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Abstract

Ultrasound imaging is one of the most commonly used modalities in clinical practice
due to its non-invasive nature and the absence of ionizing radiation. Such images are
typically produced with well-established algorithms for converting acoustic signals
into visual outputs. In recent years, artificial intelligence has experienced remarkable
growth in the field of medical imaging, particularly through the application of
deep learning techniques. These models have shown high performance and the
potential to transform the field with novel methods for image reconstruction from
raw data. However, their native lack of explainability is a major limitation, and
issues regarding their reliability and clinical uptake are raised. As such, there
has been increasing effort in recent years to develop uncertainty quantification
metrics that can complement medical decision-making by providing insight into
the confidence of model predictions.

The aim of this thesis was to investigate the possibility of defining an uncertainty
measure that can quantify the confidence of image reconstructions performed by
a deep learning model on ultrasound data to create a measure that would enable
clinicians and scholars to establish the reliability of Al-produced reconstructions.
The employed database was based on a collection of 8,009 raw ultrasound data
consisting of 8,000 simulated samples and 9 real ultrasound acquisitions. The
reconstruction was performed based on a modified U-Net network consisting of two
independent decoder branches that were designed to perform image reconstruction
and anatomical segmentation simultaneously from raw ultrasound signals.

Monte Carlo Dropout was used to generate multiple stochastic reconstructions
by repeating inference with dropout active. The dual-output network architecture
of the network was utilized to develop an uncertainty measure that puts greater
importance on the areas determined to be more relevant by the model by assigning
greater value to the uncertainty in the segmented ares. This resulted in developing
a new measure called Median of Weighted Uncertainty on the Reconstruction
(MWUR). The uses of the measure as a loss for better reconstruction in network
training were also examined.

The network obtained a mean absolute error (MAE) of 0.0693 + 0.0130 when
operating with its baseline loss function and 0.0684 £ 0.0123 when trained on the
MWUR-based loss on simulated data. On real data, the corresponding MAE was
0.1189 4 0.0289 and 0.1305 + 0.0334. The MWUR measure proved to be effective
in discriminating between inferences drawn from simulated data and actual data,
and also in showing a correlation with mean absolute error.

The measure has proven to be promising to quantify the uncertainty of ultrasound
images reconstructed directly from raw signals by deep learning networks, for



different configurations. However, the MWUR measure is based on segmentation
results, limiting its usage to some network structures. Additionally, the two-
branch network requires more extensive training time. Despite these limitations,
MWUR has the potential to enhance uncertainty estimation in deep learning-
based ultrasound image reconstruction and by providing a weighted measure
focused on relevant regions, it offers more informative feedback on the reliability of
reconstructed images. The results obtained with this metric have been promising,
and future work could focus on training improvements to address its limitations
and on developing a new, more flexible metric.
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Chapter 1

Introductory concepts

1.1 Basics on ultrasound imaging

1.1.1 Physics of Ultrasound imaging

Ultrasounds (US) imaging or sonography is a medical imaging technique that has
consolidated itself as a useful tool in clinical practice thanks to its ease of use
and safety. US imaging is based on the interaction of an US wave generated via
a probe with human tissues. Both the wave generation and detection is obtained
thanks to the piezoelectric elements on the probe via piezoelctic phenomenon. This
phenomenon is exhibited by some crystalline materials, and involves the reversible
conversion of two forms of energy from one to the other, namely mechanical and
electrical energies, so they can be used as transducers. In USs:

o The generation of the US wave is obtained by applying a potential difference
to the elements using the Inverse piezoelectric effect. The elements respond
to this stimuli by expanding and contracting, converting the electrical energy
to mechanical energy, generating the US wave.

o The detection is based on the direct piezoelectric effect. After interacting with
human tissues, the wave returns to the probe where the piezoelectric crystals
convert the mechanical energy to an electrical energy.

The US that are used in medicine have center frequency fy in the range of 2 to
15MHz and the speed of sound c¢ is around 1540 m/s.[1] The wavelength A can be

obtained by the relation:
c

~fo

A is also a measure of the maximum spatial resolution. In fact, structures with
dimensions smaller than the wavelength can not interact with the US and, thus,

1

A (1.1)



Introductory concepts

can’t be detectable. Depending on how much their medium particles withstand
change as a result of mechanical disturbance, different materials react differently
to ultrasonic probing. This property of the medium is called characteristic acoustic
impedance Z and can be defined as product of medium density and US velocity in
the medium.

Z = density x velocity (1.2)

The changes of Z across the tissues are of extreme importance in US interactions.
The points where such changes occur are called acoustic boundaries or tissue
interfaces. When a beam of US strikes a tissue interface, part of the beam energy
is transmitted across the interface, while some is redirected backwards, or reflected.
The reflected beam is referred as echo and its intensity is determined by the angle
of incidence and the difference in acoustic impedance between the two mediums at
the boundary. The difference in Z value is also known as the acoustic mismatch.
When the beam strikes a reflector perpendicular to the surface of the acoustic
boundary, the angle of reflection is equal to 0 and the echo goes straight back to
the transducer. In this special case the echo intensity in relation to the intensity of
the US beam incident upon the boundary is given by the relation:

I, (% —Zy)?
L (Zi+ Z) -

o [, = intensity of reflected echo.
o [; = intensity of incident beam at the boundary.

« Z,, = acoustic impedance of first and second medium

The ratio Ir/li is known as the reflection coefficient. It represents the proportion
of beam intensity which is reflected from the interface. A substantial change in Z
value at an interface increases the reflection coefficient, resulting in a more intense
echo, whereas minor variations in Z produce smaller echoes. This inference is
crucial in ultrasonic imaging[2]. The transducer’s US beam can either be a plane
wave or a focused wave. If it is a focused wave, the US beam is steered across the
subject plane by activating small groups of crystal elements in a sequential manner.
Using a pulsing technique with precisely controlled time delays between the various
elements, the US waves radiating from each of the crystals in the array can be
caused to arrive in phase at a specific focal point. At the focused point, the waves
interfere constructively and produce the formation of a region of high intensity. The
ultimate image is formed by the scanning of discrete lines in alignment. Aside from
any possible delays with the reconstruction or enhancement of images, the technique
allows one to record a single frame after sequential transmission of beams and
receiving backscattered echoes by each transducer channel. The primary drawback

2



Introductory concepts

of the technique is the low frame rate: as image acquisition time is prolonged,
the likelihood of motion artifacts also rises. In plane-wave imaging, no sequential
scanning of the medium line by line is involved; rather, it uses multiple channels
transmitting in parallel with no delay. Hence, the whole imaging area can be
acquired within the time it takes to scan a single line. As plane-wave imaging
utilizes all the transducer elements for simultaneous transmission, it enables us to
acquire US data at frame rates of up to several thousand frames per second. Yet,
this method may worsen image quality by the lack of transmission focusing.[3]

1.1.2 Beamforming in US imaging

Beamforming is a signal processing technique that enables the steering, shaping,
and focusing of an electromagnetic (EM) wave using a sensor array, which points the
wave in the direction of a specific target.[4]. In US medical imaging, beamforming
is primarily involved with shaping the spatial distribution of the amplitude of the
pressure field in the area of interest and subsequently recombining the reflected US
signals to create images.[5].

DELAY-AND-SUM

e
é

o

Scatterer

Apodization

RF-line

\ci

Time

Probe delays

Figure 1.1: Scheme of delay and sum algorithm

DELAY-AND-SUM (DAS) is the most basic digital beamformer for medical
US imaging. Because of its simplicity and efficiency, it’s the most used algorithm
to beamform the us signal. The idea of DAS is to collect and reunite all the
Radio Frequency (RF) signals generated from a single scatterer. The x-axis follows
the same direction of the transducers array, while the z-axis represents the depth
direction. Let’s define RF (x1,t) as the signal sensed by the receiving transducer

3



Introductory concepts

in position x; on the x-axis at time t. Let’s also separate the propagation in the
medium in two stages: the travel from the transducer to the scatterer and the travel
from the scatterer back to the transducer. Finally let’s define a single scatterer in
the medium at the position (z, z). If no steering angle is applied to the plane wave,
the times 7 required for the two listed stages are the following:

e Trasmission:

n(z,2) =2 (1.4)

* Reception:

\/22 + (x — 27)?

C

(1.5)

TZ(xlwru Z) =

Where c is the speed in the tissues that is assumed constant and equal to 1540 m/s.
Hence, the total time required for the wave to propagate in the medium and to go
back to the transducer is:

T:Tl+7'2 (16)

Finally, in order to reconstruct the scatter point in the position (xz), it is only
needed to delay the echoes by 7 and coherently sum them[6]. One the information
has been processed it can be displayed by using different methods denominated
modes. The most commonly used modes are:

e A-mode: the signals from returning echoes are displayed in the form of spikes
on a cathode ray oscilloscope (CRO), traced along a time base. While the
Amplitude of the spike is a measure of the echo size, its position is a measure
of the distance of the transducer form the related reflecting boundary. This
mode display only 1-D information, so it does not produce an image.

o B-mode: This is a mode most associated to the term US image. The returning
signals from a single scan-line are displayed as pixels of diverse intensities.
Each pixel is intensity (brightness) is a measure of the echo size, while the
position is a measure of the distance of the reflector from the transducer.
The combined information of multiple scan-lines provides a 2-D image of the
cross-section of the target.

o« M-mode: Used to generate a trace of a moving reflector along the path of
the US beam.
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A-mode M-mode B-mode

Time — « Distance —

Figure 1.2: Visual representation of difference between the different types of US
image display methods

1.2 Deep learning image reconstruction

1.2.1 Brief intro to Artificial Intelligence

The field of Artificial Intelligence (Al) is a field of computer science that focuses
on the creation of systems capable of performing tasks that usually require human
mental capabilities. Al is an area that contains a broad range of computational
approaches, including rule-based systems, optimization methods, and learning-
based approaches. Al is used as an overarching term that includes both Machine
Learning (ML) and Deep Learning (DL).

ML is a branch of Al that allows machines to learn from data without being
explicitly programmed. It consists of algorithms that enhance performance incre-
mentally by reducing mistakes and increasing predictive precision. ML systems
are dynamic in adaptation, with their decision-making processes continually being
adjusted as they acquire more data. A typical pipeline of building an ML model
consist of three phases: training, validation and testing. During the training phase
a set of the data called training set is given as an input to the model, who will learn
the parameters to efficiently perform a given task. In the validation a second set
called validation set, fine-tune will be performed based on this set. Finally in the
test phase the objective and unbiased performance of the model on an independent
data set (ie,the testing data set) are evaluated. DL, a distinct branch of Machine
Learning (ML), employs artificial neural networks (ANNs) that are inspired by the
composition and functionality of the human brain. It consists of several layers of
interconnected nodes—i.e., input, hidden, and output layers—to learn patterns

5
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" —~ — — — — ARTIFICIAL INTELLIGENCE
- A technique which enables machines
Artificial Intelligence _ to mimic human behaviour

~
L :
Machine Learning
MACHINE LEARNING
__________ Subset of Al technique which use
statistical methods to enable machines
to improve with experience
Deep Learning
~
< DEEP LEARNING
N~ — Subset of ML which make the

computation of multi-layer neural
network feasible

Figure 1.3: Relation between AI, ML and DL.

and hierarchical features from raw data. "Deep" implies the employment of more
than one hidden layer, which allows the system to learn intricate representations.
While DL excels at processing unstructured data with high precision, it demands
lots of computing power and enormous amounts of training data [7].

1.2.2 Convolutional Neural Networks

fc_3 fc_4
Fully-Connected ~ Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution A ,—M
(sl)de) k;?el Max-Pooling (5;_(;) k::j?e' Max-Pooling . (with
valid padding 2x2) valid padding (2x2) /. dropout)

2

™ A -
\ W
INPUT n1 channels n1 channels n2 channels n2 channels || | \}. 9
(28x28x1) (24 x24xn1) (12x12 xn1) (8x8xn2) (4x4xn2) '/ ouTPUT
n3 units

Figure 1.4: A generic Convolutional Neural Network to perform classification.

The ANNs are systems inspired by how the human nervous system operates.
They are comprised of multiple interconnected computational nodes called neurons
that work in junction to learn from input data to optimize the network output.
In the basic structure of a ANN, the input is loaded to the input layer 1 of which

6
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will distribute it to the hidden layers. Then, these will make decisions from the
previous layer and weigh up how a stochastic change within itself detriments or
improves the final output. Convolutional Neural Networks (CNN) are analogous to
traditional ANNs in that they are comprised of neurons that self-optimize through
learning. The most notable difference of CNNs to the ANNSs is that the firsts are
mostly used in the image pattern recognition field. The neurons that CNN are
comprised of, are organized into three dimensions, the spatial dimensionality of the
input (height and the width) and the depth. CNNs are comprised of three types of
layers[8]. These are:

convolutional layers: The name CNN comes from these particular kind
of layers of which they are comprised. The layers parameters focus around
the use of learnable kernels. These kernels have a limited spatial dimensions
yet cover the complete depth of the input. When data enters a convolutional
layer, it convolves each filter across the input’s spatial dimensions to generate
a 2D activation map. As we progress through the input, the scalar product is
computed for each value in that kernel. The network will then learn kernels
that 'fire” when they detect a specific characteristic at a given spatial position
in the input. These are frequently referred to as activations. Each kernel will
have an activation map, which will be layered along the depth dimension to
generate the convolutional layer’s total output volume.

pooling layers: Pooling layers attempt to gradually lower the dimensionality
of the representation, hence reducing the number of parameters and computing
complexity of the model. The pooling layer operates over each activation map
in the input, scaling its dimensionality according to a function (commonly the
MAX or Average).

fully-connected layers: The fully-connected layer contains neurons that are
directly connected to the neurons in the two adjacent layers, but not to any
layers inside them. This is similar to how neurons are placed in conventional

kinds of ANN.

The CNN found application in a wide range of task applied to images. The most
common task in the clinical field of which they are applied are:

Classification: Assignment of a label to the whole image;
Regression: Similar to classification, but outputs a continuous real number.

Detection: The detection task identifies a target object by outputting a
bounding box enclosing it;

Segmentation: could beconsidered as a dense classification in which each
pixel is classified into a label.
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» Reconstruction: is the process of creating a target domain image from
source domain signals. It may be either raw-to-image or postprocessing. The
first method creates an image based on raw sensor data, whereas the second
method takes advantage of extracted features of source domain images [9].

1.3 Explainability and Uncertainty quantification
in artificial intelligence

1.3.1 Introduction to Explainable AI and Uncertainty Quan+
tification

The inherent complexity and "black box" nature of DL has risen concern about its
trustworthiness and reliability, especially in the medical field. A model for instance
could learn incorrect or low relevant feature and rely on them during its prediction
instead of the clinically relevant ones. This scenario open the need of finding way
to understand or/and quantify the quality of the decision making process of the DL
network. Explainable Artificial Intelligence (XAI) is a broad term that encompasses
the methods that aim to make the Al decision more transparent to human users
by providing additional data beyond the network output to understand how the
model has arrived to the decision. Uncertainty Quantification (UQ) instead tries
to quantitatively measure the uncertainty associated with the model prediction to
asses the model reliability, so is the process of determining the extent to which
model’s predictions may be uncertain or unreliable [10].

1.3.2 Concepts of UQ

As stated in the previous section, is crucial to evaluate the uncertainty of Al system
predictions. The concept of uncertainty is bound to the grade of ambiguity or
confidence on the outputs of Al models. This uncertainty can be the caused by
multiple factors such as noisy training data sources, limited domain knowledge or by
the model itself. Predictive uncertainty (PU) is used to determine this uncertainty
and can be divided:

+ Aleatoric Uncertainty (AU): Stemming from inherent data noise or ran-
domness. This not a property of the model, but rather is an inherent property
of the data distribution, and hence, it is irreducible.

« Epistemic Uncertainty (EU): Arising from limited knowledge or data
scarcity, leading to uncertainty about the model’s behavior or performance
in new or unseen situations. This uncertainty can be reduced by improving
architecture, learning process or data quality.

8
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[11] So the PU can be represented as the sum of these two uncertainty types
PU = AU + EUUQ)] (1.7)

To estimate uncertainties implicitly embedded in models, Bayesian inference pro-
vides an immediate remedy and stands out as the main approach. Bayesian methods
have risen to interest due to their characteristic of beaing able to address uncer-
tainty via posterior distribution, reduce overfitting and for enabling sequential
learning while retaining prior and past knowledge. The most challenging task in
following the Bayesian paradigm is the computation of the posterior. In the typical
ML setting characterized by a high number of parameters and a considerable size
of data The Bayesian paradigm is based on two simple ideas. The first is that
probability is a measure of belief in the occurrence of events, rather than just
some limit in the frequency of occurrence when the number of samples goes toward
infinity. The second is that prior beliefs influence posterior beliefs. The above
two are summarized in the Bayes theorem: Let D denote the data and p(D|f) the
likelihood of the data based on a postulated model with # € © a k-dimensional
vector of model parameters. Let p(f) be the prior distribution on 6. The posterior
distribution p(6|D):

p(6D) = p(D18) _ p(0)p(D|0) (1.8)

p(D) p(D

where p(D) = [op(8)p(D|6) db is called marginal likelihood and is a normalization
constant. With the Bayesian approach the unknown variable 6 is treated as
a random variable. The prior probability p(6), which intuitively expresses in
probabilistic terms any knowledge about the parameter before the data has been
collected, is updated in the posterior probability p(6|D), mixturing prior knowledge
and evidence supported by the data through the model’s likelihood. Bayesian
inference is generally difficult due to the fact that the marginal likelihood is often
intractable and of unknown form, resulting in difficulty in computing an exact
posterior inference, but it can be approximated with methods such as Monte Carlo
(MC) dropout [12].




Chapter 2

State of the Art

2.1 Deep Learning for US Reconstruction

US imaging is a widely used modality in clinical diagnostics, appreciated for its
non-ionizing nature, portability, and relatively low cost. Conventional US image
formation relies heavily on DAS beamforming techniques, which are simple and
fast but often lead to limited spatial resolution, low contrast, and high levels of
speckle noise and imaging artifacts[13, 14].

In recent years, DL methods have revolutionized image processing and analysis
in medical imaging. The application of DL to US imaging has sparked significant
interest, primarily due to its ability to learn complex nonlinear mappings directly
from data, enabling the generation of higher quality images compared to traditional
signal processing approaches[15, 16].

However, a notable ambiguity exists in the literature regarding the terms image
enhancement and image reconstruction. Enhancement typically refers to post-
processing methods that improve image quality from already beamformed data, such
as DAS outputs, through denoising, contrast improvement, or speckle reduction[17].
Reconstruction, in contrast, implies a more fundamental transformation where the
neural network learns to directly map raw RF or channel data into B-mode images,
potentially replacing or modifying the beamforming process itself[18, 19].

2.2 Common Deep Learning Architectures and
Approaches

The most common DL architectures employed for US image reconstruction are:

o U-Net and Fully Convolutional Networks (FCNs): These are typically
used for end-to-end mapping from raw data to image space. U-Nets with
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encoder-decoder structures and skip connections have been successfully applied
to suppress speckle noise and improve structural preservation[20, 17].

A particularly promising direction involves the use of multitask U-Net ar-
chitectures that simultaneously perform image reconstruction and semantic
segmentation. For instance, Rivaz et al.[19] proposed a model that takes raw
channel data as input and outputs both a reconstructed B-mode image and a
corresponding segmentation map. This multitask learning paradigm exploits
shared representations to improve both tasks: segmentation enhances recon-
struction by enforcing anatomical consistency, while improved reconstructions
benefit segmentation through higher signal clarity.

Similarly, Goudarzi and Rivaz[16] demonstrated that networks trained jointly
on simulated and in vivo data can achieve generalizable performance in both
domains, further underscoring the clinical viability of this approach. These
models often leverage U-Net backbones with task-specific output branches
and are optimized using composite loss functions combining pixel-wise recon-
struction and segmentation objectives.

Autoencoders: Convolutional autoencoders (CAEs) have been trained to
learn the residual between noisy DAS images and high-quality minimum
variance (MV) outputs, effectively denoising and sharpening image outputs[13].

Generative Adversarial Networks (GANs): GANs have been used to
generate realistic B-mode images by leveraging adversarial loss, improving the
perceptual quality and generalization to real or phantom data[21].

Frequency-domain networks: Some works apply DNNs to frequency-
domain representations, allowing better suppression of off-axis and reverbera-
tion artifacts. Luchies et al. demonstrated improved contrast resolution using
this approach[14].

Compressed and Sub-Nyquist Reconstruction: Networks such as the
one proposed by Mamistvalov et al. recover high-quality B-mode images from
spatially and temporally sub-sampled RF data, addressing both hardware and
computational constraints[18].

Multitask Learning: Dahan et al. propose a multitask CNN that performs
both beamforming and denoising, adjusting its weight normalization to ac-
commodate different image quality tasks without sacrificing frame rate[17].

(193
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2.3 Uncertainty Quantification in US Reconstruc-
tion

UQ is an emerging yet underdeveloped aspect in deep learning-based medical US. As
these models move toward clinical deployment, their reliability and interpretability
become crucial. UQ methods aim to quantify the confidence of neural networks
in their predictions, particularly valuable when models are applied to out-of-
distribution data or ambiguous regions|22].

In the context of US, Haji-Saeed et al. proposed a Bayesian DL framework for
passive cavitation imaging using MC dropout, which estimates both epistemic and
aleatoric uncertainty[22]. Their results showed that uncertainty maps correlate
with regions prone to artifacts, making them useful for both clinical interpretation
and automated downstream tasks such as segmentation.

Standard UQ methods used in medical imaging include:

e« Monte Carlo Dropout: Applying dropout at inference to approximate
Bayesian inference.

e Deep Ensembles: Using multiple independently trained models to estimate
uncertainty.

o Test-Time Augmentation: Assessing prediction variability under input
transformations.

« BNNs: Modeling weights as distributions rather than fixed values.

Despite its importance, UQ is still rarely integrated in US image reconstruction
pipelines. Incorporating uncertainty estimates could provide a crucial reliability
layer in Al-driven clinical systems.

2.4 Research Gaps and Objectives

The reviewed literature clearly demonstrates the potential of DL for US image
reconstruction. However, important gaps remain:

o The distinction between enhancement and reconstruction is not consistently
defined, leading to methodological confusion.

o Most models are trained on simulated datasets with limited diversity, raising
concerns about domain generalization.

o Few studies incorporate uncertainty estimation in reconstruction models,
despite its clinical significance.

12
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This thesis aims to address these gaps by proposing a DL-based reconstruction
pipeline that directly reconstructs US images from raw RF data, while integrating
principled uncertainty quantification to enhance model transparency and robustness.

13



Chapter 3

Materials and Methods

3.1 Data

The dataset consisted of 8000 simulated US acquisitions and 9 real acquisitions.
The Field 11 US simulation package [23] was used to generate individual anechoic
cysts surrounded by homogeneous tissue. The use of simulations in the application
of deep learning for US is common for two primary reasons:

« this enables the generation of large, diverse data sets that are required to train
robust DNNss.

« in segmentation tasks, simulations enable the specification of ground-truth
pixel labels, allowing one to avoid the expensive and time-consuming step of a
human annotator to provide segmentation labels.

The real set is considerably smaller than the other, but is still a very important
set as it gives the opportunity to measure differences in performances obtained
in a real scenario. It is composed by US acquisition made on a phantom and
of charotid-zone acquisitions on human subjects. These acquisition are crucial
to evaluate the performances of the uncertainty metrics that were constructed
during the curse of this thesis work. In fact, as the real scenarios are more complex
and noisy than the simulated ones, this should be reflected in a growth in the
uncertainty of the results. The simulated data was randomly splitted accordingly
to this table:

Set name Percentage of sim. dataset | Set dimension
Training set 50% 6400
Validation set 25% 800
Test set 25% 800
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While the real data was used to construct a second test set and was limited
to the test phase. Each singular raw acquisition is two dimensional, so can be
visualized as an image of dimensions 1290x128. For each simulated acquisition
there are two target images, one for the reconstructed image (called target or
prediction) and one for its own segmentation (called segmentation target); these
two targets are the ground truth for this set. For real acquisitions, the targets of
the predictions are obtained with the DAS algorithm and no segmentation targets
where used. All the target images for both the segmentation and the reconstruction
are 2-D images of dimension 256x128 pixels.

Raw data of Validation Set Raw data of Real Set

Raw Data0 RawDatal RawData2 RawData3 RawData4 RawData0 RawDatal RawData2 RawData3 Raw Data4
(a) Validation data (b) Real data

Figure 3.1: First five raw data for validation set (a)
and the Real set (b)

3.2 Network architecture

As seen in the state of the art chapter, for the image reconstruction task the most
commonly used approaches in literature are:

« GAN
o Pre produce DAS image and than pass it to the network
o Use raw data as input to a network to obtain its reconstruction

While the GANs are a valid choice, the final objective of this thesis is to obtain a
uncertainty metric and UQ in this kind of architecture are more complex, so this
approach was not employed. The second approch is more akin to a task of image
enhancement that in literature is often confused with the reconstruction, as the
objective was to evaluate uncertainty on the reconstructed images directly from
raw data, the only valid approach was the last one in the list.

15



Materials and Methods

3.2.1 Unet
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Figure 3.2: Original Unet architecture created by Ronneberger et al[24].

Almost the totality of similar works used some variation of the Unet to re-
construct images. The Unet is one of the most commonly used CNN in medical
imaging applications. The network architecture consists of a contracting path and
an expansive path. The main feature of the Unet are the skip connection between
the two paths that are used to combine the high level feature of the contracting
path with the low level features of the expanding path. This connection of feature
makes the network particularly suitable to medical applications. The contracting
path follows the typical architecture of a convolutional network. It consists of
the repeated application of two 3x3 convolutions (un-padded convolutions), each
followed by a rectified linear unit (ReLU) and a 2x2 max pooling operation with
stride 2 for downsampling. At each downsampling step we double the number of
feature channels. Every step in the expansive path consists of an upsampling of the
feature map followed by a 2x2 convolution ( up-convolution ) that halves the number
of feature channels, a concatenation with the correspondingly cropped feature map
from the contracting path, and two 3x3 convolutions, each followed by a ReLU.
The cropping is necessary due to the loss of border pixels in every convolution. At
the final layer a 1x1 convolution is used to map each 64 component feature vector
to the desired number of classes. In total the network has 23 convolutional layers
[24].

16



Materials and Methods

3.2.2 Chosen network architecture

Figure 3.3: Unet employed in this thesis work to perform simultaneous recon-
struction and segmentation from raw US acquisitions

The network used on this thesis work is a variation of the Unet, inspired by
the works of [25]. The implemented deep learning architecture is a dual-branch
encoder-decoder convolutional neural network designed to simultaneously perform
image reconstruction and semantic segmentation. The network follows a U-Net-like
structure, featuring a shared encoder path and two separate expansive decoder
branches.

The encoder (contraction path) is composed of five stages of convolutional blocks
with ReLLU activations, batch normalization, and max pooling operations. Each
stage increases the number of feature maps while reducing the spatial resolution,
enabling the model to capture hierarchical features. To improve feature extraction,
deeper blocks are introduced at lower resolutions. Dropout regularization is applied
at the bottleneck to reduce overfitting.

The first decoder branch is tailored for image reconstruction. It leverages trans-
posed convolution layers (deconvolutions) for upsampling, followed by concatenation
with corresponding encoder feature maps (skip connections). This structure allows
for the recovery of fine-grained spatial details lost during encoding. After each
concatenation, standard convolutional blocks refine the upsampled feature maps.
The reconstructed output is passed through a sigmoid-activated final convolutional
layer to produce the enhanced image.

The second decoder branch is used for semantic segmentation, mirroring the
reconstruction decoder in structure. It independently processes the shared encoder
features through its own upsampling, convolution, and normalization layers. The
segmentation output is also generated via a final sigmoid-activated convolutional
layer, yielding a pixel-wise binary segmentation map

Dropout layers are placed at the end of the contracting path and after each
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of the convolutional blocks of both of the two decoder branches. These layers

discourages the network from becoming overly reliant on specific neurons, thereby

enhancing its ability to generalize, thus avoiding overfitting. Moreover these layers

are crucial to perform Montecarlo dropout and to construct the uncertainty metric.
The specific constitution of each of the block can be seen in Figure 3.3.

3.3 Uncertainty estimation metric method

The absence of relevant works on the estimation of the uncertainty in the recon-
struction of US images from raw RF data provided substantial freedom in the
methodological approach, but also posed challenges due to the lack of established
references or guidelines to build upon. For the motives above, MC dropout, the
most commonly used uncertainty estimation method, was used as a basis to extract
uncertainty, then, by exploiting the dual output of the network, several experiments
were exploited to define multiple uncertainty metrics.

3.3.1 Monte Carlo dropout
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Figure 3.4: Monte Carlo dropout

To estimate the predictive uncertainty of the model, we adopted the approach
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proposed by Yarin Gal and Zoubin Ghahramani, known as Monte Carlo dropout.
In their work, [26] Monte Carlo dropout showed that a neural network with
arbitrary depth and non-linearities, with dropout applied before every weight layer,
is mathematically equivalent to an approximation to the probabilistic deep Gaussian
process. Dropout is a technique commonly used in neural networks during the
training phase to avoid or mitigate overfitting resulting from the co-adaptation
of adjacent neurons. Practically speaking applying drop out means that, during
training, neurons at each input have a random probability to be momentarily
turned off to create a "thinned" version of the net consisting of the surviving units,
so for a neural net with n units, 2" possible thinned neural networks are obtained.
Training a network with dropout and using this approximate averaging method at
test time leads to significantly lower generalization error [27]. With MC dropout
the information deriving from applying dropout that is normally discarded, can be
used to derive uncertainty at test time.

Mathematical Formulation of MC Dropout

In this paragraph will be described the core mathematical basis of the MC dropout
method. Assume a NN with L layers, which W;, b, and K; denote the weight
matrices, bias vectors and dimensions of the [y, layer, respectively. The output
of NN and target class of the iy, input z;(i = 1, ..., N) are indicated by ¢; and y;,
respectively. The objective function using L. regularization can be written as:

~

1 X R
Lavopont = 37 22 B(wir 90) + A X (IWAll3 + 1)) (3.1)
i=1

This formulation is standard in deep learning, where dropout is treated as a
regularization technique aimed at reducing overfitting. However, this objective can
be reinterpreted in a Bayesian framework. Specifically, training a neural network
with dropout is mathematically equivalent to performing approximate variational
inference in a deep Gaussian process, where the variational distribution over the
weights is implicitly defined by the dropout mechanism.

Under this probabilistic interpretation, the loss function corresponds to the
minimization of the variational free energy. This leads to a new training objective,
which incorporates both a data-fitting term and a regularization term derived from
the Kullback—Leibler divergence between the approximate and true posterior over
the model parameters:

Lapmce X E 08 P(Yn|Tn, n) + > m .
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Here, @, denotes a sampled dropout configuration, 7 is the model precision
(related to the inverse of observation noise), M, are the variational weight means, and
p is the dropout probability. This formulation establishes a direct link between the
commonly used dropout regularization in deep learning and a principled Bayesian
approximation.

Now the key idea is to perform multiple stochastic forward passes through the
model at test time, with dropout active, and to use these samples to approximate
the predictive distribution. Given an input z*, we are interested in the predictive
distribution ¢(y*|z*), which incorporates uncertainty over the model parameters.
This is defined as:

q(y*|z") /p “l2*,w) g(w) dw (3.3)

Here, g(w) represents the approximate posterior over the weights induced by
the dropout mechanism, and p(y*|z*,w) is the likelihood of the prediction given a
particular weight configuration w.

Since this integral is intractable, it is approximated using Monte Carlo sampling.
By drawing T samples {w;}!_; from the dropout distribution and computing the
corresponding outputs, we obtain a sample-based approximation of the predictive
mean:

EQ(Z/*L’E T Z * ZE wt (34)
t=1
This estimate is referred to as MC Dropout and in practice this is equivalent
to performing T stochastic forward passes through the network and averaging the
results.

3.3.2 Uncertainty metric extraction method

To estimate uncertainty using the MC Dropout technique, the trained neural
network was evaluated multiple times with dropout layers activated during inference.
Specifically, 10 stochastic forward passes were performed for each input sample.
This approach introduces randomness at each pass, leveraging the dropout-induced
variability to approximate a distribution over the network outputs. Than two
different pipelines were followed for the segmentation output and the reconstruction
output.

Segmentation pipeline

The operations on the various segmentation outputs during MC inference served a
dual purpose: it was used both to extract quantitative uncertainty metrics for the
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segmentation task, and to construct a conservative mask. This mask was crucial
for the subsequent reconstruction pipeline.

o Mask uncertainty extraction: To measure uncertainty on the segmentation
output, the normalized entropy measure was used.

H = — [p, log pr + (1 — p,) log(1 — p,)] - 11 € [0,1] (3.5)

og 2

Where p, is the foreground probability and is obtained by averaging the MC
inferences T'.

1 T
br = T Zpr,t (36)
t=1

Than, a median operation was applied to the resulting matrix to obtain an
uncertainty metric on the segmentation. This metric will be referred to as
Mask uncertainty.

» Conservative Mask extraction: This involves creating a final mask that
includes all the pixels considered 'important’ by the network. Practically, it
means that if a pixel was marked as relevant (i.e., set to true) in at least one
of the inferences, it will also be set to true in the final conservative mask.
This can be translated in a logical OR operation between all of the masks
inferenced.

Normalized Medi Mask Uncertainty
e entropy of - —_ e |t§n s
segmentation operation

Creation of Conservative mask Conservative mask

Figure 3.5: Visual scheme of the described segmentation pipeline.
Note: The colors used in this diagram are intended solely for explanatory purposes.

Reconstruction pipeline

To aggregate the results and quantify the predictive uncertainty, either the standard
deviation or the variance are computed across the ensemble of predictions for each
pixel. This matrix will be referred as the uncertainty matrix. Then the relative
conservative mask produced in the segmentation pipeline is weighted by some
numeric factors. The factor used on the conservative masks were:
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1.5 for the segmented pixels (the true values of the mask);

« 0.5 for the background pixels (the false values).

This operation produces the weighted mask, which is then applied to the un-
certainty matrix, obtaining the Weighted Uncertainty on Reconstruction
(WUR) matrix. This is made to weight the uncertainty to make the segmented
parts be numerically higher than the background parts, and thus becoming more
relevant in the uncertainty metric calculation. After obtaining the WUR matrix,

three metrics are calculated:

o« UQmax: maximum value of the WUR matrix;
o« UQmean: mean value of the WUR matrix;

¢« MWUR: Median value of the WUR matrix.

Segmentation
inferences >

Conservative mask
extraction
I l Conservative mask
Reconstruction

inferences UOmax
Reconstruction Q

uncertainty extraction > UQmean

MWUR

_ Mask
weighting

Conservative mask 0->0.5
1->1.5

Standard deviation / /
between _ UQmax
inferences
Ve rha — | UQmean
MWUR

A

Figure 3.6: Visual scheme of the described Reconstruction pipeline.
Note: The colors used in this diagram are intended solely for explanatory purposes.
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3.4 Network training and evaluation

3.4.1 Training parameters

During each of the training the parameters where kept the same to make the results
less subject to variability dependent from their variation. The paramteres chosen
were the following: The batch size was chosen as the largest value that could fit

Parameter Value
Learning Rate 0.00005
Batch Size 8
Epochs 50

Segmentation optimizer | Adam
Reconstruction optimizer | Adam
Gamma 0.7

Table 3.1: Training parameters.

within the available GPU memory constraints. Is to be notice that, due to the
fact that the network produces both a reconstruction and a segmentation, the
parameters of each of the expanging path are optimized separately.

3.4.2 Loss functions

Loss functions play a central role in the training of neural networks by quantifying
the discrepancy between the model’s predictions and the ground truth. During
training, the optimization algorithm adjusts the model’s parameters to minimize
this loss, thereby improving its performance. In this particular instance 2 different
loss function were employed:

» Dice-Sgrensen coefficient (Dice)[28]: is a statistic used to gauge the
similarity of two samples and is commonly employed to evaluate the quality
of a segmentation algorithm.

2|AN B|

DiCG(A, B) = m

Dice € [0,1] (3.7)

Where A is the set of predicted positive elements and B is the set of ground
truth positive elements. The Dice coefficient measures the similarity between
two sets by comparing the size of their intersection to the average size of the
sets. A value of 1 indicates perfect overlap between the predicted and actual
positive regions, while a value of 0 means there is no overlap at all. This
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metric was used as a loss function to guide the training of the segmentation
branch.

« L1 loss[29]: The L1 loss, also known as Mean Absolute Error (MAE), mini-
mizes the absolute differences between the predicted values and the ground
truth. The closer to zero is the L1, the closer the produced reconstruction is
similar to the ground truth.

1N
L1 =— i — Ui 3.8
b=y Ll =3 (38)

where:

— Ly is the L1 loss (MAE),

— N is the total number of samples,

— 7; is the true value (ground truth) for the i-th sample,
— ¢; is the predicted value for the i-th sample.

This metric was used as a loss function to guide the training of the reconstruc-
tion branch.

3.4.3 Network evaluation metrics

To evaluate the performance of the network, the same metrics used during training
were employed, namely the MAE and the Dice coefficient.

3.5 Uncertainty metric evaluation criterion

To evaluate the performances on estimating the uncertainty on the output coming
from the model, the uncertainty metrics for the reconstruction were assessed in
terms of:

o Correlation with the MAE: Higher uncertainty should reflect into a higher
imprecision in the reconstruction, thus the two should show some degree of
correlation between each others.

» Ability to differentiate between simulated images and real acquisitions: Real
images should exhibit higher intrinsic uncertainty compared to simulated ones,
and this difference should be reflected in the uncertainty metric values.
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3.6 Empirical Analysis for Metric Selection and
Model Tuning

In this section will be illustrated the methods employed to guide the decisions
made to construct the best possible "uncertainty evaluation system".

3.6.1 Best Drop out values for Monte Carlo dropout and
best uncertainty metric selection

To select the optimal dropout values for use during Monte Carlo inference, several
different dropout probabilities were considered. The dropout layers in the network
were first divided into three distinct subcategories:

» Contracting Dropout (c): This set includes only the single dropout layer
located after the contracting path. This dropout aims to capture the variability
from the contracting path.

« Segmentation Dropout (s): This set includes the dropout layers that
belong to the segmentation path.

« Reconstruction Dropout (r): This set includes the dropout layers that
belong to the reconstruction path.

To evaluate the best combination of dropout values, the resulting uncertainty
metrics were assessed with the methods described in the Section 3.5

The dropout probability values for all three categories were initially set to the
same value, and seven different values were evaluated: 0.001; 0.01; 0.1; 0.2; 0.3;
0.4; 0.5. Then, to evaluate the individual impact of dropout variability on the
two expanding paths, the following two combinations were tested:

e [c=0.5;s=0.1;r =0.5]
e [c=0.5;s=0.5;r =0.1]

The evaluation of the best dropout values was also indirectly useful for deter-
mining which reconstruction uncertainty metric would be preferred in the following
steps.

3.6.2 Uncertainty metric normalization attempts

The uncertainty metrics described in the previous section all suffer from the
drawback of not having a defined upper bound. This lack of normalization poses
several issues. First, it hinders the interpretability of the uncertainty values, as there
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is no clear reference for what constitutes a "high" or "low" uncertainty. Second, it
complicates the comparison across different samples, models, or datasets, since the
range of possible values may vary significantly. Lastly, it may reduce the robustness
of threshold-based decision processes, as fixed thresholds become arbitrary and
potentially non-transferable between experiments. To try solve this issue, two
different normalization attempts where tested:

o First normalization attempt: After obtaining the WUR matrix, the pixels
values are normalized by the maximum value of the current matrix.

e Second normalization attempt: The maximum pixel value of the WUR
matrices obtained inside the construction set (training set + validation set) is
kept and than used to normalize the WUR matrices in the whole dataset.

First normalization attempt

Normalize WUR matrix

/ WUR matrix
-
Median A
Uncertainty matrix and Mean ? UQmean
UQmax

Figure 3.7: Visual scheme of the first normalization attempt.

3.6.3 Uncertainty metric as loss function during training

Once the best uncertainty metric was selected and evaluated as satisfactory to
evaluate the reconstruction uncertainty, it was decided to test its potential as a
loss function to be used during the training phase for the reconstructions. Two
different approaches to insert this new loss where put on trial:

e Only uncertainty metric: Only the new loss is calculated and the net adjust
itself on the basis of this loss.

» Weighted loss: the MAE loss used in the basic training format and the new
uncertainty loss are weighted and than
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Figure 3.8: Schemes of the losses combination with MWUR, metric
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3.6.4 Training and evaluation on reduced dataset

To test the consistency of the obtained uncertainty metric, multiple ulterior trainings
were performed with reduced dataset. The purpose of reducing the number of data
on which the training operation is performed is to obtain a theoretical worsening
of the performances, this way is possible to verify that the network result do not
influence the ability of the uncertainty metric of differentiating the simulated data
from the real data.

Reduced datsets definition

The reduced dataset were obtained by selecting a sub set of the total data; three
dataset were obtained:

e Reduced Dataset 4,,: Dataset is reduced to a fourth of the original number
of entries;

e Reduced Dataset 8;,: Reduced to a eighth of the original number of entries;

e« Reduced Dataset 164,: Reduced to a sixteenth of the original number of
entries.

In the next table are reported the number of the entries present in the training
set, validation set and test set fore each sub dataset. The criterion on which the

Set name | Training set | Validation set | Test set
RD4,, 1600 200 200
RDS8y;, 800 100 200
RD16,, | 400 50 50

Table 3.2: Training, validation and test set composition of each subset

original dataset entries were distribuited in each of the reduced dataset’s sets to
create their own reduced training, reduced validation and reduced test set was to
take a sub sets of the entries in their respective original set. In particular the first
k elements from each set were taken, with k obtained with the formula 3.9.

_ total length of the set
~ reduction factor

(3.9)

This excludes the possibility of presenting different input data between the trainings
and thus the possibility of introducing biases on the subsequent evaluations. To
evaluate performances on real data, the entirety of the available real data was used
for each of the obtained networks.
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Training on the reduced training sets

To assure that each network result was comparable with the other, each training
was performed using the same training parameters and random seed of the original
network employed. Two types of training were conducted on the basis of the
loss function applied to the reconstruction branch: one using the standard mae
loss, while the other using the previously described weighted loss. One training
was performed for each combiantion of loss and reduced dataset for a total of six
additional training.

3.7 Additional test of uncertainty metric on pho-
toacustic images

Lastly the metric has been tested on a completly different dataset composed of
photoacustic acquisitions.

Photoacustics

Photoacoustic imaging (PAI) is recent biomedical imaging technique that enables
detailed visualization of biological structures by combining the optical absorption
contrast of light with the deep tissue penetration and high spatial resolution of
US. This technique relies on the photoacoustic effect in which pulsed laser light is
absorbed by tissue chromophores, causing a rapid and localized temperature rise
leading to thermoelastic expansion and the emission of ultrasonic waves. These are
then captured and reconstructed into meaningful images.

A typical PAI system includes a laser source, an US transducer, and data
acquisition equipment. Together, these components make it possible to perform
non-invasive and non-ionizing imaging with excellent spatial resolution and rea-
sonable imaging depth. PAI is especially valuable for visualizing features such as
blood vessels, oxygen saturation, and tissue structures, thanks to its sensitivity to
endogenous absorbers like hemoglobin or melanin, as well as its compatibility with
targeted contrast agents. As a result, photoacoustic imaging shows great promise
in a range of biomedical applications, including cancer diagnosis, dermatology,
cardiovascular imaging, and neuroscience.[30]

Photoacoustic dataset

The dataset used to tryout the described uncertainty metrics on the task of image
reconstruction applied to the photoacoustic data was composed as follows:

o Raw data of size 128x790 px;
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o Concentration or Oxygenation maps of size 256x256, which can be compared
to the previously described segmentation maps used on the ultrasound image
reconstruction;

o Reconstruction model based, which are reconstruction image obtained by
commonly used means.

All data of the photoacoustic dataset was obtained from simulated acquisitions.

Training with photoacoustic dataset

A network with the same characteristics of the one employed for the US dataset
was used.

Uncertainty metric used on the reconstructions

Only the best performing metric on the US dataset will be used to evaluate the
uncertainty of the obtained photoacoustic reconstructions. The metric will be
obtained in the same means described in the other sections, using the resulting
Concentration maps outputs instead of the segmentation.

Evaluation of the uncertainty on the photoacoustic dataset

To evaluate the performances in terms of uncertainty, the box-plots will not be
used due to the fact that only simulated data was available, making the use of

box-plot superfluous. The metric will be evaluated strictly in terms of correlation
with MAE.
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Chapter 4

Results

This section is dedicated to presenting the results obtained following the methods
described in in the Chapter 3

4.1 Network Performances

The results obtained after training the network with the basic configuration are
presented in Table 4.1.

MAE Dice Coefficient
Training set 0.692 £0.0132 | 0.9623 4+ 0.0599
Validation set | 0.696 +0.0132 | 0.9526 4+ 0.0785
Test set 0.691 £0.0128 | 0.9509 4+ 0.0879
Real set 0.1189 + 0.0289 | Not applicable

Table 4.1: Performance of the network on each dataset.

Since no ground truth was available for the Real set, the Dice coefficient result
was omitted. Additionally, attempting to manually segment the images to generate
a ground truth would have led to a biased evaluation of the network compared to
the other datasets. This is because it would not have been possible to objectively
assess what was correctly segmented by the network, as the operator might consider
different regions of the image important compared to those emphasized by the
network. This discrepancy arises from the fact that the network was trained on a
different dataset, potentially leading to divergent interpretations of the relevant
anatomical or structural features.
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Prediction Target

Prediction

Segmentation Target segmentation Segmentation Target segmentatio

Figure 4.1: On the left an example of ground truths and outputs obtained from
a simulated acquisition. On the right from a real acquisition.

4.2 Results of uncertainty metrics for reconstruc-
tion

Each of the previously described uncertainty metrics for the reconstruction output
of the network have been tested in terms of correlation with the MAE and on their
capability to clearly differentiate between real and simulated images with a box
plot. The results are shown in Figure 4.2. The results in terms of the Pearson
correlation coefficient, are shown in the Table 4.2

Metric | Validation set Test set Real data

MWUR | corr: 0.665 p-value: 0.0 corr: 0.654 p-value: 0.0 corr: 0.892 p-value: 0.001
UQmax | corr: —0.033 p-value: 0.352 | corr: —0.049 p-value: 0.164 | corr: 0.129 p-value: 0.74
UQmean | corr: 0.378  p-value: 0.0 corr: 0.354 p-value: 0.0 corr: 0.717  p-value: 0.03

Table 4.2: Pearson correlation and p-values of each metric in Validation, Test and
Real sets.

In the boxplots, all the metric are capable of visually distinguish between the
simulated and real data, with the most apparent difference being visible with the
UQmax. Meanwhile UQmax has not shown any correlation with the MAE, with
the best Pearson Correlation coefficient being obtained by the MWUR metric.
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Box plot of uncertainty metrics
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Figure 4.2: In this image, the results of the uncertainty metrics on the terms
described in Section 3.5 are shown. In the top part the box plots are shown. In
the bottom the correlation graphs between the metric and the MAE.

4.3 Selection of drop out values and selection of
best uncertainty metric

Each of the uncertainty metric result on the Validation, Test and Real set was
tested at different values of drop out probabilities. From the resulting box plots
in Fig 4.3, is apparent that each of the metric grows of values when the drop
out probability becomes bigger. Moreover, an increase of dropout probability is
translated in more distinguishable boxes between the real data and the simulated
data. Metrics calculated using reconstruction branch drop out probability equal
to 0.1 and segmentation branch drop out probability equal to 0.5, obtained lower
results than the mirrored configuration. In every metric calculated with dropout
probabilities higher than 0.2 is possible to distinguish the simulated data from the
real data. The resulting plots of the different combinations of metric and drop
out values are shown in Fig 4.4. The UQmax (Fig 4.4 A) has not shown any kind
of correlation in any of the drop out probabilities combinations. The UQmean
(Fig 4.4 B) obtained Pearson correlation values between the values of 0.21 and 0.39
on the simulated data with p-values of 0.0. On the real data the correlation is
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Figure 4.3: Boxplots of each metric at different values of dropout probability.

becomes higher as the drop out probability grows, reaching a value of 0.71 with a
p-value of 0.0 in the drop out combination of [c¢: 0.5;s: 0.5;7 : 0.5]. Similarly to
the UQmean The Pearson correlation coefficient obtained using the MWUR metric
grows of magnituide with the increase of dropout probability. The metric reached
a correlation of 0.66 and p-value of 0.0 on the combination of [c¢: 0.5; s : 0.5;7 : 0.5].
All metrics were able to distinguish between the Real and Simulated data, while the
MWUR obtained the best results in terms of correlation. Due to this result, only
the MWUR metric was taken into attention in the next experiments. In regards to
the dropout probabilities, the best results with each metric where obtained while
setting the dropout values of the construction, reconstruction and segmentation
path at the value of 0.5. Moving forward this combination of drop out probability
values was employed.
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Figure 4.4: Pearson correlation of each metric at different values of dropout
probability.
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4.4 Results of the normalization attempts

In the Fig 4.5 are shown the results obtained by normalizing the MWUR metric
with the first method put on trial. The MWUR metrics obtained during inference
were normalized by the maximum value obtained on the WUR matrix. The
Pearson correlation coefficient got significantly worse in each of the sets than the
not normalized metric. In the box plot, output inferenced became more difficult to
neatly separate as the two are almost overlapped. In the Fig 4.6 are shown the

First normalization attempt
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Figure 4.5: MWUR metric normalization by the maximum of WUR matrix

results obtained by normalizing the MWUR metric with the second method. The
MWUR metrics obtained during inference were normalized by the maximum value
of MWUR obtained on the construction set inferences. The Pearson correlation
coefficient did not diverged much from the not normalized metric, even if the results
are worse than before. In the box plot, output inferenced stayed distinguishable.

Second normalization attempt
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Figure 4.6: MWUR metric normalization by the maximum of MWUR obtained
on the construction set
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4.5 Performances of the network trained using
MWUR as a loss

To gauge the potential of the MWUR metric as a loss function to obtain better
network’s reconstruction outputs, two additional trainings. The two losses are
described in the Section 3.6.3.

Comparison between Dice coefficient results

The Results of the segmentation produced by the networks are in the Table 4.3.
The best results were obtained by training the network without using MWUR in
any way, while the worst ones were obtained using only the MWUR as a loss. There
is not much appreciable difference on the results of the segmentation changing the
loss of the reconstruction branch.

Loss Training set Validation set | Test set

no MWUR 0.9623 4+ 0.0599 | 0.9526 + 0.0785 | 0.9509 % 0.0879
Both 0.9586 4 0.0860 | 0.9516 £ 0.0867 | 0.9506 % 0.0976
Only MWUR | 0.9502 + 0.1128 | 0.9443 4+ 0.11499 | 0.9413 £+ 0.1295

Table 4.3: Dice results comparison between the network trained with different
losses

Weighting MWUR and MAE loss

The Results of the reconstructions produced by the networks are shown in the
Table 4.4 in terms of MAE. The best results on the simulated data were obtained
by training the network using the combination of the MWUR loss with the MAE
loss even if the ones trained on only the MAE loss are only slightly worse. On the
real data the best results were obtained using only the standard loss. The worst
results were obtained by using only the MWUR as a loss.

Loss Training set Validation set | Test set Real data

no MWUR 0.0692 £+ 0.0132 | 0.0696 £+ 0.0132 | 0.0691 £ 0.0128 | 0.1189 4 0.0289
Both 0.0683 £ 0.0124 | 0.0688 +0.0124 | 0.0681 £ 0.0122 | 0.1305 £+ 0.0334
Only MWUR, | 0.1915 + 0.0264 | 0.1917 £ 0.0259 | 0.1909 + 0.0257 | 0.1780 + 0.0292

Table 4.4: MAE results comparison between the network trained with different

losses
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4.6 Performances with reduced datasets

Additional trainings were performed on three reduced dataset, containing respec-
tively a 41,, 8, and a 164, of the full dataset entries. Two trainings were performed
on each dataset, one using the MAE loss and the other using the weighted loss.
All the trainings were performed keeping the same seed and parameters.

4.6.1 Network performances

The results of the inferences of the network trained are shown in the Table 4.5 in
terms of MAE and in Table 4.6 in terms of Dice Coefficient.

Dataset Training set Validation set | Test set Real data

Full 0.0692 + 0.0132 | 0.0696 + 0.0132 | 0.0691 £+ 0.0128 | 0.1189 £ 0.0289
Quarter | 0.0832 4+ 0.0156 | 0.0834 4+ 0.0146 | 0.0844 £ 0.0156 | 0.1348 £ 0.0257
Eight 0.0865 4+ 0.0128 | 0.0884 4+ 0.0142 | 0.0881 £ 0.0136 | 0.1298 £ 0.0257
Sixteenth | 0.0947 +0.152 | 0.0968 4+ 0.0139 | 0.0963 £ 0.0129 | 0.1248 £ 0.0271

(a) Training performed with MAE loss only

Dataset Training set Validation set | Test set Real data

Full 0.0683 +0.0124 | 0.0688 +0.0124 | 0.0681 £ 0.0122 | 0.1305 £ 0.0334
Quarter | 0.0863 +0.0161 | 0.0862 4+ 0.0156 | 0.0875 £ 0.0161 | 0.1309 £ 0.0277
Eight 0.0864 +0.0136 | 0.0877 +0.0143 | 0.0874 £ 0.0141 | 0.1237 £ 0.0281
Sixteenth | 0.0929 4+ 0.0139 | 0.0955 4+ 0.0138 | 0.0943 £ 0.0124 | 0.1306 £ 0.0259

(b) Training performed with Weighted loss

Table 4.5: Comparison of MAE performances on the reconstruction inferences
between network MAE loss trained (a) and Weighted loss trained (b) with reduced
datasets.

The MAE obtained for the same set between the networks trained with different
losses are comparable. The MAE steadily worsen on the simulated datasets as the
training dataset is reduced. On Real data using results are comparable even when
the training dataset is reduced.

The Dice coefficients obtained for the same set between the networks trained
with different losses are comparable. The Dice worsen as the training dataset is
reduced. From Table 4.6a it can be seen that when the training is performed with
the smallest dataset there is a huge drop in performances, while the same thing
does not happen when using weighted loss (Table 4.6b). To make sure that the
performances obtained where not the result of using a smaller data to evaluate
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Figure 4.7: Some outputs obtained on the reduced dataset using different losses

during training.

Dataset Training set Validation set | Test set

Full 0.9623 4+ 0.0599 | 0.9526 + 0.0785 | 0.9509 £ 0.0879
Quarter | 0.9660 + 0.0313 | 0.9378 + 0.0815 | 0.9434 4+ 0.0994
Eight 0.9221 £ 0.0948 | 0.8625 + 0.1868 | 0.8914 + 0.1719
Sixteenth | 0.6796 + 0.2985 | 0.5365 + 0.2884 | 0.6414 4+ 0.3139

(a) Without Weighted loss

Dataset Training set Validation set | Test set

Full 0.9586 % 0.0860 | 0.9516 + 0.0867 | 0.9506 4 0.0976
Quarter | 0.9536 + 0.0670 | 0.9263 + 0.1071 | 0.9327 4+ 0.1142
Eight 0.9288 4+ 0.0869 | 0.8815 + 0.1674 | 0.8891 £ 0.1794
Sixteenth | 0.8981 4+ 0.1062 | 0.8322 + 0.1392 | 0.8435 4+ 0.1901

(b) With Weighted loss

Table 4.6: Comparison of Dice performances on the segmentation inferences
between network MAE loss trained (a) and Weighted loss trained (b) with reduced
datasets.

39



Results

the mertics, was performed a comparison of the performance on the inferences of
reduced test set and full test set obtained with the same network; only the two
smaller datasets were put to test. From the results shown in Table and Table it
is possible to see that performaces remain similare between the full and reduced
test set.

Dataset Test Full Test
Eight 0.08%1 £ 0.0136 | 0.0871 £ 0.0131
Sixteenth | 0.0963 £ 0.0129 | 0.0955 £ 0.0146

(a) Training with MAE loss only

Dataset Test Full Test
Eight 0.0874 £ 0.0141 | 0.0867 £ 0.0136
Sixteenth | 0.0943 £ 0.0124 | 0.0935 £ 0.0135

(b) Training with Weighted loss

Table 4.7: Comparison of MAE performances on reconstruction inferences between
networks trained with MAE loss (a) and Weighted loss (b) on reduced datasets.

Dataset Test Full Test
Eight 0.8914 £0.1719 | 0.8915 £ 0.1399
Sixteenth | 0.6414 4 0.3139 | 0.6502 £ 0.2968

(a) Training with MAE loss only

Dataset Test Full Test
Eight 0.8891 +£0.1794 | 0.8982 + 0.1339
Sixteenth | 0.8435 £ 0.1901 | 0.8537 £ 0.1533

(b) Training with Weighted loss

Table 4.8: Comparison of Dice coefficient performances on reconstruction in-
ferences between networks trained with MAE loss (a) and Weighted loss (b) on
reduced datasets.

4.6.2 MWUR performances on reduced datasets

The performances of the MWUR metric were evaluated in terms of how distin-
guishable are the box plot of the simulated dataset from the real data and how
correlated is the MWUR obtained in respect to the MAE. The box plot in Fig 4.8
shows that is possible to distinguish between the simulated and real data with the
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output of the 2 differently trained network between the simulated set and Real
data even when datasets are reduced.

The Pearson correlation plot in Fig 4.9 shows that the correlation degrades as
the dataset is reduced for both losses, but that is still possible to appreciate a
correlation between the MWUR metric result and the MAE.

Comparison of MWUR metric
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Figure 4.8: Box plots of MWUR metric obtained using reduced datasets. At the
Top training with MAE loss, at the Bottom with the Weighted loss.

To verify that results are not due to a smaller pool of the data taken into
consideration, further analysis was made on the inferences of the network on the
full test for the the 2 smaller reduced datasets. From the Fig. 4.10 and Fig.4.11 it
can be appreciated that results are coherent with the ones on the reduced test.
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— Comparison of MWUR metric
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4.7 MWUR performance on the photoacustic ac-
quisitions dataset

The Pearson correlation obtained on the PA dataset was of 0,471 with a p-value of
0.0 on the validation set, while on the test set the results were respectively of 0.142
and 0.03. While the p-value for both set is enough low to consider the existence of
a correlation, the coefficient obtained on the test is considerably lower than the
one on the validation set. The Figure 4.12 shows the graphical representation of
the results.
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Figure 4.12: Pearson correlation of MWUR against MAE for the PA validation
set e test set.
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Chapter 5

Conclusions

This thesis aimed to investigate the utility of uncertainty metrics—particularly the
MWUR metric—in evaluating the quality of neural network reconstructions and
distinguishing real from simulated data. Additionally, the study explored whether
MWUR could serve as a loss function to improve the network’s training outcomes,
particularly in scenarios involving limited data availability.

5.1 Network Performance

The baseline evaluation of the network showed high reconstruction and segmenta-
tion performance on synthetic datasets, with low MAE values ( 0.069) and Dice
coefficients above 0.95. However, when applied to real data, a significant drop
in performance was observed, with MAE increasing to 0.1189 and no Dice score
available due to lack of ground truth. This confirms the network’s difficulty in
generalizing to real-world data. This was likely due to domain shift between training
and real image distributions and also to the low amount of data available coming
from real acquisitions.

5.2 Uncertainty Metrics for Reconstruction

Each of the metrics analyzed was able to visually distinguish between the real
data acquisition and the simulated ones. This suggests that constructing an
uncertainty metric that focuses on the segmented area is a promising direction
to estimate the network’s uncertainty. Among the uncertainty metrics analyzed,
MWUR demonstrated the strongest correlation with MAE (up to 0.892 on real
data), confirming its effectiveness in estimating reconstruction error. UQmean
showed moderate correlation, while UQmax did not correlate with MAE at all. This
difference in correlation may be attributed to the inherent variability of UQmax and
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UQmean, as they are computed from the distribution of uncertainty values across
the image: UQmean represents the average uncertainty, which can be strongly
influenced by small fluctuations across the entire region, while UQmax corresponds
to the single highest value in the distribution, making it extremely sensitive to
outliers or local spikes. As a result, both metrics tend to be less stable and less
representative of the overall reconstruction error compared to MWUR, which is
based on the median value , making it more robust and less sensitive to extreme
values, which contributes to its higher stability and stronger correlation with the
actual reconstruction error.

5.3 Dropout Probability and Best Metric Selec-
tion

Increasing dropout probability improved the separability between simulated and
real images, especially with higher dropout rates (0.5) in all branches. Moreover,
MWUR consistently provided the best correlation with MAE across dropout
settings, outperforming both UQmean and UQmax. Based on these findings,
MWUR was selected as the preferred metric for subsequent analysis, and the
dropout configuration [c: 0.5; s: 0.5; r: 0.5] was adopted as optimal. Particularly,
the experiments suggest that a high dropout probability on the reconstruction
branch plays a more critical role than on the segmentation branch. This is evidenced
by the fact that the configuration [c: 0.5; s: 0.1; r: 0.5] showed significantly better
separability and correlation across all metrics compared to [c: 0.5; s: 0.5; 1
0.1]. This result is expected, as all the metrics are derived by weighting the
reconstruction uncertainty using the segmentation, but their core is still based
on the reconstruction uncertainty itself. Therefore, increasing the dropout in the
reconstruction branch leads to greater variability.

5.4 Normalization of MWUR

Two normalization strategies were tested to standardize the MWUR values. The
first normalization method was completely ineffective and actually harmed the
metric’s ability to distinguish between different types of data. This outcome was
expected, as normalizing based on the full uncertainty matrix causes the median
values to become very similar across samples, thereby reducing the variability that
is essential for the metric to differentiate between real and simulated data.

The second approach showed better results, as it was able to preserve both the
separability between real and simulated data and the correlation with the MAE.
However, its main limitation lies in the fact that the normalization was performed
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by scaling the MWUR values based on the maximum obtained on the available
construction set. This introduces several potential issues:

o First, it makes the normalization dataset-dependent, meaning that results may
not generalize well when the model is applied to different data distributions
or in real-world scenarios where the same construction set is not available.

e Second, the maximum value used for normalization could be sensitive to
outliers or rare cases within the construction set, introducing instability in
the normalization factor.

o Lastly, the need to normalize by the maximum value of the MWUR implies
that the value obtained on the construction set is always required, which makes
it impractical to employ the metric as a loss function during training. Since the
normalization depends on an external reference computed post hoc, it cannot
be dynamically integrated into the optimization process, thus preventing its
use as a real-time loss term within the learning framework.

The identified issues have led to the conclusion that non-normalized MWUR values
provide better interpretability and performance, and therefore should be used as
such in practical applications.

5.5 Training with MWUR  as a Loss Function

When MWUR was used alone as a loss function, both reconstruction and seg-
mentation performances degraded substantially. In contrast, combining MWUR
with MAE yielded slightly improved reconstruction on synthetic data, but worse
performance on real data compared to using MAE alone. These results suggest
that MWUR cannot be used a standalone loss function as it cannot apparently
measure and take into account all the information needed to produce quality images
form raw data. Instead its use in combination with the MAE loss to construct a
weighted loss could be able to take into consideration factors that are not taken
into account with the basic loss, leading to benefits in the final reconstruction. The
most significant issue with using the MWUR as a loss function in any form is that
its calculation requires performing Monte Carlo inference during the training phase,
resulting in a training time increase of more than double compared to training the
network without it. So even if the training with the weighted loss obtain better

results, the improvement is not of sufficient entity to justify its use instead of the
MAE loss.

47



Conclusions

5.6 Training with Reduced Datasets

Reducing the size of the training dataset led to progressive degradation in MAE
and Dice scores, especially when using only 1/16 of the data. Nonetheless, models
trained with the weighted loss (MWUR 4+ MAE) performed slightly better in
segmentation tasks than those trained with MAE alone, particularly under data
scarcity. This indicates that MWUR may act as a regularizer when training with
small datasets, helping to preserve generalization ability. The previously noted
significant increase in training time was mitigated by using smaller training sets,
but remained noticeable even at a reduced scale.

5.7 MWUR on Reduced Datasets

MWUR maintained its ability to differentiate real from simulated data even when
the network was trained on reduced datasets. Though the Pearson correlation
with MAE diminished with less training data, it remained statistically significant.
The consistency of results on full and reduced test sets further confirmed the
robustness of MWUR as a reliable uncertainty metric, even under sub optimal
training conditions, suggesting that the previously observed ability to differentiate
the simulated from the real data was not the result of a substantial difference in
performance between the two sets.

5.8 MWUR on the PA dataset

The results on the correlation coefficient suggest that a correlation between MAE
and MWUR exist even if the registered coefficients are considerably lower that the
ones obtained on the US dataset. Especially on unseen data, the metric seems to be
much less correlated, this could be caused from the fact that the oxigenation maps,
even if akin to segmentations, are not the exact same. Regardless the MWUR
metric showed potential to be possibly used on reconstruction of data that is not
strictly derived from US.

5.9 Final Remarks

The aim of this thesis work was to construct a uncertainty metric that was able
to effectively measure or estimate the uncertainty on the reconstructions of US
produced by a deep learning models. By leveraging on a modified U-net capable
of producing from raw US acquisition both the US image reconstruction and its
corresponding segmentation mask, and by performing on it a Monte Carlo inference,
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a metric that uses the two outputs to weight the uncertainty on the reconstruction
with its corresponding conservative mask was defined. This metric was denominated
Median of Weighted Uncertainty on the Reconstruction (MWUR). The MWUR
was capable of consistently distinguish between outputs derived by real acquisitions
from ones obtained by simulated ones. It also has shown a substantial correlation
with the Mean Absolute Error on the reconstruction, suggesting that the metric
could be used to understand the quality of the output images. The potential of
the metric as a loss function was also explored, resulting in a slight increase in
the quality if the reconstruction when combined with the commonly used MAE
loss. The previously described ability to distinguish real and simulated data was
kept even when performances where purposely worsen by showing the network a
smaller pool of data during the training phase. Also, when dataset where reduced
to a eighth of the original, the network trained with the weighted loss achieved
better segmentation results compared that the one trained using only the MAE
loss. MWUR showed some capability to be used on PA dataset different from US
acquisition, suggesting that, as long that some form of segmentation is produced or
given, is possible to estimate the uncertainty of images derived from US acquisitions.
While the MWUR showed promise as an uncertainty metric, it is also important
to highlight its shortcomings. The MWUR is extremely dependent on the fact
that the employed network is capable of producing both a reconstruction and
a segmentation from the same input, this makes it not very flexible to its use
with other network configurations, especially when used as a loss function during
training. The pool of real acquisitions available was extremely lower compared to
the simulated ones, so even if the MWUR was consistently capable of distinguish
between the two even when the simulated data was purposely made smaller, it
cannot be excluded that its abilities where in part caused by the specific pool of
real acquisition given. When the network is trained using the MWUR as a loss
function in any form, it leads to an enormous increase in training time and this
could not be justified by the only slight increase in the performances shown when
it was employed.

In conclusion, even with its shortcomings, the MWUR metric has shown potential
to be used as a valid uncertainty metric for quantify the uncertainty of US image
reconstruction from raw data acquisitions inputs and showed potential even when
applied to the task of PA image reconstruction. In the future the proposed metric
could be explored more profoundly, by fine tuning some of its shortcomings and
could also be put on trial on dataset that are note derived from some form of US
acquisition. The results shown in this work can be seen as a starting point to
find a better and more flexible metric in the still young and unexplored field of
uncertainty quantification on the reconstruction of US images.
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