POLITECNICO DI TORINO

Master’s Degree in Biomedical Engineering

\0 S ey 2.2
) 00N i e A pae
\\\\ 1859 d"

Data Assimilation Based on
Physics-Informed Neural Networks

for Hemodynamics

Supervisors
Prof. Umberto Morbiducci
Prof. Alessandro Veneziani

Candidate

Micol Bracco

Academic Year 2024 — 2025

Abstract

Traditional approaches for solving partial differential equations (PDEs), includ-
ing Finite Element, Finite Volume, and Finite Difference methods, face several
challenges. These include high sensitivity to uncertainties in boundary condi-
tions, the complexity of generating meshes conforming to the geometry of the
domain, and significant difficulties in addressing high-dimensional problems. In
this context, Physics-Informed Neural Networks (PINNs) represent an advanced
deep learning technique that directly incorporates the physical laws governing a
given phenomenon, offering an alternative and flexible approach to solving such
equations. This work investigates the use of PINNs for solving both direct and
inverse problems, with a particular focus on data assimilation, where observa-
tional data are integrated into the modeling process. To validate the proposed
method, several test cases were considered using the Navier—Stokes equations in
both steady and unsteady forms, across two-dimensional and three-dimensional
configurations. In a preliminary phase, simple geometries were used to test the
model’s effectiveness, performing fine-tuning by varying several network param-
eters, as well as the number, quality, and placement of the data employed. This
was followed by the analysis of more complex geometries resembling anatomical
structures, with the future goal of studying coronary hemodynamics under phys-
iologically realistic conditions, using ultrasound data as a reference. The focus
was on developing methods that were both efficient and accurate, with particular
attention to the study of velocity and pressure fields, as well as the computation
of Wall Shear Stress (WSS), a clinically important metric considered a key risk
factor for atherosclerosis.

The primary goal of this thesis is to demonstrate that PINNs offer an innovative
and viable approach, featuring significant advantages in computational efficiency
and cost reduction compared to traditional methods, as well as enhanced capabil-
ity in handling sparse or noisy data, while also identifying potential weaknesses.
The results obtained, compared with analytical solutions and simulations using
the Finite Element Method, highlight the potential of this methodology. In par-
ticular, PINNs demonstrated superior effectiveness when performing data assim-
ilation by integrating observational data into the solution process, indicating a
strong potential for solving inverse problems. Nonetheless, this work represents
only an initial step: future developments will involve applying PINNs to real
anatomical models, such as blood vessels, to further evaluate their effectiveness
in clinically relevant scenarios.

Sommario

I metodi tradizionali per la risoluzione delle equazioni alle derivate parziali (PDE),
tra cui i metodi agli elementi finiti, ai volumi finiti e alle differenze finite, pre-
sentano diverse criticita. Tra queste vi sono 'alta sensibilita alle incertezze nelle
condizioni al contorno, la complessita nella generazione di mesh che si adattino
alla geometria del dominio e le notevoli difficolta nel trattare problemi ad alta di-
mensionalita. In questo contesto, le Physics-Informed Neural Networks (PINNs)
rappresentano una tecnica avanzata di deep learning che incorpora direttamente
le leggi fisiche che governano un fenomeno, offrendo un approccio alternativo e
flessibile alla risoluzione di tali equazioni.

Questo lavoro si propone di indagare 1'uso delle PINNs per risolvere sia problemi
diretti che inversi, con un’attenzione particolare all’assimilazione dei dati, ovvero
all’integrazione di dati osservativi all’interno del processo di modellazione. Per
validare il metodo proposto, sono stati considerati diversi casi di studio basati
sulle equazioni di Navier—Stokes, sia nella forma stazionaria che non stazionaria,
in configurazioni bidimensionali e tridimensionali.

In una fase preliminare, sono state utilizzate geometrie semplici per testare
’efficacia del modello, effettuando un fine-tuning variando diversi parametri della
rete, nonché il numero, la qualita e la distribuzione dei dati impiegati. Successi-
vamente, si € passati all’analisi di geometrie piti complesse, che richiamano strut-
ture anatomiche, con l'obiettivo futuro di studiare ’emodinamica coronarica in
condizioni fisiologicamente realistiche, utilizzando dati provenienti da ultrasuoni
come riferimento. L’attenzione é stata posta sullo sviluppo di metodi efficienti
e precisi, con particolare riguardo allo studio dei campi di velocita e pressione,
nonché al calcolo del Wall Shear Stress (WSS), una grandezza clinicamente rile-
vante considerata un importante fattore di rischio per ’aterosclerosi.
L’obiettivo principale di questa tesi ¢ dimostrare che le PINNs rappresentano un
approccio innovativo e valido, caratterizzato da vantaggi significativi in termini
di efficienza computazionale e riduzione dei costi rispetto ai metodi tradizionali,
oltre a una maggiore capacita di gestire dati scarsi o rumorosi, pur identificandone
anche eventuali punti di debolezza. I risultati ottenuti, confrontati con soluzioni
analitiche e simulazioni realizzate mediante il metodo agli elementi finiti, met-
tono in evidenza il potenziale di questa metodologia. In particolare, le PINNs
hanno mostrato una maggiore efficacia nell’eseguire ’assimilazione dei dati, in-
tegrando le osservazioni direttamente nel processo di soluzione, evidenziando un
forte potenziale per la risoluzione di problemi inversi.

Tuttavia, questo lavoro rappresenta solo un primo passo: sviluppi futuri preve-
dono 'applicazione delle PINNs a modelli anatomici reali, come i vasi sanguigni,
per valutare ulteriormente la loro efficacia in scenari di rilevanza clinica.

i

Contents

(1 _Introduction|

Introduction to Modeling Approaches|

2.1

Recap of Computational Fluid Dynamics (CFD) Methods|.

2.2

Data Assimilation (DA),

2.3 _Alternative Methodd

2.3.1 Reduced Order Models (ROMs)|
2.3.2 Physics Informed Neural Networks (PINNs)l

3

An Introduction to Deep Learning|

13.3

Backpropagation| 000000

[3.3.1 Logistic Sigmoid|

[3.4.1 Regression|.
[3.4.2 Binary Classification|

13.5

Optimization Algorithm|

3.5.1 Gradient Descent (GD)|.,
3.5.2 Stochastic Gradient Descent (SGD)[.
3.5.3 Root Mean Square Propagation (RMSProp)
3.5.4 Adaptive Moment Estimation (ADAM)
3.5.5 L-Broyden—Fletcher-Goldfarb—Shanno (L-BFGS)|

Physics-Informed Neural Networks|

A1

The building blocks of PINNg

4.1.1 Automatic Differentiationl

5.1

Navier—dtokes kiquations|

[>.1.1 Non-dimensional Navier—Stokes Equations|
[5.1.2 First-Order Navier—Stokes kquations|
[5.1.3 Non-Dimensional First-Order Navier-Stokes Equations|

52

Boundary and Initial Conditions|.

1l

[5.2.3 Pressure Boundary Conditions|. 28

6 The Clinical Problem: The Relevance of Wall Shear Stress| 29
[6.1 Computation of Wall Shear Stress| 29
(6.2 Wall Shear Stress and Clinical Implications|. 30
6.2.1 Atherosclerosid oL 30
6.2.2 DBiomechanical Factorsl 31
6.2.3 Wall Shear Stress Thresholdsl 34

[7 Application of PINNs on 2D Geometries| 35
1 Methods 36
[7.1.1 Network Configurationl 36
[7.1.2 Evaluation of Different Iraining Configurations for PINNs| 36

(7.2 Kim&Moin Problem|o oo 39
[7.2.1 Governing Equations| 39
[7.2.2 Computational Domain|. 39
[7.2.3 Definition of Boundary Conditions| 39
(2.4 Data Assimilationl. 0oL 40

[7.3 Womersley Problem|. 40
[7.3.1 Governing Equations| 40
[7.3.2 Computational Domain|. 40
[7.3.3 Definition of Boundary and Initial Conditions 41
(3.4 Data Assimilationl. 0oL 42
[7.3.0 Error Analysis|. L. 42

M4 Resultd oo 42
[7.4.1 Training Timel.o 42
[(.4.2 Krror Analysis for Kim&Moin Problem| 43
[7.4.3 Error Analysis for Womersley Flow| 44
(4.4 Kim&Moin Problemlo 00000 45
[7.4.5 Womersley Flow| 48

7.5 Discussionl 50
[8 Application of a PINN on 3D Geometries: Poiseuille Flow| 51
81 Methods 51
[8.1.1 Governing kquations|o 52
[8.1.2 Computational Domain|. 53
[8.1.3 Definition of Boundary Conditions| 53
8.1.4 Data Assimilationl. 0oL 55
8.1.5 Calculation of the Wall Shear Stressl 55
8.1.6 Error Analysis|. L. 55

8.2 Resultsl. 55
8.2.1 Training Time|. 55
B.2.2 Classical NSE Formulation: AP =8 56
[8.2.3 Different NSE Formulation: Different Pressure Drops (AP)| 57
[8.2.4 Different NSE Formulation: Parabolic Velocity Profile|. . . 58

B3 Discussion| 61

v

0T s SemiRealistic Models of Vascilar G s C —
[Tubel

[9.1.1 Governing Equations|
[9.1.2 Computational Domain|.
[9.1.3 Definition of Boundary Conditions|

[9.1.4 Data Assimilationl.
9.1.5 Calculation of T'he Wall Shear Stressl
[9.1.6 Error Analysis|. oL
02 Resultd. o

[9.2.1 Training Time|. oL

027 Resls Ol [il e Classical Navier Siokes T - l

lationl

9.2.3 Case 1) Different Pressure Drops (AP)|
9.2.4 Case 2) Different Parabolic Velocity Profile[.

[mulationl 69
[9.2.6 T'he Importance of Defining Boundary Conditions as Hard |

[Constraints - Classical NSE Formulationl 74
9.3 Discussionlo 75
(10 Conclusions and Future Developments| 76
(10.1 Short-Term Advancements 7
[10.2 Future Research Perspectives: Towards the Development of a Dig- |

[ital Twinl oo 78
Appendix 80
[[ntroduction to the Algorithm with the Python Library DeepXDE|. . . 80
[tep-by-Step Guide to Solve PDEs with DeepXDEl 80
(Bibliography| 83

List of Figures

13.1 Structure of a Biological Neuron [25] 6

[3.3 Behavior of the activation function: the weighted sum of inputs, |
[summed to the bias, 1s passed through an activation function f to |

[obtain the output.| 8
13.4 Plot of the Sigmoid activation function (in blue) and its derivative |
| (nred)| 9
13.5 Plot of the Tanh activation function (in blue) and its derivative |
| (inred)| 10
13.6 Plot of the ReLLU activation function (in blue) and its derivative |
| (inred) 11

4.1 General framework of the operation of a Physics-Informed Neural |
[Network. 20

[6.1 T'he figure illustrates three different vascular conditions that pro-
mote disturbed flow and the formation of atherosclerotic plaques.
Figure A shows a tortuous vessel, which creates irregular flow;
Figure B represents a stenosis, which accelerates the ow and gen-
erates turbulence; Figure C illustrates a bitfurcation, which alters
the direction of flow |83[.|. L 32

[7.1 Architecture of the Physics-Informed Neural Network. The net-
work consists of three input layers (z, y, t), representing the spatial
and temporal coordinates, followed by four hidden layers with a
fixed number of neurons. Finally, the output layers (u, v, p), cor-
responding to the velocity components and pressure.| 36
[7.2 Representation of the computational domain used in the Kimé&Moin |
simulation. The domain is a two-dimensional square [0.25, 1.25] x |
10.5, 1.5], where boundary conditions are applied to simulate flow,| 39
[7.3 Representation of the computational domain used in the Womer-
sley simulation. The domain is a two-dimensional square [0, 1] X
10, 1|, where boundary conditions are applied to simulate pulsatile

[7.4 Comparison of the velocity u, fields for different test cases (a—d) |
at the same time instant. For each case, the subpanels show, in |

|

|

order: the ground truth solution, the neural network predicted
solution, and the absolute error between the two. Note that the
scales differ between the panels.| 45

vi

[7.5 Comparison of the velocity us fields for different test cases (a—d)

at the same time instant. For each case, the subpanels in order

show: the ground truth solution, the predicted solution by the

neural network, and the absolute error between the two. Note

that the scales difter between the panels.|

46

[7.6 Comparison of the pressure fields p for different test cases (a—d)

at the same time instant. For each case, the subpanels in order

show: the ground truth solution, the predicted solution by the

neural network, and the absolute error between the two. Note

that the scales differ between the panels.|

47

[7.7 Comparison of the velocity field u across different test cases (a—d).

For each case, the subpanels show the temporal evolution of the

solution at selected time steps (0.4, 0.8, 1.4, and 1.6). The ground

truth 1s shown in black, while the predicted solution i1s shown in

48

[7.8 Comparison of the pressure p fields for different test cases (a-d) at

the same time instant. For each case, the subpanels in order show:

the ground truth solution, the predicted solution by the neural

network, the absolute error between the two, and the comparison

between them. Note that the scales differ between the panels.|

49

[8.1 Architecture of the Physics-Intormed Neural Network. The net-

work consists of three input layers (z, y, z), representing the spatial

coordinates, tollowed by tour hidden layers with a fixed number ot

neurons. Finally, the output layers (u,v,w,p), corresponding to

the velocity components and the pressure field.|.

52

[8.2 Representation of the computational domain used in the Poiseuille

simulation. The domain is a cylinder with a radius of 0.5 and a

length of 1, where boundary conditions for the pressure are applied.| 53

[8.3 Representation of the computational domain used in the Poiseuille

simulation. The domain is a cylinder with a radius of 0.5 and a

length ot 1, where boundary conditions for the velocity are applied.| 54

[8.4 Comparison of the velocity fields for a pressure drop of 100 (a—c),

considering the different formulation ot the Navier-Stokes Equa-

[tions. Note that the scales difter between the panels| 59
8.5 Comparison of the pressure field for a pressure drop of 100 (a—c), |
| considering the different formulation of the Navier-Stokes Equa- |
[tions. Note that the scales differ between the panels.| 60
8.6 Comparison of the WSS for a pressure drop of 100 (a—b), using |
| different formulations of the Navier—Stokes equations. T'he ground |
[truth 1s shown in black, and the predicted solution in red.| 61
[9.1 Representation of the computational domain for Case 1.| 65
[9.2 Representation of the computational domain for Case 2.| 65
[9.3 Representation of the computational domain for Case 3.| 66

vil

9.4 Comparison of the velocity fields for different geometries (a—c) |

under the application of a pressure drop at Reynolds number Re = |

100. Note that the scales differ between the panels| 70

9.5 Comparison of the WSS for different geometries (a—c) under the |

application of a pressure drop at Reynolds number Re = 100. |

Note that the scales difter between the panels.| 71

9.6 Comparison of the velocity fields for different geometries (a—c) |

under the application of a pressure drop at Reynolds number Re = |

100. Note that the scales differ between the panels| 72

9.7 Comparison of the velocity fields for different geometries (a—c) |

under the application of a pressure drop at Reynolds number Re = |

300. Note that the scales differ between the panels.| 73

9.8 Comparison of the WSS for different geometries (a—c) under the |

application of a pressure drop at Reynolds number Re = 300. |

Note that the scales differ between the panels.| 74

9.9 Velocity field for Geometry 1 (d = 0.03) at Re = 10: reference |

solution, prediction with soft BCs, and prediction with hard BCs.| 75

[10.1 Information flow of a Digital Twin with a bidirectional feedback |

loop |116] 78

viil

List of Tables

[7.1 Configurations with Only PDEs and Boundary Conditions| 37
7.2 Configurations with Data Assimilation (velocity data)|. 38
7.3 Configurations with Data Assimilation (velocity and pressure data)| 38
[7.4 Configurations with Noisy Data Assimilation| 38
[7.5 Configurations with Data Assimilation without Boundary Condi- |

otlonsl 38
[7.6 Relative [5 Errors — Only PDEs and Boundary Conditions| 43
7.7 Relative [y Errors — Data Assimilation (velocity data) 43
7.8 Relative [, Errors — Data Assimilation (velocity and pressure data)| 43
[7.9 Relative [5 Errors — Noisy Data Assimilation 43
[7.10 Relative [5 Errors — Data Assimilation without Boundary Conditions| 43
[7.11 Relative [y Errors — Only PDEs and Boundary Conditions| 44
7.12 Relative o Errors — Data Assimilation (velocity data)l 44
7.13 Relative [, Errors — Data Assimilation (velocity and pressure data)| 44
[7.14 Relative [o Errors — Noisy Data Assimilation 44
[7.15 Relative [, Errors — Data Assimilation without Boundary Conditions| 44
8.1 Training Time (minutes) for different pressure drops|. 56
[8.2 Relative [o Errors - Only PDEs and Boundary Conditions|. 56
8.3 Relative [, Errors - Data Assimilation|. 56
[8.4 Relative [, Errors - Noisy Data Assimilation| o7
8.5 Relative [5 Errors - Data Assimilation without Boundary Conditions| 57
8.6 Relative Iy Errors — Pressure Drop (AP =38)|. 57
8.7 Relative [y Errors — Higher Pressure Drop (AP = 100)] 57
8.8 Relative Ly Errors — Higher Pressure Drop (AP = 1000) 58
8.9 Relative [, Errors - Parabolic Velocity Profile (U, = 0.5)] 58
8.10 Relative [l Errors - Parabolic Velocity Profile (U, = 6.25)] . . . 58
8.11 Relative [, Errors - Parabolic Velocity Profile (U, = 62.5)] . . . 58
[9.1 Geometric configurations and different imposed pressure drops for |

different Reynolds numbers.|00 66
9.2 Relative [y Errors — Geometry 1: ¢ =03 68
9.3 Relative [o Errors — Geometry 2: ¢ =0.08 68
9.4 Relative [y Errors — Geometry 3: d =012 68
[9.5 Relative [, Errors — Geometry 1: d =0.03] 68
9.6 Relative [o Errors — Geometry 2: ¢ =0.08 69
9.7 Relative [y Errors — Geometry 3: ¢ =0.12] 69
9.8 Relative [o Errors — Geometry 3: ¢ =0.08 69

1X

9.9 Relative [, Errors — Re = 100

Chapter 1

Introduction

Cardiovascular diseases (CVDs) represent the leading cause of mortality world-
wide. Among the various types of CVDs, coronary artery disease (CAD) is one
of the most prevalent and life-threatening conditions. It occurs when one or
more coronary arteries become partially or totally obstructed, typically due to
the accumulation of atherosclerotic plaques composed of lipids, inflammatory
cells, and abnormal calcifications. This progressive narrowing can severely re-
duce blood flow to the myocardium, potentially triggering acute clinical events
such as myocardial infarction.

The risk factors contributing to CAD are multifactorial and include genetic pre-
disposition, lifestyle factors such as smoking, diet, and physical inactivity, and
hemodynamic forces. Among these, biomechanical factors, particularly those re-
lated to blood flow dynamics, provide critical insight into the early detection and
progression of vascular disease.

From a mathematical perspective, blood flow in the coronary arteries is described
by the incompressible Navier-Stokes equations for a Newtonian fluid under lam-
inar flow conditions, expressed as [1]:

ou T =
5~V (Vus V)] 4 (e Vju s Vp =1, (1)

V-u=0,

where p denotes the fluid density, ;o the dynamic viscosity, u = (uy, uy, u,) the
velocity field, and p the pressure. The first equation represents the conserva-
tion of momentum, while the second corresponds to the conservation of mass,
commonly referred to as the continuity equation.

The analysis of hemodynamic quantities, such as velocity, pressure, and par-
ticularly Wall Shear Stress (WSS), provides valuable insights and is therefore
essential for improving the diagnosis, prognosis, and treatment planning of coro-
nary artery disease. WSS is defined as the tangential component of the stress
tensor 7T exerted by blood on the arterial wall, given by [2]:

WSS=7-n—(n-7-n)n

where n is the unit normal vector to the arterial wall.

WSS is widely recognized as an early indicator of the onset and development of
coronary artery disease. Abnormal patterns of WSS, including low or oscillatory
shear, have been strongly correlated with regions susceptible to plaque develop-
ment and rupture [3]. Since WSS depends directly on the spatial gradient of the
velocity field, its precise estimation requires high-resolution spatial and temporal
velocity data. Traditional numerical methods may encounter challenges such as
high computational cost and difficulties in handling boundary conditions. To
overcome these limitations, a more robust approach involves assimilating veloc-
ity data into physical-mathematical models, such as the Navier—Stokes equations,
thereby obtaining a regularized and physically consistent estimation of WSS.
Among emerging methodologies, Physics-Informed Neural Networks (PINNS)
have shown great promise for integrating experimental data with physical con-
straints. PINNs combine deep learning architectures with the governing equa-
tions of physical systems, by embedding the differential operators directly into
the loss function used during training. This approach allows the neural network
not only to fit available data but also to respect the underlying physics of the
problem.

The objective of this thesis is to develop and assess a methodology based on
PINNSs for solving the Navier—Stokes equations across various problems and for
accurately estimating WSS from predicted velocity fields. This represents a first
step toward the ultimate goal of contributing to the development of a fast, per-
sonalized, and reliable hemodynamic modeling framework to support diagnosis
and therapeutic planning in coronary artery disease [4].

The thesis is organized into chapters, sections, and subsections. Chapter 2 re-
views various modeling approaches, including Computational Fluid Dynamics
(CFD) and alternative methods such as Reduced Order Models (ROMs), Physics-
Informed Neural Networks (PINNs), and data assimilation techniques. In Chap-
ter 3, the fundamentals of deep learning are recalled, covering neural network
architectures, activation functions, backpropagation, loss functions, and opti-
mization algorithms. Chapter 4 describes the core principles of PINNs. Chapter
5 provides a brief introduction to the mathematical model used. Chapter 6
analyzes the clinical relevance of the WSS in relation to vascular pathologies.
Chapters 7 and 8 apply PINNs to two- and three-dimensional geometries, re-
spectively, with Chapter 7 focusing on the Kim&Moin and Womersley problems
in two dimensions, and Chapter 8 extending the application to three-dimensional
Poiseuille flow. Chapter 9 considers a curved tube geometry to simulate more
realistic vascular conditions. Finally, Chapter 10 summarizes the main findings,
highlighting the strengths and limitations of the PINN methodology and outlin-
ing potential future developments. The Appendix provides a hands-on guide to
implementing PINNs using the DeepXDE library.

Chapter 2

Introduction to Modeling
Approaches

2.1 Recap of Computational Fluid Dynamics (CFD)
Methods

CFD simulation represents the gold standard for solving the equations that de-
scribe fluid motion, employing mathematical models to generate a numerical
solution. Several numerical methods are available to solve these equations, al-
lowing the continuous domain to be discretized into a numerical representation,
typically achieved through a mesh. This process results in a system of alge-
braic equations that can then be solved numerically [5]. The main methods used
for this purpose include FDM (Finite Difference Method), FVM (Finite Volume
Method), and FEM (Finite Element Method) [6].

However, despite significant advancements in recent years driven by the develop-
ment of new tools, the CFD approach continues to face inherent challenges and
limitations. These issues become more evident as the complexity of the prob-
lem increases, including difficulties in mesh generation, especially in complex
geometries, high computational costs, and numerical instability |7} [8]. Moreover,
these methods are particularly sensitive to boundary and initial conditions im-
posed [9]. In consideration of these limitations, alternative methodologies have
recently been investigated with the aim of maintaining high accuracy while re-
ducing computational costs. This issue is particularly relevant in the medical
field, especially in the cardiovascular context, where blood vessels have complex
geometries. Specifically, since Computational Fluid Dynamics is sensitive to un-
certainties in image segmentation, boundary conditions, and blood rheology [10],
exploring a wide range of flow conditions or complex geometric configurations in
three-dimensional models may be computationally expensive and demanding to
solve [11].

In this context, there is a growing need to develop alternative solutions, which re-
quire further investigation, that allow the acquisition of cardiovascular flow fields
at low economic and computational cost, while maintaining adequate accuracy.

2.2 Data Assimilation (DA)

Data Assimilation (DA) refers to a set of techniques that enhance the estimation
of a system’s true state by systematically combining observational data with
computational model outputs [12|. By leveraging both empirical measurements
and mathematical models, DA minimizes discrepancies between modeled and
observed behaviors, thereby improving the reliability and accuracy of predictions
[13].

Physics-based mathematical models used to describe complex systems often
present several limitations, such as difficulties in defining boundary conditions
or accurately identifying key system parameters. These limitations can under-
mine the reliability and predictive capability of the model, especially in complex
or poorly observable scenarios. To overcome these challenges, data-driven ap-
proaches have been developed to integrate observed data within the physical
modeling framework, exploiting available empirical information to enhance the
representation of the phenomenon under study. Physical modeling and data-
driven modeling can be used independently, but they are particularly effective
when combined into a hybrid formulation |14, [15].

In clinical contexts, this hybrid approach proves especially valuable, as data are
often scarce or uncertain, particularly concerning initial or boundary conditions.
Integrating experimental data helps bridge these information gaps and enhances
the model’s predictive performance [16]. Moreover, the capability to dynami-
cally update the model with new measurements makes these methods adaptable
and potentially suitable for real-time applications in diagnostics and therapeutic
decision support.

2.3 Alternative Methods
2.3.1 Reduced Order Models (ROMs)

Reduced Order Models (ROMs) constitute an effective strategy for reducing the
computational cost associated with Computational Fluid Dynamics (CFD) sim-
ulations. The development of these models generally proceeds through two dis-
tinct phases: an offline phase and an online phase. During the offline phase, a
high-fidelity simulation, referred to as the Full Order Model (FOM), is executed.
FOMs are solved using classical numerical methods such as the Finite Element
Method (FEM), Finite Volume Method (FVM), or Finite Difference Method
(FDM) [17]. This approach is particularly costly but extremely accurate.

During this phase, techniques such as Proper Orthogonal Decomposition (POD)
are employed to extract the main features of the high-fidelity model. A funda-
mental step in this process is the parametrization of the governing equations,
meaning they depend on a set of parameters. Sample solutions, or snapshots,
are collected by solving the FOM for different values of these parameters.

The collected snapshots are organized as columns within a matrix, to which
Singular Value Decomposition (SVD) is then applied. Since many snapshots

may be redundant, the method reduces the model by extracting the eigenvectors
corresponding to the largest singular values, as they contain the most significant
information in the dataset. These eigenvectors form an orthogonal basis onto
which the original high-dimensional problem is projected [1§].

Subsequently, during the online phase, the reduced-order problem, characterized
by a substantially lower dimensionality, is solved, enabling fast approximations
for new parameter values at a fraction of the computational cost.

In this phase, solutions to new scenarios can be predicted by modifying the
parameters, while incurring a significantly lower computational cost compared
to the Full Order Model [19].

In biomedical applications, this approach is adopted to simulate blood flow within
blood vessels. In this context, starting from a database of representative solutions
obtained from the FOM, the POD technique is applied to derive the ROMs, which
use data from previous simulations as basis functions to quickly solve similar new
scenarios [11]. Furthermore, the integration of data assimilation has significantly
enhanced predictive accuracy [20]. However, the ROM method also has some
limitations. The main challenges involve using ROMs for turbulent flows and for
flows that include geometrical parametrization [21].

2.3.2 Physics Informed Neural Networks (PINNs)

Another approach involves the use of deep learning algorithms, specifically Physics-
Informed Neural Networks (PINNs). These networks are designed to integrate
the physical laws governing the problem directly into the model, such as the
Navier-Stokes equations and boundary conditions, directly into the model by
incorporating them as loss functions during the training process [22|. Moreover,
through data assimilation, available experimental data can also be incorporated
into the model [23|. This enables the network to learn solutions that not only
satisfy the underlying physical laws but also align with real-world measurements.
This method, which constitutes the main focus of this thesis, will be examined
in greater detail in the following chapters, with particular attention to its appli-
cations in a clinical context.

Chapter 3

An Introduction to Deep Learning

3.1 Architecture

An Artificial Neural Network (ANN) is a computational model inspired by the
structure and functioning of the biological nervous system. The human brain
is composed of a network of interconnected neurons, which are the fundamental
units of the nervous system. Each neuron receives signals through dendrites,
processes them within the soma, which contains the nucleus, and transmits the
output through the axon to other neurons via synapses [24].

input

den(!_ljtes 1 , axon lerminals
N T T

axon

|

cell BOd)‘ output

Figure 3.1: Structure of a Biological Neuron [25]

Similarly, an artificial neural network consists of computational units known as
artificial neurons or nodes, which represent the fundamental building blocks of
the model. Each artificial neuron acts as an input/output processing unit: it
receives input signals, computes a weighted sum, and then applies a linear or
non-linear transformation known as the activation function, which converts this
value into an output signal. These neurons are organized into layers: the input
layer, whose size corresponds to the number of input variables; one or more
hidden layers, where the main processing of learning takes place; and the output
layer, which provides the final predicted values [26].

In the human brain, information transfer and output processing result from the
combined activation and inhibition of synapses. In ANNs, the learning process
consists of optimizing the synaptic weights, the coefficients that determine the
strength of connections between neurons, by minimizing a cost function that
measures the difference between predicted and actual values. The ability of a

Input Layer Hidden Layers Output Layer

Figure 3.2: General Architecture of an Artificial Neural Network.

neural network to approximate complex functions depends on several key factors:
its depth, defined by the number of layers; its width, determined by the number of
neurons per layer; the quality and representativeness of the training data; and its
capacity to generalize to unseen inputs. Increasing the number of hidden layers
transforms the model into a deep neural network (DNN), which enhances its
ability to capture intricate and hierarchical patterns in the data. Consequently,
the architectural design of the network must be carefully adapted to the nature
of the problem and the complexity of the relationships among variables [27].
Depending on the problem to be solved, different types of neural networks can be
used, distinguished by how the neurons in different layers are connected and how
the layers are organized. A network where each node receives input only from
the neurons in the preceding layers and sends its output to the neurons in the
following layers is called a feedforward neural network (FNN). If each neuron in
one layer is connected to every neuron in the next layer, the feedforward network
is called fully connected (FFNN). On the other hand, if some neurons send their
output to other neurons within the same layer or to neurons in previous layers,
the network is known as a recurrent neural network (RNN) [28].

3.2 Activation Function

Activation functions play a fundamental role in the learning process of neural
networks, as they introduce the non-linearity necessary for the network to learn
and represent complex patterns. In the absence of such functions, the network
would only be capable of modeling linear relationships between input and output,
solving only simple problems. However, most real-world data is characterized by

non-linear relationships; therefore, activation functions are designed to be non-
linear in order to enable the network to learn these complex patterns [29].
Mathematically, the activation function determines the output of a neuron by
processing the weighted sum of the inputs x;, where j refers to the index of the
inputs connected to the ¢-th neuron, multiplied by their corresponding weights
w;j, and adding the bias term (3, as shown in the expression (3.1) . The weights
can be interpreted as the neuron’s sensitivity to each input, while the bias (3
represents the neuron’s overall sensitivity or tendency to activate [30].

Yi = szjiﬂj + 8 (3.1)

Inputs Weights Bias

w1 ‘
T Wo

w3 o 2
T3 Z f)

Wn

Weighted ‘
Sum o

Tp

Figure 3.3: Behavior of the activation function: the weighted sum of inputs,
summed to the bias, is passed through an activation function f to obtain the
output.

3.3 Backpropagation

Backpropagation is the fundamental algorithm that enables neural networks to
learn. It computes the gradient of the error function with respect to each weight,
indicating how changes in each weight impact the overall error. The learning
process starts with forward propagation: data flows through the network layer by
layer. Each neuron computes a weighted sum of its inputs, applies an activation
function, and produces an output that is passed to the next layer [31]. Initially,
the output computed is not accurate. Therefore, after the forward pass, the next
step is error calculation, where the difference between the predicted output and
the true value is measured using the loss function. This error is then propagated
backward through the network in the backpropagation phase. During this step,
the algorithm determines how much each weight contributes to the error, allowing
the network to update each weight accordingly. The network repeats this cycle
— forward propagation, error calculation, backpropagation, and weight updates

— continuously refining the parameters until the error is sufficiently small and
the predictions become accurate [32).

The main activation functions used in deep learning are presented below, with
particular emphasis on those most commonly employed in PINNs, where the
choice of activation function can significantly influence the network’s ability to
satisfy physical constraints and accurately learn the solution to differential equa-
tions.

3.3.1 Logistic Sigmoid

The sigmoid function is an S-shaped curve that outputs values between 0 and
1. Since the function maps inputs to a range between 0 and 1, the outputs can
be promptly interpreted as probabilities. This makes it particularly useful for
binary classification problems. By compressing the output to a value between 0
and 1, the sigmoid activation function enables the result to be interpreted as a
probability, making it particularly suitable for binary classification tasks where
the output represents the likelihood that the input belongs to a specific class.
It is defined as follows:

1
= 3.2
O (32
The derivative of the sigmoid function can be expressed as:
fla)= (33
 (14+e™)2 '

1.0{ — sigmoid Function fix)
--- Derivative (x)

-10.0 -75 -5.0 -25 0.0 2.5 5.0 7.5 10.0

Figure 3.4: Plot of the Sigmoid activation function (in blue) and its derivative
(in red).

A critical issue arises when computing the derivatives of activation functions:
when neuron inputs are very small or very large, especially in deep networks, the
gradients tend to vanish progressively across layers, which significantly impedes
the training process. This phenomenon is commonly referred to as the "vanishing
gradient problem" [33|. Specifically, if the gradients are already minimal in the
earlier layers due to activation saturation, they become even smaller in the deeper
layers. Consequently, the weight updates in these deeper layers are almost zero,

preventing the effective adjustment of model parameters. This slow adjustment
process impedes learning and slows down the overall training of the model [30].
Another issue is that the outputs of the sigmoid function are not zero-centered,
meaning they always produce positive values between 0 and 1. This shifts the
average value of the inputs to the next layer away from zero, which can disrupt the
balance of the data flowing through the network and slow down the convergence
during training [34].

3.3.2 Tanh

The hyperbolic tangent function (tanh) maps the inputs in the range between -1
and 1, and it is defined as follows:

et —e™®

f(z) = ——— (3.4)

The derivative of the hyperbolic tangent activation function can be expressed as:

f'(z) = 1 — tanh?(2) (3.5)

1.00{ — Tanh fix)
——- Derivative f(x) Fd
0.75 4 !
0.50
> 000 ====———————=--"" 4 T ————
—0.25 {

—0.50 1

—0.75

—1.00 1

Figure 3.5: Plot of the Tanh activation function (in blue) and its derivative (in
red).

During backpropagation, the derivative of the activation function is essential for
updating the network’s weights. Compared to the sigmoid function, the tanh
function outputs values in the range —1 to 1, which not only provides a higher
output range but also makes it zero-centered. This zero-centering facilitates more
effective weight updates and helps the model converge faster, resulting in quicker
training. Additionally, because tanh outputs are balanced around zero, it works
particularly well with normalized data, simplifying the optimization process.
However, like the sigmoid function, the tanh function suffers from the vanishing
gradient problem.

10

3.3.3 ReLU

The Rectified Linear Unit (ReLLU) function outputs zero for every input less than
or equal to zero, and for every input greater than zero, it outputs the input value
itself:

The ReLU activation function is defined as:

0 ifz<0
fz) =

x ifx>0
The derivative of the ReLLU function can be expressed as:

) 0 ifz<0
f(z) = _
1 ifx>0

51 — RelU fix)
——- Derivative f(x)

X

Figure 3.6: Plot of the ReLU activation function (in blue) and its derivative (in
red).

The derivative of the ReLU function is piecewise constant and equal to 1 for
all positive values, and zero for non-positive values. This characteristic helps
mitigate the vanishing gradient problem because the gradients are not dimin-
ished when passing through positive values, leading to faster convergence during
training. One advantage of the ReLLU function is that it behaves linearly for
inputs greater than zero, while outputting zero for inputs less than or equal to
zero, introducing non-linearity to the network. However, ReLLU can suffer from
a related issue known as the "dying ReLLU problem," a variant of the vanishing
gradient problem. This occurs when a large number of ReLU neurons become
inactive, outputting zero, during much of the training process. This can prevent
the network from learning complex patterns effectively, as the gradients for these
neurons are zero, leading to ineffective weight updates |35].

11

3.4 Loss Function

One of the key parameters in deep learning is the loss function, which measures
how well the model approximates the correct output. The goal is to find the
point where the function reaches its minimum. Depending on the architecture
and the specific problem being addressed, different loss functions can be chosen,
as they can significantly impact the performance of the trained network. In
general, loss functions can be categorized based on the type of problem being
solved: regression or binary classification. Each category includes different types
of loss functions suited for their respective tasks [36].

3.4.1 Regression

The Regression method is a learning problem in machine learning that aims to
predict a continuous output value based on one or more input features. In this
case, the most commonly used loss functions are Mean Squared Error (MSE)
and Root Mean Squared Error (RMSE).

Mean Squared Error (MSE)

The Mean Squared Error (MSE) calculates the average of the squared differences
between the predicted values by the model and the actual values. Mathemati-
cally, the MSE loss function is expressed as:

N

MSE =+ S (i~ i), (36)

=1

where N is the number of samples, y; is the true value of the i-th sample, and y;
is the predicted value of the i-th sample.

MSE, being a quadratic function, promotes efficient convergence toward minima
in the presence of small errors, as its gradient gradually decreases. Additionally,
it is differentiable, making it particularly suitable for efficient gradient computa-
tion, a key element in derivative-based optimization algorithms such as gradient
descent. Furthermore, the convexity of the function simplifies the optimization
process, allowing gradient-based techniques to converge to the global minimum
without getting trapped in local minima [36]. However, one of its disadvantages
is that, due to its quadratic nature, MSE tends to amplify the impact of outliers
[37].

Root Mean Squared Error (RMSE)
The RMSE is the square root of the mean squared error (MSE) defined as:

RMSE = \| =3 (i —)2 (3.7)

12

where y; is the true value, gy; is the predicted value, and N is the number of
samples.

The RMSE has several advantages, including being easy to compute and differ-
entiable. As a linear function, it provides a steeper gradient near the minima,
allowing for faster adjustments and potentially improving optimization. Unlike
MSE, RMSE penalizes large errors less due to the square root, which prevents
the scale from being overly amplified. However, RMSE increases proportionally
with large errors, making it more sensitive to outliers. This increased sensitivity
can lead to higher computational costs and make training neural networks more
challenging [37].

3.4.2 Binary Classification

The Binary Classificationis a learning problem in machine learning that trains a
model with the goal of predicting the category or class of a given input, aiming
to classify the input features into a specific class. Classification problems include
binary classification, where the output is one of two possible classes; multi-class
classification, involving multiple mutually exclusive classes; and multi-label clas-
sification, where instances can be assigned to multiple classes simultaneously.

Binary Cross-Entropy (BCE)

The Binary Cross-Entropy (BCE) loss function measures the difference between
the predicted probability of a class, typically labeled as 1, and the actual class
label, typically labeled as 0. When the predicted probability p aligns with the
true class label y, the BCE loss is minimized, and the model learns effectively.
Mathematically, the BCE loss is defined as:

L(y,p) = —(ylog(p) + (1 — y) log(1 — p)) (3.8)

A key advantage of Binary Cross-Entropy lies in its computational efficiency,
differentiability for p > 0 , and the ability to interpret the model’s output as a
probability distribution. Furthermore, BCE is less influenced by outliers. How-
ever, it can encounter challenges with class imbalance, where one class has sig-
nificantly more samples than the other, potentially leading to biased predictions
[38].

3.5 Optimization Algorithm

The optimizer is a fundamental component in the fine-tuning of neural networks,
responsible for minimizing the loss function by iteratively adjusting the model pa-
rameters in a manner that progressively enhances the model’s performance. This
optimization process relies on backpropagation, which computes the gradient of
the loss function with respect to each model parameter, providing the necessary

13

information for weight updates, and the optimizer uses this information to deter-
mine the direction in which the weights should be adjusted to minimize the error.
The optimization process is governed by several hyperparameters, including the
learning rate, the initialization of weights, and the number of training epochs, all
of which must be carefully selected and adjusted to the specific characteristics of
the problem under investigation. Typically, the model is trained for a fixed num-
ber of epochs or until the loss function reaches a sufficiently low value. When
further improvements in performance become negligible and the loss function
stabilizes, the model is considered to have reached convergence [39).

Learning Rate

The learning rate controls the step size of the optimization algorithm. The step
size determines how big or small each update to the model’s parameters will
be during training. This parameter affects how quickly or slowly the optimizer
moves toward the minimum of the loss function. A large learning rate can lead
to rapid convergence but carries the risk of overshooting or getting stuck in a
suboptimal local minimum. Conversely, a very small learning rate ensures more
precise convergence toward the true minimum; however, it requires a significantly
larger number of epochs and increases the risk of becoming trapped in local
minima or saddle points [40)].

There are different strategies for setting the learning rate. The simplest approach
is to use a fixed learning rate throughout the training process. However, this of-
ten results in slow convergence and prolonged training times. An alternative
approach is to employ a decaying learning rate, where training begins with a rel-
atively high learning rate that gradually decreases over time, typically following
an exponential or polynomial decay function. Another widely used strategy is the
use of cyclic learning rates, where the learning rate oscillates between predefined
bounds following a cyclical pattern [41].

Weights

The weights are parameters that define the strength of connections between
neurons in a neural network. Each weight determines how much the output of
one neuron influences the input of another. After backpropagation calculates
the error gradients associated with each weight, optimizers use these gradients
to update the weights. Specifically, optimizers decide both how much and in
which direction to adjust the weights, aiming to reduce the overall error. These
updates take into account the learning rate, which controls the step size of each
adjustment, and the gradient direction indicated by backpropagation [40].

3.5.1 Gradient Descent (GD)

Gradient Descent is an optimization algorithm designed to minimize a function
by iteratively updating its parameters. The core idea behind the process is that
the gradient of the loss function indicates the direction in which the function

14

increases the most. The algorithm then takes a step in the opposite direction
of the gradient, moving toward the point where the loss is minimized [42} 43].
At each iteration, the model’s weights are updated according to the following
formula, gradually reducing the value of the function:

dL

ndwk
where w1 represents the new weight, wy represents the previous weight, n
represents the learning rate, and %is the partial derivative of the loss function
with respect to the weight wy, calculated over the entire dataset.
Although it is simple to implement, Gradient Descent does not work for all func-
tions. There are two fundamental requirements for its proper functioning: the
differentiability and convexity of the loss function. Differentiability is essential
to ensure that the gradient can be calculated continuously and precisely at ev-
ery point in the domain of the function. Convexity ensures that the function
has a single optimal solution, a global minimum, avoiding getting stuck in local
minima [44].

(3.9)

Wg+1 = W —

3.5.2 Stochastic Gradient Descent (SGD)

Vanilla Stochastic Gradient Descent

One of the main limitations of gradient descent is that, since the gradients are
computed over the entire dataset, the algorithm struggles to converge to a local
minimum efficiently, requiring a significant amount of time. To address this is-
sue, the Stochastic Gradient Descent (SGD) algorithm was introduced. In SGD,
after the backpropagation phase, the optimizer updates the weights using a single
data point at a time, randomly selecting training samples from a larger dataset
rather than computing gradients over the entire dataset. Since weight adjust-
ments are made incrementally, sample by sample, rather than after processing
the full dataset, SGD reduces the number of iterations needed and decreases the
computational time required to process large amounts of data [45]. Additionally,
the noisy updates in SGD, caused by its stochastic nature, can be both beneficial
and detrimental. On one hand, the variability introduced can help the model
escape local minima or saddle points, potentially leading to better solutions.
On the other hand, these updates may cause oscillations in the loss function,
preventing it from decreasing smoothly and impeding stable convergence [46].
In the simplest case, known as Vanilla SGD, the gradients are multiplied by the
learning rate and then subtracted from the model’s weights to update them:

dL;
Wil = Wy — 3.10
k+1 k=T dwr ()
where jTL; is the partial derivative of the loss function with respect to the weight

wy, calculated on the single sample 7.

15

Stochastic Gradient Descent with Momentum (SGDM)

The Stochastic Gradient Descent method presents some intrinsic limitations,
including slow convergence and pronounced oscillations in the weight update
trajectories. To address these issues, an extended version of stochastic gradient
descent known as SGD with Momentum (SGDM) has been introduced. This
approach has proven effective in accelerating convergence and reducing oscilla-
tions during the optimization process. Specifically, the weight update is modified
according to the following expression:

B dL; n dL;
Wr41 = Wk wak pdwk—l

(3.11)

dL;
dwyg_1

where p is the momentum coefficient, with 0 < p < 1, and is the gradient
of the loss function at iteration k£ — 1.

In this scheme, the current update incorporates both the information from the
current gradient and the update direction from the previous step. Thanks to the
addition of the momentum term, when the gradients point in the same direction,
their effect is amplified, facilitating convergence; conversely, when the gradients
change direction and oscillate, the effect of the momentum term is reduced,
contributing to a more stable update [47].

Although the SGDM method often outperforms classical SGD, further improve-
ments have been achieved through appropriate parameter management strate-
gies. A widely adopted strategy in practice is Multistage Stochastic Gradient
Descent with Momentum (Multistage SGDM). In this approach, each stage is de-
fined by three key parameters: the learning rate, the momentum coefficient, and
the stage length. These parameters are systematically updated from one stage to
the next to progressively refine the learning process [48|. This multistage strat-
egy has shown high effectiveness in training large-scale neural networks, where
carefully tuning these parameters across stages is essential for achieving optimal
performance [49].

3.5.3 Root Mean Square Propagation (RMSProp)

Root Mean Square Propagation (RMSProp) is an optimization algorithm that
adaptively adjusts the learning rate by computing an exponential moving aver-
age of the squared gradients, thereby enhancing stability and efficiency during
optimization [50].

Specifically, at step k, RMSProp updates the exponential moving average of the
squared gradients g as:

El¢’lx = BE[g°lx—1 + (1= 5) < oL) : (3.12)

Owg_1

where 3 € [0,1) is the decay rate controlling the influence of past gradients.
The parameter update rule is:

16

n 8L)
— Wy — , 3.13
o = v E[QQ]W(M_I (3.13)

where 7 is the learning rate and € is a small constant added for numerical stability.

This mechanism scales the updates based on the magnitude of recent gradients,
improving convergence and robustness of the algorithm [51].

3.5.4 Adaptive Moment Estimation (ADAM)

The Adaptive Moment Estimation (ADAM) is a stochastic optimization algo-
rithm that serves as an advanced alternative to the classical Stochastic Gradient
Descent. Unlike SGD, Adam assigns an adaptive learning rate to each parame-
ter, updating them individually throughout the optimization process. The algo-
rithm combines the strengths of two previously introduced optimization meth-
ods: Stochastic Gradient Descent with Momentum (SGDM) and RMSProp [52].
Adam leverages both the first-order moment (the mean of the gradients) and the
second-order moment (the variance of the gradients), providing more informed
parameter updates. This strategy allows Adam to take into account both the
magnitude and the direction of the gradients, improving the stability and effi-
ciency of the learning process [53|. The moments are computed as follows:

my = fimy—1 + (1 — p) j—sza
N2 (3.14)
v = Bovg—1 + (1 — f2) <d_wk)

where my and vy represent the first and second moment estimates, respectively.
A bias correction is applied to both estimates to obtain more accurate values,
especially during the initial iterations when m; and v, are close to zero:

A my
my = ——
1— Bk
) w (3.15)
U = ——
1%
Finally, the parameter update rule takes the following form:
n
Wiyl = Wy — ————M 3.16
k41 k N k (3.16)

7 is the initial learning rate, which is manually set at the beginning but dynami-
cally adjusted by the Adam optimizer during training. [, controls the decay rate
of the moving average of the gradients, while 5, governs the moving average of
the squared gradients. Finally, € is a very small constant introduced to ensure
numerical stability and to prevent division by zero.

There are numerous advantages of Adam; among them are ease of implementa-
tion, computational efficiency, low memory requirements, and high scalability,
which make it particularly well-suited for scenarios involving large datasets and
high-dimensional models [54].

17

3.5.5 L-Broyden—Fletcher—Goldfarb—Shanno (L-BFGS)

The L-Broyden—Fletcher-Goldfarb—Shanno (Limited-memory BFGS) method is
an optimization algorithm belonging to the family of quasi-Newton methods. It
was developed as a variant of the BFGS method to handle large-scale problems
with limited memory usage [55]. Unlike Newton’s method, which requires the ex-
plicit computation of the Hessian matrix, quasi-Newton methods aim to find the
minimum of a function by iteratively approximating the Hessian, significantly
reducing computational costs. In L-BFGS, the approximation of the Hessian
matrix (or more precisely, its inverse) is constructed and updated iteratively by
leveraging differences in gradients and positions between successive iterations
[56]. This approach is based on a multidimensional generalization of the secant
method, which allows estimating the second-order behavior of the objective func-
tion without directly computing second derivatives, instead using finite difference
approximations. In one dimension, this is expressed by the well-known secant
method formula:

Tk — Tg—1
f'(w) — f/(wp-1)

Extending this idea to higher dimensions, the approximated Hessian matrix By
satisfies the quasi-Newton condition:

(3.17)

Tp1 = 2 — f(2g) -

Bzt — x| = Vf(@p1) — Vf(a), (3.18)

Since the secant condition alone does not uniquely determine the update of the
inverse Hessian approximation, additional constraints must be imposed [57]. In
L-BFGS, these constraints consist of minimizing the change between two succes-
sive inverse matrices, that is, minimizing the norm || B;_'; — B;,'||, while ensuring
that the updated matrix remains symmetric and positive definite. This strategy
ensures numerical stability and adapts to the shape of the objective function,
allowing for more effective optimization.

18

Chapter 4

Physics-Informed Neural Networks

PINNSs are a class of deep learning models that incorporate prior physical knowl-
edge into the training process. Unlike traditional neural networks, which rely
exclusively on data, PINNs integrate the partial differential equations (PDEs)
governing the phenomenon directly into the learning framework [58|. The main
objective is to minimize a loss function that combines multiple components: the
residuals of the PDE evaluated at selected collocation points within the domain,
the residuals associated with the boundary conditions, and, when available, dis-
crepancies from observational data. In this way, the neural network not only
learns from data but also respects the physical laws that describe the system.
PINNSs can, in fact, be employed to address both forward and inverse problems.
In forward problems, the network approximates the solution of the governing
PDEs using the known physical laws and boundary conditions. In inverse prob-
lems, the network is trained on sparse observational data, where the solution is
known only at specific locations, and it leverages the underlying physics to infer
unknown parameters or uncover hidden system dynamics [59).

A typical PINN architecture consists of an input layer, a variable number of
hidden layers with nonlinear activation functions, and an output layer represent-
ing the predicted solution of the physical system. The training process relies
on the iterative update of the weights connecting the various layers, based on
the chosen activation function, with the objective of minimizing a loss that typi-
cally includes multiple components: a physics-based term enforcing the governing
PDEs, a term related to boundary and initial conditions, and a data-driven term
incorporating observational data |22]. The network is trained until the loss func-
tion reaches a minimum, or until a predefined maximum number of iterations is
reached. This optimization process is typically carried out using algorithms such
as ADAM and L-BFGS, which facilitate both rapid convergence and fine-tuning
[60].

4.1 The building blocks of PINNs

In this section, the fundamental components of a PINN are presented, revisiting
and expanding upon the key concepts introduced in the previous chapter.

19

Automatic
Neural Network

Differentiation
O 7N ; FoEs
@ LONVEOS SO |/

no <gor Loss
—e
> max iter Function
J' yes
End

Figure 4.1: General framework of the operation of a Physics-Informed Neural
Network.

4.1.1 Automatic Differentiation

The solution of Partial Differential Equations (PDEs) through PINNs relies on
machine learning techniques to efficiently compute derivatives, including gradi-
ents and Hessian matrices. Derivative computation methods can be categorized
into four main approaches [61]:

1. Manual differentiation, where derivatives are derived analytically and then
implemented in code, which is time-consuming and susceptible to human
errors.

2. Numerical differentiation, which estimates derivatives using finite difference
approximations but suffers from truncation and round-off errors, limiting
its accuracy and scalability.

3. Symbolic differentiation, which employs algebraic manipulation in com-
puter algebra systems, yet often leads to expression swell and inefficiency
in complex functions.

4. Automatic differentiation (AD), also known as algorithmic differentiation,
which efficiently computes derivatives by systematically applying the chain
rule at the computational graph level, combining accuracy with computa-
tional efficiency.

AD is a powerful technique for efficiently computing derivatives of functions in
machine learning [62]. AD leverages the fact that differentiable functions are

20

composed of elementary operations with known derivatives. By systematically
applying the chain rule, AD accumulates these derivatives to compute gradients
with high precision [63]. AD operates in two primary modes: Forward Mode
and Reverse Mode. Forward Mode efficiently computes derivatives for functions
with a small number of input variables, while Reverse Mode, widely used in deep
learning, is significantly less costly to evaluate when dealing with functions that
have many inputs but a single scalar output.

Forward Mode

In Forward Mode Automatic Differentiation, each intermediate variable v; during
function evaluation is augmented with its derivative [64]. Each input variable,
known as primal, is paired with its corresponding derivative, called tangent,
denoted by ©; .

V; — (Ui7 Ul)

To efficiently compute derivatives, the process begins by initializing the deriva-
tive of interest to 1, while all other derivatives are set to 0. As the function
is evaluated step by step, the derivatives are propagated using the chain rule,
ensuring that both the function values and their corresponding derivatives are
updated simultaneously. By the end of the computation, this approach provides
both the function’s output and its derivative with respect to the chosen input
[61].

This mechanism extends to functions with multiple inputs and outputs. For a
general function f : R®™ — R™, the goal is to compute the Jacobian matrix. To
compute the full Jacobian using Forward Mode, n forward passes are required,
one for each input direction, resulting in one column of the Jacobian per pass.
A key advantage of Forward Mode is the efficient computation of the Jaco-
bian-vector product J; - 7, where r € R", by initializing the tangents as & = r:

9h Oh ... 9N

oz1 Oxo OTp T1

on 9n ... ||,
Jer — ox1 Oxo Oxn 2
fr=

Ofm Ofm ... Ofm r

oz Oxo OTn n

This allows computing the product in a single pass without explicitly forming the
full Jacobian matrix, significantly reducing memory and computational costs.

Reverse Mode

Reverse Mode Automatic Differentiation is a technique that generalizes the back-
propagation method, used during weight updates to compute gradients starting
from the outputs, with the goal of minimizing the error function. Unlike For-
ward Mode, which starts from the inputs, Reverse Mode is particularly efficient
for functions with many inputs and a single output [65].

In this method, a forward pass is first performed to compute intermediate val-
ues and record the dependencies necessary for derivative computation. Then,

21

a reverse pass is executed to calculate derivatives by applying the chain rule in
reverse.

Each intermediate variable v; is associated with a value called the adjoint, de-
noted v;, which represents the partial derivative of the output with respect to v;.
The adjoint of the output is initially set to 1:

and the computation proceeds by calculating the adjoints of intermediate vari-
ables and inputs backward, accumulating contributions when a variable influ-
ences the output through multiple paths [66].

For functions with multiple outputs (f : R™ — R™), m reverse passes are required
to fully compute the Jacobian. However, similarly to Forward Mode, which
computes the Jacobian-vector product, Reverse Mode efficiently computes the
vector-Jacobian product, avoiding the explicit computation of the full Jacobian,
given by:

9fh Of .. Of

o1 Oz dzn

ofs 0fa .. Of2

T o1 Oxo OTn
riJr=r,re,] |

ox1 Oxo Oxn

4.1.2 Loss Function

In PINNS, the loss function ensures that the model’s predictions are consistent
with both observed data (when available) and the underlying physical equations.
It typically consists of multiple terms, each addressing a different aspect of the
problem. These terms can include a term loss that enforces initial and boundary
conditions, incorporates data measurements when available, and minimizes the
residuals of differential equations, as well as an term loss that includes the phys-
ical constraints, specifically the PDEs governing the system, over the space-time
domain. The exact formulation of the loss function varies depending on the spe-
cific problem, balancing these contributions by adjusting the weights to ensure
that the solution is both accurate and physically consistent [67]. Typically, the
loss is formulated as a mean squared error function, which must be minimized:

1 M & S 2
Leoe = 570 > I Gp eIl (4.1)

i=1 j=1

where

fo figs=pu-Vu+ Vp—pAu —f,
f4:V-u.

22

A \2
= E — 4.2
‘CBC NBC - (U mz) U’Z) (>
Ndata
Liata = L (u(x;) —a)2 (4.3)
data Ndata i 7

i=1
e Lppg represents the PDE residual loss,
e Lpc represents the initial/boundary condition loss.

e Lata represents the data measurements loss.

Here x; represents the spatial and /or temporal coordinates of the sampled points,
@; represents the reference values, and u(x;) is the predicted solution at those
sampled points. The weights wppg, wpc, and wgat, are used to balance the
contributions of the data loss, boundary conditions, and PDE residual terms
within the total loss function, which is minimized by iteratively updating the
network’s weights through a gradient-based optimization method [22].

23

Chapter 5

Mathematical Models

This chapter introduces the mathematical models used to describe blood flow
dynamics. In particular, it presents the Navier-Stokes equations that govern
fluid motion, along with the boundary conditions that characterize the physical
domain.

5.1 Navier—Stokes Equations
The Navier—Stokes equations describe the motion of a fluid with constant kine-

matic viscosity v. They can be expressed as [68|:

{_V [p(Vu+ vul)] + (- Vju+ Vp =1, (5.1)

V-u=0,

where:

e u is the velocity field,

p is the pressure,

o=~ is the kinematic viscosity,
p

p is the fluid density,

4 is the dynamic viscosity,
e f is an external force term.

The term (u - V)u represents the convective transport of momentum, while the
diffusive term —V - [v(Vu + VuT)] represents viscous effects due to molecular
diffusion of momentum.

The first equation represents the conservation of momentum, while the second
corresponds to the conservation of mass, commonly referred to as the continuity
equation.

24

For unsteady (time-dependent) flows, the Navier-Stokes equations are expressed
in the form:

%—?—V- [v(Vu+ Vul)] + (u- V)u+ Vp=f,

V-u=0,

(5.2)

If v is constant and the flow is incompressible (i.e., V - u = 0), then the viscous
term simplifies as follows:

V- [v(Vu+ Vu")] = vAu, (5.3)

5.1.1 Non-dimensional Navier—Stokes Equations

The Navier—Stokes equations can be expressed in a non-dimensional form, where
the dynamics depend on the Reynolds number Re. They are given by:

1
*. * *__A *:f*
(u*-V)u* + Vp 7oA , (5.4)
V.-u* =0,

where the non-dimensional variables are defined as:

ut=—=, t=— = —
U’ L P T
and the Reynolds number is given by:
UL
Re="1"%
1

Here, U and L denote the characteristic velocity and length, respectively. Starred
variables (*) represent non-dimensional quantities, whereas unstarred ones are
dimensional.

5.1.2 First-Order Navier—Stokes Equations

In large vessels, blood can be approximated as a Newtonian fluid. Under this
assumption, by explicitly defining the Cauchy stress tensor, the Navier—Stokes
equations can be written using the first-order formulation. In this approach, the
momentum equation is expressed as:

(u-V)u+V-o=f,

where o is the Cauchy stress tensor, defined as:

o=pl—v (Vu+ (Vu)T) ,

where I is the identity tensor. Moreover, the pressure is related to the stress
tensor through the relation:

25

1
p=-3 tr(o).

5.1.3 Non-Dimensional First-Order Navier-Stokes Equations

By introducing characteristic scales for length L, velocity U, and pressure p =
pU?, as previously shown in Section [5.1.1] the first-order momentum equation in
its non-dimensional form becomes :

(u* . v*)u* 4V o= f*’
where the non-dimensional Cauchy stress tensor is defined as:

1

Several formulations of the Navier—Stokes equations have been explored. Within
the context of PINNs, the advantages offered by each formulation are leveraged.
Indeed, selecting the most appropriate formulation is crucial to enhance both
convergence speed and the accuracy of the results.

In the problems addressed in the following chapters, the dimensional form of the
Navier—Stokes equations, as given in equation will be primarily used.
However, reformulating the Navier-Stokes equations in a non-dimensional form,
as given in equation [5.1.1] offers significant advantages. Physical variables often
span different scales, which can lead to imbalanced loss functions in PINNs, where
certain terms dominate due to their relative magnitude. Non-dimensionalization
addresses this issue by rescaling all terms to comparable values. The normalized
formulation enhances both the numerical stability and convergence behavior of
PINNSs, making it a valuable strategy when dealing with multi-scale problems or
variables with significantly different physical units.

Finally, Least-Squares Finite Element Methods (LSFEM) are based on the min-
imization of convex functionals constructed from the residuals of the governing
equations. In this framework, the PDEs are reformulated as first-order sys-
tems [69]. This approach is leveraged in PINNs, where the classical formulation
of the equations involves higher-order partial derivatives (e.g., the Laplacian
V2u) introducing significant computational complexity and challenges in opti-
mizing the loss function during training. For this reason, from the perspective
of PINNs, expressing the Navier—Stokes equations in their first-order form, as
given in equation [5.1.2] can offer advantages in terms of training efficiency and
reduced computational cost [70].

5.2 Boundary and Initial Conditions

In order for the problem to be well-posed, initial and boundary conditions must
be specified. In the two-dimensional case, the Navier—Stokes equations, together

26

with the specified boundary conditions, define a well-posed problem in the clas-
sical sense: solutions exist, are unique, and maintain continuous derivatives over
time without developing singularities, provided the initial data are sufficiently
regular. In the three-dimensional case, however, the existence and uniqueness of
classical solutions are guaranteed only for limited time intervals [68].

Multiple boundary conditions can be imposed. In this work, we consider condi-
tions imposed either on the velocity field u or on the normal component of the
stress vector pn — v(Vu + Vu®)n.

5.2.1 Initial Conditions

The initial condition imposed on the domain 2 is typically given by:
u(x,0) =uy(x), Vxe,

where ug is a prescribed initial velocity field.

5.2.2 Dirichlet Conditions

In the context of differential problems, Dirichlet boundary conditions can be
enforced either strongly, by directly modifying the functional space, or weakly,
by incorporating them into the variational formulation.

Strong Form for Boundary Conditions

In differential problems, Dirichlet boundary conditions can be imposed strongly,
meaning the numerical solution exactly satisfies the prescribed values on the
boundary. Classical numerical methods such as the FEM, FDM, and FVM typi-
cally achieve this either by constructing piecewise-defined approximation spaces
that inherently satisfy the boundary conditions or by applying a lifting procedure
to enforce them.

In the context of PINNs, a similar approach is employed. Since accurately satis-
fying Dirichlet boundary conditions near the edges of the domain is often chal-
lenging and can degrade the solution quality [71], to overcome these issues, hard
enforcement it is frequently preferred. This is achieved by constructing the neural
network such that it inherently satisfies the given initial and boundary conditions
through the addition of a particular solution [72].

The approach consists of designing an auxiliary function that is identically zero
on the boundary of the domain, while remaining strictly positive inside the do-
main. We define the solution as:

i(x) = g(a) + () N(2:0),

where u(x) is the network’s prediction, g(z) encodes the exact wall conditions,
¢(x) vanishes on the boundary and is positive inside the domain, and N(z;6)

27

is the unconstrained network output. This construction enforces the boundary
conditions exactly while leaving the network free to learn within the interior of
the domain |73].

Weak Form for Boundary Conditions

In FEM, the weak imposition of Dirichlet boundary conditions is achieved by
modifying the variational formulation with additional penalty or stabilization
terms.

Weak imposition is more natural in PINNs, meaning that instead of construct-
ing a formulation that exactly satisfies the boundary conditions, the optimizer
searches for a neural network that minimizes the residual associated with the
Dirichlet boundary conditions.

Although the hard way of boundary conditions generally improves the accuracy
of the solution, it typically requires explicit knowledge of the domain geometry,
often in the form of a mesh or an analytical description of the boundary. On
the other hand, the weak enforcement commonly adopted in PINNs may lead
to reduced accuracy, as boundary conditions are only approximately satisfied
rather than enforced exactly. However, this soft formulation offers significant
flexibility, eliminating the need for a mesh or precise geometric information,
which represents a clear advantage in problems involving complex or irregular
domains.

5.2.3 Pressure Boundary Conditions

In general, Navier-Stokes problems do not prescribe conditions on the pressure.
Beyond conditions on the velocity, a set of boundary conditions that can be
prescribed are in the form:

pn— 1 (Vu+ V'u) - n = data

where data is a given vector specifying the normal component of the stress ten-
sor. This condition is called "natural" as it is automatically prescribed in the
variational form. When data = 0, we say that we prescribe a traction-free or
a “do-nothing” condition [74]. When one wants to prescribe a condition on the
pressure, the traditional approach is to prescribe the natural condition with:

data = Pn

where P is the pressure data to prescribe.
In the context of PINN, where we rely on the least square minimization of the
residulas, we can actually prescribe directly the pressure adding a term on the
loss function
2
wppcllp — Pllt, e

where I'ppc is the portion of the boundary where we want to prescribe the
pressure. We will explore this option in the subsequent chapters.

28

Chapter 6

The Clinical Problem: The
Relevance of Wall Shear Stress

Blood flow within blood vessels exerts mechanical forces on the vascular wall,
which can be primarily divided into two components: the perpendicular compo-
nent, mainly due to blood pressure, which can cause structural deformations of
the vessel wall cells, and the tangential component, known as Wall Shear Stress,
which represents the shear force exerted parallel to the endothelial surface [75].
WSS is sensed by the endothelium through mechanotransduction mechanisms,
which convert mechanical stimuli into biochemical signals that regulate the struc-
ture and function of the vascular wall [2, 76]. Under physiological conditions,
WSS plays a crucial role in maintaining vascular homeostasis, regulating ves-
sel diameter and inhibiting pathological processes such as cellular proliferation,
thrombosis, and inflammation of the vascular wall [77]. However, in the presence
of disturbed flow, characterized by changes in the direction of flow over time
and space, WSS becomes abnormal, assuming oscillatory or reduced values [78].
These alterations impair endothelial function and are closely linked to the onset
and progression of cardiovascular diseases, particularly atherosclerosis. Given
the strong correlation between WSS and both the presence and development of
vascular pathologies, evaluating this parameter is of fundamental importance.
This is made possible through the analysis of vessel morphology using advanced
imaging techniques, such as X-ray angiography or computed tomography an-
giography (CTA), combined with high-resolution intravascular imaging, such as
optical coherence tomography (IV-OCT) or intravascular ultrasound (IVUS) |79].

6.1 Computation of Wall Shear Stress

The standard method for modeling blood flow is patient-specific CFD, which uses
data acquired from angiography and other imaging modalities. By numerically
solving the Navier-Stokes equations, CFD computes velocity and pressure fields
at each point in space and time. This is particularly critical for estimating
WSS, a quantity that cannot be measured directly as it depends on the spatial
gradient of velocity near the vessel wall. In general, the instantaneous WSS can

29

be expressed as follows [80]:
Tw(X,t) = p (Vu + VuT) ‘n—p [n . (Vu + VuT) . n} -, (6.1)

where p is the dynamic viscosity, u is the velocity field, and n is the outward unit
normal to the vessel wall. This expression represents the tangential component
of the normal stress vector.

The spatially averaged WSS over a surface of interest ¥ is defined as:

T —i Tw(X X
7(t) = \E\/E w(X, 1) dx, (6.2)

where |X| denotes the area of the surface X.
In the steady case, the WSS is computed directly as a spatial average:

1
WSS = E/sz(X) dx. (6.3)

In some cases, a time-averaged value, known as the Time-Averaged Wall Shear
Stress (TAWSS), is used. It can be expressed as a spatial average over a surface
> and a period of time T

1 T
TAWSS = — / (1) dt, (6.4)
T 0

where T is the duration of the cardiac cycle.

Although CFD remains the gold standard for simulating vascular flow, it still
presents several challenges. First, mesh generation for complex vascular geome-
tries is still not fully automated and often requires manual refinement, especially
in intricate anatomical regions. Moreover, CFD results are highly sensitive to
the initial conditions and to the input data quality, such as imaging-based vessel
segmentation, which is subject to uncertainty. Additionally, the computational
cost of advanced CFD simulations is high: even the simplest simulations require
several minutes to generate results, while more complex, patient-specific cases
with detailed boundary conditions can take considerably longer to compute [78].
To overcome these limitations, deep learning methods, particularly PINNs, have
gained increasing attention in recent years. PINNs are capable of predicting
velocity and pressure fields that satisfy the governing physical equations without
the need for dense data or traditional meshing. This makes them a mesh-free
alternative to classical CFD approaches, especially useful in situations where data
are sparse, incomplete, or of low resolution. While promising, this technology
is still under development and not yet ready for widespread clinical application
[16].

6.2 Wall Shear Stress and Clinical Implications

6.2.1 Atherosclerosis

Atherosclerosis is a chronic vascular disease characterized by inflammation of the
intima layer of the arteries, leading to the formation of atherosclerotic plaques.

30

These plaques are composed of lipids, inflammatory cells, and collagen fibers,
which accumulate and can cause narrowing of the arterial lumen, reducing blood
flow. Atherosclerosis can evolve into serious clinical conditions, such as myocar-
dial infarction, ischemic stroke, aneurysm, and peripheral artery disease [81].
The causes of the disease are multifactorial, with modifiable risk factors such
as smoking, obesity, elevated cholesterol levels, and diabetes mellitus, as well as
non-modifiable risk factors, including age, sex, and genetics [82]. In addition
to these, local biomechanical factors, such as vessel diameter, curvature, and
tortuosity, play a crucial role in the onset and progression of the disease [83].

The standard method for treating patients with atherosclerosis is percutaneous
coronary intervention (PCI) with the implantation of drug-eluting stents (DES).
Despite significant technological advances in recent years, the occurrence of in-
stent restenosis (ISR) and stent thrombosis (ST) continues to pose a major clini-
cal challenge. Indeed, the drug-eluting stent interacts with the vessel wall, mod-
ulating the local cellular response, which can lead to neointimal proliferation
and, in the medium to long term (about a year after implantation), contribute
to the development of a new atherosclerotic plaque within the stent, resulting
in restenosis of the vascular lumen [84]. The implantation of the stent signifi-
cantly alters the local hemodynamics, causing disturbances in blood flow, such
as recirculation zones and disturbed flow, particularly near the struts, the metal
structures that make up the stent. Furthermore, in the case of malapposition,
where the stent is not in uniform contact with the vessel wall, an accentuation
of turbulence and vortex formation is observed. These areas, characterized by
disturbed flow, constitute environments favorable to thrombus formation [85]. It
has also been shown that the geometric design of the stent, the materials used,
and the implantation technique significantly affect the post-procedural hemo-
dynamic environment. This has led to research focused on the development
of next-generation stents designed to minimize flow alterations and reduce the
occurrence of post-procedure complications.

Based on these considerations, it is clear that atherosclerosis and the follow-up
of the intervention are influenced by hemodynamics. From a clinical perspective,
WSS is a particularly relevant hemodynamic metric, as alterations in blood flow,
especially in the presence of complex or tortuous vascular geometries, can favor
the onset and progression of atherosclerotic disease. Moreover, WSS is a crucial
quantity in post-operative follow-up, as it allows for a detailed analysis of the
interaction between the stent and local flow patterns. By simulating blood flow
dynamics, it is possible to directly assess how the specific geometry and position-
ing of the stent affect blood flow, as well as to estimate the risk of thrombogenesis
and the potential pro-restenotic effects of the implant [86].

6.2.2 Biomechanical Factors

Variations in blood vessel geometry significantly influence blood flow dynamics,
leading to the occurrence of disturbed flow patterns characterized by vortices,

31

recirculation zones, and helical motion. These geometric alterations disrupt nor-
mal laminar flow, transforming it into chaotic and irregular flow. Such disturbed
flow induces WSS that varies in both magnitude and direction along the ves-
sel’s inner surface. These fluctuations in WSS affect the behavior of endothelial
cells, which line the vessel wall, triggering biological responses that may pro-
mote the onset and progression of atherosclerotic plaques. Consequently, regions
marked by geometric irregularities, such as stenoses, tortuosity, and bifurcations,
are most frequently associated with the development of these lesions . From
a clinical perspective, the analysis of vascular geometry is essential for assess-
ing the risk of developing atherosclerotic lesions. Certain geometric parameters,
which can be easily detected through standard imaging techniques, may serve as
predictive indicators of susceptibility to these pathologies [87].

Figure 6.1: The figure illustrates three different vascular conditions that promote
disturbed flow and the formation of atherosclerotic plaques. Figure A shows a
tortuous vessel, which creates irregular flow; Figure B represents a stenosis, which
accelerates the flow and generates turbulence; Figure C illustrates a bifurcation,
which alters the direction of flow .

Curvature and Tortuosity

The dynamics of blood flow are strongly influenced by the curvature and torsion
of blood vessels. Certain geometric indicators, such as the radius of curvature, the
distance between successive bends, and the curvature angle, play a crucial role
in determining local hemodynamic conditions and assessing the risk of lesion for-
mation . In regions with high local curvature, blood recirculation phenomena
are observed, leading to variations in flow velocity. Specifically, higher velocities
are recorded along the outer wall of the vessel curvature, while lower velocities
are generally found along the inner wall. This also affects pressure losses: in
particular, when considering a curved tube, the pressure drop is greater than in
a straight tube of equal length and flow rate. This is because torsion breaks the
symmetry of the helical flows induced by curvature, causing one of the helical
structures to become dominant . This phenomenon is evident in coronary ar-

32

teries, where increasing vessel tortuosity, a global geometric property describing
the overall winding or twisting of the vessel, leads to greater pressure drops and
may therefore reduce blood perfusion [90].

However, the role of tortuosity remains complex and not yet fully understood.
Some studies have shown that increased tortuosity contributes to the progres-
sion of atherosclerosis. Specifically, small radii of curvature, short inter-bend
distances, and high curvature angles, all local geometric features, are associated
with lower WSS, a factor linked to the development of atherosclerotic disease
[91]. Conversely, other studies suggest that spiral (helical) tortuosity may miti-
gate the risk of atherosclerosis compared to planar tortuosity, by promoting more
uniform shear stress distribution [92].

Stenosis

The dynamics of blood flow are significantly altered in the presence of stenosis.
The narrowing of the vascular lumen modifies the normal flow profile, causing
it to lose its symmetry upon encountering the obstruction. In this context, the
phenomenon of convective acceleration occurs, characterized by an increase in
flow velocity and a simultaneous decrease in pressure downstream of the steno-
sis; subsequently, the flow tends to decelerate [78]. According to Bernoulli’s
principle, the pressure drop observed upstream of the stenosis should, in theory,
be completely recovered downstream. However, in the physiological reality, this
does not occur, as part of the mechanical energy is dissipated in the form of
heat due to energy losses from viscous friction that develops through the steno-
sis [93]. The inefficiency in energy recovery is also associated with the formation
of vortical currents and turbulent structures, manifestations of the breakdown
of the laminar flow typically seen in healthy, non-stenotic vessels [94]. These
alterations directly impact the WSS, which varies significantly depending on the
position relative to the stenosis. In the pre-stenotic phase, WSS is generally low
and oscillating due to the presence of recirculation; in the post-stenotic phase,
these oscillations become more pronounced. In contrast, at the point of maxi-
mum narrowing, the so-called "neck" of the stenosis, a peak maximum of WSS
is observed due to the acceleration of blood flow [95|. Finally, it is well estab-
lished, as previously highlighted, that regions characterized by low and highly
oscillatory WSS values represent pro-atherogenic environments, as they promote
the onset and progression of atherosclerotic plaques. Consequently, the presence
of stenosis not only represents an already advanced pathological condition but
also contributes to further deterioration of the situation, triggering mechanisms
that may lead to the worsening of the clinical picture.

Bifurcation

Vessel bifurcations are particularly sensitive to the development of pathology, as
these regions of the vessel present secondary flow zones and helical flow, which
may promote the formation of atherosclerotic lesions. Anatomically, a coronary
bifurcation consists of three segments: a proximal main branch (Main Vessel,
MV), which divides at a point called the carina into two distal branches, namely

33

the distal main branch (Distal Main, DM) and the lateral branch (Side Branch,
SB) [96]. Hemodynamically, the bifurcation causes a deviation in the blood flow
from the main vessel, resulting in an asymmetric velocity profile. In particular,
higher velocities are observed on the inner side of the lateral branch, continuous
with the carina, and lower velocities are seen on the opposite walls of the MV
and SB. This condition leads to low and oscillating wall shear stress, which
promotes the development of disturbed flow, characterized by recirculations, flow
separation, and vortical structures [97]. Geometric factors can also influence flow
patterns and WSS distribution. Specifically, the bifurcation angle has a limited
impact on hemodynamics [87], whereas a reduced curvature radius is associated
with higher intensity of helical flow, accompanied by symmetry loss. This effect
increases with distance from the bifurcation region and leads to greater exposure
to low WSS, especially in stenotic models [98§].

6.2.3 Wall Shear Stress Thresholds

It has been observed that WSS represents a crucial quantity, the value of which
can serve as an early indicator of physiological or potentially pathological condi-
tions of blood flow. In particular, low WSS values have been correlated with the
initiation, progression, and instability of atherosclerotic plaques, promoting an
inflammatory and atherogenic microenvironment. On the other hand, high WSS
values are generally considered atheroprotective, as they favor a stable endothe-
lial phenotype; however, under certain circumstances, they may contribute to
plaque rupture [99]. For the clinical classification of WSS, a commonly accepted
threshold system has been proposed: values lower than 1 Pa are considered in-
dicative of low WSS, values between 1 and 7 Pa are categorized as normal-high,
and values greater than 7 Pa are classified as high WSS [100]. It is important to
note that alternative threshold values have been proposed in the literature, often
varying depending on the specific vascular region or measurement technique [85].

34

Chapter 7

Application of PINNs on 2D
(Geometries

In this section, we test the effectiveness of PINNs in solving fluid flow dynamics,
emphasizing the role of data assimilation in enhancing accuracy. Specifically, we
apply PINNs to two key problems: Womersley flow, which is crucial for studying
pulsatile blood flow in arteries such as the aorta and carotid arteries [101], and
the Kimé/Moin problem, a standard case used to assess methods for solving the
incompressible Navier-Stokes equations [102].

To thoroughly assess the performance of PINNs, we explore various parameters
to fine-tune each configuration according to the specific characteristics of the
problem under investigation. In addition, we investigate the impact of data as-
similation by incorporating velocity and/or pressure observations into the train-
ing process, enabling the model to reconstruct missing information from sparse,
incomplete, or noisy measurements. Moreover, we tested a configuration without
boundary conditions, using only observational data and the governing equations.
This choice was motivated by the fact that, in hemodynamics, boundary condi-
tions are often unknown. Therefore, we wanted to investigate whether PINNs
can still perform well in their absence.

To ensure a comprehensive evaluation, we perform experiments under five distinct
scenarios:

1. Without data: the PINN model is trained purely based on the governing
equations, without any additional measurement data.

2. With velocity data: a set of noise-free velocity data is incorporated in the
model.

3. With velocity and pressure data: a set of noise-free velocity and pressure
data is incorporated in the model.

4. With noisy data: realistic conditions are simulated by adding white noise
with different standard deviations to the exact solution, evaluating the
robustness of the approach under varying levels of noise.

35

5. With data but without boundary conditions: a set of noise-free velocity
and pressure data is incorporated into the model, even in the absence of
explicitly defined boundary conditions.

7.1 Methods

7.1.1 Network Configuration

For both problems considered, a feed-forward neural network was employed us-
ing the DeepXDE library [103|. The architecture consists of four hidden layers
with 100 neurons each, utilizing the tanh activation function. Optimization was
carried out using a combination of the Adam and L-BFGS algorithms, with a
learning rate of 1 x 107*. The network takes three input variables (x,y,t) and
outputs three quantities (u, v, p), corresponding to the two velocity components
and the pressure. For simplicity, the same network was adopted to predict both
velocity and pressure fields.

()

NN ®
YA e e ey,
K08~

OawiwiwiwesO
_/ /

Figure 7.1: Architecture of the Physics-Informed Neural Network. The network
consists of three input layers (x, y,t), representing the spatial and temporal coor-
dinates, followed by four hidden layers with a fixed number of neurons. Finally,
the output layers (u,v,p), corresponding to the velocity components and pres-
sure.

7.1.2 Evaluation of Different Training Configurations for
PINNs

Beyond the fixed network configuration presented, we systematically explore the
impact of several key hyperparameters on the network’s performance. Specif-
ically, we analyze the influence of the number of collocation points within the

36

domain and on the boundaries, the number of training iterations in the loss
function to assess their effect on the ultimate accuracy and convergence of the
model. Moreover, we assess the distribution of the collocation points, which can
be either randomly sampled or uniformly distributed across the spatial domain.
For unsteady problems, these points are spread over the entire temporal interval,
ensuring that the network learns the full time evolution of the solution. To en-
hance the model’s generalization capabilities and avoid overfitting to the initially
selected collocation points, a resampling strategy is implemented every 1000 iter-
ations. By periodically updating the training points, this approach prevents the
network from becoming too specialized on a fixed set of locations, thus mitigating
the risk of overfitting. Instead, it encourages exploration across different regions
of the domain, enabling the network to better capture the overall behavior of the
solution and improve its accuracy.

For data assimilation, we examine the effect of the number of observational data
points and evaluate whether incorporating only velocity data or both velocity
and pressure data improves the model’s accuracy. The number of observation
points was chosen empirically. Additionally, data assimilation was performed
using noisy observations by adding Gaussian noise with a reasonable standard
deviation to the exact solution of the problem.

Training without data

This table presents different configurations where the model is trained using
only the governing equations and boundary conditions. We analyze the effect of
varying the number and distribution of collocation points and iterations on the
model’s performance.

Table 7.1: Configurations with Only PDEs and Boundary Conditions

Configuration Collocation Points Iterations

Random Distribution 20000 (Domain), 2500 (Boundary) 40000
Uniform Distribution 20000 (Domain), 2500 (Boundary) 40000
Increased Collocation Points 40000 (Domain), 5000 (Boundary) 40000
Fewer Collocation Points 10000 (Domain), 1250 (Boundary) 40000
More Training Iterations 20000 (Domain), 2500 (Boundary) 60000
Fewer Training Iterations 20000 (Domain), 2500 (Boundary) 20000

Training with velocity data

The configurations below incorporate observational velocity data into the train-
ing process in addition to the PDEs and boundary conditions. We analyze the
network’s ability to handle velocity-only data and the effect of varying the num-
ber of collocation points.

37

Table 7.2: Configurations with Data Assimilation (velocity data)

Configuration Collocation Points Data Points
Velocity Data 20000 (Domain), 2500 (Boundary) 5000
Velocity Data 20000 (Domain), 2500 (Boundary) 10000

Training with velocity and pressure data

The configurations below incorporate observational velocity and pressure data
into the training process in addition to PDEs and boundary conditions. We
analyze the effect of varying the number of collocation points.

Table 7.3: Configurations with Data Assimilation (velocity and pressure data)

Configuration Collocation Points Data Points
Velocity /Pressure Data 20000 (Domain), 2500 (Boundary) 5000
Velocity /Pressure Data 20000 (Domain), 12500 (Boundary) 10000

Training with noisy data

Here, observational data is incorporated alongside PDEs and boundary condi-
tions, with noise introduced to assess the model’s robustness. Different noise
levels are applied to the velocity and pressure data by varying the standard
deviation.

Table 7.4: Configurations with Noisy Data Assimilation

Configuration Collocation Points Data Points
Velocity Data (std = 0.1) 20000 (Domain), 2500 (Boundary) 5000
Velocity Data (std = 0.2) 20000 (Domain), 2500 (Boundary) 5000
Velocity /Pressure Data (std=0.1) 20000 (Domain), 2500 (Boundary) 5000
Velocity /Pressure Data (std=0.2) 20000 (Domain), 2500 (Boundary) 5000

Training with data without boundary conditions

Here, the PINN model is trained solely on the governing equations and obser-
vational data, without explicitly enforcing boundary conditions. This approach
challenges the network to infer the underlying flow dynamics purely from avail-
able measurements.

Table 7.5: Configurations with Data Assimilation without Boundary Condiotions

Configuration Collocation Points Data Points
Velocity Data 20000 (Domain), 2500 (Boundary) 5000
Velocity /Pressure Data 20000 (Domain), 2500 (Boundary) 5000

38

7.2 Kim&Moin Problem

7.2.1 Governing Equations

The flow is governed by the unsteady-state Navier-Stokes equations for an in-
compressible fluid [5.2]

The dynamic viscosity and the density of the fluid are set to 0.01 and 1, respec-
tively [104].

7.2.2 Computational Domain
For the numerical experiments, we define a 2D domain as follows:
e The spatial domain is a square region given by [0.25,1.25] x [0.5, 1.5],

e The time domain is considered within the specified range [0, 2], where 2 is
the total simulation time.

7.2.3 Definition of Boundary Conditions

In the considered model, specific boundary conditions are imposed to define the
behavior of the flow within the two-dimensional domain.

—8mvt

u; = —sin(27z)e
U9 = 0
1.25,1.5)
uy = cos(2my)e R uy = cos(2my)e Br'ut
u; = 0 ur = 0
(0.25,0.5)
Uy = 0
Uy = —sin(2mz)e STV

Figure 7.2: Representation of the computational domain used in the Kimé&Moin
simulation. The domain is a two-dimensional square [0.25, 1.25] x [0.5, 1.5], where
boundary conditions are applied to simulate flow.

e Inlet Boundary Conditions (z = 0.25):

o2
u; =0, uy = cos(2my)e ™V

39

e Outlet Boundary Conditions (z = 1.25):

_ 2
u; =0, uy = cos(2ry)e "V

e Wall Boundary Conditions (lower y = 0.5 and upper y = 1.5):
Uy =0, uy = —sin(2mrz)e 5"
7.2.4 Data Assimilation

The data were derived from the exact solutions of the velocity and pressure fields,
modeled using the following analytical expressions for u, v, and p [104]:

uy = — cos(2mx) sin(2my)e S (7.1)
uy = sin(2mz) cos(2my)e ™Vt (7.2)

1 —16m2ut
P=-7 (cos(4dmx) + cos(4my)) e (7.3)

7.3 Womersley Problem

The Womersley function describes the transient, pulsatile velocity profile of blood
flow in circular ducts. It is an exact solution to the viscous flow equations
under a periodic pressure gradient and has been widely applied in hemodynamics,
particularly in computational models of arterial and vascular blood flow |101].
To test the network, a 2D version of the 3D Womersley model was adopted by
formulating the problem in two dimensions, using a square domain to represent
the 2D geometry.

7.3.1 Governing Equations

The flow is governed by the unsteady-state Navier-Stokes equations for an in-
compressible fluid
The fluid’s dynamic viscosity and density are set to 0.1 and 1, respectively [101].

7.3.2 Computational Domain
For the numerical experiments, we define a 2D domain as follows:
e The spatial domain is a square region given by [0, 1] x [0, 1],

e The time domain is considered within the specified range [0, 2], where 2 is
the total simulation time.

40

7.3.3 Definition of Boundary and Initial Conditions

In the considered model, specific boundary and initial conditions are imposed to
define the behavior of the flow within the two-dimensional domain [0, 1] x [0, 1].

p=2pusin(wt) p=0

0,0
(0,0 u=0,v=0

Figure 7.3: Representation of the computational domain used in the Womersley
simulation. The domain is a two-dimensional square [0, 1] x[0, 1], where boundary
conditions are applied to simulate pulsatile flow.

e Inlet Boundary Condition:
For the pressure, boundary conditions are imposed on the horizontal bound-
aries of the domain. At the domain inlet (x = 0), the pressure is prescribed
with a time-dependent oscillatory profile to model a varying pressure gra-
dient characteristic of pulsatile flow:

p = 2usin(wt)

e Outlet Boundary Condition:
At the domain outlet (z = 1), the pressure is set to zero:

p=0
e Wall Boundary Condition:
No-slip conditions are applied on the domain walls (y = 0 and y = 1) for
the velocity components:
u=0, v=0

simulating solid walls that prevent fluid motion at these boundaries.

e Initial Condition:
To ensure proper initialization, the fluid is assumed to be at rest initially
throughout the domain:

p(z,y,0) =0

41

7.3.4 Data Assimilation

The data were derived from the exact solutions of the velocity and pressure fields,
modeled using the following analytical expressions for u, v, and p:

wex 27’L+127(2t — w cos(wt
p (
277, + 1)47[4 —|—(,<J2

Mw

n=0

+p(2n + 1) s1n(wt)} (2n + D)7sin((2n + 1)my) (7.4)
v=0 (7.5)
p = 2usin(wt)(1 — x) (7.6)

The velocity solution is approximated by truncating the series at a finite number
of terms k, although the exact solution corresponds to the limit as & — co.

7.3.5 Error Analysis

The relative errors are computed according to the formula:

Relative [y Error = [9true = Yoreall: (7.7)
HytrueH2
Absolute errors are computed as follows:
Absolute Error = |ytue — Ypred| (7.8)

where Y, Tepresents the reference solution, and ypreq is the predicted one.

7.4 Results

7.4.1 Training Time

The average training time is approximately one hour for the cases considered.
The number of collocation points has the strongest impact on training time,
followed by the number of training iterations, with an increase of around 30
minutes. An increase in either of these parameters leads to a significant rise in
computational cost.

The following subsections report the results obtained from the five training con-
figurations described in Section The accuracy of each model configuration
is quantified through the relative Iy error for the velocity components (e,,, €.,)
and the pressure field (e,).

42

7.4.2 Error Analysis for Kim&Moin Problem

Table 7.6: Relative Iy Errors — Only PDEs and Boundary Conditions

Configuration eq1 (Velocity x) eyo (Velocity y) e, (Pressure)
Random Distribution 0.1065 0.5712 2.8088
Uniform Distribution 0.1187 0.6232 3.3958
Increased Collocation Points 0.1169 0.2807 1.3099
Fewer Collocation Points 0.3951 0.7447 1.2760
More Training Iterations 0.1179 0.2227 0.9253
Fewer Training Iterations 0.2815 0.5371 0.8481

Table 7.7: Relative Iy Errors — Data Assimilation (velocity data)

Configuration eq1 (Velocity x) eyo (Velocity y) e, (Pressure)
Velocity Data (5000 pts) 0.0137 0.0190 0.9465
Velocity Data (10000 pts) 0.0116 0.0168 1.6081

Table 7.8: Relative [y Errors — Data Assimilation (velocity and pressure data)

Configuration eq1 (Velocity x) eyuo (Velocity y) e, (Pressure)
Velocity /Pressure Data (5000 pts) 0.0096 0.0127 0.0222
Velocity /Pressure Data (10000 pts) 0.0098 0.0117 0.0232

Table 7.9: Relative [y Errors — Noisy Data Assimilation

Configuration eq1 (Velocity x) eyuo (Velocity y) e, (Pressure)
Velocity Data (std = 0.1) 0.0113 0.0132 0.6917
Velocity Data (std = 0.2) 0.0118 0.0153 2.5429
Velocity /Pressure Data (std = 0.1) 0.0178 0.0150 0.0258
Velocity /Pressure Data (std = 0.2) 0.0104 0.0134 0.0258

Table 7.10: Relative ls Errors — Data Assimilation without Boundary Conditions

Configuration eq1 (Velocity x) eyo (Velocity y) e, (Pressure)
Velocity Data (5000 pts) 0.0227 0.0239 2.5581
Velocity /Pressure Data (5000 pts) 0.0226 0.0229 0.0456

43

7.4.3 Error Analysis for Womersley Flow

Table 7.11: Relative [Errors — Only PDEs and Boundary Conditions

Configuration e, (Velocity z) e, (Pressure)
Random Distribution 0.8788 0.0263
Uniform Distribution 0.7709 0.0252
Increased Collocation Points 0.2890 0.0248
Fewer Collocation Points 0.7016 0.0234
More Training Iterations 0.3339 0.0208
Fewer Training Iterations 0.2641 0.0523

Table 7.12: Relative o Errors — Data Assimilation (velocity data)

Configuration e, (Velocity x) e, (Pressure)
Velocity Data (5000 pts) 0.0187 0.0270
Velocity Data (10000 pts) 0.0198 0.0263

Table 7.13: Relative Iy Errors — Data Assimilation (velocity and pressure data)

Configuration ey (Velocity) e, (Pressure)
Velocity /Pressure Data (5000 pts) 0.0191 0.0181
Velocity /Pressure Data (10000 pts) 0.0219 0.0187

Table 7.14: Relative I, Errors — Noisy Data Assimilation

Configuration ey (Velocity z) e, (Pressure)
Velocity Data (std = 0.1) 0.0169 0.0426
Velocity Data (std = 0.2) 0.0176 0.0181
Velocity/Pressure Data (std = 0.1) 0.0190 0.0195
Velocity /Pressure Data (std = 0.2) 0.0218 0.0175

Table 7.15: Relative Iy Errors — Data Assimilation without Boundary Conditions

Configuration ey (Velocity) e, (Pressure)
Velocity Data (5000 pts) 0.2301 0.9723
Velocity /Pressure Data (5000 pts) 0.0922 0.0418

44

7.4.4 Kim&Moin Problem

14 0.608 0.456
0.456 0342
12 0304 0.228
0152 0114
10 0.000 b 0.000
=0.152 ~0.114
08 ~0.304 -0.228
-0.456 -0.342
L -0.608 ~0.456
0.4 06 08 10 12 0.4 06 08 10 12
(a) Case A: without data

. 0.608 . 0608 g4
0.456 0456
; 0.304 : 0.304 12
0.152 0152
. 0.000 ; 0000 10
-0.152 -0.152
: -0304 O ~0304 08
-0.456 ~0.456
. -os08 O -ocos 06
0.4 06 08 10 12 0.4 05 08 10 12 04 05 08 L0 12

) Case B: with velocity and pressure data

0.608 : 0608 ’
0.456 0.456

0304 : 0.304 ;
0152 0152

0.000 : 0.000 A
-0.152 -0.152

¥ -0.304 . —0.304 . -

-0.456 -0.456

~0.608 ~0.608

0.4 06 08 10 12 04 0.6 08 10 12

) Case C: with noisy velocity and pressure data

. 0.608 ' 0,508 .
0.456 0.456
* 0.304 1 0.304 &
0152 0152
. 0.000 ; 0.000 !
=-0.152 =0.152
L -0.304 =0.304 o
-0.456 ~0.456
-0.608 -0.608
0.4 06 08 10 12 04 06 0.8 Lo 12

(d) Case D: without boundary conditions
Figure 7.4: Comparison of the velocity u; fields for different test cases (a—d) at
the same time instant. For each case, the subpanels show, in order: the ground
truth solution, the neural network predicted solution, and the absolute error
between the two. Note that the scales differ between the panels.

Velocity u,

45

0.27
0.24
: 0.21
0.18
015
0.12
0.09
0.06
0.03
0.00
04 0.6 08 10 12

0.009

0.008

0.007

0.008

0,005

0.004

0.003

0.002

0.001

0.000

0.01368

0.01216

0.01064

0.00912

0.00760

0.00608

0.00456

0.00304

0.00152

0.00000

0.04275

0.03800

0.03325

0.02850

0.0237%

0.01900

0.01425

0.00950

0.00475

0.00000

Velocity wus

14 - 0.608
0.456
12 0.304
0.152
1.0 0.000
-0.152
08 - -0.304
- ~0.456
06 -0.608
04 06 08 1.0 1.2
y 0.608
0.456
it 0.304
0152
0.000
-0.152
.4 -0.304
-0.456
2 -0.608
04 0.6 0.8 L0 ¥

14 0.608
0.456
12 0.304
0.152
10 0.000
-0.152
0.8 -0.304
~0.456
0.6 ~0.608
0.4 0.6 0.8 10 1.2

(a) Case A: without data

14
12
1.0
0.8

0.6

04 0.6 0.8 10 12

0.608

0.456

0.304

0.152

0.000

-0.152

—0.304

-0.456

=0.608

0.612
14

0.544

0.476
12

0.408

0.340
1.0

0.272
08 0.204

0.136
0.6 0.068

0.000

0.4 06 08 1.0 12

04 0.6 0.8 10 Lz

) Case B: with velocity and pressure data

g 0.608
0.456
0.304
0152

. 0.000
-0.152

2 -0.304
-0.456

2 -0.608

) Case C: with noisy velocity and pressure

y 0.608
0.456

¥ 0.304
0.152

X 0.000
-0.152

a -0.304
-0.a56

: ~0.608

(d) Case D: without boundary conditions

04 0.6 08 10 12
04 0.6 08 1.0 12

0.608

0.456

0.304

0.152

0.000

-0.152

-0.304

~0.458

—-0.608

0608

0456

0.304

0.152

0.000

-0.152

=0.304

~0.456

0.608

0.4 0.6 0.8 10 12

data

0.4 0.6 08 10 1z

Figure 7.5: Comparison of the velocity us fields for different test cases (a—d) at
the same time instant. For each case, the subpanels in order show: the ground
truth solution, the predicted solution by the neural network, and the absolute
error between the two. Note that the scales differ between the panels.

46

0.01206

0.01152

0.01008

0.00864

0.00720

0.00576

0.00432

0.00288

0.00144

0.00000

0.018

0.016

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0.000

003825

0.03400

0.0297%

0.02550

0.02125

0.01700

0.0127%

0.00850

0.00425

0.00000

Pressure p

~022
0216 —027 03597
0162 032 03543
0108 01 0.489
0054 o4z 0435
0.000 047 0381
- 0327
0.054 .
~ 0273
0.108 o
~0.162 0219
-052
~0.216 0165
-0.67
0111
04 [o8 10 12 04 X3 o8 10 12 04 [o8 10 12

0114 0.13980
’ 0216 y
0.057 0.13665
0162
a.000 013350
0.108
~0.057
. 013035
4
aoie oo 012720
~0.054 =0am 012405
2 -0108 O -0228 gy 012090
-0.162 =0.265 011775
X 0216 0 -0342 gg 0.11460
-0.399 011145
[06 () 10 12 04 [08 10 %)

(b) Case B: with velocity data

0216 14 0216 0.01224

0162 0.162 0.01088

0108 12 0108 0.00952

0054 0.054 0.00816

a.008 1.0 0.000 0.00680

-0.054 -0.054 0.00544

. -0108 08 -0108 04 0.00408
-0.162 ~0.162 000272

-0.216 06 -0.216 0.00136

04 06 08 1.0 12 04 06 08 10 12 R 04 06 08 10 12 Kk

) Case C: with velocity and pressure data

0.00648

0216 14 0228
s T 0.00576
0.00504

0.108 12 014
0.00432

054 0.057
0.000 10 0.000 0.00360
e 5T 0.00288
. -0108 03 —o1m4 O %0628
~0162 . 000144
-0216 06 . 0.00072
0.00000

04 0.6 08 10 12

(d) Case D: with noisy Velocity and pressure data

0.588 03736
0216 £
0531 0.3668
0162
0.474
Aidi 03600
o417
_— 03832
0000 03 03464
-0.054 00 0339
: -0.108 X 0246 1 0.3228
0162 0.189 03260
-0216 0132 0392
0075 03124
04 06 08 10 12 04 06 08 10 12

(e) Case E: without boundary conditions

Figure 7.6: Comparison of the pressure fields p for different test cases (a—d) at
the same time instant. For each case, the subpanels in order show: the ground
truth solution, the predicted solution by the neural network, and the absolute
error between the two. Note that the scales differ between the panels.

47

7.4.5 Womersley Flow

Velocity u

1.0 1.0
0.8 0.8
0.6 0.6
> >
0.4 0.4
0.2 0.2
0.0 0.0
0.00 002 004 006 008 010 0.000 0.025 0.050 0.075 0.100 0125 0.150 000 001 002 003 004 005 —0.025 —0.020 —0.015 —0.010 -0.005 0.000
u u u u
1.0 1.0 1.0 1.0
08 0.8 0.8 08
0.6 0.6 0.6 0.6
> > > >
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
0.0 0.0 0.0 0.0
0.00 0.01 0.02 0.03 0.04 0.00 002 004 006 008 010 0.000 0.005 0010 0.015 0.020 0.025 -0.025 -0.020 -0.015 -0.010 -0.005 0.000
u u u u

(b) Case B: with velocity and pressure data

1.0 1.0 1.0
0.8 0.8 0.8
0.6 0.6 0.6
> > >
0.4 0.4 0.4
0.2 0.2 0.2
0.0 0.0 0.0
0.00 0.01 0.02 0.03 0.04 0.00 0.02 0.04 0.06 0.08 0.10
u u

—0.005 0.000 0.005 0.010 0.015 0.020 0.025 -0.025 -0.020 —0.015 —0.010 —0.005 0.000
u u u u

(d) Case D: without boundary conditions

Figure 7.7: Comparison of the velocity field u across different test cases (a—d).
For each case, the subpanels show the temporal evolution of the solution at
selected time steps (0.4, 0.8, 1.4, and 1.6). The ground truth is shown in black,
while the predicted solution is shown in red.

48

Pressure p

1.0

0.8

0.6

0.4

0.2

0.0
0.

1.0

0.8

06

04

02

0.108
0.096
0.084
0.072
0.060
0.048
0.036
0.024
0.012
4 0.000
.0 02 0.4 06 08 10

0.108

0.096

0.084

0.072

0.060

0.048

0.036

0.024

0.012

0.0 4
Q.

1.0 7

0.8

0.6

0.4

0.2

2.000

08

10

0108

0.096

0.084

0.072

0.060

0.048

0.036

0.024

0.012

0.1

0.2

o.

0.000
]

0.108

0.095

0.084

0.072

0.060

0.048

0.036

0.024

0.012

0.000
o 0.2

0.4

10

(a)

L0
0.8
0.6
0.4
0.2

.0
0

1.0
08
06
04

0.2

0.1086
0.0966
0.0846
0.0726
0.0606
0.0486
0.0366
0.0246
0.0126
4 0.0006
0 02 04 06 08 10

Case A: without data

0.108
0.096
0.084
0.072
0,060
0.048
0.036
0.024
0.012
+ 0.000
.0 0.2 0.4 0.6 0.8 10

0.0
0.

0.108
0.096
0.084
0.072
0.060
0.048
0.036
0.024
0.012
4 0.000
0 0.2 0.4 0.6 08 10

: with noisy velocity and pressure

Q.

0.108
0.096
0.084
0.072
0.060
0.048
0.036
0.022
0.012
4 0.000
0 0.2 0.4 0.6 08 10

10
0.0 l

00 0.2 0.4 0.6 08 10

0.00288

0.00256

0.00224

0.00192

0.00160

0.00128

0.00096

0.00064

0.00032

0.00000

1.0

0.00171

0.00152
08

0.00133
06 0.00114

0.00095
04 0.00076

0.00057
02 0.00038

0.00013
0.0 0.00000

0.0 0.2 04 06 08 10

(b) Case B: with velocity and pressure data

data

(d) Case D: without boundary conditions

Figure 7.8: Comparison of the pressure p fields for different test cases (a-d) at
the same time instant. For each case, the subpanels in order show: the ground
truth solution, the predicted solution by the neural network, the absolute error
between the two, and the comparison between them. Note that the scales differ
between the panels.

49

0.00162

0.00144

0.00126

0.00108

0.00090

0.00072

0.00054

0.00036

0.00018

0.00000

0.00648

0.00576

0.00504

0.00432

0.00360

0.00288

0.00216

0.00144

0.00072

0.00000

7.5 Discussion

The following key findings summarize the performance and robustness of the
proposed method under various conditions and configurations. The analysis fo-
cuses on the impact of data assimilation strategies, noise robustness, boundary
condition treatment, and the effects of training parameters.

e The integration of experimental data through data assimilation proved to
be the most effective strategy in terms of predictive accuracy of the net-
work, yielding at least an order of magnitude reduction in error compared
to approaches without assimilation. No substantial difference emerges be-
tween the use of velocity-only data and the combination of velocity and
pressure data, which is advantageous from a practical standpoint, since
pressure can only be measured invasively. However, it is noteworthy, as
highlighted in the Kim&Moin problem, that in the absence of pressure
data, or imposed boundary conditions and observational data related to
pressure, the field remains defined only up to an additive constant, making
the absolute predicted values insignificant.

e The analysis conducted with noisy data highlights the robustness of the
method even in realistic scenarios: the increase in error with growing noise
standard deviation remains limited.

e Furthermore, the removal of boundary conditions, although accompanied
by the inclusion of observed data, does not compromise the network’s abil-
ity to learn physically consistent solutions, however, it results in a decrease
in accuracy, particularly evident in the Womersley problem.

e Finally, the fine-tuning analysis concerning the training duration and collo-
cation point density shows that a higher number of training epochs leads to
error reduction, at the expense of increased computational cost. Similarly,
increasing the number of collocation points can lead to improvements in
solution accuracy but also results in a more substantial increase in com-
putational demand. However, an increase in the number of points does
not always lead to error improvement, as in the case of Kim&Moin, where
adding more points can lead to the risk of overfitting. Moreover, the distri-
bution of these points, whether random or uniform, has a limited impact
on the final accuracy. These results suggest that solution quality depends
more on the depth of optimization than on the granularity or arrangement
of the spatial discretization.

20

Chapter 8

Application of a PINN on 3D
(Geometries: Poiseuille Flow

The Poiseuille equation is a special case derived from the Navier-Stokes equa-
tions, where simplified conditions allow for an analytical solution. It describes
the laminar flow of an incompressible fluid inside a tube with a constant circular
cross-section, assuming the tube’s length is much greater than its diameter. This
model is widely applied in fields ranging from hemodynamics in blood vessels to
fluid transport in pipelines and the design of microfluidic channels.

The flow is unidirectional, meaning the fluid moves solely along the axis of the
tube, with zero velocity components in the transverse directions. The axial
velocity component, u,, varies across the cross-section but remains constant along
the flow direction, i.e., % = 0. If the pressure at the inlet is P, and at the
outlet is P, a constant pressure gradient % is established, which drives the
motion. Under these conditions, the Poiseuille equation describes the pressure
drop due to viscosity, resulting in the parabolic velocity profile characteristic of
laminar flow in cylindrical tubes. However, as the velocity increases or the tube
diameter becomes larger, the flow may transition to a turbulent regime once a
critical threshold defined by the Reynolds number is exceeded. In such cases,
the assumptions underlying the Poiseuille equation no longer apply, and the
actual pressure losses are greater than those predicted analytically. Furthermore,
additional factors such as variations in cross-section, bends, or local resistances

can also contribute to pressure losses [105].

8.1 Methods

For this problem, the same network architecture and parameters described in
Section were employed. However, certain adjustments were necessary, such
as modifying the number of collocation points and training iterations. Unlike
the two cases presented in the previous Chapter, this scenario involves a three-
dimensional geometry and a steady-state formulation. Specifically, the neural
network takes as input the three spatial coordinates (z,y,z) and outputs four
quantities (u,v,w,p), corresponding to the velocity components and pressure

51

field. For simplicity, the same network was adopted to predict both velocity and
pressure fields.

Several experiments were conducted to assess the performance of the model un-
der different configurations: using only the governing PDEs, integrating obser-
vational data, and incorporating noisy data. In addition, tests were carried out
for different Reynolds numbers by varying the pressure gradient, in order to
evaluate the network’s robustness across flow regimes. Furthermore, multiple
formulations of the Navier—Stokes equations were tested, ranging from the clas-
sical and non-dimensional forms to the First-Order NSE-based formulation, to
examine their respective impacts on training stability and predictive accuracy.

I/ka’.“k{.“kvj
. *\'f 4\& .\r ,P -

J} ﬂ'ﬁ. .
'/’v “ﬁ‘ AINY, '&‘

b . . \“. K
SRS '}“,

\._/"\._/'

Figure 8.1: Architecture of the Physics-Informed Neural Network. The network
consists of three input layers (x,y, z), representing the spatial coordinates, fol-
lowed by four hidden layers with a fixed number of neurons. Finally, the output

layers (u,v,w,p), corresponding to the velocity components and the pressure
field.

8.1.1 Governing Equations

The flow is governed by the steady-state Navier-Stokes equations for an incom-
pressible fluid [5.]]

Considering different pressure values as boundary conditions, different forms of
the Navier-Stokes equations were used. The corresponding Reynolds numbers
obtained in the simulations were 0.5, 6.25, and 62.5, depending on the imposed
pressure gradient. In particular, for low Reynolds numbers, the classical dimen-
sional Navier—Stokes equations were employed (DNSE), while for higher Reynolds
numbers, the non-dimensional form of the Navier—-Stokes equations 1| (ANSE)
was adopted to enhance numerical stability and reduce the 1nﬂuence of scale-
dependent parameters.

Moreover, additional simulations were carried out by adopting the First-Order
NSE formulation of the governing equations. This approach reformulates the

52

momentum equation by introducing the Cauchy stress tensor (DNSE). The
corresponding non-dimensional formulation of this equation (ANSE) was also
considered for higher Reynolds numbers [5.1.3]

8.1.2 Computational Domain

A three-dimensional cylinder along the x-axis, characterized by a radius of 0.5
and a length of 1, was generated using GMSH, an open-source meshing tool.
This geometry was selected to represent a simple, idealized model of laminar
pipe flow, allowing the study of fluid dynamics under controlled, non-turbulent
conditions. The cylinder was discretized into a mesh consisting of 11,917 nodes,
chosen as a trade-off between spatial resolution and computational efficiency.
The coordinates of these mesh nodes were then imported into the code and used
as input points to train the neural network.

8.1.3 Definition of Boundary Conditions

In this section, we define the boundary conditions used in the simulations, used
to enforce velocity and pressure constraints.

Case 1) Different Pressure Drops

=

I

oo
pmmmm =

=

Il

o

-

Figure 8.2: Representation of the computational domain used in the Poiseuille
simulation. The domain is a cylinder with a radius of 0.5 and a length of 1,
where boundary conditions for the pressure are applied.

The boundary conditions include:

e Inlet Boundary Condition: At the inlet of the geometry, a boundary condi-
tion has been applied to specify the pressure, setting it to a constant value.
This condition is imposed on the boundary where z = 0, representing the
inlet of the pipe. Several variations of this condition have been tested
to assess their impact on the overall flow behavior, considering different
pressure values: 8, 100, and 1000.

93

e Outlet Boundary Condition: At the outlet, the pressure is set to 0, as a
reference pressure. This condition is applied on the boundary where x = 1,
representing the outlet of the pipe.

e Wall Boundary Condition: For the velocity field u = (u,v,w), no-slip
conditions are applied along the domain walls, defined by the equation
y? + 22 = R?. Since the pipe is assumed to be rigid, this implies that the
velocity on the boundary is zero, i.e., u = 0 on the wall.

Case 2: Different Parabolic Velocity Profiles

u=0,v=0,w=0

9

-~

7,2
U = Umax (1 - ﬁ)

emmmm—.
=
Il
o

L

Figure 8.3: Representation of the computational domain used in the Poiseuille
simulation. The domain is a cylinder with a radius of 0.5 and a length of 1,
where boundary conditions for the velocity are applied.

The boundary conditions include:

e Inlet Boundary Condition: At x = 0, a parabolic velocity profile is imposed
for the axial velocity component, while the transverse velocity components
are set to zero. The axial velocity profile is defined as:

2
w(r) = Unax (1 - ﬁ) : (8.1)
where 7?2 = y% 4 22, and R is the radius of the cylinder. Several variations

of this condition have been tested to assess their impact on the overall flow
behavior, considering different pressure values: 0.5, 6.25, and 62.5.

e Outlet Boundary Condition: The pressure is set to 0, as a reference pres-
sure. This condition is applied on the boundary where x = 1, representing
the end of the pipe.

e Wall boundaries: No-slip condition is applied for velocity, as in the previous
case.

o4

8.1.4 Data Assimilation

The data were derived from the exact solutions of the velocity and pressure fields,
with the velocity field modeled using the following analytical expressions for wu,
v, w, and p:

u= i—lz (R? = (¥ + 7)) = Unao (1 - %) (8.2)
v=0 (8.3)
w=0 (8.4)
p(x) =AP(1—1z), dove AP = Py — Py (8.5)

8.1.5 Calculation of the Wall Shear Stress

For the Poiseuille flow problem, the WSS was computed by comparing the exact
analytical solution with the predicted one. In this simplified cylindrical case, the
WSS is constant along the wall and is given by the analytical expression:

AP
= SrR (8.6)

Oou,
or r=R

where u, is the velocity along the z-axis [8.1.4]
The predicted WSS was obtained during post-processing using automatic differ-
entiation. Specifically, the derivatives of the axial velocity component u, with

respect to the transverse coordinates y and z were computed. The expression
used for the predicted WSS is:

B Oou, y Oug 2
Tw_u(@yﬁ+ 0z E) (8:7)

Tw = M

8.1.6 Error Analysis

The errors are calculated as reported in Section [7.3.5]

8.2 Results

8.2.1 Training Time

Moving to a three-dimensional geometry, the increased complexity compared to
the 2D cases naturally leads to longer training times. For this reason, we ex-
plored the adoption of a formulation that is also computationally efficient. The

95

average training time using the classical Navier—Stokes equations, whether in di-
mensional or dimensionless form, exceeds one hour. In contrast, by rewriting the
Navier—Stokes equations using the First-Order formulation, the average training
time is significantly reduced, reaching approximately 15 minutes.

The table below reports the training times for the two configurations, expressed
in minutes, considering different cases with varying pressure drops.

Table 8.1: Training Time (minutes) for different pressure drops

Configuration AP =8 AP =100 AP = 1000

Classical NSE 85.14 81.34 82.18
First-Order NSE 15.34 14.28 14.88

The tables below provide a quantitative analysis of the relative [y error for ve-
locity along the x-axis (e,), pressure (e,) and WSS (ewss).

8.2.2 Classical NSE Formulation: AP =38

The following results were obtained using the classical form of the Navier—Stokes
equations, as given in Equation [5.1 To evaluate the network’s ability to handle
varying conditions in a three-dimensional geometry, such as the inclusion of data,
the presence of noisy data, and the omission of boundary conditions, the case
with a pressure drop of AP = 8 was selected.

For all the cases considered, 5,000 collocation points were sampled within the
domain and 5,000 on the boundary. The training was carried out for a total of
15,000 iterations.

Table 8.2: Relative [y Errors - Only PDEs and Boundary Conditions

Configuration e, (Velocity) e, (Pressure) ewss (WSS)
Uniform Sampling 0.01305 0.01729 0.01814
Increased Collocation Points,

More Training Iterations 000733 000569 000965

Table 8.3: Relative I, Errors - Data Assimilation

Configuration e, (Velocity) e, (Pressure) ewss (WSS)
Velocity Data (5000 pts) 0.00664 0.00290 0.02582
Velocity /Pressure Data (5000 pts) 0.00519 0.00083 0.01898

o6

Table 8.4: Relative [y Errors - Noisy Data Assimilation

Configuration e, (Velocity) e, (Pressure) ewss (WSS)
Velocity Data (std = 0.1) 0.00785 0.00344 0.03396
Velocity /Pressure Data (std = 0.1) 0.00643 0.00119 0.00991

Table 8.5: Relative [y Errors - Data Assimilation without Boundary Conditions

Configuration e, (Velocity) e, (Pressure) ewss (WSS)
Velocity Data (5000 pts) 0.01390 0.77839 0.03622
Velocity /Pressure Data (5000 pts) 0.00706 0.00098 0.02552

8.2.3 Different NSE Formulation: Different Pressure Drops
(AP)

This section presents the results obtained using both the classical formulation
of the Navier-Stokes equations (Equation and the First-Order formulation
(Equation . For configurations involving higher pressure drop values, the
non-dimensional formulation was adopted to improve numerical stability.

In all cases, 5,000 collocation points were sampled within the domain and 5,000
along the boundaries. Additionally, 5,000 velocity and pressure data points were
incorporated into the training process. The training was performed over 15,000
iterations.

Table 8.6: Relative Iy Errors — Pressure Drop (AP = 8)

Configuration e, (Velocity) e, (Pressure) ewss (WSS)

Classical DNSE 0.00519 0.00083 0.01898
First-Order DNSE 0.00645 0.00099 0.01007

Table 8.7: Relative [y Errors — Higher Pressure Drop (AP = 100)

Configuration e, (Velocity) e, (Pressure) epss (WSS)

Classical DNSE 1.66991 0.58883 0.99489
Classical ANSE 0.00394 0.00143 0.00210
First-Order ANSE 0.00422 0.00223 0.01151

o7

Table 8.8: Relative Ly Errors — Higher Pressure Drop (AP = 1000)

Configuration e, (Velocity) e, (Pressure) epss (WSS)

Classical DNSE 1.08142 0.81554 0.99856
Classical ANSE 0.00875 0.00154 0.01013
First-Order ANSE 0.02253 0.00833 0.07910

8.2.4 Different NSE Formulation: Parabolic Velocity Pro-
file

This section presents the results obtained using both the classical form of the
Navier—Stokes equations (Equation and the First-Order formulation (Equa-
tion . For higher parabolic velocity profiles, the non-dimensional formula-
tion was adopted. For all cases, velocity and pressure data were included in the
training process.

Table 8.9: Relative [y Errors - Parabolic Velocity Profile (U4, = 0.5)

Configuration e, (Velocity) e, (Pressure) ewss (WSS)

Classical NSE 0.00712 0.00104 0.00811
First-Order DNSE 0.00402 0.00263 0.00979

Table 8.10: Relative Iy Errors - Parabolic Velocity Profile (Uppq: = 6.25)

Configuration e, (Velocity) e, (Pressure) ewgss (WSS)

Classical ANSE 0.00153 0.00088 0.00248
First-Order ANSE 0.00405 0.00204 0.01292

Table 8.11: Relative Iy Errors - Parabolic Velocity Profile (Upq. = 62.5)

Configuration e, (Velocity) e, (Pressure) epss (WSS)

Classical ANSE 0.00249 0.00230 0.00513
First-Order ANSE 0.01797 0.06872 0.01124

o8

The following figures show the velocity and pressure fields, as well as the WSS,
considering different Navier-Stokes formulations. For each case, the subpanels
are arranged in the following order: the ground truth solution, the predicted
solution by the neural network, and the absolute error between the two. As an
illustrative example, only the results corresponding to the configuration with a
pressure drop of 100 imposed as the inlet boundary condition are reported.

Velocity u

0.00 18
5.76
0.4 0.4 C13s 0.4 16
5.12
-2.70 14
0.2 4.48 0.2 0.2
—4.05 12
3.84
-5.40 10
0.0 3.20 0.0 0.0
-6.75
256 8
-8.10
02 1.92 —02 -0.2 ©
. -9.45 4
—0.4 0.64 —0.4 -10.80 g,)
0.00 -12.15 0
0.0 0.2 0.4 0.6 0.8 1.0 .0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.

(a) Case A: Dimensional NSE

0.4 576 04 576 o4 01215
5.12 5.12 0.1080

02 448 02 448 (5 0.0945
384 3.84 0.0810

00 320 00 320 4o 0.0675
256 2.56 0.0540

-0.2 192 -02 192 _go 0.0405
1.28 1.28 0.0270

-0.4 064 -0.4 064 04 0.0135
0.00 0.00 0.0000

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

(b) Case B: Non-Dimensional NSE

0.054
0.4 5.76 .
0.048
5.12
0.042
02 4.48 ;
0.036
384
0.030
0.0 3.20 .
2.56 0.024
-0.2 1.92 . 0.018
128 0.012
-0.4 0.64 . 0.006
0.00 0.000
0.0 02 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 08 1.0

Figure 8.4: Comparison of the velocity fields for a pressure drop of 100 (a—c),
considering the different formulation of the Navier-Stokes Equations. Note that
the scales differ between the panels.

5.76

512

3.84

3.20

2.56

192

1.28

0.64

0.00

(c) Case C: First-Order NSE

29

Pressure p

99 99
48.6
0.4 a8 0.4 88 0.4
432
77 77
02 0.2 0.2 R
66 66
324
55 55
0.0 0.0 0.0 27.0
44 4
216
33 33
-0.2 -0.2 -0.2 16.2
2 2 10.8
—0.4 1 04 1 o4 5.4
0 o 0.0
0 02 0.4 0.6 0.8 1.0 .0 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10

0.

(a) Case A: Dimensional NSE

99 99
04 88 04 " 0.4 0.486
0.432
77 77
0.2 02 02 0.378
66 66
0.324
55 55
0.0 0.0 0.0 0.270
44 44
0.216
33
-0.2 B o2 -02 0.162
22 22 0.108
-0.4 11 04 1 o4 0.054
0 o 0.000
0 0.2 0.4 0.6 0.8 10 0 02 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0

0.

(b) Case B: Non-Dimensional NS

99 99
0.243
0.4 88 0.44 a8 .
0.216
77
77 0.189
0.2 0.24 o .
66 0.162
55 55
0.0 0.0 . 0135
4 a4 0.108
-0.2 B o » . 0.081
22 22 0.054
—04 1 _p44 1 0.027
0 o 0.000
.0 0.2 0.4 0.6 0.8 1.0 .0 0.2 0.4 0.6 0.8 1.0

0. 0. 0.0 0.2 0.4 0.6 0.8 1.0

(c) Case C: First-Order NSE

Figure 8.5: Comparison of the pressure field for a pressure drop of 100 (a—c),
considering the different formulation of the Navier-Stokes Equations. Note that
the scales differ between the panels.

60

Wall Shear Stress

—230.0
—232.54
—235.0 1
—237.54

n —240.0 1

WS

—242.5 4

—245.0

—247.5 4

—250.0 7

~230.0 1
—232.5 1 \
1
]
~235.0 4 H ! -y
1
1,
—237.5 1 \ g \
9 —240.0 :
=
—242.5 1
—245.0

—247.5 A

—250.0

0.0 0.2 0.4 0.6

X

(b) Case B: First-Order NSE

Figure 8.6: Comparison of the WSS for a pressure drop of 100 (a-b), using
different formulations of the Navier—Stokes equations. The ground truth is shown

in black, and the predicted solution in red.

8.3 Discussion

In the transition to three-dimensional analysis, the observations made in the

two-dimensional context are confirmed.

e Having data in the loss function makes the PINN much more accurate,
showing no substantial differences between the use of velocity data alone

and the combination with pressure data.

e The algorithm also demonstrates robustness in the presence of noisy data,
Furthermore, the increase
in error remains limited even as the noise level increases, confirming the

maintaining stable and accurate predictions.
method’s effectiveness under realistic conditions.

61

0.8 1.0

e Even without the explicit imposition of boundary conditions, the network
is still able to reconstruct a physically consistent solution.

e Different boundary condition configurations were also analyzed: the model
effectively handled both pressure conditions and parabolic velocity profiles
at the inlet. For moderate values, such as a pressure drop of 8 or a max-
imum velocity of 0.5, the classical Navier—Stokes formulation performed
adequately without convergence issues. However, in cases involving higher
pressure drops or inlet velocities, which cause significant imbalances in the
loss function terms, the non-dimensional formulation proved to be more sta-
ble and effective. In these scenarios, the dimensional formulation struggled
and often failed to converge to a solution. When using the non-dimensional
formulation, the resulting errors remained comparable to those obtained
under lower pressure and velocity conditions. This suggests that, as long
as the problem is well-posed, the Reynolds number does not substantially
affect the network’s ability to converge to an accurate solution.

e Lastly, the First-Order formulation showed computational advantages: with
the same architecture, number of iterations, and problem setup, it enables
a reduction in training time of up to one-fifth compared to the classical for-
mulation. This approach proved effective for both moderate and high values
of pressure and velocity, provided the non-dimensional form is adopted in
the latter case. However, the gain in efficiency comes at the cost of a slight
increase in error, which remains limited. This error in the velocity field
also affects the calculation of the WSS, which is more accurately estimated
when using the classical formulation.

62

Chapter 9

Towards Semi-Realistic Models of
Vascular Geometries: Curved Tube

Modeling blood flow in realistic vascular geometries is a challenging task due to
the complex three-dimensional structures of arteries, especially their curvature
and branching patterns. In this chapter, we explore the application of PINNs
to simulate flow in curved geometries that resemble human coronary arteries
These vessels exhibit pronounced curvature as they follow the surface of the
myocardium, with the left main coronary artery having an approximate diameter
of 4 mm, and the left anterior descending and circumflex branches measuring
around 3 mm [106].

To accurately capture the hemodynamics within these curved vessels, we focus on
key dimensionless parameters, among which the curvature ratio is fundamental.
It is defined as:

d=% (9.1)

where a denotes the vessel radius and R the mean radius of curvature. In the
left coronary artery tree, the curvature ratio d varies significantly depending on
the anatomical location, typically ranging from 0.02 to 0.5.

In addition, the Reynolds number Re, which quantifies the ratio of inertial to
viscous forces, depends on physiological parameters such as heart rate and blood
flow velocity, and plays a key role in characterizing the flow regime.

To capture the combined effect of the curvature and the Reynolds number, the
Dean number k is introduced [107], defined as:

k=+Vd- Re (9.2)

The Dean number quantifies the ratio of centrifugal and inertial forces to vis-
cous forces in curved ducts, and plays a key role in determining the development
of secondary flow structures. At low Dean numbers, typically below 40-60, the
flow remains predominantly unidirectional and exhibits negligible secondary mo-
tion. As the Dean number increases to intermediate values around 60-75, sec-
ondary flow begins to emerge within the cross-sectional plane, often manifesting
as symmetric vortical structures. When the Dean number exceeds approximately

63

75-200, a secondary instability arises, characterized by increasingly complex dy-
namics such as vortex undulations, twisting, merging, and eventually vortex pair
splitting [108].

In this study, both the Reynolds number and the curvature ratio were systemat-
ically varied in order to evaluate their combined influence, via the Dean number,
on flow behavior. This framework serves to investigate the capability of PINNs
to accurately capture the dynamics arising in curved vascular geometries, and to
assess their robustness in handling increasingly complex hemodynamic regimes.

9.1 Methods

For this problem, the same network architecture and parameters described in
Section were employed. However, certain adjustments were necessary, such
as modifying the number of collocation points and training iterations. The neural
network takes as input the three spatial coordinates (z,y,z) and outputs four
quantities (u,v,w,p), corresponding to the velocity components and pressure
field. For simplicity, the same network was adopted to predict both velocity and
pressure fields.

9.1.1 Governing Equations

For the problems considered, the flow is governed by the non-dimensional steady-
state Navier-Stokes equations for an incompressible fluid [5.1.1] Furthermore,
some tests have also been conducted using the First-Order formulation [5.1.3]
To investigate the influence of flow regime, simulations were performed for dif-
ferent Reynolds numbers, specifically Re = 10,100, and 300, by varying the
imposed pressure gradient or the maximum velocity of the parabolic profile. The
kinematic viscosity was assumed constant and equal to 4 mm?/s [109).

9.1.2 Computational Domain

For the numerical experiments, different 3D geometries were considered, each
representing a curved tube. The geometries for the cases under study were
generated and defined using the GMSH software, followed by mesh creation.
The mesh nodes were then imported and used as training points for the neural
network.

Geometry 1

In this case, the geometry has a minor radius of 4mm and a major radius of
133.33 mm, resulting in a curvature ratio d = 0.03. The domain was discretized
using a fine mesh comprising 37,509 nodes.

64

Figure 9.1: Representation of the computational domain for Case 1.

Geometry 2

In this case, the geometry has a minor radius of 4mm and a major radius of
50 mm, resulting in a curvature ratio d = 0.08. The domain was discretized
using a fine mesh comprising 35,930 nodes.

Yy

Figure 9.2: Representation of the computational domain for Case 2.

Geometry 3

Finally, in the third case, the geometry has a minor radius of 4 mm and a major
radius of 33.333 mm, resulting in a curvature ratio d = 0.12. The domain was
discretized using a fine mesh comprising 32, 572 nodes.

9.1.3 Definition of Boundary Conditions

Two types of inlet boundary conditions were considered: one based on an imposed
pressure drop, and the other on a prescribed parabolic velocity profile.

For all the cases considered, the inlet pressure and parabolic velocity profiles
were imposed as soft constraints, by minimizing the corresponding residual in the
loss function. On the other hand, no-slip Dirichlet boundary conditions for the
velocity field were enforced as hard constraints, ensuring that the velocity at the
walls was exactly zero, as described in Section[5.2] To implement this condition, a
distance-based scaling function was defined and applied to the predicted velocity

65

Figure 9.3: Representation of the computational domain for Case 3.

field as follows:
2
Upew = ((V X2‘|‘Y2—R> —|—Z2—T2> * Upred, (93)

where R and r represent the major radius and the minor radius of the geometry,
respectively.

Case 1) Different Pressure Drops

e Inlet Boundary Condition: At the inlet (x = 0), a fixed pressure value
is prescribed based on the specific case configuration. These values vary
according to the Reynolds number, as shown in Table [9.1]

e Outlet Boundary Condition: A zero-pressure condition is enforced at the
outlet boundary.

Table 9.1: Geometric configurations and different imposed pressure drops for
different Reynolds numbers.

Configuration Re =10 Re =100 Re = 300

Geometry 1 350 3600 11225
Geometry 2 200 2090 7150
Geometry 3 180 1940 7035

Case 2) Different Parabolic Velocity Profile

e Inlet Boundary Condition: A parabolic velocity profile was imposed at the
inlet boundary (z = 0), with the maximum velocity Uy,.x varying according
to the Reynolds number. The selected values were U, = 5, 50, and 150,
corresponding to Reynolds numbers of 10, 100, and 300, respectively.

The parabolic profile is defined as follows:
(y—R)”+ 22)

U = Upax (1 — 2

66

e Outlet Boundary Condition: A zero-pressure condition is enforced at the
outlet boundary.

9.1.4 Data Assimilation

Computational Fluid Dynamics simulations were performed on the generated
geometries using the Finite Element Method. These simulations served both
as a reference to evaluate the solutions provided by PINNs and as a source to
extract measurement points for data assimilation. The velocity and pressure
data obtained from CFD simulations, sampled at mesh nodes, were treated as
the reference solution and incorporated into the loss function in the form of
residuals to be minimized. For each case considered, approximately 5, 000 points
were sampled.

9.1.5 Calculation of The Wall Shear Stress

The WSS was computed from both the CFD reference solution and the PINNs-
predicted solution. The software ParaView was employed to evaluate shear
stresses on the vessel walls, based on the gradients of the velocity field.

9.1.6 Error Analysis

The errors are calculated as reported in Section [7.3.5]

9.2 Results

9.2.1 Training Time

As observed in the previous chapter, the complexity increases when moving to
a three-dimensional geometry. In this context, the average training time using
the non-dimensional classical Navier—-Stokes equations exceeds one hour, with
a typical duration of approximately 75 minutes. In contrast, reformulating the
Navier—Stokes equations using the First-Order formulation significantly reduces
the training time to around 10-15 minutes.

9.2.2 Results Obtained with the Classical Navier—Stokes
Formulation

The tables below provide a quantitative analysis of the relative [y error for ve-
locity components (e,) and (e,), pressure (e,), calculated by comparing the pre-
dicted solutions with the reference data obtained from the classical Navier—Stokes

67

formulation.

9.2.3 Case 1) Different Pressure Drops (AP)

Table 9.2: Relative [5 Errors — Geometry 1: d = 0.3

Configuration e, (Velocity z) e, (Velocity y) e, (Pressure)

Re =10 0.00887 0.01180 0.01581
Re = 100 0.02853 0.06195 0.10544
Re = 300 0.12135 0.19626 0.19322

Table 9.3: Relative [y Errors — Geometry 2: d = 0.08

Configuration e, (Velocity z) e, (Velocity y) e, (Pressure)

Re =10 0.01189 0.02280 0.01308
Re = 100 0.03711 0.07161 0.08726
Re = 300 0.06889 0.16264 0.07840

Table 9.4: Relative Iy Errors — Geometry 3: d = 0.12

Configuration e, (Velocity z) e, (Velocity y) e, (Pressure)

Re =10 0.01988 0.03078 0.02413
Re =100 0.03722 0.06712 0.08445
Re = 300 0.09603 0.20724 0.04430

9.2.4 Case 2) Different Parabolic Velocity Profile

Table 9.5: Relative [y Errors — Geometry 1: d = 0.03

Configuration e, (Velocity z) e, (Velocity y) e, (Pressure)

Re =10 0.04516 0.05088 0.00328
Re = 100 0.01792 0.05085 0.01371
Re = 300 0.11092 0.19533 0.04398

68

Table 9.6: Relative [y Errors — Geometry 2: d = 0.08

Configuration e, (Velocity z) e, (Velocity y) e, (Pressure)

Re =10 0.06735 0.08685 0.00697
Re =100 0.02418 0.05966 0.03371
Re = 300 0.07221 0.15969 0.10684

Table 9.7: Relative [y Errors — Geometry 3: d = 0.12

Configuration e, (Velocity z) e, (Velocity y) e, (Pressure)

Re =10 0.06703 0.08322 0.00707
Re =100 0.02295 0.05312 0.05615
Re = 300 0.07589 0.17788 0.10055

9.2.5 Results Obtained with the First Order Navier—Stokes
Formulation

The tables below provide a quantitative analysis of the relative [y error for ve-

locity components (e,) and (e,), pressure (e,), calculated by comparing the pre-

dicted solutions with the reference data obtained from the First-Order NSE for-
mulation, considering a pressure drop imposed at the inlet.

Table 9.8: Relative Iy Errors — Geometry 3: d = 0.08

Configuration e, (Velocity z) e, (Velocity y) e, (Pressure)

Re =10 0.02990 0.02992 0.00831
Re =100 0.01844 0.04928 0.03379
Re = 300 0.06690 0.15734 0.08214

Table 9.9: Relative ls Errors — Re = 100

Configuration e, (Velocity z) e, (Velocity y) e, (Pressure)

d=0.03 0.02377 0.06318 0.01116
d=0.08 0.01844 0.04928 0.03379
d=0.12 0.02327 0.05261 0.05084

69

The subsequent figures present the velocity field, along with the WSS. For each
configuration, the subpanels are organized as follows: the ground truth solu-
tion, the neural network prediction, and the corresponding absolute error. As
a representative case, results at a Reynolds number of 100 are reported for all
three geometries, under an imposed pressure drop at the inlet, with the aim of
emphasizing the influence of the curvature ratio.

Velocity u - Classical NSE Formulation

True Velocity Predicted Velocity Absolute Error
0.0e+00 20 5.1e+01 0.0e+00 20 5.1e+01 0.0e+00 1 2.4e+00
| | |
— — — — —

= e

(a) Case A: Geometry 1 (d = 0.03)

True Velocity Predicted Velocity AbsquTe Error
0.0e+00 20 5.4e+01 0. Oe+OO 20 5.4e+01 0. Oe+00 3 9e+00
-

- : -
) Case B: Geometry 2 (d = 0.08)

True Velocity Predicted Velocity Absolute Error
0.0e+00 20 5.60+01 0.0e+00 20 5 6e+01 o. Oe+OO 5.2e+00

) Case C: Geometry 3 (d = 0.12)

Figure 9.4: Comparison of the velocity fields for different geometries (a—c) under
the application of a pressure drop at Reynolds number Re = 100. Note that the
scales differ between the panels.

70

Wall Shear Stress - Classical NSE Formulation

True WSS Predicted WSS Absolute Error
3.3e+00 50 1.1e+02 3.3e+00 50 1.1e+02 1.7e-01 1.4e+02

P 7 7

) Case A: Geometry 1 (d = 0.03)

True WSS Predicted WSS Absolute Error
4.0e+00 1.3e+02 4.0e+00 1.3e+02 49e-02 100 1.8e+02

S _— = | om

(b) Case B: Geometry 2 (d = 0.08)

True WSS Predicted WSS
Absolute Error
6.9e-01 1?0 1.6e+02 6. ‘?e 01 100 1.6e+02 0.0e+00 216402
| —
) Case C: Geometry 3 (d = 0.12)

Figure 9.5: Comparison of the WSS for different geometries (a—c) under the
application of a pressure drop at Reynolds number Re = 100. Note that the
scales differ between the panels.

71

Velocity u - First-Order NSE Formulation

True Velocity Predicted Velocity Absolute Error
0.0e+00 20 5.2e+01 0.0e+00 20 5.2e+01 0.0e+00 } 22.7e+00
|
- o —— [

(a) Case A: Geometry 1 (d = 0.03)

True Velocity Predicted Velocity Absolute Error
0.0e+00 2 4 5.3e+00 0.0e+00 2 4 5.3e+00 0.0e+00 0.2 4.2e-01

——

(b) Case B: Geometry 2 (d = 0.08)

True Velocity Predicted Velocity Absolute Error
0.0e+00 20 40 5.6e+01 0.0e+00 20 40 5.6e+01 3.7e-07 2 5.0e+00
L |

—_— .

(c) Case C: Geometry 3 (d = 0.12)
Figure 9.6: Comparison of the velocity fields for different geometries (a—c) under

the application of a pressure drop at Reynolds number Re = 100. Note that the
scales differ between the panels.

72

The subsequent figures present the velocity field, along with the WSS. For each
configuration, the subpanels are organized as follows: the ground truth solu-
tion, the neural network prediction, and the corresponding absolute error. As
a representative case, results at a Reynolds number of 300 are reported for all
three geometries, under an imposed pressure drop at the inlet, with the aim of
assessing the model’s behavior at higher Reynolds numbers.

Velocity u - Classical NSE Formulation

True Velocity Predicted Velocity Absolute Error
0.0e+00 100 1.6e+02 0.0e+00 100 1.6e+02 0.0e+00 20 4.5e+01
| |
= am — - —

(a) Case A: Geometry 1 (d = 0.03)

True Velocity Predicted Velocity Absolute Error
0.0e+00 100 1.9e+02 0. Oe+00 100 1 9e+02 0. Oe+OO 4.7e+01
|
[

//

) Case B: Geometry 2 (d = 0.08)

True Velocity Predicted Velocity Absolute Error
0.0e+00 2.2e+02 0.0e+00 2.26+02 0.0e+00 507.6e+01

- o —— -

(c) Case C: Geometry 3 (d = 0.12)

Figure 9.7: Comparison of the velocity fields for different geometries (a—c) under
the application of a pressure drop at Reynolds number Re = 300. Note that the
scales differ between the panels.

73

Wall Shear Stress - Classical NSE Formulation

True WSS
8.3e+00 200 4.7e+02

— —

Predicted WSS
8.3e+00 200 4.7e+02

[

Absolute Error
0.0e+00 200 5.2e+02

— —

(a) Case A: Geometry 1 (d = 0.03)

True WSS Predicted WSS Absolute Error
2.7e+00 500 8.3e+02 2.7e+00 500 8.3e+02 3.2e-01 500 9.6e+02
| | |
- - - = - =

(b) Case B: Geometry 2 (d = 0.08)

True WSS Predicted WSS Absolute Error
1.2e+00 1.1e+03 1.2e+00 1.1e+03 0.0e+00 1.2e+03

- - = o &

(c) Case C: Geometry 3 (d = 0.12)

Figure 9.8: Comparison of the WSS for different geometries (a—c) under the
application of a pressure drop at Reynolds number Re = 300. Note that the
scales differ between the panels.

9.2.6 The Importance of Defining Boundary Conditions as
Hard Constraints - Classical NSE Formulation

The following figure shows the velocity field for Geometry 1 (Case 1) at a
Reynolds number of 10, with an imposed pressure drop at the inlet. Here, we
aim to demonstrate the impact of boundary condition enforcement by comparing
three cases: the true solution, the prediction using soft boundary conditions, and
the prediction using hard boundary conditions.

74

True Velocity Predicted Velocity Predicted Velocity
0.0e+00 2 5.1e+00 0.0e+00 2 5.1e+00 0.0e+00 2 5.1e+00

R - | - -

\
\

Figure 9.9: Velocity field for Geometry 1 (d = 0.03) at Re = 10: reference
solution, prediction with soft BCs, and prediction with hard BCs.

9.3 Discussion

The results presented in this work highlight several key aspects of the proposed
approach. The following points summarize the most relevant findings:

e The flow analysis in the curved pipe demonstrates strong agreement with
reference data for velocity, pressure, and WSS across all examined cases.
Notably, simulations using a pressure drop as the inlet condition yield re-
sults that closely match those obtained with an imposed parabolic velocity
profile, confirming the robustness of the model with respect to different
inlet configurations.

e Furthermore, no-slip boundary conditions must be imposed strongly, that
is, explicitly enforced as well-defined constraints, rather than softly incor-
porated into the loss function. This highlights the critical importance of
accurately defining boundary conditions to ensure both the physical con-
sistency and the predictive accuracy of the model.

e When comparing the two formulations, the classical Navier-Stokes equa-
tions and the First-Order NSE, similar error levels are observed, while
the First-Order formulation offers a significant reduction in training time.
Despite this advantage, further investigation is needed to fully assess its
performance and limitations.

e The study considered two fundamental parameters: the curvature ratio
and the Reynolds number. Regarding the curvature ratio, no significant
variations in the predictive performance of the model were observed, as
the estimated errors remained substantially unchanged when varying this
parameter. Conversely, the Reynolds number impacts prediction accuracy.
Estimation errors progressively increase with higher Reynolds numbers due
to the growing complexity of the flow, characterized by a disturbed regime
and nonlinear phenomena. The largest errors are typically observed near
the outlet region. Nevertheless, the model successfully captures the overall
flow behavior. In particular, at elevated Reynolds and Dean numbers, flow
patterns with pronounced asymmetry arise. The neural network effectively
recognizes and approximates these asymmetric configurations, demonstrat-
ing strong learning and adaptability to complex flow conditions.

75

Chapter 10

Conclusions and Future
Developments

To conclude, PINNs offer several advantages in the modeling of fluid dynamics.

e In the context of the problems addressed in this work, they demonstrate
the ability to accurately predict key physical quantities, such as velocity
and pressure fields, as well as WSS, in both steady and unsteady regimes.

e A further significant advantage is observed when data assimilation is per-
formed: as initially hypothesized, the predictive accuracy of PINNs im-
proves notably, whether using velocity data alone or a combination of ve-
locity and pressure data. This is particularly beneficial from a practical
standpoint, as pressure can only be measured invasively and is therefore
generally not available. Furthermore, PINNs exhibit strong robustness to
data quality, effectively handling sparse or noisy datasets while maintain-
ing stable and reliable predictions. This makes the method particularly
suitable for clinical contexts, where the available data are often affected by
noise. This behavior is consistent with expectations, given that the data
assimilation term is introduced through a least-squares formulation, which
inherently promotes stability.

e Moreover, in relatively simple geometrical configurations, it is sometimes
possible to omit the explicit enforcement of boundary conditions without
significantly affecting the accuracy of the solution, thereby simplifying the
overall problem setup and reducing computational costs.

Despite these significant advantages, PINNs also present currently several limi-
tations, especially when applied to complex flow scenarios.

e As the problem complexity increases, often due to intricate geometries, the
explicit enforcement of boundary conditions becomes essential. In other
words, boundary conditions must be imposed as hard constraints rather
than integrated into the loss function. Therefore, although PINNs do not
rely on a traditional mesh, they still require a sufficiently dense distribution
of collocation points to accurately capture the geometry and the domain

76

of interest. As a consequence, some form of meshing or careful sampling
remains necessary, especially in cases involving irregular boundaries or com-
plex geometric features.

e Another significant challenge lies in model calibration: fine-tuning PINNs
for a specific problem requires careful consideration of several factors. Some
of these include the neural network architecture, the choice of hyperparame-
ters, and the formulation of the governing equations. This tuning process is
often time-consuming, and the resulting configurations may not generalize
well across different problems, frequently necessitating extensive empirical
testing to adapt the model to new scenarios.

In particular, different formulations of the Navier-Stokes equations were
considered, each selected based on the specific characteristics of the prob-
lem and offering distinct advantages. As for the network architecture, the
same model was used to approximate both velocity and pressure fields.
While this choice yields accurate results and simplifies implementation, it
differs from traditional methods such as FEM, where velocity and pressure
are typically approximated in different functional spaces in order to sat-
isfy the inf-sup condition. However, since a rigorous theoretical framework
for such conditions in the PINNs setting is not yet established, a unified
architecture was adopted for simplicity.

10.1 Short-Term Advancements

The work carried out so far, although promising, represents only the first step
towards the development of a more advanced research line. In this initial phase,
various problems have been addressed, starting from simplified geometries cre-
ated ad hoc and progressing to configurations of increasing complexity, more
closely resembling anatomical structures, such as blood vessels.

The next step involves the use of real vascular structures, which can be obtained
through advanced imaging techniques. Among these, 4D Magnetic Resonance
Imaging (4D-MRI) stands out, as it enables both the reconstruction of the three-
dimensional anatomical domain and the complete acquisition and analysis of
blood flow dynamics. 4D-MRI can provide estimates of advanced hemodynamic
parameters, such as WSS, pulse wave velocity, and pressure gradients; however,
these estimates are not highly precise due to intrinsic limitations in spatial and
temporal resolution, as well as measurement noise [110]. A complementary tech-
nique is Ultrasound Doppler Velocimetry, which enables the measurement of
blood flow velocity propagation [111].

These imaging modalities provide rich and high-resolution datasets, which can
be used as input for the next major objective: employing PINNs to solve the
Navier—Stokes equations through data assimilation. By integrating experimen-
tal data from 4D-MRI or Doppler ultrasound directly into the training process,
PINNs offer the potential to model hemodynamics within patient-specific vas-
cular geometries. It will therefore be essential to assess whether, even in such

77

complex domains, PINNs can produce quantitatively reliable results comparable
to those obtained through traditional Computational Fluid Dynamics simula-
tions [112].

10.2 Future Research Perspectives: Towards the
Development of a Digital Twin

One of the main limitations currently encountered in the management of vascular
diseases is the lack of effective strategies for prevention and clinical follow-up.
Although the study of hemodynamics and the identification of critical parame-
ters play a central role in the initial evaluation of the patient, there is a clear
shortage of tools and methodologies capable of predicting the temporal pro-
gression of the disease. This gap results in a concrete difficulty in preventing
clinical deterioration or the onset of more severe pathological conditions, with
potentially fatal consequences. This highlights the need to develop diagnostic
approaches and monitoring systems that are continuous, dynamic, and person-
alized, capable of providing an accurate and constantly updated representation
of the patient’s clinical condition. In this context, the paradigm of personalized
medicine becomes particularly relevant. This model aims to integrate biological,
physiological, environmental, and behavioral data specific to each individual in
order to develop tailored therapeutic strategies . A concrete example of the
application of this concept is the Digital Twin (DT), a system that is proving to
be crucial for the management and continuous monitoring of health. The Digital
Twin is a digital and virtual representation of a physical entity, in this case, the
patient, that allows real-time simulation of their health status . There is a
bidirectional correspondence between the real patient and their digital twin: on
one hand, the patient’s clinical data are continuously used to update the digital
model; on the other hand, the virtual twin reflects the patient’s physical condi-
tion and enables simulations and forecasts regarding their clinical status. This
approach allows for the generation of highly realistic virtual data, comparable to
those observed in clinical practice. [115].

Information Flow

Modeling & Simulation

Figure 10.1: Information flow of a Digital Twin with a bidirectional feedback

loop

78

To develop a DT system, it is essential to have a model capable of assimilating
data from the real patient and integrating them into the digital simulation in
real time. A promising strategy to achieve this goal is represented by PINNs.
PINNs, which incorporate the physical laws underlying biological processes, allow
for the effective integration of clinical data with mathematical models, even in
the presence of limited or noisy datasets. The integration of deep learning tools
with data assimilation techniques therefore enables the continuous updating of
the digital twin’s state, making it possible to generate personalized predictions
about the clinical evolution of the real patient and to support medical decision-
making.

79

Appendix

Introduction to the Algorithm with the Python Li-
brary DeepXDE

The implementation of codes for solving partial differential equations using PINNs
has been carried out with the Python library DeepXDE, developed by Lu et al.
[103]. This library enables writing compact yet highly versatile code that closely
follows the underlying mathematical formulations. In particular, DeepXDE can
handle both forward problems, given initial and boundary conditions, and inverse
problems, provided additional data are available.

Solving differential equations in DeepXDE primarily involves defining the prob-
lem using built-in modules, which include: the computational domain, PDE
equations, boundary and initial conditions, constraints, training data, neural
network architecture, and training hyperparameters.

Step-by-Step Guide to Solve PDEs with DeepXDE

To demonstrate the procedure, we focus on solving the steady Navier-Stokes
equations within a square domain. The following provides a step-by-step expla-
nation of how to define and solve this problem using DeepXDE.

1. Definition of the computational domain

e The spatial domain of the problem is defined using the geom module.
This domain may be a simple interval, a 2D or 3D shape, a more
complex region, or a geometry defined by a point set, depending on
the problem requirements.

e The temporal domain can be defined separately if the problem is time-
dependent.

2. Specification of the PDE

e The PDE is expressed using TensorFlow syntax.

e This involves translating the mathematical expressions, including deriva-
tives and source terms, into code.

3. Setting boundary and initial conditions

80

e Boundary conditions (Dirichlet, Neumann, or Robin) that the solution
must satisfy are specified.

e For time-dependent problems, initial conditions describing the system
at the initial time are also specified.

4. Preparation of the training data

e The geometry, PDE, and boundary/initial conditions are combined
into a dataset using data.PDE (for steady-state problems) or data.TimePDE
(for time-dependent problems).

e Training points can be specified in two ways:

— Specific point locations can be manually defined.

— The number of points can be specified, allowing DeepXDE to
automatically sample them on a grid or randomly.

5. Construction of the neural network

e A deep neural network architecture is designed using the nn module.

e The network consists of input, hidden, and output layers, along with
activation functions (e.g., hyperbolic tangent, logistic sigmoid, or rec-
tified linear unit) that approximate the PDE solution.

6. Definition of the model
e A model instance is created by integrating the PDE dataset (Step 4)
with the neural network architecture (Step 5).
e This establishes the PINN framework, where the network is trained
to satisfy both the differential equation and the boundary conditions.
7. Compilation of the model
e The model is compiled using model.compile to set optimization hy-
perparameters, such as:
— The optimizer (e.g., Adam, L-BFGS).

— The learning rate, which affects training stability and conver-
gence.

— Loss weights, which balance the contributions of different terms
(e.g., PDE residuals, boundary constraints) in the training objec-
tive.

8. Training the model

e Training is initiated using model.train starting from:

— Random initialization (default behavior).

— A pre-trained model, restored with the model.restore command
to continue training.

81

e Training progress can be monitored and controlled through callbacks,
which allow for dynamic learning rate scheduling, early stopping, and
logging of performance metrics.

9. Prediction

e After training completion, model.predict is utilized to evaluate the
PDE solution at desired locations.

By following this structured workflow, DeepXDE simplifies the implementation

of PINNs, making it a powerful and user-friendly tool for solving both forward
and inverse PDE problems.

82

Bibliography

4]

5]

(6]

7]

8]

9]

[10]

[11]

George Keith Batchelor. An introduction to fluid dynamics. Cambridge
university press, 2000.

David N Ku and Don P Giddens. “Pulsatile flow in a model carotid bifur-
cation.” In: Arteriosclerosis: An Official Journal of the American Heart
Association, Inc. 3.1 (1983), pp. 31-39.

Arnav Kumar et al. “Low coronary wall shear stress is associated with
severe endothelial dysfunction in patients with nonobstructive coronary
artery disease”. In: JACC: Cardiovascular Interventions 11.20 (2018),
pp- 2072-2080.

Xuelan Zhang et al. “Physics-informed neural networks (PINNs) for 4D
hemodynamics prediction: An investigation of optimal framework based
on vascular morphology”. In: Computers in Biology and Medicine 164

(2023), p. 107287.

Joel H Ferziger, Milovan Peri¢, and Robert L Street. Computational meth-
ods for flurd dynamics. springer, 2019.

Ram Kumar Raman, Yogesh Dewang, and Jitendra Raghuwanshi. “A re-
view on applications of computational fluid dynamics”. In: Int. j. LNCT
2.6 (2018), pp. 137-143.

Philippe R Spalart and V Venkatakrishnan. “On the role and challenges
of CFD in the aerospace industry”. In: The Aeronautical Journal 120.1223
(2016), pp. 209-232.

Elijah Hao Wei Ang, Guangjian Wang, and Bing Feng Ng. “Physics-
informed neural networks for low Reynolds number flows over cylinder”.
In: Energies 16.12 (2023), p. 4558.

Jan Nordstrom. “Well posed problems and boundary conditions in compu-
tational fluid dynamics”. In: 22nd AIAA Computational Fluid Dynamics
Conference. 2015, p. 3197.

Amirhossein Arzani, Jian-Xun Wang, and Roshan M D’Souza. “Uncov-
ering near-wall blood flow from sparse data with physics-informed neural
networks”. In: Physics of Fluids 33.7 (2021).

Francesco Ballarin et al. “Fast simulations of patient-specific haemody-
namics of coronary artery bypass grafts based on a POD—Galerkin method
and a vascular shape parametrization”. In: Journal of Computational
Physics 315 (2016), pp. 609-628.

83

[16]

[17]

[18]

24]

[25]

Geir Evensen. Data Assimilation: The Ensemble Kalman Filter. Springer
Science & Business Media, 20009.

Caterina Buizza et al. “Data learning: Integrating data assimilation
and machine learning”. In: Journal of Computational Science 58 (2022),
p. 101525.

M. Asch, M. Bocquet, and M. Nodet. Data Assimilation: Methods, Algo-
rithms, and Applications. STAM, 2016.

Francesco Regazzoni, Dominique Chapelle, and Philippe Moireau. “Com-
bining data assimilation and machine learning to build data-driven models
for unknown long time dynamics—applications in cardiovascular model-
ing”. In: International Journal for Numerical Methods in Biomedical En-
gineering 37.7 (2021), e3471.

Amirhossein Arzani, Jian-Xun Wang, and Roshan M D’Souza. “Uncov-
ering near-wall blood flow from sparse data with physics-informed neural
networks”. In: Physics of Fluids 33.7 (2021).

Peter Benner, Mario Ohlberger, Albert Cohen, and Karen Willcox. Model
reduction and approximation: theory and algorithms. SIAM, 2017.

Jan S Hesthaven, Gianluigi Rozza, Benjamin Stamm, et al. Certified
reduced basis methods for parametrized partial differential equations.
Vol. 590. Springer, 2016.

Guglielmo Padula, Michele Girfoglio, and Gianlugi Rozza. “ A brief review
of reduced order models using intrusive and non-intrusive techniques”. In:

PAMM 24.4 (2024), €202400210.

Philip Heger, Daniel Hilger, Markus Full, and Norbert Hosters. “Investi-
gation of physics-informed deep learning for the prediction of parametric,
three-dimensional flow based on boundary data”. In: Computers € Fluids

278 (2024), p. 106302.

Gianluigi Rozza et al. “Advances in reduced order methods for parametric
industrial problems in computational fluid dynamics”. In: arXwv preprint
arXiv:1811.08319 (2018).

George Em Karniadakis et al. “Physics-informed machine learning”. In:
Nature Reviews Physics 3.6 (2021), pp. 422-440.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. “Physics-
informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations”.

In: Journal of Computational physics 378 (2019), pp. 686-707.

David J Livingstone. Artificial neural networks: methods and applications.
Vol. 458. Springer, 2008.

Andreas C Neves, Ignacio Gonzalez, John Leander, and Raid Karoumi.
“A new approach to damage detection in bridges using machine learning”.
In: International Conference on Experimental Vibration Analysis for Civil
Engineering Structures. Springer. 2017, pp. 73-84.

84

130]

[31]

32]

[33]

[34]

[35]

[36]

[37]

[40]

Dario Floreano and Claudio Mattiussi. “Manuale sulle reti neurali”. In:
(2002).

AD Dongare, RR Kharde, Amit D Kachare, et al. “Introduction to artifi-
cial neural network”. In: International Journal of Engineering and Inno-
vative Technology (IJEIT) 2.1 (2012), pp. 189-194.

Evelyn Herberg. “Lecture Notes: Neural Network Architectures”. In: arXiv
preprint arXiv:2304.05133 (2023).

Chigozie Nwankpa, Winifred [jomah, Anthony Gachagan, and Stephen
Marshall. “Activation functions: Comparison of trends in practice and
research for deep learning”. In: arXiv preprint arXiv:1811.03378 (2018).

Johannes Lederer. “Activation functions in artificial neural networks: A
systematic overview”. In: arXiv preprint arXiv:2101.09957 (2021).

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning
representations by back-propagating errors”. In: nature 323.6088 (1986),
pp. 533-536.

Robert Hecht-Nielsen. “Theory of the backpropagation neural network”.
In: Neural networks for perception. Elsevier, 1992, pp. 65-93.

Matias Roodschild, Jorge Gotay Sardinas, and Adrian Will. “A new ap-
proach for the vanishing gradient problem on sigmoid activation”. In:
Progress in Artificial Intelligence 9.4 (2020), pp. 351-360.

Sigmoid funtion. URL: https ://www . sciencedirect . com/ topics/
computer-science/sigmoid-function.

Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karniadakis. “Dying
relu and initialization: Theory and numerical examples”. In: arXiv preprint
arXiv:1903.06733 (2019).

Juan Terven, Diana M Cordova-Esparza, Alfonso Ramirez-Pedraza, Edgar
A Chavez-Urbiola, and Julio A Romero-Gonzalez. “Loss functions and
metrics in deep learning”. In: arXiv preprint arXiv:2307.02694 (2023).

Aryan Jadon, Avinash Patil, and Shruti Jadon. “A comprehensive sur-
vey of regression-based loss functions for time series forecasting”. In: In-
ternational Conference on Data Management, Analytics € Innovation.
Springer. 2024, pp. 117-147.

Juan Terven, Diana M Cordova-Esparza, Alfonso Ramirez-Pedraza, Edgar
A Chavez-Urbiola, and Julio A Romero-Gonzalez. “Loss functions and
metrics in deep learning”. In: arXiv preprint arXiv:2307.02694 (2023).

Alfio Quarteroni, Paola Gervasio, and Francesco Regazzoni. “Combining
physics-based and data-driven models: advancing the frontiers of research
with Scientific Machine Learning”. In: arXiv preprint arXiw:2501.18708
(2025).

Grégoire Montavon, Geneviéve Orr, and Klaus-Robert Miiller. Neural net-
works: tricks of the trade. Vol. 7700. springer, 2012.

85

https://www.sciencedirect.com/topics/computer-science/sigmoid-function
https://www.sciencedirect.com/topics/computer-science/sigmoid-function

[50]

[51]

52|

[53]

[54]

[55]

[56]

[57]

Yanzhao Wu et al. “Demystifying learning rate policies for high accuracy
training of deep neural networks”. In: 2019 IEEFE International conference
on big data (Big Data). IEEE. 2019, pp. 1971-1980.

In: ().

Yousef Saad. Iterative methods for sparse linear systems. STAM, 2003.

URL: https : //medium . com/ data - science / gradient - descent -
algorithm-a-deep-dive-cf04e811561f21,

James Gabbard and Daniel Miller. “Machine Learning from Scratch:
Stochastic Gradient Descent and Adam Optimizer”. In: (2018).

URL: https://www. geeksforgeeks . org/ml - stochastic-gradient -
descent-sgd/.

Ning Qian. “On the momentum term in gradient descent learning algo-
rithms”. In: Neural networks 12.1 (1999), pp. 145-151.

Yanli Liu, Yuan Gao, and Wotao Yin. “An improved analysis of stochastic
gradient descent with momentum”. In: Advances in Neural Information
Processing Systems 33 (2020), pp. 18261-18271.

Xiaoyu Li, Mingrui Liu, and Francesco Orabona. “On the last iterate
convergence of momentum methods”. In: International Conference on Al-
gorithmic Learning Theory. PMLR. 2022, pp. 699-717.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. “Neural networks

for machine learning lecture 6a overview of mini-batch gradient descent”.
In: Clited on 14.8 (2012), p. 2.

Vitaly Bushaev. “Understanding RMSprop-faster neural network learn-
ing”. In: Towards Data Science (2018).

Tijmen Tieleman. “Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude”. In: COURSFERA: Neural networks for
machine learning 4.2 (2012), p. 26.

Oles Hospodarskyy, Vasyl Martsenyuk, Nataliia Kukharska, Andriy
Hospodarskyy, and Sofiia Sverstiuk. “Understanding the Adam Optimiza-
tion Algorithm in Machine Learning”. In: (2024).

Diederik P Kingma. “Adam: A method for stochastic optimization”. In:
arXiv preprint arXiv:1412.6980 (2014).

C. G. Broyden, R. Fletcher, D. Goldfarb, and D. F. Shanno. “A class of
methods for solving nonlinear simultaneous equations”. In: Mathematics
of Computation 24.111 (1970), pp. 221-231.

Dong C Liu and Jorge Nocedal. “On the limited memory BFGS method
for large scale optimization”. In: Mathematical programming 45.1 (1989),
pp. 503-528.

BFGS in a Nutshell: An Introduction to Quasi-Newton Methods. 2020.
URL: \url{https://towardsdatascience.com/bfgs-in-a-nutshell-
an-introduction-to-quasi-newton-methods-21b0el13ee504/}.

86

https://medium.com/data-science/gradient-descent-algorithm-a-deep-dive-cf04e8115f21
https://medium.com/data-science/gradient-descent-algorithm-a-deep-dive-cf04e8115f21
https://www.geeksforgeeks.org/ml-stochastic-gradient-descent-sgd/
https://www.geeksforgeeks.org/ml-stochastic-gradient-descent-sgd/
\url{https://towardsdatascience.com/bfgs-in-a-nutshell-an-introduction-to-quasi-newton-methods-21b0e13ee504/}
\url{https://towardsdatascience.com/bfgs-in-a-nutshell-an-introduction-to-quasi-newton-methods-21b0e13ee504/}

[58]

[59]

[60]

[61]

62
|63

|64]

[65]

[66]

167]

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. “Physics-
informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations”.
In: Journal of Computational physics 378 (2019), pp. 686-707.

Salvatore Cuomo et al. “Scientific machine learning through physics—
informed neural networks: Where we are and what’s next”. In: Journal
of Scientific Computing 92.3 (2022), p. 88.

Tarik Sahin, Max von Danwitz, and Alexander Popp. “Solving forward
and inverse problems of contact mechanics using physics-informed neural
networks”. In: Advanced Modeling and Simulation in Engineering Sciences
11.1 (2024), p. 11.

Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul,
and Jeffrey Mark Siskind. “Automatic differentiation in machine learning:

a survey”. In: Journal of machine learning research 18.153 (2018), pp. 1-
43.

Adam Paszke et al. “Automatic differentiation in pytorch”. In: (2017).

Charles C Margossian. “A review of automatic differentiation and its ef-
ficient implementation”. In: Wiley interdisciplinary reviews: data mining
and knowledge discovery 9.4 (2019), e1305.

Robert Edwin Wengert. “A simple automatic derivative evaluation pro-
gram”. In: Communications of the ACM 7.8 (1964), pp. 463-464.

Barak A Pearlmutter and Jeffrey Mark Siskind. “Reverse-mode AD in a
functional framework: Lambda the ultimate backpropagator”. In: ACM

Transactions on Programming Languages and Systems (TOPLAS) 30.2
(2008), pp. 1-36.

What’s Automatic Differentiation? URL: https : //huggingface . co/
blog/andmholm/what-is-automatic-differentiation.

Xiaowei Jin, Shengze Cai, Hui Li, and George Em Karniadakis. “NSFnets
(Navier-Stokes flow nets): Physics-informed neural networks for the in-
compressible Navier-Stokes equations”. In: Journal of Computational
Physics 426 (2021), p. 109951.

Alfio Quarteroni. Modellistica numerica per problem: differenziali.
Springer Science & Business Media, 2013.

Pavel B Bochev and Max D Gunzburger. Least-squares finite element
methods. Vol. 166. Springer Science & Business Media, 2009.

Chengping Rao, Hao Sun, and Yang Liu. “Physics-informed deep learning
for incompressible laminar flows”. In: Theoretical and Applied Mechanics
Letters 10.3 (2020), pp. 207-212.

Natarajan Sukumar and Ankit Srivastava. “Exact imposition of boundary
conditions with distance functions in physics-informed deep neural net-
works”. In: Computer Methods in Applied Mechanics and Engineering 389
(2022), p. 114333.

87

https://huggingface.co/blog/andmholm/what-is-automatic-differentiation
https://huggingface.co/blog/andmholm/what-is-automatic-differentiation

72|

73]

[74]

[76]

7]

78]

79]

[80]

[81]

[82]

83

[84]

Luning Sun, Han Gao, Shaowu Pan, and Jian-Xun Wang. “Surrogate mod-
eling for fluid flows based on physics-constrained deep learning without
simulation data”. In: Computer Methods in Applied Mechanics and Engi-
neering 361 (2020), p. 112732.

Lu Lu et al. “Physics-informed neural networks with hard constraints for
inverse design”. In: SIAM Journal on Scientific Computing 43.6 (2021),
B1105-B1132.

John G. Heywood, Rolf Rannacher, and Stefan Turek. “Artificial bound-
aries and flux and pressure conditions for the incompressible Navier—
Stokes equations”. In: International Journal for Numerical Methods in
Fluids 22.5 (1996), pp. 325-352.

Frank Gijsen et al. “Expert recommendations on the assessment of wall
shear stress in human coronary arteries: existing methodologies, technical

considerations, and clinical applications”. In: European heart journal 40.41
(2019), pp. 3421-3433.

Valentina Mazzi et al. “Early atherosclerotic changes in coronary arteries
are associated with endothelium shear stress contraction/expansion vari-
ability”. In: Annals of Biomedical Engineering 49 (2021), pp. 2606-2621.

Kristopher S Cunningham and Avrum I Gotlieb. “The role of shear stress
in the pathogenesis of atherosclerosis”. In: Laboratory investigation 85.1
(2005), pp. 9-23.

Avedis Assadour Ekmejian et al. “Advances in the computational assess-
ment of disturbed coronary flow and wall shear stress: a contemporary
review”. In: Journal of the American Heart Association 13.19 (2024),
e037129.

Saeyoung Kim et al. “Dynamic coronary blood flow velocity and wall
shear stress estimation using ultrasound in an ex vivo porcine heart”. In:
Cardiovascular engineering and technology 15.1 (2024), pp. 65-76.

DP Giddens, CK Zarins, and S Glagov. “The role of fluid mechanics in
the localization and detection of atherosclerosis”. In: (1993).

Peter Libby, Paul M Ridker, and Géran K Hansson. “Progress and chal-
lenges in translating the biology of atherosclerosis”. In: Nature 473.7347
(2011), pp. 317-325.

Ricvan Dana Nindrea and Asni Hasanuddin. “Non-modifiable and mod-
ifiable factors contributing to recurrent stroke: A systematic review and
meta-analysis”. In: Clinical Epidemiology and Global Health 20 (2023),
p. 101240.

Elena Bacigalupi et al. “Biomechanical factors and atherosclerosis local-
ization: insights and clinical applications”. In: Frontiers in Cardiovascular
Medicine 11 (2024), p. 1392702.

stent e neoaterosclerosi a che punto siamo. URL: https : / / www .
centrolottainfarto.com/allnews/stent - e-neoaterosclerosi-a-
che-punto-siamo/.

88

https://www.centrolottainfarto .com/allnews/stent- e-neoaterosclerosi-a-che-punto-siamo/
https://www.centrolottainfarto .com/allnews/stent- e-neoaterosclerosi-a-che-punto-siamo/
https://www.centrolottainfarto .com/allnews/stent- e-neoaterosclerosi-a-che-punto-siamo/

[85]

[36]

187]

38

[89]

[90]

191

92]

93]

[94]

[95]

196]

Imran Shah et al. “Impact of the stent footprint on endothelial wall
shear stress in patient-specific coronary arteries: A computational analy-
sis from the SHEAR-STENT trial”. In: Computer Methods and Programs
in Biomedicine 266 (2025), p. 108762.

Konstantinos C Koskinas, Yiannis S Chatzizisis, Antonios P Antoniadis,
and George D Giannoglou. “Role of endothelial shear stress in stent
restenosis and thrombosis: pathophysiologic mechanisms and implications
for clinical translation”. In: Journal of the American College of Cardiology
59.15 (2012), pp. 1337-1349.

Claudio Chiastra et al. “Healthy and diseased coronary bifurcation geome-
tries influence near-wall and intravascular flow: A computational explo-
ration of the hemodynamic risk”. In: Journal of biomechanics 58 (2017),
pp. 79-88.

N Pinho et al. “Correlation between geometric parameters of the left
coronary artery and hemodynamic descriptors of atherosclerosis: FSI and
statistical study”. In: Medical & biological engineering € computing 57
(2019), pp. 715-729.

WR Dean. “The stream-line motion of fluid in a curved pipe”. In: Phal.
Mag. 5 (1928), pp. 673-695.

Natalya Vorobtsova et al. “Effects of vessel tortuosity on coronary hemo-
dynamics: an idealized and patient-specific computational study”. In: An-
nals of biomedical engineering 44 (2016), pp. 2228-2239.

Abdulrajak Buradi and Arun Mahalingam. “Impact of coronary tortu-
osity on the artery hemodynamics”. In: Biocybernetics and Biomedical
Engineering 40.1 (2020), pp. 126-147.

Jianfei Song, Smaine Kouidri, and Farid Bakir. “Numerical study on flow
topology and hemodynamics in tortuous coronary artery with symmetrical
and asymmetrical stenosis”. In: Biocybernetics and Biomedical Engineer-
ing 41.1 (2021), pp. 142-155.

Lucas H Timmins et al. “Oscillatory wall shear stress is a dominant flow
characteristic affecting lesion progression patterns and plaque vulnerabil-
ity in patients with coronary artery disease”. In: Journal of The Royal
Society Interface 14.127 (2017), p. 20160972.

Paul D Morris, Rasha Kadem Al-Lamee, and Colin Berry. “Coronary
physiological assessment in the catheter laboratory: haemodynamics,
clinical assessment and future perspectives”. In: Heart 108.21 (2022),
pp. 1737-1746.

Biyue Liu et al. “The wall shear stress of a pulsatile blood flow in a pa-
tient specific stenotic right coronary artery”. In: Engineering 5.10 (2013),
pp- 396-399.

Fadi J Sawaya et al. “Contemporary approach to coronary bifurcation
lesion treatment”. In: JACC: Cardiovascular Interventions 9.18 (2016),
pp- 1861-1878.

89

197]

98]

[99]

[100]

101

[102]

103

104]

[105]

[106]

[107]

[108]

[109]

Lorenzo Genuardi et al. “Local fluid dynamics in patients with bifur-
cated coronary lesions undergoing percutaneous coronary interventions”.

In: Cardiology Journal 28.2 (2021), pp. 321-329.

C Shen et al. “Secondary flow in bifurcations—important effects of cur-
vature, bifurcation angle and stents”. In: Journal of biomechanics 129
(2021), p. 110755.

Alessandro Candreva et al. “Risk of myocardial infarction based on en-
dothelial shear stress analysis using coronary angiography”. In: Atheroscle-
rosis 342 (2022), pp. 28-35.

Frank Gijsen et al. “Expert recommendations on the assessment of wall
shear stress in human coronary arteries: existing methodologies, technical
considerations, and clinical applications”. In: Furopean heart journal 40.41
(2019), pp. 3421-3433.

John R Womersley. “Method for the calculation of velocity, rate of flow
and viscous drag in arteries when the pressure gradient is known”. In: The
Journal of physiology 127.3 (1955), p. 553.

Alfio Quarteroni, Fausto Saleri, and Alessandro Veneziani. “Factorization
methods for the numerical approximation of Navier—Stokes equations”. In:
Computer methods in applied mechanics and engineering 188.1-3 (2000),
pp. 505-526.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. “Deep-
XDE: A deep learning library for solving differential equations”. In: STAM
review 63.1 (2021), pp. 208-228.

John Kim and Parviz Moin. “Application of a fractional-step method
to incompressible Navier-Stokes equations”. In: Journal of computational
physics 59.2 (1985), pp. 308-323.

Salvatore P Sutera and Richard Skalak. “The history of Poiseuille’s law”.
In: Annual review of fluid mechanics 25.1 (1993), pp. 1-20.

J Theodore Dodge Jr, B Greg Brown, Edward L Bolson, and Harold T
Dodge. “Lumen diameter of normal human coronary arteries. Influence of

age, sex, anatomic variation, and left ventricular hypertrophy or dilation.”
In: Clirculation 86.1 (1992), pp. 232-246.

William Reginald Dean. “Fluid motion in a curved channel”. In: Proceed-
ings of the Royal Society of London. Series A, Containing Papers of a
Mathematical and Physical Character 121.787 (1928), pp. 402-420.

Phillip M Ligrani. “A study of Dean vortex development and structure in
a curved rectangular channel with aspect ratio of 40 at Dean numbers up
to 430”. In: (1994).

Aland Santamarina, Erlend Weydahl, John M Siegel, and James E Moore.
“Computational analysis of flow in a curved tube model of the coronary

arteries: effects of time-varying curvature”. In: Annals of biomedical engi-
neering 26 (1998), pp. 944-954.

90

[110]

[111]

112]

[113]

[114]
115]

[116]

Michael Markl, Alex Frydrychowicz, Sebastian Kozerke, Mike Hope, and
Oliver Wieben. “4D flow MRI”. In: Journal of Magnetic Resonance Imag-
ing 36.5 (2012), pp. 1015-1036.

Christian Poelma. “Ultrasound imaging velocimetry: a review”. In: Ezper-
iments in Fluids 58 (2017), pp. 1-28.

Georgios Kissas et al. “Machine learning in cardiovascular flows model-
ing: Predicting arterial blood pressure from non-invasive 4D flow MRI
data using physics-informed neural networks”. In: Computer Methods in
Applied Mechanics and Engineering 358 (2020), p. 112623.

V. Bollati, L. Ferrari, V. Leso, and I. Tavicoli. “Personalised Medicine: im-
plication and perspectives in the field of occupational health”. In: Medicina
del Lavoro 111.6 (2020), pp. 425-444.

Evangelia Katsoulakis et al. “Digital twins for health: a scoping review”.
In: npj Digital Medicine 7.77 (2024).

Kang Zhang et al. “Concepts and applications of digital twins in health-
care and medicine”. In: Review 5.8 (2024).

Alessandro Veneziani, Annalisa Quaini, Marco Tezzele, Omer San, and
Traian Iliescu. “Digital Twins in Coronary Artery Disease: A Mathemat-
ical Roadmap”. In: (2025). Submitted.

91

	Introduction
	Introduction to Modeling Approaches
	Recap of Computational Fluid Dynamics (CFD) Methods
	Data Assimilation (DA)
	Alternative Methods
	Reduced Order Models (ROMs)
	Physics Informed Neural Networks (PINNs)

	An Introduction to Deep Learning
	Architecture
	Activation Function
	Backpropagation
	Logistic Sigmoid
	Tanh
	ReLU

	Loss Function
	Regression
	Binary Classification

	Optimization Algorithm
	Gradient Descent (GD)
	Stochastic Gradient Descent (SGD)
	Root Mean Square Propagation (RMSProp)
	Adaptive Moment Estimation (ADAM)
	L-Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)

	Physics-Informed Neural Networks
	The building blocks of PINNs
	Automatic Differentiation
	Loss Function

	Mathematical Models
	Navier–Stokes Equations
	Non-dimensional Navier–Stokes Equations
	First-Order Navier–Stokes Equations
	Non-Dimensional First-Order Navier-Stokes Equations

	Boundary and Initial Conditions
	Initial Conditions
	Dirichlet Conditions
	Pressure Boundary Conditions

	The Clinical Problem: The Relevance of Wall Shear Stress
	Computation of Wall Shear Stress
	Wall Shear Stress and Clinical Implications
	Atherosclerosis
	Biomechanical Factors
	Wall Shear Stress Thresholds

	Application of PINNs on 2D Geometries
	Methods
	Network Configuration
	Evaluation of Different Training Configurations for PINNs

	Kim&Moin Problem
	Governing Equations
	Computational Domain
	Definition of Boundary Conditions
	Data Assimilation

	Womersley Problem
	Governing Equations
	Computational Domain
	Definition of Boundary and Initial Conditions
	Data Assimilation
	Error Analysis

	Results
	Training Time
	Error Analysis for Kim&Moin Problem
	Error Analysis for Womersley Flow
	Kim&Moin Problem
	Womersley Flow

	Discussion

	Application of a PINN on 3D Geometries: Poiseuille Flow
	Methods
	Governing Equations
	Computational Domain
	Definition of Boundary Conditions
	Data Assimilation
	Calculation of the Wall Shear Stress
	Error Analysis

	Results
	Training Time
	Classical NSE Formulation: P = 8
	Different NSE Formulation: Different Pressure Drops (P)
	Different NSE Formulation: Parabolic Velocity Profile

	Discussion

	Towards Semi-Realistic Models of Vascular Geometries: Curved Tube
	Methods
	Governing Equations
	Computational Domain
	Definition of Boundary Conditions
	Data Assimilation
	Calculation of The Wall Shear Stress
	Error Analysis

	Results
	Training Time
	Results Obtained with the Classical Navier–Stokes Formulation
	Case 1) Different Pressure Drops (P)
	Case 2) Different Parabolic Velocity Profile
	Results Obtained with the First Order Navier–Stokes Formulation
	The Importance of Defining Boundary Conditions as Hard Constraints - Classical NSE Formulation

	Discussion

	Conclusions and Future Developments
	Short-Term Advancements
	Future Research Perspectives: Towards the Development of a Digital Twin

	Appendix
	Introduction to the Algorithm with the Python Library DeepXDE
	Step-by-Step Guide to Solve PDEs with DeepXDE

	Bibliography

