity histogram for image 1.ccccccooiiiiiiiiiiiiiiii, 60
Figure 39: Pixel intensity histogram for image 2.c......ocoiiiiiiiiii 61
Figure 40: Pixel intensity histogram for image 3.c......ccoiiiiiiii 61
Figure 41: Pixel-by-pixel difference map for image 1.......cccooooiiiiiiiiiiiiniiiiiniiinann. 62
Figure 42: Pixel-by-pixel difference map for image 2.............o.ccciiini. 63
Figure 43: Pixel-by-pixel difference map for image 3.ccooooeiiiiiiiii. 63

Figure 44: Examples of corrupted outputs generated by the ExecuTorch-based
application during Inference.cooooiiiiiiiiiii 64

List of Tables

Table 1: Inference time in milliseconds (ms) for each image across the three deployment
frameworks. PyTorch was separated into CPU and GPU executions. Values reflect the

average time required tO Process ONne iMAaZe.co..uviiiiiiiiiiiiiiiiiee e 53
Table 2: PSNR values for each image processed by the three frameworks. 57
Table 3: MSE values for each image processed by the three frameworks.................. 58
Table 4: SSIM values for each image processed by the three frameworks................. 58
Table 5: LPIPS values for each image processed by the three frameworks............... 58

Abstract

Skin cancer is one of the most potentially lethal cancers in the world, with malignant
melanoma presenting aggressive clinical behavior and an increasing incidence over the
last decade. Early and accurate diagnosis is essential to improve prognosis, and in this
regard teledermatology has emerged as an increasingly viable solution to overcome
spatial and temporal barriers in healthcare delivery. With the growing accessibility of
smartphones and mobile dermatoscopes, remote dermatological screening is becoming
increasingly common in both clinical and non-clinical settings. However, the quality of
images acquired by patients remains a limiting factor, often compromised by poor
resolution, improper focus, and variable lighting conditions, which can compromise the
reliability and accuracy of diagnosis.

This study focuses on evaluating the implementation of the Real-ESRGAN model on
mobile devices as a means of improving dermatological images acquired under
suboptimal conditions. Real-ESRGAN is a super-resolution framework based on
Generative Adversarial Networks (GANs) that generates high-resolution images from
low-quality versions. Given the computational limitations typical of smartphones, the
project evaluates the model performance, feasibility of integration, and responsiveness
in mobile environments.

The Real-ESRGAN model was tested in three different environments. First, inference
was conducted using the official PyTorch implementation in a Google Colab
environment, which served as a baseline for output quality and processing speed under
ideal computational conditions. Second, the model was converted to NCNN format and
run on Android using a native C++ application, developed with JNI and OpenMP
optimizations to maximize real-time performance on ARM processors. Third, a
deployment was performed using ExecuTorch, a new framework developed by Meta
that allows PyTorch models exported in .pte format to run efficiently on Android
devices. In this case, a Java-based Android application was created to perform inference
on the device. Prior to inference, all images underwent a pre-processing pipeline that
degraded their quality to reproduce the imperfections typically found in
teledermatology and to meet the input specifications of the model. Each custom
application allowed users to upload dermatological images, apply super resolution, and
view the results directly within the mobile interface, enabling end-to-end evaluation of
model responsiveness and integration complexity in constrained environments. Each
model version was evaluated through both visual inspections and objective image

9

Abstract

quality metrics, including PSNR, SSIM, MSE, and LPIPS. Inference time was recorded
on mobile devices to evaluate computational performance in terms of latency and
responsiveness.

The results showed that NCNN outperformed Executorch in terms of speed, while the
latter facilitated a more streamlined and native integration within PyTorch-based
pipelines. Despite differences in execution frameworks, visual output quality remained
high, confirming the effectiveness of Real-ESRGAN across all deployment
environments. These results support the integration of super-resolution algorithms into
mobile dermatology workflows, with potential applications in remote triage and
diagnostic support where hardware limitations or limited bandwidth could otherwise
compromise image fidelity.

10

Introduction

1.1 Dermatology

Dermatology is the medical discipline that focuses on the prevention, diagnosis, and
treatment of conditions that affect the skin, as well as related structures like hair, nails,
and mucous membranes.

Given its extensive surface area and constant exposure to external stimuli, the skin
functions as both a protective barrier and a mirror of internal health status, which
explains the high frequency of dermatological manifestations in clinical encounters [1].

Thick (hairless) skin Thin (hairy) skin

Hair shaft

Opening of sweat duct

Epidermis-[h Dermal
apillae

Superficial pap
arteriovenous
plexus.

Papillary dermis

Reticular dermis

Arrector pili
muscle

-1 Meissner's corpuscle
Sweat duct 7 L Sebaceous
o k gland
Deep \
arteriovenous A

plexus
Subcutaneousfat

Subcutis/hypodermis Dermis

Hair follicle
Eccrine sweat duct
Eccrine sweat gland

Dermal nerve fibres
Eccrine sweat gland
Pacinian corpuscle

Figure 1: Structure of the human skin. [2]

11

Introduction

In the past decade, dermatologists have faced a consistent rise in skin cancer cases,
highlighting the significance of prompt management and early detection initiatives.

At the same time, technology has begun to play a more central role in everyday
dermatological practice. Tools such as digital dermoscopy, mobile health apps, and even
Al-assisted image analysis are becoming part of a broader shift toward more accessible
and data-driven care [2|.

1.1.1 Skin Cancer and the Importance of Early Diagnosis

Currently, skin cancer is one of the most frequently diagnosed cancers worldwide, and
the incidence rates are consistently increasing across all continents. As shown in Figure
2, recent epidemiological studies show a rising incidence in skin cancer in the past
decades [3].

Incidence rates of skin cancer in the U.S. from 1999 to 2021, by gender (per
100,000 population)

S 321 326 324
30.9

20.1 2041

281 284 524 28.1

203
19.7 19.7 199 196 20

=8= \ale =@= Female

Source Additional Information:
e United States; COC (Wonder)

- m

Figure 2: Incidence rates of skin cancer in the U.S. from 1999 to 2021, by gender
(per 100,000 population). [3]

This rise in incidence is primarily attributed to cumulative ultraviolet (UV) exposure,
an aging demographic, and increased awareness among the public resulting in more
frequent screenings [4], [5]. Although basal cell carcinoma (BCC) and squamous cell
carcinoma (SCC) often exhibit modest metastatic potential and are considered as less
aggressive, their large prevalence significantly affects healthcare system costs and
resource allocation [4]. In contrast, melanoma, despite its lower incidence, presents a
significantly higher risk as a result of its rapid metastasis and high mortality rate if not
diagnosed early [6].

12

Introduction

The clinical management of melanoma is significantly influenced by the stage of the
disease. In the United States (US), five-year survival rates exceed 98% when the lesion
is localized and confined to the epidermis, but these rates decline dramatically as the
tumor penetrates deeper into the dermis [7]. When melanoma exceeds 4 mm in size, it
begins to reach lymphatic sites and then spreads to other organs, as shown in Figure
3. Therefore, early diagnosis is not only helpful but essential. The treatment of early-
stage melanoma is often possible through surgical excision alone, thus avoiding the need
for systemic therapies such as immunotherapy or chemotherapy, which are more
frequently required in advanced cases and are associated with increased cost and
morbidity [8], [9].

- Epidermis
Dermis
Subcutaneous tissue

I
I I
i |
Stage 0 ! Stage 1 Stage 2 ! Stage 3 Stage 4
. i |
Tumor confined ! Tumor < 1 mm Tumor 1-4 mm : Spread to lymph Spread to other
to epidermis ! without ulceration with ulceration I nodes organs
' ' YV @S
1 I
' ' & 6
Lymph node Liver Lungs

Figure 3: The five stages in melanoma evolution process. [8]

The primary method for early detection is the visual examination of the skin, which is
frequently enhanced through dermoscopy, a non-invasive diagnostic technique that
enables clinicians to observe sub-surface skin structures that are not visible to the naked
eye. Dermoscopy has been shown to significantly improve diagnostic accuracy,
particularly in the hands of trained dermatologists. However, diagnostic performance is
heavily influenced by the level of experience of the clinician. In rural areas or primary
care settings, where dermatologists are scarce, non-specialist physicians might lack the
necessary training or instruments to confidently identify early-stage melanomas [10].

13

Introduction

(A) (B)

Figure 4: Dermatoscopic imaging setup and example. (A) Illuco IDS-1100
dermatoscope; (B) dermoscopic image of a malignant melanocytic lesion
(ISIC_0000283).

In response to these challenges, public health efforts in recent years have promoted
awareness campaigns, sun protection guidelines, and screening programs aimed at
encouraging individuals to monitor changes in their skin and seek medical consultation
when observing suspicious lesions [4].

In addition, the increasing availability of mobile technology has allowed the
development of new approaches for early detection. Smartphone cameras, when
combined with dermoscopy adapters or Al-based diagnostic tools, are increasingly being
evaluated as potential solutions for remote screening and self-monitoring, especially in
settings with limited access to dermatological care [11], [12], [13].

However, numerous obstacles persist in spite of these developments. The reliability of
remote assessments is affected by variability in image quality, lighting conditions, focus,
and resolution. Furthermore, the lack of standardization in how skin lesions are
photographed by patients contributes to diagnostic uncertainty [14]. For these reasons,
improving the quality of skin images obtained via smartphones has become a critical
area of research. Techniques such as image super-resolution, which are designed to
reconstruct fine visual details that are lost in low-quality images, gained attention for
their potential to improve diagnostic accuracy, particularly when combined with
machine learning-based classification systems [15], [16].

14

Introduction

1.1.2 Teledermatology: Opportunities and Challenges

Across many healthcare systems, dermatology faces the dual challenge of growing
patient volumes and an insufficient supply of specialists. This imbalance has fueled the
adoption of teledermatology, a branch of telemedicine which allows for the remote
diagnosis and monitoring of cutaneous conditions using digital platforms (Fig. 5). The
model is particularly well-suited for extending care to populations in remote or
underserved areas, where traditional face-to-face visits may be unfeasible. Thanks to
both asynchronous and real-time modalities, clinicians can manage caseloads more
effectively by reducing bottlenecks, accelerating referrals, and directing urgent cases
toward timely treatment [17].

% -0 B

User takes Image is securely Diagnosis is sent to
an image sent to the doctor the user

Figure 5: FExample of a teledermatology workflow.

Effectively structured teledermatology programs have shown diagnostic accuracy
comparable to that of in-person consultations, especially in the evaluation of common
dermatologic disorders like acne, eczema, and psoriasis [18|. Its role in oncologic
screening is also expanding, with remote assessments demonstrating value in identifying
early-stage malignancies. However, the inability to conduct tactile evaluations remains
a significant limitation, particularly for subtle clinical signs that rely on direct palpation
or subtle visual indicators.

The outbreak of the COVID-19 pandemic acted as a major catalyst for the widespread
implementation of teledermatology. Healthcare systems across the globe were compelled
to integrate digital platforms into standard dermatologic workflows to ensure continuity
of care. While the transition enabled sustained care delivery and adherence to treatment
for chronic skin diseases, it also exposed underlying weaknesses, including disparities in
digital access, variations in technological literacy, and gaps in institutional readiness
[19].

Despite its promise, the effectiveness of teledermatology is highly dependent on the
quality of the images submitted by patients. Inadequate lighting, motion blur, low
resolution, and improper framing are among the most common issues that hinder
accurate remote evaluation [14]. Furthermore, the wide range of mobile devices and the
lack of standardized acquisition methods contribute to inconsistencies that pose a
challenge to both human reviewers and Al models. Therefore, researchers and doctors

15

Introduction

have started developing strategies aimed at improving the visual accuracy of
photographs sent via smartphones and refining image acquisition protocols.

Efforts to improve the reliability of patient-submitted dermatological images have
included both the education by healthcare providers regarding the use of the camera
and the deployment of advanced image enhancement models [16], [20]. Such tools are
able to compensate for common visual flaws and reconstruct diagnostically relevant
features. In low-resource healthcare settings, where high-end equipment is unavailable,
these methods may prove essential to ensuring the effectiveness and scalability of
remote dermatologic care.

While regulatory frameworks for teledermatology continue to evolve, especially
regarding data privacy and cross-border consultations, ongoing collaboration between
clinicians, engineers, and public health authorities is essential to ensure that the
expansion of remote dermatologic services maintains both diagnostic quality and
equitable access.

1.1.3 Existing Mobile Applications for Dermatological
Support

The increasing availability of mobile devices with high resolution cameras has opened
the door to a new generation of dermatology-related applications. Designed to assist
with lesion diagnosis and monitoring, these tools range from simple trackers to complex
systems that incorporate machine learning for -classification purposes. Several
platforms, such as SkinVision and eSkin, have been subjected to varying degrees of
clinical assessment, revealing both potential and inconsistency in their diagnostic
contributions.

One of the most well-studied examples is SkinVision, a CE-certified application that
employs a support vector machine (SVM) classifier to estimate the malignancy risk of
photographed skin lesions. In a recent review, the app demonstrated a sensitivity of
95% and a specificity of 78% for skin cancer detection. However, the study also noted
a major limitation: the absence of clinical confirmation via physical examination, raising
concerns about false reassurance and misclassification in self-assessment contexts [21].

A more recent and rigorous study evaluated the diagnostic capabilities of SkinVision
by comparing its risk assessment performance with histopathological examination, the
clinical gold standard in skin cancer diagnosis. The analysis conducted by the authors
involved 1,204 pigmented skin lesions from 114 patients, revealing that the application
tends to identify a disproportionately high number of lesions as high risk, with an
overdiagnosis rate of 45.4%. This trend led to numerous false positive classifications,
particularly in benign nevi, raising concerns about possible over-referrals, increased
anxiety among users, and unnecessary pressure on clinical resources. The authors
attributed part of this problem to the underlying architecture of the app, which relied
on a support vector machine (SVM) rather than more adaptive deep learning methods.

16

Introduction

While the tool is not intended to replace professional assessments, it is designed as a
triage mechanism to encourage early dermatological consultation. However, its
limitations highlight the need for more explicit instructions for use and further
algorithmic validation before its integration into clinical protocols [22].

In addition to purely software-based solutions, several mobile teledermatology systems
have incorporated external optical devices, such as clip-on dermatoscopic lenses or
microscopes adapted for smartphones, to improve image quality and diagnostic
reliability. These accessories aim to overcome the optical limitations of native
smartphone cameras by enabling a more thorough inspection of subcutaneous skin
structures.

A study conducted in the Swedish public healthcare system has shown that mobile
teledermoscopy has drastically reduced waiting times for diagnosis and treatment. A
first consultation via teledermoscopy not only allowed patients to receive initial
feedback within 24 hours but also enabled patients with possible melanomas to be given
higher priority. In fact, the waiting time for diagnosis and treatment for patients who
used the teledermoscopy service was 36 days, compared to 85 days for those who relied
on traditional paper-based referrals [13].

A prototype application developed for the early diagnosis of melanoma is eSkin. This
application, whose interface is shown in Figure 6, was designed to capture
dermatoscopic images by pairing a smartphone camera with a dermatoscopic lens and
then transmitting them to a remote server for lesion evaluation. The system adopts a
client-server architecture and implements two different algorithms to analyze possible
melanomas and micro-melanomas (lesions with a diameter < 5 mm). The study
reported promising results, with a sensitivity of 90% for micro-melanomas and 86% for
melanomas. However, there have been no further developments since the article was
published in 2018 [8].

17

Introduction

eSKIN | | eSKIN || eSKIN

l 1 Skin mole:

Take a photo :
Detailed analysis

- SFln ‘mole dimension:
Dermatologist Archive diagnosis
UV risk factor Take another picture
L | o | | T

Figure 6: Example of a mobile dermatology application prototype
(eSkin) designed for skin lesion analysis and risk assessment. [8]

Another study evaluated a low-cost portable dermatoscope for smartphones as part of
a teledermatology platform. The system proved capable of capturing diagnostically
relevant features and showed promising results for early diagnosis workflows.
Nevertheless, the study also highlighted some practical limitations such as inconsistent
image quality affected by lighting conditions and device stability [23].

A more recent and technically advanced study examined the use of the Nurugo™ Derma
lens, a consumer-grade smartphone dermatoscope, in combination with a convolutional
neural network (CNN) trained on ISIC images (Fig. 7). The CNN ensemble was able
to classify melanoma, nevi, and seborrheic keratoses from Nurugo™-acquired images
with a diagnostic accuracy of 83.9% and an F1 score of 80.8%, results comparable to
those of experienced dermatologists. The system showed the potential of integrating
deep learning with low-cost imaging for real-world dermatologic applications, despite
some limitations such as glare and a restricted field of view [12].

Figure 7: Nurugo™ Derma smartphone dermatoscope: (A) device structure, (B)
attachment to a mobile phone, and (C) real-time image acquisition. [12]

These results highlight the potential of integrating hardware augmentation with Al-
based analysis in mobile dermatology. At the same time, they highlight the need to

18

Introduction

standardize acquisition protocols, validate heterogeneous devices, and carefully
calibrate both software and hardware to ensure reliable and equitable implementation
in different clinical settings.

1.2 Artificial Intelligence in Diagnostic
Support

Artificial intelligence (AI) encompasses a wide range of computational methods that
allow machines to replicate cognitive functions that are typically associated with human
intelligence, such as learning, reasoning, and decision-making. These systems are
engineered to autonomously analyze information, adjust to incoming data, and improve
their performance over time without the need of explicit reprogramming for each task
[24]. While AT is extensively utilized in consumer applications like search engines,
recommendation systems, voice recognition, and autonomous vehicles, its growing
impact in scientific and medical domains is particularly significant.

Over the past decade, the growing availability of clinical data, along with improved
computational power and refined learning algorithms, has facilitated the integration of
AT into diagnostic medicine. In diagnostics, machine learning and deep neural networks
have demonstrated the capacity to process large volumes of complex data, detect subtle
anomalies, and assist clinicians in making accurate and timely decisions. Techniques
such as support vector machines and convolutional neural networks have become central
to applications involving image classification, segmentation, and biosignal analysis,
helping to minimize diagnostic discrepancies and improve early detection rates [25],
[26], [27].

1.2.1 Artificial Neural Networks (ANNSs)

Machine learning (ML), a prominent subset of artificial intelligence, focuses on
developing systems that can identify patterns in data and refine their behavior through
experience. These algorithms are capable of constructing predictive models by
analyzing prior examples, allowing them to generalize effectively to new and unseen
data without explicit rule-based instructions. A wide range of ML techniques exists,
from simple linear regressors to complex ensemble methods, each tailored to specific
data types and structural properties [28], [24].

19

Introduction

Among the most versatile models in this field are artificial neural networks (ANNSs),
which are particularly effective in domains involving high-dimensional and unstructured
data, such as biomedical images or physiological signals. Inspired by the architecture
of biological neural systems, ANNs consist of layers of interconnected processing units
known as neurons. Each neuron receives signals as input, multiplies them by specific
weights, aggregates the “weighted” signals, and finally applies a nonlinear activation
function that produces an output (Fig. 8). The result is then propagated forward to
the next layers of neurons, and through iterative training, the network progressively
adjusts its weights to minimize errors [28§].

Inputs Weights

fl'go—-

Activation
Function

— — OJ.
Activation
. : Transfer
] [] Function
9
Ty #— Threshold

Figure 8: Structure of an artificial neuron.

T3

The expansion of computational capabilities and the availability of large-scale datasets
have enabled ANNs to evolve into more elaborate configurations, giving rise to the field
of deep learning (DL). In deep neural networks (DNNs), the presence of multiple hidden
layers facilitates the learning of hierarchical feature representations directly from raw
input, eliminating the need for manually engineered features, a task that is often time-
consuming and domain specific [28].

20

Introduction

A typical feedforward neural network is composed of an input layer, several hidden
layers, and an output layer. During training, optimization algorithms, such as stochastic
gradient descent, adjust the internal weights of the network to minimize a chosen loss
function that quantifies the gap between predicted and actual outcomes. The process
relies on backpropagation, a mechanism that propagates error signals backward through
the network to iteratively update each weight, thereby improving performance over
successive epochs [28]. An example of a deep neural network architecture for image
classification is shown in Figure 9 [26].

INPUT DATASETS HIDDEN LAYER1 HIDDEN LAYER2 OUTPUT DIAGNOSIS

Melanoma
Basiloma

Squamous cancer

R AL .

N7 Neurofibroma
T AR
RO

RN Psoriasis
& "“-§:‘$“".\
f;”'ﬁ‘\:{\" Eczema
% AR
- CHLTIEAR

AR Atopic dermasis
%‘,ﬁé\.f‘\ﬁ\:\

00X
)

Vitiligo
Onychomycosis

Acne

Figure 9: Example of a deep neural network architecture. The input layer receives
image features, two hidden layers perform feature extraction, and the output layer
assigns the images to one of possible diagnoses. [26]

These architectural advances have significantly enhanced the capacity of the model to
interpret complex inputs. Deep networks are capable of learning abstract features at
increasing levels of complexity, making them especially well-suited to fields such as
medical imaging and temporal signal analysis, where data are both structured and high
in dimensionality [25], [27]. Unlike traditional machine learning models that depend on
feature engineering, deep networks automatically extract relevant representations from
the data itself, an important advantage in clinical contexts, where domain expertise
may be limited or inconsistently applied.

Within this domain, convolutional neural networks (CNNs) have become the
architecture of choice for tasks involving image analysis. By applying trainable filters
across localized regions of the input, CNNs can detect features such as edges, textures,
and geometric shapes. Pooling layers then reduce the spatial resolution, allowing the
model to retain key information while simplifying computational complexity. These
layered operations enable CNNs to capture both local detail and global structure. In
clinical diagnostics, including the analysis of skin lesions, diabetic retinopathy
screening, and the interpretation of radiographic images, CNN-based models have

21

Introduction

achieved results that, in many cases, approach or match the accuracy of expert
practitioners [26], [30], [31].

Convolutional and Pooling Layers Vectorisation Connected Layers
Rabbit: 0.7
Horse: 0.3
Pig: 0.2
N
Input Feature Learning Flatten Classification Output

Figure 10: Schematic representation of a convolutional neural network (CNN). The
mput 1mage underqoes feature extraction through convolution and pooling layers, is
flattened, and processed by fully connected layers to produce class probabilities. [29]

Despite their effectiveness, deep learning models are heavily dependent on access to
extensive, high-quality labeled datasets. In the medical field, such datasets are difficult
to assemble due to privacy considerations, annotation variability, and the low
prevalence of certain conditions. To mitigate these limitations, researchers have adopted
strategies such as data augmentation, which synthetically expands training sets through
transformations like rotation or scaling; transfer learning, which adapts pretrained
models to new medical tasks; and generative approaches, such as the use of generative
adversarial networks (GANSs) to simulate realistic synthetic data [24], [25], [32], [33].

However, one of the principal challenges facing the adoption of deep models in
healthcare remains their lack of transparency. While performance metrics are often
impressive, the inner workings of these systems are not inherently interpretable. This
has prompted the development of explainable AT (XAI) techniques, including saliency
maps, Grad-CAM, and attention-based models, that offer visual insight into which
features most influence a given prediction, providing a bridge between black-box
systems and clinical accountability (Fig.11) [34].

Method Qcclusion GBP DeconvNet Guided GradCAM GradCAM

FArrrann

Figure 11: Comparison of different explainability techniques that highlight
which regions of the image most influenced the prediction of the model. [34]

Input
Image

Saliency
maps

22

Introduction

That said, more conventional machine learning models, such as logistic regression,
decision trees, and support vector machines, retain strong relevance in medical
applications, particularly when interpretability and robustness in low-data regimes are
priorities. In some cases, these models may outperform deep architectures when dealing
with structured, low-dimensional datasets or when transparency is critical for clinical
decision-making.

Finally, depending on the nature of the activity and the structure of the available data,
the learning paradigms used for both ML and DL models can be divided into
supervised, unsupervised, and reinforcement approaches |24].

e Supervised learning: the model is trained on a dataset of labeled data. During
training, the model makes predictions based on the inputs received and then
compares the predicted values with the actual values corresponding to the labels
provided. The error made is then measured and the network parameters are
adjusted based on this. This learning method is the dominant technique for
regression or classification tasks.

e Unsupervised learning: the model receives raw data as input, without any
indication or label. During the training phase, the network tries to discover
hidden and intrinsic patterns in the data. This method is widely used for
clustering or dimensionality reduction tasks.

e Reinforcement learning: This is a trial-and-error approach where the model
makes decisions within an environment from which it receives feedback. Based
on this feedback, the model then adjusts its future actions. This approach is
widely used in fields such as robotics and autonomous driving.

1.2.2 Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) are deep neural network architectures widely
employed in domains where spatial relationships within data are crucial such as image
classification and medical diagnostics. Their design, which is inspired by the way the
human visual cortex processes stimuli, allows them to recognize and generalize patterns
in localized regions of an image. These initial detections are gradually integrated into
more abstract features as data is propagated through successive layers. What makes
CNNs particularly interesting in clinical applications is their ability to learn directly
from raw pixel values, minimizing dependence on handcrafted features or expert-
curated descriptors [25].

Each CNN typically begins with convolutional operations, where small, trainable filters
slide over the input to generate feature maps that emphasize specific visual cues [35].
During the learning process, these filters adapt to improve the recognition of
informative elements within the image (Fig. 12). This is followed by the application of

23

Introduction

a non-linear transformation, frequently ReLU, which improves the ability of the
network to model complex and non-linear relationships [28].

- * 5 e

Figure 12: Sliding filter operation in convolutional layers. A 3x 3 kernel moves across
the input matriz, computing local features that are used to build activation maps in a

CNN. [35]

Pooling layers are used to reduce the spatial dimensions of the feature maps, typically
via max-pooling or average-pooling, thereby decreasing computational load while
preserving essential information [36]. The data is downsampled by these layers, which
select representative values within local regions, thereby preserving critical visual
information and removing redundancy (Fig. 13). Pooling also provides a degree of
spatial invariance, which allows the network to maintain performance even when the
input is slightly translated or distorted [28§].

region prop

input

max values in sections

output

(4) (5)

Figure 13: Max-pooling process in convolutional neural networks. From left to right:
(1) input matriz, (2) selected region proposal, (3) division into pooling sections, (4)
identification of mazximum values within each section, (5) resulting output matriz after
max pooling. [36]

24

Introduction

As the network advances toward its final layers, spatial features are flattened and passed
into one or more dense layers, which are also referred to as fully connected (FC) layers.
These layers generate a prediction based on the acquired features received as input.
Each neuron in a FC layer is connected to all neurons in the previous layer. This
structure, also known as Multi-Layer Perceptron (MLP), allows for the input
management of very complex data and proves to be particularly effective in tasks
requiring classification or regression outputs [28§].

Typically, the training process is supervised and focuses on the optimization of a loss
function, which quantifies the mismatch between the true labels and the predictions of
the model. In order to improve the accuracy of predictions, backpropagation is used to
propagate the error backward through the network, adjusting parameters layer by layer.
This iterative process is guided by optimization algorithms, such as Stochastic Gradient
Descent (SGD), Adam, and Root Mean Square Propagation (RMSProp), which
evaluate the computed gradients to determine the updates [28].

The performance of a CNN is significantly influenced by the selection and tuning of its
hyperparameters, including the learning rate, the number of hidden layers, kernel
dimensions, and batch size, which affect how the model learns from data and adapts
during training. The learning rate determines the step size of the updates to the weights
of the model during optimization, the kernel size defines the spatial dimensions of the
filters used in convolutional layers to extract localized features, and the batch size
determines how many samples are processed simultaneously before the model updates
its parameters. An inappropriate configuration of these elements can hinder
convergence, slow down learning, or cause the model to settle on suboptimal solutions
[28].

Two common issues that can arise during model development are overfitting and
underfitting. Overfitting occurs when the network becomes overly tailored to the
training data and does not perform well on new inputs, while underfitting occurs when
it fails to capture the underlying pattern of the data and performs poorly even on
known samples (Fig. 14). To address these challenges, several types of regularization
methods can be used. Dropout randomly disables a fraction of neurons during training,
encouraging the model to learn redundant and more generalizable patterns. Batch
normalization helps stabilize activations across layers, accelerating convergence and
reducing sensitivity to initialization. Additionally, weight decay imposes a penalty on
large parameter values to discourage overcomplex solutions [28§].

Underfitting Balanced Overfitting

Figure 14: Examples of model fitting behaviors. Balanced fitting reflects an optimal
model with good generalization. [37]

25

Introduction

In clinical settings, acquiring large annotated datasets can sometimes be challenging.
To address this, data augmentation is utilized to enhance training datasets by applying
transformations such as rotation, scaling, and flipping. Furthermore, transfer learning
has become a standard technique: CNNs pretrained on extensive datasets like ImageNet
can be adapted to smaller, domain-specific medical datasets to achieve competitive
outcomes with limited resources [25].

In recent years, several convolutional neural network architectures have been introduced
to address limitations in training depth, computational efficiency, and deployment
feasibility. Models such as ResNet, DenseNet, and MobileNet exemplify these
advancements. ResNet incorporates residual connections that allow gradients to flow
more effectively through deep networks, mitigating vanishing gradient issues. DenseNet
connects each layer to all subsequent layers within a block, promoting feature reuse and
improving gradient propagation. MobileNet, designed with depthwise separable
convolutions, achieves substantial reductions in model size and computation, making it
particularly suitable for applications on mobile and embedded devices [37], [3§].

As CNNs have gained traction in clinical workflows, interpretability has emerged as a
core requirement. Clinicians must be able to trust and validate algorithmic outputs,
particularly when they support high-stakes decisions. Visualization tools, including
Grad-CAM and saliency maps, assist in this process by highlighting image regions that
most influenced the decision of the network. This visual feedback allows medical
professionals to judge whether the attention of the model aligns with clinical
expectations and to identify potential failure points [34].

CNNs remain a cornerstone of image-based diagnostics, especially in specialties that
rely on detailed spatial and morphological features. Fields such as dermatology,
radiology, and ophthalmology continue to benefit from deep learning models that are
capable of extracting multi-scale features and maintaining spatial coherence, two
aspects essential for high diagnostic precision.

1.2.3 Generative Adversarial Networks (GANSs)

1.2.3.1 GAN Fundamentals

Generative Adversarial Networks (GANs) constitute a class of generative models
developed to approximate complex data distributions by learning how to generate new
samples that closely resemble those found in a target dataset. Originally introduced in
2014, the architecture comprises two neural networks with opposing objectives. The
first, called the generator G, receives as input a random noise vector z ~ p,(z) and
maps it to the data space in an attempt to create realistic outputs G(z). The second,
the discriminator D, takes as input a sample and outputs a probability value estimating
whether the sample is drawn from the true data distribution pgaea(X) or was generated
synthetically [32], [39].

26

Introduction

These two networks are trained simultaneously in a competitive scenario where the
generator is optimized to deceive the discriminator, while the discriminator is trained
to correctly distinguish real from synthetic data (Fig. 15). This process is formalized
as a two-player min-max game with the following objective function:

min max Exp,,(x) [log D ()] + Ezep) [log (1 - D(G(z)))]

This equation contains two terms. The first term, Ey.p x)[logD (x)], represents the
expectation over real data samples and encourages the discriminator to assign a high

probability to authentic data. The second term, E,_, () [log (1 — D(G (Z)))], penalizes
the discriminator when it incorrectly classifies generated data as real. Simultaneously,
the generator seeks to minimize this same term by producing samples G(z) that the
discriminator is less able to identify as synthetic.

Real
Samples

-~
Latent /
P il
Space Discriminator %
— \Com?

Figure 15: Architecture of a Generative Adversarial Network (GAN). The generator
produces synthetic samples from a latent space, while the discriminator evaluates their

authenticity by comparing them to real data. Training proceeds through adversarial fine-
tuning of both netwoks. [39]

Generator
Generated
Fake
Samples

Noisc

As training progresses, the generator improves its ability to mimic the data distribution,
while the discriminator becomes more refined in detecting subtle inconsistencies. The
ideal equilibrium is reached when D(x) = 0.5 for all x, meaning the discriminator is no
longer able to distinguish between real and generated samples, implying that G has
learned to produce data indistinguishable from the true distribution [32].

1.2.3.2 Deep Convolutional GAN (DCGAN)

One of the earliest and most influential adaptations is the Deep Convolutional GAN
(DCGAN), which replaced fully connected layers with convolutional and transposed
convolutional operations to better capture spatial hierarchies in image data. The

27

Introduction

generator in DCGAN utilizes transposed convolutions to iteratively upsample from a
low-dimensional latent vector, therefore progressively constructing image features at
progressively higher resolutions (Fig. 16). Batch normalization is applied to stabilize
gradient flows and facilitate convergence, while ReLU and Tanh activations are utilized
to introduce non-linearity and bound the output values. These design choices improve
the coherence and structural consistency of the generated samples, particularly in visual
domains requiring fine-grained texture synthesis [33].

3
)
128
256 ——
64| - 5
————— Stride 2
_________ 5
Stride 2 16 . :
. Stride 2
Project and reshape CONV 1
CONV 2 CONV 3 a1
CONV 4 =
G(2)

Figure 16: DCGAN generator architecture. [33]

1.2.3.3 Progressive Growing GAN (ProGAN)

To address the instability often encountered in training GANs at high resolutions, the
Progressive Growing GAN (ProGAN) architecture was introduced in 2018. Training
starts at a low resolution, and the dimensionality of the generator and discriminator is
incrementally increased through subsequent layer additions in this model (Fig. 17). At
each stage, the network is allowed to stabilize before being exposed to more detailed

G Latent Latent Latent
v
B
; —
i l]
1 1 1
1 1 []
i | ! I
: ! :]
} : 1024x1024 |
. R. - 8
i i Reals | {Reals . iReaIs
D . . 1024x1024 |
' s' . T
[]
1 [[]
b 'y []
P ———
: 3 8x8 —
4x4 4x4 4x4

v

Training progresses

Figure 17: ProGAN generator architecture. [33]

28

Introduction

representations. This approach allows the generator to initially capture global
structural patterns before learning finer textures, thereby minimizing the risk of mode
collapse and gradient vanishing [33].

1.2.3.4 Style-Based GANs (StyleGAN)

The StyleGAN family introduced a novel method for controlling image synthesis via
modulation of the latent space. Instead of relying solely on a fixed latent vector input
at the beginning of the network, StyleGAN injects learned intermediate representations
at various layers through adaptive instance normalization (AdalN), allowing
disentangled control over individual attributes of the generated image (Fig. 18). This
approach enables the fine manipulation of features such as color gradients, spatial
frequency, and morphology. The network architecture also includes a mapping network
that transforms input latent codes into an intermediate space, improving semantic
coherence and enabling more intuitive editing of output characteristics. Subsequent
versions, such as StyleGAN2 and StyleGANS3, refined this architecture by addressing
artifacts like droplet distortions and improving spatial consistency across layers [33].

Latent z € Z . Noise
Synthesis network g
Normalize Const 4x4x512

Mapping
network f

Figure 18: StyleGAN generator architecture. [33]

1.2.3.5 Conditional GANs (cGAN)

Conditional GANs (¢cGANSs) introduce additional input variables, such as class labels
or segmentation masks, into both the generator and discriminator (Fig. 19). This
conditioning steers the generation process, enabling the production of content aligned
with specific categories. Such control is particularly valuable in medical imaging, where
outputs can be tailored to depict pathologies or anatomical variations with diagnostic
relevance [33], [40].

29

Introduction

real data

z 5 fake data
~ Generator
m /
m

Figure 19: cGAN architecture. The label vector m is provided as extra
information to both the generator and the discriminator. [40]

Real

Discriminator

Fake

B N BN NS EHES BN

1.2.3.6 Image-to-Image Translation: CycleGAN and
Pix2Pix

CycleGAN introduced an architecture capable of learning mappings between two
unpaired domains, using cycle-consistency loss to enforce that translating an image to
the target domain and back to the original should yield a result similar to the input
(F'ig. 20). This has been applied in cross-modality image translation, such as converting
MRI to CT, or in improving image quality through denoising and contrast enhancement
without paired datasets [33].

a Eale
N Y
Dx Dy . Vs~ L Nl P Y
* G * F F
X /’_—\ Y X .,—‘“"' Y X ¥ cycle-consistency
\‘--___-/ L'_‘-'l'llhlutl:iihh']]r.\'__ _.L-\ > .<— -\r‘“ . s
F loss .‘-_._ ___4‘.

{a) : (b) ; {e)
Figure 20: Training mechanism of CycleGAN. Generators G and F translate between

domains X and Y, with cycle-consistency loss guiding the reconstruction of the original
input from its translated form. [33]

30

Introduction

Pix2Pix, in contrast, relies on paired datasets to learn direct mappings between
structured inputs and their photorealistic counterparts (Fig. 21). |33].

Figure 21: Pix2Piz architecture. The generator learns to translate input sketches (z)

into realistic images (G(x)), while the discriminator distinguishes between generated
pairs (x, G(z)) and real pairs (x, y). [33]

1.2.4 Image Super-Resolution and Clinical Applications

Super-resolution (SR) encompasses a set of techniques designed to derive a high-
resolution (HR) image from one or more low-resolution (LR) inputs. Low-resolution
images are often the result of intrinsic limitations of the acquisition devices, motion-
induced blur, optical distortions, or aggressive image compression protocols. The
primary objective of SR methods is to enhance the overall perceptual quality of
degraded images, reconstruct textures, and restore lost spatial details [41].

Traditional SR methods use interpolation techniques to approximate new pixel values
using information already present in the image.

The most commonly used techniques are:

e Nearest neighbor interpolation: For each target pixel location in the high-
resolution grid, the algorithm assigns the value of the closest pixel from the
original low-resolution image. The method requires minimal computational
resources and is frequently applied in real-time applications or hardware-
constrained systems. However, its naivety often results in block-like artifacts and
abrupt transitions, making it unsuitable for tasks that require visual fidelity or
anatomical precision [41], [42].

31

Introduction

10 | 10| 20 | 20

10 | 20 2x 10 | 10| 20 | 20

30 | 40 30 | 30 | 40 | 40

2x2 30 | 30 | 40 | 40

4dxd
Figure 22: An example of nearest neighbor interpolation. [42]

Bilinear interpolation: It is a two step process that involves a linear
combination of the four nearest surrounding pixels to estimate each new pixel
value. It performs interpolation first along one axis and then along the other,
producing smoother transitions and reducing aliasing effects. It offers smoother
transitions than nearest-neighbor but struggles with preserving sharp edges and
fine structures [41], [43].

10 | 12 | 17 | 20

10 | 20 2X 15 | 17 | 22 | 25
>

30 | 40 25 | 27 | 32 | 35

2x2 30 | 32 | 37 | 40

4x4

Figure 23: An example of bilinear interpolation. [42]

Bicubic interpolation: More sophisticated than the previous two, bicubic
interpolation calculates new pixel values using the 16 nearest neighbors arranged
in a 4x4 grid. It applies cubic convolution to both horizontal and vertical axes,
allowing for a smoother and more continuous reconstruction. Bicubic methods
tend to preserve edge gradients better and generate fewer visual artifacts.
Although computationally more demanding, they are often preferred in
applications where reconstruction quality is prioritized over speed. Notably,
bicubic interpolation with anti-aliasing remains a standard preprocessing step in
the construction of synthetic super-resolution datasets, where high-resolution

32

Introduction

images are intentionally degraded to low-resolution versions for supervised
training [43].

7 10] 16 | 19

10 | 20 2X 13 | 17 | 22 | 26

30 | 40 24 | 28 | 33 | a7

31 | 34 | 40 | 43

2x2

dx4

Figure 24: An example of bicubic interpolation. [42]

However, these interpolation methods are inherently limited by their inability to restore
lost high-frequency information. To overcome these constraints, learning-based
techniques have emerged as a more effective alternative.

1.2.4.1 Learning-Based Super-Resolution Methods

Deep learning has significantly improved the ability to reconstruct high-quality images
from degraded inputs through its integration into super-resolution frameworks. The
Super-Resolution Convolutional Neural Network (SRCNN) was one of the initial
contributions, showing that learning-based models might exceed conventional
interpolation by improving pixel reconstruction using convolutional layers [44].

As a result of subsequent advancements, architecture became more complex,
incorporating mechanisms such as residual blocks, attention modules, and perceptual
loss functions. These improvements allow models to preserve texture continuity and
structural integrity, particularly in fields like medical imaging.

1.2.4.2 GAN-Based Super-Resolution: The SRGAN
Model

The Super-Resolution GAN (SRGAN) model introduced by Ledig et al. (2017) marked
a turning point by leveraging adversarial training to generate high-quality, photo-
realistic outputs. Unlike conventional CNN-based models, SRGAN uses a discriminator
to assess the realism of the generated HR image and a generator trained to fool the
discriminator by producing increasingly realistic reconstructions [45].

33

Introduction

In addition to adversarial loss, SRGAN incorporates a perceptual loss computed in a
feature space defined by a pretrained network, which enables the model to prioritize
perceptual fidelity over pixel-wise accuracy. This approach helps the model reproduce
textures and boundaries in a way that better matches how clinicians interpret visual
information, which is crucial when medical decisions depend on small anatomical
irregularities [45].

Generator Network B residual blocks

"kanB4s1 k3n6ds1 ' k3nB4s1 k3n256s1 k9n3s1

|SR

PixelShuffler x2

=

skip connection

Discriminator Network k3n128s2 k3n25652 k3n51252
k3nE4s1 K3nBds2 k3n128s1 k3InZ56s1 k3n512s1

——

RelLU

S s
e (1)

Densi

3
=1}
(=
z
m
w
=

Figure 25: Architecture of SRGAN. The generator upsamples a low-resolution image
through residual blocks and sub-pizel convolutions, while the discriminator distinguishes
between real and generated high-resolution output. [45]

Subsequent extensions of this approach, including ESRGAN (Enhanced SRGAN) and
Real-ESRGAN, further refined this architecture by introducing residual-in-residual
blocks, dense connectivity, and more stable loss functions. These models improve the
sharpness and robustness of reconstructions, even when trained on heterogeneous or
noisy datasets [46], [47].

1.2.4.3 Clinical Relevance and Applications

High-resolution imaging is essential for the detection and characterization of
pathological features in clinical workflows. However, imaging technologies frequently
operate under limitations imposed by technical specifications or regulatory constraints
on radiation exposure. Super-resolution techniques represent a methodological
advancement that enhances visual quality, supporting more informed and precise
diagnostic assessments.

1.2.5 The Real-ESRGAN Model

The Real-Enhanced Super-Resolution Generative Adversarial Network (Real-
ESRGAN) is a state-of-the-art deep learning framework developed to perform image

34

Introduction

super-resolution on real-world, low-quality images [47]. While classical SR approaches
often assume that input images are degraded through known processes (e.g., bicubic
downsampling), such assumptions rarely hold in real-world situations where image
corruption is unpredictable and multifactorial.

Real-ESRGAN addresses this limitation by introducing a high-order degradation model
that better simulates practical degradations that can occur in the real world, as well as
a GAN-based architecture that allows the system to recover realistic textures by
suppressing noise and artifacts [47].

The model is particularly relevant in contexts where user-acquired images often suffer
from diverse forms of degradation due to hardware limitations, environmental lighting,
compression, or camera movement. Unlike earlier methods constrained by synthetic
degradation assumptions, Real-ESRGAN is trained on images that undergo a more
complex degradation pipeline, making it robust to a variety of input conditions
encountered in non-controlled environments [47].

x 4 .
- e

Pixel
Unshuffle

Input

X1 §

Figure 26: The Real-ESRGAN generator adopts the same architecture as ESRGAN,
featuring residual-in-residual dense blocks and upsampling through pizel-shuffle layers.

[47]

1.2.5.1 Underlying GAN Framework

Real-ESRGAN extends the foundation established by ESRGAN by refining both the
architecture and the training methodology to improve robustness and applicability in
real-world scenarios. Similar to ESRGAN, it uses a deep generator architecture based
on residual-in-residual dense blocks (RRDB). This architecture enables efficient feature
extraction and stable training without the need for batch normalization layers [46].
Unlike its predecessor, which was trained on images degraded exclusively via bicubic

35

Introduction

downsampling, Real-ESRGAN incorporates a more comprehensive degradation model.
As a result, the model is better equipped to generalize beyond idealized scenarios [47].

i
_)Arp, pense DENSE] i
Jbrx Block Block i

A
I 4 vm$""‘
\\

Conv
LReLU

Conv
LReLU

Conv
LReLU
Conv
LRelLU

Figure 27: Structure of a Residual-in-Residual Dense Block (RRDB), composed
of three dense blocks with residual and skip connections. [46]

1.2.5.2 Degradation Modeling and Training Process

A core innovation of Real-ESRGAN lies in its realistic degradation pipeline, which
replicates complex and compound forms of image degradation (Fig. 28). Instead of
relying on simple downscaling kernels, the authors introduced a two-stage degradation
model involving random blur kernels, additive Gaussian noise, JPEG compression, and
downsampling by non-ideal filters [47]. This process ensures that the generator learns
to reverse degradations that are more representative of those encountered in
unconstrained real-world images.

_ﬁrst order —
Blur — Resize | _ Noise — JPEG
J (Downsampling) Compression
. fééflie’r’ail’i’zie’)i) * Gaussian noise S
Gaussian filter I}D?Slzs, + Poisson noise oLl
. . - bicubic
- isotropic o
! - anisotropic - bilinear + Color noise
* 2D sinc filter - area + Gray noise

second order
L [B | — Resize . . JPEG
) (Downsampling) O + 2D sinc filter 3

Figure 28: Degradation pipeline used for training the Real-ESRGAN model. [47]

The training of Real-ESRGAN is structured in two phases. Initially, a PSNR-oriented
generator is trained using only the L1 loss to ensure pixel-wise reconstruction fidelity.
This pre-trained model is then used to initialize the generator of Real-ESRGAN, which
is subsequently fine-tuned using a combination of L1 loss, perceptual loss and GAN
loss. This strategy balances numerical accuracy with perceptual realism, ensuring that
fine details and textural information are preserved.

36

Introduction

1.2.5.3 Model Architecture and Evolution

The first versions of Real-ESRGAN were primarily built on the RRDB architecture,
which proved highly effective for capturing texture details and spatial patterns in high-
resolution image synthesis [46].

However, the more recent versions of Real-ESRGAN, particularly those intended for
real-time deployment, adopt a lightweight architecture known as SRVGGNetCompact.
This architecture, introduced in the official Real-ESRGAN GitHub repository,
simplifies the network by performing upsampling only in the final layer, and avoiding
convolutions in the HR feature space. This reduces memory usage and computational
overhead [48].

While RRDB-based models offer superior performance in terms of fidelity on high-end
machines, SRVGGNetCompact allows real-time inference without substantial sacrifice
in image quality, making it a practical choice for applications on smartphones and
embedded devices.

1.3 Frameworks for Mobile Deployment

The integration of deep learning models into mobile and embedded systems poses a
number of challenges that differ significantly from those faced in cloud-based or desktop
environments. Unlike traditional computing platforms, mobile devices are subject to
significant limitations in terms of memory availability, computational power, energy
consumption, and thermal dissipation [49].

Furthermore, the diversity of hardware accelerators across smartphone architectures
introduces considerable variability in runtime performance, often requiring platform-
specific optimization solutions.

In addition to hardware heterogeneity, mobile deployment must account for real-time
responsiveness, which is essential for applications such as medical diagnostics or
augmented reality. Models must therefore be sufficiently compact to ensure low-latency
inference, while still preserving the accuracy necessary for the task at hand. Techniques
such as model pruning, quantization, and architectural simplification have been widely
adopted to achieve this balance. These methods reduce the number of operations and
memory footprint without significantly impairing the ability of the network to
generalize.

Bandwidth availability and data privacy also play a critical role. Offloading
computation to remote servers may be impractical in situations with poor connectivity
or when sensitive data, such as medical images, should remain on the device. For this
reason, on-device inference has gained traction as a preferred strategy, even though it
entails additional design constraints [49|.

37

Introduction

The implementation of deep learning models on mobile hardware demands a
multidisciplinary approach that encompasses not only algorithmic innovation but also
low-level system optimization and consideration of user experience requirements.

1.3.2 NCNN Framework

The NCNN framework is an open-source neural network inference engine developed by
Tencent specifically for mobile platforms. Unlike many frameworks that rely on external
dependencies or cloud offloading, NCNN is optimized with a zero-dependency design
to prioritize efficiency, portability, and on-device execution [50].

A significant technical advantage of NCNN is its architectural optimization for ARM-
based processors, which are the primary computing units in Android mobile platforms.
The framework is specifically engineered to exploit NEON SIMD (Single Instruction,
Multiple Data) instructions, an ARM extension that enables parallel processing of
multiple data points within a single operation, thereby accelerating core computations
such as convolutions and activation functions. In parallel, NCNN employs OpenMP, a
widely adopted API for shared-memory multiprocessing, to implement dynamic
multithreading strategies. This allows the inference engine to distribute workloads
efficiently across multiple cores, improving throughput without sacrificing latency. The
threading configuration is adaptive by default, scaling with the number of available
logical processors, but it also permits manual tuning to fit heterogeneous system-on-
chip designs with asymmetric core performance.

In addition to CPU optimization, NCNN includes a Vulkan backend that enables
inference acceleration on supported mobile GPUs. Vulkan is a cross-platform API for
high-performance graphics and compute operations, offering more explicit control over
hardware resources compared to older APIs like OpenGL ES. By leveraging Vulkan,
NCNN can offload computational workloads, such as convolutions and matrix
multiplications, from the CPU to the GPU of the mobile device, thereby reducing
latency and improving energy efficiency. Although Vulkan-based inference in NCNN is
still under active development, it presents a scalable and portable solution for real-time
deployment across a wide spectrum of Android devices [50].

Compared to other mobile inference frameworks such as TensorFlow Lite, MNN, or
PyTorch Mobile, NCNN frequently exhibits superior performance, particularly in CPU-
bound scenarios. Independent benchmarking studies have shown that NCNN achieves
faster inference times on models, such as MobileNetV2 and SqueezeNet, across multiple
hardware configurations [49].

38

Introduction

In addition, NCNN simplifies the model deployment workflow by offering a specific
toolchain that simplifies the conversion of models from popular formats into a
streamlined representation that is suitable for mobile inference. Overall, NCNN offers
a reliable and effective solution for the deployment of deep learning models on mobile
hardware, while simultaneously ensuring portability and performance.

oo [oo I o I O e [e [

MODEL GP5S | HES | HM | MI11| MI9 MZ16| OP9 | R9 | RN9 | S21

mobilenetV1

mobilenetV2

nceptionV3

mnceptionV4

vegglb

squeezenet

mnasnet

resnetV2_50

nasnet_mobile

densenet
ssd_mobilenetV1
deeplabV3
yolo-fastest

yolo3
albert_tiny

mobilenetV1_INT8
mobilenetV2_INT8
inceptionV3_INTS8
inceptionV4_INT8
squeezenet [INT8
vggl6 INTS

(a) CPU

Figure 29: Benchmark of deep learning frameworks on mobile CPUs.
The chart reports the framework achieving the lowest inference latency
for each combination of model and mobile device. [49]

1.3.3 ExecuTorch Framework

ExecuTorch is an embedded inference framework introduced by Meta to address the
challenges associated with deploying PyTorch models on resource-constrained devices
[51].

Built atop the export graph infrastructure of PyTorch 2.0, ExecuTorch marks a
substantial evolution from its predecessor, PyTorch Mobile. While PyTorch Mobile
requires bundling much of the full Python runtime and results in relatively large

39

Introduction

binaries and longer initialization times, ExecuTorch introduces a static format called
.pte (Portable Torch Executable). This format encapsulates the model in a highly
portable, serialized structure that can be interpreted directly by the runtime with
minimal overhead. As a result, developers benefit from faster application start-up times,
reduced package sizes, and a more deterministic execution environment [52].

Ahead of Time

At Inference time

export compile for target HW
PyTorch
Program »

torch.NN.Module Memory Planning

executes

ExecuTorch Runtime
» Program »
Ops Delegates

Compile (sub)graph to accelerators.

Custom kernels

Edge Device

Figure 30: High-level overview of the ExecuTorch deployment pipeline. A PyTorch
model is exported and compiled into an optimized ExecuTorch program, which 1is
executed at inference time through a lightweight runtime on edge devices. [51]

One of the core advantages of ExecuTorch lies in its seamless integration with the
broader PyTorch ecosystem. The model export pipeline remains consistent with
existing PyTorch tools, allowing developers to convert trained models into deployable
assets without the need for extensive manual optimization or external conversion tools.
This tight alignment between training and deployment simplifies maintenance and
ensures reproducibility, especially in scenarios where models are updated frequently or
must be adapted for deployment across multiple device types.

In contrast to alternatives such as NCNN, which focuses heavily on low-level
optimization for ARM architectures and includes Vulkan-based GPU acceleration,

ExecuTorch prioritizes ease of integration and end-to-end consistency within the
PyTorch workflow [51].

Although ExecuTorch is a relatively recent addition to the PyTorch ecosystem, having
been introduced in 2023, it demonstrates considerable promise for enabling the
deployment of sophisticated neural networks on mobile and embedded platforms.

40

Materials and Methods

2.1 Dataset

The images used for this study were selected from the public archive of the International
Skin Imaging Collaboration (ISIC), one of the leading repositories of dermoscopic and
clinical images of skin lesions for researchers [53]. The selected images represent
pigmented lesions acquired in a clinical setting using dermatoscopy. Images containing
lesions with diagnostic features such as color variations and irregular borders were
chosen, as these are particularly sensitive to resolution degradation and therefore
suitable for evaluating the perceptual and structural improvements offered by super-
resolution algorithms. Since the purpose of this study is not to train a new model but
to study the feasibility of implementing the Real-ESRGAN model on a mobile device,
only three images were chosen.

Image 1 Image 2 Image 3
(ISIC _0000206) (ISIC _0000062) (ISIC _0000271)

e
Figure 31: High-resolution dermoscopic images selected from the ISIC archive.
Specifically, the chosen images are ISIC 0000062, ISIC 0000206, and ISIC _0000271.

41

Materials and Methods

In their original form, the images were available in high resolution. To simulate realistic
low-quality input, downscaled and degraded versions of the images were generated using
an additional degradation pipeline, which included blur and compression artifacts, to
better reflect real-world acquisition conditions. This degraded input was then used for
inference in all test environments.

The introduction of this pre-processing pipeline allowed the simulation of degradation
types observed in practical contexts, such as loss of sharpness and texture, typically
due to smartphone camera limitations or imperfect user acquisition. This approach
allowed the system to be tested in an application context in line with teledermatology
workflows [14].

.
/ ’
- [¥ N

Figure 32: Degraded version of the dermoscopic images obtained as an
output of the preprocessing pipeline.

2.2 Image Preprocessing Pipeline

To ensure consistency across different inference environments, all input images were
subjected to the exact same pre-processing pipeline, designed to simulate realistic
degradations and prepare the data in accordance with the input requirements of the
Real-ESRGAN model. This pre-processing was applied in each deployment environment
with equivalent parameters and structure. The primary objective of this pipeline was
to mimic real-world imperfections typically found in mobile teledermatology, such as
blur, compression artifacts, and limited resolution, while standardizing the format for
neural network input.

The complete pre-processing pipeline, shown in Figure 33, consisted of the following
five steps:

e Central Cropping
The first step consisted in extracting a central square region from the input
image. Given that dermoscopic images often contain non-informative
background areas, central cropping helped remove peripheral noise and
guaranteed spatial consistency across all samples. This step mitigated the
influence of peripheral background artifacts and ensured input uniformity across
samples.

42

Materials and Methods

¢ Gaussian Blur
Next, a Gaussian blur filter was applied to the image using a 3x3 kernel. Each
pixel in the image was replaced with the weighted average of the surrounding
pixels, assigning a higher weight to pixels closer to the center. This process
reduced the sharpness of the image, particularly around the lesion area. As a
result, it simulated the kind of blurring typically introduced by camera
movement or minor focus imperfections.

e Compression Artifact Simulation
Lossy compression is a commonly used technique in smartphone image uploads
that introduces blocky artifacts and loss of fine details. To replicate these effects,
the image underwent a two-step process. First, the blurred image was
downscaled by a factor of two, using bilinear interpolation. Then, it was
immediately upscaled back to its original size using the same interpolation
method. This strategy imitates the lossy reconstruction commonly seen in JPEG
algorithms by reducing spatial resolution and then restoring it without
recovering high-frequency details.

e Resize to Fixed Input Dimensions (224 x224)
After applying the degradation steps, the image was resized to 224 x224 pixels,
which corresponds to the expected input size of the Real-ESRGAN model used
in this project. This same resolution was used in every test environment to keep
the comparisons consistent.

e Normalization and Tensor Conversion
The final step consisted in converting the preprocessed image into a format
suitable for inference. Pixel values in the RGB channels, originally in the [0, 255]
range, were normalized to the [0, 1] interval by dividing each value by 255. The
normalized image was then converted into a tensor with shape (1, 3, 224, 224),
where the first number corresponds to the batch size, the second to the image
channels, and the last two to the height and width, respectively.

By standardizing the degradation pipeline before inference, the study maintained
consistent input conditions across all platforms. This approach ensured that any
difference in output fidelity could be confidently linked to the backend framework rather
than the preprocessing routine. At the same time, introducing imperfections that
resemble real-world acquisition brought the test conditions closer to those encountered
in everyday mobile health settings.

43

Materials and Methods

PRE-PROCESSING PIPELINE

-

CENTRAL
& i CROP

- i ' ,_fﬁ

Original Image Central Cropped Image Blurred Image

GAUSSIAN
BLUR "

(Gaussian 3x3)

-« €

A

Final Image Compressed Image
(224x224) (Down/Up Bilinear)

Figure 33: Preprocessing pipeline applied to the dermoscopic images before inference.

2.3 Architecture and Configuration of the
Real-ESRGAN Model

The Real-ESRGAN model used in this project is based on the SRVGGNetCompact
architecture, a compact convolutional network architecture designed for super-
resolution tasks. This variant is a lightweight alternative to the original RRDB-based
architecture, offering significantly reduced computational load while maintaining good
output quality.

Unlike the original Real-ESRGAN architecture, this structure performs upsampling as
the last operation, so no convolution is performed in the high-resolution feature space.
This strategy thus reduces the computational cost of inference, making it more suitable
for execution on hardware with limited computing power [48].

The network accepts a low-resolution RGB image with a size of 3x224x224 as input
and returns an enhanced output that is four times larger in both spatial dimensions,
with a size of 3x896x896. The 4x upscaling factor, consistent with the standard Real-
ESRGAN configuration, was maintained across all implementation environments to
enable direct comparison of results and performance.

Structurally, the network begins with a single convolutional layer followed by a PReLLU
activation. This is followed by 16 convolutional blocks, each using a 3x3 kernel and 64

44

Materials and Methods

feature maps. Every block includes its own activation function. At the end of the
sequence, another convolutional layer increases the number of channels before upscaling
is performed using a pixel shuffle layer. A residual connection is also added by
interpolating the input image using nearest-neighbor and summing it with the output.
This approach encourages the model to reconstruct only the missing high-frequency
details while preserving the overall structure.

Instead of training the network from scratch, this work adopted a transfer learning
approach by reusing the pre-trained weights provided in the official Real-ESRGAN
repository [24], [48]. Specifically, the realesr-general-x4v3 model, originally trained on
generic image datasets, was chosen. Since the goal of this study is not to improve super-
resolution performance, but rather to evaluate inference behavior and implementation
feasibility in mobile contexts, the pre-trained generator was used as-is, without any
fine-tuning. This allowed for a more accurate comparison of backend performance by
eliminating variability due to different training regimes.

The exact same pretrained model was used in all backends. The PyTorch model served
as the reference and was converted into NCNN format using the PNNX tool, and into
ExecuTorch format using the torch.export() function followed by XNNPACK graph
partitioning. This consistency ensured that any observed differences in output were due
to the inference frameworks themselves, not changes in the model configuration.

2.4 Model Conversion: from PyTorch to
NCNN and ExecuTorch

Two different conversion paths were followed to deploy the Real-ESRGAN model on
mobile devices: one tailored for NCNN, the other for ExecuTorch. Although both
originate from the same PyTorch checkpoint, the export processes differ in format
specifications and integration workflows, reflecting the architectural distinctions of the
respective runtimes.

The conversion of the model for NCNN deployment began with the original PyTorch
.pth checkpoint of the SRVGGNetCompact generator. This file was loaded in a Python
environment, and the model was traced using torch.jit.trace with a dummy input tensor
of shape (1, 3, 224, 224). Tracing produces a static TorchScript graph by executing the
model with a dummy input and recording the sequence of operations activated during
forward propagation. The resulting TorchScript graph was then saved as a .pt file.

45

Materials and Methods

This file was subsequently processed using PNNX, an open-source toolkit developed
specifically for exporting PyTorch models to NCNN format. The pnnx.export() function
takes the traced model as input and generates two output files:
realesr general x4v3.ncnn.param, which defines the network structure, and
realesr general x4v3.ncnn.bin, which stores the binary weights. Together, these files
constitute the NCNN-compatible version of the model [54].

Integration into Android

PyTorch ' | NCNN converter |

pth/.pt .pNnx
¥ | y

Conversion Inference —T———*>

v
h.

Conversion

.param
.bin |

Figure 34: NCNN conversion and deployment pipeline. [54]

For deployment with ExecuTorch, the same pretrained PyTorch checkpoint of the
SRVGGNetCompact generator was used. Similar to the process followed for NCNN
export, the model was traced using a dummy input tensor of shape (1, 3, 224, 224).
However, in this case, the torch.export.() function was used, which is part of the
PyTorch 2.0 graph export infrastructure and is therefore designed to be fully compatible
with Executorch.

Following the export, the resulting graph was passed to
to_edge transform and lower, a function provided by the executorch.exir module.
This function is responsible for transforming and lowering the exported model graph
into a backend-compatible representation suitable for embedded inference.

46

Materials and Methods

The conversion pipeline included a partitioning phase, in which the computation graph
generated by the export process was segmented so that it could be optimized for a
specific target hardware. Executorch offers several optimization backends for specific
hardware. In the case of this study, the XNNPACK backend was chosen, which is
specific to ARM CPUs such as those found in Android smartphones. As part of the
conversion process, ExecuTorch identifies portions of the model (partitions) that are
supported for the given backend. These sections are processed by the backend ahead of
time to support efficient execution (Delegation). This allows for partial model
acceleration when not all model operators are supported on the backend but may have
negative performance implications [52].

[nn.Module]

%" """" > Delegation

[Edge dialect]

¥
ExecuTorch
Program

Figure 35: Executorch conversion and deployment pipeline. [52]

Following this stage, the model was lowered and translated into the .pte format, a
binary representation compatible with the ExecuTorch runtime. This file encapsulates
both the network structure and its parameters and can be loaded directly into the
mobile application without further preprocessing.

2.5 Android App Development with NCNN
and ExecuTorch

In order to test the performance of the Real-ESRGAN model in mobile environments,
two Android applications were developed: one based on the NCNN inference engine

47

Materials and Methods

with native C++ integration, and the other using ExecuTorch through a Java-based
runtime. Despite the different execution backends, both applications were structured to
perform the full inference pipeline, starting from image loading, through preprocessing
and model execution, to visualization of the super-resolved output.

In both apps, the user selects an image from the device gallery, which is then passed
through the custom degradation pipeline, designed to simulate the visual artifacts
commonly introduced during smartphone-based image acquisition.

2.5.1 NCNN-Based Application

In the NCNN application, image preprocessing and model execution were implemented
in native C++ using OpenCV and the NCNN APIL In addition, the native Java
interface (JNI) was also used to connect the Android Java code to the underlying C++
inference logic. JNI allows methods to be called across the Java/C+-+ boundary by
linking Java methods to their native counterparts compiled into shared libraries (.so
files).

The structure of the Android application package (APK) is as follows:

e /app/src/main/cpp/native-lib.cpp
Contains the native C++ source code, which handles image preprocessing using
OpenCV, model loading, and inference execution. It also contains the JNI
functions that allow Java code to access the C++ functions.
e /app/src/main/assets/
Stores the model files:
o realesr general x4v3.ncnn.param: model architecture.
o realesr general x4v3.ncnn.bin: model weights.

e /app/CMakeLists.txt

Configures the native build, linking NCNN, OpenCV, and enabling OpenMP for
multithreaded inference.

e /app/src/main/java/MainActivity.java
Handles user interaction and calls native methods via JNI. The final output

Bitmap is passed back from C++ and displayed in the UL

48

Materials and Methods

e /app/src/main/res/layout/activity main.xml

Defines the graphical layout of the app. It contains the ImageView components
and the two action buttons.

2.5.2 ExecuTorch-Based Application

Unlike the application developed for NCNN, the Executorch app was implemented
entirely in Java. Executorch was integrated through the AAR library distributed by
the authors via Maven Central, one of the main repositories for Java-developed projects.
In this way, pre-processing was handled through Android Bitmap class, while inference
was handled through Executorch Java API.

The APK of the project is structured as follows:

e /app/src/main/java/MainActivity.java

It contains all the logic for image loading, degradation, tensor conversion,
inference, and output display.

e /app/src/main/assets/
Stores the precompiled model:
o realesrgan x4 exported execu.pte: serialized model in Portable Torch
Executable format.

e build.gradle

Includes dependencies to import the executorch-android runtime from Maven
Central.

e /app/src/main/res/layout/activity main.xml
Defines the graphical layout, mirroring the NCNN version with consistent design

and functionality. It contains the ImageView components and the two action
buttons.

2.6 Inference Benchmarking on Google Colab
and Android Devices

To evaluate the inference performance of the Real-ESRGAN model under different
deployment conditions, a benchmarking protocol was implemented across three

49

Materials and Methods

environments: a cloud-based setting using Google Colab, and two mobile applications
running natively on Android devices via NCNN and ExecuTorch, respectively. The
objective of this benchmarking was to quantify latency during model execution and
assess the responsiveness of each platform under real-world constraints.

In the Google Colab environment, inference was executed using the official PyTorch
implementation of Real-ESRGAN. The environment was equipped with a Tesla T4
GPU, and the runtime measurements were collected using Python time module.
Specifically, timestamps were recorded immediately before and after the forward pass
of the generator model to calculate the execution time in seconds. This setup served as
a reference for ideal-case inference conditions with no hardware limitations.

On Android, two separate applications were developed to run inference using NCNN
and ExecuTorch. In the NCNN-based implementation, developed in native C++ using
the Android NDK, latency was measured using the clock _gettime() function to capture
nanosecond-level precision. The timing bracketed the realesrgan.forward() function,
which corresponds to the core model inference. For the ExecuTorch implementation,
developed in Java, the method System.currentTimeMillis() was used to measure elapsed
time between the start and end of the esModel.run() function call, which triggers the
execution of the Portable Torch Executable (.pte) model.

In each environment, benchmarking was performed using the same low-resolution
dermatological image as input, following identical preprocessing and model loading
procedures. To ensure consistency and mitigate the effect of outliers, inference was
repeated five times per configuration and the mean execution time was reported. No
post-processing steps such as image saving or visualization were included in the
measured interval, in order to isolate the pure computational overhead associated with
model inference.

Attention was also paid to differences in runtime initialization. For example, NCNN
showed minimal startup overhead due to its statically linked libraries and optimized
binary structure, while ExecuTorch benefitted from fast model deserialization using the
.pte format, despite slightly longer Java-level initialization steps. These aspects were
noted during testing but excluded from the timing measurements, which focused
exclusively on the inference time.

By conducting this multi-platform benchmarking, it was possible to compare the
inference efficiency of each framework in a controlled and reproducible manner. All
Android tests were executed on the same device to eliminate hardware variability and
ensure fairness in the comparison.

50

Materials and Methods

Realesrganappncnn Realesrganappncnn Realesrganappncnn

SELEZIONA MIGLIORA SELEZIONA MIGLIORA
IMMAGINE IMMAGINE IMMAGINE IMMAGINE

(A) (B) (©)

Seleziona e ¢ Seleziona i :
Immagine Migliora Immagine Immagine Migliora Immagine

Figure 36: User interface flow of the two Android applications (NCNN above,
EzxecuTorch below). Each row shows the main steps performed by the user: (A) app
launch, (B) image selection, and (C) inference result after image enhancement.

51

Results

3.1 Qualitative Assessment

Once inference was performed on the three images in the ISIC dataset using the three
different frameworks, the outputs were displayed side by side to perform a qualitative
assessment (Fig. 37).

Degraded Input PyTorch Output NCNN Qutput ExecuTorch Output

/ ;j;;

Degraded Input NCNN Output

Degraded Inpu(PyTorch Output NCNN Outpul ExecuTorch Output
¢ R ; . sk
! I /]

PyTorch Output ExecuTorch Output

Figure 37: Qualitative comparison of the outputs obtained across different frameworks.
Each row shows the degraded input and the corresponding results for the same image.

92

Results

The output of the PyTorch network on desktop was used as ground truth to observe
the results obtained on smartphones with NCNN and Executorch. Both frameworks
successfully reconstructed high-resolution versions of the input images consistent with
the ground truth, preserving the structure and main features of the images themselves.

Small visual differences can be observed with the naked eye, in particular the output
image of the NCNN framework appears sharper, especially in the areas around the
lesions and in the hairs that appear around them.

Beyond these perceptual differences, none of the results show artifacts or distortions
that could compromise diagnostic usability. At this first assessment, the results
generated by the two mobile frameworks are qualitatively comparable to the desktop
reference. A more rigorous evaluation using quantitative metrics is addressed in the
following sections.

3.2 Quantitative Benchmark: Inference Time

The first quantitative metric considered is inference time. Inference time is crucial for
determining the potential use of the application by an average user: excessive inference
time on mobile devices could make the application less appealing and thus undermine
any good qualitative results obtained.

Therefore, to evaluate the performance of the frameworks in terms of speed, only the
time taken to perform the inference was measured, without taking into account the
preprocessing pipeline or the final conversion from tensor to image.

Four different frameworks were considered for this metric: PyTorch on desktop with
GPU, PyTorch on desktop with CPU, NCNN on mobile, and Executorch on mobile.

This choice was made to show the performance loss that a classic desktop framework
faces when switching from a GPU backend to a CPU backend. At the same time, it
shows the comparison between two frameworks optimized for an Android smartphone
and the desktop ground truth.

Table 1 shows the average inference times of the frameworks, calculated by averaging
the inference time on each of the three images.

Inference Time (ms)

Image ID PyTorch GPU PyTorch CPU NCNN ExecuTorch
Image 1 3.07 2159.58 1840.03 4146.51
Image 2 3.25 1560.38 1840.66 4228.25
Image 3 3.58 1636.05 1877.15 4237.63

Table 1: Inference time in milliseconds (ms) for each image across the three deployment
frameworks. PyTorch was separated into CPU and GPU executions. Values reflect the
average time required to process one image.

53

Results

As expected, PyTorch Desktop on GPU proves to be the fastest inference, always taking
less than 4 milliseconds (ms) per image.

PyTorch Desktop on CPU still achieves efficient results, taking between 1500 and 2200
ms per image. However, it is important to note that when switching from GPU to CPU,
the performance drops dramatically.

Among the two mobile frameworks, the one based on NCNN certainly stands out,
taking an average of 1852 ms for a single inference. The least efficient framework among
those analyzed is the one based on Executorch, which showed the highest inference

latency. The average time required for a single inference was 4204 ms, more than double
the average for NCNN.

Based on these results, several observations can be made. First, although PyTorch with
CPU showed faster inference times than the most efficient mobile framework, it is
important to note that the CPU used by PyTorch is an Intel Xeon CPU typically
provided by Google Colab and optimized for PyTorch. The NCNN-based application,
as well as the Executorch-based application, were run on a Huawei P20 Pro Android
smartphone, which features a HiSilicon Kirin 970 processor with ARM architecture.
The latter, in addition to not being optimized for PyTorch, is a much more compact
processor than Google Colab server-class processor, which is why there is a performance
gap from the outset.

Focusing instead on the comparison between the two mobile frameworks, we note that
the NCNN-based application proved to be significantly faster than the Executorch-
based one. This increase could be due to the relative immaturity of the ExecuTorch
runtime, which is much newer than NCNN and still under development.

Although the latency performance does not match that of PyTorch, both frameworks
are well suited for use on mobile devices in scenarios where real-time processing is not
essential. In particular, the NCNN-based application shows inference times that are
within acceptable waiting criteria for the average user.

3.3 Quantitative Image Quality Metrics

After qualitative evaluation and inference time analysis, the next step is a quantitative
analysis of the outputs obtained from the different frameworks. The comparison was
made between the output of PyTorch running on CPU and the outputs of NCNN and
ExecuTorch running on Android. PyTorch running on GPU was not considered in the
quantitative analysis as it was found to be almost identical to the output obtained with
CPU, with measurable differences in the order of magnitude of 10® and therefore
negligible.

The metrics chosen for this comparison are Mean Squared Error (MSE), Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), and Learned
Perceptual Image Patch Similarity (LPIPS).

54

Results

Mean Squared Error (MSE)

MSE is one of the most traditional parameters for comparing two images, especially
when you want to generate an image that has pixel colors consistent with the reference
image [55]. This is because MSE measures the mean square difference between the
values of the generated image and the values of the ground truth image. Therefore, we
calculate the square differences pixel by pixel between the two images.

The formula for this metric is as follows:
N
1 2
MSE = NZ(% — i)
1=

Where x; and y; are the pixel intensities of the reference image and the generated
image, and N is the total number of pixels.

Peak Signal-to-Noise Ratio (PSNR)

PSNR is one of the most commonly used parameters for evaluating the quality of
reconstruction in lossy image transformation techniques (e.g., image compression) [55],
[56].

PSNR measures the ratio between the maximum possible power of a signal and the
power of the noise affecting the fidelity of its representation. In the context of comparing
a generated image and a reference image, PSNR calculates the ratio between the
maximum possible pixel value and the mean square error between the two images.

In 8-bit images, the maximum pixel value is 255, and the ratio between the latter and
the MSE is measured in decibels (dB). The higher the PSNR value, the higher the
quality of the generated image. PSNR values above 30dB are usually associated with a
generated image that reproduces the reference image with high fidelity.

PSNR has the great advantage of being a simple metric to calculate and easy to
interpret. However, since it is derived from MSE and also focuses on the pixel-by-pixel
difference between the two images, PSNR does not take human visual perception into
account. For this reason, it is usually accompanied by other metrics

The formula is:

PSNR =10 -1 MAXF
= 0810 MSE

Where MAX; is the maximum possible pixel value (255 for 8-bit images), and MSE is
the mean squared error between the reference and the test image.

55

Results

Structural Similarity Index Measure (SSIM)

Unlike MSE and PSNR, SSIM is related to the quality and perception of the human
visual system (HVS). Instead of focusing on the pixel-by-pixel difference between two
images, SSIM attempts to approximate the perceived changes in the image structure.
Specifically, SSIM focuses on a combination of three factors: correlation loss, luminance
distortion, and contrast distortion [55], [56].

SSIM can be expressed as:
SSIM(x,y) = [(1(x, y))a(c(x,y))B(s(x,)]

In this formula, [is the luminance that compares the brightness between the two
images, ¢ is the contrast that compares the dynamic range between light and dark
regions of the images, and s captures the structural similarities between the two images
by analyzing the local patterns of the pixels. The parameters a, B, and y are positive
weights that determine the influence of each component.

The luminance, contrast, and structure of an image can be expressed separately as:

l(x y) _ 2|~1ny + Cl
' uZ +p3 + G
20,0y + C;
‘G =G
_ Oxy t (3
sCoy) = 0,0y + C3

In these expressions, p, and W, are the mean intensities of the two images, 02 and Gf,
are the variances, and oy, is the covariance. Constants C;, C,, and C3 are small
stabilizing terms used to prevent division by zero or numerical instability. These are
usually defined as C; = (k;L)? and C, = (k,L)?, where L is the maximum possible pixel
value (typically 255), and k; and k, are small constants.

When setting a = = y = 1, the SSIM formula simplifies to:

(2pepy + €1)(20,y + C2)

SSIM (x, =
() (12 +p2+C)(02 +02+C,)

The SSIM score ranges from -1 to 1, where a value of 1 indicates perfect structural
similarity between the two images. According to the literature, SSIM values above 0.95
are often indicative of perceptually indistinguishable images.

56

Results

LPIPS — Perceptual similarity of learned image patches

LPIPS is a metric that calculates the perceptual similarity between two images. Unlike
the metrics mentioned above, LPIPS wuses a convolutional neural network to
quantitatively evaluate the similarity between two images.

Essentially, LPIPS calculates the similarity between the activations of two image
patches for a pre-trained network. In particular, the differences in feature maps are
calculated and spatially aggregated. This technique has been shown to match human
perception well [57].

Formally, given two images x and y, LPIPS is computed as:

1
H,W,

LPIPS(x,y) = z Z lw; © (b (x)hw — b (Y)Aw) |5
l hw

Where ¢, is the activation from layer 1 of a pre-trained network (e.g., AlexNet), H;W,
is the spatial resolution of that layer, and w; are learned weights that adjust the
importance of each channel.

In this work, LPIPS was calculated using the AlexNet backbone, as implemented in
the PyTorch lpips library [58]. The value of LPIPS ranges from 0 to 1 in most
implementations, with lower values indicating greater perceptual similarity between the
two images. Values below 0.1 are indicative of excellent similarity.

Quantitative Evaluation Results

The PSNR values for the three images are shown in Table 2.

PSNR (dB)
Image ID PyTorch vs NCNN PyTorch vs Executorch ~ NCNN vs ExecuTorch
Image 1 41.30 39.56 42.42
Image 2 34.05 37.93 38.06
Image 3 45.49 40.84 42.58

Table 2: PSNR values for each image processed by the three frameworks.

The PyTorch output image was used as the reference ground truth and compared with
the output of the NCNN- and Executorch-based apps. In addition, a comparison
between the two mobile outputs was also made.

All pairwise comparisons showed PSNR values around or above 35 dB, which are
usually considered indicative of high-fidelity image reconstruction.

57

Results

Similarly, MSE values remain low in all comparisons.This value supports the conclusion
that both mobile frameworks not only reproduce the reference image with high fidelity
but also converge towards each other in terms of pixel-level reconstruction.

MSE
Image ID PyTorch vs NCNN PyTorch vs Executorch ~ NCNN vs ExecuTorch
Image 1 4.82 7.18 3.72
Image 2 25.57 10.47 10.17
Image 3 1.84 5.36 3.59

Table 3: MSE values for each image processed by the three frameworks.

The SSIM scores also remain consistently above 0.98, indicating that the generated
images also accurately preserve the structural integrity of the ground truth.

SSIM
Image ID PyTorch vs NCNN PyTorch vs Executorch ~ NCNN vs ExecuTorch
Image 1 0.980 0.980 0.983
Image 2 0.982 0.984 0.983
Image 3 0.985 0.984 0.987

Table 4: SSIM values for each image processed by the three frameworks.

The LPIPS scores remain below 0.05 in all comparisons. The lowest LPIPS score is
found in the comparison between NCNN and ExecuTorch (0.009), reinforcing the idea

that the results of both frameworks are nearly indistinguishable from a perceptual point
of view.

LPIPS
Image ID PyTorch vs NCNN PyTorch vs Executorch ~ NCNN vs ExecuTorch
Image 1 0.042 0.044 0.009
Image 2 0.046 0.040 0.019
Image 3 0.046 0.046 0.009

Table 5: LPIPS values for each image processed by the three frameworks.

58

Results

Overall, the results demonstrate that, while PyTorch remains the gold standard, both
mobile frameworks are capable of producing highly accurate and perceptually faithful
reconstructions, even under significant hardware constraints. Moreover, the strong
convergence between NCNN and ExecuTorch outputs underscores the promise of the
latter, despite its relatively recent development and less mature runtime environment.

3.4 Visual Analysis of Images

A visual analysis of the images was also carried out, using pixel intensity histograms
and pixel-by-pixel difference maps.

3.4.1 Histogram Comparison

Pixel intensity histograms are a graphical representation showing the distribution of
pixels within an image. In particular, they plot the number of pixels present at each
intensity level, thus showing information about the brightness, contrast, and color
characteristics of the image.

The range of possible pixel values, in this case 0-255, is represented on the X-axis. At
the same time, the Y-axis represents the number of pixels that have that specific
intensity value.

To plot them, the image is first converted to grayscale and then analyzed pixel by pixel.
The intensity level of each pixel is then recorded and reported in the graph.

Pixel intensity histograms were plotted for each of the three reconstructed images,
comparing the outputs of Pytorch, NCNN, and Executorch in the same graph.

59

Results

Image 1 shows three overlapping distributions, with all three frameworks sharing
virtually identical peaks. Slight shifts can be observed in the tails of the distributions,
particularly at the highest intensity levels, but these represent minimal differences.

Pixel Intensity Histogram - image 1

100000 4
B PyTorch

[NCMN
. ExecuTorch

80000 +

60000

40000

20000 +

0 50 100 150 200 250

Figure 38: Pizel intensity histogram for image 1.
Image 2 shows two large high-intensity peaks between values 150 and 175. Again, all

three outputs reproduce the peaks with almost perfect overlap, showing an almost
identical shape and structure.

60

Results

Pixel Intensity Histogram - image 2

B PyTorch
[NCNN
[ExecuTorch

100000 ~

80000 ~

60000

40000 ~

20000 ~

0 25 50 75 100 125 150 175

Figure 39: Pixel intensity histogram for image 2.

Image 3 shows a bimodal distribution, with a peak near intensity 50 and a second peak
near 200. All three frameworks successfully replicate both modes, confirming the
consistency observed in the previous two images.

Pixel Intensity Histogram - image_3

mm PyTorch
[NCNN
80000 1w ExecuTorch
60000 -
40000
20000

25 50 75 100 125 150 175 200 225

Figure 40: Pixel intensity histogram for image 3.

61

Results

3.4.2 Pixel-by-pixel Difference Maps

Another visual analysis method is pixel-by-pixel difference maps between the two
images. These maps provide information on where and how much two images differ at
the pixel level.

The formula for calculating difference maps is as follows:
D(x, Y) = |Lef(x, Y) — Lt (x, Y]
where:

Les(x,y,c) is the value of the pixel at coordinates (x,y) and in color channel ¢ in the
reference image,

Lest (%, v, €) is the corresponding pixel in the test image,
c €{R,G,B},

the result D(x,y, c) is the absolute difference per channel, limited to the range 0-255 to
ensure visual compatibility with standard 8-bit displays.

The output of this operation is a new RGB image in which each pixel encodes the
magnitude of the difference between the two images at that location.

These maps were generated for three combinations of pairs: PyTorch vs NCNN,
PyTorch vs ExecuTorch, and NCNN vs ExecuTorch.

Diff PyTorch vs NCNN

Diff NCNN vs ExecuTorch

Diff PyTorch vs ExecuTorch

Figure 41: Pixel-by-pizel difference map for image 1.

62

Results

Diff PyTorch vs NCNN Diff PyTorch vs ExecuTorch Diff NCNN vs ExecuTorch

Figure 42: Pixel-by-pixel difference map for image 2.

Diff PyTorch vs NCNN Diff PyTorch vs ExecuTorch Diff NCNN vs ExecuTorch

Figure 43: Pizel-by-pixel difference map for image 3.

The difference maps show that:

e Differences between the PyTorch gold standard and the two mobile frameworks
NCNN and Executorch are minimal and mainly localized around fine structures
(e.g., lesion edges or hair),

e The difference map between NCNN and Executorch appears almost completely
black, a result consistent with the quantitative analysis and confirming the
strong similarity between the outputs of the two frameworks.

3.5 Comnsistency and Reliability

In addition to qualitative and quantitative assessments, another important aspect to
consider is the stability and consistency of the frameworks. The two mobile applications
must ensure not only good performance in terms of image enhancement, but also in
terms of consistency and reproducibility of results. Each application must ensure that
the output images are stable during repeated inferences, without generating unexpected
artifacts. To evaluate consistency, inference was repeated several times for each mobile
framework using the same degraded inputs.

The outputs of the NCNN-based application remained stable throughout all runs. The
pixel values of the generated images remained the same.

63

Results

In contrast, the Executorch-based application showed significant instability. During
multiple runs, the framework alternated between correct outputs and corrupted or even
completely black outputs. The images often showed extreme pixel values such as
5.6 x 102 or —1.3 x 10'%, rendering the images unusable for the purpose.

Seleziona 1 :
s Migliora Immagine
Immagine

Figure 44: FExamples of corrupted outputs generated by the FExecuTorch-based
application during inference.

Such application behavior could be explained by the difference in age between the two
frameworks. The first release of NCNN dates back to 2017, and since then, several
advances have been made in the development of the framework. Over time, the
framework has been increasingly optimized for different hardware and backends, and
its performance has steadily improved. Executorch, on the other hand, is a relatively
new development, having been released for the first time in 2023. Its current version is
0.6, released in April 2025, and it is gradually improving in terms of usability and
stability.

Real-ESRGAN is a complex neural network model that has not yet been implemented
using Executorch, which is why the latter is probably not yet able to handle all layers
of the network in a stable manner.

The NCNN-based application has therefore proven to be a stable and reliable solution
for immediate deployment, ensuring excellent performance and deterministic inference
execution for all images.

64

Conclusions

Conclusions

4.1 Results Analysis

This study provided a comprehensive overview of the implementation of the Real-
ESRGAN super-resolution model on mobile devices using two different frameworks,
NCNN and Executorch. When compared with the PyTorch ground truth, both
frameworks demonstrated the ability to generate high-resolution images of comparable
quality, preserving the structure and characteristics of the original input.

The differences observed between the outputs were subtle and mostly limited to
localized details such as hair edges or lesion contours, without introducing any
perceptual artifacts that might hinder medical interpretability.

With regard to inference time, the results revealed a clear distinction between desktop
and mobile frameworks. As expected, the gold standard represented by PyTorch
desktop proved to be the fastest, both on GPUs and CPUs.

In the comparison between the two mobile frameworks, NCNN consistently
outperformed Executorch, with the former maintaining inference times around 1850
ms, while the latter took more than twice as long, settling around 4200 ms.

The quantitative comparison between the smartphone frameworks and the PyTorch
reference confirmed the high fidelity of both mobile outputs. Both frameworks
generated outputs with PSNR values above 35 dB, SSIM scores above 0.98, and LPIPS
values below 0.05. Furthermore, when compared to each other, NCNN and Executorch
demonstrated strong convergence of outputs, as evidenced by the value of 0.009
obtained in the LPIPS metric.

65

Conclusions

Visual analysis further confirmed the excellent results obtained with the quantitative
metrics. Pixel intensity histograms showed almost complete overlap between the
outputs of NCNN and Executorch and the PyTorch ground truth. Furthermore, pixel
difference maps also showed minimal variations between PyTorch and the two mobile
frameworks. The strong convergence between NCNN and Executorch was also
confirmed by the pixel difference map of the outputs, which was almost completely
black, confirming nearly identical outputs at the pixel level.

The most important issue that emerged from the tests was stability. While the NCNN-
based application produced stable outputs in repeated inferences, the Executorch-based
app showed several corrupted or completely empty outputs. This instability is likely
due to the relatively early stage of development of the Executorch runtime, which is
why the NCNN runtime currently represents a more stable and deployment-ready
solution.

The results of this study therefore confirm that both NCNN and Executorch are highly
viable solutions for the mobile deployment of advanced deep learning models,
particularly the Real-ESRGAN model. Despite its excellent and promising performance
results, Executorch still requires further refinement to ensure robustness and stability
in real-world applications. At its current stage of development, the more mature and
established runtime of NCNN represents a stable and reliable solution for immediate
deployment.

4.2 Improvements and Future Developments

The results obtained in this study confirmed that both NCNN and Executorch offer a
valid solution for implementing deep learning models such as Real-ESRGAN on mobile
devices. Despite their excellent performance, there is still considerable room for
improvement in several areas, as well as ideas for future developments.

System-level improvements

From a technical point of view, the most critical aspect of the implementation was the
instability in inference demonstrated by Executorch. Improving the robustness and
stability of the Executorch framework is certainly a priority, but given the stage of
development the framework is still at, this issue could be addressed and resolved in
future updates. Such updates could also lead to an improvement in inference times,
another weakness shown by Executorch in comparison with NCNN.

In addition, support for higher input resolutions could be added to both applications
to further improve the visual quality of the images.

Integration with classification models

A promising direction to follow after the results obtained in this study is the integration
within the mobile application of a classification model that performs inference on
dermatological images after their upscaling with the Real-ESRGAN model.

66

Conclusions

With this in mind, the Real-ESRGAN model could be part of a pre-processing pipeline
that applies super-resolution to images that are then fed into a classifier that categorizes
the lesions, distinguishing between benign and malignant, for example. There are
several image classification models that are well suited for mobile implementation, such
as MobileNetV3 or the more recent EfficientNet-lite.

This could result in a comprehensive application that accompanies the end user from
the moment the photograph is taken to an initial screening, which could prove to be
an excellent support and second opinion tool for dermatologists and healthcare
professionals.

Improvements to user experience and usability

Another aspect to consider for future developments is the user experience and the
graphical interface of the application. User experience and usability are key aspects to
consider when developing mobile applications, especially in the case of telemedicine
applications, which can appear outdated and unattractive.

To increase usability, the mobile app could incorporate features such as a progress bar
showing the status of the inference, the ability to interactively compare “before and
after” images, and an archive showing the history of images analyzed in the past.

Explainability and clinical integration

The term AI explainability refers to the ability to understand and interpret the
decisions made by artificial intelligence models. In the clinical setting, this issue is very
important in order to allow physicians to fully exploit the potential of AI tools and
make the best possible decision for the health of the patient. In the application
developed, the outputs obtained from any classification models could be accompanied
by saliency maps or attention heat maps to help healthcare professionals understand
which regions of the images most influenced the decisions of the model.

Privacy and federated learning

In the European Union (EU), the privacy of health data in telemedicine applications is
regulated by the General Data Protection Regulation (GDPR), which classifies all data
used by mHealth apps as “sensitive.” For this reason, future versions of the application
will need to ask the end user for consent to use their data and employ security measures
to safeguard it from unauthorized use and disclosure.

An interesting implementation could also be the use of federated learning. This strategy
would allow the model to be trained on data processed by each individual user of the
application after anonymizing it. The model is improved and tuned on the device by
processing the data locally, without sharing it with servers or other devices. This
strategy would allow the model to continuously improve its accuracy across different
demographic groups and skin types, while preserving the privacy of end users.

67

Conclusions

Scalability and implementation scenarios

A complete version of the application, ranging from image enhancement to lesion
classification, could be tested in large-scale screening initiatives in a subsequent phase.
Operating entirely locally on the device allows for practical implementation in contexts
such as remote clinics or large-scale public health campaigns.

Testing in these contexts would make it possible to verify the real clinical impact and
usefulness of such a system in supporting diagnostic workflows and improving access to
dermatological care.

4.3 Conclusions

This study explored the feasibility of implementing a super-resolution model for
improving dermatological images on mobile devices. In particular, the use of two
different frameworks, NCNN and Executorch, allowed an advanced model such as Real-
ESRGAN to be used for inference on an Android smartphone using the CPU of the
device.

The study demonstrated that such implementation is not only possible but also highly
effective and promising. Comparison between PyTorch on desktop and mobile
applications based on NCNN and Executorch highlighted the ability of these
frameworks to come close to the performance of the gold standard PyTorch, despite
using a mobile CPU with lower computational power.

The mobile implementation of deep learning models, once considered impractical due
to the limited resources of smartphones, now appears to be a viable solution for
spreading the use of artificial intelligence-based tools in the healthcare sector,
particularly in telemedicine.

Systems such as the one proposed in this study show great potential as solutions that
could support physicians in their daily practice and improve access to early diagnosis
for patients.

68

Bibliography

1]

2]

13l

4]

6]

17l

8]

191

R. J. Hay et al., «The Global Burden of Skin Disease in 2010: An Analysis of the
Prevalence and Impact of Skin Conditions», J. Invest. Dermatol., vol. 134, fasc. 6,
pp. 1527-1534, giu. 2014, doi: 10.1038/jid.2013.446.

X. Du-Harpur, F. M. Watt, N. M. Luscombe, e M. D. Lynch, «What is AI?
Applications of artificial intelligence to dermatology», Br. J. Dermatol., vol. 183,
fasc. 3, pp. 423-430, set. 2020, doi: 10.1111/bjd.18880.

«Skin cancer rate U.S. by gender 1999-2021», Statista.
https://www.statista.com /statistics /663943 /skin-cancer-incidence-rate-in-us-by-
gender/

Z. Apalla, A. Lallas, E. Sotiriou, E. Lazaridou, e D. Ioannides, «Epidemiological
trends in skin cancer», Dermatol. Pract. Concept., vol. 7, fasc. 2, apr. 2017, doi:
10.5826 /dpc.0702a01.

U. Leiter et al., «Incidence, Mortality, and Trends of Nonmelanoma Skin Cancer in
Germany», J. Invest. Dermatol., vol. 137, fasc. 9, pp. 1860-1867, set. 2017, doi:
10.1016/;.jid.2017.04.020.

«Epidemiology of Skin Cancer in 2024», in Skin Cancer - Past, Present and Future,
IntechOpen, 2025. doi: 10.5772 /intechopen.1008698.

«Melanoma, of the Skin - Cancer Stat Factsy, SEER.
https://seer.cancer.gov /statfacts/html/melan.html

J. Jaworek-Korjakowska e P. Kleczek, «eSkin: Study on the Smartphone
Application for Early Detection of Malignant Melanomay, Wirel. Commun. Mob.
Comput., vol. 2018, fasc. 1, gen. 2018, doi: 10.1155/2018/5767360.

B. Domingues, J. Lopes, P. Soares, e H. Populo, «Melanoma treatment in review»,
ImmunoTargets Ther., vol. Volume 7, pp. 3549, giu. 2018, doi: 10.2147 /itt.s134842.

[10]X. Wu, M. A. Marchetti, e A. A. Marghoob, «Dermoscopy: Not just for

Dermatologists», Melanoma Manag., vol. 2, fasc. 1, pp. 63-73, feb. 2015, doi:
10.2217 /mmt.14.32.

69

Bibliography

[11]A. Finnane, K. Dallest, M. Janda, e H. P. Soyer, «Teledermatology for the Diagnosis
and Management of Skin Cancer: A Systematic Review», JAMA Dermatol., vol.
153, fasc. 3, p. 319, mar. 2017, doi: 10.1001 /jamadermatol.2016.4361.

[12|F. Veronese et al., «The Role in Teledermoscopy of an Inexpensive and Easy-to-Use
Smartphone Device for the Classification of Three Types of Skin Lesions Using
Convolutional Neural Networks», Diagnostics, vol. 11, fasc. 3, p. 451, mar. 2021,
doi: 10.3390/diagnostics11030451.

[13|A. Borve et al., «Smartphone Teledermoscopy Referrals: A Novel Process for
Improved Triage of Skin Cancer Patients», Acta Derm Venereol.

[14]S. Bunyaratavej, P. Jirawattanadon, C. Sereeaphinan, S. Wongdama, S.
Sombatmaithai, e C. Leeyaphan, «Mobile Device Digital Photography for
Teledermatology Consultation: Real-Life Situations», Siriraj Med. J., vol. 75, fasc.
12, pp. 871-879, dic. 2023, doi: 10.33192/smj.v75i12.264488.

[15]W. Gouda, N. U. Sama, G. Al-Waakid, M. Humayun, e N. Z. Jhanjhi, «Detection
of Skin Cancer Based on Skin Lesion Images Using Deep Learning», Healthcare, vol.
10, fasc. 7, p. 1183, giu. 2022, doi: 10.3390/healthcare10071183.

[16]S. B. Mukadam e H. Y. Patil, «Skin Cancer Classification Framework Using
Enhanced Super Resolution Generative Adversarial Network and Custom
Convolutional Neural Network», Appl. Sci., vol. 13, fasc. 2, p. 1210, gen. 2023, doi:
10.3390/app13021210.

[17]P. Pasquali et al., «Teledermatology and its current perspectives, Indian Dermatol.
Online J., vol. 11, fasc. 1, p. 12, 2020, doi: 10.4103/idoj.idoj 241 19.

[18]J. J. Lee e J. C. English, «Teledermatology: A Review and Update», Am. J. Clin.
Dermatol., vol. 19, fasc. 2, pp. 253-260, apr. 2018, doi: 10.1007/s40257-017-0317-6.

[19]A. Bains, A. Alam, S. Singh, A. Budania, S. Patra, e A. Bhardwaj,
«Teledermatology Services during COVID-19 Pandemic: Experience of a Tertiary
Care center in Western Indiay, Indian Dermatol. Online J., vol. 13, fasc. 4, pp. 487—
492, lug. 2022, doi: 10.4103/idoj.idoj 1 22.

[20]L. Tognetti et al., «Teledermatology in 2020: past, present and future perspectives,
Ital. J. Dermatol. Venereol., vol. 156, fasc. 2, mag. 2021, doi: 10.23736/s2784-
8671.21.06731-6.

[21]T. M. de Carvalho, E. Noels, M. Wakkee, A. Udrea, e T. Nijsten, «Development of
Smartphone Apps for Skin Cancer Risk Assessment: Progress and Promise».

[22]A. S. Jahn et al., «Over-Detection of Melanoma-Suspect Lesions by a CE-Certified
Smartphone App: Performance in Comparison to Dermatologists, 2D and 3D
Convolutional Neural Networks in a Prospective Data Set of 1204 Pigmented Skin
Lesions Involving Patients’ Perception», Cancers, vol. 14, fasc. 15, p. 3829, ago.
2022, doi: 10.3390/cancers14153829.

[23]|A. Borve e C. Sandberg, «Mobile teledermoscopy—there’s an app for that!».

[24|C. Janiesch, P. Zschech, e K. Heinrich, «Machine learning and deep learningy,
FElectron. Mark., vol. 31, fasc. 3, pp. 685-695, set. 2021, doi: 10.1007/s12525-021-
00475-2.

70

Bibliography

[25|D. Shen, G. Wu, e H.-I. Suk, «Deep Learning in Medical Image Analysis», Annu.
Rev. Biomed. Eng., vol. 19, fasc. 1, pp. 221-248, giu. 2017, doi: 10.1146 /annurev-
bioeng-071516-044442.

[26]Z. Li, K. C. Koban, T. L. Schenck, R. E. Giunta, Q. Li, e Y. Sun, «Artificial
Intelligence in Dermatology Image Analysis: Current Developments and Future
Trends», J. Clin. Med., vol. 11, fasc. 22, p. 6826, nov. 2022, doi:
10.3390/jcm11226826.

[27]Y. J. Lee, C. Park, H. Kim, S. J. Cho, e W.-H. Yeo, «Artificial intelligence on
biomedical signals: technologies, applications, and future directions», Med-X, vol.
2, fasc. 1, dic. 2024, doi: 10.1007 /s44258-024-00043-1.

[28]J. Heaton, «Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning:
The MIT Press, 2016, 800 pp, ISBN: 0262035618%», Genet. Program. FEwvolvable
Mach., vol. 19, fasc. 1-2, pp. 305-307, giu. 2018, doi: 10.1007/s10710-017-9314-z.

[29] A diagram of a convolutional neural network (CNN) architecture. 2025.
https://commons.wikimedia.org/wiki/File:Convolutional Neural Network.png

[30]A. Esteva et al., «Dermatologist-level classification of skin cancer with deep neural
networks», Nature, vol. 542, fasc. 7639, pp. 115-118, feb. 2017, doi:
10.1038 /nature21056.

[31|P. Rajpurkar et al., «CheXNet: Radiologist-Level Pneumonia Detection on Chest
X-Rays with Deep Learning», 25 dicembre 2017, arXwv: arXiv:1711.05225. doi:
10.48550/arXiv.1711.05225.

[32]1. J. Goodfellow et al., «Generative Adversarial Networks», 10 giugno 2014, arXiv:
arXiv:1406.2661. doi: 10.48550/arXiv.1406.2661.

[33]A. Dash, J. Ye, e G. Wang, «A review of Generative Adversarial Networks (GANs)
and its applications in a wide variety of disciplines -- From Medical to Remote
Sensingy, 1 ottobre 2021, arXiv: arXiv:2110.01442. doi: 10.48550 /arXiv.2110.01442.

[34| K. Borys et al., «Explainable Al in medical imaging: An overview for clinical
practitioners — Saliency-based XAl approaches», Fur. J. Radiol., vol. 162, p. 110787,
mag. 2023, doi: 10.1016/j.ejrad.2023.110787.

[35] V. Dumoulin e F. Visin, «A guide to convolution arithmetic for deep learningy», 11
gennaio 2018, arXiv: arXiv:1603.07285. doi: 10.48550/arXiv.1603.07285.

[36] deepsense ai Ochman Marcin, «Region of Interest Pooling and Region of Interest
Align explained», deepsense.ai. https://deepsense.ai/blog/region-of-interest-
pooling-explained /

[37]S. Ram, S. Vinoth, R. N. Gopalakrishnan, A. A. Balakumar, L. Kalinathan, e T.
A. J. Velankanni, «Leveraging Diverse CNN Architectures for Medical Image
Captioning: DenseNet-121, MobileNetV2, and ResNet-50 in ImageCLEF 2024».

[38]N. Reddy, A. Rattani, e R. Derakhshani, «Comparison of Deep Learning Models
for Biometric-based Mobile User Authenticationy», in 2018 IEEE 9th International

Conference on Biometrics Theory, Applications and Systems (BTAS), Redondo
Beach, CA, USA: IEEE, ott. 2018, pp. 1-6. doi: 10.1109/btas.2018.8698586.

71

Bibliography

[39]J. Zhou, «SRGAN based super-resolution reconstruction of power inspection
images».

[40|H. Ye, L. Liang, G. Y. Li, e B.-H. Juang, «Deep Learning-Based End-to-End
Wireless Communication Systems With Conditional GANs as Unknown Channels»,
IEEE Trans. Wirel. Commun., vol. 19, fasc. 5, pp. 3133-3143, mag. 2020, doi:
10.1109/twc.2020.2970707.

[41]Sung Cheol Park, Min Kyu Park, e Moon Gi Kang, «Super-resolution image
reconstruction: a technical overviewy», IEEFE Signal Process. Mag., vol. 20, fasc. 3,
pp. 21-36, mag. 2003, doi: 10.1109/msp.2003.1203207.

[42]O. S. Ci, «Image Super Resolution: A Comparison between Interpolation & Deep
Learning-based Techniques to...», HTX S&S COE. https://medium.com/htx-s-s-
coe/image-super-resolution-a-comparison-between-interpolation-deep-learning-
based-techniques-to-25e7531ab207

[43] «Single-Image Super-Resolution: A Benchmark», in Lecture Notes in Computer
Science, Cham: Springer International Publishing, 2014, pp. 372-386. doi:
10.1007/978-3-319-10593-2_ 25.

[44]C. Dong, C. C. Loy, K. He, e X. Tang, «Image Super-Resolution Using Deep
Convolutional Networks», 31 luglio 2015, arXiv: arXiv:1501.00092. doi:
10.48550/arXiv.1501.00092.

[45|C. Ledig et al., «Photo-Realistic Single Image Super-Resolution Using a Generative
Adversarial Network», 25 maggio 2017, arXiv: arXiv:1609.04802. doi:
10.48550/arXiv.1609.04802.

[46]X. Wang et al., «<ESRGAN: Enhanced Super-Resolution Generative Adversarial
Networks», 17 settembre 2018, arXiv: arXiv:1809.00219. doi:
10.48550/arXiv.1809.00219.

[47]X. Wang, L. Xie, C. Dong, e Y. Shan, «Real-ESRGAN: Training Real-World Blind
Super-Resolution with Pure Synthetic Data», 17 agosto 2021, arXiv:
arXiv:2107.10833. doi: 10.48550/arXiv.2107.10833.

[48|Xintao, zinntao/Real-ESRGAN. Python. https://github.com/xinntao/Real-
ESRGAN

[49]Q. Zhang et al., «Benchmarking of DL Libraries and Models on Mobile Devices», 6
luglio 2022, arXiv: arXiv:2202.06512. doi: 10.48550/arXiv.2202.06512.

[0JH. Ni e The mncnn contributors, ncnn. (giugno 2017). C++.
https://github.com/Tencent /ncnn

[51]M. Gschwind, «LLMs Everywhere: Acceleration from Servers to Mobile Devices in
the Age of Generative Al», 2024, doi: 10.13140/RG.2.2.28175.29606.

[52] «ExecuTorch ~ Documentation =~ — ExecuTorch 0.6 documentationy.
https://docs.pytorch.org/executorch /stable/index.html

[53|«ISIC | International Skin Imaging Collaborationy, ISIC. https://www.isic-
archive.com

72

Bibliography

[54] «Deployment of PyTorch Model Using NCNN for Mobile Devices — Part 1 | by
Huili Yu | Mediumy. https://medium.com/@freshtechyy/deployment-of-pytorch-
model-using-ncnn-beeff5d846b0

[55|]Zhou Wang, A. C. Bovik, H. R. Sheikh, e E. P. Simoncelli, «Image quality
assessment: from error visibility to structural similarity», IEEE Trans. Image
Process., vol. 13, fasc. 4, pp. 600612, apr. 2004, doi: 10.1109/tip.2003.819861.

[56]A. Hore e D. Ziou, «Image Quality Metrics: PSNR vs. SSIM», in 2010 20th
International Conference on Pattern Recognition, Istanbul, Turkey: IEEE, ago.
2010, pp. 2366-2369. doi: 10.1109 /icpr.2010.579.

[57]R. Zhang, P. Isola, A. A. Efros, E. Shechtman, e O. Wang, «The Unreasonable
Effectiveness of Deep Features as a Perceptual Metric», 10 aprile 2018, arXiv:
arXiv:1801.03924. doi: 10.48550/arXiv.1801.03924.

[58]|R. Zhang, richzhang/PerceptualSimilarity. (15 luglio 2025). Python.
https://github.com/richzhang/PerceptualSimilarity

73

