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ABSTRACT

Alzheimer’s disease (AD) is a neurodegenerative disease and represents the most common form of

dementia, characterized by a progressive deterioration of memory and cognitive functions. It mainly

affects the elderly population (late onset) but can also occur at a younger age (early onset), especially

in the presence of genetic mutations. According to the amyloid hypothesis, a central role is played by

the amyloid precursor protein (APP), which is cleaved by β- and γ-secretase through the amyloidogenic

pathway, generating the Aβ protein, in particular Aβ42, a form more prone to aggregation and

neurotoxic. Familial APP mutations, such as the Swedish (KM670/671NL), Iowa (D694N) and Iberian

(I716F) mutations, alter APP processing, favoring the pathological accumulation of Aβ. A possible

strategy to counteract this mechanism is the use of ligands capable of binding to APP and preventing the

initial cleavage by β-secretase. In this context, F-spondin has proven to be a potential natural inhibitor:

it interacts with the extracellular E2 domain of APP and negatively regulates its amyloidogenic

processing.

In this thesis, computational molecular modeling methods were used to study the interactions between

different variants of the APP protein and the F-Spondin protein, with the aim of investigating the

molecular mechanisms involved in AD. Starting from the amino acid sequences obtained from the

UniProt database, AlphaFold Server was employed to predict the three-dimensional structure of APP,

its mutated variants (Swedish, Iowa and Iberian) and the F-spondin segment with reelin and spondin

domains. To improve their stability and optimize their conformation, preliminary molecular dynamics

(MD) simulations were performed on all protein models. Molecular Docking was then performed, via the

ClusPro server, between F-spondin and each APP variant, generating four distinct molecular complexes:

wild-type APP/F-spondin, Swedish APP (KM670/671NL)/F-spondin, Iowa APP (D694N)/F-spondin

and Iberian APP (I716F)/F-spondin. The four complexes obtained through docking were subjected to

molecular dynamics simulations. A comparative analysis was then conducted by examining the global

stability (RMSD), the system’s flexibility (RMSF), and the interface stability between the two proteins

in each complex, based on the number of hydrogen bonds and the contact surface. Finally, the binding

free energy was estimated to assess the binding affinity across the different complexes.
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1

INTRODUCTION

1.1 What is Alzheimer’s disease?

Alzheimer’s Disease (AD) is a neurodegenerative disorder that represents the most common form of

dementia, and it causes neuronal death principally in the cortex and hippocampus.[1] It is characterized

by progressive loss of memory and cognitive abilities, leading to dementia, especially in the elderly

(late onset) and, less frequently, in young adults (early onset). The progression of the disease severely

impairs daily life, with personality changes, problematic behavior, and difficulty with social interaction.

Symptoms include agitation, isolation, and loss of memory and skills, often culminating in mortality

caused by complications such as infection or malnutrition.[2]

AD is traditionally defined by the combined presence of extracellular deposits of amyloid β (Aβ)

and intracellular aggregates of hyperphosphorylated tau, elements that form amyloid plaques and

neurofibrillary tangles, respectively. In recent decades, numerous experimental evidences have confirmed

that these accumulations are closely associated with the neurodegenerative processes typical of the

pathology. However, more recent studies have highlighted the complexity of the disease, suggesting

that it cannot be explained by a simple linear causal model. In fact, the role of multiple factors,

genetic, environmental and related to aging, which interact with the main molecular mechanisms of the

pathology is increasingly recognized. The classic amyloid hypothesis considered the accumulation of

Aβ as the initial and triggering event, followed by alterations of the tau protein. Today, however, it is

plausible that Aβ and tau act through parallel pathways, influencing each other and jointly contributing

to neurodegeneration.

The clinical diagnosis of AD is based on anamnesis, neuropsychological assessment and observation of

the evolution of symptoms over time. The typical form manifests itself with disturbances in memory

and executive functions, while atypical forms, often associated with early onset, may begin with visual,

linguistic or motor symptoms. In recent years, the introduction of biomarkers in the cerebrospinal fluid

(CSF) and advanced imaging techniques, such as PET and magnetic resonance imaging (MRI), has
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revolutionized the diagnostic criteria, allowing the pathology to be identified even in the preclinical

phase.

The main risk factors include genetic ones, together with elements related to lifestyle, age and vascular

conditions.

• The main genetic risk factor for sporadic Alzheimer’s disease is the APOE ε4 allele. The APOE4

variant is associated with increased accumulation of beta-amyloid (Aβ) in the brain. APOE plays

a key role in the maintenance and repair of the central nervous system by interacting with several

brain receptors, including VLDL-R, LDL-R, and LRP. Structural alterations in these receptors,

particularly in LRP, can compromise the metabolism of the APP protein, favoring excessive

production of Aβ. Mutations in the APP, PSEN1, and PSEN2 genes are responsible for familial

forms of Alzheimer’s disease. Other genes, such as TREM2, are also involved in regulating the

immune response and in the removal of amyloid, contributing to the modulation of disease risk.

• Another area of great interest concerns the role of infections and neuroinflammation. Chronic

brain infections can trigger a persistent inflammatory response, which contributes to the onset

and progression of the disease.

• Finally, several modifiable lifestyle factors have a significant impact on the risk of developing

dementia. These include hypertension, diabetes, physical inactivity, poor diet, low education,

and social isolation. Addressing these issues through prevention and health promotion strategies

could significantly reduce the incidence of the disease in the general population.

Globally, dementia affects approximately 40 million people, mostly over 60, and this number is expected

to double every 20 years until 2050, with a faster increase in developing countries. Early-onset forms

are rare, and under the age of 50 the prevalence is less than 1 in 4000; approximately 30% of these

cases are attributable to Alzheimer’s. European and US studies have shown a decline in the age-specific

incidence of dementia in recent decades, probably due to better control of vascular risk factors. In

Asia, a shift from vascular dementia to Alzheimer’s disease as the prevalent form is observed, reflecting

demographic and diagnostic changes.

In this context, prevention emerges as a top priority. Acting on modifiable factors such as obesity,

inactivity, depression, smoking and poor diet could reduce the incidence of the disease by up to

30%. However, a significant proportion of cases remains that will require the development of more

effective therapeutic strategies. Currently, treatments have only symptomatic effects (e.g. cholinesterase

inhibitors and memantine), while experimental therapies aim to intervene in the early phase, integrating

pharmacological, cognitive, nutritional and cardiovascular approaches. [3, 4]

There are several hypotheses for AD development: cholinergic hypothesis, tau hypothesis, amyloid

cascade hypothesis, and recently a vascular hypothesis has been developed.[1]

7



1.1.1 The amyloid cascade hypothesis

The amyloid cascade hypothesis has been the predominant hypothesis on AD for over 25 years.[5]

According to this hypothesis, the Alzheimer’s Disease is mainly caused by the aggregation of the protein

beta-amyloid into amyloid plaques, triggering a cascade leading to the formation of neurofibrillary

tangles, neuronal death, vascular damage and dementia.[6] In addition to the evidence of amyloid

plaques in the brains of AD patients, mutations in the APP gene, which encodes the amyloid precursor

protein, have been identified in families with hereditary forms of AD (FAD); these mutations alter

the metabolism of APP and favour the production of toxic forms of Aβ. Furthermore, it has been

observed that trisomy 21 (Down syndrome), which involves an extra copy of the APP gene, leads to

the neuropathology of AD.[7]

The amyloid precursor protein (APP) is processed through two pathways: a non-amyloidogenic and an

amyloidogenic one.

• The non-amyloidogenic pathway is mediated by α-secretase and does not produce Aβ.

• The amyloidogenic pathway involves β-secretase and γ-secretase and leads to the production of

Aβ. There are several isoforms of Aβ, including Aβ40 and Aβ42. Normally, about 90% of secreted

Aβ peptides are of the Aβ40 type, a soluble form that slowly transforms into an insoluble β-sheet

configuration, making it easily eliminated from the brain. In contrast, about 10% of secreted Aβ

peptides are of the Aβ42 type, which are highly fibrillogenic and lead to the formation of toxic

plaques.[8]

Figure 1: The Amyloid Cascade Hypothesis. The two processing pathways of APP: the non-amyloidogenic
pathway, which prevents Aβ formation, and the amyloidogenic pathway, leading to Aβ production, aggregation,
and plaque formation. Source: Behl T et al, 2020. https://doi.org/10.3390/ijms21207443
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The amyloid hypothesis has stimulated research into therapies for AD that aim to reduce the production,

aggregation or deposition of Aβ. Among therapeutic approaches, those based on decreasing Aβ

production include β-secretase inhibition, γ-secretase inhibition or α-secretase activation. Approaches

based on inhibition of Aβ oligomerisation or fibrillation and approaches for Aβ degradation have also

been developed:

• Inhibition of β-secretase: β-secretase is a key enzyme in the production of Aβ. Several β-secretase

inhibitors have been developed and tested in clinical trials, but few of these have reached phase I

clinical trials due to problems such as poor ability to cross the blood-brain barrier and lack of

specificity for β-secretase.

• Inhibition of γ-secretase: γ-secretase is another enzyme involved in the production of Aβ.

Inhibitors of γ-secretase present significant problems, including interference with other important

physiological pathways, such as the Notch signalling pathway.

• Activation of α-secretase: α-secretase cleaves APP in a way that does not allow Ab production.

Increasing α-secretase activity is therefore considered a promising therapeutic approach, but the

lack of clear information on the cellular mechanisms of α-secretase cleavage presents a challenge

for the development of effective therapies.

• Inhibitors of Aβ oligomerisation or fibril formation: several molecules that interfere with the

process of oligomer and fibril formation have been identified. However, many of these compounds

have shown limited clinical efficacy.

• Degradation and clearance of Aβ: several enzymes are capable of degrading Aβ, including

endothelin-converting enzyme (ECE), angiotensin-converting enzyme (ACE) and neprilysin.

Increasing the activity of these enzymes or administering monoclonal antibodies that bind to

Aβ have been proposed as therapeutic strategies. However, even these approaches have shown

limited clinical results.[9]

Although the amyloid hypothesis has been the focus of research for years, all attempts to develop

Aβ-targeted drugs to treat AD have failed. It has been observed that in mouse models genetically

modified to overexpress Aβ, senile plaques formed but not neurofibrillary tangles due to tau accumulation

and no neuronal death was observed. This led to the idea that extracellular accumulation of Aβ fibrils

is not intrinsically cytotoxic and that Aβ does not induce tau accumulation. Recent studies indicate

that the main factor underlying the development and progression of AD is tau, not Aβ.
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The amyloid hypothesis has been reconsidered and Kametani and Hasegawa (2018) proposed that the

initiation of AD is closely linked to alterations in APP metabolism and the accumulation of C-terminal

fragments of APP. It has been observed that mutations in Presenilin-1 (PS1), a constitutive protein of

the γ-secretase complex, reduce γ-secretase activity, resulting in decreased production of Aβ40 and

increasing the Aβ42/Aβ40 ratio. The same thing happens with different types of mutations in the APP

gene. At the same time, the C-terminal fragments of APP that should be cleaved by γ-secretase are

not cleaved and accumulated in the cell membrane. This accumulation has been linked to neurotoxicity

and altered vesicular trafficking. Through experiments on transgenic mice expressing the C-terminal

intracellular domain of APP, it was observed that they developed AD-like symptoms, such as the

accumulation of phosphorylated tau and memory impairment. [5]

Changes in Aβ metabolism
Increase in total Aβ production
Increase in the Aβ42/Aβ40 ratio

Reduced Aβ clearance
Oligomerization of Aβ42

and initial deposition
Subtle effects of soluble Aβ42 oligomers

on synaptic function
Inflammatory response

(microglial and astrocytic activation)
and amyloid plaque formation

Progressive synaptic/neuronal injury
Altered neuronal ionic homeostasis

and oxidative injury
Aberrant oligomerization

and hyperphosphorylation of tau
Widespread neuronal dysfunction

and cell death
Dementia with plaque
and tangle pathology

Table 1: The amyloid cascade hypothesis (Haass and Selkoe, 2007).
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1.1.2 The tau hypothesis

The tau hypothesis focuses on tau protein, a microtubule-associated protein (MAP) that plays a crucial

role in stabilizing microtubule assembly within neurons, through its isoforms and phosphorylation.

According to the tau hypothesis, Alzheimer’s disease is caused by abnormal hyperphosphorylation

of the tau protein. This process leads to an accumulation of the protein by forming neurofibrillary

tangles (NFTs), which accumulate within neurons. Hyperphosphorylated tau loses the ability to bind

to microtubules and thus stabilize them, also impairing the function of the cytoskeleton. Microtubule

dysfunction interferes with axonal transport, impairing communication between neurons and leading to

neuronal death.[8]

Scientific research has led to the development of therapeutic strategies that could slow down or even

reverse disease progression. These therapeutic strategies are mainly focused on:

• inhibition of tau phosphorylation, to block the activity of kinases, i.e. the enzymes responsible

for tau phosphorylation;

• inhibition of tau aggregation, preventing the formation of toxic tau oligomers and filaments;

• disaggregation of tau filaments, using molecules, such as quinoline derivatives, capable of binding

and disaggregating tau oligomers.

In addition, research is also focusing on the development of specific biomarkers to visualise tau

aggregates, so that they can be used for the early diagnosis of AD and to monitor the effectiveness of

treatments.[10]

Figure 2: Tau hypothesis. Tau dissociates from microtubules, microtubule destabilization, tau aggregates into
oligomers, paired helical filaments, neurofibrillary tangles formation (Brenda Knox, 2022, stressmarq.com)
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1.1.3 The cholinergic hypothesis

The cholinergic hypothesis was born in the mid-1970s and is the first theory on the pathogenesis

of Alzheimer’s disease. According to the cholinergic hypothesis, degeneration of cholinergic neurons

in the brain, with a reduction in cholinergic neurotransmission, plays a crucial role in the cognitive

decline characteristic of this disorder. Such degeneration occurs mainly in the basal forebrain, resulting

in neurotransmission deficits in the cerebral cortex and other brain regions. Several therapeutic

approaches have been developed, such as cholinesterase inhibitors and choline precursor. In recent years,

“second-generation” cholinesterase inhibitors have been developed, such as donepezil, rivastigmine,

metrifonate, and galantamine. Through clinical trials, it has been shown that these cholinesterase

inhibitors can improve cognition, global function, and slow symptomatic decline in patients with

Alzheimer’s disease; they can alleviate behavioral symptoms such as agitation, apathy, hallucinations,

and abnormal motor behaviors.[11] However, it should be emphasized that the cholinergic hypothesis

does not completely explain Alzheimer’s disease. Other factors, such as beta-amyloid (Aβ) accumulation,

hyper phosphorylation of tau protein, neuroinflammation, and vascular dysfunction, contribute

significantly to the development and progression of the disease.[12]

1.1.4 The vascular hypothesis

The vascular hypothesis of Alzheimer’s disease (VHAD) suggests that the trigger of Alzheimer’s

disease is a chronic reduction in cerebral blood flow (CBF). The hypothesis proposes that the initial

pathological event leading to a neuronal energetic crisis, and thus to neurodegeneration, is chronic

cerebral hypoperfusion. Consequently, what may also increase the risk of Alzheimer’s disease are

vascular risk factors such as hypertension, atherosclerosis, type 2 diabetes, smoking, obesity and heart

disease (all of which may contribute to cerebral hypoperfusion). According to this hypothesis, there

is a critical threshold of cerebral hypoperfusion, called CATCH. CATCH is a precursor to cognitive

decline, oxidative stress and neurodegeneration, which ultimately leads to Alzheimer’s disease. CATCH

is the onset of CBF insufficiency that reaches a critical threshold, in which cerebral haemodynamic

deterioration increases due to an imbalance between CBF supply and neuronal demand; thus, a slow

and progressive decrease in neuronal efficacy occurs. Achieving CATCH impairs neuron-astroglial

metabolism, limiting the supply of high-energy nutrients to the brain, such as oxygen and glucose. This

leads to an ischaemic-hypoxic state, which can also induce Aβ formation in the brain.[13]
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2

BIOLOGICAL BACKGROUND

2.1 APP: Amyloid Precursor Protein

The amyloid precursor protein (APP) is a type I transmembrane protein, and plays a crucial role in

Alzheimer’s disease [14] since it’s considered the main protein involved in the disease according to the

amyloid hypothesis.[6] This protein is encoded by a single gene, and three major isoforms resulting

from alternative splicing have been characterized: APP695, APP751, and APP770. [15]

APP can be cleaved by enzymes as α and β-secretase, generating the extracellular fragments, respectively

sAPPα and sAPPβ, and the carboxyterminal fragments (CTF), α-CTF (CTF83) and β-CTF (CTF99).

Subsequently γ-secretase cleaves the C-terminal fragments, within the transmembrane domain, leading

to the generation of the amino-terminal APP intracellular domain (AICD), and to the release of the

small peptide p3 (from CTF83) or Aβ (from CTF99).[14, 16]

Figure 3: Structure of APP: APP770 structure with its three domains and Aβ peptide fragment. [15]
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Figure 4: Schematic of Amyloid Precursor Protein (APP). Variants named according to amino acid positions
in isoform 1 (Uniprot: P05067), with 770 amino acids https://www.alzforum.org/mutations/app

APP is composed of three main domains: extracellular domain (EC), transmembrane domain (TM)

and intracellular domain (IC).

The extracellular domain of APP is composed of several subdomains with distinct structural features:

• N-terminal signal peptide (SP).

• E1 domain is broken into 2 regions: HBD1 and CuBD.

– HBD1 (heparin-binding domain): this region can bind to heparin and other molecules called

glycosaminoglycans. It contains a β-sheet and a flexible loop. HBD1 helps promote neurite

growth (the development of neuron extensions) and has a strongly positive surface, which

makes it suitable for interacting with negatively charged glycosaminoglycans.
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– CuBD (copper-binding domain): this section is able to bind copper ions. Structurally, it

includes a small β-sheet and an α-helix. It forms a hydrophobic pocket located right next to

HBD1, which could act as a site for protein interaction or dimer formation. Besides copper,

it might also interact with other metal ions.

• The KPI (Kunitz protease inhibitor) domain is present in specific APP isoforms, such as APP751

and APP770. In Alzheimer’s disease, its expression is increased, and this may influence the

production of Aβ peptides. This increased expression has been linked to disruption of metabolic

enzymes and mitochondrial dysfunction, observed in AD. Moreover, mutations in the KPI domain

of APP751 can lead the protein to be trapped in the endoplasmic reticulum (ER), which promotes

increased Aβ production.

• The OX-2 domain is believed to participate in cell surface binding and recognition processes.

• The E2 domain includes both a heparin-binding site (HBD2) and a metal-binding site. It also

features the REMRS motif, which promotes neuronal outgrowth and cell proliferation, and allows

interaction with membrane-bound heparan sulfate proteoglycans (HSPGs).

• The juxtamembrane domain (JMD), located just before the transmembrane region of APP, contains

a GxxxG motif, which facilitates APP dimerization and interactions with other transmembrane

proteins.

• The transmembrane domain of APP is a single-pass α-helix that spans the lipid bilayer. This helix

is amphipathic, with hydrophobic residues oriented toward the membrane and hydrophilic residues

exposed to both the cytoplasm and extracellular space. It plays a key role in APP’s membrane

stability and positioning, and is also important for its interactions with other membrane proteins.

• The Aβ sequence is distributed across both the extracellular/juxtamembrane region and the

transmembrane domain of APP. γ-secretase cleaves APP within the membrane, generating Aβ

peptides ranging from 39 to 42 amino acids. Among these, Aβ42 is less soluble and more prone

to aggregation. Aβ can form oligomers, protofibrils, fibrils, and eventually plaques, which are key

pathological features of Alzheimer’s disease (AD). Although Aβ is constantly produced in the

brain, its aggregation and deposition typically begin in the hippocampus and entorhinal cortex,

marking the early stages of AD pathology.

15



• The APP intracellular domain (AICD) is situated next to the Aβ sequence and contains

phosphorylation sites and a YENPTY motif, which mediates interactions with intracellular

signaling proteins. AICD is generated following γ-secretase cleavage and results from both

amyloidogenic and non-amyloidogenic processing. It has been shown to promote cell death,

increase tau phosphorylation, suppress neuronal activity, and disturb calcium homeostasis, all of

which contribute to neuronal dysfunction. Elevated AICD levels found in the postmortem brains

of AD patients suggest that AICD accumulation may be involved in AD pathogenesis. [15]

After APP is synthesized, the N-terminal signal peptide (SP) fragment is removed. It is then processed

in the Golgi and transported to the plasma membrane, where it is mainly localized. The intracellular

fate of APP depends on its subcellular localization, as it is processed by different enzymes depending

on where it is located.

As mentioned in the section of amyloid cascade hypothesis, there are two main pathways:

• The non-amyloidogenic APP processing pathway involves cleavages by α- and γ-secretases, with

the generation of sAPPα, p3 and AICD50 (cleaved from CTF83);

• The amyloidogenic APP processing pathway involves cleavages by β- and γ-secretases, with the

generation of sAPPβ, Aβ and AICD (cleaved from CTF99). [16]

Figure 5: Processing of APP: amyloidogenic and nonamyloidogenic pathways. [9]
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2.1.1 Non-amyloidogenic process

The non-amyloidogenic pathway is favored when APP accumulates at the cell surface, where it is

cleaved by α-secretase within the Aβ sequence, specifically after Lys687 in the APP770 isoform. This

cleavage, which occurs primarily at the plasma membrane where α-secretase is localized, precludes the

formation of Aβ peptides. Instead, it produces two fragments: a soluble ectodomain called sAPPα,

which is released extracellularly, a membrane-bound C-terminal fragment of 83 amino acids (CTFα or

CTF83). CTFα can be internalized and further processed by γ-secretase within endosomes, generating

the p3 peptide and the APP Intracellular Domain (AICD). [15, 16]

sAPPα

The physiological functions of sAPPα are not yet fully understood, but it is thought to have positive

effects on neurons. In vitro studies have shown that it can protect them from harmful situations, such

as oxygen and glucose deficiency or excessive stimulation by neurotransmitters (excitotoxicity). This

protective action can occurs thanks to its ability to regulate ionic currents: sAPPα reduces the flow of

calcium and increases the flow of potassium, helping to maintain stable resting membrane potential.

Furthermore, it promotes processes that are fundamental for the development and communication

between neurons, such as neurite growth, synapse formation and cell adhesion.

The beneficial functions of sAPPα depend on a site located at the carboxy-terminal end. This region

begins just before the β-secretase cleavage site and extends to the end of the protein, which includes a

heparin-binding motif, which is considered essential for binding to other molecules and for the activity

of sAPPα.

From in vivo studies in mice, sAPPα has been shown to promote cell growth and survival and play

an important role in brain development and cognitive function, although the precise mechanisms are

not yet fully understood. When administered intracerebroventricularly, it can improve memory and

learning, effects associated with increased long-term potentiation (LTP) and NMDA receptor activity,

thus positively impacting synaptic plasticity. In addition to its effects on mature neurons, sAPPα also

acts as a growth factor, stimulating the proliferation of neural stem cells (both embryonic and adult).

It has been noted that in some APP gene mutations there is impairment of the α-secretase cleavage

site, as in the Dutch and Flemish mutations (APP E693Q and APP A692G, respectively). In the APP

Swedish mutation (APP 670/671), a reduction in the concentrations of sAPPα in cerebrospinal fluid

(CSF) was observed, in contrast to cases of sporadic AD in which there seems to be an unchanged or

even higher concentration of sAPPα.[15, 16]
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CTF83

CTF83 is the carboxyterminal fragments generated by the cleavage of APP by α-secretase, in the

non-amyloidogenic pathway. subsequently this fragment will undergo γ-secretase cleavage obtaining

the p3 and AICD fragments. Currently, no relevant biological roles are known for the carboxy-terminal

fragment CTF83. [16]

AICD

AICD is the amino-terminal APP intracellular domain. In the non-amyloidogenic pathway, AICD is

generated by the cleavage of the CTF83 fragment by γ-secretase. In addition to the classic cuts that

produce AICDs of 57 or 59 amino acids, an alternative cut at the ε site, closer to the carboxy-terminal

end, generates a shorter variant, AICD50. It has been proposed that the specific production of AICD50

depends on CTF83 and not on CTF99 derived from β-secretase.

Some authors hypothesize that this dependence may contribute to a reduction in AICD levels in

Alzheimer’s disease. However, it remains uncertain whether the pathology is associated with an excess

of AICD or a loss of its physiological function. The role of AICD in Alzheimer’s disease is still unclear,

but it is thought to be involved in various cellular processes, including gene regulation, apoptosis,

neuronal development, and cytoskeletal dynamics. [17]

2.1.2 Amyloidogenic process

From the cell membrane, APP can be internalized through clathrin-mediated endocytosis, a process

involving the YENPTY motif in its cytoplasmic tail. Once in early endosomes, APP can follow three

distinct pathways:

• Recycling to the plasma membrane, allowing renewed interactions and functional activity.

• Retrograde transport to the Trans-Golgi Network (TGN) via the retromer complex, which enables

the reuse of proteins and lipids.

• Degradation in lysosomes.

Importantly, the internalization of APP into acidic compartments, like early endosomes, promotes the

amyloidogenic pathway. This is due to the presence of β-secretase on endosomal membranes, where its

colocalization with APP in the acidic environment facilitates amyloidogenic cleavage.

At the endosomal membrane, β-secretase (BACE) cleaves APP after Met671 in the APP770 isoform.

This cleavage generates two fragments: a soluble ectodomain (sAPPβ) and a membrane-bound

C-terminal fragment (CTFβ or CTF99).
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CTFβ is subsequently cleaved by γ-secretase within its transmembrane (TM) domain. This proteolytic

activity, which occurs in acidic compartments of living neurons, generates Aβ peptide monomers and

the APP intracellular domain (AICD). [15, 16]

sAPPβ

sAPPβ is the soluble fragment generated by the cleavage of APP by β-secretase (BACE1). It shares

most of its sequence with sAPPα, but differs in the last 16 C-terminal amino acids, which are absent in

sAPPβ. This difference is crucial, since sAPPβ is much less effective in neuroprotective functions and

synaptic plasticity.

Unlike sAPPα, sAPPβ does not participate in long-term potentiation (LTP) and is 50 to 100 times less

effective in protecting neurons against stressors such as excitotoxicity, glucose deprivation, or β-amyloid

toxicity. Furthermore, it is unable to prevent cell death in stressful situations.

Nevertheless, sAPPβ has some specific functions. It is involved in synapse pruning during nervous

system development, a process important for correctly shaping connections between neurons. It

also binds to the DR6 receptor, which activates a molecular cascade (caspase-6) responsible for the

destruction of axons, but not of the cell body, suggesting a role in selective axonal death.

Other research shows that sAPPβ promotes the growth of neurites (the extensions of neurons) and can

promote neuronal differentiation into stem cells, in some cases better than sAPPα. It also stimulates

microglia — the brain’s immune cells — as efficiently as sAPPα, thanks to the shared N-terminal

domain. However, this effect, if prolonged, could have harmful consequences, because microglial

activation is linked to inflammation and neurodegeneration.

In summary, although sAPPβ does not have the same neuroprotective properties as sAPPα, it promotes

neural growth, regulates some protective proteins, and plays a role in development. Its neurotrophic

capacity suggests that the production of Aβ, from which it derives, is not in itself harmful. However,

considering that it stimulates microglia, any therapeutic strategy aimed at increasing sAPPβ levels

should be applied in the very early stages of Alzheimer’s disease, before inflammatory processes

appear.[16, 18]

CTF99

As for the CTF83 fragment, also for CTF99, produced by the action of β-secretase on APP, a biologically

significant function has not yet been clarified.[16]
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Aβ

The Aβ peptide is a key element in the pathogenesis of Alzheimer’s disease (AD). It derives from the

sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretases, mainly at the level

of endosomes and trans-Golgi network.

Figure 6: Schematic of amyloid β (Aβ) peptide, from Alzforum. https://www.alzforum.org/mutations/app

The resulting peptide has variable lengths, from 37 to 49 amino acids. The most common isoforms of

Aβ are Aβ40 and, above all, Aβ42, the form most prone to aggregation and the one most involved in

pathological processes. In hereditary cases and animal models of AD, an increase in total Aβ production

or an increase in the Aβ42/Aβ40 ratio is often observed. In patients, however, a reduction of Aβ42

is detected in the cerebrospinal fluid, considered a good biomarker for AD, probably related to its

greater deposition in amyloid plaques. In monomeric form, Aβ is considered to be structureless and

nontoxic. However, it can self-assemble into more complex structures: soluble oligomers, protofibrils,

and insoluble amyloid fibrils, which are deposited in the brain as senile plaques, characterized by a

typical “crossed β-sheet” structure. In particular, oligomers are considered the most toxic species, as

they inhibit NMDA-mediated synaptic transmission and contribute to synapse loss. According to the

amyloid hypothesis, the accumulation of Aβ, together with aberrant phosphorylation of tau protein,

gives rise to a neurotoxic environment that leads to synapse loss, neuronal damage, and progressive

impairment of brain function, especially in areas involved in memory, learning, and emotion, such as

the hippocampus, entorhinal cortex, and amygdala.

Figure 7: Aβ origin and the mechanism of the amyloid plaques formation. Drolle E et al.(2014)
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Aβ also interacts with various cellular receptors (including PrPc, LRP, mGluR5, and NMDA), activating

signaling pathways that alter synaptic balance and promote neurotoxicity. In addition, Aβ aggregates

can interfere with neuronal metabolism, cause oxidative stress through the production of reactive

species, and promote neuroinflammation through the activation of microglia and astrocytes, with release

of proinflammatory cytokines.

Despite its involvement in Alzheimer’s disease, Aβ is not intrinsically toxic: during brain development,

its production is physiological and plays neuroprotective and neurotrophic roles. At low concentrations

that do not allow the formation of oligomers, Aβ monomers promote neuronal survival, protect

against cell death, and promote the proliferation and differentiation of neural progenitor cells. Aβ

also participates in a negative feedback loop on synaptic activity, contributing to the physiological

regulation of neuronal function. Furthermore, it has shown activity similar to that of antimicrobial

peptides (AMPs), suggesting a possible defensive role in the innate immune system.

In summary, Aβ is a peptide with a double face: physiological and protective at low concentrations,

but potentially toxic when it accumulates in oligomeric forms and insoluble aggregates, contributing

substantially to the neurodegeneration observed in Alzheimer’s disease.[16, 18, 19]

AICD

In the amyloidogenic process, AICD is released by the cleavage of CTF99 by γ-secretase. Regardless

of the cleavage site and therefore its length, AICD retains the consensus motif YENPTY, which is

essential for binding to adaptor proteins such as Fe65 and for the activation of cellular pathways. It can

be further modified post-translationally, for example by phosphorylation. The best-known signaling

pathway of AICD involves its binding to the protein Fe65, which allows the recruitment of the enzyme

TIP60. This complex can then enter the cell nucleus and activate the transcription of specific genes.

In transgenic mice, co-overexpression of AICD and Fe65 induces EEG alterations, increased susceptibility

to seizures, tau hyperphosphorylation, and neuronal loss in old age. These phenotypes do not appear in

models with mutations that prevent caspase cleavage of AICD. Experiments performed on APP-deficient

mice, in which the protein was reintroduced without the YENPTY domain, showed a marked reduction

in Aβ production, probably due to altered APP trafficking in endosomes. This suggests that AICD, or

more generally the YENPTY domain, may contribute to the control of cellular APP trafficking.[16]

Thus, it can be concluded that AICD, independently of the pathway through which it is generated,

has been hypothesized to contribute to the pathophysiology of Alzheimer’s disease. However, its

role remains highly controversial, and it is hypothesized that alterations in AICD levels, related to

γ-secretase activity, may be involved in the early mechanisms of the disease. [17]
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2.2 APP processing enzymes: the role of secretases

2.2.1 α-secretase

α-secretase is an enzyme involved in the processing and cleavage of APP. Its importance derives from

the fact that its cleavage site is located within the sequence of the Aβ peptide, between residues

687-688. Consequently, this cleavage, also called shedding, prevents the formation of Aβ. The products

of this cutting are the secreted N-terminal fragment called sAPPα and a C-terminal fragment (CTF)

called CTFα or CTF83.

α-secretase activity is attributed to one or more members of the ADAM (A Disintegrin And

Metalloproteinase) family, of which ADAM9, 10, 17 and 19 are the leading candidates. In particular,

the overexpression of ADAM10 in a mouse model of Alzheimer’s disease showed a reduction in Aβ

production, plaque deposition and cognitive deficits. These findings support the role of ADAM10 as a

key α-secretase in the pathogenesis of AD, although other ADAM family members may also contribute

to the generation of sAPPα.

The activity of α-secretase is strongly influenced by its subcellular localization. On the surface of the

plasma membrane, the enzyme is considered constitutively active and is the main cleavage pathway

for APP to reach the membrane. In contrast, in the trans-Golgi network, its activity is regulated by

intracellular signals, as Protein Kinase C (PKC). PKC is a family of enzymes involved in cellular signal

transduction that when activated, for example in response to an increase in intracellular calcium,

can stimulate several processes, including vesicular trafficking and the activity of enzymes such as

α-secretase. Thus, in this compartment, α-secretase competes with β-secretase for APP cleavage, but

PKC activation may favor the nonamyloidogenic pathway.

It has been observed that neuronal activity can increase α-secretase activity, and this effect

depends on the presence of calcium inside the cell and involves NMDA receptors. However, some

studies have reported the opposite effect, suggesting that neuronal depolarization may also reduce

α-secretase activity.[15, 16]
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2.2.2 β-secretase

BACE1 is the major β-secretase enzyme in the brain and plays a central role in the formation of the Aβ

peptide, which is implicated in Alzheimer’s disease. BACE1 acts by cleaving APP into two fragments:

sAPPβ, which is released outside the cell, and CTF99, which remains in the membrane and is further

processed by γ-secretase to generate the Aβ peptide. In some conditions, BACE1 can cleave APP at

a slightly different location, producing CTF89 and leading to the formation of a variant of the Aβ

peptide (Aβ11–40).

APP cleavage by BACE1 occurs predominantly within endosomal vesicles, rather than at the cell

membrane. BACE1 is mainly localized in the trans-Golgi network and endosomes, although it can

temporarily reach the plasma membrane via vesicular trafficking, from which it is rapidly recycled.

Neuronal stimulation, such as depolarization and increased vesicular turnover, promotes APP cleavage

by BACE1, but also by α-secretase, in a competitive manner.

BACE1 is initially produced as a proenzyme in the endoplasmic reticulum and must undergo

some modifications to become fully active: the union of two molecules (homodimerization), the cleavage

of the prodomain by enzymes such as furin in the trans-Golgi network and glycosylation. Furthermore,

it can be released from the membrane through a process called shedding, probably mediated by

proteases of the ADAM family, the same ones involved in the action of α-secretase.

At the pathological level, it has been shown that genetic ablation of BACE1 completely prevents

the formation of Aβ and amyloid pathology. However, BACE1 deletion is not without consequences:

alterations in the brain have been observed, such as the reduction of synaptic spines in hippocampal

neurons and behavioral disorders similar to schizophrenia, including hyperactivity, cognitive and

social recognition problems. These effects could arise because BACE1 also acts on other substrates in

addition to APP.

Finally, it is known that BACE1 expression increases under conditions of cellular stress, such as

hypoxia, ischemia, oxidative stress and energy deficiency, and that this increase also depends on

γ-secretase activity.

Although BACE1 is considered the main β-secretase in the pathogenesis of Alzheimer’s disease, recent

studies have questioned its exclusivity, showing that other proteases, such as cathepsins, can also have

β-secretase activity.[16]
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2.2.3 γ-secretase

γ-secretase is an enzyme involved in both non-amyloidogenic and amyloidogenic processing of APP. In

the first case, it acts on the CTFα fragment, generating the peptides p3 and AICD, while in the second

case, it acts on the CTFβ fragment, producing Aβ and AICD. [16]

γ-secretase processes APP in a three-step cleavage process: first the ε cleavage, quickly followed by the ζ

cleavage, and finally the γ cleavage. This pattern, which proceeds from the membrane boundary toward

the interior of the transmembrane domain, suggests an ordered mechanism in which each cleavage

depends on the previous one.

Figure 8: Schematic representation of the ε, ζ and γ cleavage sites of γ-secretase.[20]

• ε site (Aβ49/APP720): it is the first to be cleaved, located close to the membrane boundary.

From this cleavage the intracellular domain of APP (AICD) originates. The proximity of the ε

cleavage site to the membrane boundary may facilitate the access of water molecules, necessary

for peptide bond hydrolysis, to the active site of gamma secretase located in the hydrophobic

environment of the membrane.

• ζ site (Aβ46/APP717): it represents an intermediate step. It was identified thanks to the

detection of Aβ46, whose formation is blocked by gamma secretase inhibitors.

• γ site (Aβ40/42): generates the most common secreted forms of Aβ. Aβ40 is the most abundant,

while Aβ42, more hydrophobic and aggregating, is implicated in the formation of amyloid plaques.

From the formation of the Aβ46 peptide, the cleavage process can follow two main pathways. In the

predominant pathway, Aβ46 is cleaved at the level of Aβ43, which in turn is processed to Aβ40 and in

some cases, Aβ40 can be further shortened to Aβ37.

Alternatively, although with less efficiency, Aβ46 can be cleaved directly at the level of Aβ42. Aβ42

can also be further processed to generate shorter peptides, such as Aβ38 or Aβ39, or be released in its

active form. [20]
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Figure 9: Schematic illustration of sequential cleavages of APP mediated by γ-secretase. After cleavage of
APP by β-secretase, the CTFβ fragment is processed by γ-secretase with successive cuts: ε-cleavage (Aβ49) and
ζ-cleavage (Aβ46). Two pathways branch off from Aβ46: a main pathway Aβ46 → Aβ43 → Aβ40 → Aβ37,
and an alternative (less efficient) pathway Aβ46 → Aβ42 → Aβ38/39.[20]

γ-secretase is an enzymatic complex composed of four essential subunits: presenilin (PS), nicastrin

(NCT), APH-1 and PEN2. It is an aspartyl protease involved in the intramembrane cleavage of over 90

proteins, including APP, Notch, ErbB4, N-cadherin and p75NTR.

Figure 10: γ-secretase complex [21]

PS constitutes the catalytic center of the complex and has nine transmembrane domains. To become

functional, it must undergo endoproteolysis between the sixth and seventh domains, where the two

catalytic aspartyl residues are located, generating two fragments (N- and C-terminal) that remain

associated in the membrane and form the active enzyme. In the absence of this process, full-length PS

is rapidly degraded. Mutations in PS associated with the familial form of Alzheimer’s disease alter

the production of Aβ peptides, favoring more amyloidogenic species or increasing the total amount of

Aβ. The other subunits have structural and functional roles: NCT is involved in substrate recognition,

APH-1 acts as a scaffold for the initial assembly, while PEN2 is involved in the maturation of the

complex and in the proteolysis of PS.
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The assembly of γ-secretase occurs in an orderly manner: in the endoplasmic reticulum NCT and

APH-1 form a scaffold to which PS binds; finally PEN2 completes the complex and induces the cleavage

of PS. The complex is then transported to the Golgi, where it is glycosylated, becoming fully active

only at the end of these steps.

The activity of γ-secretase against APP is strongly influenced by its subcellular localization.

Possible interactions with lipids and proteins play a crucial role in APP trafficking. For example,

LRP1 promotes APP endocytosis, favoring the production of Aβ. Blocking this interaction shifts APP

to the cell surface, reducing amyloidogenic processing. Furthermore, since LRP1 is also a substrate

of γ-secretase, modulation of LRP1 cleavage by γ-secretase can modify APP trafficking. Numerous

studies in murine models have shown that a partial inhibition of γ-secretase can significantly reduce

Aβ production and amyloid pathology, without severely compromising neuronal function. For example,

a moderate reduction of γ-secretase activity led to cognitive benefits in APP transgenic mice. However,

complete inhibition is often associated with neurodegeneration or cognitive deficits, suggesting that

γ-secretase activity is essential for maintaining neuronal function over time.

Several variants of γ-secretase (γ-secretase) have been identified, with different subunits determining

its specificity for APP or other substrates such as Notch. This has allowed the development of more

selective inhibitors to reduce Aβ without altering other important functions. However, even selective

inhibitors must be used with caution, as they can cause side effects, especially in the adult or elderly

brain.[16, 21]

Pathways Secretases Cleavage sites Fragments Notes

α-secretase
APP 687-688

(Aβ16-17)
sAPPα + CTF83

Cleavage of APP

(within the Aβ domain)

Prevents Aβ formationNon-amyloidogenic

γ-secretase
ε-site: APP720-721

ζ-site: APP717-718

γ-site: APP711-712/APP713-714

p3 + AICD Cleavage of CTF83

β-secretase APP 671-672 sAPPβ + CTF99 Cleavage of APP

Amyloidogenic

γ-secretase
ε-site: Aβ49

ζ-site: Aβ46

γ-site: Aβ40/42

Aβ40/42 + AICD
Cleavage of CTF99

Aβ formation

Table 2: APP cleavage pathways and resulting products from α-, β-, and γ-secretases [16, 20]
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2.3 Familial Alzheimer’s Disease Mutations

Alzheimer’s neurodegenerative disease can be sporadic or familial. The sporadic form is the most

common and is usually not associated with any genetic cause but with age and environmental factors.

The familial form is rarer and leads to an earlier onset of the disease, often before the age of 65.

FAD is mainly caused by mutations in three genes: presenilin 1 (PSEN1), presenilin 2 (PSEN2), and

amyloid protein precursor (APP). PSEN1 and PSEN2 are both reported to be part of the γ-secretase

complex. To date, approximately 230 mutations have been identified in these three genes. These

mutations influence a common pathogenetic pathway in the synthesis and proteolysis of APP, leading to

excessive production of Aβ. In particular, these kind of mutations lead to an increased Aβ42 production,

supporting the importance of the amyloid cascade theory.

Clinically, compared to sporadic AD, FAD is distinguished by an earlier age of onset, a positive

family history, a variety of non-cognitive neurological symptoms and a more aggressive course. Initial

symptoms often involve episodic memory, followed by other cognitive deficits. The clinical features

depend on the genotype. For example, PSEN1 mutations tend to have an earlier age of onset and

may present with non-cognitive symptoms more frequently, including an ‘AD variant’ with spastic

paraparesis and CWP (cotton wool plaques). PSEN2 mutations are less common and tend to have a

later age of onset and a more variable course. APP mutations are often associated with more severe

CAA (cerebral amyloid angiopathy), which can lead to cerebral hemorrhage and stroke. APP gene

duplication is also sufficient to cause FAD with CAA. [22]

Amino acid mutations associated with familial Alzheimer’s disease (FAD) in the APP gene are located

close to the cleavage sites of α-, β- and γ- secretases:

• A double missense mutation was identified at the β-secretase cleavage site, found in a Swedish

family: the Swedish KM670/671NL mutation, which is associated with a 4- to 7-fold increase in

total Aβ production.

• Near the α-secretase cleavage site, the APP Flemish (A692G, A21G), APP Arctic (E693G, E22G)

and APP Iowa (D694N, D23N) mutations were identified, known to increase the tendency of

Aβ to aggregate, contributing to toxicity to cerebral vessel cells and the development of cerebral

amyloid angiopathy (CAA).

– Previous studies noted that APP Flemish led to a doubled production of Aβ40 and Aβ42.

– For APP Arctic, a significant reduction in Aβ42 levels was observed, while the amount of

Aβ40 remained unchanged. In vitro experiments showed that the mutated Aβ1-40 variant

forms protofibrils faster and in greater quantity than the wild-type Aβ1-40.
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– In APP Iowa, the production of Aβ40 and Aβ42 was not altered. However, there was

evidence of reduced sAPPα production and marked accumulation of the protein in early

endosomes, consistent with reduced α -secretase activity.

• Around the γ-secretase cleavage site the APP Iberian variant (I716F, I45F) was identified, in

which a 34-fold increase in the Aβ42/Aβ40 ratio was noted, mainly due to a drastic reduction in

Aβ1-40 production. This mutation also leads to a decrease in synaptogenic activity.

Figure 11: Schematic representation of APP695 WT and FAD mutants with indicated Aβ region, transmembrane
domain, and secretase cleavage sites [14]

Recent studies have indicated an essential APP function at the synaptic level. This depends on both

the production of the sAPPα fragment and the full-length APP protein, which appears to act through

trans-synaptic signalling mechanisms. However, specific FAD mutations affect intracellular trafficking,

proteolytic processing and synaptogenic activity of APP, revealing that mutations located at the

cleavage sites of α -, β- and γ-secretases alter these functions through distinct pathogenic mechanisms.

[14]
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2.3.1 The Swedish mutation

The cleavage site of β-secretase (BACE1) on the APP is located between residues Met671 and Asp672

(referred to the APP770 isoform). The cut made by BACE1 generates an N-terminal fragment which

begins with the amino acid Asp672, corresponding to the first residue of the β-amyloid peptide (Aβ)

sequence. Upstream of the β-amyloid sequence are residues involved in the Swedish mutation, named

KM670/671NL. In this mutation, the lysine residue (Lys, K) at position 670 is replaced by asparagine

(Asn, N), while methionine (Met, M) at position 671 is replaced by leucine (Leu, L).

The main effects observed are:

• Increased Aβ production: The Swedish mutation is known to increase the affinity of BACE1

for its cleavage site, resulting in a 4- to 7-fold increase in overall Aβ production compared with

wild-type APP.

• Alteration in proteolytic processing: cleavage by BACE1 leads to increased accumulation of

C-terminal β fragments (β-CTF), also observing increased production of sAPPβ.

• Peptide profiles of modified Aβ: Analysis by mass spectrometry (MALDI-TOF) showed that

although the Aβ1-42/Aβ1-40 ratio remained similar to that of wild-type APP, APP Swedish

generated increased levels of shorter N-terminal fragments, such as Aβ1-14, Aβ1-15, Aβ1-16,

Aβ1-17, Aβ1-19 and Aβ1-20.

• Effects on cellular localization and trafficking: The mutation does not appear to alter the

synaptogenic activity of APP, nor its localization on the cell membrane, the ability to increase

protein complexes or the rate of endocytosis. However, it was observed that accumulation of

the β-CTF fragment leads to an increase in endosome volume, suggesting a possible effect on

endosomal trafficking.

• Evidence from murine models: On a Tg2576 transgenic mouse model expressing human APP

with Swedish mutation, pathological changes typical of AD were observed, including cognitive

deficits, Aβ accumulation, amyloid plaque formation, and loss of synapses.

• Clinical manifestations in patients: Familial AD subjects with the Swedish mutation show a

picture of brain atrophy, characterized by enlargement of cortical furrows and mild dilation of

cerebral ventricles.

In conclusion, the Swedish mutation acts as a potent amplifier of the amyloidogenic pathway, promoting

an increased affinity for β-secretase and thus leading to a marked increase in Aβ production. [14]
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2.3.2 The Iowa mutation

The cleavage site of α-secretase in the amyloid precursor protein (APP) is located within the Aβ

sequence, between residues Lys687 and Leu688 of the APP770 form, corresponding to residues 16 and

17 of the Aβ form. Near this site is the Iowa mutation (D694N according to APP770 or D23N in Aβ

sequence), a genetic mutation associated with the familial form of Alzheimer’s disease (FAD). In this

mutation, the Aspartic acid residue (Asp, D) at position 694 is replaced by the Asparagine residue

(Asn, N). Several studies have shown functional and biochemical alterations associated with the Iowa

mutation, involving both the subcellular localization of the protein and its processing by secretases:

• The Iowa form of APP tends to accumulate more in early endosomes than the wild-type form.

This does not appear to be due to changes in the rate of endocytosis, which remains unchanged,

but probably to an alteration in the regulation of intracellular trafficking of the protein.

• Cleavage by α-secretase appears to be reduced in the Iowa form, resulting in a reduction in the

soluble sAPPα fragment. This finding is consistent with the increased localization of mutated

APP in endosomes, which are compartments less favorable to cleavage by α-secretase and more

favorable to cleavage by β-secretase.

• Accessibility to the β-cleavage site remained unchanged, as no significant differences were found

in processing by β-secretase.

• Regarding γ-secretase, analysis by mass spectrometry (MALDI-TOF) indicated a slight reduction

in Aβ1-40 peptide, resulting in a slight increase in the Aβ1-42/Aβ1-40 ratio, although not

statistically significant.

• Spectrometric analysis revealed a significant increase in Aβ1-19 fragment production and an

increase in Aβ1-33 peptide. In addition, a slightly reduced signal for Aβ1-38 was observed.

Aβ peptides truncated at the N-terminal end from position 5 (Aβ5-29 and Aβ5-33) were also

identified, suggesting activation of alternative processing pathways.

• The Iowa mutation does not significantly alter the synaptogenic activity of APP nor the formation

of protein complexes or the localization of the protein on the cell surface.

• Regarding pathological implications, the Iowa mutation is associated with cerebral amyloid

angiopathy (CAA), a condition in which Aβ peptide accumulates in the blood vessels of the brain,

causing small infarcts and hemorrhages of brain tissue.

• At the molecular level, it appears that this mutation promotes the formation of Aβ fibrils,

contributing to the increased toxicity.
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In summary, the Iowa mutation leads to altered localization of APP in early endosomes, resulting in

decreased processing by α-secretase and specific changes in the levels of certain Aβ peptides, including

an increase in Aβ1-19 and the appearance of N-terminal truncated forms (Aβ5-x).[14]

2.3.3 The Iberian mutation

The γ-secretase cleavage occurs between residues Val711 and Ile712 (for Aβ40) and between residues

Ala713 and Thr714 (for Aβ42) of APP770 protein. In the vicinity of these cleavage sites is the Iberian

mutation. The Iberian mutation (I716F according to APP770 or I45F in Aβ numbering) is a genetic

FAD mutation, in which the Isoleucine residue (Ile, I) at position 716 is replaced by the Phenylalanine

residue (Phe, F).

• In the Iberian mutation, synaptogenic activity is impaired.

• No significant changes in processing by α-secretase or β-secretase were detected compared with

wild-type APP, as no significant alterations in the production of sAPPalfa, sAPPβ, α-CTF or

β-CTF were revealed.

• The Iberian APP mutation has a very marked effect on the way γ-secretase cuts the protein,

significantly altering the production of Aβ peptides. In particular, it causes a sharp increase in

the Aβ42/Aβ40 ratio, which is 34 times higher than normal. This is relevant because Aβ42 is

much more prone to aggregate than Aβ40 and is closely linked to the pathogenesis of Alzheimer’s

disease. Analysis by mass spectrometry (MALDI-TOF) confirmed these changes: there is a

significant increase in Aβ1-38 and Aβ1-42 peptides; at the same time, the level of Aβ1-40 is

significantly reduced. These changes explain why Aβ1-42/Aβ1-40 and Aβ1-38/Aβ1-40 ratios are

much higher than in samples without the mutation. In addition, the Aβ1-17/Aβ1-40 ratio is also

found to be increased, indicating a further alteration in the way APP is cut. Finally, the fact

that Aβ1-40 and Aβ1-42 show such marked differences in their levels suggests that they might

be produced in two separate ways or through different cutting lines by γ-secretase, rather than

being the result of the same sequential pathway.

• In the case of the Iberian mutation, there were no major differences from the wild-type form in

the distribution of APP in the cis-Golgi compartment and on the cell surface. The presence of

APP in early endosomes and the rate of endocytosis were also not significantly altered, suggesting

that the mutation does not substantially alter intracellular trafficking or internalization of the

protein.

• In addition to typical symptoms of Alzheimer’s disease, the Iberian mutation has been associated

with motor deficits and the presence of Lewy bodies in the amygdala, suggesting broader
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neuropathological involvement.In addition, the Iberian mutation was observed to exacerbate

synapse loss and decline in cognitive function. The significant reduction in Aβ40 levels, typical

of this mutation, could contribute to these negative effects, considering that Aβ40 also plays a

modulatory role on Aβ42 aggregation and in synaptic stability.

In summary, the Iberian mutation has a major impact on APP processing by γ-secretase, leading to a

pronounced increase in the Aβ42/Aβ40 ratio and reduced synaptogenic activity. It does not significantly

affect the processing by α- and β-secretases or the cellular localization of APP. Its association with

complex pathology, including potential links to synucleinopathy, distinguishes it from other mutations

studied. [14]
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2.4 F-spondin: a ligand to modulate APP cleavage

F-spondin is a secreted neuronal glycoprotein identified through subtractive hybridization due to its

abundant expression in the floor plate during spinal cord development.[23]

This protein consists of 807 aminoacids and contains three domains:

• N-terminal reelin domain (residues: 29-194);

• Central spondin domain (residues: 195-388);

• C-terminal thrombospondin domains, that consists of six repeats (residues type1: 442-495, type

2: 501-555, type 3: 558-611, type 4: 614-666, type 5: 668-721, type 6: 754-806).[24]

Its expression is high during embryonic development but decreases after birth, though it can be

upregulated following neuronal injury. F-spondin is also widely expressed outside the brain.

Functionally, F-spondin plays a role in axonal pathfinding, neural regeneration, and cell–cell interactions.

It promotes neurite outgrowth, inhibits the adhesion of neural crest cells and endothelial cells to the

extracellular matrix, and impairs endothelial cell migration. In adult animals, sciatic nerve axotomy

significantly increases F-spondin expression distal to the lesion, suggesting its involvement in neuronal

repair.[23]

2.4.1 F-spondin interaction with APP

As already mentioned, according to the cascade amyloid hypothesis, Aβ aggregation in plaques is the

main cause of Alzheimer’s Disease. Aβ originates from the amyloid precursor protein (APP) through a

series of sequential cleavages mediated by BACE1 and γ-secretase. [6]

One of the various therapeutic approaches that has been studied is the inhibition of BACE1 enzyme,

in order to reduce Aβ production. The problem is that BACE1 is not only responsible for initiating

amyloidogenesis, but it also plays a role in various physiological processes in the brain, including the

regulation of sodium currents, synaptic transmission, and myelination. Consequently, its inhibition

could cause dysfunction in normal brain activity.

To solve this drawback, a strategy to inhibit APP processing could be to use potential ligands that could

bind to APP to prevent the beginning of amyloidogenesis. Recent findings indicate that F-spondin is a

potential ligand for APP. It binds to the extracellular APP domain CAPPD, also called E2 domain,

and inhibits the initial β-cleavage of APP by BACE1. This suggests that F-spondin can regulate its

cleavage and consequently may serve as regulator for Aβ formation.[25]
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Studies carried out by Angela Ho and Thomas C. Sudhof in 2004 showed that the presence of F-spondin

significantly decreases the CTFs of APP, by approximately 70-80%. The decrease in CTFs caused by

F-spondin is not simply a reflection of a small decrease in APP levels but is due to a large decline in

APP cleavage by relatively low levels of F-spondin.[23]

2.4.2 F-spondin interaction with ApoEr2

Recent genome studies have identified apoE as the primary genetic risk factor for late-onset Alzheimer’s

disease. In affected brains, apoE is a component of most plaques and it influences Aβ production,

aggregation, and clearance and has been described as a pathological chaperone.[26] A chaperone is a

protein that helps other proteins to fold correctly or prevent the formation of toxic aggregates. However,

ApoE (especially the ApoE4 isoform) can instead promote abnormal aggregation of Aβ, promoting the

formation of the amyloid plaques that characterize Alzheimer’s disease.[27, 28]

Its normal functions are mediated by the low-density lipoprotein receptor (LDLR) family. ApoE

interacts with several LDLR family members, including apoE receptor 2 (apoEr2), which facilitate the

cellular endocytosis of apoE-containing lipoproteins.

Recent research has discovered structural and functional links between APP and this receptor family.

Apolipoprotein E receptors and APP share important features: they are type I transmembrane

proteins with large extracellular and small cytoplasmic domains, and both undergo γ-secretase cleavage,

generating intracellular domains that associate with common adaptor proteins.

APP and apoE receptors seem to interact through extracellular and intracellular proteins. In the

extracellular domain, F-spondin interacts with APP and with some of the apoE receptors, including

Apoliprotein E receptors 2 (ApoEr2):[26, 29]

• The interaction between F-spondin and ApoEr2 occurs through the thrombospondin domain of

F-spondin and the ligand binding domain of ApoEr2 (containing ligand binding domain repeats

1, 2, 3, 7 and 8). The thrombospondin domain has six repeats, and only the first four repeats

interact with ApoEr2.

• The last two thrombospondin repeats (5-6) of F-spondin, which aren’t involved in the interaction

with ApoEr2, binds the extracellular matrix.

• The interaction between F-spondin and APP takes place through the reeler and spondin domains

of F-spondin and the central APP domain (or ectodomain E2).
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Some experiments showed that:

• F-spondin treatment promoted cell surface levels of APP and ApoEr2.

• Full-length F-spondin increased cleavage of ApoEr2, consequently secreted ApoEr2 and ApoEr2

CTF, and increased levels of secreted APP and APP CTF. This doesn’t occur with only single

F-spondin domains.

• Full-length F-spondin increased levels of secreted APP and APP CTF, but decreased β-CTF,

suggesting that F-spondin inhibits β-secretase cleavage.

• There is a decrease in secreted Ab40 levels (by 7%) and Ab42 levels (by 50%).

• The inhibitor of apoE receptor family (RAP) prevented F-spondin from influencing APP

proteolysis, this means that the effects on APP proteolysis are mediated by interactions with

apoE receptors.

• F-spondin enhances the levels of α-CTF of APP and CTF of ApoEr2 in transfected cells, primary

neurons, and brain.

There is also an intracellular interaction between APP and ApoEr2. F-spondin enhances their

extracellular binding, while intracellularly, adaptor proteins like Fe65 may link them. In the intracellular

region, adaptor proteins such as JIB and Dab1 may influence downstream signaling pathways.[26]

Figure 12: Model of APP, ApoEr2, and F-spondin interaction [26]
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3

MATERIALS AND METHODS

3.1 Introduction

In this thesis work, computational molecular modeling methods were used to investigate the interactions

between different variants of the APP protein and the F-Spondin protein, with the aim of better

understanding the molecular mechanisms involved in Alzheimer’s disease.

The adopted approach is part of a multidisciplinary context that combines bioinformatics, computational

chemistry and structural biology. In particular, starting from the amino acid sequences obtained from

the UniProt database, three-dimensional (3D) structures of the proteins of interest, wild-type APP, its

mutant variants (Swedish, Iowa and Iberian) and the F-Spondin segment containing the Reelin and

Spondin domains, were generated using AlphaFold. Subsequently, preliminary molecular dynamics (MD)

simulations lasting 5 ns were performed on all the protein structures, aimed at structural stabilization

and conformational optimization. The mutated APP structures were then aligned to the wild-type

form to allow a consistent comparison of interactions in subsequent molecular docking studies.

Molecular Docking was performed between each APP variant and F-Spondin, thus generating the

following molecular complexes:

• Wild-type APP + F-Spondin;

• Swedish APP (KM670/671NL) + F-Spondin;

• Iowa APP (D694N)+ F-Spondin;

• Iberian APP (I716F) + F-Spondin.

Through these techniques it was possible to model the interaction between proteins at the atomic level,

enabling more in-depth analyses, such as the estimation of binding energies and the exploration of the

mechanical and dynamic properties of the formed complexes. In this way, molecular simulation confirms

itself as an innovative and powerful method to investigate the structure, dynamics and biological

functions of macromolecules involved in pathological processes.
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3.2 Multiscale Modeling of Biological Systems

In recent years, systems biology has changed the way to study biological processes, proposing an

integrated and multidisciplinary approach to understand the complexity of living organisms. By

combining knowledge from genomics, proteomics, biochemistry, physiology, mathematics, and computer

science, this field aims to model and analyze intra- and intercellular dynamics across different spatial

and temporal scales. A central objective is the development of mathematical and computational

models capable of describing biological phenomena from the molecular to the organ level. In this

perspective, molecular and multiscale modeling play a key role, especially in structural biology, where

the three-dimensional structure of macromolecules, such as proteins and nucleic acids, is essential to

understanding cellular function. These models allow to realistically simulate biomolecular interactions,

predict the effects of structural mutations and study the mechanical and dynamic properties of complex

biological systems. To understand the emergent behavior of living systems, both in physiological and

pathological conditions, the convergence of different disciplines and a constant interaction between

experimental and computational approaches is necessary.

To fully understand biological functions, it is necessary to integrate information across various levels of

biological organization, each of which operates on specific spatial and temporal scales:

• Atomic/Subatomic: ab initio quantum simulations that consider electron-electron interactions,

typically on systems composed of 100-1000 atoms.

• Molecular: classical atomic dynamics is studied, based on Newton’s laws, applied to larger systems

with 10k-100k atoms, with simulation times in the order of 100–1000 ns.

• Macromolecular: to manage more complex systems simplified models are used, called Coarse

Graining, which allow longer simulations but with reduced precision.

• Subcellular: a continuous approach is adopted, often based on partial differential equations

(PDEs), to model the flows and diffusion of substances on a mesoscopic scale.

• Cellular: The cell, the basic unit of physiology, is modeled through ordinary differential equations

that describe its interactions and functions.

• Tissue: Groups of cells coordinated with each other are considered; space-dependent processes

are represented with partial differential equations.

• Organ: different tissues integrate to form a functional structure; modeling also includes geometric

aspects, such as the use of finite element models.
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• System/Organism: different interconnected organs work together to perform complex functions;

modeling must take into account the feedback mechanisms that regulate these interactions.

• Environment: the mutual influence between organism and environment is considered, which

includes signals, other organisms and various external factors that can impact the biological

system.

Since many of these interactions are not directly observable experimentally, computational models are

essential for capturing the nonlinear dynamics of biological systems. Depending on the scale, different

physical laws and computational methods apply:

• Quantum mechanics for electronic phenomena

• Molecular dynamics for atomic interactions

• Mesoscale models for molecular assemblies

• Continuum models for tissues and organs

Multiscale modeling is therefore essential to connect properties at the molecular level with behaviors

observable at the macroscopic level. In the biological field, spatial scales can be defined based on

the hierarchy of biological organization, while temporal scales depend on the speed of physiological

processes.[30]

Figure 13: Hierarchy of multiscale modelling
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3.3 Structural predictions using the AlphaFold Server

AlphaFold Server is a free online platform (for non-commercial use only) that allows to predict with

great accuracy the 3D structure of many biological molecules, such as proteins, DNA, RNA, small

ligands, ions and even chemically modified residues. The service is based on the new AlphaFold 3 (AF3)

model, developed by Google DeepMind and Isomorphic Labs (2024), a very advanced evolution of the

previous AlphaFold 2 (AF2). [31]

AF2 has greatly expanded the structural knowledge of the human proteome, providing models with

an accuracy comparable to experimental accuracy and facilitating techniques such as cryo-EM, X-ray

crystallography and nuclear magnetic resonance (NMR). [32]

AF3 represents a breakthrough in molecular modeling, accurately handling heterogeneous biomolecular

complexes that include almost all types of molecules present in the Protein Data Bank, particularly

improving predictions of difficult interactions. This makes it a valuable tool for both basic research, to

better understand cellular mechanisms, and drug development, where an accurate structural information

is essential.

AF3 introduces a new architecture based on a diffusion process. The system receives protein sequences,

ligands and chemical bonds as input, and uses specific modules to process this information: one of these

(Pairformer) focuses on the relationships between pairs of atoms, reducing the use of multiple sequence

alignments. The diffusion module directly predicts the basic atomic coordinates, without having to go

through more complex representations such as angles or twists of side chains. This module is trained

to correct the noise in the atomic coordinates, learning to recognize both local details and the global

structure of the complex. During the prediction, it starts from a random configuration and gradually

cleans it up until it obtains the final structure.

AF3 is optimized to quickly learn local structures, but requires more time to model complex interactions

such as those between different proteins. Finally, to ensure reliable results, especially on difficult

complexes such as antibody-antigen ones, it generates many different structures and selects the one

with the highest confidence.

Despite its potential, AF3 still has some limitations. It can sometimes violate the rules of stereochemistry,

generating structures with overlapping atoms or wrong chirality. It can also produce disordered regions

that do not resemble typical structures seen in experiments. Furthermore, the predicted structures

are static and do not reflect the dynamic behavior of molecules in solution. In some cases, it can only

predict one conformational state even if more than one exists. Finally, for very difficult complexes, such

as those between antibodies and antigens, it may be necessary to generate many predictions to obtain

reliable results. [33]
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3.4 Molecular Mechanics

Molecular mechanics (MM) is a discipline developed in the 1970s that applies the principles of classical

(Newtonian) mechanics to model the structure and behavior of molecules, from the simplest to complex

systems such as proteins, nucleic acids or materials made up of millions of atoms. In this context,

atoms are treated as point masses connected by springs that represent chemical bonds, according to a

model called mass-spring. The interactions within the molecule are described by force fields, which are

mathematical functions that include parameters related to bonds, angles, torsions and non-bonded

interactions. MM is widely used in theoretical, computational and experimental fields (for example in

structural analyses using X-rays or NMR). Simulations allow us to build realistic molecular models,

optimize them from an energetic point of view and predict the behavior of new substances before their

synthesis, with applications ranging from molecular biology to drug design, up to advanced materials

and nanotechnologies. [34]

Molecular mechanics is based on some simplifying assumptions, including the fundamental

Born-Oppenheimer approximation, which allows the motion of electrons to be separated from that of

nuclei. Although electrons are not represented explicitly, their properties are incorporated into the

parameters of force fields. Since they adapt rapidly to changes in the position of nuclei, the energy of

the system can be treated as an exclusive function of nuclear coordinates. Energy variations that arise

from atomic motion, such as rotations of bonds or more complex rearrangements, are described on a

potential energy surface, where stationary points identify stable configurations, i.e. energy minima.

The force fields used in MM, even if based on relatively simple functions, produce reliable results. A

key property is transferability, i.e. the ability to apply parameters developed on small molecules to

larger systems without losing their accuracy.

MM force fields consider four main components: bond stretching, angle variation, torsion around

single bonds, and non-bonding interactions. Each term is associated with specific internal coordinates,

simplifying both the analysis of molecular behavior and the parameterization step.[35] The total

potential energy depends on the relative positions of the atoms in the system and varies according to

the force field adopted. The force field represents the set of parameters and mathematical functions

used to describe atomic interactions. Each interaction term is modeled by specific equations, aimed at

accurately reproducing molecular geometries, energies and dynamic properties.[36]
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3.4.1 Potential Energy Surface and Energy Minimization

The Potential Energy Surface (PES) is a multidimensional function that describes the potential energy

of a system as a function of its atomic coordinates. A system consisting of N atoms is defined by 3N

Cartesian coordinates and 3N-6 internal coordinates, and the PES represents how the energy varies as

these coordinates vary. It is defined in a high-dimensional space; the commonly used three-dimensional

representation is actually a simplified projection of the Potential Energy Surface, referred to as energy

landscape.

The potential energy function is expressed as the sum of the contributions from bonded and non-bonded

interactions:

V = Vbond(r1 + r2 + · · ·+ rn) + Vnon-bond(r1 + r2 + · · ·+ rn) (Equation 1)

Bonded interactions include:

• Covalent bond stretching

• Angle deformation

• Dihedral angle

• Improper dihedral

Non-bonded interactions include:

• Van der Waals interactions

• Electrostatic interactions

• Hydrogen bonds

Figure 14: Schematic representation for (a) covalent bonding , (b) bond angle interactions, (c) dihedral angles,
(d) improper dihedral, (e) long range Van der Waals and (f) electrostatic interactions.
from: Kouza, Maksim. (2013). Numerical Simulation of Folding and Unfolding of Proteins.
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Bonded interactions refer to pairs of atoms joined by a covalent bond and, in molecular mechanics

(MM), are modeled as harmonic potentials that depend on the bond length.

V (l) =
Ø

bonds

1
2Kl(l − l0)2 (Equation 2)

• Kl: force constant.

• l0: reference bond length, assumed when all the other forcefield terms are zero.

• l: equilibrium bond length, that minimizes V when all the terms are considered.

Figure 15: Different models for bond
terms: harmonic, Morse, and cubic
potentials

The chemical bond is modeled as an ideal spring with a potential

V (l) that is zero at the equilibrium length l0. Since the energy

dependence is quadratic, the potential assumes a parabolic shape,

increasing symmetrically both for compression (l < l0) and for

extension (l > l0) of the bond. However, the atoms are not

static: the bond length oscillates around an average value due

to thermal vibrations. The harmonic model is valid only near l0,

i.e. near the energy minimum, and does not correctly describe

the formation or breaking of covalent bonds. In compression, the

energy should rapidly tend to infinity to avoid the overlapping

of the atoms, in accordance with the Pauli exclusion principle; in

extension, the energy should instead decrease beyond a certain

threshold, until it vanishes with the breaking of the bond.

The relative motion of three atoms arranged in a plane defines an angle, which represents an

interaction among the particles. This interaction can often fluctuate unpredictably, for instance due to

molecular collisions. Such angular variations are typically modeled as harmonic interactions.

V (θ) =
Ø

angles

1
2Kθ(θ − θ0)2 (Equation 3)

• Kθ: force constant

• θ0: reference bond angle, assumed by the bond without considering the other forcefield terms.

• θ: equilibrium bond angle, that minimizes V when all the terms are considered.

In reality, the angle between three atoms is subject to vibrational motions that depend on temperature,

causing potential experimental errors in the determination of the reference length.
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The dihedral angle describes the rotation between two planes defined by a system of four

consecutively bonded atoms. In particular, it represents the rotation of the fourth atom with respect to

the plane formed by the first three. The energy contribution associated with this torsion takes into

account the steric effects between the atoms and is generally modeled as a sum of cosine terms.

V (ϕ) =
Ø

dihedrals
Kϕ[1 + cos(nϕ− δ)] (Equation 4)

• Kϕ: energetic cost related to the angle deformation.

• n: multiplicity, the number of energetic minima along a 360° rotation.

• δ: phase, determines the minimum position for the torsional angle.

In the case of planar molecules, a deformation of the bonds with respect to the plane defined by the

structure can occur. This motion is described by the improper dihedral angle, an additional term in the

potential that energetically penalizes deviations from the expected planarity. The associated energy is

generally modeled by a harmonic function.

V (ζ) =
Ø

improper
dihedrals

1
2Kζ [ζ]2 (Equation 5)

When two particles approach each other, a balance is established between attractive and repulsive

interactions that influence the stability and behavior of the system. The study of these interactions

falls within the scope of intermolecular forces, whose associated potential energy depends not only on

the distance between the particles, but also on their mutual spatial configuration.

Non-bonded interactions are generally divided into electrostatic and Van der Waals potentials, and are

usually modeled as functions inversely proportional to the distance between two atoms.

Van der Waals interactions can occur between neutral particles and are generally short-range,

becoming significant only when atoms are close enough to interact without forming chemical bonds. If

the atoms get too close, the overlap of their electron clouds generates repulsive forces that prevent

them from interpenetrating. Conversely, as the distance increases, the interaction strength gradually

decreases until it vanishes. However, there exists an intermediate equilibrium distance corresponding to

an energy minimum, toward which the particles naturally tend. These interactions affect all atoms in

the system and become negligible beyond approximately 1 to 1.5 nm.

Van der Waals forces are classified into:

• Short-range repulsive interactions, responsible for the steric exclusion of atoms;

• Long-range attractive interactions (up to 1.5 nm), including London dispersion forces.
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The Lennard-Jones potential is a widely adopted model for describing the physical behavior of these

interactions.

V (r) = 4ε
51σ

r

212
−

1σ
r

26
6

(Equation 6)

σ and ε are parameters of the forcefield:

• σ: collision diameter, the minimum interaction distance at which the potential is zero.

• ε: the minimum value of the potential energy at equilibrium.

There are force fields, such as AMBER, that use a specific Lennard-Jones function with 12-10 exponents

to model hydrogen bond interactions.

Charged particles are subject not only to Van der Waals interactions but also to an electrostatic

potential. This is a long-range interaction that can occur between two particles up to distances of

about 10 nm. The electrostatic interaction is calculated using Coulomb’s law:

V (r1, r2, . . . , rn) =
NØ

i=1

NØ
j=i+1

5
qiqj

4πε0εrrij

6
(Equation 7)

• ε0: vacuum permittivity

• εr: relative permittivity (dielectric constant)

• rij : distance between atoms i and j

Once all the terms have been defined, the total expression of the potential energy function can be

written as follows:

V (r1, r2, . . . , rN ) =
Ø

bonds

1
2Kl(l − l0)2 +

Ø
angles

1
2Kθ(θ − θ0)2 +

Ø
dihedrals

Kϕ

#
1 + cos(nϕ− δ)

$
+

Ø
improper
dihedrals

1
2Kζ [ζ]2 +

NØ
i=1

NØ
j=i+1

C
qiqj

4πε0εrrij
+ A(i, j)

r12
ij

− C(i, j)
r6

ij

D
(Equation 8)

This equation consists of bonded and non-bonded terms. It enables the construction of a mechanical

model of a molecular system, as the properties of each atom, their types, and the interactions between

them are known. [36]
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In molecular simulations, all the atoms of the system are contained inside a virtual box, which can

assume different geometric shapes and is generally filled with solvent. To simulate a more realistic

environment and avoid the artifacts introduced by artificial boundaries, Periodic Boundary Conditions

(PBC) are applied, which replicate the box indefinitely in all directions. In this way, boundary effects

are significantly reduced: particles that exit from one side of the box automatically re-enter from

the opposite side, keeping the number of particles constant and ensuring a stable distribution of the

dynamic properties of the system, such as velocity. However, the use of PBC is not without limitations.

One of the main issues concerns long-range interactions, especially when a particle, moving, could find

itself interacting with its own periodic image. For van der Waals interactions, it is sufficient to define a

sufficiently large box (greater than 1.5 nm) to avoid such overlaps, but in the case of charged particles,

electrostatic interactions can still introduce significant errors, such as artificial repulsive forces. For this

reason, it is essential to respect the Minimum Image convention, which requires that a particle must

never interact with its replica.

Thus, while PBC effectively simulate an infinite and continuous environment, eliminating boundary

discontinuities, they require careful definition of box dimensions to avoid introducing artifacts that

could compromise the accuracy and reliability of the simulation.

Figure 16: Periodic box 2D Figure 17: Periodic box 3D

In molecular modelling, the solvent, typically water, plays a crucial role in determining the structure

and dynamics of biomolecules, helping, for example, to shield electrostatic interactions. To account for

these effects, an explicit model can be adopted, directly including water molecules in the system, or an

implicit model, which simulates the effect through approximations, such as modifying the dielectric

constant or more complex models. The explicit model is more realistic, as it accurately describes

phenomena such as solvation and the hydrophobic effect, but it is much more computationally expensive,

mainly due to the large number of water molecules and the associated structural constraints. Implicit

models, on the other hand, are more efficient but less accurate. [36]
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Given the complex topology of the Potential Energy Surface, the system’s behavior is strongly influenced

by its location within the energy landscape. Regions corresponding to local minima are of particular

interest, as they represent relatively stable states, while transition regions between minima may reflect

possible structural or functional changes. Since configurations far from an energy minimum are unstable

and subject to large forces, it’s essential to reduce the potential energy of the system through an energy

minimization process.

The energy minimization is a preliminary step that allows to eliminate structural stresses and prepare

the system for reliable dynamic simulations. Starting a simulation from a non-minimized structure

can cause numerical instability, non-physical collisions and the failure of the simulation itself, due to

excessive accelerations induced by too strong forces.

Minimization identifies the local minimum closest to the initial configuration, although not necessarily

the global one. Minimization methods, derivative or non-derivative, operate by iteratively modifying

the coordinates of the system to progressively reduce the energy, without providing direct information

on the thermodynamic properties, but preparing the system for the study of its dynamic evolution.

Figure 18: Two-dimensional representation
of a potential energy landscape as a function
of mechanical coordinates. Points A and B
represent local minima, while point C lies
outside a minimum. Arrows indicate possible
transitions along the energy surface.

Figure 19: Three-dimensional representation
of a Potential Energy Surface (PES), showing
how the potential energy varies with respect
to atomic coordinates. The surface illustrates
the existence of multiple local minima,
separated by energy barriers.

Derivatives of potential energy provide fundamental information for minimization: the first derivative,

i.e. the gradient, indicates the direction of maximum energy variation and its intensity represents its

local slope. Since the force acting on each atom is defined as the opposite of the gradient, the system

configuration can be improved by moving the atoms along this direction to reduce the energy. Second

derivatives, instead, describe the curvature of the surface and allow to identify stationary points. [37]
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The Steepest Descent method exploits this property by moving in the direction of the net force, along

the steepest descent of the energy landscape. Once the direction is established, it is necessary to

determine the amplitude of the displacement. There are two main approaches: the Line Search, which

estimates the minimum along the gradient by interpolating three points with a parabola, and a simpler

but computationally efficient method, used for example in GROMACS [38], based on arbitrary steps:

the position is updated according to the relation xk+1 = xk + Lk ∗ Sk, where Sk is the direction and

Lk the step length. If the energy increases, it is assumed that the minimum has been exceeded and the

step is reduced.

This algorithm is effective in the early stages, when the system is far from the minimum and the

slopes are steep. However, near a local minimum it loses efficiency and may not detect intermediate

minima if the step is too large. The choice of step length is therefore a trade-off between accuracy and

speed: small steps increase precision but slow down convergence, while large steps speed up the process

at the expense of stability. Minimization algorithms find single local minima without exploring the

surrounding energy surface, thus providing only isolated points. This does not allow the computation

of macroscopic properties, which instead require sampling of multiple configurations achievable by

molecular dynamics methods. [37]

3.4.2 Molecular Dynamics

Molecular dynamics (MD) is a deterministic computational method used to study the temporal evolution

of a system of atoms or molecules, by solving Newton’s equations of motion. Starting from initial

positions and velocities, the forces acting on the atoms, calculated as the gradient of the potential

energy function, allow to determine accelerations, from which, by numerical integration, the trajectories

of the system are obtained, i.e. the evolution over time of its atomic configurations.

Unlike minimization algorithms, which provide single stable configurations (local minima) without

exploring the surrounding space, molecular dynamics allows continuous sampling of the phase space,

making it possible to analyze the entire energy landscape and estimate the average properties of the

system.

MD is based on the ergodic hypothesis, according to which, on sufficiently long time scales, the temporal

average of a property corresponds to its average on the statistical ensemble. If a system evolves for a

sufficiently long time, it will explore all the microstates compatible with its macrostate. In this way,

the temporal average of a property along the trajectory of the system coincides with the ensemble

average calculated on all the microstates. This equivalence allows to estimate macroscopic properties of

the system starting from the dynamic sampling of its configurations.[39]
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A statistical ensemble is a mathematical abstraction that represents the set of all microstates accessible

to a molecular system under defined thermodynamic conditions. Each microstate is described by 6N

variables (position and momentum for each of the N atoms). The choice of the ensemble is fundamental

to calculate the macroscopic properties of the system. Different ensembles are used in molecular

dynamics simulations, including:

• NVE (microcanonical): constant energy, volume and number of particles (isolated system);

• NVT (canonical): constant temperature, volume and number of particles;

• NPT (isobaric-isothermal): constant pressure, temperature and number of particles;

• µVT (grand canonical): constant temperature, volume and chemical potential (open system).

Individual microstates aren’t significant on their own; to obtain meaningful information, one must

consider averaged macroscopic properties.

The ensemble average of a property 〈A〉 is computed by integrating all possible configurations weighted

by their probability distribution:

⟨A⟩ =
Ú Ú

A(r, p) ρ(r, p) dr dp (Equation 9)

• r and p: positions and momenta of the particles;

• ρ(r, p): probability density function of the ensemble.

The probability density function is:

ρ(r, p) = e
−H(r,p)

KB T

Q
(Equation 10)

• H(r, p): Hamiltonian of the system;

• KB : Boltzmann constant;

• Q: partition function.

The partition function Q is a dimensionless normalizing sum over the Boltzmann factors of all microstates

of the system. It links microscopic thermodynamic variables to macroscopic state functions, providing

a complete thermodynamic description of the system: once the partition function is known, the entire

state space can be determined.

Q =
Ú Ú

e
−H(r,p)

KB T dr dp (Equation 11)

The integral is generally challenging to compute, as it requires accounting for all possible states of the

system. To obtain meaningful results, configurations must be sampled from the entire ensemble.
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An alternative approach to computing an ensemble average relies on the Ergodic Hypothesis, which

allows the property A to be evaluated as a time average. This involves generating system configurations

sequentially over time, enabling the approximation of the ensemble average.

⟨A⟩time = lim
τ→∞

1
τ

Ú τ

t=0
A(r(t), p(t)) dt ≈ 1

M

MØ
t=1

A(r, p) (Equation 12)

• t: simulation time;

• M : number of time steps in the simulation;

• A(ρ, r): instantaneous value of A

The goal of a molecular dynamics simulation is to solve Newton’s equations of motion in order to obtain

the trajectories of the particles that is the evolution of their positions and velocities over time. This

requires three fundamental components:

1. The initial positions of the atoms;

2. An initial distribution of velocities;

3. The acceleration, calculated as the gradient of the potential energy.

The process begins with the definition of the system’s initial conditions, typically provided by a pdb file

containing atomic coordinates, usually corresponding to those obtained after an energy minimization

step. Each atom is then assigned an initial velocity, which can either be set to zero or randomly

generated from a Maxwell-Boltzmann distribution at a specified temperature. This distribution gives

the probability that an atom i has a velocity vx in the x direction at a temperature T . [39]

p(vix) =
3

mi

2πKBT

4 1
2

e
− 1

2
miv2

ix
KB T (Equation 13)

Figure 20: Maxwell-Boltzmann distribution of
particle velocities at 300 K. The curve shows
the probability density as a function of velocity,
illustrating the probability that particles have a
given velocity at this temperature. [39]

Figure 21: Maxwell-Boltzmann distribution of
particle velocities at temperatures 100 K, 300 K
and 500 K. As temperature increases, the curves
broaden and flatten, with the peak shifting toward
higher velocities, indicating greater average and
range of molecular speeds.[39]
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From the potential energy function, the forces acting on the system are computed as the gradient

of the energy. Applying Newton’s second law, the accelerations of the particles are determined. By

integrating these accelerations over time, new velocities and positions are obtained, thereby generating

a trajectory that describes the dynamic evolution of the system.


Newton’s 2nd law Fi = miai = mi

d2ri

dt2

Force as gradient of potential Fi = −∇iV

⇒ −dV
dri

= mi
d2ri

dt2

Acceleration as the derivative of the potential energy with respect to the position r, for each molecule i:

ai = − 1
mi

dV

dri
(Equation 14)

Due to the complexity of the function describing the system, the equations of motion cannot be solved

analytically, but require numerical resolution. It is common to integrate Newton’s equations numerically

using approximate methods based on discrete increments of time, in a procedure known as integration.

Integration algorithms must satisfy some fundamental criteria: they must conserve the energy and

momentum of the system, be computationally efficient and allow the use of a sufficiently large time

step. These methods are based on the assumption that positions, velocities and accelerations can be

approximated by a Taylor series expansion.

Among the most used integration algorithms are:

• Leap-Frog calculates positions and velocities separately, which are staggered in time: this allows

good control over energy conservation but does not provide both values simultaneously;

• Position Verlet uses information from previous positions and accelerations to estimate new

positions, without directly calculating velocities;

• Velocity Verlet allows to obtain positions, velocities and accelerations simultaneously, ensuring

greater precision and efficiency. This makes it one of the most used algorithms in molecular

simulations.

The integration step dt, in molecular simulations, is generally between 1 and 2 femtoseconds. This

value is chosen to be approximately one tenth of the shortest oscillation period present in the system,

which usually corresponds to the vibrations of covalent bonds and the motion of hydrogen atoms. The

use of a larger step would result in a significant loss of information and could compromise the stability

of the simulation. [39]
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Molecular dynamics is traditionally formulated in a Hamiltonian way, which implies the conservation of

energy during simulation in microcanonical ensembles (NVE). However, in most cases, to represent a

physical system more realistically, it is preferred to use canonical ensembles (NVT) or isobaric-isothermal

ensembles (NPT). For this reason, the equations of motion must be modified by introducing thermostats

and barostats, devices that allow to control the temperature and pressure of the system.

The thermostat is used to maintain the desired temperature of the system, acting on the control of the

velocities of the particles, since the temperature is related to the average kinetic energy. A scaling factor

λ is introduced on the velocities, which allows to switch instantaneously from an initial temperature

to a new target temperature. However, this direct procedure can introduce dynamic instabilities and

compromise sampling, as the particles can move too abruptly, risking losing important information on

their positions. To overcome this problem, Berendsen proposed a ’weakly coupled’ thermostat, which

gradually heats the system by coupling with an external ’thermal bath’ (reservoir). The temperature

of the system evolves towards that of the reservoir with a dynamics characterized by a coupling time

τ . In this way, the velocities are progressively scaled through a factor λ calculated from time to time,

allowing the system to fluctuate around the desired temperature with less instability.

Similarly, the barostat controls the pressure by varying the volume of the system. Through coupling

with an external reservoir, the volume is scaled to maintain constant pressure, adapting to the natural

fluctuations and compressibility of the system. [39, 40, 41]

Figure 22: MD flowchart. Starting from known atomic positions and velocities, the potential energy V is
calculated, and the forces Fi are then obtained by deriving the potential energy function. Newton’s equations of
motion are subsequently integrated to determine the new atomic positions and velocities. This process is repeated
iteratively until the system reaches an equilibrium state. [1]
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MD WORKFLOW

Initial Coordinates For proteins, the initial atomic configuration is typically derived from
experimental data obtained through X-ray crystallography or nuclear
magnetic resonance (NMR), and collected in databases such as the
Protein Data Bank (PDB). PDB files contain detailed information
on the molecular structure of proteins, but do not include any data
related to the force field.

Energy Minimization Once the initial coordinates and force field parameters are defined,
the potential energy function of the system can be constructed. An
energy minimization step is then performed to eliminate unfavorable
interactions that lead to high potential energy and large atomic forces,
which could compromise the stability of the simulation. The system
iteratively explores the energy landscape by evaluating the gradient of
the potential function and moving toward lower-energy configurations
until a local minimum is reached.

Assign velocities The output of the energy minimization is a new PDB file containing
the updated atomic positions. Before starting the molecular dynamics
simulation, it is necessary to assign initial velocities to the atoms.
These can either be set to zero or randomly generated according to
a Maxwell–Boltzmann distribution at the desired temperature.

Equilibration During the equilibration phase, the system is brought to the target
temperature (typically 300 K) and/or pressure (typically 1 atm).
When an explicit solvent is used, harmonic position restraints are
commonly applied to the heavy atoms of the protein. These restraints,
modeled as additional potentials, act like springs anchored to fixed
reference points to prevent large atomic displacements from the
minimized structure. This helps maintain structural integrity and
avoids denaturation during heating. The restraint term is added to
the potential energy function, allowing the system to gradually reach
thermal and structural equilibrium. Once a stable state is achieved,
the restraints can be removed.

Production (MD) Production phase of the MD simulation: Once the restraints are
removed, the system undergoes molecular dynamics simulation for the
desired time (e.g. 100 ns), and the full trajectory, containing atomic
positions and velocities at each time step, is recorded. During this
phase, the protein is free to move and explore its conformational space.
Throughout the simulation, relevant properties are computed across
the sampled states, and the final output is the complete trajectory
describing the system’s time evolution.

Analysis Once the simulation is complete, the resulting trajectory can be
analyzed to extract both ensemble and time-averaged properties of
physical interest: Root Mean Square Deviation (RMSD), Root Mean
Square Fluctuation (RMSF), Radius of Gyration, Distance between
terminal residues, Hydrogen bond analysis.

Table 3: Workflow of Molecular Dynamics Simulation [39]
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3.5 Molecular Docking

Molecular docking is a computational technique widely used to study and predict the interaction

between two molecules, typically a biological receptor such as a protein and a ligand, which can be a

small molecule, a peptide or another protein. The goal is to identify a plausible binding mode, which

reproduces the interactions that occur in physiological conditions, and to estimate key parameters

such as binding free energy, affinity and stability of the complex formed. This approach is crucial in

rational drug design, allowing to virtually select the most promising compounds before moving on to

experimental testing, with consequent reduction in time and costs.

In addition to the pharmaceutical field, docking is also used in the study of protein-protein interactions

(PPI), increasingly recognized as targets for small molecules, and in the characterization of peptide

binding mechanisms, often difficult to study experimentally.

From a methodological point of view, the docking process is based on two fundamental components:

• a search function that explores the possible orientations and conformations of the ligand with

respect to the receptor;

• a scoring function that evaluates the quality of each generated configuration (or “pose”), assigning

it a score indicative of the strength and stability of the interaction.

The most common search strategies include:

• The systematic search, which exhaustively explores the conformational space, but is very

computationally expensive;

• The geometric matching, which is based on the spatial complementarity of the functional groups

between ligand and receptor;

• The stochastic search, which introduces random variations to efficiently explore complex

configurations and allows the large-scale screening of molecular libraries.

The scoring functions can be based on physical force fields, empirical models or statistical approaches,

and different strategies are often combined to improve precision and reduce false positives, through

consensus methods. In relation to molecular flexibility, docking can be classified into:

• Rigid docking, where both ligand and receptor are considered fixed structures;

• Flexible ligand docking, which allows the ligand to conformationally adapt while keeping the

receptor rigid, a widely used compromise;

• Fully flexible docking, which allows conformational changes in both molecules, ensuring the best

representation of the binding but with high computational costs.
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From the application point of view, there are specialized tools for different types of docking. AutoDock

and its evolution AutoDock Vina, for example, are among the most used software for small molecule

docking, exploiting genetic algorithms and scoring functions based on force fields. For peptide-protein

docking, tools such as CABS-dock allow complete peptide flexibility and blind docking approaches

without the need to know the binding site a priori. In the field of protein-protein docking, advanced

AI-based technologies, such as AlphaFold3, use deep learning to model complex multimeric interactions

even without known experimental structures, including other biological components such as nucleic

acids, lipids and ions. ClusPro2, on the other hand, applies rigid docking followed by clustering of the

best poses, evaluating shape complementarity and electrostatic interactions, also offering the possibility

of defining preferential or excluded interaction regions.

Molecular docking is now a consolidated tool in the pharmaceutical industry and in biological research,

used in multiple phases of drug discovery and design, from virtual screening to candidate selection.

At the same time, there is a growing need for validated and shared datasets to facilitate comparison

between methods and foster innovation.

Among the most relevant current challenges are the improvement of scoring functions to increase the

reliability in the evaluation of binding affinity, as well as the more effective integration of protein

flexibility and conformational adaptations induced by ligand-receptor interaction. Overcoming these

limitations will be critical to fully exploit the potential of molecular docking in the discovery of novel

therapeutic agents. [41, 42]

Figure 23: Schematic representation of molecular docking: the ligand binds to the active site of the target
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3.5.1 ClusPro: protein-protein docking

ClusPro is a widely used web server for protein-protein docking, introduced in 2004 and subsequently

enhanced. The simple interface allows basic use by inserting two PDB files and selecting between six

different energy functions, depending on the type of interaction.

The docking process on ClusPro is carried out in three main steps:

1. Rigid sampling of billions of conformations using PIPER, a program that uses the Fast Fourier

Transform (FFT) to efficiently evaluate the interaction energy between the receptor (fixed) and

the ligand (mobile). The center of mass of the receptor is fixed at the origin and the ligand rotates

(about 70000 rotations with a resolution of 5◦) and translates (step of 1 Å) in space, generating

up to 109–1010 configurations for an average-sized protein.

The interaction energy is calculated as:

E = w1Erep + w2Eattr + w3Eelec + w4EDARS (Equation15)

• Erep and Eattr: repulsive and attractive terms of van der Waals interactions;

• Eelec: electrostatic energy;

• EDARS : structural potential based on the Decoys as the Reference State (DARS) approach,

which mainly represents the desolvation energy, i.e. the free energy change associated with

the removal of water from the protein interface.

The coefficients w1, w2, w3, w4 are empirically optimized weights for different types of docking.

ClusPro generates four sets of models with different scoring schemes: balanced (enzyme-inhibitor

best), electrostatics-favored (double weight at w3), hydrophobicity-favored (double weight at w4),

and van der Waals + electrostatics (without EDARS).

2. Clustering of the 1000 lowest energy structures, using the interface root mean square deviation

(IRMSD) as a measure. The structure with the largest number of neighbors within 9 ÅIRMSD

is selected as the center of the first cluster, formed by all structures within this radius. Cluster

members are removed, and the process is repeated with the remaining structures until a maximum

of 30 clusters are formed.

3. Refinement: cluster centers undergo energy minimization for 300 steps using only the van der

Waals term, with the receptor protein held fixed. This step removes any steric overlap, making

only small conformational changes.
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ClusPro returns as main results the centers of the 10 most populated clusters, favoring cluster size

over the absolute energy values of individual structures. This approach indirectly accounts for entropic

effects, since larger clusters indicate stable conformational regions and a higher likelihood of representing

the correct conformation. It is assumed that the energies of structures within a cluster are similar and

that the cluster population is proportional to the probability of correctness.

Although ClusPro also provides PIPER energy values for the cluster centers and members, these don’t

reflect the true binding free energy, as they neglect entropic contributions and are optimized to identify

native-like structures rather than describe full thermodynamics. Therefore, model ranking is based

solely on cluster population.

To evaluate the performance of ClusPro, we consider parameters such as:

• The number of complexes for which there is at least one cluster with structures within 10 ÅIRMSD

of the native structure, indicating the ability to generate predictions close to the real.

• The average number of structures among the 1000 lowest energy structures with IRMSDs less

than 10 Å, reflecting the density of correct predictions.

• The average value of the lowest IRMSD obtained for each complex, a measure of the improved

accuracy achieved.

To calculate the IRMSD, the ligand interface residues (those within 10 Åof at least one receptor atom)

are identified, the receptors are aligned, and the RMSD of the Cα atoms of these residues is calculated,

thus focusing on the accuracy of the protein interface, the region most important for the function of

the complex. [43]

Figure 24: Weighting coefficients of PIPER energy terms in various docking modes. [43]
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3.6 Binding free energy

Free energy is a fundamental thermodynamic quantity, particularly useful for predicting the spontaneity

of processes. Its two main formulations are:

• Helmholtz free energy (A), suitable for systems at constant volume and temperature (NVT);

• Gibbs free energy (G), used for conditions of constant pressure and temperature (NPT).

However, the calculation of free energy is complex in systems such as liquids or flexible

macromolecules, characterized by multiple energy minima separated by low-energy barriers. Even

derived quantities such as entropy and chemical potential are difficult to estimate accurately.

In drug discovery, the affinity between a ligand and its receptor is crucial, as strong binding may

indicate a promising drug candidate. The standard binding free energy (∆G◦) of a noncovalent complex

is directly related to the association constant Ka, evaluated at standard temperature and pressure

conditions. The accurate determination of binding free energy requires accounting for both enthalpic

contributions,(such as electrostatic interactions, Van der Waals forces, and solvation effects), and

entropic contributions, which reflect the conformational flexibility of the system.

∆G◦ = −RT lnKa = ∆H − T∆S (Equation 16)

• ∆H: enthalpy;

• ∆S: entropy;

• T : temperature;

• R: gas constant.

In molecular docking, scoring functions are commonly used to estimate the binding affinity through

the binding constant Kb, or its inverse the dissociation constant Kd, both of which can be measured

experimentally.

∆G = RT lnKd = ∆H − T∆S (Equation 17)

with the kinetic model: L + R kon−−→ LR L + R koff←−− LR Kb = kon
koff

= [LR]
[L][R] Kd = 1

Kb

To estimate the binding energy between a ligand and a protein efficiently but accurately, approximate

methods such as MM-GBSA and MM-PBSA are commonly used. These approaches offer a good

compromise between accuracy and computational costs. [41]
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In these methods, the binding energy is calculated as:

∆Gbind = GP L −GP −GL (Equation 18)

• GP L: free energy of the complex;

• GP : free energy of the unbound protein;

• GL: free energy of the free ligand.

For each state (P, L, PL), the free energy is calculated as:

∆G = EMM +Gsolv − TS (Equation 19)

• EMM : molecular mechanical energy (bonds, angles, torsions, electrostatic and Van der Waals

interactions);

• Gsolv: contribution of the solvation free energy, distinguished in polar and non-polar terms;

• TS: entropic contribution.

The solvent has a crucial impact on the bonding and is generally treated with implicit models to reduce

the computational cost.

The polar contribution to solvation is obtained:

• in the MM-PBSA method, by solving the Poisson-Boltzmann equation:

−∇ · [ε(r)∇ϕ(r)] = 4πρ(r) (Equation 20)

– ε(r):dielectric distribution function;

– ϕ(r): potential distribution function;

– ρ(r): fixed atomic charge density.

• in the MM-GBSA method, using the generalized Born approximation:

∆GGB = −1
2

3
1

εsolv
− 1
εsolute

4 NØ
i=1

NØ
j=1

qiqj

fij
(Equation 21)

– qiqj : atomic charges;

– εsolv: solvent dielectric constant;

– εsolute: solute dielectric constant;

– fij : depends on the interparticle distances and Born radii.
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The nonpolar contribution is estimated via a linear relation with the solvent accessible surface area

(SASA):

∆Gnonpolar = γ × SASA + b (Equation 22)

• γ: microscopic surface tension;

• b: constant representing the cavitation term;

• SASA: accessible area, measured by a probe molecule.

The total solvation energy is given by polar and non-polar terms:

Gsolv = Gpolar
solv +Gnonpolar

solv (Equation 22)

The entropic term can be calculated with normal mode analysis (NMA), which evaluates vibrational

modes to estimate the entropic change upon binding. However, this approach is computationally

expensive and statistically less stable. Consequently, in many studies it is omitted, except when

estimating the absolute free energy. [41]
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4

SIMULATION SETUP

4.1 Structural prediction of wild-type APP, its mutants, and F-Spondin

In this thesis work, APP proteins, its mutations associated with Alzheimer’s disease, and F-spondin were

considered. The amino acid sequences in FASTA format were obtained from the UniProt database. As

for APP, the functional domains E2, the juxtamembrane region (JMD), and the segments corresponding

to Aβ and AICD fragments were taken into account. Consequently, the selected sequence includes the

amino acids from residue 374 to 770, according to the numbering corresponding to the APP770 isoform

(UniProt identifier P05067).[44] For F-spondin protein, the analysis focused on the reelin and spondin

domains, known for their interaction with the E2 domain of APP. In particular, the residues between

positions 29 and 388 were included (UniProt identifier Q9HCB6). [24] The three-dimensional structures

of the models were predicted using the AlphaFold server, selected for its high accuracy in structural

prediction based on amino acid sequences. [31] For the study of the Swedish (KM670/671NL), Iowa

(D694N) and Iberian (I716F) mutations, the APP sequence was appropriately modified by inserting the

corresponding point mutations. [14]

Figure 25: AlphaFold3 prediction of the APP
structure from residues 374 to 770, encompassing
the E2 domain and the regions corresponding to
the JMD, Aβ, and AICD fragments

Figure 26: AlphaFold3 prediction of the F-Spondin
structure from residues 29 to 388, containing the
Reelin and Spondin domains.
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4.2 Preliminary Molecular Dynamics setup

Preliminary molecular dynamics (MD) simulations were performed on all protein structures, aiming

at structural stabilization and conformational optimization before performing docking studies. All

simulations were performed on the computing clusters of the Digital Research Alliance of Canada,

using the GROMACS software [38] The AMBER99SB-ILDN force field was used to describe molecular

interactions. Each system was inserted into a cubic simulation box, with a minimum distance of 1 nm

between the protein and the box edges. Periodic boundary conditions were applied in all directions.

The system was solvated with an explicit TIP3P water model, and to ensure electrical neutrality, some

water molecules were replaced with sodium (Na+) and chlorine (Cl-) ions, up to a concentration of 150

mM (0.15 mol/L), corresponding to the physiological concentration of sodium chloride in biological

fluids.

Subsequently, an energy minimization of the system was performed using the Steepest Descent algorithm

(integrator = steep). A tolerance on the maximum residual force (emtol) equal to 10 kJmol−1nm−1

was set as a criterion for stopping the process. The maximum step per atom (emstep) was set to 0.01

nm, to ensure the numerical stability of the minimization, while the maximum number of steps (nsteps)

was set to 5000, in order to avoid an excessive duration of the procedure.

After the minimization phase, two equilibration simulations were performed with position restraint

applied to the protein: an initial constant volume and temperature (NVT) equilibration, and a

subsequent constant pressure and temperature (NPT) equilibration, both of 200 ps. The NVT phase

was performed with a time step of 0.001 ps for 200,000 steps, using the velocity-rescale thermostat

(tcoupl = v-rescale) with reference temperature set to 300 K, coupling constant (tau-t) equal to 0.1ps

and separation of the thermal coupling groups between water and non-water. In this phase the initial

velocities were generated according to a Maxwell-Boltzmann distribution. The NPT equilibration was

then performed by keeping the v-rescale thermostat at 300 K, and coupling the pressure with the

Berendsen barostat (pcoupl = berendsen), with isotropic coupling (pcoupltype = isotropic), coupling

constant (tau-p) of 1.0 ps, compressibility equal to 4.5 × 105 bar−1 and reference pressure of 1.0 bar.

Finally, the dynamics simulation was performed for a duration of 5 ns, with a time step of 2 fs (dt=0.002

ps, nsteps = 2,500,000). Long-range electrostatic interactions were treated with the Particle Mesh

Ewald method (coulombtype = PME), with a cutoff for Coulomb interactions at 1.0 nm. During this

phase, the system was maintained at 300 K using the Nose-Hoover thermostat and at 1 bar using the

Parrinello-Rahman barostat, which are both suitable for accurately reproducing the NPT ensemble.

[41, 45]
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4.3 Molecular Docking between APP, its mutants, and F-spondin

Molecular docking was performed using the ClusPro server. The protein structures in PDB format,

obtained from previous molecular dynamics simulations, were provided as input. In particular, the

wild-type APP protein and its three mutant variants: Swedish, Iowa and Iberian, were used as receptor.

The F-spondin protein was used as ligand, in order to obtain four different protein complexes:

• Wild-type APP / F-spondin

• Swedish APP (KM670/671NL) / F-spondin

• Iowa APP (D694N) / F-spondin

• Iberian APP (I716F) / F-spondin

For this phase, a specific binding site was not defined a priori, but a strategy called blind docking was

performed, which allows the software to explore the entire surface of the protein to identify possible

interaction sites, without predefined constraints.

The ClusPro server returns as main result the centers of the 10 most populated clusters. The final

choice of the complexes generated by ClusPro was made taking into account two main aspects. First,

the interaction energy was considered, evaluated using the ”balanced” weights calculation option, which

takes into account in a balanced way the electrostatic, hydrophobic and desolvation contributions.

Secondly, a visual inspection of the obtained models was performed, to identify those in which the

two proteins showed a closer and more coherent interaction, i.e. with surfaces well-approached and

potentially compatible with a biologically realistic interaction.

The interaction energy, calculated with the balanced weights provided by ClusPro, was determined

according to the following formula, applied to all four protein complexes: [43, 46, 47, 48, 49]

E = 0.40Erep − 0.40Eatt + 600Eelec + 1.00EDARS (Equation 22)
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Below are the models chosen for each protein complex.

(a): Wild-type APP / F-spondin complex
Lowest Energy = -1074

(b): Swedish APP / F-spondin complex
Lowest Energy = -1034.5

(c): Iowa APP / F-spondin complex
Lowest Energy = -1103.9

(d): Iberian APP / F-spondin complex
Lowest Energy = -1100.8

Figure 27: Protein complexes obtained by docking with ClusPro and visualized in VMD: in blue the receptor
(APP and mutants), in red the ligand (F-spondin). [43, 46, 47, 48, 49]
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4.4 Molecular Dynamics simulation of docked complexes

Once the four protein complexes were obtained by docking, a 50 ns molecular dynamics simulation was

performed to stabilize each complex, using GROMACS running on the Digital Research Alliance of

Canada cluster.

The force field adopted was amber99sb-ildn. The system was inserted in a rectangular box, adequate

to contain the entire complex, and solvated with a TIP3P water model. Neutralization was ensured by

the addition of sodium and chlorine ions.

An energy minimization was performed with the steepest descent method (emtol = 10, emstep = 0.01),

followed by two equilibration phases with position restraint: first in NVT ensemble for 200 ps with

a V-rescale thermostat at 300 K and velocity generation, then in NPT ensemble for 200 ps with a

V-rescale thermostat at 300 K and an isotropic Berendsen barostat at 1 bar.

The production simulation was run for 50 ns with a time step of 2 fs, using PME for the treatment of

Coulomb interactions, Verlet scheme for cut-off, constraints on hydrogen bonds, Nose-Hoover thermostat

at 300 K and isotropic Parrinello-Rahman barostat at 1 bar. [38, 45]
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4.5 Analysis

Once the 20 ns molecular simulations of the protein complexes were completed, analyses were performed

on the obtained trajectories: Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation

(RMSF), evaluation of the hydrogen bonds between the two proteins over time, calculation of the

distance over time between the two protein interfaces, Ramachandran Plot and study of the secondary

structures.

• RMSD is a parameter identifying the shape variation of the structure. It is the root mean square

distance of the protein configuration with respect to another protein configuration taken as a

reference.

RMSD(t) =

öõõô 1
N

NØ
i=1

(ri(t)− rref )2 (Equation 23)

• RMSF represents the root mean square distance that measures how much each residue fluctuates

over time. In particular, it evaluates the variation off the position of each residue with respect to

its average position calculated over the entire trajectory. The calculation of the RMSF allows to

identify the most stable and flexible regions of the protein. For the analysis, the Cα atoms of

each residue are considered.

RMSF =

öõõô 1
N

NØ
t=1

(ri(t)− rref )2 (Equation 24)

• A hydrogen bond is a dipole-dipole interaction between a hydrogen atom, covalently bonded to

a highly electronegative atom (nitrogen, oxygen, fluorine), and another electronegative atom.

In molecular systems, hydrogen bonds are important because they allow the stabilization of

structures. In this case, the aim is to evaluate how the number of hydrogen bonds between the

two proteins varies along the entire trajectory.

• The Ramachandran Plot is a graph that represents the combinations of the torsional angles

φ and ψ of a pair of residues linked by a peptide bond within the protein. There are allowed

areas, with combinations of angles actually observed in protein structures, and disallowed areas,

that contain combinations that probably generate steric hindrances that prevent the existence of

those structures. The Ramachandran Plot provides information on the secondary structure of

the residues: based on the combination of angles, helix or beta-sheet structures can be observed.

Consequently, the graph allows to obtain an indication of the possible secondary structure of the

protein. [41, 50]
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5

RESULTS

5.1 Final configurations of the complexes and analyses performed

The protein complexes considered for analysis are: wild-type APP–Fspondin, Swedish APP–Fspondin,

Iowa APP–Fspondin, and Iberian APP–Fspondin. After docking, each complex was subjected to a

20 ns molecular dynamics simulation, with the exception of the Swedish APP–Fspondin complex, for

which the simulation was stopped at 15 ns. The final configurations of the complexes at the end of the

respective simulations are shown below (Figure 28).

In all four complexes, F-spondin (in red) interacts with the E2 domain of APP (in blue), consistent

with what has been reported in the literature.[25, 26] However, a visual comparison of the final

configurations reveals differences in the orientation and extent of the interface between the different

mutants. Specifically, in the wild-type and Swedish complexes, F-spondin appears to be arranged in

a more orderly and aligned fashion along the long α-helix of APP (E2 domain). In contrast, in the

Iowa and Iberian complexes, the interface is less defined and F-spondin appears more disorganized,

suggesting that the mutations may influence the interaction pattern.

(a): Wild-type APP (b): Swedish APP (c): Iowa APP (d): Iberian APP

Figure 28: Final configurations obtained from molecular dynamics simulations. The receptor (APP and its
mutants) is shown in blue, while the ligand (F-spondin) is shown in red. Snapshots are visualized using VMD
Configurations are taken at 20 ns for APP, Iowa, and Iberian complexes, and at 15 ns for the Swedish complex.
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To assess the structural stability and interactions between the two proteins within each complex,

analyses of the simulation trajectories were conducted, including: calculation of the RMSD (Root Mean

Square Deviation), the RMSF (Root Mean Square Fluctuation), the number of hydrogen bonds over

time, and analysis of the evolution of secondary structures.

5.2 Trajectory analysis

5.2.1 RMSD

The RMSD (Root Mean Square Deviation) analysis of the APP–Fspondin complex shows how the

system evolves toward a stable configuration over the course of the simulation. Specifically, the RMSD

calculated with respect to the initial structure (reference at 0 ns) progressively increases, reaching a

plateau around 0.8 nm, indicating a stable conformational change. The RMSD with respect to the

final structure (reference at 20 ns) begins with a plateau at around 0.7 nm and tends to decrease

over time, indicating an orderly transition and a progressive approach to the final conformation. This

suggests that, even in the initial phases, the complex exhibits a certain structural coherence with the

final state. The RMSD calculated for APP alone shows slightly higher values than the complex, with

an initial plateau around 0.8 nm (reference at 20 ns), suggesting greater flexibility in the absence of

F-spondin. In contrast, F-spondin rapidly reaches a plateau and maintains an ordered and stable

behavior throughout the simulation. Overall, despite the structural evolution, the final conformation of

the complex does not deviate significantly from the initial one. However, the system does not return to

its initial configuration, but rather converges toward a new stable state, suggesting a conformational

adaptation favorable to the interaction between the two molecules.

(a): WT APP-Fspondin complex (b): Wild-type APP (c): F-spondin

Figure 29: Root Mean Square Deviation (RMSD) calculated with respect to the initial configuration (0 ns,
black) and the final configuration (20 ns, red).
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RMSD analysis of the complexes with the mutations also shows an initial increase in values compared

to the 0 ns structure, indicating a process of structural rearrangement.

• Among the complexes analyzed, Swedish–Fspondin exhibits the most marked conformational

rearrangement. The RMSD compared to the initial structure rapidly reaches high values ( 0.95

nm), which then stabilize, indicating significant structural rearrangement and subsequent stability

in the new configuration.

• The Iowa–Fspondin complex also follows a similar behavior, with a gradual increase in RMSD up

to approximately 1.0 nm. However, in this case, the system reaches a sharper plateau, suggesting

good structural stabilization at the end of the simulation.

• The Iberian–Fspondin complex exhibits an initially high RMSD ( 1.1 nm), followed by a more

irregular and fluctuating behavior compared to the other mutants. Although a slight reduction is

observed over time (with values dropping to 0.3–0.4 nm compared to the final structure), the

complex appears less stable, with more persistent variations throughout the simulation.

• The wild-type APP–Fspondin complex exhibits more fluctuating and less defined behavior than

the mutants, which instead demonstrate greater coherence and stability in the process of adapting

to the final configuration.

(a): Swedish complex (b): Iowa complex (c): Iberian complex

Figure 30: Root Mean Square Deviation (RMSD) calculated with respect to the initial configuration (0 ns,
black) and the final configuration (20 ns, red).
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5.2.2 RMSF

Root Mean Square Fluctuation (RMSF) analysis was conducted separately on APP (wild-type and

mutant) and SPON and revealed significant differences in structural flexibility profiles.

Note on residue numbering: RMSF plots were calculated considering an APP fragment spanning residues

374–770 of the full-length protein. Therefore, residue 1 in the plots corresponds to residue 374 of the

original APP. All numerical references below have been corrected to the full-length protein numbering.

• Wild-type APP shows a distributed structural flexibility, with evident peaks at residues 654–674

and 724–754 (which in the plot correspond to the ranges 280–300 and 350–380, respectively, of the

analyzed fragment). In particular, the high mobility of the C-terminal domain may be associated

with the propensity for pathological aggregation.

• The Swedish mutation exhibits the highest flexibility values overall, with peaks at residues

424–474, 598–618, and 704–744 (equivalent to the 50–100, 230–250, and 330–370 ranges of the

fragment). This behavior suggests marked structural destabilization and a potential tendency

toward aggregation. The Iowa variant induces structural changes, with peaks observed around

residues 574 and 654–674 (equivalent to approximately 200 and 280–300 of the fragment),

indicating increased flexibility in new regions compared to the wild-type.

• The Iberian variant appears more stable. It exhibits a single moderate peak at residues 654–674,

but with lower values than the wild-type. This behavior suggests local stabilization induced by

the mutation.

• F-spondin (SPON) maintains very low flexibility in each complex, with RMSF values below 0.4

nm, confirming that it maintains constant structural rigidity. The Iowa mutation is an exception,

where an isolated peak can be observed around residue 360, suggesting a possible disruption of

the interaction or an increase in local mobility.

In summary, RMSF analysis highlights how the Swedish and Iowa mutations increase the structural

flexibility of APP, with Iowa also appearing to influence SPON dynamics. In contrast, the Iberian variant

exhibits more stable behavior. The structural integrity of SPON, preserved under most conditions,

suggests a critical role in its molecular function.
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(a) Wild-type APP and SPON (b) Swedish APP and SPON

(c) Iowa APP and SPON (d) Iberian APP and spon

Figure 31: Root mean square fluctuations (RMSF) of the four complexes: wild-type and mutant APP in black,
F-spondin in red.

PROTEIN RMSF CONSIDERATION
APP wild-type High peaks at 280–300 and 350–380 Strong flexibility in

C-terminal; prone to
aggregation

SWEDISH Strong peaks at 50–100, 230–250, 330–370 Highest overall flexibility;
structurally destabilized

IOWA Peaks at ∼200 and 280–300 Increased flexibility in new
regions

IBERIAN Moderate peak at 280–300 Lower mobility than WT;
potential local stabilization

SPON (all) Mostly <0.4 nm, stable; one peak ∼360 in Iowa Consistently stable;
structural rigidity may
support binding

Table 4: RMSF analysis and structural considerations of APP and its mutants
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5.2.3 Hydrogen Bonds

Hydrogen bonds between APP, in its various forms (wild-type and mutant), and the F-spondin protein

were analyzed.

• The wild-type APP–SPON complex appears to be the most stable, with a high and constant

number of hydrogen bonds over time, generally between 18 and 35, with a central distribution

of around 23–25 bonds. This data indicates a strong and physiologically significant interaction,

which can be considered a reference model for the binding between APP and F-spondin.

• The Swedish mutation shows a slight reduction in the number of bonds (between 10 and 25, with

a center around 18–20), but the distribution remains regular, suggesting that the interaction with

F-spondin, although slightly weakened, is essentially maintained. This suggests a still functional

interaction.

• In the Iowa mutation, the hydrogen bonds are less stable and exhibit significant fluctuations.

Although the number falls within a range similar to the Swedish mutation (10–25), the central

distribution is lower (15–17) and the time trend is more irregular. This behavior reflects a weaker

and more localized interaction, less stable overall.

• The Iberian mutation gives rise to the least stable complex: hydrogen bonds are few (between

5 and 18) and highly variable, with a central average of approximately 10–12. This indicates a

fragmented and inefficient interaction between APP and F-spondin.

COMPLEX H-BOND DISTRIBUTION
CENTER

CONSIDERATIONS

WT APP–SPON 18–35 ∼23–25 Very stable complex, strong interaction
SWEDISH–SPON 10–25 ∼18–20 Mutation slightly reduces interaction

IOWA–SPON 10–25 ∼15–17 Noticeable fluctuations, less stable
IBERIAN–SPON 5–18 ∼10–12 Weakest and least stable complex

Table 5: Quantitative analysis of hydrogen bonds between APP (wild-type and mutants) and SPON: observed
range, distribution center, and structural considerations.
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(a): Wild-type APP

(b): Swedish APP

(c): Iowa APP

(d): Iberian APP

Figure 32: Number of hydrogen bonds between APP (wild-type and mutant) and F-spondin during the entire
simulation (left graph). On the right, probability distribution of the number of hydrogen bonds..
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5.2.4 Secondary structures

The secondary structures of APP (wild-type and mutants) and F-spondin were analyzed throughout the

simulation. Specifically, the APP fragment between residues 665–720 was analyzed, a very important

region because it contains the Aβ sequence and the positions of the mutations studied.

• In the case of the wild-type APP protein, the structure remains fairly stable and ordered

throughout the simulation. A strong presence of α-helices is observed in the 400–600 region,

while the 665–720 region contains mainly coils (flexible regions) and a few short α-helices. This

indicates good overall structural stability.

• The Swedish mutation does not cause major changes, but it does make the structure somewhat

more flexible: more turns and coils are observed, and a slight reduction in α-helices, indicating a

slightly less ordered structure.

• The Iowa and Iberian mutations, however, cause more pronounced effects: the structure loses

most of the α-helices and increases the presence of β-sheets, which are often associated with

protein aggregation processes, such as those occurring in Alzheimer’s disease. In particular, the

665–720 region exhibits great structural variability, with fragmentation and alternation between

coils, β-sheets, and other elements.

• Regarding F-spondin (SPON), which has a β-sheet-rich structure according to AlphaFold models,

simulations confirm that in the presence of wild-type APP, the structure remains compact and

stable. However, when SPON interacts with mutated versions of APP, especially the Iowa and

Iberian variants, it displays greater flexibility and slight disorder, while maintaining its structural

identity.

These observations suggest that mutations in APP can destabilize both the structure of APP itself and

that of SPON, negatively impacting the interaction between the two proteins.

Figure 33: Secondary structure of the wild-type APP protein analyzed during molecular dynamics simulation,
from residue 374 to residue 770.

73



(a): Wild-type APP (b): Swedish APP

(c): Iowa APP (d): Iberian APP

(e): F-spondin in WT APP complex (f): F-spondin in Swedish complex

(g): F-spondin in Iowa complex (h): F-spondin in Iberian complex

Figure 34: Secondary structures of the APP fragment and its mutants (residues 665–720) (a,b,c,d), and of the
F-spondin protein in the four complexes (e,f,g,h).
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5.3 Discussion

Trajectory analyses, obtained from molecular dynamics simulations, allowed to assess the stability of

the interaction between the APP protein and F-spondin, also highlighting the influence of specific

mutations associated with familial forms of Alzheimer’s disease.

• The APP – F-spondin complex was found to be overall stable throughout the entire simulation.

The RMSD values and the number of hydrogen bonds remained constant, suggesting good affinity

between the two proteins. For this reason, the wild-type complex was used as a reference model

for comparison with the mutated variants.

• The F-spondin protein showed a rigid and ordered structure, with minimal variations in all

the complexes analyzed, largely maintaining its β-sheet structural motifs. This conformation

is particularly evident in the complex with wild-type APP, where the structure appears more

compact and well-defined.

• The Swedish mutation showed increased flexibility of the APP protein, without significantly

affecting the interaction with F-spondin, although signs of structural destabilization were observed.

• The Iowa mutation led to a more marked structural reorganization, compromising the stability of

both APP and F-spondin and weakening their interaction.

• The Iberian mutation was found to be the least stable complex among those analyzed. Severe

structural fragmentation and an unstable interaction with F-spondin were observed.

From the structural analyses conducted, particularly on the APP fragment between residues 665–720

(which includes the Aβ sequence and therefore the positions of the mutations), it emerges that the

mutations influence this region, favoring the formation of β-sheet structures, which are more prone to

aggregation.
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6

CONCLUSIONS

This thesis analyzed the Amyloid Precursor Protein (APP), its main familial mutations, and their

interaction with the transmembrane protein F-spondin. The study was based on the amyloid cascade

hypothesis, according to which the amyloidogenic processing of APP by β- and γ-secretases leads to the

formation of the β-amyloid peptide. Numerous studies have shown that the latter is one of the main

culprits in the pathogenesis of Alzheimer’s disease, contributing to the formation of amyloid plaques

and subsequently to the development of neurofibrillary tangles, neuronal death, vascular damage, and

dementia.[6, 7, 9]

Currently, available treatments have a purely symptomatic effect and do not target the molecular

mechanisms responsible for the disease. For this reason, research is focusing on strategies that aim to

inhibit the production of β-amyloid and the formation of aggregates. A promising approach involves

inhibiting β-secretase (BACE1), responsible for the initial amyloidogenic cleavage of APP. However,

BACE1 is involved not only in the amyloidogenic process but also in other physiological processes, so its

complete inhibition could have other side effects. Therefore, it is essential to identify strategies capable

of selectively inhibiting only the binding between BACE1 and APP. Another alternative strategy is to

prevent APP cleavage through interaction with specific ligands, which bind to the extracellular domain

of APP and inhibit its binding to BACE1. In this context, recent studies have highlighted a possible

role for the protein F-spondin as a natural ligand for APP. Specifically, F-spondin binds to the E2

domain of APP and appears to block access of β-secretase, thus inhibiting the amyloidogenic pathway.

Furthermore, F-spondin acts as a link between APP and the ApoEr2 receptor: its Reelin and Spondin

domains interact with APP, while the Thrombospondin domain binds to the ApoE receptor.[23, 25, 26]

This thesis also considered three familial APP mutations, all located near the cleavage sites:

• Swedish (KM670/671NL): near the β-secretase site;

• Iowa (D694N): near the α-secretase site;

• Iberian (I716F): near the γ-secretase site.

These mutations are associated with early-onset forms of Alzheimer’s disease.[14, 22]
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The molecular simulations conducted allow us to explore the structural and functional consequences of

these mutations at the atomic scale, providing a mechanistic interpretation of the phenomena observed

at the cellular level. Computational tools [42, 40, 38] were used to model and simulate the interaction

between APP and F-spondin. An APP fragment (residues 374–770) containing the E2 domain, the Aβ

sequence, and the intracellular AICD domain was chosen. For F-spondin, the fragment comprising

residues 29–388, including the Reelin and Spondin domains, was selected.

The initial three-dimensional structures were obtained through AlphaFold prediction [31], starting from

the amino acid sequences downloaded from UniProt [24, 44]. After short preliminary molecular dynamics

simulations (5 ns) to verify the stability of the individual proteins, molecular docking was performed

using the ClusPro server [46] to obtain protein complexes. Four complexes were analyzed: wild-type

APP – F-spondin, Swedish APP – F-spondin, Iowa APP – F-spondin, Iberian APP – F-spondin. Each

of these was subjected to longer molecular dynamics simulations (20 ns, except for the Swedish complex,

which was simulated for 15 ns).

Structural analyses (RMSD, RMSF, number of hydrogen bonds, secondary structures) were performed

on the obtained trajectories to compare stability and mutation-induced changes. [41, 50] The wild-type

APP–F-spondin complex showed good stability and a well-defined structure. F-spondin maintained a

rigid and ordered conformation in all complexes, with a well-conserved β-sheet organization, particularly

in the complex with wild-type APP. The mutations showed significant effects on the secondary structure

of APP, especially in the 665–720 region, where an increase in β-sheet structures was observed, associated

with a greater tendency to aggregate. The interaction between APP and F-spondin was altered in

the mutated complexes. Specifically, the Swedish mutation increases the structural flexibility of APP

but maintains a good interaction with F-spondin; the Iowa mutation leads to a marked structural

reorganization, which compromises the stability of both APP and F-spondin, weakening the interaction;

the Iberian mutation causes significant structural fragmentation and a loss of interaction with F-spondin.

The data obtained therefore show that mutations, particularly Iowa and Iberian, can compromise the

physiological interaction between APP and F-spondin. As reported in the literature, this interaction is

essential for inhibiting APP cleavage by beta-secretase [23]. Its alteration could promote the activation

of the amyloidogenic pathway and the subsequent formation of pathological aggregates, contributing to

the neurodegeneration observed in Alzheimer’s disease.
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