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A nonna,
che stai guardando da lassu,
questo traguardo lo dedico a te.



Abstract

This thesis aims to predict total and regional body composition derived from dual-
energy X-ray absorptiometry (DXA) using principal component analysis (PCA)
on raw and digitally reposed three-dimensional optical (3DO) whole-body scans
in youth soccer players. This work is motivated by the growing demand for safe,
accessible, and low cost methods of assessing body composition, since the current
gold standard, DXA, is often impractical due to cost, exposure to ionizing radiation,
and limited accessibility, particularly in youth sports. The purpose of this study is
to evaluate the feasibility and accuracy of this approach to determine whether it
can serve as a valid and reliable tool for monitoring body composition. A total of
429 participants, including 270 males and 159 females between 14 and 23 years old,
took part in the study. The acquisition campaign included body weight and height
measurements, one whole-body DXA scan, and two 3DO scans acquired via Mobile
Fit app. Two different analyses were carried out on the avatars: A-pose and T-pose.
The raw A-pose avatars were used as provided by the Mobile Fit app, without
any processing. The T-pose avatars, on the other hand, were sent to Meshcapade
to be digitally reposed to a standardized pose. PCA was applied to perform
dimensionality reduction and capture complex shape features. The algorithm was
independently applied to male and female avatars. The datasets, which included
principal components (PCs), anthropometric variables, and DXA outcomes, were
randomly split into training (80%) and test (20%) sets. Stepwise linear regression
was used to construct prediction models for DXA body composition outcomes. The
performance of the models was evaluated using fivefold cross-validation applied to
the training set. The results showed that estimates of total and regional lean mass
were highly accurate in male soccer players, with coefficients of determination (R?)
above 0.82 for hybrid models that combine PCs and digital anthropometry, and up
to 0.92 for total lean mass. In contrast, fat mass estimates were inaccurate since
they reported R? values close to or below 0. In female soccer players, none of the
models achieved high performance in total and regional lean mass estimates (R?
as high as 0.62 for total lean mass), and fat mass predictions achieved moderate
accuracy (R? as high as 0.4 for body fat percentage). This study demonstrated that
accurate predictions were reached for specific outcomes and subgroups, suggesting
that the homogeneity in body shape and composition among young athletes may
limit the ability of PCA to capture body shape variance. In this context, models
that relied only on digital anthropometric measurements performed as well as, or
better, than those that used PCs.
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Chapter 1

Introduction

1.1 Body Composition and Anthropometric Anal-
ysis

As defined by Messiah [1], body composition refers to the proportion of fat, muscle,
and bone in a person’s body. It is most often expressed as a percentage of body
fat or lean body mass, or as a lean-to-fat mass ratio. Lean mass includes muscle,
bone, skin, internal organs, and body water, whereas fat mass consists primarily of
subcutaneous fat and visceral adipose tissue. Closely related to body composition is
anthropometry, the study of physical measurements of the human body. Common
anthropometric variables, including height, weight, lengths, skinfold thickness, and
circumferences, have proven useful for investigating patients with endocrine and
metabolic disorders [2].

Accurate assessments of total and regional body composition are essential for
monitoring physical activity and dietary interventions [3]. They also play a central
role in diagnosing and managing a wide range of medical conditions, such as
obesity, type 2 diabetes, cardiovascular diseases, metabolic syndrome, malnutrition,
sarcopenia, and cancer [4, 5, 6, 7, 8, 9]. Body composition assessments are not
limited to pathological contexts. They are widely used in sports and rehabilitation
medicine to support personalized training and recovery protocols [2], and are
considered a key component in weight management programs for children and
adolescents, contributing to the prevention of future cardiovascular and metabolic
diseases [10, 11, 12]. Anthropometric measurements are commonly used in athletic
populations to optimize performance and reduce the risk of injury [13].

Notably, regional body composition indicators often demonstrate greater pre-
dictive power than whole-body metrics. For instance, trunk fat is linked to
insulin resistance and dyslipidemia; the trunk-to-leg volume ratio is associated
with diabetes and mortality; and the appendicular lean mass index is connected
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Introduction

to sarcopenia [3, 14, 15]. The body mass index (BMI), which expresses body
weight relative to height, is commonly used as an indirect indicator of body fatness
and is strongly associated with various metabolic risk factors [16]. While higher
BMI values are generally linked to increased diseases risk among normal weight
and overweight adults [17], this metric presents a significant limitation: it cannot
distinguish between fat and fat-free mass, both of which play an important role in
disease risk [18]. Consequently, more specific anthropometric and regional body
composition measurements, such as waist circumference, waist-to-hip ratio, and
visceral adipose tissue, have proven to be more effective indicators of metabolic
diseases and mortality risk than BMI [19, 20, 21].

For many years, researchers and clinicians have estimated body fat mass and
fat-free mass using a variety of manual anthropometric measurements. However,
accurate results from traditional manual anthropometric assessment require trained
operators and are limited to linear and circumferential measures, failing to capture
detailed aspects of a subject’s shape [22]. Additionally, these measurements are less
reliable in overweight people and may be socially or culturally unacceptable [3].

A variety of imaging and non-imaging techniques can be used to assess body
composition. Advanced imaging modalities, such as magnetic resonance imaging
(MRI) and computed tomography (CT), provide highly accurate assessments of
regional body composition [23]. However, these techniques are expensive and
require specialized equipment and trained personnel. In the case of CT, exposure
to ionizing radiation limits their routine and repeated use, particularly in pediatric
populations and non clinical settings. This is especially problematic in pediatric
research because people undergo the most significant changes in body mass and
composition between the ages of 5 and 18 [24].

Over the years, more accessible methods have been developed, including dual-
energy X-ray absorptiometry (DXA), air displacement plethysmography (ADP),
and bioelectrical impedance analysis (BIA). Each method has specific advantages
and limitations. DXA is widely regarded as the clinical gold standard in body
composition assessment [25]. It provides accurate estimates of whole-body and
regional fat and lean mass, but it involves ionizing radiation and requires trained
technicians [26]. The Medical and Scientific Commission of International Olympic
Committee and the International Society for Clinical Densitometry caution against
more than two scans per year for children and four per year for adults, due to the
cumulative radiation dose [27]. ADP is non-invasive and relatively accurate for
measuring whole-body composition. However, it lacks compartmental resolution
and is sensitive to subject cooperation and environmental conditions [28]. BIA is
inexpensive and easy to administer, making it suitable for field and clinical use.
However, its accuracy is influenced by hydration status, and it relies on population
specific calibration models [29].

Despite their widespread adoption, these methods present challenges related
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to cost, accessibility, and technical requirements. An ideal method would include
total and regional body composition, and automated anthropometry. It should be
low cost, require little to no training to operate, be free of ionizing radiation, and
produce results that are accurate and relevant to metabolic risk [30, 31].

Consequently, there is a growing interest in alternative approaches, such as three-
dimensional optical (3DO) imaging, which has recently emerged as a versatile and
promising tool for assessing body composition and health. 3DO scanners produce
detailed surface renderings of the body in under a minute, and the instrument’s
software automatically generates circumference and length measurements across
the entire body, data that would otherwise require significantly more time and
effort to obtain through manual technique [10].

1.2 Dual-Energy X-ray Absorptiometry

Given its established role as the clinical gold standard for body composition
assessment, a comprehensive understanding of the physical principles underlying
dual-energy X-ray absorptiometry (DXA, Figure 1.1) is essential. The following
section provides a detailed overview of the physical concepts of DXA, based on the
review by Pietrobelli at al. [32].

Photon Sources and Detectors

DXA operates according to the principles of photon absorptiometry, which
requires the use of both a photon source and a detector. A significant advancement
in photon absorptiometry has been the adoption of X-ray sources. X-rays are

Figure 1.1: Example of Lunar iDXA scanner (GE Healthcare, Chicago, IL, USA),
from [33].
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produced when fast-moving electrons are suddenly decelerated by the tungsten or
tungsten alloy anode inside a vacuum tube. X-rays consist of a broad spectrum of
photon energies, which typically range from 15 keV to 80 keV. For DXA applications
it is necessary to create two main energy peaks within the spectrum. To achieve
this, a "K-edge" filter, which is commonly made of a rare-earth material such as
cerium (Ce) or samarium (Sm), is placed in the path of the X-ray beam. These
filters selectively attenuate photons with energies slightly above the K-shell binding
energy of the filter material. Another approach to generating dual-energy X-ray
spectra is to pulse the kV of the X-ray tube between sequential measurement
points. After passing through the subject, X-ray photons are quantified using either
photomultiplier tubes with sodium iodide scintillators or electronic detectors. A
specific energy "window" or range is defined for each of DXA’s two main energies,
so that only photons falling within the selected windows are counted as belonging
to one of the two beams. Regarding the source of X-ray emission, there has been a
technological evolution with the transition from pencil-beam densitometers to fan-
beam densitometers, as reported by Messina et al. [34]. Pencil-beam densitometers
emit a single, highly collimated, rectilinear beam of X-rays coupled with a single
detector. Fan-beam technology, in contrast, uses a fan-shaped beam coupled with
multiple detectors, allowing for shorter scan times and better image resolutions.

Attenuation Phenomenon

The fundamental process underlying DXA measurements is the attenuation
of X-ray photons as they traverse body tissues. As photons pass through the
subject’s tissues, their intensity decreases due to two main physical interactions:
the Compton scattering and photoelectric effect. These interactions result in
the absorption or scattering of photons, reducing the number that reach the
detector. For monoenergetic photons passing through a homogeneous absorber
(an element, chemical compound or solution), the attenuation of beam intensity
follows an exponential law (equation (1.1)). The reduction in transmitted intensity
(1) relative to the initial intensity ([y) is proportional to the substance’s linear
attenuation coefficient (1) and the path length (L) that the photons travel:

I = Iye "*F (1.1)

Since the linear attenuation coefficient (1) depends on density (p), it is convenient
to calculate the mass attenuation coefficient (j,,) as 11/p, when working with tissues
of different densities. This makes it possible to compare the attenuation properties
of different tissues, regardless of their physical density.

For heterogeneous absorbers, such as human soft tissues, the transmitted photon
intensity is related to the fractional mass of the substance, as indicated by the
following equation:
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I = Toedo(~fixpmixM) (1.2)

where f; and pu,,; are respectively the mass fraction and the mass attenuation
coefficient of the i-th component as heterogeneous absorber, and M is the absorber
mass. The basic photon intensity equations can be expressed as I/Iy. Generally,
attenuation decreases as photon energy increases, and substances with higher
mass attenuation coefficients exhibit greater attenuation. The mass attenuation
coefficient of an element is constant at any given photon energy, and it is known
from experimental measurements.

Ratio Value and Component Identification

After passing through the body, the intensities of the low energy (L) and high
energy (H) X-ray beams are measured. The ratio (R) of these two transmitted
intensities, as reported in equation (1.3), provides important information about
tissue composition.

R=1n(I/Io)r/In(I/Io)n (1.3)

In the case of a heterogeneous absorber, the ratio R depends on both the mass
attenuation coefficient and the mass fraction of each component. In contrast, for a
homogeneous absorber, R is simply the ratio of the component’s mass attenuation
coefficient at the two energies.

DXA produces the R value, which can be used to identify unknown components.
Each element has a specific and known R value at the specified energies. In a
two-component mixture, the measured R value and the known mass attenuation
coefficients of the components at the two energies can be used to calculate the mass
fraction of each component. Thus, a dual-energy system can be used to estimate
the fractional masses of two-component mixtures. The human body can be assumed
to be either "bone mineral plus soft tissue" or "fat plus bone mineral-free lean". For
a heterogeneous absorber, since f; + fo = 1, the R value can be approximated as:

R=fix R+ f» X Ry (1.4)

then
fi=(R— Ry)/(R1 — Ry) (1.5)

and
fo=(R1—R)/(R1 — Ry) (1.6)
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The DXA approach for body composition analysis is based on the assumption
that the human body consist of three components: fat, bone mineral, and lean
soft tissue (Figure 1.2), each of which has unique X-ray attenuation properties. In
theory, distinguishing three unknown components requires measurements at three
different photon energies; however, DXA systems operate using only two energies.
Consequently, they can only resolve the fractional masses of a two-component
mixture.

In the DXA method, the first step for calculating the three components is to
divide pixels into two categories: soft tissue plus bone mineral, and soft tissue only
(fat and lean). The first step in pixel separation, also known as "point typing', is
determining the R value for each pixel in a total body DXA scan. Pixels containing
bone have higher composite R values because the R value for bone mineral is
significantly higher than that of soft tissue. To differentiate pixels containing bone
mineral from those made entirely of soft tissue, an R value threshold must be
specified.

Equations (1.5) and (1.6) can be used to evaluate the fat and lean composition
of soft tissue pixels. Lean soft tissue and fat samples, as well as other materials
used as calibration standards, are measured in order to determine the constants
R1 and R2 in these equations. Estimating the soft tissue composition of pixels
containing bone is difficult and requires certain assumptions. The first and most
straightforward approach was to assume that the soft tissue composition over

Fat

Water Soft

Tissue
Body Lean

Weight Soft
Tissue

Lean
Proteins

Glycogen

Minerals v v

Bone
\ Y Minerals

Figure 1.2: Schematic representation of body composition compartments as
assessed by DXA, showing the relationships between body weight, fat mass, lean
soft tissue, and bone mineral content. Image taken from Pietrobelli et al. [32].
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bone was comparable to the average of all the surrounding soft tissue. The soft
tissue distribution, however, clearly deviates from uniformity; the body’s surface
has a higher proportion of adipose tissue. Near appendicular bones there is more
lean muscle, especially skeletal muscle. Thus, measured X-ray attenuation, the
three assumed component R values, image processing techniques, and soft tissue
distribution models can all be used to quantify the fat, lean soft tissue, and bone
mineral content (BMC) of every pixel in the scan image.

1.3 Three-Dimensional Optical Imaging

Although DXA offers exact and consistent body composition measurements, its
clinical use is still limited by elements including exposure to ionizing radiation, cost,
and the necessity of qualified personnel, as previously mentioned. These limitations
have generated interest in alternative approaches. Among these, three-dimensional
optical (3DO) imaging has recently emerged as a versatile and promising technology.
The following section reviews 3DO imaging systems, paying particular attention to
the technological concepts that support their operation and use in body composition
measurement.

Historical Background and Development

As reported by Heymsfield et al.[35], in the mid-nineteen eighties, Loughborough
University in England received a request from a textile manufacturer searching
for detailed human shape data to optimize garment production. The company’s
goal was to create a "non-contact machine that is reasonably transportable and
sufficiently speedy in operation to survey economically a large sample of the
British population." This initiative resulted in the creation of the Loughborough
Anthropometric Shadow Scanner (LASS) in 1987. It was a device that integrated
a television camera, a projector, and a 360° rotating table on which participants
stood during measurement. The introduction of the LASS marked the birth of the
field of automated anthropometry. Over the following decades, rapid technological
advancements have led to increasingly sophisticated methods of quantifying human
body shape. These methods include laser and structured light systems, millimeter
wave radar, and multi-view camera approaches [35].

1.3.1 Three-Dimensional Scanning Technologies

Three commonly used scanning technologies are employed for acquiring human
body data: passive stereo, structured light, and time-of-flight (ToF) imaging. The
technological principles underlying these modalities are described in this section
according to Bartol et al. [36].
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Passive Stereo and Photogrammetry

Passive stereo is a measurement technique used for 3D reconstruction from several
camera views. The study of measuring items using photos is called photogrammetry.
In the context of 3D scanning, the terms passive stereo and photogrammetry are
occasionally used interchangeably. RGB cameras are used to capture color images,
and it is assumed that multiple cameras point toward the subject.

The most basic passive stereo setup is a binocular stereo, which consists of
two RGB cameras oriented either horizontally or vertically. The triangulation
and correspondences discovered in the photos serve as the foundation for the
reconstruction. As seen in Figure 1.3, the point P in the 3D scene projects to pixel
p1 in the first image and ps in the second image. Nevertheless, the matching pixel
location py for a specified pixel location p; is unknown beforehand. By comparing
an image block surrounding p; with the most similar block along the epipolar
line [, one can find the point py. The depth of a point P is triangulated using
the disparity, or difference between the associated pixel coordinates. By utilizing
multi-view-stereo techniques or pairing couples of cameras, the stereo approach can
be expanded to include more than two cameras.

Another stereo reconstruction approach is the monocular moving-camera-based
3D reconstruction, in which every frame is regarded as a distinct camera. The
general monocular techniques estimate camera locations in each frame and recreate
a 3D scene together. In order to identify correspondences, the images’ keypoints
are first identified and compared. After that, the correspondences are used to
estimate the camera parameters and do preliminary 3D reconstruction. Since
camera locations can be determined before reconstruction, human 3D scanning is
typically simple. This is done so that the person is either standing on a revolving
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Figure 1.3: Passive stereo approach. Image taken from Bartol et al. [36].
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platform that simulates camera rotation, or the camera is rotating around the
person. The stereo reconstruction principles explained above can be applied to
obtain a dense 3D reconstruction.

Structured Light

The usual approach to improve the poor 3D reconstruction quality of passive
stereo in cases of low or repeating texture is to project a textured pattern onto
the scene. Active stereo enhances passive stereo by improving the correspondence
search between views by projecting a pattern of light onto the body. In contrast,
structured light techniques look for correspondences between the camera and the
light pattern.

Two scanner types are distinguished based on structured light technology: laser
and projector scanners. A laser is used to generate dot or stripe patterns onto
the scene in laser scanners, as shown in Figure 1.4. Compared to projector-based
scanners, laser scanners offer sub-millimeter accuracy and a more straightforward
decoding process. However, because the laser line must sweep the entire body, laser
scanners often have a slow scanning time.

Since they can project more complex 2D patterns and scan the entire body at once
from a single perspective, projector-based scanners (Figure 1.5) are typically faster
than laser scanners. The number of projected patterns (single or multi-shot), color
(achromatic or colored), transitions (continuous or discrete), or structured form
(stripes, grids, dot arrays, gradients, etc.) are some of the general classifications
of projected light patterns that have been proposed. Short-duration achromatic

WA~ "
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¥

Figure 1.4: Laser-based structured light approach. Image taken from Bartol et al.
[36].
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multi-shot patterns are typically employed for quasi-static human 3D scanning,
because they offer a trade-off between reconstruction accuracy and acquisition
speed.

Camera-to-light-source correspondences are determined based on the projected
light and pattern. In order to identify the light projections in the image, laser-
based methods primarily use pattern detection algorithms. On the other hand,
visible-light scanners have more complex pattern decoding systems. Ray-to-ray or
ray-to-plane triangulation can be used to recreate the 3D human body once the
correspondences have been acquired.

Time-of-Flight

Time-of-flight scanners, illustrated in Figure 1.6, calculate the time it takes for
an emitted light signal to travel from the source to the 3D scene and back to the
sensor. The information regarding the distance is proportional to the time of flight
of the light signal.

The light emitter and the photodetector are the two main primary components
of a ToF scanner. The light emitter sends a modulated beam of light, usually in
the near-infrared spectrum, using a laser or an LED. The light from the emitter
is dispersed throughout the scene via the lens. Typically, a matrix of point-wise
sensors is used by the photodetector.

There are two types of reconstruction techniques: continuous-wave (indirect)
and pulsed-light (direct). Continuous-wave techniques gather the signal’s time-
dependent intensity data and indirectly assess the round-trip time of a light pulse

Figure 1.5: Projector-based structured light approach. Image taken from Bartol
et al. [306].
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that is released. The cross-correlation of the emitted and the received light signals
is then used to determine the distance of a point from their phase shift. Pulsed-light
techniques use time-to-digital or time-to-amplitude circuits to directly calculate
the round-trip duration of a light pulse that is emitted.

Low scanning resolution is the main issue with single ToF camera scanners,
despite the fact that they offer low-cost, small, accurate, and reliable sensors with
reduced power consumption. As a result, ToF remains less applicable for body
measurement and quasi-static scanning.

Structured light is the preferred technique since it provides the highest accuracy
and resolution. This is also confirmed by the number of commercial devices that
use structured light scanners, as will be demonstrated later. Table 1.1 compares the
main technical characteristics of passive stereo, structured light, and ToF methods,
highlighting the key differences in methodology, performance, and sources of error.

Table 1.1: Main characteristics of the three 3D scanning technologies with respect
to human body scanning, from Bartol et al. [36].

Passive stereo Structured light Time-of-flight
Method triangulation triangulation time-to-distance conversion
Ilumination passive (ambient) active (visible, IR)
Scanning range several meters < 5 m (illumination source limited)
Dynamic scanning yes yes (slower movement only) yes
Accuracy range mm — cm pm — cm mm — cm
Resolution range mm fm — mm mm
Main issues textureless body parts light interference lower resolution, multi-camera interference

Figure 1.6: Time-of-flight approach. Image taken from Bartol et al. [36].
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1.3.2 Data Acquisition and Processing

The procedure for obtaining anthropometric measurements from three-dimensional
optical (3DO) imaging systems can be organized into a series of steps, as shown
in Figure 1.7. The technical overview presented in this section is based on the
frameworks described by Bartol et al. [36] and Heymsfield et al. [35]. Acquisition
and processing are the two primary stages of this pipeline. During the acquisition
stage, raw data are collected from the subject in the form of 3D point clouds, depth
maps, or 2D RGB images, depending on the specific scanning technology. The
processing stage comprise the following steps: feature extraction, model fitting,
and measurement extraction. First, the obtained data is used to identify relevant
features, such as body silhouettes and anatomical keypoints. Based on the features
or raw image data the optimal human 3D template mesh is estimated. Finally, the
fitted model is used to compute anthropometric measurements.

Scanning

The human body may be measured in motion or in a stationary posture, with
regard to the acquisition protocol when employing 3D scanners. In static scanning,
the subject is instructed to assume a specific position and remain still until the
scan is complete. Longer acquisition times for 3D scanners can cause people to
unintentionally move during acquisition, which introduces inaccuracies. In these
cases, it is possible to classify the scanning as quasi-static. The results of scanning

S
2D data | RGB images -
Body
. measurements

3D scan Point cloud Keypoints Statistical
Depth map models
~—
FEATURE MODEL MEASUREMENT
[ SCANNING Iﬂ::ﬁ>EXTF{ACTION %: FITTING %{% EXTRACTION }
[ ACQUISITION ] [ PROCESSING ]

Figure 1.7: Schematic representation of the data acquisition and processing
pipeline in a three-dimensional optical (3DO) imaging system, adapted from Bartol
et al. [36] and Heymsfield et al. [35].
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are usually a 3D point cloud, depth maps, or 2D RGB images.

Feature Extraction

Keypoints and silhouettes are two types of features typically derived from 3D
scans and images. Keypoints locations can either be automatically predicted from a
3D scan or based on markers. A chosen subset of human joints is often represented
by the keypoints. The entire human body or specific body parts may be represented
by silhouettes, which are 3D points or pixels.

Model Fitting

Model fitting is a set of techniques used to find the 3D template mesh that best
represents the given input. The input can be a silhouette, 2D or 3D keypoints,
or a 3D scan. In the context of body measurement estimation, template meshes
have the advantage of having a fixed number of vertices and matching vertices with
same semantics for all registered meshes in the dataset. Body measurements can be
obtained for each mesh in the same way after they have been obtained for a single
mesh. There are two main model fitting techniques: mesh fitting (registration or
deformation) and mesh regression using statistical models.

Measurement Extraction

After creating a 3D mesh, an anatomical meaning must be assigned to the mesh
surface in order to measure volumes, widths, circumferences, and linear dimensions.
Every scanner have its own proprietary body measurement software; however, the
underlying concepts of measuring are similar. Major joints and limbs are recognized
as landmarks and they are used to define different body regions. After that, the
body point cloud or mesh is sliced along a number of planes, usually orthogonal to
a limb or parallel to the floor. Body circumferences and/or contour lengths are
measured using convex hull or comparable techniques. Originally, 3D body scan
measurements technologies were created for use in the military or in industry for
tailored clothing applications. Therefore, the commonly defined measurements are
similar to those a tailor would take (neck, arm, and torso circumferences, seat depth
and width, etc.). Within a body region, specific measurements are established in
relation to recognized landmarks.

1.3.3 Technical Limitations

The main technical limitations of the current 3D scanning technologies are discussed
in this section, based on the thorough review by Heymsfield et al. [35].
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Hardware

3DO scanners use cameras to collect data from multiple perspectives of the
body. Either several cameras placed around the body, or a system that rotates the
camera or the subject being scanned are needed for the hardware. Systems with
multiple cameras tend to be larger and more expensive than those with a single
camera. For this reason, systems designed by several companies include a platform
that rotates the subject 360°. For children or the elderly, who could find it difficult
to maintain a fixed position during the scan’s rotation phase, this design could be
problematic. Handlebars are incorporated into the rotating systems base to limit
movement, however the handles are included in the final 3D image, which may
induce artifacts when estimating certain surface measurements.

Landmarking

There are clear and consistent disparities between 3DO and standard technique
measurements, which are probably caused by differences in cutoff points and
landmarking. Due to these discrepancies, 3DO data cannot be directly compared to
large preexisting datasets from various scanning systems. The crotch and armpits
are typically simple to spot on an avatar, and segmenting body parts can start there.
However, landmark detection can be especially difficult on scans of individuals with
high BMI, as the crotch, armpits, and bony landmarks may be covered by a lot of
soft tissue.

Avatar Repair

In areas that are occluded or difficult to see, such as the top of the head, under
the arms, or between the legs, the 3D scan and its rebuilt geometry frequently
contain holes or gaps. The precision of anthropometric measurements could be
impacted by these data gaps. Consequently, 3D scan repair is required, particularly
in cases when the missing areas are substantial. Currently, commercial 3D modeling
software or general context-insensitive hole-filling algorithms are frequently used to
merely remedy avatar defects.

1.3.4 Commercial Devices

As highlighted by Bullas et al. [37], 3DO imaging technology used to be expensive
and difficult to access outside of specialized research environments. However, in
recent years, growing interest and applications in fields such as entertainment,
fashion, ergonomics, and healthcare have driven market expansion, resulting in
lower costs and improved accessibility. There are now a wide range of commercial
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3DO imaging systems available (Figure 1.8), each with different combinations of
hardware, software, calibration techniques, anthropometric definitions, and data
acquisition procedures. Consequently, the degree of validity and accuracy in body
composition estimation can vary significantly between systems.

The main user and system details of four commercially available 3DO imaging
systems are reported in Table 1.2. It also provides details about their reported
accuracy of the mesh, anthropometric measurements, and body composition es-
timates. This table, adapted from Bullas et al. [37], emphasizes the variety of
available solutions and the differences in device performance.

Mobile Fit

In this study, the 3DO scans were acquired using the Mobile Fit solution
(Size Stream LLC, Cary, NC, USA), consisting of a mobile application for iOS
and Android devices, user registration platform and scanning technology, an
Apple iPad with Wi-Fi, and a mounting stand [39]. The scan takes less than 30
seconds and provides over 240 body measurements and health metrics [39]. The
application uses artificial intelligence and machine learning algorithms to create
a 3D humanoid avatar of the subject from two photographs (one frontal and one
lateral), with all processing performed locally on the device [40, 41, 13]. Currently,
no technical details regarding the image processing pipeline or the proprietary
algorithms implemented by Mobile Fit have been publicly disclosed. Details about
the acquisition protocol adopted in this study are reported in Section 2.1.

Figure 1.8: Example of Fit3D Proscanner (Fit3D Inc., Redwood City, CA, USA),
from [38].
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1.4 Estimation of Body Composition through
3DO Imaging

The development of 3DO imaging systems has led to their increased use in clinical
and research settings, emerging as a promising tool for assessing body composition.
While the previous section provided a detailed explanation of the technology
behind 3DO imaging, this section focuses on clinical applications, specifically body
composition estimation. Table 1.3 offers a comparison of the key technological
advantages and limitations of 3DO imaging with those of DXA, which continues
to be the clinical gold standard. The comparison shows that 3DO imaging has
several advantages, including the absence of ionizing radiation, portability, and
automation. However, it also has limitations that must be considered in a clinical
setting. In addition to body composition estimation, 3DO imaging systems have
a number of other biomedical and clinical applications, as shown in Figure 1.9.
These applications include anthropometric measurements, prediction of health risks,
energy expenditure, DXA or MRI images, as well as body shape analysis. The rest
of this section will focus on the use of 3DO imaging for the estimation of body
composition.

The first studies investigating the use of 3DO imaging systems for body compo-
sition estimation focused on extracting automated anthropometric measurements
(e.g., circumferences, lengths, and volumes) from 3DO scans and applying regression
models to predict total and regional body composition variables derived from DXA.

Print Personalized
Phantoms

3DO Imaging Systems:
Biomedical applications

Predict Appearance
through Weight
Loss/Gain

Determine Body
Shape

Predict Body
Composition
Measures

Anthropometric
Measurements

Predict Health
Risks
Determine Energy
Expenditure

Figure 1.9: Main biomedical applications of 3DO imaging systems, adapted from
Heymsfield et al. [35].

Predict DXA or MRI
images
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Table 1.3: Main technological and practical advantages and limitations of DXA
and 3DO imaging for body composition assessment.

DXA 3DO Imaging
Radiation Uses ionizing radiation, not None, safe for all ages and fre-
suitable for frequent use or quent use
pregnancy
Accessibility  Hospital/clinic only Portable, suitable for non-
clinical use
Operation Requires trained technicians  Simple, minimal training re-

Scan speed

5-15 min per scan

quired
<1 min per scan

Output Gold standard for fat, lean, 3D avatar, anthropomet-
and bone mass ric measurements, indirect
fat /lean estimates
Repeatability Limited by radiation Unlimited scans, ideal for
follow-up
Cost High purchase and mainte- Lower purchase and running
nance costs costs
Automation  Partially automated Highly automated, some de-
vices are self-service
Limitations Radiation, cost, accessibility, Sensitive to movement, system

technical requirements, pedi-

variability

atric/adolescent use

Ng et al. [42] were among the first to validate the use of digital anthropometry
obtained from whole-body 3DO scans, acquired on a Fit3D Proscanner (Fit3D Inc.,
Redwood City, CA, USA), for estimating body composition in adults. In their
study, the researchers used automatically extracted anthropometric measurements
as predictors in multiple linear regression models. These models achieved high
correlation and low prediction errors compared to DXA. Subsequent studies have
extended this approach to different population and devices. For example, Wong
et al. [10] evaluated the performance of the Fit3D Proscanner in children and
adolescents. They demonstrated that body composition estimates derived from
linear regression models based on digital anthropometry were highly correlated with
DXA measurements for percent body fat, fat mass, and fat-free mass. Their study
demonstrated the feasibility and accuracy of body composition assessment using
3DO imaging systems in the pediatric population. Bennett et al. [3] confirmed the
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validity and repeatability of total and regional body composition estimates in a
large adult sample by using a different commercial device, the Styku S100 (Styku
LLC, Los Angeles, CA). Together, these studies established automated digital
anthropometry from 3DO imaging systems as a practical and reliable alternative
for assessing body composition.

Recent studies have progressed beyond traditional regression models based
on digital anthropometry, using machine learning and advanced statistical shape
modeling approaches to increase prediction accuracy of body composition from
3DO scans. Lu et al. [43] estimated body fat percentage using a machine learning
framework. They integrated shape descriptors into a single prediction model and
obtained high accuracy.

The Shape Up! studies have established a substantial scientific foundation for
these approaches by using large samples of 3D body scans from adult and pediatric
populations. Standardizing 3D meshes to a common template and using principal
component analysis (PCA), a dimensionality reduction method, that capture
complex shape features outside of conventional anthropometric measurements form
the fundamental approach. These principal components (PCs) are then used as
predictors in linear regression models to estimate DXA total and regional body
composition. Ng et al. [22] first demonstrated the accuracy of using body shape
descriptors (PCs), while Sobhiyeh et al. [44] automated this PCA-based approach.
Tian et al. [45, 24] developed device-agnostic models and extended these methods
to pediatric populations. These studies showed that a single statistical shape
model could be applied across scanning devices by registering meshes from different
3DO imaging systems into fixed topology meshes with anatomical consistency,
preserving accuracy and precision in body composition estimates. Wong et al. [30,
31] have digitally registered and reposed 3DO meshes to a standardized T-pose
using Meshcapade (Meshcapade GmbH, Tiibingen, Germany). The majority of
pose-related variance was eliminated by reposing the meshes to a standardized
pose, leaving mostly shape variance. Pose variance was eliminated to produce
more precise and accurate models, which could lead to improved body composition
monitoring. In summary, statistical shape modeling using PCA on standardized
3D meshes, combined with automated, device-agnostic, and pose-independent
pipelines, now represents the state of the art for estimating body composition
from whole-body 3DO scans. These innovations form the scientific basis for the
methodology adopted in this thesis.

1.5 Thesis Outline

The aim of this study is to predict total and regional body composition derived
from DXA in youth soccer players using statistical shape modeling (PCA) applied
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to raw and digitally reposed 3DO whole-body scans. The 3DO scans were acquired
using the Mobile Fit app, which generates a 3D avatar from two photographs of
each subject. The rationale behind this thesis is an increasing demand for safe,
accessible, and low cost methods to assess body composition in young athletes, since
the current gold standard (DXA) is impractical due to cost, limited accessibility,
and exposure to ionizing radiation. This study seeks to assess the feasibility and
accuracy of this approach in a youth sports setting to determine whether it can be
used as a valid and reliable method to monitor body composition. If successful, this
methodology could provide coaches, clinicians, and researchers with a rapid, non-
invasive, and portable tool for tracking physical development, optimizing training
and nutritional programs, and identifying medical problems in young athletes.
The thesis is structured as follows:

o Chapter 1 provides an overview of the thesis topic and states the aim of the
study. It also discusses the physical and technological concepts of DXA and
3DO imaging systems, as well as the use of 3DO imaging for body composition
estimation.

o Chapter 2 describes the acquisition protocol, the data used, and the method-
ology adopted in this study.

o Chapter 3 presents the results obtained from the analyses.
e Chapter 4 discusses the results.

o Chapter 5 provides conclusions and suggestions for future developments.
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Chapter 2

Materials and Methods

The methodology presented in this study was developed in collaboration with the
Department of Surgical Sciences, Division of Physical Medicine and Rehabilitation
at Molinette Hospital in Turin.

2.1 Participants and Protocol

The study participants are 270 young male soccer players and 159 young female
soccer players. Table 2.1 shows the number of participants for each year of the
duration of the study and the age range.

The data acquisition protocol adopted in this study follows the methodology
described by Minetto et al. [13]. This study visit was conducted as part of the
preseason investigations and included measurements of body weight and height,
whole-body DXA scan, and acquisition of 3DO whole-body scans. Body weight and
height were measured while the subject was wearing underwear and with bare feet.
Body weight and height were measured using a standard scale with stadiometer
(model Seca 799, Seca GmbH & Co. Kg, Hamburg, Germany). A whole-body
DXA scan was performed on a Lunar iDXA system (GE Healthcare, Chicago, IL,
USA) according to a standardized protocol. Only one DXA scan was acquired to
be radiation dose conserving.

Table 2.1: Number of participants and median age (1st-3rd quartile) by year and
sex.

Year | Male participants Male age Female participants Female age

2022 122 16.3 (15.0-18.4) years 68 15.5 (14.5-17.1) years
2023 131 16.2 (14.9-18.0) years 45 16.0 (15.3-16.8) years
2024 17 20.9 (19.9-22.7) years 46 16.2 (15.4-16.9) years
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The 3DO scans were acquired via Mobile Fit app (Size Strem LLC, Cary, NC,
USA) using a standardized positioning protocol. Each player was guided into
position for the self-scan using voice commands from the app. The player was
asked to assume a front A-pose to capture the frontal image. Next, to capture the
lateral image, the player was asked to assume a side pose. Subsequent to the image
capture, the software produced a de-identified three-dimensional humanoid avatar
(Figure 2.1), accompanied by associated anthropometric measurements and body
composition estimates. The frontal and lateral images were acquired twice, in order
to obtain two avatars for each player. If the experimenters noticed movements
of the trunk or limbs during the frontal image capture or improper placement of
the upper limbs and hands during the lateral image acquisition, the acquisition
was repeated. Body movements or improper placement of the upper limbs might
produce changes in the shape of the avatar that can result in biased estimation of
various body circumferences.

§ $

Figure 2.1: Example of a three-dimensional humanoid avatar generated by the
Mobile Fit app software.

2.2 Data Sources and Instruments

The following section provides a detailed description of the data sources and
instruments used in this study. It includes an overview of the 3DO whole-body
scans acquired via Mobile Fit app, the anthropometric measurements and body
composition estimates automatically extracted from the Size Stream platform, and
the DXA variables that were chosen as ground truth for prediction. These tools
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and datasets form the foundation for the subsequent processing steps and the
development of predictive models using regression-based machine learning methods.

2.2.1 Three-Dimensional Optical Whole-Body Scans

As reported in the previous section, the 3DO whole-body scans were acquired
via Mobile Fit app. Starting from two images, the software produced a three-
dimensional humanoid avatar. This avatar can be downloaded in OBJ format.
From 2022 to 2024, 853 3DO whole-body scans (avatars) were acquired. There are
nine cases where only one 3DO whole-body scan per subject is available, and three
where there are more than two 3DO whole-body scans available per subject.

Two different analyses were carried out on the avatars: raw A-pose and T-pose.
In the first case, the 3DO scans were used as they are provided by Size Stream.
No pre-processing has been applied. The male mesh topology comprised 49,758
vertices and 99,512 faces, while the female mesh included 49,402 vertices and 98,800
faces. For this reason, it was possible to work directly with raw data, without any
need for standardization (Figure 2.2).

For the T-pose analysis, the raw 3DO whole-body scans were sent to Meshca-
pade (Meshcapade GmbH, Tiibingen, Germany) to be reposed. The Meshcapade
algorithm processes raw 3DO whole-body scans of any size and vertex order, and
converts them into meshes containing 10,475 vertices and 20,908 faces. This means
that the meshes are now standardized and it is potentially possible to use 3DO
scans acquired with different instrumentation. The meshes are reposed so that each
individual assumes a standardized T-pose, where the arms are extended horizontally
in line with the torso, and both arms and legs are fully straightened (Figure 2.3).
Stylized representations are used to substitute areas such as the hands, feet and face.
A comprehensive explanation of the Meshcapade processing pipeline is provided
by Loper et al. [46]. Generally speaking, for each subject, except those mentioned
above, there was a pair of raw 3DO scans in A-pose and a pair of 3DO scans in
T-pose, processed by Meshcapade.

2.2.2 Anthropometric Measurements

Size Stream provides four CSV files, along with the subject’s avatar. These files
contain anthropometric measurements, including circumferences, lengths, volumes,
surface areas, and body composition estimates.

The following parameters are reported in the App Measures.csv file: BMI, total
bone mineral content, body fat (BF) percentage, fitness index, lean body mass, arms
lean mass, legs lean mass, shoulder width, visceral adipose tissue, waist-to-hip-ratio,
weight, circumferences of neck, chest, underbust, overarm, biceps, forearms, wrists,
stomach, seat, thighs, calves, waist, pant waist, hips, back-neck-to-waist length,

23



Materials and Methods

sleeves length, crotch length, inseam, outseams, and body surface area.

The Body Composition.csv file reports the following parameters: BF per-
centage, BMI, body surface area, bone mineral content (BMC), fat mass index,
fitness index, height, lean body index, lean body mass, arms lean mass, legs lean
mass, resting metabolic rate, stomach circumference, visceral adipose tissue, waist
circumference, waist-to-height-ratio, waist-to-hip-ratio, weight.

There are two Core Measures.csv files, one that reports measurements accord-
ing to the metric system and the other that reports measurements according to
the imperial system. The anthropometric measurements reported in these files can
be found in the manual provided by Size Stream, along with their definitions [47].

The body composition estimates are obtained by using proprietary algorithms,
with the exceptions of the basal metabolic rate and the BF (%) estimation [2]. These
estimates are obtained, respectively, according to the Katch-McArdle equation [48]
and to the two equations previously developed and validated by Harty et al. [49].

2.2.3 DXA Variables

The DXA outputs were documented and stored in databases constructed using
Microsoft Excel. Among all available parameters, the following six body composition
variables were selected for prediction:

1. Body fat (BF) percentage: (Total fat mass/Estimated weight) x 100;
2. Total lean mass (kg): Total lean soft tissue + Total BMC;

3. Appendicular lean soft mass (kg): Lean soft mass of the right arm + left
arm + right leg + left leg;

4. Lean soft mass arms (kg): Lean soft mass of the right arm + left arm;

) |

Figure 2.2: Standard A-pose on Mobile Fit app.
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Figure 2.3: Reposed meshes in a standardized T-pose.

5. Lean soft mass legs (kg): Lean soft mass of the right leg + left leg;
6. Total fat mass (kg).

Within the context of a body composition analysis on a population of young
soccer players, these measurements can be particularly useful for optimizing nutri-
tional programs and for identifying potential underlying medical conditions, such
as eating disorders [13]. Given their clinical relevance, these variables were chosen
as ground truth for training and evaluating the multiple linear regression models
developed in this study.

2.3 Data Processing and Analysis

This section provides an in-depth overview of the data processing methods and
analytical procedures adopted in this study. All analysis were performed using
MATLAB (MathWorks, Natick, MA, USA). Figure 2.4 illustrates a schematic repre-
sentation of the developed pipeline, highlighting each step from the import of raw
data to the development of the models. This methodology was first performed for
the avatars in A-pose, and then for the avatars in T-pose. The following sections
describes the methodology considering only one case study. However, the results of
the intermediate steps for both cases are reported.
A brief explanation of each step is provided below:

o Import of 3DO whole-body scans: import of each avatar, in A-pose and
T-pose, into MATLAB.

e Import of anthropometric and DXA variables: import of Anthropomet-
ric and DXA variables into MATLAB, from CSV and XLSX (Excel) files.
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1 2 3 4

Import of
Import of 3DO ' . . )
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and DXA variables
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10 11

9Correlation between
PCs and

anthropometric/DXA
variables
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anthropometric and
DXA variables

Stepwise linear
regression

Figure 2.4: Schematic representation of the data processing and analysis pipeline
of this study.

o Datasets construction: duplicate avatars and anthropometric variables of
each subject are averaged in order to have one observation per subject, and
they are associated with their respective DXA file.

e Outlier detection: application of outlier detection to the values of anthro-
pometric and DXA variables.

o Creation of the overall dataset: the datasets of the three years are merged
so that the overall dataset is obtained.

e« Mean avatar shape: calculation of the mean male and female avatar shape.

o Application of PCA to avatars: application of PCA to the vertices of the
meshes.

« PCs and standard deviation: the morphological variations associated with
each PCs are highlighted, starting from the mean avatar shape.

« Correlation between PCs and anthropometric/DXA variables: cal-
culation of the correlation matrix between PCs and anthropometric/DXA
variables.

e Correlation between anthropometric and DXA variables: calculation
of the correlation matrix between anthropometric and DXA variables.
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» Stepwise linear regression: construction of multiple linear regression models
for the prediction of the chosen DXA variables, as reported in Section 2.2.3.

2.3.1 Pre-Processing and Dataset Construction

The 853 3DO whole-body scans and associated files, containing anthropometric
measurements, body composition estimates, and DXA variables, were divided
according to the year of acquisition. The rationale for executing the pre-processing
steps independently on separate years is as follows: given the protracted nature
of this analysis over the years, it happened that the same subjects showed up in
multiple years during the course of the acquisition campaign. Consequently, it
was determined that these individuals should be considered as separate subjects.
This is due to the fact that, following a year of growth, substantial differences in
terms of shape are observed among young athletes. Working separately between
years avoids confusion and grouping together 3DO whole-body scans and files that
should not be. Once this initial separation was made, another division for males
and females was carried out. Table 2.2 shows the number of 3DO whole-body scans
by year and sex. The final regression models will be different between the two
sexes, even if the target is the same.

Each OBJ was loaded into MATLAB. The vertices, whose coordinates were used
to perform PCA, have been saved. At the end of this process, a matrix of size
(3 x N) x num__scans was obtained, where N identifies the number of vertices and
num_ scans the number of 3DO scans.

As previously mentioned, the Size Stream platform provides four CSV files along
with each scan. For this study, the Core Measures Metric.csv and the Body
Composition.csv were imported into MATLAB.

From the Core Measures Metric.csv file, the following anthropometric vari-
ables were selected:

o Circumferences (c¢m): waist, hip, arm, thigh, chest, wrist, neck, abdomen,
knee, calf, head, forearm, collar, upper arm, ankle, right thigh.

« Surface areas (cm?): arm, leg.

Table 2.2: Number of 3DO whole-body scans by year and sex.

Year | Male 3DO scans | Female 3DO scans
2022 242 136
2023 262 90
2024 30 93
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« Volumes (cm?): arm, torso, leg.

« Outside leg length (c¢m).

« Muscle-to-stomach index (MSI):

(right + left bicep circ.) + (right + left calf circ.) 4 (right + left thigh circ.)

stomach max circ.

The circumferences and lengths of the left and right sides of the body were
averaged to obtain a single value. The volumes and surface areas of the left and
right sides of the body were summed. These anthropometric variables were chosen
because they are related to lean and fat mass estimation, as demonstrated by the
equations proposed by Harty and McCarthy, shown in Table 2.3.

Table 2.3: Equations for estimating BF (%) and appendicular lean mass (ALM)
proposed by Harty and McCarthy. Units of measurements: cm (circumferences
and lengths), cm? (areas), cm?® (volumes), kg (weight), and years (age). NHOPI:
Native Hawaiian and Other Pacific Islander. Adapted from Minetto et al. [13].

Variable

Equation Refs

BF (%)

48.837—7.2745 x (1 for male, 0 for female) +0.46929 x  [49]
(right thigh circ.)—17.387 x (muscle-to-stomach index)

ALM (kg) — male

—27.386 + 2.566 x (1 for NHOPI race) + 0.132 x [50]
height 4+ 0.221 x weight + 0.068 x (head circ.) +
0.087 x (chest circ.) + 0.212 x (forearm circ.) —
0.038 x (waist circ.) + 0.020 x (thigh circ.) — 0.024 x
(outside leg length) + 0.0008 x (surface area arm) -+
0.00005 x (arm volume) — 0.0002 x (torso volume) +
0.0003 x (leg volume)

ALM (kg) — female

—12.622 — 0.023 x age — 0.191 x (1 for Caucasian) + [50]
0.427 x (1 for Black) — 0.288 x (1 for Hispanic) +
0.553 x (1 for NHOPI) — 0.709 x (1 for Other race) +
0.088 x height 4 0.135 x weight + 0.001 x (head circ.) +
0.019 x (collar circ.)+0.048 x (forearm circ.) 4 0.078 x
(upper arm circ.) — 0.039 x (waist circ.) + 0.083 X
(ankle circ.) + 0.023 x (outside leg length) + 0.0003 x
(surface area leg)

From the Body Composition.csv file, the following body composition estimates

were selected:
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« Height (c¢m);
« Weight (kg);
o Fitness Index.

According to Size Stream [51], the Fitness Index offers a comprehensive metric
for tracking health and fitness. By combining muscle mass, body measurements,
and BF (%), it offers a more complete picture than metrics like BMI. The index
includes torso and limbs measurements, including waist circumference to account
for visceral and subcutaneous fat. It captures essential data on muscle and fat.

The Excel files containing the DXA outputs were imported into MATLAB. Then,
the variables discussed in Section 2.2.3, which will constitute the targets of the
regression models, were extracted and calculated.

At the end of this process, 26 anthropometric variables and body composition
estimates were selected, 6 target variables were chosen, and the matrices of vertices
were obtained.

As mentioned above, two 3DO scans per subject were available in almost all
cases. This means that for each scan, there were the corresponding CSV files, while
the DXA scan was performed only once.

At this point, it was necessary to create a dataset with a single observation
per subject. For each individual, the 3DO whole-body scans were averaged, as
well as the anthropometric variables extracted from the corresponding CSV files.
As a result, each subject was represented by a unique avatar, a single row of
anthropometric measurements, and the corresponding DXA variables.

The final pre-processing step consisted of outlier detection. After verifying the
normality of the data using the Kolmogor-Smirnov test, the Grubbs’s test was
applied to identify outliers in the anthropometric and DXA variables. Subjects
identified as outliers were removed from the dataset to ensure consistency for the
analysis to follow.

Grubbs’s test (published by Frank E. Grubbs [52]) is a statistical method
designed to identify a single outlier in a sample that is assumed to follow a normal
distribution. The objective is to determine whether the dataset contains at least
one value that deviates substantially from the mean and can therefore be considered
an outlier. The hypotheses tested are as follows:

o Null hypothesis (Hy): no outliers are presented in the dataset.
« Alternative hypothesis (H;): there is exactly one outlier in the dataset.

The test computes a statistic G defined as:

max |Y; — Y‘
i=1,..,.N

G:

s
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with Y and s denoting, respectively, the sample mean and standard deviation.
GG measures how far the most extreme value in the dataset is from the sample mean,
normalized by the standard deviation. This value is then compared to a critical
threshold derived from the Student’s t-distribution, at a given significance level
(5% in this study)

G >

N -1 2 _
J /(2N),N—2 (2.2)

VN \ N =2+ 00 noa

where 2 /(2N), N — 2 represents the upper critical value from the t-distribution
with N — 2 degrees of freedom, corresponding to a significance level of a/(2N). If
G exceeds the critical value, the corresponding observation is considered an outlier.
An iterative approach was performed, since this method detects one outlier at a
time for each column (variable).

Table 2.4 shows the number of observations left after the outlier detection
performed with the Grubbs’s test. In 2022 three male athletes and one female
athlete were removed; in 2023 three male athletes and one female athlete were
removed; in 2024 two male athletes and one female athlete were removed.

Since the pre-processing steps were carried out separately for the three years, it
was necessary to merge the three datasets to obtain the overall dataset. This final
dataset consisted of 262 male observations and 156 female observations. This was
valid for both avatars in A-pose and avatars in T-pose.

2.3.2 Principal Component Analysis (PCA)

Subsequent to the processing and organization of all data, the next step was to
perform a PCA. Prior to this, the mean avatar shape was computed for both male
and female participants. This process involved calculating the mean of each vertex
coordinate across all subjects. More specifically, for every corresponding vertex in
the mesh, the average position in three-dimensional space (x,y,z) was computed
over the entire dataset. The resulting vector of averaged coordinates represented
the vertices of the mean avatar shape. From this vector, a three-dimensional mesh
was reconstructed. However, while computing the average shape of the avatars in

Table 2.4: Number of observations remaining after outlier detection by year and
Sex.

Year | Male observation | Female observation
2022 119 67
2023 128 44
2024 15 45
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A-pose, a critical issue arose. The vertex order in the 2024 OBJ files provided by
Size Stream differs from that of the 2022 and 2023 files. As a result, the mean
shape reconstruction appeared corrupted, as shown in Figure 2.5. Therefore, it was
decided to exclude all 2024 A-pose OBJ, CSV and, DXA files from the subsequent
steps, to prevent further complications in the analysis. This issue did not occur with
the T-pose avatars standardized by Meshcapade, as they share an equal number
and ordering of vertices. From this point onward, the datasets of the avatars in
A-pose will differ from the datasets of the avatars in T-pose.

Figure 2.6 and Figure 2.7 provide a representation of the average shape within
each population.

Given the high correlation between neighboring vertices in a three-dimensional
body mesh, PCA was applied to perform dimensionality reduction and to transform
the mesh data into an orthogonal basis [30]. The algorithm was independently
applied to male and female datasets of the avatars, and it was also extended to
anthropometric measurements in a successive analysis. A detailed explanation
of the mathematical formulation of PCA is provided in Appendix A, while the
procedures specific to anthropometric variables are described in Appendix B.

MATLAB performs the PCA following the singluar value decomposition (SVD)
approach by default and returns the loadings matrix, the scores matrix and the
percentage of total variance explained by each PC. As shown in Figure 2.8, seven
PCs described 95% of the shape variance (a commonly adopted threshold in

Figure 2.5: Corrupted male average shape (on the left) and female average shape
(on the right) of the avatars in A-pose (2022-2023-2024).
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(0K

Figure 2.6: Male average shape (on the left) and female average shape (on the
right) of the avatars in A-pose (2022-2023).

Figure 2.7: Male average shape (on the left) and female average shape (on the
right) of the avatars in T-pose (2022-2023-2024).
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dimensionality reduction) in the male A-pose dataset and six PCs described 95%
of the shape variance in the female A-pose dataset. Figure 2.9 shows that the first
PC described 95% of the shape variance in both male and female T-pose datasets.

From the average body shape of each population, morphological deformations
were applied along the principal directions identified by the PCA. These defor-
mations were generated by adding and subtracting three standard deviations to
each PC, thereby highlighting the morphological variation represented by each
component. This approach offers an intuitive visualization of the dominant shape
patterns in the datasets.

A total of seven PCs were selected for visualization, both for male and female
subjects and for avatars in A-pose (Figure 2.10 and Figure 2.11) and T-pose
(Figure 2.12 and Figure 2.13). This number was chosen because seven was the
highest number of PCs needed to explain at least 95% of the total body shape
variance across all datasets. For consistency, the same number of PCs was applied
to each dataset.
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Figure 2.8: Percentage of total variance explained by each PC for male (a) and
female (b) avatars in A-pose.
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Figure 2.9: Percentage of total variance explained by each PC for male (a) and
female (b) avatars in T-pose.

35



Materials and Methods

Explained variance = 77.23 % Explained variance = B.44 %
PC 1+ 35D Male) 1m0 PG 2 - 350 (Male) PG 2 + 350 (Male}
1600
1600
PC 1 - 35D (Male) 1600
1400
1500
1400
1200
1200
1000
1600 1600
500
20
s00
600
500
Aang
400
200 200
400 200 0 200 400 °
-500 [ 500 500 o0
Explained variance = 4.43 % Explained variance = 1.86 %
PC 4 - 35D (Male)
PG 3 + 330 Make) PC 4.+ 35D Mak]
1800
1400
1200
1oan
w00
00
400
200
~600  -400  -200 o 200 a0 600 0
-500 o S0
Explained variance = 1.58 Explained variance = 1.29 %
P o Foc5 + 350 Make) P PG + 35D Mate)
PG5 - 35D (Male) PC 6 - 35D (Malo) 1800
- 1800 1600
1400 1400 1400
1200 1200 1200
1000 1000 1000
203 B0 800
L 500 0
400 - w0
200
200 200
[
500 o 300 o
A 20 0 0 ax

Explained variance = 1.13 %
PC 7 - 38D (Mala)

PC 7 + 35D Male)

500 0 500

Figure 2.10: Morphological variation represented by the first seven PCs for the
male avatars in A-pose.
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Figure 2.11: Morphological variation represented by the first seven PCs for the
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Figure 2.12: Morphological variation represented by the first seven PCs for the
male avatars in T-pose.
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Figure 2.13: Morphological variation represented by the first seven PCs for the
female avatars in T-pose.
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To evaluate the relationship between the morphological features identified by the
PCs and the anthropometric/DXA variables, Pearson’s correlation coefficients were
calculated. Specifically, the first seven PCs were correlated with all anthropometric
and DXA variables. The resulting correlation matrix was visualized as a heatmap.
Only statistically significant correlations, with P values < 0.05, were maintained,
while non significant coefficients were replaced with Not a Number (NaN). Each
cell in the heatmap represents the correlation coefficient between a given PC
and a specific variable, enabling immediate identification of the most influential
components and their associated measurements.

Figure 2.14 shows that PC1 was significantly correlated with nearly all anthro-
pometric and DXA variables in both male and female shape models of the A-pose
avatars. In the female dataset, additional significant correlations were observed for
PC4 and PC6.

Similarly, Figure 2.15 illustrates that PC1 also displayed strong and consistent
correlations across all variables for the T-pose avatars. In the male dataset, PC2
and PC4 demonstrated notable associations, although weaker.

Correlation: PC(1:7) vs Anthropometric and DXA Variables [Male]
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Figure 2.14: Correlation matrix between PCs and anthropometric/DXA variables
for male (a) and female (b) avatars in A-pose.

40



Materials and Methods

Correlation: PC(1:7) vs Anthropometric and DXA Variables [Male]
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(b) Correlation matrix - Female

Figure 2.15: Correlation matrix between PCs and anthropometric/DXA variables
for male (a) and female (b) avatars in T-pose.

Additionally, a scatter plot was generated for each sex to illustrate the relation-
ship between PC1 and the variable with the highest absolute correlation with it. A
least squares regression line was added to show the strength and direction of the
association. As shown in Figure 2.16 and Figure 2.17, height was always the most
highly correlated variable with PC1.
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PC1 vs Most-Correlated Anthropometric Variable [Male]
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Figure 2.16: PC1 vs most-correlated anthropometric variable for male (a) and
female (b) avatars in A-pose.
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PC1 vs Most-Correlated Anthropometric Variable [Male]
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Figure 2.17: PCI1 vs most-correlated anthropometric variable for male (a) and
female (b) avatars in T-pose.
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To further explore the associations between anthropometric measurements and
body composition, Pearson’s correlation coefficients were also computed between
the anthropometric and DXA variables. Only statistically significant correlations
were maintained (P value < 0.05), while non significant values were replaced with
NaN.

Although this analysis was performed for both the A-pose and T-pose avatars,
the resulting correlation matrices were not identical. As previously explained, the
A-pose dataset only included subjects from 2022 and 2023 due to inconsistencies in
the 2024 OBJ files, which explains this discrepancy. In contrast, the T-pose dataset
included subjects from all three years. As shown in Figure 2.18 and Figure 2.19,
BF (%) shows little to no correlation with most anthropometric measurements in
male datasets. This suggest that fat distribution may not be easily captured.
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Correlation: Anthropometric vs DXA Variables [Male] Correlation: Anthropometric vs DXA Variables [Female]
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Figure 2.18: Correlation matrix between anthropometric and DXA variables for
male (a) and female (b) avatars in A-pose.
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Correlation: Anthropometric vs DXA Variables [Male]
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Correlation: Anthropometric vs DXA Variables [Female]
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Figure 2.19: Correlation matrix between anthropometric and DXA variables for
male (a) and female (b) avatars in T-pose.
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2.3.3 Stepwise Linear Regression

Following the application of PCA and related analysis, multiple linear regression
models were developed to predict six DXA variables (dependent variables): body
fat (BF) percentage, total lean mass (kg), appendicular lean soft mass (kg), lean
soft mass arms (kg), lean soft mass legs (kg), total fat mass (kg). The independent
variables were the PCs and the anthropometric measurements.

The datasets, which include PCA scores, anthropometric variables, and DXA
targets, were randomly divided into training (80%) and test (20%) sets, making
sure that the observations of the same subjects were entirely on either the training
or the test set. To ensure the reproducibility and comparability of the models, a
fixed seed was set. This kept the partitions of the training and test sets identical
across all experiments.

The performance of the models was evaluated using fivefold cross-validation
applied to the training set. In fivefold cross-validation, the training set is divided
into five parts of similar size (fold). In each iteration, four folds are used for training
and one fold is used for internal testing. The procedure is repeated five times,
changing the test fold each cycle. This ensure that all training data is used once
as an internal test and four times for training. This approach reduces the risk of
overfitting by evaluating how well the model generalizes to unseen data within the
training set.

The number of PCs tested varied from 3 to 20 to determine the optimal com-
promise between performance and model complexity.

Variable selection was performed using a stepwise regression approach that
combined forward and backward selection to minimize the Bayesian Information
Criterion (BIC).

The BIC is a criterion used to choose the best model from a set of possible
models. Models with lower BIC values are usually preferred. While it is possible to
increase the maximum likelihood by adding parameters when fitting models, doing
so may result in overfitting. BIC attempts to address this problem by introducing
a penalty term for the number of parameters in the model. It was developed by
Gideon Schwarz [53] and it is defined, for a model estimated on a dataset of n
observations and k parameters, as:

BIC = kIn(n) — 21In(L) (2.3)
with L denoting the maximum likelihood value of the model.

The term kIn(n) penalizes the complexity of the model (number of parameters)
as the dataset size increases.

The term —21In(L) assesses how well the model fits the data.

A lower BIC indicates a reasonably accurate fit, but with not too many parame-
ters.
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Considering both A-pose and T-pose avatars, a total of six models were created
for each DXA outcome and for each sex using:

« only PCA scores of the avatars (A-pose and T-pose);
o only anthropometric variables;

« a combination of PCA scores of the avatars (A-pose and T-pose) and anthro-
pometric variables;

» only PCA scores of the anthropometric measurements (Appendix B).

2.4 Statistical Methods

The accuracy of each model was measured using the coefficient of determination
(R?) and root mean square error (RMSE).

2.4.1 Coefficient of Determination (R?)

The coefficient of determination (R?) is a measure that provides information about
how well a model fits the data. In the context of regression, it is a statistical
measure of how closely the regression line approximates the actual data [54]. The
measure is defined as follows:

i (v — 9:)°
i (yi — y)?

where y; is the observed value, g; is the predicted value, y is the mean of
the observed values, and n is the number of observations. In this study, the
observed values are those of the DXA variable to be predicted (ground truth), and
the predicted values are those obtained by applying the model. The numerator
represents the sum of squares of residuals, and the denominator represents the
total sum of squares. The R? ranges from 0 to 1.

Table 2.5 shows the interpretation of the values of the R2. The best case possible

is when the predicted values match exactly the observed values, which results in
R? = 1.

R*=1- (2.4)

2.4.2 Root Mean Square Error (RMSE)

The root mean square error (RMSE) is defined as the measure of the differences
between the values predicted by a model and the values observed [55]. The measure
is calculated as follows:
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Table 2.5: Interpretation of the values of the coefficient of determination (R?),
adapted from [54].

R? values Interpretation

R?=1 All the variation in the values of the dependent
variable is accounted for by the values of the inde-
pendent variables

R? = 0.50 50% of the variation in the values of the dependent
variable is accounted for by the values of the inde-
pendent variables

R?=0 None of the variation in the values of the depen-
dent variable is accounted for by the values of the
independent variables

1 n
RMSE = J . Z(yz — i) (2.5)
iz
where y; is the observed value, §; is the predicted value, and n is the number of
observations. The predicted and observed values are defined in the same way as in
the previous subsection. In general, the smaller the RMSE value generated by a
model, the more accurate the model is in predicting the observed values [56].
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Chapter 3

Results

This chapter presents the numerical results and prediction equations obtained
during the development of the thesis. The metrics presented in Section 2.4 were
used to evaluate the accuracy of the results obtained in comparison with DXA e
and the applicability of this methodology in a youth sports context to determine
whether it can be used as a valid and reliable tool to monitor body composition.
Following the outlier detection, a total of 418 observations remained in the analysis.
Of these, 262 are male observations and 156 are female. For the A-pose analysis, the
2024 meshes were excluded, leaving a total of 247 male and 111 female observations.
The results obtained from the application of fivefold cross-validation on the training
set are shown below, followed by those obtained on the test set.

Fivefold cross-validation

After conducting several tests on the training set, it was noted that the maximum
number of PCs useful for the construction of the models is 16. Beyond this number,
the performance remains unchanged. Figure 3.1 shows an example of plot used
to select the optimal number of PCs for the construction of multiple regression
models. The mean value of R? and RMSE obtained from the application of fivefold
cross-validation are plotted in the graph for each PC, in a range from 3 to 20. This
representation illustrates the point at which model performance saturates. For this
reason, and to ensure comparability between models, 16 PCs will always be used.

Table 3.1 shows the mean results obtained from fivefold cross-validation of 3DO
body composition models constructed using A-pose and T-pose meshes. Male body
composition models using the T-pose PC-only showed slight improvement over
the A-pose PC-only models in terms of R? and RMSE in only two cases: total
lean mass and total fat mass. In contrast, female body composition models using
the T-pose PC-only showed marked improvement across most outcomes. T-pose
PC-only models for male body composition reported R? values ranging from -0.06,
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Number of PCs vs mean R? - Lean soft mass legs (MALE) 0e Number of PCs - )

Mean R? (CV)
RMSE (CV)

Number of PCs vs mean R? - Lean soft mass legs (FEMALE) s Number of PCs vs mean RMSE - Lean soft mass legs (FEMALE)

Mean R? (CV)
ISE (CV)

Figure 3.1: Example of plot used to determine the optimal number of PCs for
constructing the regression models.

for body fat (BF) percentage, to 0.83, for total lean mass; whereas females reported
values ranging from 0.24, for BF percentage, to 0.61, for total lean mass. A-pose
PC-only models for males had R? values that ranged from 0.03 to 0.82, while
females ranged from -0.15 to 0.63. The most significant improvement was the total
fat mass estimate in T-pose for males, with an R? increasing from 0.24 to 0.27,
and an RMSE decreasing from 1.90 kg to 1.87 kg; whereas for the females it was
the BF percentage, with an R? rising from -0.15 to 0.24 and an RMSE going from
3.82% to 3.32%.

The performance of all but one model (BF percentage) increased substantially
when anthropometric variables were included in the models construction. This is
valid for both A-pose and T-pose meshes. Male body composition models using the
T-pose PC + anthro showed very similar performance to the A-pose PC + anthro
models; whereas female body composition models using T-pose PC + anthro showed
a moderate improvement. T-pose PC + anthro models for male body composition
reported R? values ranging from -0.03 (BF percentage) to 0.88 (total lean mass);
while females reported values ranging from 0.28 (BF percentage) to 0.68 (total lean
mass). The total fat mass estimate worsened using the male T-pose PC + anthro
compared to the relative A-pose PC + anthro (R? from 0.37 to 0.30, RMSE from
1.73 kg to 1.83 kg). The BF percentage estimate using the female T-pose PC +
anthro increased considerably compared to the A-pose PC + anthro (R? from 0.09
to 0.28, RMSE from 3.38% to 3.23%).

51



Results

Table 3.1: 3DO body composition models from stepwise linear regression to
predict DXA total and regional body composition. The mean results from fivefold
cross-validation are reported for the following models from left to right: PCA
scores of the A-pose meshes, PCA scores of the A-pose meshes and anthropometric
variables, PCA scores of the T-pose meshes, PCA scores of the T-pose meshes and
anthropometric variables.

Outcome Sex ‘ Model type
A-pose PC-only A-pose PC + Anthro T-pose PC-only T-pose PC + Anthro
R? /| RMSE R? / RMSE R? / RMSE R? / RMSE
BF (%) M 0.03 / 2.39 -0.02 / 2.45 -0.06 / 2.44 -0.03 / 2.40
‘ F -0.15 / 3.82 0.09 / 3.38 0.24 / 3.32 0.28 / 3.23
M 0.82 /3.1 ).86 / 2.72 ).83 / 3.2 . 2.71
Total lean mass (kg) 0.82 / 3.17 0.86 / 2.7 0.83 / 3.25 0.88 / 2.7
F 0.63 / 2.20 0.66 / 2.11 0.61 / 2.25 0.68 / 2.03
Appendicular lean soft mass (kg) M 0.74 / 2.09 0.84 /1.71 0.74 / 2.27 0.85 / 1.70
0.45 / 1.56 0.55 / 1.42 0.54 / 1.41 0.58 / 1.3
M . . 71/ 0. . . .72 /0.
Lean soft mass arms (kg) 0.60 / 0.77 0.71 / 0.66 0.60 / 0.80 0.72 / 0.67
F 0.21 / 0.40 0.23 / 0.40 0.36 / 0.36 0.33 /0.37
M 0.72 / 1.64 0.79 / 1.44 0.67 / 1.92 0.79 / 1.52
Lean soft mass legs (kg) / / / /
F 0.29 / 1.48 0.47 / 1.30 0.49 / 1.29 0.55 / 1.21
M 24 /1. . 1. 2 1. . 1.
Total fat mass (ke) 0.24 / 1.90 0.37 /1.73 0.27 / 1.87 0.30 / 1.83
F 0.33 /243 0.55 / 1.98 0.55 / 2.01 0.61 / 1.87

Table 3.2 shows the mean results obtained from fivefold cross-validation of
3DO body composition models constructed using only the digital anthropometric
variables and the PCA scores of all the digital anthropometric measurements. The
models using only the anthropometric variables reported R? values varying from
-0.02 (BF percentage) to 0.88 (total lean mass) for males, while values varying from
0.29 (BF percentage) to 0.69 (total lean mass) for females. The models using the
PCA scores of all the anthropometric measurements reported R? values ranging
from 0.02 (BF percentage) to 0.81 (total lean mass) for males, whereas values
ranging from 0.08 (BF percentage) to 0.61 (total lean mass) for females.
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Table 3.2: 3DO body composition models from stepwise linear regression to
predict DXA total and regional body composition. The mean results from fivefold
cross-validation are reported for the following models from left to right: digital
anthropometric variables and PCA scores of all the digital anthropometric mea-
surements.

Outcome Sex ‘ Model type
Anthropometric variables only PC of all anthropometric measurements
R?* / RMSE R?* / RMSE

M -0.02 / 2.40 0.02 / 2.44
F 0.29 / 3.24 0.08 / 3.38
M . 2.72 .81 1

Total lean mass (kg) 088 /2.7 081 /3.17
F 0.69 / 1.99 0.61 / 2.37

Appendicular lean soft mass (kg) M 086 /164 076 / 2.03
F 0.62 / 1.30 0.52 / 1.55

Lean soft mass arms (kg) M 0.73 / 0.66 060 /.0.79
F 0.32 / 0.37 0.46 / 0.36
Y 4

Lean soft mass legs (kg) M 079 /1.50 072 /161
F 0.57 / 1.19 0.42 / 1.43
M .35/ 1.75 032/18

Total fat mass (kg) 035 /175 82/ 188
F 0.58 / 1.95 0.50 / 1.91

Test set

To test the generalization capabilities of the models on unseen data, performance
was evaluated on the test set, which remained untouched up to this point. The
prediction equations were obtained by multiple linear regression applied to the
training set, using variables selected through stepwise regression based on the
Bayesian Information Criterion (BIC).

The results from the test set evaluation of 3DO body composition models built
using A-pose meshes and PCA scores of the anthropometric measurements are
presented in Table 3.3. The A-pose PC-only model showed R? values between -0.26
(BF percentage) and 0.75 (total lean mass and appendicular lean soft mass) for
males, while values between 0.08 (lean soft mass arms) and 0.54 (total fat mass)
for females. The A-pose PC + anthro model reported R? values ranging from -0.20
(BF percentage) to 0.91 (total lean mass) for males, and from 0.15 (lean soft mass
arms) to 0.48 (total lean mass) for females. The models using the PCA scores of
the anthropometric measurements showed R? values between -0.17 (BF percentage)
to 0.81 (total lean mass) for males, and values between 0.30 (BF percentage) and
0.75 (total lean mass) for females.
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Table 3.3: 3DO body composition models from stepwise linear regression to
predict DXA total and regional body composition. The results from the test set
are reported for the following models from the top to the bottom: PCA scores of
the A-pose meshes, PCA scores of the A-pose meshes and anthropometric variables,
PCA scores of all the digital anthropometric measurements.

Model Outcome Male Female
R? / RMSE | R? / RMSE

BF (%) 10.26 /348 | 0.26 / 2.94

Total lean mass (kg) 0.75 /377 | 0.31 /2.60

Appendicular lean soft mass (kg) | 0.75 / 2.26 | 0.23 / 1.74

A-pose PC-only Lean soft mass arms (kg) 0.70 / 0.70 | 0.08 / 0.45
Lean soft mass legs (kg) 0.69 /189 | 0.12/1.61

Total fat mass (kg) 0.02 /235 | 054 /1.83

BF (%) -0.20 / 3.40 | 0.39 / 2.68

Total lean mass (kg) 091 /222 | 048 /2.25

. Appendicular lean soft mass (kg) | 0.90 / 1.44 | 0.33 / 1.62

A-pose PC + Anthropometric Lean soft mass arms (kg) 0.85/0.49 | 0.15/0.44
Lean soft mass legs (kg) 0.85/1.31| 0.28/1.46

Total fat mass (kg) -0.06 / 2.45 | 0.47 /1.97

BF (%) -0.17 / 3.10 | 0.30 / 3.64

Total lean mass (kg) 0.81 /353 | 0.75 /1.95

. Appendicular lean soft mass (kg) | 0.73 /2.32 | 0.60 / 1.32

PC of all anthropometric measurements Lean soft mass arms (kg) 0.59 /0.79 | 0.38 / 0.42
Lean soft mass legs (kg) 0.69 /1.87 | 0.54 /121

Total fat mass (kg) 0.13 /2.08 | 0.53 /2.22

Table 3.4 and Table 3.5 show the results from the test set of 3DO body compo-
sition models built using T-pose meshes, as well as the prediction equation for each
outcome. The T-pose PC-only model reported R? values ranging from -0.17 (BF
percentage) to 0.78 (total lean mass) for males, and from 0.28 (lean soft mass arms)
to 0.51 (total lean mass) for females. The T-pose PC + anthro model showed R?
values between -0.13 (BF percentage) and 0.92 (total lean mass) for males, while
values between 0.25 (lean soft mass arms) and 0.62 (total lean mass) for females.

Table 3.6 and Table 3.7 show the results from the test set of 3DO body composi-
tion models built using only the anthropometric variables, as well as the prediction
equation for each outcome. The R? values ranged from -0.12 (BF percentage) to
0.91 (total lean mass) for males, and from 0.25 (lean soft mass arms) to 0.60 (total
lean mass and total fat mass) for females.
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Table 3.4: 3DO body composition models from stepwise linear regression to
predict DXA total and regional body composition. The results from the test set
are reported for the following models, from left to right, along with the prediction
equations: PCA scores of the T-pose meshes and PCA scores of the T-pose meshes
and anthropometric variables (part 1).

Sex Outcome T-pose PC-only T-pose PC 4+ Anthropometric
Variable Coefficient R* / RMSE Variable Coefficient ~ R?* / RMSE
Intercept 24.016 Intercept  2.7957
PC3 -3.7362 PC6 -4.3079
PC4  4.9229 PC8 9.2367
Female BF (%) PC5 -5.8612 0.33 / 3.30 thigh circ. 1.7443 0.40 / 3.11
PC6 -4.8995 forearm circ. -3.1329
PC8 8.1693
PC12 -15.568
Intercept 12.029 Intercept 17.206
Male BF (%) PC8 4.6319 -0.17 / 3.36 PC13 -8.3151 -0.13 / 3.30
PC13 -8.4255 fitness index -0.18905
Intercept 43.255 Intercept -13.999
PC1 0.47579 PC12 6.7333
Female Total lean mass (kg) PC3 -5.9795 0.51 / 2.55 height  0.1903 0.62 /224
PC4  2.1205 weight  0.45318
PC5 -3.7218
Intercept 62.1 Intercept -48.803
PC1 0.99667 MSI  6.3688
PC2 1.7922 forearm circ. 5.5873
Male Total lean mass (kg) ggi 1241828375 0.78 / 3.67 surf:zr(nd‘:il;nf:; 000%02127781%6 0.92 /219
PC6 -6.8119 upper arm circ. -1.6816
PC7  -7.4366 ankle circ. -2.0571
PC13 10417 weight 0.57674
Intercept  21.007 Intercept -10.069
PC1 0.25815 PC13 -5.1329
Female Appendicular lean soft mass (kg) PC3 -3.2407 0.40 / 1.78 height 0.10391 0.45 / 1.72
PC4 1.4578 weight 0.24473
PC5 -2.0405
Intercept  31.952 Intercept -5.8867
PC1 0.56122 PC1 0.11301
PC2 0.84737 PC9 -3.7932
Male Appendicular lean soft mass (kg) PC3 -0.84918 0.74 / 2.37 hip cire. -0.12787 0.90 / 1.50
PC4  7.7668 thigh circ. 0.6276
PC6 -3.0714 arm volume -0.00060276
weight  0.30308
Intercept 4.1106 Intercept -0.27359
PC1 0.044947 torso volume 0.000057391
Female Lean soft mass arms (kg) PC3 -0.69785 0.28 / 0.41 | surface area leg 0.00029048 0.25 / 0.42
PC4 0.49311
PC5 -0.43218
Intercept 6.8916 Intercept -1.6162
PC1 0.14048 PC8 -1.5523
PC2 0.2885 PC9 -1.1845
PC4 2.3292 PC13 2.3289
Male Lean soft mass arms (kg) PC5 0.57979 0.70 / 0.73 weight 0.12104 0.82 / 0.56
PC6 -0.86782
PC7 -0.97744
PC8 -1.4221
PC13 3.2288
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Table 3.5: 3DO body composition models from stepwise linear regression to
predict DXA total and regional body composition. The results from the test set
are reported for the following models, from left to right, along with the prediction
equations: PCA scores of the T-pose meshes and PCA scores of the T-pose meshes
and anthropometric variables (part 2).

Sex Outcome

T-pose PC-only
Variable Coefficient R? / RMSE

T-pose PC 4+ Anthropometric
Variable Coefficient k> / RMSE

Intercept 16.898
PC1 0.21277

Intercept 5.5875
PC1 0.099081

Female Lean soft mass legs (kg) PC3  -2.5345 0.33 / 1.64 weight 01988 0.39 / 1.56
PC5 -1.6245
Intercept 25.069 Intercept -19.887
PC1 0.42101 PC9 -3.756
. T, PC2 0.54317 thigh circ. 0.41206
Male Lean soft mass legs (kg) PC3 -0.66322 0.73 /1.81 outside leg length  0.11997 0.86 / 1.31
PC4 5.4617 arm volume -0.00049231
PC6 -2.2135 weight  0.19486
Intercept 13.758 Intercept -9.5093
PC1 0.095648 PC8 5.9487
PC2 0.46068 thigh circ. 0.98083
PC3 -4.7589 forearm circ. -1.9453
Female Total fat mass (kg) PC4  4.473 0.49 / 2.14 weight  0.27519 0.61 / 1.88
PC5 -5.614
PC6 -3.9892
PC8 6.0805
PC12 -10.097
Intercept 8.536 Intercept 8.4618
‘ =
Male Total fat mass (kg) ig}l gég?gﬁ 0.08 / 2.37 Pﬁlsi _Z?ggz 0.08 / 2.36
PC8 3.0935 weight  0.1715
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Table 3.6: 3DO body composition models from stepwise linear regression to
predict DXA total and regional body composition. The results from the test set are
reported for the digital anthropometric variables model along with the prediction
equations (part 1).

Sex Outcome Anthropometric variables only
Variable Coefficient ~ R? / RMSE
Intercept -1.2731

Females BF (%) thigh circ. 1.6776 0.37 / 3.20
forearm circ. -2.8027
Intercept 17.215

Males BE (%) fitness index -0.18942 012 /329
Intercept -13.91

Females Total lean mass (kg) height 0.19273 0.60 / 2.30
weight 0.44521
Intercept -32.792
hip circ. -0.16825
neck circ. 0.84329

Males Total lean mass (kg) arm volume 10.00052473 0.91 / 2.38
thigh circ. right 0.70438
weight 0.56334
Intercept -9.7961

Females Appendicular lean soft mass (kg) | height 0.10136 0.45 / 1.71
weight 0.24715
Intercept -23.407
hip circ. -0.14961

. thigh circ. 0.67966

Males Appendicular lean soft mass (kg) arm volume -0.00064623 0.89 / 1.52
height 0.096379
weight 0.29969
Intercept -0.27359

Females Lean soft mass arms (kg) torso volume 0.000057391  0.25 / 0.42
surface area leg  0.00029048
Intercept -1.9302
hip circ. -0.04582

Males Lean soft mass arms (kg) arm cire. 0.1026 0.83 / 0.54
weight 0.11241
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Table 3.7: 3DO body composition models from stepwise linear regression to
predict DXA total and regional body composition. The results from the test set are
reported for the digital anthropometric variables model along with the prediction

equations (part 2).

Sex Outcome Anthropometric variables only
Variable Coefficient ~ R? / RMSE
Intercept -8.5134

Females Lean soft mass legs (kg) | height 0.086065 0.39 / 1.56
weight 0.19676
Intercept -14.453
hip circ. -0.13074
thigh circ. 0.53377

Males Lean soft mass legs (kg) | wrist circ. 2.1209 0.85 / 1.35
arm volume  -0.00073702
ankle circ. -0.78404
weight 0.18867
Intercept -0.018941
thigh circ. 0.69843

Females Total fat mass (kg) forearm circ. -1.2356 0.60 / 1.91
height -0.090139
weight 0.3472
Intercept 9.1933

Males Total fat mass (kg) MSI -4.3895 0.09 / 2.35
weight 0.17175
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Chapter 4
Discussion

This chapter discusses the results obtained in this thesis study, which are presented
in Chapter 3.

Table 4.1 shows the results obtained from the test set for all types of regression
models in terms of R? and RMSE.

T-pose PC-only models showed a slight improvement over the A-pose PC-only
models for the males, whereas a great improvement for the females, except for
the total fat mass estimate. Performance improved further when anthropometric
variables were included in the models. T-pose PC + anthro models exhibited very
similar performance to A-pose PC + anthro models for the males, whereas they
showed a marked improvement for the females. From just two photos, an avatar
in A-pose can be obtained, along with its associated digital anthropometry. With
minimal pre-processing, performance similar to that of reposed 3DO meshes to
a standardized T-pose can be obtained in the male population, especially when
constructing hybrid models that incorporate anthropometric variables. In the latter
case, the metrics are nearly identical. A substantial difference is seen between the
A-pose and T-pose models in the female population, with R? values increasing to a
0.2 difference (total lean mass, PC-only models). As demonstrated by Wong et al.
[30], more accurate and precise models can be obtained by reposing 3DO meshes
to a standardized pose. This is due to the fact that the majority of the variance
related to the pose is eliminated, leaving mainly the variance related to the shape.
However, in this study, there is a serious limitation. The 2024 A-pose scans were
excluded from the dataset because the vertex order of the meshes provided by Size
Stream has changed over the years, making it impossible to merge these scans with
those from the other two years. This resulted in different sizes of the datasets for
A-pose and T-pose avatars, which negatively affected the construction of linear
regression models. The smaller the dataset, the worse the performance is expected
to be, because there is not enough data to learn from. This limitation is especially
evident in the female population, since the year 2024 alone contains 45 observations
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Table 4.1: 3DO body composition models from stepwise linear regression to
predict DXA total and regional body composition. The results from the test set are
reported for all the models. From left to right: PCA scores of the A-pose meshes,
PCA scores of the A-pose meshes and anthropometric variables, PCA scores of the
T-pose meshes, PCA scores of the T-pose meshes and anthropometric variables,
digital anthropometric variables, and PCA scores of all the digital anthropometric
measurements.

Outcome Sex ‘ Model type
A-pose PC-only A-pose PC + Anthro T-pose PC-only T-pose PC + Anthro Anthro-only PC-Anthro
R? /| RMSE R? / RMSE R? / RMSE R? / RMSE R? /RMSE R? / RMSE
BF (%) M -0.26 / 3.48 -0.20 / 3.40 -0.17 / 3.36 -0.13 / 3.30 -0.12 /3.29 -0.17 / 3.10
° F 0.26 / 2.94 0.39 / 2.68 0.33 / 3.30 0.40 / 3.11 0.37 /320 0.30 / 3.64
. . . . -
Total lean mass (kg) M 0.75 / 3.77 0.91 / 2.22 0.78 / 3.67 0.92 /219 0.91 /238 0.81/3.53
F 0.31 / 2.60 0.48 / 2.25 0.51 / 2.55 0.62 / 2.24 0.60 /2.30  0.75 / 1.95
M ).75 / 2.26 .90 / 1.44 NEWR: .90 / 1.5C 89 /152 0.73 /2.32
App. lean soft mass (kg) 0.75 / 2.26 0.90 / ‘/ 0.74 / 2.37 0.90 / 1.50 ()8?/ 5 3/23
F 0.23 / 1.74 0.33 / 1.62 0.40 / 1.78 0.45 / 1.72 0.45 /171 0.60 / 1.32
M . . .85 A4 0. . ).82 .5 0.8: b4 5 .
Lean soft mass arms (k) 0.70 / 0.70 0.85 / 0.49 0.70 / 0.73 0.82 / 0.56 )8'_5 /0.5 0.59 / 0.79
0.08 / 0.45 0.15 / 0.44 0.28 / 0.41 0.25 / 0.42 0.25 /042 0.38 /0.42
M . 1. .85/ 1.31 . 1.81 R 1.31 .85/ 1.35 X 1.
Lean soft mass legs (ke) 0.69 / 1.89 0.85 / 1.3 0.73 /1.8 0.86 / 1.3 0.85/1.35 0.69 / 1.87
F 0.12 / 1.61 0.28 / 1.46 0.33 / 1.64 0.39 / 1.56 0.39 /156  0.54 /1.21
M 02 /2. -0. 2.4 X . X . X . .1 X
Total fat mass (ke) 0.02 / 2.35 0.06 / 2.45 0.08 / 2.37 0.08 / 2.36 0.09 /235 0.13/2.08
} F 0.54 / 1.83 0.47 / 1.97 0.49 / 2.14 0.61 / 1.88 0.60 / 1.91 0.53 / 2.22

out of a total of 156, resulting in nearly one third fewer data points for building
A-pose models. This largely explains the significant improvement in performance
when using T-pose models instead of A-pose ones. Yet, it prevents a full analysis
of the contribution due to the elimination of the pose-related variance. In the male
population, the missing year in the A-pose dataset is not a major problem since
only 15 observations out of 262 are lost, preserving the dataset’s size. In light of
the problems experienced with raw scans, one of the many advantages of using
Meshcapade is highlighted: it standardizes the meshes, avoiding problems due to
the order of the vertices. In fact, the avatars in T-pose did not report any issue.
The performance of anthro-only male models was comparable to that of A-
pose and T-pose PC + anthro models, and they outperformed PC-only models.
Similarly, anthro-only female models exhibited performance that was identical or
nearly identical to that of T-pose PC + anthro models. Their performance was
equal in the estimation of appendicular lean soft mass (R? of 0.45 and RMSE
of 1.72 and 1.71), lean soft mass arms (R? of 0.25 and RMSE of 0.42), and lean
soft mass legs (R? of 0.39 and RMSE of 1.56). They also outperformed PC-only
models, except for lean soft mass arms (R? of 0.25 for the anthro-only model,
and R? of 0.28 for the T-pose PC-only model). For this population of young
soccer players, models using only digital anthropometric measurements, from a
set of 26 variables selected from all those provided by Size Stream, have shown
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to be equally or more predictive than models that use advanced statistical shape
modeling, such as PCA, to capture complex shape features. This result may reflect
the relatively homogeneous body shape and composition typical of young athletes,
where anthropometric measurements already capture the main sources of variability.

The anthropometric variables most frequently selected by stepwise regression
for the T-pose PC + anthro models were weight, height, thigh circumference,
forearm circumference, and arm volume; while for the anthro-only models, the
selected variables were weight, height, thigh circumference, arm volume, and hip
circumference. In both T-pose PC + anthro and anthro-only models, arm volume
appeared exclusively in the prediction equations for male lean mass, while hip
circumference appeared exclusively in the equations for male lean mass of the
anthro-only models. The other variables appeared as predictors in both lean and
fat mass equations. These results suggest that, in the case of young male athletes,
arm volume and hip circumference are strong predictors of lean mass, highlighting
the importance of specific regional measurements alongside more general indices
like weight and height.

The models used to estimate BF percentage (Figure 4.1) reported R? values
ranging from 0.26 (A-pose PC-only) to 0.4 (T-pose PC + anthro) for females, and
from -0.26 (A-pose PC-only) to -0.12 (Anthro-only) for males.

For total lean mass (Figure 4.2), R? scores ranged between 0.31 (A-pose PC-only)
and 0.75 (PC-anthro) in females, and between 0.75 (A-pose PC-only) and 0.92
(T-pose PC + anthro) in males.

For appendicular lean soft mass (Figure 4.3), R? values varied from 0.23 (A-pose
PC-only) to 0.6 (PC-anthro) for females, and 0.73 (PC-anthro) to 0.9 (A-pose PC
and T-pose PC + anthro) for males.

For lean soft mass arms (Figure 4.4) reported R? values ranging from 0.08
(A-pose PC-only) to 0.38 (PC-anthro) for females, and from 0.59 (PC-anthro) to
0.85 (A-pose PC + anthro) for males.

For lean soft mass legs (Figure 4.5), R? scores ranged between 0.12 (A-pose
PC-only) and 0.54 (PC-anthro) in females, and between 0.69 (A-pose PC-only and
PC-anthro) and 0.86 (T-pose PC + anthro) in males.

When estimating total fat mass (Figure 4.6), R? values varied from 0.47 (A-pose
PC + anthro) to 0.61 (T-pose PC + anthro) for females, and -0.06 (A-pose PC +
anthro) to 0.13 (PC-anthro) for males.
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Figure 4.1: Comparison of R? values obtained using the regression models to
estimate BF percentage for the male and female test sets.
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Figure 4.2: Comparison of R? values obtained using the regression models to
estimate total lean mass for the male and female test sets.
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Appendicular Lean Soft Mass
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Figure 4.3: Comparison of R? values obtained using the regression models to
estimate appendicular lean soft mass for the male and female test sets.
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Figure 4.4: Comparison of R? values obtained using the regression models to
estimate lean soft mass arms for the male and female test sets.
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Figure 4.5: Comparison of R? values obtained using the regression models to
estimate lean soft mass legs for the male and female test sets.
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Figure 4.6: Comparison of R? values obtained using the regression models to
estimate total fat mass for the male and female test sets.
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In light of these results, the following can be stated:

« Estimates of fat mass were inaccurate in the male population since R? values
close to or even below 0 are recorded. Negative R? values indicate that the
regression model performs worse than simply predicting the mean value of the
outcome for all subjects. In contrast, estimates of total and regional lean mass
were extremely accurate. R? values as high as 0.92 are recorded. The A-pose
PC + anthro, T-pose PC + anthro, and anthro-only models accurately and
precisely predicted these outcomes.

« No female model for total and regional lean mass prediction reported perfor-
mance as accurate and precise as male models. However, when it comes to
predicting fat mass outcomes, the performance was considerably better than
that of the male models. Interestingly, the PC-anthro models, created for ex-
ploratory purposes and as a possible direction for future development, reported
the best performance in estimating lean mass outcomes. The improvement in
R? was significant compared to the other models.

In the case of young, lean, trained male athletes, automated anthropometry
and body shape-related features, captured by PCA, are insufficient and inadequate
predictors for estimating body fat percentage and total fat mass. As presented
in Section 2.3.2, in Figure 2.14 and Figure 2.15, the PCs are poorly correlated, if
uncorrelated at all, with the two fat mass outcomes. Similarly, Figure 2.19 shows
that body fat percentage is uncorrelated with almost all anthropometric variables.
Where there is correlation, it is extremely low. These findings suggest that, due to
the relatively homogeneous body composition of the participants, there were no
variables that could explain fat mass, which resulted in poor model performance.

Leaving aside PC-anthro models, which as has been noted, performed well
with female lean mass estimates, the most accurate models are those that use
anthropometric variables for their constructions, whether they are hybrid PC +
anthro or anthro-only models. This demonstrates that PCs alone are insufficient
for estimating DXA-derived total and regional body composition in youth soccer
players; digital anthropometric measurements are recommended in conjunction
with PCs, if not alone. This approach allows to take full advantage of the potential
offered by 3DO imaging systems.

This study has its limitations. First, all scans from 2024 had to be excluded
from the analysis of A-pose avatars, due to a change in the vertex order of the
meshes, that made them incompatible with those from previous years. This led to a
difference in the number of observations in the A-pose and T-pose datasets, which
affects the comparability of the results. Second, the study sample is extremely
homogeneous because it consists only of young athletes. This homogeneity may
limit the ability of PCA to capture body shape variance. This is reflected by the
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fact that few PCs explain more than 95% of the total variance in the dataset. An
extreme case is seen in the T-pose avatars, where the first PC alone explains more
than 95% of the shape variance. Lastly, the models were built using data generated
by a specific application, Mobile Fit. This may limit the applicability of the results
to other scanning technologies.
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Chapter 5
Conclusions

The aim of this thesis is the prediction of body composition, total and regional,
derived from DXA in a population of young soccer players, through the use of
principal component analysis (PCA) on raw and reposed 3DO whole-body scans.
The results showed that estimates of lean mass, total and regional, were highly
accurate in male athletes, with R? values as high as 0.92 (total lean mass). This
level of accuracy was achieved with both hybrid models that combined principal
components (PCs) and anthropometry, and models that used only anthropometric
measurements. In contrast, estimates of fat mass were inaccurate since they
reported R? values near or below 0. In females, none of the models achieved high
performance in lean mass prediction, and fat mass estimates achieved moderate
accuracy. In light of these results, the thesis’s goal was only partially achieved,
since accurate performance was reached for specific outcomes and subgroups. In
a population of young athletes, their homogeneous body shape and composition
may limit the ability of PCA to capture body shape variance. In fact, models
that used only digital anthropometric measurements have shown to be equally or
more precise than models that used PCA to capture complex shape features. The
promising results observed when using PC-anthro models to predict lean mass in
female athletes suggest a possible direction for future investigations. Future work
should validate these approaches using larger, more heterogeneous populations,
including different sports and age groups. Additionally, the applicability of these
models to other 3DO imaging systems should be assessed. In conclusion, this study
shows the potential and current limitations of 3DO body composition estimation
in young athletes, highlighting the necessity of further research to develop more
reliable and accurate models for monitoring body composition in youth sports
settings.
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Appendix A

Mathematical Formulation
of PCA

This appendix provides the mathematical background of the principal component
analysis (PCA), based on the lecture slides by Grosso [57].

PCA is a linear dimensionality reduction method used for exploratory data
analysis, visualization and data pre-processing.

Working with large amounts of data can present a number of challenges:

o Useful information is often hidden among hundreds or thousands of variables
(size of the data).

o Measurements are often highly correlated with each other. The number of
independent variables is significantly smaller than the number of measurements
available.

¢ Noise in the measurements.

PCA allows for an interpretation based on all variables simultaneously, providing
a deeper understanding than looking at the individual variables alone.

The goal of PCA is to transform the original variables, which are high dimen-
sional, and strongly correlated, into a new set of artificial, independent variables
with a much lower dimension, known as principal components (PCs).

The data must be collected on a matrix X of size I x J, where the columns (J)
represent the variables and the rows (I) represent the observations.

Before applying PCA, the data must undergo mean centering. This process
involves subtracting the mean of each column from the corresponding values, as
shown in Equation (A.1).
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) *J

1 I
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This leads to a new matrix X, where each column has zero mean:

*k Ak * *
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Tn—Ty 0 Ty — 2Ty
Mean centering allows for the consideration of the covariance matrix:
C=X'X (A.2)

For any element Cy;, this corresponds to the following scalar product:

Cu = X X kl Zﬂfzk T (A-3)

In particular, the diagonal elements of C express the total variance of the j-th
variable.

Cj; = (XTX);; Z T3 . (A.4)
PCA is based on the decomposition of the dataset matrix X:

X=T-P" (A.5)

where T is the scores matrix, containing the artificial variables generated by
PCA, and P is the loadings matrix, the rotation matrix that relates the artificial
variables to the original ones.

The PCA decomposition exhibits several important mathematical properties:

1. The resulting scores matrix T is mean centered, just as the original data
matrix X. This implies that the mean of each column is zero

;=0 Vj=1,...,J = t;=0 Vi=1,...,J (A.6)
2. The column vectors of the scores matrix T are orthogonal:
Tt, =0 VYm+#n (A.7)

Consequently, the matrix A = TT - T is diagonal.
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3. The loadings matrix P is orthogonal:

P'=P' = P'.P=I (A.8)

The PCA scores and loadings can be related to the calculation of the eigenvalues
and eigenvectors of the covariance matrix C. Since C is a square and symmetrical
matrix, all eigenvalues are real and positive, and all eigenvectors are orthogonal to
each other.

Starting from the PCA decomposition of the dataset matrix X = T - PT, one
can derive the following relationships:

C=X""X=P - T" T-P"=P-A-P'=P-A-P! (A.9)

This equation corresponds to the eigendecomposition of the square matrix C.
In this context:

o A is a diagonal matrix whose diagonal elements are the eigenvalues of C.

o The m-th element, t1t,, = A,,,, represents the variance explained by the
m-th score.

o P isanxn square matrix whose columns are the eigenvectors of the covariance
matrix C. Its m-th column, p,,, represents the direction of the m-th principal
component of the data contained in the original matrix X.

The eigenvectors, p,,, obtained can be used to calculate the corresponding scores
through the following relation:

X=T-P' = X-P=T-P"P = T=X-P (A.10)

The original variables are projected onto the orthogonal space defined by the
eigenvectors/loadings.

The eigenvalues of the covariance matrix are directly related to the variance
explained by each score:

I
A=ttty =17 (A.11)
=1

The T matrix preserves the total variance present in the original dataset.

The eigenvectors are typically ordered by their corresponding eigenvalue size
(variance) in descending order. This ensures that the first columns of the P matrix
(the first PCs) represent the directions along which the variance in the original
data is maximized. Therefore, the first PCs explain most of the original variance.

By selecting only the first columns of T, it is possible to effectively represent
most of the information contained in the original data, resulting in a significant
reduction in dimensionality.
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PCA on Anthropometric
Measurements

In addition to the PCA performed on the male and female datasets of the avatars,
a second analysis was conducted using the anthropometric measurements provided
by Size Stream. The objective was to evaluate their predictive power in relation
to the DXA variables. This appendix describes the specific procedure followed
to apply PCA to the full set of 242 anthropometric measurements contained in
the Core Measures Metric.csv file. The analysis pipeline was similar to the one
previously applied to the three-dimensional meshes, as shown in Figure B.1. First,
the dimensionality was reduced via PCA; then, the resulting PCs were used as
input for the construction of multiple linear regression models. Similar to the
previous analysis, the three year datasets (2022, 2023, and 2024) were processed
individually.

1 2 3 4
Import of .
anthropometric atasets construction Outlier detection Creatllclyréotf thet
and DXA variables overall datase
5 6 7
Application of PCA to Correlation between L
the anthropometric PCs and Stepwise linear

X ) regression
variables DXA variables SQIESEID

Figure B.1: Schematic representation of the data processing and analysis pipeline
for the PCA performed on the anthropometric measurements.
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For each subject, the Core Measures Metric.csv file was imported into MATLAB.
Then, all 242 anthropometric measurements were selected and saved in separate
matrices for males and females. Files containing the DXA outputs were also
imported into MATLAB, and the same variables reported in Section 2.2.3 were
calculated and extracted. At this point, since there were available two 3DO scans
and, consequently, two Core Measures Metric.csv files for each individual, it
was necessary to create a dataset with a single observation per subject. For this
purpose, the anthropometric variables extracted from the CSV files were averaged.
As a result, each subject was represented by a single row of anthropometric
measurements, and the corresponding DXA variables. The final pre-processing step
was outlier detection, which was performed using Grubbs’s test on the values of the
anthropometric and DXA variables. Table B.1 shows the number of observation
remaining after outlier detection.

Once the pre-processing was done separately for the three years, the three
datasets were merged so that the overall dataset could be obtained. This final
dataset consists of 249 male observations and 136 female observations. Subsequently,
PCA was applied to the anthropometric measurements. Figure B.2 shows that
more than 95% of the total variance is explained by the first PC in both male
and female datasets. To evaluate the relationship between the PCs and the DXA
variables, Pearson’s correlation coefficients were calculated. The first seven PCs
were correlated with all DXA variables. The resulting correlation matrix was
visualized as a heatmap. Only statistically significant correlations were maintained
(P value < 0.05), while non significant values were replaced with NaN. PC1 was
significantly correlated with all DXA variables in both male and female datasets
(Figure B.3).

The multiple linear regression models were developed using the same methodol-
ogy as the PCA of the avatars. Therefore, the details are not reiterated.

The results are reported along with the other models.

Table B.1: Number of observations remaining after outlier detection by year and
Sex.

Year | Male observation | Female observation
2022 113 53
2023 121 39
2024 15 44
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Figure B.2: Percentage of total variance explained by each PC for male (a) and
female (b) datasets.
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Figure B.3: Correlation matrix between PCs and DXA variables for male (a) and
female (b) datasets.
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