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Summary

Hypertension represents a significant health risk, potentially leading to serious
complications, making it a primary cause of death around the world. Continuous
blood pressure (BP) monitoring is considered essential for ensuring reliable diagno-
sis. However, invasive methods, even though a gold standard for BP monitoring,
can lead to serious complications. Non-invasive techniques are commonly used
but cannot monitor BP continuously. In this context, it is crucial to develop a
non-invasive, safe, and comfortable method for continuous BP monitoring during
daily activities. Alternatively, photoplethysmography (PPG), a portable optical
sensor that continuously detects volumetric changes in blood circulation, offers a
promising solution for non-invasive and continuous BP monitoring. However, BP
estimations derived exclusively from PPG signals frequently suffer from limited
accuracy and fail to meet clinical standards. To overcome these limitations, recent
approaches have focused on integrating PPG with electrocardiographic (ECG) sig-
nals, using Pulse Transit Time (PTT) based method and artificial intelligence (AI)
based techniques. Despite their promising performance, PTT-based methods re-
quire subject-specific calibration, whereas AI-based models are often validated in
an overoptimistic manner due to data leakage. In this thesis work, the estima-
tion of continuous BP through PTT using regression techniques is investigated,
evaluating models from literature and training them with a limited number of
individual BP values per subject. Subsequently, various machine learning (ML)
models are assessed using a large set of features extracted from ECG and PPG,
with a subject-wise validation strategy to ensure generalizability and avoid data
leakage. This work involves the analysis and processing of PPG, ECG and arterial
blood pressure waveform extracted from the MIMIC II online database. These
data were used as input for three relevant PTT-based methods, characterized by
2, 3, and 4 coefficients, and the models were calibrated using a limited number of
BP values. As a further step, a set of features was extracted from the ECG and
PPG to enable the application of different ML techniques. The dataset was par-
titioned by subject into 40% for training, 30% for validation, and 30% for testing
to ensure subject-independent evaluation. Among the various model and training
data combinations evaluated, 2 coefficient model trained with 5 BP values achieved
the best performance, with a mean absolute error (MAE) of 5.309 ± 4.561 mmHg.
This configuration balances model simplicity with minimal training. Furthermore,
the distribution of MAE reveals that approximately 60% of subjects attain a MAE
of 5 mmHg or less and about 30% fall between 5 and 10 mmHg. Gaussian Process
Regression emerged as the best-performing method during validation and achieved
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a MAE of 8.613 ± 8.315 mmHg on the test set. Moreover, MAE distribution re-
veals that approximately 50% of individuals attain a MAE of 5 mmHg or less
and around 30% fall between 5 and 10 mmHg. In conclusion, regression model
offers high predictive accuracy but its dependence on subject-specific calibration
represents a significant limitation. In contrast, ML approach, although slightly
less accurate, offers the advantage of being calibration-free and more generalizable
across individuals. These promising results suggest that the algorithm could be
further optimized and mark an initial step toward its future integration into an
automatic wearable device.
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Chapter 1

Introduction

1.1 Blood pressure and hypertension

Blood pressure (BP) refers to the pressure exerted by blood against the arterial
wall. It is influenced by cardiac output, blood volume and viscosity, peripheral
vascular resistance, and vessel wall elasticity. BP is one of the most important vital
signs of the cardiovascular system and the general health. Along with respiratory
rate, heart rate (HR), oxygen saturation, and body temperature, it is assessed by
healthcare professionals to evaluate a patient’s physiological status [1].

BP is measured in millimetres of mercury (mmHg). It is typically expressed
with two values: systolic blood pressure (SBP) which corresponds to the maximum
pressure exerted on the arteries during left ventricular contraction, and diastolic
blood pressure (DBP) which represents the lowest pressure on the arteries, occur-
ring between heartbeats when the heart’s chambers are filling with blood [1, 2].

According to the classification outlined in Figure 1.1, BP is recognized as
healthy when the systolic value is under 120 mmHg and the diastolic is below
80 mmHg. High BP is indicated by consistent systolic readings of 130 mmHg
or higher and diastolic readings of 80 mmHg or higher. High BP, also known as
hypertension, represents a significant health risk, potentially leading to serious
complications such as heart attack and stroke [3].

As reported by the World Health Organization (WHO) in 2023, approximately
1.28 billion people aged 30 to 79 worldwide are affected by hypertension. An es-
timated 46% of individuals with hypertension remain unaware of their condition,
while less than half of adults with hypertension (42%) have received proper di-
agnosis and treatments. This makes hypertension a leading cause of premature
deaths globally [4].
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Figure 1.1. BP Categories [4]

High BP typically causes damage over time, and if not properly monitored and
treated, it may lead to heart attack, stroke, heart failure, kidney disease or failure,
vision loss, sexual dysfunction, heart disease, and atherosclerosis [3].

Individuals with hypertension often rely on occasional measurements to moni-
tor their BP. However, since BP fluctuates throughout the day due to many factors
such as food intake, stress levels, physical condition, and type of medication, con-
tinuous monitoring is needed [5, 6].

Therefore, continuous BP monitoring is considered essential not only for ensur-
ing reliable diagnosis and effective treatment, but also for supporting clinicians in
prescribing appropriate diet and medications according to each patient’s needs.

In this context, the development of a non-invasive continuous BP monitoring
technique that is cost-effective, safe, comfortable, and widely accessible becomes
particularly relevant. The main purpose is to enable the continuous recording of
a patient’s BP during routine daily activities, without the individual’s awareness
of being monitored [6].

1.2 Conventional blood pressure measurement meth-
ods

Accurate and regular monitoring of BP is essential for diagnosis and management
of hypertension, for assessing cardiovascular risk and predicting acute cardiovas-
cular events. As illustrated in Figure 1.2, many invasive and non-invasive conven-
tional BP measurement techniques have been developed [7].
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Arterial catheterization represents the invasive gold standard for BP measurement.
It involves the use of a catheter connected to a piezoelectric transducer equipped
with a diaphragm. As blood flows through the cannula toward the measurement
system, it applies pressure on the diaphragm resulting in its deformation and the
stretching of the piezoresistive element. This deformation causes a change in the
resistance of the piezoresistive material, leading to variations in the system’s elec-
trical output that are proportional to the arterial pressure. After amplification and
filtering, the signal is displayed as a waveform representing the pressure profile.
This technique is primarily employed in acute and critical care settings, such as
intensive care units or during surgical procedures, where high measurement accu-
racy is essential [7, 8, 9].
Manual auscultation is a non-invasive technique that involves the use of a stetho-
scope placed over the brachial artery and a properly sized cuff that is inflated to
temporarily occlude blood flow. As the cuff is gradually deflated, the operator
listens for Korotkoff sounds while simultaneously monitoring cuff pressure via an
external manometer. The appearance of the first Korotkoff sound indicates the
onset of turbulent flow and corresponds to the SBP, whereas the disappearance of
sounds marks the return to laminar flow and corresponds to the DBP. The main
limitations of this method are its intermittent nature and the requirement for a
trained operator [7, 10].
Oscillometry is a non-invasive and fully automated method, currently the most
widely used technique in clinical practice. It involves placing a cuff around the
upper arm which is gradually inflated and then deflated between supra-systolic
and sub-diastolic pressures. During this process, the cuff pressure is continuously
recorded, indicating the applied pressure and capturing small oscillations that re-
flect the pulsatile arterial blood volume. BP is estimated from the oscillogram
amplitude using a specific algorithm. SBP and DBP are identified by the onset
and disappearance of these oscillations, respectively. This method is also employed
in ambulatory blood pressure monitoring (ABPM), which involves a wearable de-
vice programmed to take measurements at regular intervals, typically every 15
minutes, over a period of 24 to 72 hours. However, since the method still relies on
arterial compression, it may cause discomfort for the patient, particularly during
nighttime measurements, potentially leading to sleep disturbances. This is one of
the primary reasons for non-adherence to the procedure [7, 8, 10].
Volume clamping is a non-invasive and automatic method that use a cuff, placed
around the finger, equipped with a PPG sensor and a manometer. Initially, the
cuff pressure is gradually increased until it completely occludes blood flow then
the cuff slowly deflates, allowing blood flow to resume. During this process, PPG
sensor records blood volume oscillations while manometer records the cuff pres-
sure. SBP is identified at the onset of oscillations, while DBP is determined when
the oscillations stop. The system includes a rapid control mechanism that adjusts
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the cuff pressure in response to blood volume variations, automatically inflating
or deflating the cuff to maintain stable blood flow in the finger. This ensures that
BP measurements remain accurate and reliable over time [7, 8].
Tonometry is a non-invasive and continuous method for monitoring BP by apply-
ing a force sensor to the skin above large and superficial arteries. This technique
requires that the artery be sufficiently applanated so that the transduced force
is normal to the vessel wall and is uniformly distributed over the sensor’s contact
area. BP is then estimated as the detected force by the known sensor area. Proper
sensor alignment is achieved using an array of small force sensors while the holding
force is gradually adjusted automatically or manually. However, due to challenges
in maintaining the contact force and accurately capturing the pressure wave, the
device must be regularly calibrated [7, 8, 11].
The various conventional BP measurement methods present several issues. Al-
though it is considered the gold standard due to its high accuracy, the invasive
method carries significant risks for the patient such as hematoma formation, air
embolism, blood loss, vasospasm, systemic infection, nerve damage and injury to
nearby tissues. The auscultatory and oscillometric methods are the most com-
monly used technique for measuring BP. However, these methods require an in-
flatable cuff, which makes them unsuitable for continuous monitoring and may
lead to discomfort due to physiological limitations. Tonometry and volume clamp
can provide continuous measurements; however, their accuracy is highly sensitive
to motion artifacts caused by sensor placement and patient movement [7].
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Figure 1.2. Conventional BP measurement methods: catheterization (a), aus-
cultation (b), oscillometry (c), volume clamping (d) and tonometry (e) [7]
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1.3 Electrocardiography
Electrocardiography (ECG) is a method for recording cardiac electrical activity
and provides an essential tool for detecting heart disease. The ECG signal is
recorded by placing electrodes on the surface of the body, which detect small
potential differences between various recording sites that change during the cardiac
cycle [12]. The ECG signal typically has an amplitude on the order of millivolts
(mV), with overall variations ranging from 0.1 to 5 mV. For diagnostic purposes,
clinically relevant information about cardiac activity is found within the frequency
range of 0.05 to 120 Hz, while for monitoring applications, a narrower range of 0.5
to 40 Hz is typically used [13].

1.3.1 Electrocardiographic recording
Cardiac potentials are recorded using at least two electrodes applied to the body
surface. The measurable potential differences depend on electrode placement,
which should be standardized to ensure reliable comparison of ECG recorded from
different individuals or over time in the same individual, especially for diagnostic
purposes [12, 13]. ECG recordings are based on the standardization system pro-
posed by Willem Einthoven, in which human body is considered as a large-volume
conductor with the heart assumed to be the central source of electrical activity.
Electrodes are positioned on the right arm (RA), left arm (LA) and left leg (LL),
defining an imaginary equilateral triangle built around the heart. A potential dif-
ference, known as a lead, can be recorded from each pair of electrodes [12, 13].
The three leads defined by Einthoven are:

• Lead I: measures the potential difference between RA and LA.
• Lead II: measures the potential difference between RA and LL.
• Lead III: measures the potential difference between the LA and LL.

Figure 1.3. Einthoven triangle [13]
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1.3.2 Electrocardiographic waveform
A physiological ECG waveform, as shown in Figure 1.4, exhibits a well-defined
shape, characterized by distinct deflections that reflect the generation and prop-
agation of the electrical impulse through the heart’s conduction system. The
reference morphology is generally based on the second lead [12]. A typical ECG
trace is characterized by three main features:

• P wave: appears as the first deflection in the ECG signal, reflecting atrial de-
polarization that triggers the contraction of both atria, driven by the impulse
generated at the sinoatrial node.

• QRS complex: represents ventricular depolarization and consists of a sequence
of downward and upward deflections.

• T wave: represents ventricular repolarization and typically appears as an
upward deflection.

The physiological state of the heart can be assessed by analyzing intervals and
segments of the ECG signal:

• PR interval: represents the time interval between the onset of the P wave and
the beginning of the QRS complex, reflecting the conduction time from atria
to ventricles.

• QT interval: reflects the total duration of ventricular depolarization and re-
polarization.

• ST segment: represents the time interval between the end of the QRS complex
and the beginning of the T wave, representing the period during which the
ventricular cells are fully depolarized.

• PR segment: corresponds to the isoelectric line between the end of the P wave
and the beginning of the QRS complex, representing the transition between
atrial and ventricular activation.

Figure 1.4. ECG waveform [14]
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1.4 Photoplethysmography

Photoplethysmography (PPG) is an optical technique used to detect variations
in blood volume at the skin surface. The basic form of PPG technology requires
only two opto-electronic components: a light source and a photodetector. PPG
is commonly employed non-invasively and operates at a red or a near infrared
wavelength. PPG signal can be acquired from multiple anatomical locations, such
as fingertip, wrist, earlobe, forehead, and ankle, each offering different levels of
accuracy. In recent decades, the growing demand for small, reliable, low-cost,
and simple-to-use non-invasive cardiovascular assessment techniques has been a
key factor in the increased focus on PPG. This optical technique is now widely
integrated into a wide range of applications, including clinical devices, activity
trackers, and HR monitoring devices. One of the main challenges in employing
PPG signals in wearable systems is their high sensitivity to motion artifacts caused
by body movements [15, 16].

1.4.1 Photoplethysmographic recording

A PPG device consists of a light source that emits light towards the tissue and
a photodetector that captures variations in light intensity caused by fluctuations
in blood volume in the illuminated tissue. The detected light is converted into
electrical signals, which are then recorded to obtain the PPG signal. Changes in
blood volume can be estimated based on the detected light intensity [15, 16].
PPG devices generally use infrared or green light-emitting diodes (LED) as light
sources. Wavelength selection is a critical factor influencing both the quality of the
PPG signal and the device’s susceptibility to motion artifacts. Green wavelengths
have shown considerable benefits compared to traditional infrared-based PPG de-
vices. As longer wavelengths are known to penetrate deeper into tissue, the LED
can be adjusted to emit light ranging from 532 nm (green light) for superficial
measurements to 1064 nm (infrared) when deeper tissue penetration is required
[15, 16].
Depending on the relative positioning of the light source and the photodetector,
PPG can be implemented in two main configurations:

• Transmission mode: the tissue is located between the emission source and
the detection unit. The photodetector captures the portion of light that
propagates through the tissue without being absorbed.

• Reflection mode: The light source and the photodetector are placed adjacent
to each other on the same side of the tissue. A portion of light is reflected
and captured by the photodetector.
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The selection of the appropriate PPG configuration depends on both the anatom-
ical measurement site and the specific application. Thanks to its functional mech-
anism, the transmission mode enables the acquisition of high-quality signals and
is best suited for body sites that are easily accessible and light-permeable, such as
the finger, ear, or foot, where the tissue is relatively thin. In contrast, the reflec-
tion mode offers greater flexibility in terms of application, as its two components
are placed side by side, enabling measurements in different body locations. How-
ever, in this case the signal quality may be lower and more susceptible to external
artifacts or ambient light interference [15].

Figure 1.5. PPG configurations. Transmission mode (left) and reflec-
tion mode (right).[16]

1.4.2 Photoplethysmographic waveform
PPG waveform consists of a direct (DC) and an alternating (AC) component. The
AC component, also referred to as the pulsatile component, reflects the pulsatile
nature of blood flow. It varies synchronous with each heartbeat and is therefore
used to asses changes in the blood volume. In contrast, the DC component re-
mains relatively constant and represents the non-pulsatile part of the signal, which
is influenced by respiration, vasomotor activity, autonomic nerve activation, and
thermoregulation. During the cardiac cycle, the DC level does not significantly
change, as it is not influenced by the rhythmic variations in blood flow [15, 16].
A physiological PPG waveform is typically divided into two phases: the anacrotic
phase, corresponding to the rising edge of the pulse and primarily associated with
systole, and the catacrotic phase, representing the falling edge and reflecting both
diastole and the return of pressure waves from peripheral sites. In individuals with
healthy compliant arteries, a dicrotic notch typically appears during the catacrotic
phase [15].
As shown in Figure 1.6, a typical PPG waveform comes with four fiducial points:
onset, systolic peak, dicrotic notch and diastolic peak. These points, along with
those identified in the first derivative of the PPG signal (VPG) and in the sec-
ond derivative of the PPG signal (APG), are essential for extracting a wide range
of morphological features, such as areas, amplitudes, and widths, that provide
valuable information for the diagnosis of cardiovascular diseases [17].
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Figure 1.6. PPG waveform [17]

1.5 Electrocardiography and photoplethysmog-
raphy for blood pressure monitoring

Recent studies have demonstrated that PPG signal, when used in combination
with ECG can be employed to extract Pulse Transit Time (PTT). Since blood
propagates from the heart to other parts of the body in the form of a pressure
wave, PTT is defined as the time it takes for this pulse wave to travel from the
heart to a peripheral site in the vascular system. It can be calculated as the
time interval between the R-peak of the ECG, indicating the onset of ventricular
contraction, and the systolic peak of the PPG, which reflects the arrival of the
pulse wave at a distal site [18, 19]. Therefore, the PTT is influenced by multi-
factors, such as cardiac output, BP, stiffness of the arterial wall, venous return,
age, and temperature [20].

Figure 1.7. Measurement of PTT using PPG and ECG [18]
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Previous studies have confirmed that variations in PTT reflect changes in BP
and have also demonstrated a high coherence between PTT and BP fluctuations
[20, 21]. It has been demonstrated that SBP can be estimated using Pulse Wave
Velocity (PWV), which represents the speed at which the pulse wave propagates
through the arteries between two specific points in the vascular system. PWV is
calculated by dividing the distance between the two points (d) by PTT, according
to Equation 1.1:

PWV = d

PTT
(1.1)

where d refers to the distance between heart and peripheral site which changes
according to individual height. PWV is strongly correlated with arteries elastic
properties and this relationship is formally described by the Moens-Korteweg:

PWV =
ó

Et

2Rρ
(1.2)

where R is the internal radius of arteries, ρ is the blood density, t is the vessel
wall thickness and E represents arterial elasticity and is exponentially related to
BP through the following Equation 1.3:

E = E0e
αP (1.3)

where E0 is the arterial elasticity at zero pressure, P is the arterial BP and α a
constant.
Therefore, by combining Equations 1.1 and 1.2, the relationship between PTT
and BP is obtained, allowing the determination of the BP through the following
equation:

d

PTT
=

ó
tE0eαP

2Rρ
(1.4)

In this way, an inverse relationship between PTT and BP has been demonstrated;
however, it depends on various physiological factors that may not be directly
measurable and can change among individuals. Therefore, initial calibration, based
on empirical data or regular subject-specific recalibrations, is essential to obtain
pseudo-personalized parameters [22, 23].

1.6 Contributions and thesis organization
This thesis focuses on the challenging problem of estimating BP from non-invasive
physiological sensor data. The motivation for this work derives from the increas-
ing demand for solutions that are reliable, accurate, and suitable for real-world
applications.
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The aim of this work is to develop and evaluate models that capture the relation-
ship between physiological signals and BP, comparing regression approaches and
machine learning (ML) techniques under realistic validation scenarios relevant to
potential clinical applications. This thesis makes several key contributions to the
current state of research in cuffless BP estimation:

• For regression methods, the study conducts a systematic comparison of vari-
ous models to identify the best-performing approach. These models differ in
terms of the number of coefficients and the types of parameters involved. In
contrast to previous studies that often rely on continuous segments of signal
data for calibration, we propose a calibration strategy based on a small num-
ber of discrete BP reference values. This approach is designed to emulate re-
alistic clinical scenarios in which only a few measurements are available, such
as during periodic check-ups or initial device setup. The aim is to identify
the best-performing combination of regression model and number of reference
BP values needed to obtain accurate and reliable estimation.

• In ML approach, we design a feature extraction pipeline that includes an ex-
tended and more varied set of features compared to those commonly adopted
in the literature. This richer representation is intended to better capture the
dynamics of physiological signals and supply the model with more informa-
tive inputs, potentially improving its predictive performance. To ensure a
realistic evaluation of model generalization, we adopt a subject-independent
validation strategy, where data from each individual is assigned exclusively
to one of the sets. This choice is intended to overcome a common limita-
tion found in many existing studies, where subjects appear across different
data splits. Such overlap often leads to overoptimistic results, as models
may exploit subject-specific characteristics rather than learning generalizable
physiological patterns. By adopting subject separation, we aim to obtain a
more reliable and realistic evaluation of performance, better reflecting the
model’s ability to generalize to unseen individuals.

The structure of this thesis is organized as follows. Chapter 2 provides a review
of the most relevant works in the field, focusing on PPG-based methods, PTT-
based approaches, and Artificial Intelligence (AI) techniques for BP estimation.
Chapter 3 describes the materials and methods used in the study. Section 3.1
presents the dataset, while Section 3.2 outlines the data analysis pipeline, including
preprocessing procedures (Section 3.2.1), regression models (Section 3.2.2), and
ML-based approaches (Section 3.2.3). Chapter 4 reports the experimental results
obtained and concludes with a comparison with existing methods. Chapter 5
discusses the implications of the findings, highlighting the strengths and limitations
of the proposed approaches. Finally, Chapter 6 summarizes the main conclusions
and outlines possible future developments.
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Chapter 2

Related work

Considering the significant limitations of conventional BP measurement methods,
in combination with the need for non-invasive continuous monitoring, this topic
has attracted growing attention in recent years, leading to the development of
numerous innovative approaches.

2.1 Photoplethysmography-based methods
PPG provides a potential alternative for monitoring BP in a non-invasive and con-
tinuous manner. PPG devices have traditionally been employed for the assessment
of HR and blood oxygen saturation, given their affordable price and portability.
Thanks to these advantages, growing interest has recently been shown in the use
of PPG for BP monitoring, particularly through the application of ML and Deep
Learning (DL) techniques.

Khalid et al. proposed a single PPG-based algorithm for BP estimation and ap-
plied three ML techniques (regression tree, multiple linear regression, and support
vector machine) to compare their accuracy in classifying BP categories. Raw PPG
signals and its corresponding BP reference were extracted from the University of
Queensland Vital Signs Dataset that contains a wide range of patient monitoring
data and vital signs recorded during surgical cases.; only segments with acceptable
quality were saved and subsequently processed through baseline removal and nor-
malization. Three most significant pulse features, along with their corresponding
BP references, were used to train and test ML algorithms. BP estimation was
obtained by 10-fold cross-validation. The regression tree demonstrated superior
overall estimation accuracy compared to the other techniques, resulting in a Mean
Absolute Error (MAE) and standard deviation (SD) of −0.1 ± 6.5 mmHg for SBP
and of −0.6 ± 5.2 mmHg for DBP. The other two techniques failed to achieve
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acceptable results [24].

Mousavi et al. proposed an algorithm that uses whole-based features from PPG
signals for estimating BP. A subset of the MIMIC II database is used as PPG and
BP reference data source. To reduce noise, a Fast Fourier Transform (FFT) filter
was applied, followed by the extraction of whole-based features. The dataset was
divided using 10-fold cross-validation, and several ML techniques were evaluated:
support vector regression, decision tree regression, adaptive boosting regression,
and random forest. Among these, adaptive boosting regression obtained the best
performance, achieving the lowest MAE and SD: 0.187±4.173 mmHg for SBP and
−0.050 ± 8.901 mmHg for DBP [25].

Yi et al. considered five algorithms to build a BP measurement model and
assessed the performance of each. PPG and arterial blood pressure (ABP) were
both derived from the MIMIC database. After baseline drift correction, nine mor-
phological features are derived from each PPG signal. The dataset was split into
training and testing sets, with 80% of the data used for training and the remain-
ing 20% used for testing. ML algorithms employed in the study were: linear
regression, lasso regression, classification and regression tree, elastic network, and
K-nearest neighbors (KNN). Furthermore, the performance of these techniques
was compared, with KNN achieving the highest accuracy in terms of MAE and
SD: 1.66 ± 4.90 mmHg for DBP and 2.09 ± 5.61 mmHg for SBP [26].

Duan et al. proposed a framework that employs feature evaluation to identify
the most relevant features for BP prediction model. PPG signals and BP mea-
surements of the University of Queensland’s vital signs dataset are considered. As
a first step, noise is reduced by applying average filters and wavelet transform, fol-
lowed by the construction of a feature pool and the definition of three criteria to
select relevant features for BP prediction. Support vector regression was employed
during the learning phase, using 10-fold cross-validation to evaluate performance.
This algorithm achieves prediction accuracy of 4.77 ± 7.68 mmHg for SBP and
3.67 ± 5.69 mmHg for DBP [27].

In most of the reviewed works, cross-validation is employed as the primary eval-
uation strategy. However, a crucial aspect that is often left unclear is the attention
given to ensuring subject-independent data partitioning. In the absence of such
clarification, it is possible that data from the same subject was distributed across
both training and test sets. This would inadvertently result in a subject-specific
evaluation scenario, leading to overestimated performance metrics. Consequently,
the reported results, although impressive, may not reflect true generalization across
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unseen subjects. It is possible to conclude that PPG-based methods frequently suf-
fer from limited accuracy and still require substantial research to meet the require-
ments of medical validation standards. A potential solution could be the inclusion
of additional physiological signals, such as ECG, to achieve higher accuracy. To
overcome PPG-based methods limitations, recent approaches have focused on in-
tegrating PPG with ECG, using PTT-based methods and artificial intelligence
based techniques [28].

2.2 Pulse transit time-based methods
The relationship between PTT and BP has been extensively studied in previous
research and is currently recognized as a valid approach for BP estimation. Most
recent methods are based on the Moens-Korteweg fluid dynamic law, previously
presented in Equation 1.4.
It has been demonstrated that, assuming constant arterial diameter, vessel wall
thickness, and arterial elasticity, a mathematical relationship can be established
between PTT and BP [28]. As a result, several formulations have been proposed
[22]:

• Logarithmic model: Moens-Kortweg’s equation gives a logarithmic relation-
ship between BP and PTT and with the assumption done is possible to con-
sider the following relationship:

BP = a · ln(PTT) + b (2.1)

Where a and b are subject-specific and can be determined through regression
analysis between the reference BP and the corresponding PTT. This model
tends toward negative infinity as PTT approaches zero, making it difficult to
use this relationship to represent small BP.

• Linear model: BP and PTT can be linearly related by differentiating the
Moens-Kortweg equation, leading to the following expression:

BP = a · PTT + b (2.2)

Where the constants a and b are subject-specific and can be estimated by
performing a regression analysis between the reference BP values and the
corresponding PTT measurements. Several other studies have integrated the
linear model with other influencing factors, such as HR and arterial stiffness
index (ASI), that would affect BP.

One of the main limitations of PTT-based methods is the requirement for an ini-
tial calibration using a highly accurate reference method. Research shows that the
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validity of parameters deteriorates within 24 hours after calibration, leading to in-
creased estimation errors over time. Therefore, frequent recalibration is necessary
to maintain accuracy.
Furthermore, several factors influence the relationship between PTT and BP, in-
cluding posture, ambient temperature, physical activity, and individual character-
istics such as arterial elasticity and vascular conditions. These factors can alter
the correlation between PTT and BP, making challenging to achieve reliable and
consistent estimations [22].

2.3 Artificial Intelligence-based methods
Despite the simplicity of PTT-based methods, due to their algebraic inverse re-
lationship between PTT and BP, they have the significant drawback of requiring
subject-specific calibration. For this reason, in recent years, the use of AI-based
methods for BP estimation using PPG and ECG signals has gained increasing
popularity. In this context, three categories of algorithms can be distinguished
based on the type of input and output data they process [28].

• Feature-to-Label (Feat2Lab): refers to models that utilize handcrafted fea-
tures extracted from signals as inputs to predict discrete BP values. The most
significant and commonly utilized features include time-based, frequency-
based, and statistical features.

• Signal-to-Label (Sig2Lab): includes models that directly take signals as input
to generate discrete BP values as output.

• Signal-to-Signal (Sig2Sig): refers to models that generate continuous BP
waveform starting from signals in input.

Chen et al. introduced a ML-based model to establish discrete BP values us-
ing PTT and characteristics of pulse waveform. ECG, PPG, and reference BP
signals were extracted from the MIMIC-III Waveform Database. After removing
corrupted segments and missing waveforms, denoising techniques were applied.
Subsequently, relevant features were extracted and selected by applying the Mean
Impact Value method, which reduces features redundancy. A genetic algorithm
was introduced to implement parameter optimization. Support vector regression
was employed to estimate BP from the selected features. The dataset was ran-
domly split into a training set (80%) and a test set (20%), and a 5-fold cross-
validation was performed. The model achieved promising results in terms of MAE
and SD: 3.27 ± 5.52 mmHg for SBP and 1.16 ± 1.97 mmHg for DBP.[29].

22



Related work

He et al. used a random forest algorithm to explore the relationship between
ECG, PPG, and reference BP signals. In this study, features were extracted by
PPG and ECG signals from the MIMIC II database. Feature importance is as-
sessed through correlation analysis and ranking using the random forest algorithm,
enabling the identification of the most significant variables. Subsequently, a ran-
dom forest regression model is trained and evaluated using 10-fold cross-validation.
Results show that this method performs better than the commonly used PTT
method achieving error in terms of MAE and SD:8.29 ± 5.84 mmHg for SBP and
4.44 ± 3.72 mmHg for DBP[30].

Miao et al. conducted a study to estimate continuous BP by integrating a
mechanism-driven model with data mining techniques. Features were extracted
from ECG and PPG signals and a genetic algorithm was employed to identify
the most relevant indicators for each individual. Signals were acquired with the
patients in resting and seated conditions. Multivariate linear regression and sup-
port vector regression models were trained under static, dynamic, and long-term
follow-up conditions. Experimental results demonstrated an improved accuracy
compared to traditional PTT-based methods. In particular, static BP estimation
achieved excellent accuracy:−0.001 ± 3.102 mmHg for SBP, and −0.004 ± 2.199
mmHg for DBP [31].

Kachuee et al. proposed a framework for predicting BP values by extracting
physiological parameters from ECG and PPG signals from MIMIC II in combi-
nation with ML algorithms. After pre-processing and denoising the raw signals,
two types of features, physiological parameter-based and whole-signal based, were
extracted. Dimensionality reduction is utilized to reduce the feature length. Four
ML algorithms were employed. Model performance was evaluated using MAE and
SD of the estimation errors: 11.11 ± 10.09 mmHg for SBP and 5.35 ± 6.14 mmHg.
An optional subject-specific calibration process is proposed to improve estimation
performance [32].

In the development of ML models, it is standard practice to divide the dataset
into training, validation, and test sets. However, BP datasets often contain multi-
ple records for the same individual. A commonly used approach is to split the data
into folds based on a uniform probability distribution. This strategy can result
in data from the same subject appearing in different sets, leading to information
leakage. This issue is particularly relevant in typical cross-validation strategies,
which shuffle data before partitioning, potentially placing segments from the same
subject into multiple subsets at once. Moreover, it increases the risk of generating
folds that contain few or no instances of underrepresented BP values.
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A comparative study evaluated models from the three different categories under
two conditions: with information leakage versus without. In the leakage condi-
tion, data partitions were formed using uniform random splitting, allowing seg-
ments from the same subject to appear in multiple folds. In all cases, models
performed substantially better in the leakage condition. Specifically, the Mean
Absolute Scaled Error (MASE) for both SBP and DBP showed a dramatic re-
duction, from around 92–98% in the leaked condition down to below 60% when
leakage was prevented. Besides, the significant drop is also shown in the SD metric.
These findings highlight how overlooking subject overlap during data partitioning
can lead models to rely on subject-specific features rather than learning generaliz-
able patterns, with the consequence of overestimated performance and potentially
misleading conclusions [28].
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Chapter 3

Materials and Methods

3.1 Data
The Cuff-Less Blood Pressure Estimation Dataset is used in this work as the
reference database. The main aim of this dataset is to offer clean and reliable sig-
nals suitable for developing cuffless BP estimation algorithms. Derived from the
MIMIC-II Waveform Database, this dataset includes ECG, PPG, and ABP sig-
nals originally acquired from intensive care unit patients using the Philips CareVue
Clinical Information System (models M2331A and M1215A; Philips Health-care,
Andover, MA). Data were divided into fixed-size blocks, and cleaned by applying
smoothing and removing blocks with abnormal BP or HR values, severe disconti-
nuities or with altered consistency. Waveform signals were sampled at a frequency
of 125 Hz with at least 8-bit accuracy and a minimum duration of 1 minute. In this
work, a subset of the dataset was used by extracting ECG, PPG, and ABP signals
corresponding to the first 100 patients. The provided MATLAB file is organized
as a cell array of matrices, with each cell representing a record. In each matrix,
rows correspond respectively to PPG signal acquired from the fingertip, ABP sig-
nal measured invasively via catheterization, and ECG signal recorded from lead II
[33].

3.2 Data analysis

3.2.1 Pre-processing
A pre-processing strategy was chosen to enhance signal quality while preserving
relevant physiological information, and it is well-suited for both ML and regression-
based analyses. In both cases, the quality of the input signals is a critical factor
influencing the reliability and accuracy of the resulting BP estimation. Therefore,
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the same pre-processing strategy was uniformly applied to support robust and
comparable performance across different analytical methodologies.
Based on this strategy, specific filtering operations were applied to the signals ac-
cording to their characteristics and acquisition method. Since ABP signals were
recorded invasively, they were largely free of artifacts and did not require addi-
tional filtering. In contrast, PPG and ECG signals, being more susceptible to
noise and motion artifacts, were processed using a 4th-order Butterworth band-
pass filter. Cutoff frequencies were set to 0.5–10 Hz for PPG and 0.5–40 Hz for
ECG, effectively reducing noise and interferences while preserving physiologically
relevant information. Figures 3.1 and 3.2 show the effect of filtering in 10-second
segments of raw and filtered ECG and PPG signals, extracted from Subject 1.
In the ECG trace, baseline drift and high-frequency noise have been effectively
removed, and the PPG signal appears smoother and more regular post-filtering.

Figure 3.1. Comparison between raw and filtered ECG of 10-second sig-
nal from Subject 1. Top panel: original ECG signal. Bottom panel: ECG
signal after filtering.

Figure 3.2. Comparison between raw and filtered PPG of 10-second sig-
nal from Subject 1. Top panel: original PPG signal. Bottom panel: PPG
signal after filtering
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3.2.2 Regression analysis

As discussed in Section 2.2, the relationship between PTT and BP has been exten-
sively investigated, and it is well established that this relationship can be described
using either linear or logarithmic models.
In this study, we selected three representative models from the literature, includ-
ing one that incorporates HR, which has been recognized as a relevant influencing
factor in BP estimation. A key novelty of our approach lies in training these mod-
els using only a limited number of BP measurements per subject. This strategy
aims to assess the feasibility and reliability of subject-specific calibration when
only a small amount of data is available, a scenario that closely reflects real-world
situations.
In order to obtain PTT, it is necessary to accurately identify the R-peaks in the
ECG and the systolic peak in the PPG. For this purpose, two algorithms have
been applied:

• Pan-Tompkins is a real-time algorithm for detecting QRS complexes in ECG
signals. It performs digital analysis of the slope, amplitude, and width, com-
bined with adaptive thresholds that automatically adjust to variations in HR
and signal morphology.
The MATLAB implementation called pan_tompkin was used to detect R-
peaks in the ECG signal. This function takes as input an ECG signal vector
and the sampling frequency in Hz, and returns the amplitudes and indices of
the detected R waves, along with the delay introduced by the process [34, 35].

• Multi-Scale Peak and Trough Detection (MSPTD) is an improved algorithm
designed to detect peaks and troughs in physiological signals. It operates us-
ing a scalogram-based approach, which analyzes the signal at multiple scales.
It calculates a local maxima scalogram that identifies potential peaks at var-
ious zoom levels, marking these points based on their prominence relative to
neighboring values.
The MATLAB implementation called msptd_beat_detector was used to de-
tect peaks and onsets in the PPG signal. This function takes as input a vector
of PPG values and the sampling frequency in Hz, and returns the indices of
the detected pulse peaks and onsets [36, 37]

Figures 3.3 and 3.4 illustrate representative 10-second segments of the ECG and
PPG signals with the detected points superimposed. In the ECG, R peaks are
highlighted, while in the PPG, both onsets and systolic peaks are identified.
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Figure 3.3. Representation of a 10-second segment of the filtered ECG signal,
illustrating the detected R peaks (red markers).

Figure 3.4. Representation of a 10-second segment of the filtered PPG signal.
Green markers indicate pulse onsets, while red markers indicate the systolic peaks.

In this way, PTT values can be obtained by calculating the time interval be-
tween the R peaks of the ECG signal and the systolic peak of the PPG signal.
HR plays a significant role in BP estimation. It is physiologically linked to vascu-
lar tone, cardiac output, and autonomic nervous system activity, and represents a
valuable complementary parameter in BP modeling. In particular, when BP de-
crease, the autonomic nervous system is activated and responds by increasing HR
and inducing vasoconstriction to restore pressure levels. This regulatory mecha-
nism suggests that BP is influenced not only by HR, but also by its own previous
values [38].
In this work, HR was derived from the ECG signal by measuring the time inter-
val between two successive R peaks, known as RR interval. The HR was then
calculated using the following expression:

HR = 60
RRinterval

(3.1)
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where the RR interval is measured in seconds, and the resulting HR is expressed
in beats per minute (bpm).
In this work, three different regression models were developed to estimate BP based
on physiological parameters. Each model differs in the number of coefficients and
parameters involved:

• Two-coefficient linear model: represents the simplest approach, where BP is
modeled as a linear function of PTT. It is defined by the following equation:

BP = a · PTT + b (3.2)

• Three-coefficient linear model: extends the previous one by incorporating HR
as an additional variable. The model is expressed as:

BP = a · PTT + b · HR + c (3.3)

• Four-coefficient logarithmic model: introduces a logarithmic transformation
of PTT and includes a term based on the previous BP value. This model
aims to capture more complex physiological dynamics and is defined as:

BPn = a · ln PTT + b · HR + c · BPn−1 + d (3.4)

In all three models, the coefficients were estimated using the least squares method.
This method finds the values of the coefficients that make the model’s predictions
as close as possible to the actual BP values. Specifically, it works by minimizing
the sum of the squared differences between the measured BP values and those
predicted by the model, as shown in the following expression:

nØ
i=1

(BPi − B̂P i)2 (3.5)

In this formula, BPi represents the actual BP for the i-th observation, and B̂P i is
the corresponding predicted value from the model. The smaller this quantity, the
better the model fits the data. The least squares method is widely used due to its
simplicity, efficiency, and closed-form solution in regression settings [39].

Multiple linear regression was used to estimate the model coefficients by apply-
ing the least squares method, which minimizes the sum of the squared differences
between the observed and predicted values. The approach involves constructing
an input matrix composed of relevant predictor variables,such as PTT, HR, and
previous BP measurements, and solving for the coefficients that best fit the mea-
sured BP values. Different model structures were implemented by modifying the
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composition of the input matrix. For example, in the two-coefficient model, the
matrix includes PTT values and a column of ones to account for the intercept
term. In the three- and four-coefficient models, additional columns were added for
HR and previous BP values as needed.

The regression process was structured into two main phases: a training phase,
in which model parameters were estimated, and a testing phase, in which the
performance of the models was evaluated. A key characteristic of the proposed
approach is that, during training each model is calibrated using only a limited
number of BP values per subject. Unlike many existing methods, this strategy
aims to replicate realistic conditions where only a few BP measurements may be
available for calibration.
For each subject, a fixed number of BP values was used to train the models,
specifically, 5, 10, 20, 50, or 100, along with the corresponding input features,
such as PTT and HR. These data were used to estimate the regression coefficients
for each of the three models under study.
Once the models were trained using the selected BP values, the remaining data for
each subject were used for testing. In this phase, the trained models were applied
to the unseen PTT and HR values to predict BP. In the case of the four-coefficient
logarithmic model, predictions were made recursively, with each output depending
also on the previously estimated BP value. This subject-specific training approach,
based on minimal calibration data, allowed for a robust evaluation of the models’
ability to generalize and provide accurate predictions under data-limited condition.

3.2.3 Machine learning analysis

As mentioned in Section 2.3, traditional PTT-based methods are limited by the
need for subject-specific calibration. This limitation has lead to a growing interest
in AI-based techniques for estimating BP from ECG and PPG signals.
Among the different categories, this work focuses on the Feature-to-Label ap-
proach, which involves extracting a predefined set of features from ECG and
PPG signals to predict discrete BP values. In developing and evaluating the pro-
posed model, we employed a subject-independent validation strategy that prevents
subject-wise information leakage across training, validation, and test sets. In other
words, data from the same individual is never included in more than one subset.
This is essential to ensure that the model learns patterns that can generalize across
subjects, rather than relying on individual-specific characteristics. Avoiding such
leakage is crucial, as it can lead to unrealistically high performance estimates that
do not reflect the model’s true ability to generalize to unseen individuals.
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Fiducial points extraction. The first crucial step in this process is the ex-
traction of fiducial points from the ECG and PPG waveforms, which are necessary
for subsequent feature computation. The detection process relies on the algorithms
previously described in Section 3.2.2: the Pan-Tompkins algorithm was used to
detect R-peaks in the ECG signal, while the MSPTD algorithm was employed to
identify onsets and systolic peaks in the PPG waveform. After initial detection,
a physiological criterion was applied to retain only those onset–peak pairs whose
temporal separation falls within a plausible physiological range, between 0.1 and
0.4 seconds. This filtering step helps reduce false positives and enhances the reli-
ability of the features derived in the next stages. These detected points serve for
further morphological analysis. In particular, for each valid beat, the following
additional fiducial points were extracted from the PPG:

• Maximum slope: computed as the peak of the first derivative between the
onset and the systolic peak.

• Diastolic peak: located between the systolic peak and the next onset, based
on local minima in the second derivative of the PPG signal.

• Dicrotic notch: identified from local maxima in the second derivative between
consecutive onsets, selecting the second most prominent peak in amplitude.

This process produced a consistent and physiologically coherent set of fiducial
points for each heartbeat, forming the basis for the computation of relevant fea-
tures. The accuracy of this detection is essential to ensure the robustness and
validity of the model.

Features extraction. Once the fiducial points had been reliably extracted
from the ECG and PPG signals, a comprehensive set of features was computed to
characterize each cardiac cycle [6, 29, 40, 41, 42]. These features aim to capture
morphological, temporal, frequency-based, and nonlinear aspects of cardiovascular
dynamics, and serve as the input for the predictive model [43]. The extracted
features are organized into the following main categories:

• Pulse Wave Analysis Features

• Pulse Transit and Hemodynamic Features

• Amplitude-Based and Area-Derived Features

• Level Crossing and Complexity-Based Features

• Statistical Features
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The first group consists of Pulse Wave Analysis Features, which describe the shape,
timing, and dynamics of the PPG waveform within a single cardiac cycle. These
features are illustrated in Figure 3.5:

• Cardiac Period (CP): Time interval between two consecutive systolic peaks
of the PPG signal, representing the duration of one complete heartbeat.

• Systolic Upstroke Time (SUT): Time from the onset of a PPG beat to its
systolic peak, associated with the rapid rise in blood flow during systole.

• Diastolic Time (DT): Time from the systolic peak of a beat to the onset of
the next, corresponding to the gradual decrease in blood flow during diastole.

• Downstroke Width at x% (DWx): Time for the signal to drop from the systolic
peak to x% of the amplitude. Evaluated at 10%, 25%, 33%, 50%, 66%, and
75%.

• Sum of Upstroke and Downstroke Times at x% (SWx +DWx): Total time for
the signal to rise to and fall from the peak through the same x% amplitude.
Evaluated at 10%, 25%, 33%, 50%, 66%, and 75%.

• Downstroke-to-Upstroke Ratio at x% (DWx/SWx): Ratio between falling and
rising durations at different amplitude levels. Evaluated at 10%, 25%, 33%,
50%, 66%, and 75%.

Figure 3.5. Schematic diagram of Pulse Wave Analysis Features. [40]

The second group includes Pulse Transit and Hemodynamic Features, which reflect
arterial stiffness, wave reflection, and the temporal relationship between ECG and
PPG events. These are illustrated in Figure 3.6.
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• Augmentation Index (AI): Ratio between the diastolic and systolic peak am-
plitudes. It provides an estimation of arterial wave reflection.

• Large Artery Stiffness Index (LASI): Time interval between the systolic peak
and the diastolic peak. It is associated with arterial compliance.

• S1, S2, S3, S4: Areas under the PPG curve between selected fiducial points;
represent different phases of the pulse energy.

• PTTp: Time delay between the ECG R-peak and the systolic peak of the
PPG.

• PTTf : Time delay between the ECG R-peak and the onset of the PPG wave-
form.

• PTTd: Time delay between the ECG R-peak and the point of maximum slope
in the PPG signal.

• HR: Derived from the interval between successive ECG R-peaks.

Figure 3.6. Schematic diagram of Pulse Transit and Hemodynamic Features. [6]

The third group comprises Amplitude-Based and Area-Derived Features, which
provide a compact representation of energy distribution and relative waveform
proportions. These are shown in Figure 3.7:

• K-value: Ratio between the mean PPG amplitude minus onset amplitude
and the difference between systolic peak and onset amplitude. It is closely
related to the peripheral resistance and the hardening degree of the arterial
wall, and is one of the important physiological indicators for clinical research
of cardiovascular diseases.

• Tupr: Ratio of the time from onset to systolic peak to total beat duration.
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• Tdownr: Ratio of the time from systolic peak to the next onset to total beat
duration.

• Cslope: Systolic peak amplitude divided by upstroke time.

• Har: Ratio of amplitude at the maximum slope point to the systolic peak
amplitude.

• Her: Ratio of amplitude at the dicrotic notch to the systolic peak amplitude.

• Hgr: Ratio of amplitude at the diastolic peak to the systolic peak amplitude.

• S1norm: Normalized area from onset to diastolic peak.

• S2norm: Normalized area from diastolic peak to the end of the beat.

• S1norm/S2norm: Ratio of the systolic to diastolic normalized areas, indicating
the balance of waveform energy.

Figure 3.7. Schematic diagram of Amplitude-Based and Area-Derived Features. [29]

The fourth group includes Level Crossing and Complexity-Based Features, which
are derived from the second derivative of the PPG waveform and aim to capture
local signal irregularities. These are illustrated in Figure 3.8:

• Level Crossing Feature 1 (LCF1): Mean number of crossings per beat between
the normalized APG and contour levels at 5% intervals from –100% to +100%.
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• Level Crossing Feature 2 (LCF2): Mean cumulative duration per beat during
which the APG remains above the contour levels at 5% intervals from –100%
to +100%.

Figure 3.8. Schematic diagram of Level Crossing and
Complexity-Based Features. [41]

The final group includes Statistical, Spectral, and Entropy-Based Features, which
summarize global properties of the signals. These features were extracted from
both ECG and PPG.

• Time-Domain Features: Describe the statistical and morphological charac-
teristics of the signal in the time domain. These include: mean, variance,
skewness, kurtosis, peak-to-peak interval, heart rate variability (HRV), crest
factor, maximum, and root mean square (RMS).

• Frequency-Domain Features: Describe the distribution of signal power across
frequencies using Welch’s method. The extracted parameters are mean fre-
quency, median frequency, and total band power.

• Chaotic and Fractal Features: Describe the complexity and irregularity of
the signal, helping to reveal hidden dynamics in physiological data. The
extracted measures include: approximate entropy, sample entropy, Shannon
entropy, fuzzy entropy, permutation entropy, Higuchi fractal dimension, and
Katz fractal dimension.

Internal consistency check. To ensure data integrity, an internal consistency
check was conducted to verify that all feature vectors were aligned in length with
the number of valid cardiac cycles detected for each subject. This process led to
the exclusion of a subset of features whose values could not be reliably extracted
for every beat or subject, often due to variability in signal quality or segmentation
errors. In total, 24 features were excluded from further analysis, ensuring that
only consistent and reliable variables were retained for the subsequent steps.
Following the feature extraction phase, a series of operations were applied to im-
prove data quality and prepare it for model training.
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Outlier detection. The process began with the identification and correc-
tion of outliers. For each subject, outlier detection was performed separately on
each feature using MATLAB’s isoutlier function, which defines an outlier as a
value that lies more than three scaled median absolute deviations (MAD) from
the median. Rather than removing these data points, a replacement strategy was
adopted: each outlier was replaced with the average of its neighboring values, pre-
ceding and succeeding. This approach helps to preserve the continuity of the data
while mitigating the effect of anomalous values, which could otherwise introduce
bias or instability during model training. In contrast, records associated with ab-
normal reference BP values were directly excluded from the dataset. This decision
was made to avoid exposing the model to physiologically implausible targets that
could distort the learning process or compromise the evaluation.

Dataset splitting strategy. Once the data was refined, the complete dataset
was divided into three distinct sets for training, validation, and testing. This divi-
sion was performed at the subject level: all samples belonging to a given subject
were assigned entirely to a single subset. This strategy guarantees the absence
of subject-wise overlap between training, validation, and test data. As previously
discussed, avoiding such information leakage is fundamental to ensure that the
model learns general patterns rather than memorizing subject-specific character-
istics. Subjects were randomly assigned to the three subsets with a 40%-30%-30%
split for training, validation, and testing, respectively. After assigning subjects to
each group, their corresponding feature were aggregated into the respective sets.
This resulted in three distinct datasets, each containing the full set of features and
labels, but with no overlap in subject identity.

Feature normalization. At this stage, all features were standardized using
Z-score normalization. The mean and SD were computed exclusively from the
training set, and these values were then applied to normalize the validation and
test sets. This approach ensures that no information from the validation or test
sets influences the training process in any way. This avoids subtle forms of data
leakage that, although not involving target values directly, can still result in un-
realistically optimistic performance if distributional characteristics of unseen data
are implicitly incorporated during training, in full compliance with the subject-
independent design.

Feature selection. Following the data preparation steps, feature selection was
performed using Boruta, an algorithm that builds upon random forest models to
evaluate the contribution of each variable in a robust and statistically manner.
In this implementation, a random forest regressor was used with 100 trees and
a maximum depth of 5, meaning that each tree can make up to five consecutive
binary decisions from root to leaf. The Boruta algorithm was run with automatic
estimation of the number of trees and a maximum of 50 iterations. Unlike con-
ventional selection methods that aim to find a minimal optimal subset, Boruta is
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designed to identify all the features that carry useful information for prediction. It
achieves this by comparing the importance score of each actual feature with that of
a set of artificially constructed shadow features, randomly permuted copies of the
original variables, which serve as a baseline representing noise. Through multiple
iterations, the algorithm assigns importance scores using a random forest estima-
tor and evaluates whether each feature performs consistently better than the best
of its shadow counterparts. Features that repeatedly outperform their shadows
are marked as selected; those that do not are progressively rejected. Following
this process, Boruta provided a classification for each feature, indicating whether
it was selected or rejected based on its relative importance.

Model selection and evaluation. To identify the most suitable modeling
approach, a comparative analysis was carried out by applying multiple regression
algorithms to the prepared dataset. Each model was trained on the training set
and evaluated on the validation set, with performance quantified through MAE
and Pearson correlation coefficient. The mathematical expressions for both metrics
are reported below:

MAE = 1
n

nØ
i=1

|yi − ŷi| (3.6)

Pearson correlation coefficient =
qn

i=1(yi − ȳ)(ŷi − ¯̂y)ñqn
i=1(yi − ȳ)2

ñqn
i=1(ŷi − ¯̂y)2

(3.7)

where yi is the true value for the i-th sample, ŷi is the corresponding predicted
value, ȳ is the mean of the true values, ¯̂y is the mean of the predicted values,
and n is the total number of samples. MAE provides a measure of the average
absolute difference between predictions and actual values, while the Pearson cor-
relation coefficient quantifies the strength and direction of the linear relationship
between them. Based on the results obtained on the validation set, the model that
demonstrated the best performance was selected and subsequently applied to the
test set for final evaluation. The models tested included gaussian process regres-
sion (GPR), ensemble methods based on decision trees, linear regression, support
vector regression, and regression trees.
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Results

4.1 Regression analysis

The results of the three previously described regression methods were evaluated on
a dataset of 100 subjects. For each method, performance was evaluated in terms
of MAE and SD, calculated across different training set sizes ranging from 5 to
100 reference BP values. The analysis is structured to first compare the overall
performance of the models, then investigate the impact of the number of calibration
points, and finally identify the best trade-off between accuracy, robustness, and
simplicity.

Comparison of Estimation Methods. The three BP estimation models
considered in this study are distinguished by both formulation and complexity,
as shown in Equations (3.2), (3.3), and (3.4). Method 1 relies on a simple linear
model with two coefficients. Method 2 adds HR, extending the basic model to
three-coefficients. Method 3 further increases complexity by incorporating a log-
arithmic transformation of PTT and a recursive term based on the previous BP
estimate, resulting in a four-coefficient model. The performance of the different
models is summarized in Table 4.1.
Method 3, being the most complex, might be expected to offer the best perfor-
mance. However, its results with only 5 BP values shows a remarkably high error
of 13.642 ± 12.342 mmHg, indicating instability due to the insufficient data for
parameter estimation. As the number of training points increases, the error de-
creases substantially, down to 5.312 ± 4.467 mmHg with 100 BP, suggesting that
this model demands significant calibration.
Method 2, while simpler than Method 3, still requires estimation of three parame-
ters. Its performance is relatively stable across training sizes, but its MAE remains
consistently slightly higher than that of Method 1. For instance, with 5 BP values,
the MAE is 6.293 ± 5.028 mmHg, compared to 5.309 ± 4.561 mmHg for Method
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1.
Method 1, based on a basic linear regression, shows competitive or superior per-
formance across all training set sizes. With only 5 calibration points, it achieves
an MAE of 5.309 ± 4.561 mmHg, which is already better than Method 2 and far
better than Method 3 under the same condition. It is remarkable that its perfor-
mance does not improve significantly as the number of calibration points increases,
suggesting a degree of robustness and stability even with minimal calibration.

Influence of Calibration Size. An important aspect to consider is how the
number of BP reference values used during training impacts the accuracy of each
method. For Method 1, the MAE remains relatively consistent across different
training sizes. This indicates that even a small number of calibration points is
sufficient to fit the model parameters. In Method 2, performance appears slightly
more sensitive to training size, although the improvements beyond 20 BP values are
marginal. Method 3 exhibits a pronounced dependency on the number of training
points. Its error reduces from 13.642 mmHg (5 BP) to 5.312 mmHg (100 BP),
showing clear benefits from a larger calibration set. However, the large variance
at low training sizes raises concerns about stability in real-world scenarios with
limited calibration.

Calibration–Method Compromise. Based on the above analysis, Method
1 with 5 calibration points emerges as the best compromise between estimation
accuracy and model simplicity. It provides low MAE values comparable to more
complex models trained on far more data. These results allow to reduce the need
for extensive calibration and complex models, a significant advantage in real-world
scenarios.

BP values Method 1 Method 2 Method 3
5 5.309 ± 4.561 6.293 ± 5.028 13.642 ± 12.342
10 5.092 ± 4.508 6.036 ± 4.981 8.869 ± 9.221
20 5.131 ± 3.974 5.166 ± 3.861 6.014 ± 7.569
50 5.545 ± 5.114 5.511 ± 4.988 5.953 ± 5.280
100 5.381 ± 4.431 5.400 ± 4.570 5.312 ± 4.467

Table 4.1. Results in terms of MAE ± SD for the three regression methods
evaluated with different numbers of BP values.

To further illustrate the performance consistency of Method 1 with minimal
calibration, Figure 4.1 shows the distribution of the MAE across all subjects when
using only 5 BP samples for training. The box plot highlights the presence of a
compact interquartile range and a relatively small number of outliers, suggesting
that the majority of predictions fall within a narrow error band. The cumulative
distribution function confirms that approximately 90% of the subjects exhibit an
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MAE below 10 mmHg. Furthermore, the distribution of MAE reveals that ap-
proximately 60% of subjects attain a MAE of 5 mmHg or less, and about 30% fall
between 5 and 10 mmHg. This visual evidence supports the quantitative findings
previously reported, reinforcing the notion that Method 1 achieves both stable
and accurate results with minimal calibration effort. These characteristics make
it particularly suitable for real-world deployment, where collecting a large number
of reference BP values may not be feasible.

Figure 4.1. Box plot (on the left) and cumulative distribution function (on the
right) of MAE for Model 1 using 5 BP samples for training.

Two additional experiments were conducted exclusively on Method 1 using 5
BP reference values, with the aim to test the model under less favorable or more
generalized scenarios. In the first test, we examined whether the coefficients esti-
mated for a single subject could be generalized to other subjects. Specifically, we
computed the regression parameters using the 5 BP values from subject 1 and ap-
plied the resulting linear model to estimate BP for all other subjects in the dataset.
Performance was again measured using MAE and SD across all test subjects. The
results were significantly worse than those obtained when using subject-specific
calibration: 23.706 ± 35.055 mmHg. This drastic degradation in performance
highlights a critical limitation of the model: the high inter-subject variability in
the physiological relationship between PTT and BP. Although Method 1 demon-
strates stability and robustness when trained individually for each subject, its
parameters do not transfer well across individuals. This is expected, given that
physiological signals like PTT are influenced by various personal factors includ-
ing vascular compliance, arterial stiffness, and individual cardiovascular dynamics.
Therefore, applying a universal set of parameters leads to poor estimation accu-
racy and high dispersion in errors, indicating that at least a minimal degree of
subject-specific calibration remains essential.
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In the second test, we explored the performance under a more conventional vali-
dation scheme. Rather than selecting a limited number of BP reference points per
subject, we performed a subject-level split of the dataset: 70% of the subjects were
used for training, to estimate coefficients, and the remaining 30% were used for
testing. This setup obtained the following result: 25.920 ± 23.980 mmHg. Again,
the estimation error increased considerably compared to the individualized calibra-
tion strategy. The poor performance can be attributed to the inability of a global
linear model to capture the subject-specific nature of the PTT–BP relationship,
resulting in parameters that do not generalize well to unseen individuals.

4.2 Machine learning analysis
The evaluation of the proposed ML pipeline was carried out following the method-
ology previously described. We begin by examining the output of the Boruta
algorithm, analyzing the set of features it identified as relevant. Next, we present
the results obtained on the validation set, focusing on the MAE and Pearson cor-
relation coefficient as performance metrics. Based on this comparison, the model
that achieved the best validation performance was selected and subsequently ap-
plied to the test set for final evaluation.

Feature selection output. Out of the full set of extracted features, the
Boruta algorithm identified 40 variables as informative and retained them for
further modeling, while 15 were rejected as irrelevant for the target prediction
task. The selected features are summarized in Table 4.2. The reduced feature
set improves model interpretability and computational efficiency while helping to
mitigate the risk of overfitting.

Validation Results and Model Selection. To compare the performance
of the different models trained on the selected features, we evaluated each on the
validation set using MAE and Pearson correlation coefficient. Table 4.3 summa-
rizes the results obtained for each model. Among the tested approaches, the GPR
model achieved the lowest MAE of 9.966 mmHg, indicating the best prediction
accuracy in terms of absolute error. Although the Pearson correlation coefficient
for GPR, equal to 0.423, was not the highest, it still reflected a moderate linear
relationship between the predicted and actual values. Interestingly, the Ensemble
of Trees model showed a higher Pearson correlation coefficient (0.511), suggest-
ing stronger linear agreement with the target, but it came with a higher MAE
(11.026 mmHg), implying greater average deviation in predictions. This trade-off
highlights that a higher correlation does not necessarily correspond to a more ac-
curate model in terms of absolute error. Other models, such as linear regression
(MAE = 11.883 mmHg, Pearson correlation coefficient = 0.212), support vector
regression (MAE = 13.357 mmHg, Pearson correlation coefficient = 0.131), and

41



Results

Category Selected Features
Pulse Wave Analysis Cardiac Period, Systolic Upstroke Time, Diastolic Time
Pulse Transit and
Hemodynamic

Augmentation Index, Large Artery Stiffness Index, Ar-
eas under the PPG curve (S1,S3)

Amplitude-Based and
Area-Derived

K-value, Ratio of amplitude PPG (maximum slope, di-
crotic notch, diastolic peak), Normalized areas PPG

Statistical Features Time domain ECG (Mean value, Maximum value, Vari-
ance, Root mean square, Peak-to-peak amplitude, Kur-
tosis, Skewness)
Time domain PPG (Mean value, Maximum value, Vari-
ance, Root mean square, Peak-to-peak amplitude, Crest
factor, Kurtosis, Skewness)
Frequency domain ECG (Mean frequency, Median fre-
quency, Band power)
Frequency domain PPG (Band power)
Chaotic domain ECG (Approximate entropy, Shannon
entropy, Sample entropy, Fuzzy entropy, Katz’s fractal
dimension)
Chaotic domain PPG (Fuzzy entropy, Permutation en-
tropy, Katz’s fractal dimension)

Table 4.2. Selected features grouped by category

regression tree (MAE = 12.432 mmHg, Pearson correlation coefficient = 0.443),
demonstrated comparatively lower performance both in accuracy and correlation.
Given the goal of minimizing prediction error, the GPR was selected as the most
suitable approach and was subsequently employed for the final testing phase.

Model MAE (mmHg) Pearson correlation coefficient
Gaussian Process Regression 9.966 0.423

Ensembles of Trees 11.026 0.511
Linear Regression 11.883 0.212

Support Vector Regression 13.357 0.131
Regression Tree 12.432 0.443

Table 4.3. MAE and Pearson correlation coefficient for each model eval-
uated on the validation set

Test Set Evaluation. Following the model selection process, the GPR model
was evaluated on an independent test set to assess its generalization capability.
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The model was trained using a squared exponential kernel function with auto-
matic relevance determination. Hyperparameters were optimized by maximizing
the marginal likelihood. On the test set, the GPR model achieved a MAE of 8.613
mmHg, with a SD of 8.315 mmHg. This result demonstrates a clear improvement
over the validation performance (MAE = 9.966 mmHg), indicating that the model
not only generalized well but also exhibited improved performance as a result of
the richer information captured during training. The relatively low SD further
suggests that the model maintains a stable performance across subjects, without
significant degradation for particular individuals. This robustness is particularly
important in physiological prediction tasks, where inter-subject variability can be
considerable. Overall, these findings confirm the suitability of GPR for the task
and reinforce the decision to select it as the final model. To further evaluate the
generalization capability of the GPR model, we examined the distribution of MAE
calculated across all test subjects. Specifically, a cumulative distribution function
and a box plot, shown in Figure 4.2, were used to provide a more detailed view of
the prediction variability across subjects.

Figure 4.2. Box plot (on the left) and cumulative distribution function (on the
right) of the MAE for the GPR model evaluated on the test set.

The box plot highlights a relatively narrow interquartile range, with the ma-
jority of subjects achieving errors below 10 mmHg, and only a limited number
of outliers exceeding 20 mmHg. This indicates a consistent performance across
individuals. In other words, the GPR model maintains a stable level of accuracy
across different individuals, without large deviations in performance. This consis-
tency is a desirable property, as it reduces the risk of subject-dependent degrada-
tion and enhances the model’s reliability in diverse populations. The cumulative
distribution function provides further insight into the distribution of MAE values.
Approximately 50% of the subjects exhibit an MAE of 5 mmHg or less, around
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30% fall in the 5–10 mmHg range, 10% lie between 10 and 15 mmHg, and fewer
than 10% exceed 15 mmHg. This distribution highlights the model’s ability to
deliver accurate predictions for the vast majority of subjects, with 80% remaining
within a 10 mmHg error margin. The combined evidence from the box plot and the
cumulative distribution function demonstrate that the GPR model achieves not
only low average errors but also consistent performance across subjects, making it
a reliable and robust solution.

4.3 Comparison with Existing Methods
Several studies have explored PTT-based BP estimation methods obtaining promis-
ing results. For example, Wong et al. conducted a study in which a linear model
with only two coefficients was used to estimate BP in normotensive subjects. Re-
markably, their approach yielded 0.0 ± 5.3 mmHg during the initial calibration
phase. Even after a six-month interval without recalibration, the model main-
tained reasonable performances, with errors of 1.4 ± 10.2 mmHg [44]. Similarly,
Choi et al. proposed a linear regression model based on PTT, applying it to data
from the MIMIC database. Their method, which included advanced signal process-
ing techniques such as the Hilbert-Huang Transform, achieved −0.44±3.85 mmHg.
Their study highlights that even with minimal model complexity, a two-parameter
linear regression, accurate BP estimation is feasible, provided that a large num-
ber of subject-specific calibration points are available [45]. Despite these strong
performances, a significant limitation shared by both models lies in their reliance
on extensive individual calibration. Both studies required a substantial amount of
reference BP data from each subject, which constrains their scalability and prac-
ticality in real-world applications.
In contrast, the approach proposed in the present study introduces a novel regression-
based model designed to minimize the calibration need. Specifically, our method
achieves a competitive estimation accuracy of 5.309±4.561 mmHg, while requiring
only five reference BP values per subject. This represents a significant reduction in
calibration requirements compared to the large number of reference values needed
in the previous studies. In summary, while earlier PTT-based models showed that
simple linear methods can work well when trained with a lot of data from each per-
son, our model focuses more on practical use. It reduces the amount of calibration
needed, while still keeping good accuracy, making it more suitable for everyday
and scalable cuffless BP monitoring.

Beyond regression-based approaches, a number of studies have explored ML-
based approaches, reporting promising results under various experimental condi-
tions, as described in Section 2.3. Miao et al. proposed a hybrid framework that
combines a mechanism-driven model with data mining techniques, using features of
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ECG and PPG signals selected through a genetic algorithm. Their model achieved
very high accuracy in static conditions, with errors of −0.001 ± 3.102 mmHg [31].
Similarly, Chen et al. developed a ML pipeline based on PTT and morphologi-
cal features, applying support vector regression optimized by a genetic algorithm.
Their method yielded a MAE of 3.27 ± 5.52 mmHg [29]. Although these studies
demonstrate promising performances in terms of accuracy, it is important to note
that the reported results are derived from subject-dependent validation protocols.
In such settings, data from the same individuals may be present in both the train-
ing and testing sets. This overlap enables the models to learn subject-specific
patterns, which amplifies performance metrics. As a consequence, the evaluation
does not faithfully represent the model’s ability to generalize to entirely unseen
individuals, a critical requirement for clinical or wearable applications.

In contrast, our proposed model was developed and evaluated under a strictly
subject-independent validation framework, ensuring a clear separation between
training and testing individuals. This design choice prioritizes generalizability and
robustness. While the overall MAE of 8.613 ± 8.315 mmHg may appear higher
than that of subject-dependent models, our model maintained high consistency:
80% of test subjects showed MAEs below 10 mmHg, and the error distribution was
tightly concentrated. These results highlight the importance of validation strategy.
Although our model does not outperform all others in absolute terms, it offers a
more realistic and reliable assessment of performance in unseen populations, an
essential criterion for real-world applicability.
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Chapter 5

Discussion

This thesis focused on developing and evaluating methods for non-invasive BP es-
timation based on physiological signals. Two distinct approaches were explored:
regression-based models and a ML pipeline. The goal was to assess their perfor-
mance under two realistic validation scenarios: a subject-specific calibration using
a small number of reference BP points, and a subject-independent validation to
avoid data overlap between sets. This dual approach provides a clear view of each
method’s practical strengths and limitations.
Both approaches were developed and tested using a common dataset comprising
ECG, PPG, and ABP signals from 100 patients who stayed in critical care units. To
ensure consistency and reliability, all signals underwent a uniform pre-processing
procedure, including tailored band-pass filtering for each signal type.
The regression-based analysis introduced three models of increasing complexity,
each based on physiological relationships involving PTT and HR, and differing in
the number of coefficients to estimate. Among them, Method 1 demonstrated no-
table performance when calibrated with only five reference BP values per subject.
This minimal calibration strategy achieved a MAE of 5.309 ± 4.561 mmHg, which
is not only competitive with more complex models but also exceeds them in sta-
bility and practicality. The novelty of this approach lies in its focus on reducing
calibration effort, an aspect rarely addressed in existing literature. By showing
that reliable predictions can be achieved with only five individualized data points,
this work introduces a new perspective: balancing accuracy with usability, a crit-
ical requirement for scalable and accessible healthcare technologies. While more
sophisticated models like Method 3 showed slightly better performance under large
calibration datasets, they suffered significant degradation under minimal calibra-
tion conditions, highlighting their limited applicability in real-world low-data set-
tings. In contrast, Method 1 consistently maintained narrow error margins across
varying calibration sizes. This robustness was further confirmed through distri-
bution analysis, showing that approximately 90% of subjects achieved an MAE
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below 10 mmHg using only five reference BP values. To evaluate generalizability,
two additional experiments were conducted with Method 1. The first trained the
model on one subject and tested it on others, while the second used the dataset
without individual calibration. Both approaches resulted in significantly degraded
performance (MAEs above 23 mmHg), emphasizing that subject-specific calibra-
tion is essential. This demonstrates the effectiveness of the model when calibrated
with minimal data for each individual, highlighting that coefficients estimated on
one subject do not generalize well to others. These findings underscore the poor
generalization of coefficients across individuals and support the superiority of per-
sonalized models over universal ones that ignore physiological variability.

The second part of the study proposed a ML pipeline incorporating feature
extraction, feature selection, and model comparison. The ML analysis provided a
complementary perspective, focusing on feature-based modeling using physiolog-
ical signals. Following an extensive feature extraction process, the Boruta algo-
rithm selected 40 relevant features encompassing time-domain, frequency-domain,
morphological, and statistical-based characteristics from ECG and PPG signals.
Among various models tested, GPR achieved the best performance in subject-
independent validation and was therefore selected for the final evaluation on test
set, where it reached a MAE of 8.613 ± 8.315 mmHg. Although this result does
not surpass the performance of the regression model, it still demonstrates strong
effectiveness, especially considering that the ML model was trained at the pop-
ulation level without subject-specific calibration. Furthermore, the GPR model
demonstrated good consistency, with 80% of test subjects showing MAEs under
10 mmHg, and a relatively narrow interquartile error range. This highlights the
model’s robustness and potential for applications where individual calibration is
not possible.

This work contributes to the field of cuffless BP monitoring by proposing and
evaluating both a minimal-calibration regression strategy and a subject-independent
ML pipeline. The comparative analysis reveals a clear trade-off, showing that the
regression-based method is both highly accurate and stable with minimal cali-
bration and low computational cost, making it ideal for practical deployment in
scenarios with limited data, such as sensor initialization or periodic updates. On
the other hand, the ML pipeline exhibits superior generalization capabilities and
enables fully automated operation without requiring personalized calibration. Al-
though associated with marginally higher error rates, this makes it well-suited for
situations where calibration is not feasible.

Despite the encouraging results, several limitations remain that suggest direc-
tions for future research. First, the dataset used in this study was derived exclu-
sively from intensive care unit patients, who are typically in a resting or immobile
state. For this reason, it remains uncertain how well the models will perform
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when applied to real-world scenarios. Second, the study was conducted on a rel-
atively limited sample of 100 subjects. While the results are promising, a larger
and more diverse dataset would help confirm these findings. Lastly, this work
focused on regression-based and classical ML models, which were chosen for their
interpretability and computational efficiency. While deep learning approaches rep-
resent a promising direction, their exploration falls outside the scope of this study
and remains a valuable area for future investigation.
Despite these limitations, the work provides a substantial contribution to the field
by introducing a minimally calibrated regression strategy alongside a subject-
independent ML pipeline. Together, these approaches lay a strong foundation
for developing scalable and practical cuffless BP monitoring systems.
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Chapter 6

Conclusion and future work

This work contributes to the field of cuffless BP estimation by presenting and
validating both a novel minimal-calibration regression strategy and a subject-
independent ML pipeline. The demonstration that accurate BP estimation can
be achieved with only 5 reference values using a simple linear model represents a
practical innovation with immediate applicability in real-world systems. Simulta-
neously, the ML approach confirms that data-driven models can provide consistent
results across subjects even when validated with subject-independent strategy, of-
fering an alternative path for non-invasive BP monitoring.
Future work should evaluate the robustness of both methods on data collected
from patients in motion, ideally using wearable sensors, to assess their performance
under daily-life conditions, where signal quality and noise present additional chal-
lenges. Moreover, expanding the dataset to include a more diverse and larger
population would further enhance the generalizability of the models.
In conclusion, this thesis demonstrates that it is possible to build scalable and
practical cuffless BP monitoring systems by combining personalized calibration
strategies with subject-independent learning models, paving the way for more ac-
cessible, non-invasive healthcare technologies.
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