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Summary

The progressive ageing of the population has resulted in an increase of neurodegen-
erative disorders, including Parkinson’s Disease. In order to ensure the preservation
and the enhancement of motor functions, continuous rehabilitation programs would
be necessary. However, these programmes are often costly and not conceived for
home-based use.

Exergames, videogames designed to perform therapeutic physical exercises,
represent a cost-effective solution suitable for telerehabilitation. They enable
continuous patient monitoring and increase engagement throughout rehabilitation
process.

This study analyzes the data collected by the Palestra exergame, developed by
CNR-IEIIT, which employs a single RGB camera combined to Google MediaPipe
Pose for human pose estimation. The system is designed for parkinsonian subjects,
and focused on upper limb motor recovery, through simple arm-raising exercises
(single arm, alternating and simultaneous movements, performed both laterally and
frontally).

The analysis was performed using a dedicated automatic pipeline, designed to
extract angolar trajectories and a set of parameters aimed to evaluate the user’s
motor performance. In order to assess the quality of the acquired data and to
define limits and potential of the exergame, a validation procedure was carried out.
This validation was done against an optoelecronic system and included a total of
five healthy subjects. Moreover, the system was tested on parkinsonian patients
with different degrees of motor impairments.

The results show that the pipeline produces reliable angular trajectories in both
healthy and parkinsonian users, thus allowing the extraction of robust parameters
in both cases. The Bland-Altman analysis conducted on the entire trajectories
demonstrates a good agreement in lateral raises. Temporal parameters, such as the
Peak-to-Peak Time (PPT), exhibit a high concordance between the two systems
(Bias= 0.00s, LoA=[—0.09s,0.09s]). Angular parameters, like Range of Motion
(ROM), present marginally lower agreement (Bias= 2.03°, LoA=[—9.16°,13.22°]).
In frontal tasks, the Bland-Altman analysis reveals slightly wider discrepancies in
temporal parameters, even though they remain comparable with those identified
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in lateral tasks (PPT: Bias= 0.01s, LoA=[—0.23s,0.24s]). Larger differences are
observed in the angular parameters (ROM: Bias= —3.56 °, LoA=[—23.53°,16.42°]).
Nevertherless, these discrepancies, both temporal and angular, are still considered
accetable for the intended context of use.

In conclusion, Palestra represent a promising solution for telerehabilitation, due
to its ease of use, cost-effectiveness and ability to collect data in a continuous and
non-invasive manner. The accuracy levels of the system, as demonstrated by the
validation analysis, are accetable and suitable for the intendend telerehabilitation
applications.
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Chapter 1

Introduction

1.1 General context: the role of exergames in
telemedicine

Over the past few years, the progressive aging of the population has entailed a
significant increase in neurodegenerative diseases and associated motor disabilities,
such as stroke and Parkinson’s disease (PD). The incidence of these conditions is
particularly high in low and middle-income countries, where access to traditional
treatments is often limited [1]. To ensure, as far as possible, an improvement
in and a sustained quality of life (QoL) for patients, a continuous rehabilitation
process would be recommended. However, conventional rehabilitation often involves
high costs, making it inacessible to many. In this context, the use of exergames
represents a sustainable solution, as it enables rehabilitation, or at least motor
function training, to continue directly at home, thereby reducing costs and providing
an effective rehabilitation strategy suitable even in economically disadvantaged
areas [2].

Although different authors use the term “exergame” with different connotations,
it typically refers to a video game that requires the physical movement of the player
to work, thereby promoting motor learning and physical activity [3, 4]. Exergames
can be classified as a subgenre of serious games (SG), which are games primarily
designed for training or educational purposes, with entertainment being a secondary
feature [5, 6]. Due to this characteristics, exergames have a wide application in the
field of motor rehabilitation.

Ezergaming rehabilitation (ER) encompasses a wide spectrum of rehabilitation
methodologies that utilize interactive digital environments to support the functional
recovery of the patient. ER can be implemented using different devices, including
consoles or computers with non-immersive video games, semi-immersive hybrid
systems, and fully immersive virtual reality (VR) systems [7].
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ER finds a wide application in upper limb rehabilitation. Its primary goal is
to enhance upper limb mobility through game-based tasks, aimed at improving
or preserving specific motor functions, such as range of motion, coordination,
and motor control. These exercises, characterized by an engaging and interactive
approach, can be flexibly adjusted according to the patient’s motor condition,
enabling an effective and personalized adaptations of task difficulty. This approach
allows the patient to play an active role in the rehabilitation process, significantly
increasing motivation for therapeutic treatment [2, §].

Most of the proposed exergames represent an effective telemonitoring system.
Through the integration of 3D body tracking systems, it is possible to collect
quantitative data in a simple and non-invasive manner, providing information on
the patient’s mobility (such as the trajectories of the identified joints) and their
performance in completing rehabilitation tasks (such as a score obtained after com-
pleting a task). This continuous and non-invasive data acquisition enables optimal
planning of rehabilitation sessions, facilitating targeted and personalized interven-
tions tailored to the patient’s specific needs, both motor-related and organizational
or personal.|2]

In recent years, exergames have also been used in the prevention and treatment
of pathological conditions such as obesity and cardiovascular diseases, as well as to
improve postural control and balance in the elderly population. They have also
shown potential in rehabilitation of cognitive function, both in the presence of
acquired and congenital deficits, such as memory, attention, verbal fluency, learning,
problem solving and planning. Indeed, due to their immersive and interactive
nature, exergames promote motor learning processes and stimulate experience-
based neural plasticity through high-intensity repetition of task-based exercises,
progressively increasing task difficulty, real-time feedback, motivation, rewards
and even transfer effects. This latter aspect indicates the ability to transfer the
improvements achieved in a specific rehabilitation task to different functional
domains that were not directly trained.[9]. For example, a patient who regularly
plays an exergame based on a tennis game improves not only his motor skills and
reaction speed required by the game itself, but also his ability to manage motor
and cognitive activities in daily life that are not directly trained, such as memory
or decision-making skills.

1.2 Current Technological Limitations and Ob-
jectives
Despite the growing interest in the use of exergames for motor rehabilitation in

telemedicine, several limitations still hinder their widespread adoption in clinical
practice. Firstly, there is considerable inconsistency in the technological approaches

2



Introduction

adopted, particularly concerning the hardware employed. Most studies employ
Microsoft Kinect technology, which includes an integrated motion capture algorithm
proven to be accurate in various validation studies [10, 11, 12]. However, this
technology is no longer manufactured by Microsoft, effectively preventing its large-
scale adoption and limiting the development of new exergames based on this
system. In order to overcome these technological limitations, current research is
increasingly oriented toward the simplification of hardware, favoring configurations
based exclusively on RGB cameras. This shift has been enabled by the emergence
of advanced Human Pose Estimation (HPE) frameworks such as OpenPose or
Google MediaPipe Pose (GMP), which have demonstrated the ability to estimate
the human body motion using exclusively RGB images. As a result, these systems
are more cost-effective, accessible, and easier to implement. Secondly, a general and
standardized pipeline for processing exergame-generated data is still lacking, and
no clear set of standard clinical parameters for evaluation has been defined. The
definition of a unified and standardized procedure, tailored to the tracking system,
exercise type, and target pathology, would enable more extensive and in-depth
studies on the clinical validity of exergames.

This thesis aims to contribute to addressing the current gaps in the use of
exergames for motor function training and rehabilitation in individuals with Parkin-
son’s disease by focusing on the following main objectives:

o To make use of the exergame developed by CNR-IEIIT, referred to as Palestra,
as the basis for motion data acquisition and subsequent clinical analysis.

o To define an automated pipeline for the analysis of joint data acquired through
exergame and the extraction of clinical parameters for motor assessment.

« To validate the trajectories and parameters extracted by the exergame, which
uses Google MediaPipe Pose, by comparing them with those obtained using
an optoelectronic system, universally considered the gold standard for motor
performance evaluation.

o To evaluate the applicability of Palestra on subjects with Parkinson’s disease
for extracting reliable angular trajectories and outcome parameters.

To achieve these goals, the exergame used in this project implements Google
MediaPipe Pose as its motion capture system. MediaPipe Pose is an open-source
framework developed by Google, which enables automatic real-time detection of
human body landmarks, thus generating a three-dimensional skeletal model [13].
This tool runs with both mobile and desktop devices, making it potentially com-
patible with any hardware environments. It also promotes standardization in pose
detection techniques across exergames, while significantly reducing development
costs.



Introduction

1.3 Thesis Structure

This thesis is organized as follows:

Chapter 2 provides an overview of the state of the art concerning the use
of exergames in rehabilitation. It briefly presents some types of exergames
developed for different pathologies in addition to Parkinson’s disease. Moreover,
a brief description regarding the markerless motion tracking in rehabilitation is
presented. A specific focus will be placed on the Google MediaPipe framework,
which serves as the underlying technology of the developed exergame.

Chapter 3 describes in detail the materials and methods adopted. It covers
the technical setup of the exergame, the development of the automatic data
processing pipeline, the validation procedure through comparison with the
optoelectronic system, the experimental protocol used for data acquisition from
individuals with Parkinson’s disease and the outcome parameters extracted.

Chapter 4 presents the results obtained from the validation analysis. In
particular, it describes the findings regarding the overall 3D trajectories
analysis, the mean parameters, and single-repetition parameters, further
examining the influence of the segmentation algorithm used. It also reports
the results obtained by the analysis performed on parkinsonian subjects.

Chapter 5 offers an in-depth discussion of the findings, critically analyzing the
strengths and limitations of the developed solution. The clinical implications
and future prospects for telerehabilitation are discussed, with an emphasis
on problems that emerged during the validation analysis and on potential
methodological improvements for future research.

Chapter 6 provides a critical summary of the goals achieved and those only
partially met. The practical implications of the results in both clinical and
telemedicine contexts are explored.



Chapter 2

Background

2.1 Effectiveness of Exergames in Motor Reha-
bilitation: Literature Review

In this section, the application of exergames in the field of telemedicine has been
explored, with particular emphasis on their role in telerehabilitation. The objective
is to highlight how exergames represent effective and economical tools capable
of covering multiple aspects of motor rehabilitation, not only focused on upper
limb interventions. The literature review was conducted by analyzing scientific
publications released between 2015 and 2025, mainly obtained from PubMed and
Google Scholar databases.

In recent years, numerous studies have highlighted the effectiveness of exergames
in motor rehabilitation, particularly in the elderly population and in parkinsonian
subjects. Improvements in balance, functional mobility, gait, motor recovery of the
upper limbs, and, mode generally QolL have been reported as benefits by following
rehabilitation protocols involving exergames.

Harris et al.[14] were among the first to conduct a systematic review and meta-
analysis investigating the use of exergames as a rehabilitation tool to improve
balance and postural control in individuals with Parkinson’s disease and healthy
older adults. The review included 11 studies, encompassing a total of 325 healthy
older participants and 56 subjects diagnosed with Parkinson’s disease. To evaluate
the effect between the experimental and control groups, the authors used standard-
ized mean difference (SMD) and confidence intervals (CI). The results indicated
a significant improvement in static balance (SMD = 1.069, 95% CI: 0.563-1.576),
postural control (SMD = 0.826, 95% CI: 0.481-1.170) and dynamic balance (SMD
= -0.808, 95% CI: -1.192 to -0.424) among healthy older adults. Additionally,
two specific studies reported improvements in static balance (SMD = 0.124, 95%
CI -0.581 to 0.828) and postural control (SMD = 2.576, 95% CI: -1.534-3.599) in
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participants with Parkinson’s disease.

The systematic review and meta-analysis conducted by Cieslik et al. [15] exmined
52 randomized clinical trials (RCTs), including 3081 participants aged over 60
years, demonstrating that rehabilitation protocols based on exergames with motion
capture are statistically significant in improving functional mobility compared to
control groups (SMD = -0.70, p<0.01). Network meta-analysis (NMA) showed
that all outcomes analyzed using motion capture-exergames are comparable to
traditional rehabilitation exercises, with particularly evident improvements in the
Timed Up and Go test (TUG) compared to standard procedures. The authors
attribute these positive results to the immediate and continuous feedback that
exergames offer, allowing patients to visualize their movements in real time. The
study also states that exergames represent a safe rehabilitation modality, suitable
for home-based applications and characterized by an absence of significant side
effects.

A systematic review by Garcia-Agundez et al.[16] analyzed 64 publications
selected according to specific inclusion criteria. The clinical studies analyzed showed
improvements in motor and cognitive performance in patients with Parkinson’s
disease, comparable or superior to control groups. The authors emphasize, however,
the need for further research to connect the parameters extracted from exergames
to traditional clinical scales, such as the Unified Parkinson’s Disease Rating Scale
(UPDRS).

Nuic et al.[17] developed an exergame called Toap Run, based on the Kinect
system, in which patients are required to avoid obstacles or collect objects using
limb and pelvic movements, guided by visual and auditory cues. After 18 sessions,
the participants (n = 18) reported high levels of satisfaction, feasibility, and
acceptability regarding the exergame. Improvements were observed in clinical
parameters such as freeze of gait (FOG), the gait-and-balance scale, and the
axial score, with reductions of 39%, 38%, and 41%, respectively. Kinematic gait
parameters also showed enhancements, particularly in step length, walking speed,
and reduction of double-stance time. However, the study presents methodological
limitations, including the small sample size and the absence of a control group.

Pachoulakis et al.[18] introduced a Kinect-based platform, consisting of two
exergames (Ballon Goon and Slope Creep game), aimed at Parkinson’s patients
with mild or moderate symptoms (Hoehn and Yahr stage 1 to 3), without severe
postural instability. Both games use auditory and visual feedback, and a score-based
reward system. However, clinical data confirming the efficacy of this platform.

Amprimo et al.[19] developed an exergame based on the Azure Kinect platform
designed to stimulate both upper and lower limb movements, while simultaneously
acquiring quantitative kinematic parameters such as joint angles, center of mass
position, velocity, and temporal metrics. Tested on 20 parkinsonin patients and
compared with 15 healthy subjects, the study confirmed significant differences in
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kinematic parameters, validating the system as an effective tool for complementary
assessments and suitable for telemedicine.

Given their proven effectiveness in telerehabilitation, exergames are also used
in complex and advanced systems, such as the REHOME platform developed by
Ferraris et al [20]. This solution is dedicated to the rehabilitation of subjects affected
by neurodegenerative disorders, including Parkinson’s disease. The platform allows
rehabilitation interventions on the motor, cognitive and and sleep-related functions,
supported by a continuous monitoring system of the activities performed by patients.
The studies conducted have shown that the system is characterized by a high level of
usability, making it suitable also for elderly users. The results of the questionnaires
administered to the participants indicate that the gamification component, typical
of exergames, represents a key element in maintaining a high level of adherence to
the proposed rehabilitation program.

Additionally, in the context of post-stroke rehabilitation, the Kinect-based
Jintroniz exergame has proven to be safe, well-tolerated, and effective in improving
movement quality compared to control groups [21].

In conclusion, as highlighted by the studies discussed above, exergames show
strong potential from a clinical perspective, demonstrating compatibility with
telerehabilitation and personalized medicine. Thanks to integrated markerless
tracking systems, exergames allow for the continuous acquisition of quantitative
data, enabling consistent patient monitoring. However, despite these encouraging
outcomes, certain methodological (e.g., small sample sizes, absence of control
groups) and technological (e.g., limited accuracy in motion capture) limitations
remain. Addressing these challenges is essential to improving the reliability and
clinical validity of exergame-based rehabilitation.

2.2 Markerless motion tracking system in Reha-
bilitation

A key requirement for the functionality of an exergame is the capability of detecting
the user’s movements in real time and translating them into inputs interpretable
by the game [22]. To achieve this goal, Human Pose Estimation (HPE) techniques
are employed, which are defined as “the ability of a system to identify the position
of the joint centers of the human body in three-dimensional space or in an image”
[23].

Currently, the most accurate technologies for acquiring this type of information
are marker-based motion capture (MoCap) systems, still considered the gold
standard in terms of precision. In these systems, specific reflective or luminous
markers are applied to certain anatomical points of the human body, allowing
the construction of a three-dimensional skeletal model. The movement of these
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markers is then recorded by a series of infrared cameras strategically positioned
in space. Despite the high accuracy guaranteed by these systems, they require a
considerable number of cameras to minimize the risk of occlusions of the markers
during movement. Furthermore, they require highly qualified personnel both for
the correct use of the equipment and for the accurate positioning of the markers
themselves on the patient. These factors, combined with the high cost of the
required equipment, make marker-based systems expensive, less accessible, and
therefore poorly suited for widespread adoption in the field of telerehabilitation.
For these reasons, their use is not feasible outside of specialized laboratories and
controlled environments [24, 25, 26].

To address these limitations, markerless motion capture systems have found
wide diffusion in the exergaming and telerehabilitation fields, which estimate the
patient’s kinematics using simple RGB or RGB-D (depth) cameras in combination
with HPE algorithms. More specifically, RGB-D cameras, such as the Microsoft
Kinect cameras, record, in addition to the classic RGB video stream, also the
distance of each pixel from the camera itself, thus allowing to estimate the depth.
HPE algorithms are generally classified based on the representation adopted for
the human body model [27]:

o Planar: a representation that uses simple geometric shapes, typically rectan-
gles, to approximate the human body.

« Kinematic (3D): models the positions and orientations of joints and limbs
in three-dimensional space.

« Keypoint (2D): a two-dimensional projection of the three-dimensional model,
often mistakenly confused with the kinematic representation.

e Volumetric: a three-dimensional representation using mesh structures.

Among these, the 3D kinematic and 2D keypoint representations are the most
used in exergames and markerless systems. The three-dimensional kinematic
representation can also be obtained from a single RGB camera thanks to deep
learning algorithms such as BlazePose and MediaPipe, which estimate the depth
coordinate (z). More accurate systems utilize RGB-D cameras, which provide
enhanced depth estimation, or on triangulation-based multi-camera RGB systems
[28, 27].

The keypoint representation requires only an RGB camera and deep learning
algorithms, such as OpenPose, to estimate two-dimensional landmarks. These
systems are capable of providing real-time estimations when supported by sufficient
computational resources (e.g., multi-core CPUs with GPU acceleration) and are

well suited for rehabilitation applications that involve gross motor movements [29,
27].
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In addition to their use as input systems for exergames, motion capture technolo-
gies are widely employed in clinical practice, as they allow biomechanical analysis
of movement, generating useful information for planning on targeted therapeutic
interventions [30]. In particular, biomechanical analyses are extremely useful in
the context of rehabilitation, as they allow continuous and systematic collection
of patient data. This method allows for constant and effective monitoring of the
patient’s progresses or changes, without the need to frequently visit specialized
medical centers. This approach also offers significant economic advantages for the
healthcare system, as it makes it possible to more efficiently plan hospitalization
periods and plan personalized rehabilitation interventions based on the actual needs
of the individual patient [31].

Unlike marker-based systems, markerless systems, especially those using a single
camera, offer advantages such as lower costs, ease of use without the need for
dedicated spaces and specialized personnel, and a less invasive experience for
the patient, who does not need to wear markers. Moreover, these systems allow
assessments to be performed in more natural contexts and are also suitable for
uncooperative patients, such as newborns and young children [23].

Despite the many advantages offered by markerless motion capture systems,
there are limitations related to their precision and accuracy, which are currently not
yet fully comparable to marker-based systems, considered the gold standard in the
field. This lower accuracy can be attributed to various technical and methodological
factors, including [32, 30]:

e Occlusion issues: these occur when parts of the patient’s body physically
overlap with others, hindering the visibility of landmarks by Human Pose
Estimation (HPE) algorithms and causing errors in their identification.

o Technological limitations of the hardware used: these include factors
such as a narrow field of view of the camera, limited image resolution or a low
frame rate. These characteristics directly affect the quality of the acquired
data and, consequently, the accuracy of the reconstructed kinematic models.

o Incorrect camera positioning: A suboptimal camera alignment with respect
to the anatomical planes of interest, such as the frontal plane and the sagittal
plane, can significantly compromise the correct estimation of the orientation
of the joint angles, especially in 2D analyses.

e Influence of clothing: The clothes worn by the subject during the motion
acquisition could change shape dynamically, generating potential errors in the
estimation of the position of the joint centers by the HPE algorithms

e Use of suboptimal HPE models: Each Human Pose Estimation model
is typically trained using specific datasets, characterized by particular body
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morphologies and types of movement. As a result, some movements and
anatomical conformations may be detected with greater difficulty or less
precision. This issue is further aggravated by the fact that most of the
available open source datasets have not been specifically designed for clinical
or biomechanical applications.

Despite the critical issues highlighted above, markerless systems represent the
most suitable solution for telerehabilitation and exergame development, as they offer
the best compromise between accuracy and practical feasibility. In fact, to perform
an exergame, a very high precision in movement detection is not strictly necessary,
but rather the use of cost-effective, accessible systems capable of operating in real
time. However, given the limitation mentioned above, it remains essential to check
these systems in systematic and rigorous validation, comparing them with the gold
standards of reference. This process is essential for assessing the reliability of the
kinematic parameters obtained via markerless systems and for evaluating their
actual applicability in clinical and rehabilitative contexts.

2.2.1 Examples of markerless system used in exergaming
and biomechanics analysis

Microsoft Kinect

One of the most widely used markerless systems for the development of exergames
is certainly Microsoft Kinect, available in versions V1, V2 and Azure. Originally
developed by Microsoft for gaming applications, the Kinect was subsequently
embraced by the scientific community in various domains, including rehabilitation
and biomechanical movement analysis. This success was mainly due to its integrated
tracking algorithm which enables efficient real-time tracking, making it particularly
well-suited for exergame development as well as for kinematic motion analysis and
motor rehabilitation applications [33]. Across all its versions, Kinect integrates two
types of cameras: an RGB camera and a depth camera, the latter used to measure
depth, i.e., the distance between the camera and the objects or subjects in the field
of view. Among its key strengths are its relatively low cost, portability, ease of use,
and built-in tracking algorithm, which effectively exploits the information derived
from depth. From a technical point of view, the first two versions of the Kinect
use machine learning techniques based on Decision Forest to reconstruct a three-
dimensional skeletal model of the analyzed subject [11, 34]. With the technological
advancement of hardware and the introduction of increasingly powerful GPUs
and CPUs, the latest version, the Azure Kinect DK, has integrated deep learning
techniques, particularly convolutional neural networks (CNN), to enable highly
accurate 3D tracking. This version of the Kinect is capable of identifying at
least 28 body landmarks (up to a maximum of 33) for each subject, operating

10



Background

in real time [35]. Thanks to these features and the robustness of its integrated
algorithms, the Kinect is widely used in the development of exergames dedicated
to the rehabilitation of patients affected by neurodegenerative diseases [21, 17].
Furthermore, the Azure Kinect version has also shown good performance in gait
analysis applications, thus confirming its validity in the rehabilitation field [33].

OpenPose

OpenPose is an open source framework developed by Cao et al. [36, 37| designed
to estimate the two-dimensional (2D) pose of multiple people within an image or
video stream.

The algorithm is based on a multi-stage convolutional neural network (CNN)
with two distinct branches: the first one generates confidence maps, which represent
the probability that a given landmark (keypoint) is located in a particular pixel; the
second produces the Part Affinity Fields (PAF), which are two-dimensional vectors
that encode the position and orientation of the connections between the various
parts of the human body. By combining these two informations, OpenPose allows
a bottom-up approach to estimate the pose of a subject. This process initially
involves the identification of individual body keypoints and subsequently their
association with the corresponding person. This strategy allows the OpenPose
algorithm to perform real-time tracking, identifying up to 25 landmarks for each
subject, a feature that makes it well-suited for advanced human motion analysis.
When deployed in hardware configurations involving multiple cameras, OpenPose
is also able to obtain the three-dimensional (3D) position of the landmarks through
triangulation techniques; in this case, however, tracking is limited to a single subject
at a time. Using a hardware setup similar to the one adopted by the authors of the
original framework (a laptop equipped with an NVIDIA GeForce GTX-1080 GPU),
it is possible to achieve real-time performance. For instance, in the first version of
the framework, the authors achieved a processing speed of approximately 8.8 frames
per second (fps) when analyzing a video containing 19 individuals simultaneously.
This result has been improved in the latest version of OpenPose, reaching a runtime
of approximately 22 fps [37, 36, 25]. However, OpenPose has notable limitations in
providing real-time performance when run on less powerful hardware, such as a
common home laptop, which makes it unsuitable for the development of exergames
[30]. Exergames, in fact, require immediate and continuous feedback to ensure
smooth and responsive interaction with the user. They are also generally designed
to be low-cost and accessible solutions, particularly suited to home rehabilitation
settings.
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AlphaPose

AlphaPose is a deep learning-based model developed for pose estimation, capable
of estimating up to 17 two-dimensional (2D) landmarks per person. The model
is designed to simultaneously identify multiple subjects within the same image,
and has demonstrated excellent performance in terms of both accuracy and speed,
as evidenced by the results obtained in standard benchmark datasets commonly
used for evaluating Human Pose Estimation (HPE) models. AlphaPose can achieve
real-time performance, provided it is run on sufficiently powerful hardware. For
instance, the authors achieved their best performance using an NVIDIA 2080Ti
GPU [38, 39]. AlphaPose currently does not provide a three-dimensional (3D)
estimation of landmarks directly. However, it is possible to obtain this information
using multiple properly calibrated cameras and specific triangulation algorithms to
integrate information from different two-dimensional viewpoints, albeit at the cost
of a more complex hardware setup [40].

To date, no exergames developed using this tracking model have been reported in
the scientific literature. This absence could be due to the fact that AlphaPose does
not guarantee real-time performance when run on standard hardware, not powerful
enough, and does not natively offer three-dimensional information, thus limiting
its use in applications that require immediacy and three-dimensional accuracy.

MoveNet

MoveNet is a model developed by Google using the Tensorflow platform, designed
to perform fast and accurate two-dimensional (2D) tracking of 17 body landmarks.
The model is optimized for real-time performance, with average speeds greater
than 30 frames per second (fps), and is compatible with most commercial desktop,
laptop, and mobile devices. MoveNet is available in two versions: Lightning
and Thunderbolt. The Lightning version is lighter and less accurate, designed
specifically for applications where low latency is a primary requirement. In contrast,
the Thunderbolt version is slower but provides higher accuracy in estimating
landmarks. The architecture of MoveNet is based on a MobileNet V2 network as
a backbone, combined with four Feature Pyramid Network (FPN) layers [41, 42,
43]. MoveNet has already been applied in telerehabilitation contexts, integrated
into systems aimed at remote monitoring of patients affected by musculoskeletal
disorders. In particular, this model has been used to assess parameters such as
strength, balance and range of motion during rehabilitation exercises [44].
Although MoveNet, especially in the Lightning version, has also demonstrated
solid performance on mobile devices [45], there are currently no specific studies
reporting its direct use in exergame development. This gap could be attributed
to a lower accuracy compared to other HPE models and the lack of a direct 3D
estimation. Therefore, obtaining depth information and 3D tracking would require
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additional system configurations or algorithmic extensions.

MediaPipe Pose

MediaPipe Pose is a Machine Learning solution for pose estimation, part of the
broader MediaPipe framework developed by Google. This framework allows the
prototyping and implementation of models for image and video analysis, ensuring
cross-platform compatibility such as I0S, Android and Python environments [46,
47]. This solution is capable of detecting up to 33 three-dimensional (3D) landmarks
and generating a segmentation mask of the human body from a simple RGB input,
using the BlazePose model, also developed by Google. MediaPipe Pose is notable
for its high inference speed and can operate in real time even on mobile devices,
achieving an average processing rate of 30 frames per second [48].

One of the key features of BlazePose, and by extension of Google MediaPipe
Pose (GMP), is the ability to detect a higher number of landmarks (33) compared
to the standard COCO topology, which provides only 17. The ability to track
a greater number of landmarks, without significantly compromising processing
speed, makes this model particularly suitable for detecting the position of specific
body parts, such as hands, feet and face. To ensure computation speed, the model
operates under the assumption that the face is always visible, so as to quickly detect
it and obtain a region of interest (ROI) immediately usable to identify the complete
tracking of the landmarks [49, 44]. GMP derives the third spatial coordinate
(depth, z) using a variant of the BlazePose model that integrates information from
the GHUM model. Initially, BlazePose outputs 33 two-dimensional coordinates;
Google MediaPipe Pose then incorporates data from GHUM [50] to generate a
personalized 3D model of the human body, adapted to the 2D landmark positions,
thereby producing full 3D coordinates. This model is available in three different
versions: lite, full and heavy, which are characterized by a progressive increase in
accuracy at the expense of inference speed [51].

The model output is represented by a 33x4 array [52] which includes:

« World coordinates (x, y, z) : expressed in meters and referenced to an
origin located at the center of the pelvis.

« Visibility: a value in the range [0.0, 1.0] that indicates the degree of visibility
(confidence) of each landmark in the analyzed frame.

An example of the extracted tracking model is shown in Fig. 2.1.

Google MediaPipe Pose has been used as a pose estimation method in several
biomedical analyses, such as posture [53] and gait analysis [54], due to its ease
of use and low computational requirement. Its real-time processing capability,
simplicity, and cross-platform compatibility make GMP particularly suitable for the
development of exergames. Moreover, the ability to easily integrate these models
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via Python, allows the data produced by the system to be used in popular game
engines, such as Unity, thus facilitating the creation of interactive and functional
exergames. An additional strength lies in the specific predisposition of GMP to
single-person tracking, although multi-person tracking is also supported. For these
reasons, Google MediaPipe Pose was selected as the pose estimation model for the
exergame used in this thesis.
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Figure 2.1: MediaPipe Pose landmarks [52]

2.2.2 The importance of validation

To obtain clinically relevant information, especially in the context of rehabilitation,
it is essential to have reliable and sufficiently accurate data. Telerehabilitation
has the significant advantage of allowing, through specific tools such as exergames,
continuous monitoring of patients and constant acquisition of objective data, thus
reducing the need for frequent in-person assessments. In the specific case of the
exergame used in this study, the goal is not to achieve the extremely high precision
typical of specialized motion analysis laboratories, but rather to provide meaningful
support to the rehabilitation process by capturing basic kinematic data. For
example, if a given rehabilitation exercise requires a minimum arm flexion of 60°,
the system must be able to produce a value close to this reference in order for
the assessment to be considered useful, reliable and clinically relevant. Validation
against an accurate reference system (gold standard) allows to quantify the extent
of the measure differences and to determine the level of reliability of the data
produced by the exergame to perform functional assessments.

Several studies have addressed this issue. Amprimo et al. [28] validated the
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Google MediaPipe Hand (GMH) hand tracking system, both in the standard version
and in an enhanced version developed by the same authors (GHM-D). The study
highlighted strong temporal and spectral coherence with respect to gold standard
systems, as well as greater accuracy in the optimized version. These findings
demonstrated that the enhanced version is also applicable to clinical assessments,
in particular in the functional assessment of the fine hand movements in subjects
with neurological disorders.

Dill et al. [55] investigated the accuracy of the MediaPipe Pose system during
the execution of common physical exercises, such as squats and push-ups. The
results show that the accuracy of GMP is strongly influenced by the camera angle
with respect to the subject; the system provides reliable data in optimal record
conditions, while deviations from these conditions significantly increase the error.

Lafayette et al. [56] assessed the accuracy of joint angle estimation using both
RGB-D and RGB cameras in combination with GMP. The authors examined
simple exercises, such as knee flexion and extension, as well as shoulder flexion,
extension, abduction, and adduction. Results indicated that the exclusive use of
RGB cameras yielded joint angle estimates more consistent with gold standard
measurements, whereas RGB-D configurations produced less satisfactory results.

In conclusion, validation represents an essential step to fully understand the
potential and limits of the adopted solution. This process is particularly important
in the rehabilitation field, where consistent and reliable data are essential to
effectively support the clinical decision-making process.
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Chapter 3

Methods

3.1 "Palestra": An Exergame for Upper Limb
Rehabilitation

The following paragraph aims to provide a general description of the exergame
employed in this thesis project. The previous prototype of the "Palestra" exergame
was enhanced by the CNR-IEIIT and was designed to support upper limb mobi-
lization and enable quantitative movement analysis, in order to detect anomalies,
improvements, or deteriorations in the patient’s motor performance resulting from
the functional decline associated with Parkinson’s disease and ageing.

Hardware and Software Requirements

The video game was developed using the Unity framework (editor version 2021.3.18)
and programmed in C# (version 7.0). Regarding the hardware requirements, the
game was initially developed and tested on a desktop computer with the following
technical characteristics:

o Operating system: Windows 10;

e Processor: Intel® Core™ i7-10700 CPU, 2.90 GHz;

« RAM: 32 GB;

o GPU: NVIDIA GeForce RTX 2070 Super;

o External camera with a resolution of 1920x1080 pixels, 30 fps;

To verify the correct functioning and performance on other devices, the game
was subsequently installed on a laptop computer with similar characteristics, except
for the operating system (Windows 11) and the camera used (integrated camera
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with a resolution of 3840x2160 pixels, 60 fps). This latter setup was used to acquire
the data employed in the subsequent analyses, as described in Section 3.4.

The tests carried out on both hardware configurations did not reveal any
noticeable latency during gameplay, thus satisfying the requirement of real-time
motion capture. This observation is consistent with findings in the literature, which
report that exergames are generally tolerant to latencies in the range of several
hundred milliseconds without compromising the user experience. [57] Regarding
software, the exergame is composed of two main modules: one developed within
the Unity environment, where the scenes and the logic for game management and
control were implemented, and another developed in Python, dedicated to motion
tracking using the Google MediaPipe Pose library (version 0.10.13, see Section
2.2.1). The two modules communicate through the pipeline illustrated in Figure
3.1

Python Unity

—
Video Acquisition from . .
Exergame interaction
camera
/ Data exchange pipe

g s !

Model estimation with Mediapipe 3D Avatar animation
Google MediaPipe joints

Figure 3.1: Communication pipeline between Python and Unity.

As shown in Figure 3.1, the Python component acts as the server, while the
Unity component acts as the client. Specifically, the Python module acquires
and processes the video stream from the camera, extracting from each RGB frame
the two-dimensional positions of 33 anatomical reference points (landmarks), as
illustrated in Figure 3.2. These positions, expressed as 2D coordinates normalized
to the image resolution, are then used to derive the three-dimensional positions
(world landmarks) of each point, relative to the center of gravity of the body,
approximately located at the midpoint between the hip landmarks in the pelvic
region. These three-dimensional coordinates are absolute, independent of the image
resolution, and expressed in meters. Although the x and y coordinates have good
accuracy, as they are located on the image plane, the z coordinate, representing
the depth, is only an estimation made by the model.

The adopted reference system is defined as follows:

e The x coordinate increases toward the right;
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e The y coordinate increases upward;

e The z coordinate is positive when the landmark is located in front of the plane
containing the body’s center of gravity, and negative when it is behind.

All the 33 landmarks are estimated for each frame, then packaged and transmitted
to the Unity module, which uses them to animate the game avatar in real time
based on the user’s movements. To optimize animation performance, some less
accurate landmarks, such as those corresponding to the hands and feet, are excluded.
Consequently, the avatar animation of the upper and lower limbs is limited to the
wrist and ankle landmarks, respectively. For facial animation, a single landmark is
used, calculated as the midpoint of all detected landmarks of the face.

Figure 3.2: Landmarks extracted by Google MediaPipe.
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Description of the Game Environment

The Unity module manages the game environment and enables interaction with
the elements contained within it. The exergame was developed to be controlled
through simple upper limb movements performed by the subject under evaluation.
However, for user registration and for the configuration of accessibility settings,
such as the impaired limb, game mode, and difficulty level, the assistance of an
external operator, typically a caregiver is required. The game interface was designed
to be simple and intuitive, specifically tailored for users with little or no prior
experience with video games or technology in general. Since the main goal of the
game is to promote upper limb mobilization, the interface is deliberately kept free
of unnecessary elements, thus minimizing potential distractions.

From an implementation perspective, the exergame is mainly structured around
a central scene named Palestra, in which the animated avatar is displayed based
on the three-dimensional landmarks received from the Python module. This main
scene was designed to be consistent with the exercises to be performed, recreating
a gym-like environment using free assets available on the Unity store, such as
dumbbells, mats, and generic fitness equipment (see Figure 3.3). The central area,
intended for avatar placement, is deliberately kept free of additional elements to
avoid visual interference with the execution of the exercise. In addition to the main
scene, the game includes secondary scenes in the form of semi-transparent panels,
which allow the user to log in and configure various gameplay modes, while keeping
the main scene visible in the background.

Ripetizioni O

Figure 3.3: Main scene "Palestra" with the Avatar inside.

As previously described, the main scene features the avatar, which replicates the
user’s movements in real time. To prevent delays in graphical rendering, an avatar
made of simple three-dimensional elements (spheres and lines) representing joints
and limbs was chosen, simulating a simplified version of the human skeleton (see

19



Methods

Figure 3.3). In total, the avatar consists of 15 spheres, each linked to a corresponding
three-dimensional landmark received from the Python module, enabling real-time
animation. The head is represented by the largest sphere and is animated using
a landmark obtained as the midpoint between those detected on the user’s face.
To avoid confusion between the right and left sides, the avatar is mirrored relative
to the player. Furthermore, the spheres representing the hands, connected to the
wrist landmarks, are color-coded: blue for the left hand and red for the right hand.

Figure 3.4 illustrates the configuration panel. This setup, usually performed by
the operator or caregiver, allows the user to specify the following options:

e Interaction hand: This item indicates the hand the patient will use to
interact within the game scenes, for example to initiate an exercise. This
typically corresponds to the less impaired limb.

o Difficulty level: This item defines the minimum angle that the limb must
reach to register a complete movement. Since different levels of impairment
may be present between the arms, difficulty levels can be configured separately.

« Game mode: the exergame offers two operational modes:

— Timed: This mode defines a time window (in seconds) during which the
subject must perform as many repetitions as possible. This setting does
not differentiate between arms or exercise type.

— Repetitions (default): This mode defines the minimum number of repe-
titions for each exercise to be completed within a time window defined
as 3 seconds per repetition. For example if 5 repetitions are selected, the
exercise will last 15 seconds.

o Control mode: two control options are available:
— Automatic control (default): This mode allows the subject to move his

arms freely without specific constraints.

— Manual control: In this mode an operator determines when and which
movement should be performed, using visual cues. This mode is particu-
larly useful for assessing the cognitive function of the subject.

The main scene features a graphical user interface (GUI) designed to assist the
patient through several elements:

« Central textual elements, including an upper section (for immediate in-
structions) and a lower section (to direct attention during the exercise).

« Lateral text elements, which display auxiliary information (e.g., on the left:
exercise duration and repetition count; on the right: partial score).
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Temporary textual elements, such as the initial countdown and the final
score.

Auditory cues, essential for providing immediate feedback on the execution
of the exercises.

Visual cues, such as colored arrows indicating which arm to move, are
particularly useful in simultaneous or alternating modes or when the game is
set to manual mode.

Interactive elements, such as the green cube used to initiate the countdown
and start the exercise. If the user is unable to activate it autonomously, the
operator can start the session manually.

Operator controls, including buttons to interrupt the session, skip an
exercise, or return to the configuration screen.

CONFIGURAZIONE

Alzate Frontali

Mano di interazione [ZHLTIE Alzate Laterali

Difficolta Sistro TN g

Difficolta Destro LR
Modalita B Atempo @ Ripetizioni
Tempo massimo [ Destro (singolo) I
Sinistro (singolo) _
Simultanee _
Alternate _

Controllo [@ Automatico [l Manuale

Figure 3.4: Configuration panel.

3.1.1 Types of Proposed Movements, and Motor and Cog-

nitive Aspects

The exergame was primarily developed to stimulate motor functions through
repetitive movements of the upper limbs. In addition to promoting joint mobility,
it was also designed to train motor control and coordination. Specifically, the
exergame includes the following exercises:

o Frontal arm raises: starting from an upright resting position with the arms
extended alongside the body, the user raises the arms forward and then returns
them to the starting position.

21



Methods

o Lateral arm raises: also starting from an upright resting position with the
arms at the sides, the user raises the arms laterally and then returns them to
the initial position.

Each exercise can be performed in one of four execution modes:

o Single right arm: the user raises only the right arm.
« Single left arm: the user raises only the left arm.
o Simultaneous: the user raises both arms at the same time.

o Alternating: the user raises the right and left arms alternately.

Single arm raises are primarily designed to stimulate control and mobility of
the affected limb, while simultaneous and alternating raises are also designed to
enhance motor coordination.

As anticipated, the "manual" control mode, managed by the operator, provides
an opportunity to further stimulate the cognitive functions of the patient. In
this mode, the patient must perform specific movements indicated by visual cues
represented by arrows that appear in the main scene. The operator decides not
only when to activate the visual cues, but also, in the alternating mode, which
cue (right or left) to display. Therefore, this mode enables the evaluation, for
example, of the patient’s reaction times, i.e. the time span between the visual
cue and the start of the corresponding movement by the patient. In this way, in
addition to motor stimulation, attention, planning and problem solving skills are
also stimulated, which are the distinctive elements of cognitive training.

A key feature of exergames is the reward system associated with the correct
performance of the assigned tasks: for each correctly performed movement, the
user earns 100 points, while for each incorrectly performed movement, 25 points are
deducted. The user’s final score corresponds to the sum of the points obtained for
each individual movement, and at the end of the exercise a panel with the overall
score is displayed (see Figure 3.5).

The reward system represents a fundamental component in the proper design
and implementation of an exergame, as it can enhance various aspects associated
with the patient’s performance, in particular [58]:

o Motivation: the reward system enables the user to experience a sense of
personal satisfaction and achievement, promoting a stronger inclination to
continue the activity.

» Reinforcement: rewards encourage the user to explore and adopt new strate-
gies and approaches to the assigned task, thereby increasing the probability of
achieving the predefined therapeutic goals.
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Figure 3.5: Scoring panel.

o Feedback: rewards serve as immediate feedback, helping the user understand
whether the exercise is being performed correctly, thus promoting learning
and self-correction.

« Engagement: the use of reward strategies increases the level of user en-
gagement, encouraging active and consistent participation, and, consequently,
amplifying the therapeutic benefits achieved through the exergame.

3.1.2 Output

The exergame generates two output files in JSON format: the first contains all
information related to the skeletal model obtained through Google MediaPipe
Pose, while the second contains summary data regarding the exercise performed.
Data recording begins when the game countdown starts, either through interaction
with the green cube by the patient or through direct activation by the operator.
The initial 3 seconds of the countdown, during which the patient maintains a
static position, are also included in the recording, as this data may be useful for
subsequent analysis of postural features. Recording ends upon completion of the
exercise or when the time limit expires.
Specifically, the file related to the skeletal model includes:

e Normalized coordinates: x, y and z coordinates derived from the position
of the landmarks in the video frame. These coordinates, normalized with
respect to the resolution of the camera used, are strictly dependent on the
hardware employed.

« World landmarks: absolute coordinates, expressed in meters, of the land-
marks relative to a reference system centered at the pelvis.
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» Confidence: a coefficient between 0 and 1 indicating the reliability of the
estimated position of each landmark.

o Timestamp: the time assigned to each acquired frame, measured from the
beginning of the recording.

o FramelD: a progressive identifier assigned to each frame processed by the
Python component, useful for detecting any frame loss during acquisition.

The file containing the summary information of the exercise includes:
o Patient ID and Session ID: unique identifiers for the test performed.
o Start and end time of the exercise.

o Exercise ID:

— 0: single right arm.
— 1: single left arm.
— 2: alternating execution.

— 3: simultaneous execution.
e Movement plane: frontal or lateral.
e Selected difficulty level.
o Game time: time taken to complete the exercise.
o Number of correct movements and errors.
o Exercise completion indicator.
o Operator interruption indicator.

« Time expiration indicator, in case the exercise is interrupted due to exceeding
the predefined time limit.

o Involved body part: right, left, alternating, or both.

These JSON files, particularly the one related to the skeletal model, serve as
the basis for the analyses conducted in this thesis project.
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3.2 Automated pipeline for joint signal analysis

The aim of the analysis is to extract joint angle signals from the landmark trajec-
tories obtained through the exergame. In order to generate high-quality signals,
suitable for deriving parameters that can provide an accurate assessment of motor
task execution, an automatic purpose-built processing pipeline has been developed.

This pipeline is specifically optimized for processing the data collected by the
game and has been designed to allow the extraction of both angular signals and
outcome parameters. The analysis was performed using MATLAB R2024b, chosen
for its flexibility in numerical computing and its extensive library of built-in
functions.

The input data used are the JSON files and include the estimated positions
of the body landmarks over time, along with a corresponding timestamp vector
(see Section 3.1.2). The developed pipeline includes the following main steps:
data loading, application of a moving median filter, resampling, low-pass filtering,
computation of the 3D vectors representing the selected body segments, joint angle
calculation, signal segmentation and extraction of the outcome parameters. The
entire pipeline process is schematically illustrated in Figure 3.6.

Each processing step is applied to all signals; however, specific differences exist
regarding algorithm parameters used in the signal pre-processing phase, such as
the size of the moving median filter window. Additional differences arise during
the feature extraction and the outcome computation stages, depending on the
type of signal being analyzed. In particular, bilateral arm raise tasks require
different segmentation strategies and distinct outcome metrics to be computed.
The choice of employing different parameter values is justified, for example, by the
qualitative differences observed between frontal and lateral movement acquisitions.
In particular:

o Lateral arm raises produce higher-quality signals, as movement occurs mainly
in the plane parallel to the camera’s point of view.

o Frontal arm raises, on the other hand, exhibit lower signal quality and tend to
be more affected by impulsive noise, as the movement occurs along the plane
perpendicular to the camera (z direction). Since this component is estimated,
it is more susceptible to errors, artifacts and noise, further accentuated by
self-occlusion phenomena.

Due to the significant differences in the signal quality between the two types
of executions, it was necessary to adapt specific parameters in the parameter
estimation algorithms, which will be described in detail in the following paragraphs.
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Figure 3.6: Signal processing pipeline.

Load JSON files

In the first step, the JSON files generated by the exergame are loaded using the
JSONLab toolbox [59]. To quickly identify any potential issues in the acquired
data, basic information is computed to the screen, including the overall duration of
the exercise (in seconds), the total number of recorded frames, and the average,
minimum, and maximum frame rate. Regarding joint angle calculation, not all the
data contained in the JSON files are necessary. Therefore, a refined data structure
is extracted, containing only the following data: world landmarks, visibility and
timestamp. Visibility information was crucial in the design of the pre-processing
algorithms and in identifying the technical limits of the exergame. However, it
was not integrated as a final clinical outcome parameter, given its limited clinical
relevance.

An example of angular trajectories corresponding to the single arm raise exercise,
in lateral and frontal directions, is shown in Figure 3.7.

As shown in the graphs, there is a significant difference in spatial coordinates
between the lateral and frontal tasks. In lateral raises, the movement occurs
primarily in the plane parallel to the camera view; as a result, the x and y
coordinates exhibit the largest variations. In contrast, the z coordinate has smaller
fluctuations, which are likely attributable to minimal movements along z direction.
In frontal raises, however, the z coordinate shows a greater excursion than the x
coordinate, as the movement occurs along the axis perpendicular to the camera
plane. The associated signal is more irregular than in the lateral movements, often
containing spikes caused by occlusion and suboptimal wrist positioning relative
to the camera. These conditions make it difficult for MediaPipe Pose to perform
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an accurate estimation of z (depth) component; for this reason, it is essential to
consider this factor to adequate data pre-processing.

X i - Lateral raise X coordinate - Frontal raise
T T T T T

02 NSNS AT L

. . . . I I
0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800 900
samples[#] samples[#]

Y coordinate - Lateral raise Y coordinate - Frontal raise
T T T T T T

I h I . =2 | I . 1 .
0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800 900
samples[#] samples[#]
Z coordinate - Lateral raise
T T T

Eoal | Eoa
02 1 °2r
mwvwwww oY \ / . L

| I
0 100 200 300 400 500 600 700 800 900 [ 100 200 300 400 500 600 700 800 900
samples[#] samples[#]

Z coordinate - Frontal raise
T T T

Figure 3.7: Comparison of raw wrist trajectories in lateral and frontal left arm raises.

Moving median filter

To reduce impulsive noise, typically characterized by isolated peaks (spikes), espe-
cially in the z-coordinate, a moving-window median filter was implemented using
the MATLAB built-in function medfilt1. The use of the median filter is motivated
by the hypothesis that random signal fluctuations can be interpreted as outliers,
i.e. extreme values isolated from the surrounding data points. Since the median
is known to be less sensitive to outliers than the mean, the median filter proved
to be effective in removing spikes. An additional advantage of the median filter
is that, in signals where there are no significant impulsive fluctuations, such as in
the case of the x- and y-coordinates, it produces only a minimal smoothing effect,
comparable to that of a moving average filter. However, the latter approach is not
effective for the z-coordinate, due to its high sensitivity to outliers

For the previous mentioned differences in signal quality, it was necessary to
tailor the size of the moving window of the filter to the specific type of signal
processed. This choice was made to avoid excessive signal smoothing, which would
compromise the performance of the segmentation algorithm and, consequently,
hinder the accurate extraction of temporal parameters. These parameters are, in
fact, strictly dependent on the morphological structure of the segmented signal.
Therefore, for the lateral movement tasks, whether involving a single arm or both
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arms, a window size of 8 samples was chosen. In contrast, for all tasks that involve
frontal arm raises, a larger window size of 16 samples was used.

Resampling

The signal produced by the exergame is not characterized by a constant frame rate.
The analysis of the timestamps revealed significant variability in the instantaneous
frame rate, ranging from 25 to 40 frames per second (fps), with an average generally
falling between 30 and 34 fps. This variability is mainly influenced by the hardware
characteristics of the system on which the exergame is executed, as well as by the
instantaneous computational load of the CPU and graphic cards. For example, if
the system runs more applications simultaneously, the average frame rate tends
to decrease. Various operating conditions were therefore tested, such as running
background applications or using the laptop without an active power source, finding
a decrease in the average frame rate, which, however always was greater than or
equal to 30 fps.

To standardize the sampling frequency, the signals were resampled at 50 Hz
using linear interpolation, implemented via MATLAB’s built-in function interpl.
The decision to resample the data at 50 Hz was motivated by the following factors:

o This frequency is sufficiently close to the observed average frame rate (~35
fps), thereby minimizing the extent of interpolation applied to the signals;

o Resampling at high frequency would have unnecessarily increased the size of
the signals, causing potential artifacts and a general slowdown in the execution
of subsequent processing algorithms;

o A very high temporal resolution is not required to extract clinically relevant
kinematic and temporal parameters from the acquired signals.

The use of linear interpolation proved effective, as the overall morphology of the
signals remained largely unaltered in all the cases analyzed.

Low-pass Butterworth filter

To further attenuate the residual high-frequency noise, the signal bandwidth was
limited to 10 Hz, applying a fourth-order Butterworth low-pass filter. The optimal
filter order was determined using the built-in MATLAB function buttord, while the
filtering itself was performed using the butter function, also available within the
MATLAB environment.

Following the application of the moving-window median filter, resampling to 50
Hz and subsequent low-pass filtering, the resulting trajectories exhibit a significant
reduction in noise, while preserving their essential morphological features.
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To visualize the effect of signal pre-processing phase, the raw trajectory was
resampled to match the time baseline of the filtered signal. This allows a direct
comparison of the signal quality before and after the complete pre-processing block
(median filtering, resampling, and low-pass filtering), as shown in Figure 3.8.

As shown in the figure, the z-coordinate exhibits a smoother morphology after
the preprocessing steps, expecially in frontal movements while the other coordinates
remain approximately unchanged.

X coordinate - Lateral raise X coordinate - Frontal niirse
z T

— Unfiltered (resampled)
— Filtered
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Timels] Timels]

Y coordinate - Lateral raise Y coordinate - Frontal raise
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Z coordinate - Lateral raise Z coordinate - Frontal raise
T T
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Figure 3.8: Comparison between the resampled unfiltered signal (blue line) and the signal (red
line) after preprocessing (median filtering, resampling, and low-pass filtering). Resampling was
applied to the raw signal solely to align the time axes, allowing for direct visual comparison.

Computation of body segment vectors

In order to define and compute a joint angle, it is necessary to first define the
two vectors between which the angle is measured. Each vector is calculated as
the difference between the spatial coordinates of the two anatomical landmarks
defining the body segment of interest. Table 3.1 presents the vectors considered in
the analysis, along with the corresponding landmarks used for their computation.
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Vector name | Landmarks used for vector computation
Right arm Right shoulder (11) — Right wrist (15)
Right trunk Right shoulder (11) — Right hip (23)
Left arm Left shoulder (12) — Left wrist (16)
Left trunk Left shoulder (12) — Left hip (24)

Table 3.1: Identified vectors and corresponding anatomical landmarks used for angle computation.
Numbers in brackets refer to the landmark indices as shown in Figure 2.1.

Estimation of joint angles

Once the vectors have been defined, joint angles are computed, expressed in degrees,
using the following formula:

Q= arctan(wlxvzl>

V1 - Uy

Where |v; X vs] indicates the magnitude of the cross product between the two
vectors defining the joint angle (e.g., "right arm" and 'right trunk'), and v; - vg
represents their scalar (dot) product.

Figures 3.9, 3.10 and 3.11 show some examples of angular trajectories for both
lateral and frontal raises, performed with the right and left upper limbs.

As can be observed, all the trajectories relating to the lateral raises exhibit less
irregularities than the frontal ones (Figure 3.9), despite the latter were processed
using a median filter with a wider moving window. The most pronunced oscillations
tend to occur near the minimum and maximum points of the trajectories. This is
likely due to the relative stillness of the landmark during those intervals, making
the estimation of the z-component particularly sensitive and prone to fluctuation;
clearly observable also in the positional (meter-based) trajectories from which the
joint angles are derived.

In alternating raises (Figure 3.10), a transitory oscillation between two consecu-
tive repetitions can be observed, which is absent in the simultaneous task. This
deformation seems to be due to pose estimation inaccuracies that arise when one
limb is in motion while the other remains temporally stationary. This undulation
tends to be convex in the lateral task and concave in the frontal one.

The choice of the window size for the median filter was also made taking into
account this artifact; in fact, an excessive smoothing would shift the minimum of a
repetition too far from its corresponding peak, resulting in overestimated temporal
parameters during subsequent segmentation.

During simultaneous movements (Figure 3.11), the tracking is generally more
stable, likely because coordinated bilateral movement facilitates more accurate
estimation of the limbs’ 3D positions.
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Although the exergame was configured to execute 10 repetitions per exercise,
only 9 were saved, as the record ended when the angular threshold of the last
repetition was reached. In the specific case of alternating raises, the 10 planned
repetitions are equally divided between the two limbs (5 repetitions per limb), but
again, one repetition was not captured, leading to only 4 recorded repetitions for
the left limb. However, this behavior did not significantly impact the subsequent
analysis, as the absence of a single repetition did not compromise the extraction of
representative parameters.

In frontal raises, the system sporadically misidentifies a single movement as
multiple repetitions, thus reducing the actual number of repetitions registered. For
example, even when 10 repetitions were configured, sometimes a reduced number
of repetitions may appear in the output: one lost due to the saving issue and
the other miscounted, causing the task to end prematurely. Nevertheless, these
sporadic irregularities did not affect the integrity of the analysis, as the extracted
parameters remained consistent and representative across all subjects.
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Figure 3.9: Angular trajectories during single-arm lateral and frontal raises. The trajectories
obtained during lateral raises are characterized by a more regular morphological profile compared
to those from the frontal raises, likely due to the more favorable tracking conditions when the
movement occurs within the plane of the camera.
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Figure 3.10: Angular trajectories during alternating raises. Alternating lateral raises are
characterized by convex transient oscillations (+) between repetitions, while alternating frontal
raises exhibit concave (-) ones. These artifacts are likely related to pose estimation inaccuracies
during asymmetric arm movement.
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Figure 3.11: Angular trajectories during simultaneous raises. Simultaneous raises are character-
ized by smoother profiles compared to alternating raises, likely due to more stable pose tracking
during symmetric arm movements.

32



Methods

Signal segmentation

Starting from angular trajectories, individual repetitions are isolated to extract rep-
resentative and descriptive outcome parameters of the performed movement. Signal
segmentation is carried out by identifying characteristic points in the trajectory,
specifically the local maxima and minima.

Maxima detection

In the first stage, signal peaks (local maxima) are identified using the MATLAB
built-in function findpeaks. To ensure an accurate selection, i.e., one maximum per
repetition, it is necessary to properly set the function’s parameters: MinPeakDis-
tance, MinPeakHeight and MinPeakProminence.

To obtain an initial estimate of these parameters, findpeaks function is initially
applied, by setting MinPeakHeight to the mean of the signal plus 80% of its standard
deviation. In this way, three distinct vectors are obtained: the first containing
the value of the identified maxima, the second relating to their temporal position
(expressed in samples), and the third containing the prominence (a measure of
how much each peak stands out from its surroundings, computed as the vertical
distance between the peak and its lower neighboring minima) [60].

In the second stage, findpeaks function is applied again, this time with all final
parameters properly set, as summarized in Table 3.2. The complete procedure for
final peak identification consists of the following steps:

1. Compute MinPeakHeight as:

MinPeakHeight = mean(signal) + 0.8 - std(signal)

2. Initial application of findpeaks function using only MinPeakHeight, obtaining
a first provisional set of maxima (value, position, and prominence).

3. Estimate MinPeakDistance as the average number of samples between consec-
utive provisional maxima, computed from the differences in their positional
indices.

4. Final application of findpeaks using all three parameters: MinPeakHeight, Min-
PeakDistance, and MinPeakProminence (as detailed in Table 3.2), producing
a refined set of maxima while minimizing false positives.
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Parameter Computation Definition
Minimum height that a peak must exceed
to be considered valid
Minimum distance (in samples) required
between consecutive peaks
Minimum prominence value required
for a peak to be considered valid

MinPeakHeight mean(signal) + 0.8 - std(signal)

MinPeakDistance 0.8 - PeakDistance

MinPeakProminence 0.5 - max(prominence)

Table 3.2: Parameters used in findpeaks function.

Minima detection

Once the signal maxima have been identified, a custom algorithm, referred to as Ul-
timate__min, has been implemented to detect the corresponding local minima. This
algorithm allows to identify two minima for each previously identified maximum:
one preceding (on the left) and one following (on the right).

This procedure requires the following inputs:

o the angular trajectory of interest;

» the vectors containing the values and positions of the previously identified
maxima;

« a spatial threshold value chosen properly (default value: 40°).

The algorithm returns two vectors as output: one containing the indices (posi-
tions) of the detected minima, and the other containing their corresponding angular
values.

The objective of the algorithm is to select two minima for each maximum,
respecting two fundamental constraints:

« Spatial constraint: the angular value of the selected minimum must be less
than or equal to the defined threshold (default: 40°);

o Temporal constraint: the selected minimum must be temporally close to
the reference maximum. Specifically, the distance must not exceed 40 samples
(equivalent to approximately one second, considering a sampling frequency of
50 Hz).

The search for minima is performed using the built-in findpeaks function. Since
this function is designed to identify local maxima, the angular signal is first inverted
to enable the correct identification of the minima.

The detailed procedure includes the following steps:

1. Signal inversion: the angular signal is inverted. A preliminary threshold
is then computed as the mean of the inverted signal and used as the Min-
PeakHeight parameter in the findpeaks function. This step yields a provisional
set of local minima.
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2. Preliminary candidate selection: for each previously identified maximum,
the two closest minima are selected, one to the left and one to the right.

3. Candidate evaluation:

o The first candidate (the closest minimum) is evaluated exclusively on
the basis of the spatial constraint (angular threshold). If it satisfies this
condition, it is immediately selected.

« If the first candidate fails the spatial constraint, the second candidate is
considered. This one is evaluated against both the spatial and temporal
constraints.

« If the second candidate satisfies the spatial constraint but not the temporal
one, it is discarded and the first candidate is selected as a fallback solution.

4. Tteration: the procedure described is repeated for each maximum present in
the signal.

This approach allows accurate and robust detection of local minima, minimizing
the likelihood of selecting spurious points due to signal noise or random fluctuations.
It is important to note that a single minimum may be shared between two adjacent
maxima (e.g., the right minimum of one peak may coincide with the left minimum
of the next).

The application of this segmentation procedure is shown in Figure 3.12.

At the end of this process, four vectors are obtained, containing the positions
and corresponding values of all maxima and minima, which serve as the basis for
the subsequent computation of the outcome parameters.
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Figure 3.12: Angular signal segmentation based on the detection of local maxima and minima.
The figure shows the shoulder joint angle trajectories during lateral and frontal single-arm raises,
with the peaks (red) and minima (green) used to delimit single repetitions.

3.3 QOutcome parameters

In order to evaluate the motor performance of subjects who engaged with the ex-
ergame, several kinematic parameters were computed from the previously obtained
angular trajectories. Each parameter was selected to capture a specific character-
istic of the movement, covering different aspects such as temporal information,
spectral content, spatial descriptors, and metrics related to velocity and motor
coordination.

Most of the kinematic parameters were extracted from the segmented sig-
nals. However, some specific metrics, such as the cross-correlation lag in bilateral
movements, were computed directly from the complete angular trajectory. These
parameters are not averaged across multiple repetitions, as they are not based on
segmentation. Nevertheless, these metrics provide useful functional information
and are therefore included in the overall assessment of the movement.

Generally, segmentation-based parameters were averaged across individual rep-
etitions in order to minimize variability introduced by the segmentation process
and to reduce the impact of transient signal fluctuations. These average values are
especially relevant for the clinical evaluation of motor function.

Moreover, certain parameters were calculated for each individual repetition.
Although these are not directly used for clinical evaluation, they were retained for
validation purposes, enabling the construction of a broader and more consistent
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dataset.

The outcome parameters described are common across all motor tasks, with
the exception of specific indices used exclusively in bilateral exercises to assess
inter-limb coordination.

In the following paragraphs, each outcome parameter will be described in detail,
grouped into two categories: the first related to unilateral-arm tasks, and the
second concerning bilateral exercises. A summary list of all parameters is provided
in Tables 3.3 and 3.4 to support quick reference and comparison.
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Domain Parameter Unit Description
High g{nf;htUde deg Mean and SD of maximum angles
Angular Low l(klrjghtude deg Mean and SD of minimum angles
Range of Motion de Mean and SD of angular excursion
(ROM) & between max and min
Over-Reaching de Mean and SD of peak value exceeding
amplitude (OR) J a threshold
Peak-to-Peak Time . .
Temporal (PPT) S Time between adjacent peaks
Peaks Per Minute s ) .
(PPM) Peaks/min Number of peaks per minute
. Raising Velocity Mean and SD of speed during raising
Velocity based (RV) deg/s phase
Peak Frequency Frequency corresponding to maximum
Spectral (PF) Hz power in the PSD

Table 3.3: Unilateral outcome parameters divided by their relative domain. A brief description
and their unit are also reported.

Domain Parameter Unit Description
High Amplitude deg Difference between HAj.; and
Angular Difference (AHA) HA ight
Low Amplitude do Difference between LA.g and
Difference (ALA) & LA ight
Range of Motion do Difference between ROM,g and
Difference (AROM) & ROMyight
Inter-peak Interval < Time difference between consecutive
Temporal Difference (IPID) peaks of left and right arms
Peaks Time Lag Average time difference between the
S occurrences of peaks in left and right
(PTL) arms
. Temporal offset at which the
Cross—COélé%}jl tion Lag S cross-correlation function is
( ) maximum
Raising Velocity deg/s Difference between the mean raising
Velocity based Difference (ARV) velocity of each arm
Mean Velocity deg/s Difference between the overall mean
Difference (AMV) & velocity of each arm

Table 3.4: Bilateral outcome parameters divided by their relative domain. A brief description
and their unit are also reported.
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3.3.1 Unilateral Outcome Parameters
High Amplitude

The High Amplitude (HA), expressed in degrees, represents the average of the peak
joint angles reached by the subject across all repetitions of a given movement. This
parameter is used to evaluate the subject’s ability to adequately raise the upper
limb and is particularly informative when compared with the target angle required
for the correct task execution.

The value is computed by identifying the maximum peaks using the segmentation
algorithm previously described, and calculating their arithmetic mean.

The non-averaged (i.e., single repetition values) values of this parameter is used
exclusively for validation purposes.

Low Amplitude

The Low Amplitude (LA), also expressed in degrees, represents the average of the
minimum joint angles reached by the subject during the execution of the various
repetitions of the task. Ideally, this value should be close to zero (or to a possible
signal’s baseline offset), and it reflects the subject’s ability to fully complete each
movement cycle without employing compensatory strategies, such as keeping the
limb raised between one repetition and the other.

The calculation is done by identifying the local minima with the segmentation
algorithm previously described, and subsequently calculating the arithmetic mean.

The non-averaged version of this parameter (i.e., single repetition values) is used
only for validation purposes.

Range of Motion

Range of Motion (ROM), expressed in degrees, quantifies the average angular
excursion performed by the subject during the task execution. An high ROM value
indicates a good motor ability to correctly perform the exercise, while lower values
may reflect potential motor limitations.

This parameter is computed as the average of the differences between each
maximum peak and its immediately preceding local minimum (the minimum on the
left). The use of the left minimum is justified by the fact that this represents the
starting point of the movement of the single repetition. Since ROM is calculated
as a difference, any offsets present in the signal are effectively removed.

The version without average is used exclusively for validation purposes.
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Peak-to-Peak Time

The Peak-to-Peak Time, (PPT) expressed in seconds, represents the average time
interval between two consecutive angular peaks across all performed repetitions.
This parameter provides an indirect measure of movement execution speed: longer
intervals may reflect impaired motor performance or reduced coordination.

The value is obtained by averaging the time intervals between each pair of
consecutive maxima identified during the task.

The repetition-based version is used only for validation purposes.

Over-Reaching Amplitude

The Over-Reaching Amplitude (OR) parameter, measured in degrees, quantifies
the average amount by which a subject exceeds a predefined angular threshold
during task execution. This threshold was set at 50°, but it can be modified
according to specific clinical requirements. This parameter reflects the value of
motor impairment compared to the set threshold: higher values suggest better
motor condition.

The value is computed as the arithmetic mean of the difference between each
angular peak and the predefined threshold.

This parameter is also calculated individually for each repetition during the
validation phase.

Peaks Per Minute

The Peaks Per Minute (PPM) parameter indicates the frequency of repetitions
performed, expressed as the number of peaks detected per minute. It serves as
an indirect measure of movement speed and fluidity: higher values are generally
associated with better motor performance.

The formula used is the following:

Nmax

PPM = x 60

Here:
e Npayx is the total number of maximum peaks detected;

o T is the total duration of the exercise, expressed in seconds.

Raising Velocity

The Raising Velocity (RV), represents the average speed of raising the limb during
task execution. High values of this parameter indicate a good execution speed,
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while low values may reflect motor difficulties. This parameter, expressed in degrees
per second (deg) is computed as the average of the ratios between the ROM and
the required time to reach the angular peak starting from the preceding minimum
(i.e., the left minimum). The points used for this calculation are the same as those
employed in the ROM definition:

ROM;

max,z' - tmin left,i

1 N
"N
In this formula:

« ROM; is the Range of Motion of the i-th repetition;

o tmax, ¢ and tyn, ¢ are respectively the time instants of the maximum peak of
the i-th repetition and its preceding left minimum;

The non-averaged version of this parameter is used for validation purposes.

Peak Frequency

Peak Frequency (PF) represents the frequency corresponding to the maximum
power within the spectrum of the angular trajectory. It provides the dominant
frequency of the repetitions performed: higher values indicate faster and more
regular movements, while lower values could reflect slower executions or possible
pauses between repetitions.

To compute this metric, the power spectral density (PSD) of the angular signal
is calculated using the Welch method [61], applied on analysis windows of 250
samples. The parameter is expressed in Hz.

3.3.2 Bilateral coordination parameters

These parameters are computed exclusively for bilateral tasks, i.e., simultaneous and
alternating raises, since they serve as specific indicators to describe the coordination
between upper limbs movements. This aspect of motor perfomance is analyzed
through angular, temporal, and velocity-based metrics. These coordination metrics
are designed to complement the analysis of the parameters calculated individually
for each limb, providing a complete and in-depth assessment of the motor and
coordination skills.

High Amplitude Difference

The High Amplitude Difference (AHA) represents the difference between the mean
maximum amplitudes reached by the right and left arms during the execution of a
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bilateral task. This parameter, expressed in degrees, reflects the subject’s ability
to use both limbs symmetrically. Values close to zero suggest balanced motor
performance, while higher values may indicate impairment or reduced functionality
in one limb compared to the other. AHA is calculated as the absolute difference
between the mean values of the High Amplitudes of the right and left arms.

The non-averaged version of this parameter is used only for validation purposes.

Low Amplitude Difference

The Low Amplitude Difference (ALA), also expressed in degrees, represents the
difference between the mean minimum values reached by each arm during the
execution of a bilateral task. This indicator reflects the subject’s ability to control
the limbs during the final phase of the repetition. Values close to zero indicate a
balanced use of the limbs, whereas high values may suggest a reduced control of one
limb compared to the other. This parameter is calculated as the absolute difference
between the mean minimum amplitudes of the two limbs (|LAyean 1eft — L-Amean right|)-
The version relating to each single repetition is used for validation purposes.

ROM Difference

The ROM Difference (AROM) parameter quantifies the deviation between the
mean angular excursions (ROM) of each arm. Values close to zero indicate good
symmetry and effective bilateral motor control, while values tending to higher
values suggest the presence of one limb that fails to perform the movement as
completely as the other.

This parameter is computed as the absolute difference between the mean ROMs
of the two limbs.

AROM = |R0Mmean,lef‘n - ROMmean7right|

The single repetition version is used for validation purposes.

Inter Peak Interval Difference

The Inter Peak Interval Difference (IPID), expressed in seconds, quantifies the time
difference between consecutive peaks of the left and right arms during bilateral tasks.
It is an indicator of the subject’s ability to maintain temporal synchronization
between limbs. Values close to 0 indicate that the patient tends to perform
repetitions with temporal synchronization between the arms, while higher values
suggest a possible motor or coordination deficit. This parameter is calculated as
the absolute difference between the average Peak-to-Peak Time of the left arm and
the right arms:
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IPID = |PPTmean,left - PPTmean,right|

where PPT ean et a0d P PT can right Tepresent the average Peak-to-Peak Times
of the left and right arms, respectively.
The repetition-based version of this parameter is used for validation purposes.

Peak Time Lag

The Peak Time Lag (PTL) parameter measures the average time interval between
the occurrence of the angular maximum peak of one arm and the corresponding
peak of the controlateral arm. This metric, expressed in seconds, reflects the
subject’s ability to maintain proper inter-arm coordination with respect to the
required motor task. In alternating raises, a larger time interval between the
peaks is expected, while in simultaneous raises this interval should be minimal and
tending to zero. The parameter is computed using the following formula:

1 N
PTL = N Z ‘tmax,left,i - Zfmax,right,i’
=1

Where tmax left,i a1 tmax right,; denote respectively the time instants of the angular
maxima for the left and right arms, as identified by the segmentation algorithm.

Also in this case, the version calculated for a single repetition is used for
validation purposes.

Cross Correlation Lag

The Cross Correlation Lag (CCL), expressed in seconds, defines the temporal offset
at which the cross-correlation function, calculated between the angular trajectories
of the right and left arm, reaches its maximum value. This parameter provides
a global measure of bilateral coordination and does not depend on segmentation,
evaluating the overall synchrony between the two angular signals. In simultaneous
bilateral tasks, a CCL value close to zero is expected, while in alternating tasks,
CCL value should be similar to PTL parameter: deviations from these expectations
may indicate difficulties in maintaining the synchrony required by the motor task.

Raising Velocity Difference

The Raising Velocity Difference (ARV) parameter, expressed in degrees per second
(%), represents the disparity in the average speed with which the two arms are
raised during the task execution . A value close to zero indicates good symmetry and
bilateral motor coordination, while higher values suggest possible motor difficulties

43



Methods

in one of the limbs. It is calculated as the absolute difference of the average raising
velocities between the left and right arms:

ARV = |Rvmean,sx - Rvmean,dx‘

The single repetition-based of this parameter is used only for validation purposes.

Mean Velocity Difference

The Mean Velocity Difference (AMV), also expressed in degrees per second (%),
describes the absolute difference between the overall mean velocities of the two arms
calculated across entire duration of the angular trajectory. It is a global measure
of the symmetry of the execution velocity. Values close to zero indicate that the
subject performs the task with similar velocities for both arms, whereas higher
values may denote significant motor asymmetries. This parameter is computed as
the absolute difference between the overall mean velocity of the left and right arms.

3.4 Validation protocol

The quality, robustness, and reliability of the data collected through Palestra, are
key factors in assessing its limitations and potential applications. To investigate
these aspects, a comparison with the reference system was conducted, through
an agreement analysis between these two systems. For this purpose, five healthy
young adults were recruited, whose characteristics are summarized in Table 3.5.

Subject | Gender | Age | Height [m] | Weight [Kg] | Valid trials (Lateral/Frontal)
1 M 25 1.70 68 8/8
2 F 24 1.60 48 8/7
3 M 24 1.74 78 8/8
4 M 27 1.78 80 8/8
5 M 25 1.68 60 8/8

Table 3.5: Participant characteristics and respective valid trials acquired.

Experimental protocol

The reference system (i.e., the gold standard) employed was an Optitrack optoelec-
tronic system, composed of six infrared (IR) cameras (1280 x 1224 px resolution)
operating at a sampling rate set to 120 Hz. The system covered a working volume
close to 6 x 4 x 3 m. To enable motion tracking, a configuration of nine reflective
markers (15 mm in diameter) was applied to each subject, emulating the position of
the landmarks predicted by Google Media Pipe Pose (see Figure 2.1). Specifically,
two markers were placed on the shoulders, elbows, wrists and hips, and one more
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marker was positioned on the head. Subjects were required to wear neutral-colored,
tight-fitting clothing to minimize motion artifacts. Data acquisition was conducted
under controlled lighting conditions. An illustration of the markerization is shown
in Figure 3.13.

Figure 3.13: Example of marker placement. The subject is wearing neutral-colored and tight-
fitted clothes to minimize motion artifacts.

Validation recordings were performed simultaneously between the two systems,
following an acquisition protocol that required the execution of all movements, both
lateral and frontal, in every modality (single-arm right and left, simultaneous and
alternating raises). Each participant completed two consecutive sessions, separated
by a brief rest interval.

The exergame was configured in “controlled” mode, with a set of 10 repetitions
per task. A total of 80 trials were thus collected: 40 related to lateral tasks and
the remaining 40 to frontal tasks. Only one corrupted frontal trial was discarded
(the firts trial of subject 2), due to technical problems during the task execution;
therefore, 79 trials were included in the subsequent analysis. The data obtained
through the exergame will be referred to as MP, while the optoelectronic data will
be referred to as OPT.
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Data pre-processing

To allow an accurate comparison between the two systems, the pipeline described in
Section 3.2 was also applied to the OPT signal, with the following three exceptions:

1. Initial interpolation of trajectories. During task execution, occasionally
the tracking of some markers was lost due to occlusions caused by clothes during
movements, resulting in missing values (NaN) within the matrix containing
the world trajectories. To obtain complete and comparable signals, a linear
interpolation was applied via the MATLAB fillmissing function.

2. Downsampling. To standardize the sampling frequency between the two
systems, the OPT signals were downsampled (from 120 to 50 Hz) using the
MATLAB interpl functions, as described in the pipeline.

3. Temporal alignment. To determine the relative delay between the MP and
OPT angular trajectories, the finddelay function was used. Once the time
shift was computed, the two signals were realigned and subsequently their size
was equalized, based on the shortest one. The delay correction was essential
for computing error metrics and for the Bland-Altman analysis performed on
the entire trajectories.

Figure 3.14 illustrates examples of pre-processed and overlaid angular trajectories
are shown.

As shown in this figure, temporal alignment is nearly perfect, in both lateral and
frontal tasks; whereas spatial alignment reveals greater variability. In particular,
better spatial alignment is observed in lateral tasks, while frontal tasks tend to show
more variation, due to tracking difficulties and random fluctuations in the signals.
In some cases, the spatial alignment is highly accurate, i.e., in the first plot of the
second raw, but in some cases greater variability is evident. This variability may
depend on limitations in Google MediaPipe Pose tracking, potentially influenced
by factors such as the subject’s clothing, execution speed and anthropometrich
measures.

Finally, the same outcome parameters described above were extracted for the
two systems to create the datasets necessary for statistical analysis.

These parameters were calculated pursuing two different strategies, aimed at
evaluating the also robustness of the segmentation algorithm:

1. Applying the segmentation algorithm independently to both signals.

2. Using the segmentation derived from the OPT signal (i.e., the positions of its
maximum and minimum points detected) on the aligned MP signal.
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Figure 3.14: Aligned angular trajectories obtained during single left-arm raises, both lateral
and frontal. The first raw shows signals from Trial 1 of subject 1, while the second raw illustrates
trajectories from Trial 1 of subject 5.

3.4.1 Statistical Analysis and dataset creation

To assess the agreement between the two systems, a series of statistical analysis
were conducted, both on the full trajectories and on the extracted parameters. The
analyses were performed using Jamovi [62] and MATLAB.

Overall trajectories analysis

To conduct a robust concordance study on the entire trajectories, the initial static
phase of the signal (i.e., the first three seconds of the exergame recordings) was
removed, to avoid introducing bias into the computed parameters. The agreement
between the systems was evaluated with the following metrics:

« Root Mean Square Error (RMSE). This metric quantifies the mean
squared deviation between two measures, serving as an indicator of the overall
discrepancy.

1 N 9
N OPT _ gMP
RMSE_\INE:(GZ oMP)

=1

OOFT and OMP represent the angular values obtained from the optoelectronic
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system and with the exergame, respectively, at the i-th time point. This metric
is expressed in degrees.

« Percentual Root Mean Square Error (PRMSE). This metric is the
normalized version of the RMSE, expressed as percentage relative to the
reference signal (OPT).

1 N /pOoPT _ gMP 2
PRMSE = Nz (WPT) - 100

i=1

Analysis on extracted outcome parameters

For parameters extracted as mean values, as well as those derived on the entire
trajectory (e.g., the spectral parameters), the relative percentage difference,
RMSE and PRMSE between the mean OPT and MP values were calculated.
The aim of this analysis is to provide an initial and global overview of the final
system’s performance.

For each extracted parameter, descriptive statistics were performed, including the
mean, standard deviation, median, minimum, maximum values, sample
size and the p-value for testing the normality of the distribution. To assess the
concordance between the two measures, Bland-Altman plots were generated.
Subsequently, either the Pearson or Spearman correlation coefficient was
computed (depending on the data distribution), to analyse the correlation between
the two set of measurements.

The Bland-Altman analysis [63] facilitates both graphical and numerical compar-
ison between two measurement systems. The difference between paired observations
is displayed on the Y axis, in relation to their mean, which is shown on the X axis.
The plot includes three reference lines: the central line identifies the bias, defined
as the mean difference between the two systems, while the upper and lower lines
are the Limits of Agreement (LoA), indicating the interval within which the 95%
of the difference must be contained.

Dataset organization

Three main datasets were constructed for each performed analysis: one for the mean
parameter analysis, one for parameters computed with the standard segmentation
and one for parameters extracted using OPT-based segmentation. Each dataset
was further subdivided in function of the execution type (lateral and frontal) and
by the type of parameter analyzed (unilateral and bilateral parameters). Table
3.6 summarize the dataset division, reporting the number of samples in each
subset. Each subset is representative of a specific parameter, for example, one
subset for HA another for ROM, etc. As it can be observed, dataset sizes are not
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uniform, especially those related to frontal tasks, where certain repetitions were not
correctly detected. Some parameters, such as the PPT (time difference between
adjacent peaks) have a lower dimensionality than subset size, due to their analytical
definition. These dimensionalities are reported directly in Results chapter.

Dataset division | Mean parameters | Standard segmentation | OPT-based segmentation
Task type Lateral Frontal Lateral Frontal Lateral Frontal
Unilateral 60 59 440 420 440 420

Bilateral 20 20 130 129 130 129

Table 3.6: Overview of Dataset division. The subset size is reported, divided by analysis type
(Mean parameters, standard segmentation, and OPT-based segmentation) by execution type
(Lateral and frontal raises) and by parameter type (unilateral and bilateral).

3.5 Parkinsonian participants analysis

To conduct an initial real-world evaluation, data were collected from 12 parkinsonian
subjects, who present varying levels of impairment. Participants were recruited
at a local association of parkinsonian subjects involved in ELEVATOR project,
where they performed all the tasks under the supervision of a neurologist. In this
experimental test, exergame was configured in “controlled” mode, setting a limit of
five repetitions per task. Subjects were instructed to complete all the proposed
tasks, thus acquiring a total of 96 trials. However, 2 trials related to the alternating
lateral raises were excluded as the subjects were unable to complete the task. In
conclusion, the eligible signals are 94: 46 corresponding to lateral raises and 48 to
frontal raises.

All eligible trials were analyzed using the pipeline described in section 3.2, to
extract the outcome parameters reported in Tables 3.3 and 3.4. The trials were
analyzed separately by movement type (lateral and frontal raises) and task modality
(single-arm, alternating, and simultaneous raises).

Figures 3.15 shown angular trajectories obtained from a parkinsonian subject.

As can be observed, the trajectories maintain a great signal quality, even in
frontal raises. This may be attributed to the slower execution of the movement
compared to healthy subjects.
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Figure 3.15: Example of angular trajectories for single left arm lateral (top) and frontal (bottom)
raises, acquired from a parkinsonian partecipant.
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Chapter 4

Results

This section presents the results of the validation analysis, followed by a descriptive
overview of the parameters extracted from the parkinsonian subjects.

4.1 Overall 3D trajectories analysis

In this section, the trajectories obtained in each trial using the exergame and
the MediaPipe (MP) framework are compared with the corresponding trajectories
simultaneously acquired by the optoelectronic system (OPT). The comparison is
based on standard error metrics such as RMSE and PRMSE, in addition to the
evaluation of linear correlation using the Pearson coefficient.

The analysis is structured to provide insights at increasing level of detail. Initially,
all trajectories are considered, without distinguishing between movement directions
or task types. Subsequently, the analysis considered separately lateral and frontal
raises, and finally each individual task performed. This choice was employed
to highlight different behaviours of the MP tracking model according different
movement conditions

The first result presented regards the comparison between all the 119 3D
trajectories captured by both MP and OPT, during the exergame executions.

N | RMSE [deg] | PRMSE [%] p
119 | 9.040 £ 3.706 | 41.256 & 24.596 | 0.988 + 0.016

Table 4.1: Error metrics and Pearson correlation coefficient (mean+SD) evaluated over all
trajectories. N indicates the number of trials considered.

Table 4.1 presents the results of the statistical analysis performed on the angular
trajectories. From a first general comparison, the average value of the RMSE
computed across all the trajectories (both lateral and frontal) is 9.040 £ 3.706° .
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Considering that the average amplitude of the movements performed during the
tasks typically exceeds 90°, this error corresponds to approximately 10% of the
mean motion range.

The PRMSE value highlights higher percentage errors, accompanied by a signifi-
cant standard deviation, primarily due to the differences observed in the minimum
points of the angular trajectories. As illustrated in Figure 4.1, in some cases the
difference between the minimum values of the OPT and MP signals even exceeds
15°. For instance, if at the i-th time instant the OPT signal measure 12° and
the MP signal 30°, the PRMSE at that point, computed applying the formula
previously described, would be 150%, due to the small denominator (the OPT;
value). By contrast, at the maximum points, the denominator is larger, resulting
in lower instantaneous PRMSE values.

In general, the RMSE values suggest that the exergame provides reasonably
accurate estimates, also considering the intended application where a very high
precision is not required. However, the PRMSE indicates that caution is needed at
the minimum point of the signals. To conclude, the linear correlation coefficient
is close to 1, demonstrating that the trajectories tend to follow the same overall
trend.

Going into detail, it is possible to divide the trajectories into lateral and frontal
ones, computing the same error metrics separately.

Movement type | N | RMSE [deg] | PRMSE [%] p
Lateral 60 | 7.293 £ 3.423 | 36.658 £ 23.033 | 0.990 + 0.007
Frontal 59 | 10.816 £ 3.107 | 45.932 +25.436 | 0.971 £ 0.015

Table 4.2: Error metrics and Pearson correlation coefficient (mean+SD) evaluated for each
movement type. N indicates the number of trials considered

In relation to lateral raises, the RMSE values are lower compared to those
observed in frontal ones, and a similar trend is also noticeable in the PRMSE.
The Pearson correlation coefficient, although high in both cases, exhibits greater
values in the lateral tasks. These findings confirm that lateral movements are more
accurate than frontal ones.

The boxplots (Figure 4.2) further support the numerical results: lateral angular
trajectories are, on average, more accurate and present lower variability against
frontal ones, for both RMSE and PRMSE. The presence of outliers is evident in
the graphs: for RMSE these may be attributed to localized signal errors, while for
the PRMSE they can be explained by the denominator-effect previously discussed.
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Figure 4.1: Overlapped single-arm raise trajectories. The OPT signals (blue) represent the
reference system, while MP signals (red) are the estimated trajectories. The most pronounced
discrepancies are observed at the minima and maxima of angular trajectories. In the first raw are
reported an example of alignment for both lateral and frontal raises, where the minimum values
are relatively distant between the two signals. In the second raw, the alignment is nearly perfect,
with minimum values notably overlapped and maximum values closely aligned.
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Figure 4.2: Boxplots of RMSE (left) and PRMSE (right) for lateral and frontal movements.
Both metrics evidence greater accuracy in lateral movement, as highlighted by lower medians and

variability.
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Continuing with the analysis, the trajectories were further subdivided by task
type, to identify whether some exercises are more challenging to track and if this
results in less accurate trajectories.

Task (lateral) | N | RMSE [deg] | PRMSE [%] P
Single-arm 20 | 6.159 £2.767 | 27.769 £ 16.134 | 0.997 4= 0.004
Alternating 20 | 8.504 £3.711 | 52.751 £ 27.119 | 0.988 £ 0.007

Simultaneous | 20 | 7.215 £ 3.472 | 29.455 + 15.535 | 0.999 % 0.003

Table 4.3: Error metrics and Pearson correlation coefficient for each lateral task (mean+SD).
N indicates the number of trials considered.

Task (frontal) | N | RMSE [deg] | PRMSE [%] P
Single-arm 19 1 10.145 £ 3.458 | 41.223 £ 25.260 | 0.973 £0.014
Alternating 20 | 9.755 £2.434 | 50.224 £28.779 | 0.972 £ 0.015

Simultaneous | 20 | 12.516 £ 2.747 | 46.112 4+ 22.375 | 0.969 + 0.017

Table 4.4: Error metrics and Pearson correlation coefficient for each frontal task (mean+SD).
N indicates the number of trials considered.

Table 4.3 and Table 4.4 report the mean values and corresponding standard
deviations of the computed metrics, for all types of tasks performed, respectively
grouped as lateral and frontal raises.

In general, all error metrics are lower in lateral tasks compared to frontal ones,
confirming a better tracking performance in lateral movement. A marked difference
is observed in simultaneous raises, where the mean RMSE is 7.215 4 3.472° for
lateral movements, and raises to 12.516 4+ 2.747° in frontal ones.

Analysing the individual tasks, lateral raises exhibit the lowest RMSE in single-
arm movements (6.159 +2.767°), followed by simultaneous (7.215 £ 3.472°), and
alternating raises (8.504 £ 3.711°). The Pearson correlation coefficient remains
steadily high, close to 1, with a highest value observed in the simultaneous raises
(0.999 + 0.003).

In contrast, in frontal raises, the RMSE is lower in alternating raises (9.755 4+
2.434°) followed by single-arm (10.145 + 3.458°) and simultaneous raises (12.516 +
2.747°). This finding seems to be in contrast with the pattern observed in lateral
movements; however, it can be explained by the oscillatory transients characteristic
of the alternating raise. As described in the Methods section, alternating frontal
raises are characterized by a concave oscillation: this leads to a smaller deviation
from the OPT signal, and consequently, a decrease in error values within the
transitory interval. In contrast, alternating lateral raises display a convex undulatory
pattern, which increases the mismatch between the two signals. This phenomenon
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is illustrated in Figure 4.4.

The PRMSE, however, is not affected by this phenomenon, as it is high in
both lateral (52.751 £ 27.119 %) and frontal (50.224 + 28.779 %) alternating tasks,
indicating that percentage errors are more marked at the signal minima, where
transient effects typically occur.

The Pearson correlation coefficient in the simultaneous frontal raises (0.969 4+
0.017) shows the smallest value among all tasks, although it maintains a value close
to 1 (i.e., strong correlation with OPT signals).

Figure 4.3 displays the distribution of error metrics across tasks, comparing
lateral and frontal executions. Lateral raises record lower values for all metrics
in all task types, except for PRMSE in the alternating tasks, which is similar to
frontal execution.

In conclusion, these findings confirm that the tracking accuracy is partly influ-
enced by both the type of motor task and by the plane in which the movement is
performed:

o Movements in the lateral direction are more accurately acquired by the MP
tracking model compared to those captured in the frontal direction;

o Single-arm movements are the better tracked in the lateral raises;

o Alternating movements presents great stability in frontal execution.
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Figure 4.3: Boxplots of RMSE (left) and PRMSE (rigth) for each task. Both metrics demonstrate
greater accuracy in lateral tasks, except for the PRMSE of the alternating frontal raises.

4.2 Analisys on mean outcome parameters

After the analysis of overall trajectories, the validation analysis was performed
on kinematic parameters extracted from 3D trajectories, considering two levels of
detail:

o First, the averaged parameters, in addition to those derived from the entire
signal (e.g., spectral parameters) were evaluated. These outcomes represent
the aggregate data that would be available in a real-world application of the
exergame.

« Second, a more specific analysis of the same parameters estimated for each
movement repetition was performed, to take advantage of the larger dataset
obtained through this approach.

This preliminary analysis provides an initial estimate of the system’s overall
performance. Based on the results obtained from the trajectory analysis, the
aggregate (i.e., the averaged) parameters extracted were divided into lateral and
frontal groups. Bilateral parameters were similarly grouped.

For each parameter, the mean and standard deviation (SD) were computed
separately for both OPT and MP signals. In addition, the RMSE, the PRMSE and
the relative percentage difference between the two measurements were calculated.
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Figure 4.4: Example of transitory phenomena in the alternating task. During alternating
lateral raises (top) the undulation is convex (+) in quiet periods, whereas in the frontal execution
(bottom) is concave (-).

Unilateral parameters analysis

In this section the mean unilateral parameters (i.e., those computed from single-arm
executions, across all task types) are reported. The first table presents the values
related to lateral raises, while the second those for frontal raises.

Domain Parameter N MP OPT RMSE | PRMSE A%
HA [deg] 60 92.80 + 6.41 88.73 £ 7.01 6.03 7.01 —4.59
Angular LA [deg] 60 22.26 + 3.56 14.78 £ 2.82 9.26 72.14 —50.57
ROM [deg] 60 70.50 + 7.43 73.81 +5.49 5.10 7.06 4.49
OR [deg] 60 42.80 + 6.41 38.73 £ 7.01 6.03 17.14 —10.52
Temporal PPT [ 60 2.65 £+ 0.90 2.65 +0.90 0.02 0.49 —0.03
PPM [peaks/min] | 60 25.38 + 6.60 25.38 + 6.60 0.00 0.00 0.00
Velocity-based RV [deg/s] 60 | 67.37£11.21 | 73.45+£6.78 8.78 12.77 8.28
Spectral PF [Hz] 60 0.40 £0.13 0.40 £0.14 0.04 18.26 —1.68

Table 4.5: Mean values (£SD) and error metrics for each outcome parameter, computed with
both MP and OPT, for unilateral lateral raises. Negative A% values reveal that MP overestimates
the parameter compared to OPT. N indicates the number of parameters considered.

Table 4.5 and Table 4.6 report the mean values of the parameters extracted
from both systems, along with the RMSE, PRMSE and the relative percentage
difference, making a global comparison possible.
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Domain Parameter N MP OPT RMSE | PRMSE A%
HA [deg] 59 | 95.67 +10.08 | 83.61 £+ 7.30 14.43 17.68 —14.43
Angular LA [deg] 59 22.07 + 3.84 13.06 £ 3.31 10.66 102.82 —69.01
ROM [deg] 59 73.59 4+ 10.57 70.95 £+ 6.41 10.15 14.29 —3.72
OR [deg] 59 | 45.67 +10.08 | 33.61 £ 7.30 14.43 47.48 —35.90
Temporal PPT [s] 59 2.83 +1.00 2.83 +1.00 0.02 0.84 0.22
PPM [peaks/min] | 59 24.41 +6.44 24.41 + 6.44 0.00 0.00 0.00
Velocity-based RV [deg/s] 59 | 67.934+13.20 | 69.99 £+ 6.47 11.76 16.43 2.94
Spectral PF [Hz] 59 0.39 +0.14 0.39+0.14 0.00 0.00 0.00

Table 4.6: Mean values (£SD) and error metrics for each outcome parameter, computed
with both MP and OPT, for unilateral frontal raises. Negative A% values reveal that MP
overestimates the parameter compared to OPT. N indicates the number of parameters considered.

In general, angular and velocity-based parameters exhibit higher RMSE and
PRMSE values than temporal parameters, in both lateral and frontal raises.

Specifically, the High Amplitude (HA) parameter shows an RMSE equal to
6.03° in lateral raises, increasing to 14.43° in frontal raises. These values suggest
that the trajectories extracted through the exergame in the frontal tasks tend to
overestimate the movement amplitude than in lateral ones. This overestimation is
evident in both cases, as indicated by the relative percentage difference: -4.59% for
lateral raises and -14.43% for frontal raises. The PRMSE follows the same trend:
it is higher in frontal movements (17.68%) compared to lateral ones (7.01%).

A similar conclusion can be derived from the Low Amplitude (LA) parameter:
the RMSE is 9.26° for lateral raises and 10.66° for frontal raises. The PRMSE
is notably high in both cases (72.14% in the lateral movements and 102.82% in
the frontals), indicating the difficulty of the MP model in accurately estimating
minimum values. This may be partially attributed to the variability introduced by
the segmentation algorithm. Furthermore, the percentage difference (A%) confirms
an overestimation by the MP model in both movements (-50.57% in the lateral
raises and -69.01% in the frontal raises).

The Range of Motion (ROM) shows higher precision in lateral raises (RMSE:
5.10°, PRMSE: 7.06%) compared to frontal raises (RMSE: 10.15, PRMSE: 14.29%).
In lateral tasks, MP tends to underestimate (A%: 4.49) the ROM compared to
OPT, although in frontal tasks, a slight overestimation (A%: -3.72) is observed.
This discrepancy can be attributed to the greater variability of MP trajectories
during frontal raises, as suggested by a high standard deviation (£10.57°). This
variability is also largely due to the segmentation algorithm, which is less accurate
in identifying local minima in signals characterized by less regular morphology
(i.e., the trajectories related to frontal movements). This group of signals also
includes alternating raises, which are affected by the transient undulation artifact,
which certainly contributes to the observed deviations in the aggregate parameter
computation.

The Overreaching (OR) parameter follows a similar trend to the HA, as it differs
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from the second only by a constant.

However, temporal parameters show high accuracy in both tasks. In particular,
the Peak-per-Minute (PPM) parameter presents error metrics equal to zero, while
the Peak-to-Peak Time (PPT) yields a RMSE of 0.02 s and a PRMSE of 0.49% in
lateral raises, with slightly higher values in frontal raises (PRMSE: 0.84%). The
relative percentage difference is below 1% in both cases, confirming the reliability
of the MP model in evaluating temporal aspects of the movement.

The Rising Velocity (RV) parameter is more precise in the lateral raises (RMSE:
8.78° and PRMSE: 12.77%), compared to the frontal ones (RMSE: 11.76° and
PRMSE: 16.43%), with a greater underestimation observed in the lateral movements
(A%:8.28) compared to the frontal ones (A%: 2.94).

Concerning spectral parameter, slightly better accuracy is achieved in frontal
raises, where the RMSE, PRMSE and the A% are all equal to 0. Instead, in lateral
raises, slightly higher values are reported: RMSE= 0.04 Hz, PRMSE= 18.26 %
and A%= -1.68.

To confirm this trend, the boxplots, divided between lateral and frontal raises,
have been reported. Only parameters characterized by a high value of error metrics
have been considered.

In lateral raises (Figure 4.5), the parameters extracted from the MP signals
exhibit greater variability compared to those derived from the OPT signals, with
the exception of the HA parameter. This increased variability may be attributed
to the heterogeneity of the subjects’ movements, which the OPT system is capable
to detect. Even the outliers present in the OPT distributions, such as the one
observed in the the ROM parameter, may be a consequence of this cause.

Figure 4.6 displays the boxplot related to the frontal raises. Here, the variability
of the MP-derived parameters is more evident than in OPT data, further confirming
the lower reliability of the system in tracking frontal movements and that could
impact on the parameter associated with it.
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Figure 4.5: Boxplots of outcome parameters with high RMSE and PRMSE values extracted
from lateral raises. OPT measurements are shown in blue, while MP measurements are displayed
in red. Overall, MP presents greater variability compared to the OPT distribution.

130

80

70

Mean HA

o

deg]

35

20

Mean LA

Frontal execution

110

90

[deg]

80

70

60

Mean ROM

[deg/s]

110 Mean RV

CJopT
j—

100

90

80

60

50

OPT MP

OPT MP

50

OPT MP

40
OPT MP

Figure 4.6: Boxplots of outcome parameters with high RMSE and PRMSE values extracted
from frontal raises. OPT measurements are shown in blue, while MP measurements are displayed
in red. Overall, MP presents greater variability compared to the OPT distribution.
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Bilateral parameters analysis

In this section the mean bilateral parameters (i.e., those computed as the difference
between parameters of right and left arms, across simultaneous and alternating
tasks) are reported. The first table presents the values related to lateral raises,
while the second those for frontal raises.

Only RMSE and A% are considered in this analysis, as most parameters are
computed as differences, which results in high and non meaningful PRMSE values.

Domain Parameter | N MP OPT RMSE A%
AHA [deg] 20 | 5.02+£3.51 | 5.38+3.35 4.03 6.62

Angular ALA [deg] 20 | 2.63+1.38 | 2.18 £1.31 1.55 —20.35
AROM |[deg] | 20 | 4.45+3.54 | 4.50+2.83 3.28 1.06

IPID [s 20 | 0.03£0.05 | 0.03+0.05 0.02 —1.49

Temporal PTL [s 20 | 0.96 £0.98 | 0.96 +0.99 0.02 —0.52
CCL [s 20 | 0.95£1.00 | 0.95+1.00 0.01 0.00

Velocity-based ARV [deg/s] 20 | 4.32£3.03 | 4.05+3.38 3.22 —6.51
AMV [deg/s] | 20 | 0.08 £0.06 | 0.14 £0.15 0.13 37.87

Table 4.7: Mean values (+SD) and error metrics for each outcome parameter, computed with
both MP and OPT, for bilateral lateral raises. Negative A% values reveal that MP overestimates
the parameter compared to OPT. N indicates the number of parameters considered.

Domain Parameter | N MP OPT RMSE A%
AHA [deg] 20 9.27+5.14 2.80 £2.21 7.61 —231.11
Angular ALA [deg] 20 | 253+£1.45 | 2.07+£1.12 1.55 —22.07
AROM [deg] 20 8.16 £ 5.74 2.69 +1.86 7.63 —203.97
IPID [s 20 0.09 £0.21 0.07 £ 0.20 0.03 —17.69
Temporal PTL [s 20 0.98 +0.96 0.96 = 0.99 0.07 —2.03
CCL [s 20 0.98 +1.04 0.98 +1.04 0.01 —0.10
Velocity-based ARV [deg/s] 20 | 10.35£8.37 | 2.80£2.37 10.53 —269.45
AMV [deg/s| | 20 | 0.25£033 | 0.31£0.56 | 0.43 2141

Table 4.8: Mean values (+SD) and error metrics for each outcome parameter, computed with
both MP and OPT, for bilateral frontal raises. Negative A% values reveal that MP overestimates
the parameter compared to OPT. N indicates the number of parameters considered.

Table 4.7 and Table 4.8 show the average values of the parameters extracted
with the two systems, in addition to RMSE and the relative percentage difference,
to provide a global comparison.

In general, the discrepancies between the systems are more marked in the
frontal tasks than in the lateral ones, due to the higher variability measured in the
parameters extracted from the signals.

The AHA parameter is characterized by an RMSE of 4.03° in lateral raises and
7.61° in frontal raises. The reduced accuracy of this parameter can be attributed to
the heterogeneity of the movements performed during the trial, confirmed by the
variability in the averaged OPT values (5.38+3.35° for lateral raises and 2.80+2.21°
for frontal raises). MP slightly underestimates the parameter in lateral movements
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(A%: 6.62), by contrast, in frontal movements there is a relevant overestimation
(A%: -231.11).

For the ALA parameter, the accuracy is comparable between the two systems
(RMSE: 1.55°), with a minor overestimation in both movement types (A%: -20.35
in lateral tasks and A%: -22.07 in frontal tasks).

The AROM parameter is characterized by a RMSE of 3.28° in lateral raises and
7.63° in frontal raises. It is notable that in lateral raises MP slightly underestimates
the parameter (A%: 1.06) whereas in frontal raises a marked overestimation is
evident (A%: -203.97).

The temporal parameters are on average very accurate in both systems, charac-
terized by an RMSE on the order of few hundredths of a second. For example, the
CCL parameter, exhibits an RMSE of 0.01 s in both lateral and frontal tasks, with
a slight overestimation in frontal raises (A%: -0.10).

The velocity-based parameters reveal more evident discrepancies between the
two systems, for ARV (RMSE: 3.22 °/s in lateral raises, 10.53 °/s in frontal raises).
In the frontal movements, the MP system overestimates compared to OPT (A%:
-269.45), due to the lower quality of the MP signal, as attested by the high variability
recorded (4.3243.03 °/s in the lateral task, while 10.35£8.37 °/s in the frontal one).

Likewise, in this case, the parameters derived from the lateral exercises demon-
strate more robustness than those obtained from the frontal raises. This observation
is supported by the boxplots in Figures 4.7 and 4.8, which highlighted a greater
variability in the parameters derived from MP compared to OPT. In addition,
when the distribution of the parameters extracted with OPT presents a consider-
able variability comparable to that of MP, it suggest a high heterogeneity in the
participants’ movements.

Lateral execution
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Figure 4.7: Boxplots of bilateral outcome parameters with high RMSE values extracted from
lateral raises. OPT measurements are shown in blue, while MP measurements are displayed in
red. Overall, MP presents greater variability compared to the OPT distribution.
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Figure 4.8: Boxplots of bilateral outcome parameters with high RMSE values extracted from
frontal raises. OPT measurements are shown in blue, while MP measurements are displayed in
red. Overall, MP presents greater variability compared to the OPT distribution.

4.3 Analysis on single repetition parameters

To complement the validation analysis, in addition to evaluating average parameters,
it was decided to analyse the parameters extracted from each single repetition.
This approach increases the statistical power of the study thanks to the larger
dataset and enables the application of Bland-Altman analysis. The latter allows the
evaluation the agreement between the two measurement systems and for identifying
any systematic bias that may be not evident from aggregate parameter analysis.

In addition, the parameters computed for each single repetition allows the
construction of dataset in which parameters are calculated using segmentation
based on the OPT signal (position of minima and maxima). This serves to assess
the robustness of the segmentation algorithm used.

By the findings of the previous analyses, the dataset was divided into two
main groups, corresponding to lateral and frontal raises. Each group, in turn, was
subdivided into unilateral and bilateral parameters.

The analysis is organized as follows:

1. Descriptive statistics for each parameter to characterize its distribution. In
addition, the Shapiro-Wilk (SW) test was conducted to assess the normality
of the distribution.

2. Spearman correlation analysis, to understand the relationship between
the two measures.

3. Bland-Altman analysis on the most significant parameters to identify the
limits of agreement, detect the presence of any systematic bias, and evaluate
whether specific tasks fall within or outside these limits.
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Finally, the results derived from different segmentation approaches were com-
pared to identify any critical limitations of the proposed segmentation algorithm.

4.3.1 Standard segmentation

This section presents the results obtained from parameters extracted using the
standard segmentation method, as described in section 3.2. The analysis is divided
between unilateral and bilateral parameters.

Unilateral parameter analysis

The tables below report the descriptive statistics related to the unilateral parameters,
which include the mean, standard deviation, median, interquartile range (IQR),
maximum, minimum values and the significance of the normality test.

Lateral OPT

Parameter N Mean SD Median | IQR | Max | Min | SW p-value
HA [deg] 440 88.6 7.47 88.5 11.2 109 65.1 0.026
LA [deg] 440 14.8 3.02 14.2 4.13 23.6 8.36 <.001

ROM |[deg] 440 73.7 6.12 74.2 7.59 97.0 54.1 0.002

RV [deg/s] | 440 | 734 | 7.29 73.4 112 | 101 | 54.9 0.01
PPT [s] 380 2.36 0.720 2.20 0.605 | 4.84 1.46 <.001
OR [deg] 440 38.6 7.47 38.5 11.2 59.00 15.1 0.026

Table 4.9: Descriptive statistic of OPT values for lateral execution. P-values less than 0.05
indicate a non-normal distribution. N indicates the number of parameters considered.

Lateral MP
Parameter N Mean SD Median | IQR | Max | Min | SW p-value
HA [deg] 440 94.0 7.25 93.2 10.5 114 70.6 0.003
LA [deg] 440 22.3 3.47 21.8 5.45 30.5 13.1 <.001
ROM |[deg] 440 1.7 8.44 70.9 13.1 91.5 49.6 <.001
RV [deg/s] 440 68.9 12.5 69.4 20.1 97.9 39.7 <.001
PPT [ 380 2.36 0.721 2.20 0.605 | 4.88 1.46 <.001
OR [deg] 440 44.0 7.25 43.2 10.5 64.4 20.6 0.003

Table 4.10: Descriptive statistic of MP values for lateral execution. P-values less than 0.05
indicate a non-normal distribution. N indicates the number of parameters considered.
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Frontal OPT
Parameter N Mean SD Median | IQR | Max | Min | SW p-value
HA [deg] 420 83.4 7.45 83.0 9.86 110 62.1 0.009
LA [deg] 420 13.0 3.43 12.3 5.78 22.1 6.90 <.001
ROM [deg] 420 70.6 6.87 70.3 8.84 93.8 50.3 0.708
RV [deg/s] 420 69.8 7.00 69.6 8.52 93.7 48.3 0.209
PPT [s] 361 2.53 0.814 2.40 0.82 7.80 1.52 <.001
OR [deg] 420 33.4 7.45 33.0 9.86 60.3 12.2 0.009

Table 4.11: Descriptive statistic of OPT values for frontal execution. P-values less than 0.05
indicate a non-normal distribution. N indicates the number of parameters considered.

Frontal MP
Parameter N Mean SD Median | IQR | Max | Min | SW p-value
HA [deg] 420 96.1 10.1 95.4 13.8 131 71.3 0.06
LA [deg] 420 21.9 4.04 21.2 6.13 34.9 12.8 <.001
ROM [deg] 420 74.2 10.7 73.3 14.8 110 49.0 0.018
RV [deg/s| 420 69.1 14.2 68.4 18.1 108 13.3 0.008
PPT |s] 361 2.53 0.820 2.38 0.80 7.74 1.42 <.001
OR |[deg] 420 46.1 10.1 45.4 13.8 81.4 21.3 0.06

Table 4.12: Descriptive statistic of MP values for frontal execution. P-values less than 0.05
indicate a non-normal distribution. N indicates the number of parameters considered.

Table 4.9 and Table 4.10 provide the descriptive statistics for parameters ex-
tracted from the lateral tasks, while Tables 4.11 and 4.12 pertain to frontal tasks.

A greater sample availability is observed in the lateral raises compared to the
frontal ones, as some repetitions in the frontal task were excluded due to excessive
noise.

In general, the descriptive statistics are consistent with the findings in the
aggregate parameters analysis, confirming that the values extracted with the OPT
system exhibit lower means than those computed with the MP system. This
supports the tendency of the MP model to overestimate the angular measures.
The same trend is noted in the variability measures, expressed by the Interquartile
range (IQR) and standard deviation (SD), with an exception in the HA parameter
in the lateral raises, where variability is greater in the OPT signal (SD: 7.44° vs
7.25°, IQR: 11.2° vs 10.5°). This discrepancy may be due to the heterogeneity of
the subjects’ movement patterns, that the OPT system is able to detect due to its
higher sensitivity.

The temporal parameters reveal highly comparable values between the two
systems, under both operating conditions, as also highlighted by the boxplots in
Figure 4.9. The same outliers are observed in both datasets, corresponding to
the alternating raises, that involve longer temporal intervals compared to other
movements.

Most of the parameters present a non-normal distribution, as indicated by the
p-value of the Shapiro-Wilk test (SW), falling below the significance threshold
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Figure 4.9: Boxplots of PPT distribution for lateral (left) and frontal (right) raises. In blue the
boxplot related to the OPT signal, in red this related to MP signal

(0.05). Exceptions include the ROM and RV parameters in the frontal raises of the
OPT signal and, marginally, the HA and RV in the MP signal, where the p-value
is slightly higher than the threshold (p=0.06).

Overall, the mean and median values are closely aligned in both lateral and
frontal raises, suggesting symmetrical and balanced distributions.

As previously observed in the analysis of aggregate parameters, the variability
and dispersion indices are more marked in the parameters computed from MP
compared to those extracted from the OPT signals. This effect is more evident in
frontal tasks, where the variability is higher.

The RV parameter demonstrates increased variability in the MP system. Al-
though this variability is relatively high, it can be considered acceptable, given
that RV is a parameter strongly influenced by both movement heterogeneity and
by the accuracy of the segmentation algorithm.

In conclusion, the findings of the preliminary analysis conducted on the mean
values are confirmed:

e The temporal parameters show excellent reliability.

e The angular and velocity parameters exhibit greater variability, in particular
in the frontal raises.

Regarding the correlation analysis, the Table 4.13 reports the correlation co-
efficients along with their relative p-values for each extracted parameter, for the
lateral and frontal raises.

In this case, correlation analysis was performed using Spearman’s rho coefficient,
as at least one of the two distributions did not meet the assumption of normality.
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Correlation analysis

Parameter | Spearman’s rho (Lateral) | P-value | Spearman’s rho (Frontal) | P-value
HA 0.693%** <.001 0.521*** <.001
LA —0.360%** <.001 —0.275%** <.001
ROM 0.749%** <.001 0.313*** <.001
RV 0.780%*** <.001 0.346%** <.001
PPT 0.993%** <.001 0.971*** <.001
OR 0.693*** <.001 0.521%** <.001

Table 4.13: Spearman correlation coefficients for all parameters in both lateral and frontal
raises. Note. * p < .05, ** p < .01, *** p < .001.

In general, stronger and more statistically significant correlations were observed
during lateral raises compared to frontal ones.

The angular parameter LA presents a slight negative correlation, respectively
equal to -0.360 in lateral raises and -0.275 in frontal raises. The presence of a
negative correlation indicated that as the values measured by OPT decrease, those
measured by MP increase. This highlights a limited stability in tracking the
minimum points, which negatively affects the segmentation algorithm’s accuracy
in detecting minima correctly. For this reason, the positions of the minima were
excluded for the calculation of the temporal parameters.

The HA parameter shows a moderate correlation in both lateral (0.693) and
frontal raises (0.521).

The ROM parameter reveals a marked difference in correlation coefficients
between lateral and frontal raises: it shows a strong correlation in the lateral task
(0.749), and a weaker in the frontal task (0.313). A similar trend is evident in the
velocity parameter RV, where the correlation coefficient is 0.780 in lateral raises
and 0.346 in frontal raises.

These discrepancies may be caused by the instability of the tracking at the mini-
mum points in the frontal trajectories, or by a reduced accuracy of the segmentation
algorithm under less regular signal morphologies.

However, the temporal parameters exhibit a very high correlation values, close
to one in both tasks: 0.993 for lateral raises and 0.971 for frontal raises. These
outcomes further confirm the robustness and reliability of temporal parameters,
independently from the direction of the movement.

Furthermore, it is observed that OR presents the same values as HA, as these
two measures differ only by a constant.

In conclusion, in lateral raises a good correlation is evident in all the parameters
except for LA. By contrast, during frontal raises, most parameters show only
moderate correlations, with the exception for the temporal parameter.

The high correlation of PPT parameter, calculated with the time position of
the maximum, suggests a greater synchronization and stability of the signal in the
tracking of movements with wide angular excursions. This is also suggested by the
slight correlation of LA parameter.
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For a more in-depth evaluation of the agreement between the two systems, the
Bland-Altman analysis was further conducted.

Figure 4.10 shows the Bland-Altman graphs for the LA parameter, corresponding
to the lateral (left) and frontal (right) execution.

Almost the entire observations are contained within the Limits of Agreement
(LoA), which exhibit significant variability in both conditions (Lateral: [-18.16°,
3.29°], Frontal: [-20.71°,2.79°]). These wide intervals indicate a significant dispersion
of this parameter, regardless of the execution type, confirming the low correlation
found in the previous analysis as well as the pronounced differences in mean values
observed both in the aggregate (i.e., the averaged parameters analysis) and in the
single repetitions analysis.

The mean bias is negative in both conditions (-7.43° in lateral raises, -8.96°
in frontal raises), demonstrating that MP tends to overestimate this parameter
compared to OPT, as observed previously.

The negative slope of the regression line reveals a proportional bias: as the
mean value of the parameter increases, the difference between the two measures
decreases.

The analysis of the individual tasks reveals a consistent distribution pattern.
In lateral raises only few values fall outside the LoA, in particular, those related
to simultaneous and alternating raises. In frontal raises, the few outliers are
distributed across all task types, probably due to the more irregular morphology in
the associated trajectories.

Bland-Altman analysis of LA
Lateral a Frontal
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Figure 4.10: Bland-Altman analysis of LA parameter, conducted for lateral (left) and frontal
(right) raises. Each task is color-coded: blue for single-arm raise, red for alternating raises, and
yellow for simultaneous ones.

Figure 4.11 presents the Bland-Altman analysis conducted on the ROM param-
eter.
The bias in the lateral tasks is 2.03° while in the frontal tasks it is -3.56°,
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revealing that the MP model tends to systematically underestimate ROM in the
lateral raises and overestimate it in the frontal raises. These findings are in line with
what was already observed in the aggregate parameter analysis. The agreement
interval is narrower in the lateral raises [-9.16°, 13.22°] compared to the frontal
ones [-23.53°, 16.42°], revealing a higher coherence between systems in the lateral
executions.

In both cases, the regression line shows a negative slope, indicating that as
the mean value of the two measures increases, the difference between them tends
to decrease. This effect is clear in the single-arm task in lateral raises and for
simultaneous task in frontal executions.

From the analysis of the individual tasks, it is evident that the outliers in the
lateral raises are mainly associated with the single-arm lift, suggesting lower agree-
ment between systems in this specific exercise. On the other hand, simultaneous
movements exhibit a more clustered distribution around the bias, indicating a
greater accuracy in the ROM computed from this task. This may be due to a
enhanced tracking stability favoured by the simultaneous limb movements.

In the frontal raises, a uniform distribution is evident across different tasks: a
greater concentration of the simultaneous measures falls below zero. This suggests
that, especially for this task, the MP model tends to overestimate compared to the
reference system.

The alternate raises appear more dispersed in both executions: this may be
due to the greater variability of the trajectories, influenced by the transient wave
problem.

Bland-Altman analysis of ROM
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Figure 4.11: Bland-Altman analysis of ROM parameter, conducted for lateral (left) and frontal
(right) raises. Each task is color-coded: blue for single-arm raise, red for alternating raises, and
yellow for simultaneous ones.

The Bland-Altman analysis of the PPT parameter is reported in Figure 4.12
and demonstrated a high level of agreement between the two systems.
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In lateral raises, the limits of agreement are extremely narrow [-0.09 s, 0.09 s] and
no bias is observed, indicating a near-perfect temporal alignment between the two
systems. In frontal raises, the LoA are slightly wider, defining an interval between
-0.23 s and 0.24 s, which is completely acceptable in the application context. The
bias is very low, equal to 0.01 s.

It is evident that the alternating raises exhibit higher average values, which
is consistent with the nature of the movement (the temporal distance between
adjacent peaks is greater in alternating movements).

Although a few outliers are observed, they are not problematic, as they present
differences of just over one-tenth of a second, which are compatible with the
tolerance margins expected for the practical use of the exergame.

In conclusion, the Bland-Altman analysis confirms the robustness and reliability
of the PPT parameter, showing a high agreement between the systems. This result
is further justified by the strong correlation observed.

Conversely, the angular parameter LA presents, in both executions, a poor
agreement, characterized by a non-negligible bias and a very wide agreement
interval, indicating a greater variability of the tracking in minimum points.

Finally, the ROM demonstrates a good agreement in lateral raises, as also
confirmed by the correlation coefficient, whereas only moderate agreement in
frontal raises is found, where the dispersion is greater.

Bland-Altman analysis of PPT
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Figure 4.12: Bland-Altman analysis of PPT parameter, conducted for lateral (left) and frontal
(right) raises. Each task is color-coded: blue for single-arm raise, red for alternating raises, and
yellow for simultaneous ones.

Bilateral parameter analysis

The tables below report the descriptive statistics related to the bilateral parameters,
which include the mean, standard deviation, median, interquartile range (IQR),
maximum, minimum values and the significance of the normality test.
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Lateral OPT

Parameter N Mean SD Median | IQR | Max Min SW p-value
AHA [deg] 130 5.67 4.17 4.97 5.72 15.3 0.001 <.001
ALA [deg] 130 2.28 1.48 2.05 2.09 6.76 0.02 <.001
AROM |[deg] | 130 4.80 3.56 3.98 5.08 13.50 0.06 <.001
IPID [s] 110 | 0.0495 | 0.0572 0.02 0.04 | 0.320 0.00 <.001
PTL [s] 130 0.597 0.890 0.02 1.42 2.48 0.00 <.001
ARV [deg/s| | 130 5.05 4.21 4.22 5.49 22.8 0.01 <.001

Table 4.14: Descriptive statistic of OPT values for lateral execution. P-values less than 0.05
indicate a non-normal distribution.

Lateral MP
Parameter N Mean SD Median | IQR | Max | Min | SW p-value
AHA [deg] 130 4.59 4.16 3.37 6.48 19.5 | 0.001 <.001
ALA [deg] 130 2.62 1.49 2.75 2.23 5.92 0.00 0.001
AROM |[deg] | 130 4.67 3.53 3.85 4.32 16.90 | 0.11 <.001
IPID [s] 110 | 0.0735 | 0.065 0.06 0.08 0.3 0.00 <.001
PTL [s] 130 0.608 | 0.878 0.06 1.42 2.48 0.00 <.001
ARV [deg/s] | 130 5.05 4.12 4.56 6.21 22.4 0.03 <.001

Table 4.15: Descriptive statistic of MP values for lateral execution. P-values less than 0.05
indicate a non-normal distribution.

Frontal OPT
Parameter N Mean SD Median | IQR | Max | Min | SW p-value
AHA [deg] 129 2.56 2.81 1.76 2.69 21.0 0.01 <.001
ALA [deg] 129 2.02 1.18 1.87 1.48 5.29 0.03 0.003
AROM |[deg] | 129 2.96 2.53 2.40 2.75 17.9 0.00 <.001
IPID [s] 109 | 0.0462 | 0.0740 0.02 0.04 | 0.480 | 0.00 <.001
PTL [s] 129 0.606 0.922 0.02 1.44 2.70 0.00 <.001
ARV [deg/s] | 129 3.36 2.68 2.78 3.01 18.2 0.00 <.001

Table 4.16: Descriptive statistic of OPT values for frontal execution. P-values less than 0.05
indicate a non-normal distribution.

Frontal MP
Parameter N Mean SD Median | IQR | Max | Min | SW p-value
AHA [deg] 129 8.03 5.30 6.85 5.92 25.7 0.130 <.001
ALA [deg] 129 2.30 1.80 2.15 2.73 8.65 0.01 <.001
AROM |[deg| | 129 7.75 5.47 7.20 6.22 23.1 0.05 <.001
IPID [s] 109 0.133 0.110 0.120 0.14 | 0.580 0.00 <.001
PTL [s] 129 0.636 0.896 0.10 1.36 2.90 0.00 <.001
ARV [deg/s] | 129 9.20 7.45 7.15 7.85 38.6 0.170 <.001

Table 4.17: Descriptive statistic of MP values for frontal execution. P-values less than 0.05
indicate a non-normal distribution.

Tables 4.14 and 4.15 present the descriptive statistics of the parameters computed
respectively for the MP and OPT systems during lateral raises, while Tables 4.16
and 4.17 report the same analysis for the frontal raises.
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In general, in lateral raises, the mean and median values are closely between
the two systems. The most marked difference is observed in the AHA parameter,
whose mean value is 5.67° for the OPT and 4.59° for MP. Both IQR and SD are
relatively high compared to the other parameters, suggesting a discrete variability.
The greater mean and median values observed in OPT may be attributable to a
higher sensitivity of the optoelectronic system, in detecting intra-task variability.
This trend is also observed in the frontal raises, where it is even more pronounced.

The ALA parameter exhibits comparable mean, median, and variability values
between the two systems in both lateral and frontal raises. This evidence also
emerged in the aggregate parameters analysis, suggesting that the exergame’s
tracking detects symmetric minima between both arms of the same subject. This
may indicate that the tracking is influenced by the anthropometric characteristics
of the subject.

The AROM parameter presents highly comparable values between MP and OPT
in lateral raises, in terms of both mean and variability. In frontal raises, however,
a more marked difference in the mean value (MP: 7.75° OPT: 2.96°) is observed.

The temporal parameters remain consistent across the systems, confirming what
was observed from the aggregate parameters analysis. The PTL parameter reveals a
marked variability in both systems and in both execution modes. This is expectable,
as alternating raises are physiologically characterized by longer inter-peak intervals
than the other tasks.

The ARV parameter yields almost equal mean values in lateral raises, while in
frontal raises the difference is more marked (OPT: 3.36 °/s, MP: 9.20 °/s). This
can be explained by the more irregular morphology that characterized the frontal
angular trajectories.

In general, none of the analyzed parameters follow a normal distribution, as
evidenced by the p-values of the Shapiro-Wilk test; therefore, the correlation
between the parameters was evaluated using the Spearman coefficient.

Table 4.18 reports the Spearman correlation coefficients for lateral and frontal
raises along with their relative p-values for each extracted parameter.

Correlation analysis

Parameter | Spearman’s rho (Lateral) | P-value | Spearman’s rho (frontal) | P-value
AHA 0.473%** <0.001 0.316%** <.001
ALA 0.251%* 0.004 0.093 0.293

AROM 0.459*** <0.001 0.119 0.181
IPID 0.459%** <0.001 0.3227%** <.001
PTL 0.768%*** <0.001 0.670%** <.001
ARV 0.270%* 0.002 0.151 0.088

Table 4.18: Spearman correlation coefficients for all parameters in both lateral and frontal
raises. Note. * p < .05, ** p < .01, *** p < .001.
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In general, the correlation coefficients prove to be higher in lateral raises com-
pared to frontal ones. However, excluding the temporal parameter PTL, none of
the parameters exhibit strong correlation.

The AHA parameter reveals a moderate correlation in lateral task (0.473) and a
limited correlation in frontal task (0.316). On the other hand, ALA demonstrates
a negligible correlation both in lateral (0.251) and frontal raises (0.093). In the
latter case, it fails to reach significance, as evidenced by a p-value of 0.293.

The AROM exhibits a moderate correlation in lateral executions (0.459) and
poor in frontal ones (0.119, p: 0.181).

Temporal parameters generally show stronger correlations than angular pa-
rameters, with similar values across frontal and lateral executions. IPID shows a
moderate correlation in the lateral task (0.459) and a weaker correlation in the
frontal ones (0.322). PTL emerges for being the only parameter to have a strong
correlation in both executions (0.768 in the lateral raises and 0.670 in the frontal
raises).

The ARV parameter exhibits a negligible correlation both in the lateral (0.270)
and in the frontal raises (0.151, p: 0.088).

In summary, these results suggest that the temporal parameters are characterized
by a higher correlation than the others. Moreover, the agreement between systems
is higher in the lateral raises than in the frontal raises.

The lower correlation values observed for these bilateral parameters, compared to
the unilateral ones, may be attributed to the sum of several factors: the variability
introduced by the system’s tracking, the segmentation algorithm and the presence
of an intra-subject variability (not detectable by the exergame).

The Bland-Altman analysis conducted on the AROM parameter (Figure 4.13)
presents notable differences between the measurements related to lateral and frontal
raises. In lateral raises, the bias is 0.13°, while in frontal raises it assumes a value
of -4.79°, revealing a slight overestimation of the parameter. The LoA for lateral
raises defined the interval [-7.12° 7.38°], while those related to frontal raises ranged
from -14.97° to 5.38°.

In frontal raises, the presence of a significant proportional bias is evident: as
the mean value of the two measurements increases, the difference between them
progressively decreases.

In lateral raises, the dispersion of the measurements is similar between simul-
taneous and alternating executions. On the other hand, during frontal raises,
simultaneous measurements tend to be clustered around the mean value 5°, unlike
those relating to alternating raises that present greater deviation. This phenomenon
may be explained by the presence of the convex wave transient, which could influence
the accuracy of the segmentation algorithm.
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Bland-Altman analysis of AROM
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Figure 4.13: Bland-Altman analysis of AROM parameter, conducted for lateral (left) and frontal
(right) raises. Fach task is color-coded: red for alternating raises, and yellow for simultaneous
ones.

Figure 4.14 displays the Bland-Altman plots for the ARV parameter which
reveal a pattern similar to that observed for AROM parameter. In Lateral raises,
the bias is insignificant and the LoA are symmetric [-10.22°/s, 10.22°/s], while in
frontal raises asymmetric Limit of Agreement [-20.24°/s, 8.55°/s] and a negative
systemic bias (-5.84°/s) are observed. This indicates a MP tendency to overestimate
the RV values regarding OPT.

Even in this case, a negative slope can be seen in the regression line, indicating
the presence of a proportional bias as observed in AROM parameter. This may

be attributed to the segmentation algorithm, as the RV parameter is derived from
ROM.

Bland-Altman analysis of ARV
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Figure 4.14: Bland-Altman analysis of ARV parameter, conducted for lateral (left) and frontal
(right) raises. Each task is color-coded: red for alternating raises, and yellow for simultaneous
ones.

Figure 4.15 displays the Bland-Altman plots for the PTL parameter.
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In lateral raises, a systematic bias of -0.01 s occurs, with limits of agreement
between -0.09 s and 0.07 s. In frontal raises, higher variability is noted: the bias
increases to -0.03 s, and the LoA range from -0.23 s to 0.17 s.

Analysing the individual tasks, it is evident that the values associated with
simultaneous raises are located near zero, while those corresponding to alternating
raises are more dispersed. This behaviour, presents in both lateral and frontal
raises, confirms the capability of the parameter to effectively distinguish between
different types of movement, each characterized by different times.

Despite the presence of some outliers, the agreement between the systems
remains good. It should be emphasized that these parameters become clinically
significant when they present values in the order of a second.

In conclusion, even in bilateral parameters, a higher concordance between
systems is evident in lateral raises, compared to frontal ones, as suggested by both
the correlation and Blan-Altman analysis.

Overall, except for the temporal parameter, the outcomes assessed did not show
a strong agreement between the two systems. This suggest that the MP system
may is not sensitive enough to accurately detect parameters derived from values
close to zero, especially in angular parameters, where the variability introduced by
the segmentation algorithm is more pronounced.

Bland-Altman analysis of PTL
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Figure 4.15: Bland-Altman analysis of PTL parameter, conducted for lateral (left) and frontal
(right) raises. Each task is color-coded: red for alternating raises, and yellow for simultaneous
ones.
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4.3.2 OPT-based segmentation

This section reports the most significant results from the analysis of the parame-
ters computed through the segmentation based on the OPT signal (maxima and
minima position obtained from the reference signal), to quantify the impact of
the segmentation strategy on the validation results. Only angular parameters are
presented, as the temporal ones are identical to those previously obtained from the
OPT analysis. For simplicity, parameters extracted from the MP signal using the
standard segmentation algorithm are defined as “MP17”, while those computed by
applying the OPT-based segmentation are referred to as “MP2".

Unilateral parameters analysis

An analysis of the distributions (Figure 4.16 and 4.17) shows no great differences
between the parameters computed using MP1 compared to those calculated with
MP2, both in lateral and frontal raises. In general, the interquantile range tends to
be slightly lower for MP2, while the overall dispersion appears greater, as indicated
by the extended whiskers in the boxplots.

This behaviour is plausible, as the error introduced by the segmentation on the
angular signals obtained from the exergame is limited to few degrees; therefore, it
does not influence parameters whose values are on the order of tens of degrees.

Lateral raises
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Figure 4.16: Boxplot of angular parameters for lateral raises. The distribution of parameters
extracted from the OPT signal are displayed in blue, those from MP1 in red, and those from
MP2 in yellow.
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Figure 4.17: Boxplot of angular parameters for frontal raises. The distribution of parameters

extracted from the OPT signal are displayed in blue, those from MP1 in red, and those from
MP2 in yellow.

The analysis of Spearman correlation coefficients (Tables 4.19 and 4.20) reports
that, generally, the correlation is higher in the parameters calculated using MP2,
in both lateral and frontal raises, with two exceptions:

 Inlateral raises, the negative correlation slightly decreases for the LA parameter

(MP1: -0.360, MP2: -0.314).

o In frontal raises, the correlation for the HA moderately decreases (MP1: 0.521,

MP2: 0.519).
Correlation analysis - Lateral raises
Parameter | Spearman’s rho MP1 | p-value | Spearman’s rho MP2 | p-value
HA 0.693*** <.001 0.769%** <.001
LA —0.360*** <.001 —0.314%%* <.001
ROM 0.749%*** <.001 0.849%** <.001
RV 0.780*** <.001 0.893*** <.001

Table 4.19: Spearman correlation coefficient for all unilateral parameters in both MP1 and MP2
during lateral raises. Note. * p < .05, ** p < .01, *** p < .001.

Correlation analysis - Frontal raises

Parameter | Spearman’s rho MP1 | p-value | Spearman’s rho MP2 | p-value
HA 0.521%** <.001 0.519%** <.001
LA —0.275%** <.001 —0.284*** <.001
ROM 0.313*** <.001 0.366*** <.001
RV 0.346%** <.001 0.379%** <.001

Table 4.20: Spearman correlation coefficient for all unilateral parameters in both MP1 and MP2
during frontal raises. * p < .05, ** p < .01, *** p < .001.
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The overall increase in correlation coefficients suggests that a relevant part of
the variability between the two systems may be attributed to the segmentation
algorithm. The most pronounced improvements are observed in lateral raises,
probably because the angular trajectories have a similar morphology to those
computed with the optoelectronic system. Under these conditions, it is more
probable that the values extracted at the same time points in the realigned signals
corresponds to equal ranks in the correlation analysis.

In contrast, in frontal raises, the improvements are less evident, probably due
to the different morphology of the frontal trajectories.

From the Bland-Altman graphs it is possible to deepen the analysis and observe
how much the segmentation influences the agreement between the two systems.

The ROM parameter, which exhibits a moderate increase in the correlation
coefficient, shows an improvement in the agreement, especially in the lateral raises
(Figure 4.18). In contrast, in the frontal raises (Figure 4.19) the improvements
appear negligible. Notably, in lateral raises, the limits of agreement are reduced:
for MP1 the LoA define a range between -9.16° and 13.22°, while on MP2 this range
narrows to [-5.03°, 11.99°], indicating a reduced dispersion in the measurements.

Bland-Altman analysis of ROM
MP1 - MP2
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Figure 4.18: Bland-Altman analysis of ROM parameter, conducted for MP1 and MP2 during
lateral raises. Each task is color-coded: blue for single-arm raise, red for alternating raises, and
yellow for simultaneous ones.
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Figure 4.19: Bland-Altman analysis of ROM parameter, conducted for MP1 and MP2 during
frontal raises. Each task is color-coded: blue for single-arm raise, red for alternating raises, and
yellow for simultaneous ones.

A comparable behaviour is observed in the RV parameter. In the lateral raises
(Figure 4.20), the agreement between the two systems increases more evidently
than in the frontal raises (Figure 4.21), which exhibit only a limited improvement.
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Figure 4.20: Bland-Altman analysis of RV parameter, conducted for MP1 and MP2 during
lateral raises. Each task is color-coded: blue for single-arm raise, red for alternating raises, and
yellow for simultaneous ones.

Analyzing the LA parameter (Figure 4.22 and Figure 4.23), which presents a
weak correlation in both MP1 and MP2, it is noted that the agreement between the
two systems does not enhance significantly. This suggests that, in regions where
the tracking is unstable (i.e., at the minimum or transition points), the variability
introduced by the segmentation is negligible compared to the intrinsic variability of
the signal. This phenomenon is particularly evident in the frontal raises, in which
the morphology of the signal is more irregular compared to that observed in lateral
raises.

79



Results

Bland-Altman analysis of RV
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Figure 4.21: Bland-Altman analysis of RV parameter, conducted for MP1 and MP2 during
frontal raises. Each task is color-coded: blue for single-arm raise, red for alternating raises, and
yellow for simultaneous ones.
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In conclusion, the standard segmentation introduces variability in the measure-
ments. This variability is more significant in the lateral raises than in the frontal
raises, in which the intrinsic variability of the signal overwhelms that introduced
by the segmentation.

Bland-Altman analysis of LA
MP1 MP2
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Figure 4.22: Bland-Altman analysis of LA parameter, conducted for MP1 and MP2 during
lateral raises. Each task is color-coded: blue for single-arm raise, red for alternating raises, and
yellow for simultaneous ones.
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Figure 4.23: Bland-Altman analysis of LA parameter, conducted for MP1 and MP2 during
frontal raises. Each task is color-coded: blue for single-arm raise, red for alternating raises, and
yellow for simultaneous ones.

Bilateral parameters analysis

This section presents the bilateral parameters analysis, discussing on the effect of
the segmentation algorithm.

Figures 4.24 and 4.25 present boxplots illustrating the distributions of bilateral
parameters computed on both MP1 and MP2. In lateral raises, the parameters
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exhibit a higher variability than in frontal raises. This is also observed in OPT data,
suggesting the presence of intra-subject variability during bilateral tasks execution.

The distributions of MP1 and MP2 are generally comparable across all parame-
ters, for both executions, with similar variability and comparable median values.
The only exception is represented by ALA, which reveals a reduced interquartile
variability but a higher median value than both MP1 and OPT.
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Figure 4.24: Boxplot of bilateral angular parameters for lateral raises. The distribution of
parameters extracted from the OPT signal are displayed in blue, those from MP1 in red, and
those from MP2 in yellow.
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Figure 4.25: Boxplot of bilateral angular parameters for frontal raises. The distribution of
parameters extracted from the OPT signal are displayed in blue, those from MP1 in red, and
those from MP2 in yellow.

Tables 4.21 and 4.22 provide the Spearman correlation coefficients of the pa-
rameters calculated from MP1 and MP2, respectively related to lateral and frontal

raises.
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Correlation analysis -Lateral raises

Parameter | Spearman’s rho MP1 | p-value | Spearman’s rho MP2 | p-value
AHA 0.473*** <0.001 0.470%** <.001
ALA 0.251%* 0.004 0.301%*** <.001

AROM 0.459*** <0.001 0.470%** <.001
ARV 0.270** 0.002 0.449%** <.001

Table 4.21: Spearman correlation coefficient for all bilateral parameters in both MP1 and MP2

during lateral raises. * p < .05, ** p < .01, *** p < .001.

Correlation analysis -Frontal raises

Parameter | Spearman’s rho MP1 | p-value | Spearman’s rho MP2 | p-value
AHA 0.316*** <.001 0.324%** <.001
ALA 0.093 0.293 0.301%** <.001

AROM 0.119 0.181 0.012 0.888
ARV 0.151 0.088 0.115 0.195

Table 4.22: Spearman correlation coefficient for all bilateral parameters in both MP1 and MP2
during frontal raises. * p < .05, ** p < .01, *** p < .001.

No generalized trend is evident, as some parameters exhibit an increase in the
correlation coefficient when computed with MP2, while other show a reduction, in
both lateral and frontal raises.

A moderate enhancement is observed in the ARV parameter during lateral
raises, whose coefficient increases from 0.270 (MP1) to 0.449 (MP2).

Another improvement can be noted in the ALA parameter during frontal raises.
In this case, the correlation coefficient is 0.093 in MP1 and increases to 0.301 in
MP2.

In the frontal raises, the AROM parameter presents limited correlation values
for both MP1 and MP2, probably because the distribution of the OPT signal is
clustered, while that of MP1 and MP2 is dispersed.

In general, the negligible correlation values observed across both segmentation
methods may be due to the bilateral parameter nature, which are computed as the
difference between the values of two limbs. Since the analysis was performed on
healthy subjects, where the inter-limbs symmetry is generally high, the differences
tend to be negligible, near zero. Therefore, such parameters are sensitive to errors
induced by tracking. In similar conditions, the informative component of the
signal, reflecting inter-limb differences, is deleted, and only the intrinsic variability
remains. This explains the lower correlation values, especially in the parameters
that have lower values. Consequently, the variability introduced by the standard
segmentation is negligible in this case.

The Bland-Altman analysis confirms the observations emerged from the correla-
tion analysis.

For the AROM parameter (Figure 4.26 and 4.27), the agreement between the
two systems is not significantly influenced by the variability introduced by the
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segmentation algorithm, neither in the frontal nor in the lateral raises. The LoA
remain almost unchanged for both MP1 and MP2, delineating approximately the
same range of variability. Similarly, the bias is nearly the same in both movement
conditions.

Bland-Altman analysis of AROM

MP1 MP2
15 15 -
10 10
LoA=7.38" LoA=7.28"
5 5
o o
z Bessosy. 2 Bios =005
= 0 = 0
o . o
o . o
5 5
LoA = -7.12° LoA =-7.17°
10 10
15 . . . . s . . . .
o 2 4 6 8 10 12 14 o 2 4 6 8 10 12 14
Mean Mean

Figure 4.26: Bland-Altman analysis of AROM parameter, conducted for MP1 and MP2 during
lateral raises. Each task is color-coded: red for alternating raises and yellow for simultaneous
ones.
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Figure 4.27: Bland-Altman analysis of AROM parameter, conducted for MP1 and MP2 during
frontal raises. Each task is color-coded: red for alternating raises and yellow for simultaneous
ones.

Greater agreement between the two systems is evident for parameters character-
ized by higher mean values, such as ARV. In lateral raises (Figure 4.28), the LoA
for MP1 delimits an interval of [-10.22°/s, 10.22°/s], with a bias of zero. Agreement
improves when the variability derived by the segmentation is removed: in fact, in
MP2, the LoA define a narrower interval, between -7.69°/s and -7.05°/s with a
slight negative bias of -0.31°/s. A similar tendency is appreciable in frontal raises
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(Figure 4.29), where both a variation in the bias and a reduction of the interval
delimited by the LoA are observed.
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Figure 4.28: Bland-Altman analysis of ARV parameter, conducted for MP1 and MP2 during
lateral raises. Each task is color-coded: red for alternating raises and yellow for simultaneous
ones.
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Figure 4.29: Bland-Altman analysis of ARV parameter, conducted for MP1 and MP2 during
frontal raises. Each task is color-coded: red for alternating raises and yellow for simultaneous
ones.

In conclusion, for bilateral parameters, the variability induced by the standard
segmentation process is significant only for ARV. This behavior can be explained
since the time intervals used to compute this parameter are no longer influenced
by segmentation variability.
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4.4 Parameters in parkinsonian subjects

This section reports the average parameters computed for parkinsonian subjects
for descriptive purposes. The inclusion of these results aims to demonstrate the
feasibility of data acquisition using the exergame, as well as to demonstrate the
potential of the developed pipeline to extract angular trajectories and outcome
parameters in the final application scenario.

Domain Parameter Nyt | Lateral (Mean+SD) | Ngont | Frontal (Mean+SD)
HA [deg] 67 112.80 + 16.65 72 138.99 + 24.35
Angular LA [deg] 67 25.88 £ 6.66 72 24.51 £ 7.42
ROM [deg] 67 86.67 + 18.73 72 114.23 4+ 28.56
OR [deg] 67 62.80 + 16.65 72 88.99 4 24.35
Temporal PPT [s] 67 3.39+1.21 72 3.11 +1.18
PPM [peaks/minute] 67 20.34 £ 7.29 72 22.29 £+ 6.51
Velocity-based RV [deg/s] 67 89.64 + 23.18 72 115.64 + 29.03
Spectral PF [Hz] 67 0.28 £0.12 72 0.30 £ 0.15

Table 4.23: Unilateral parameters computed for parkinsonian subjects, expressed as mean+SD,
for both lateral and frontal raises. The number of trials used (N and Npont) is also reported
for each condition.

Domain Parameter Nt | Lateral (Mean+SD) | Ngont | Frontal (Mean+SD)

AHA [deg] 22 10.06 £ 7.97 24 10.01 £9.12
Angular ALA [deg] 22 2.59 +2.17 24 2.59 4+ 2.74
AROM 22 9.97 £ 9.07 24 9.96 + 9.59
IPID [s 22 0.30 + 0.43 24 0.22 +0.43
Temporal PTL [s 22 1.50 £ 1.72 24 1.39+£1.89
CCL [s 22 1.07£1.24 24 0.77 £ 1.29

. ARV [deg/s 22 11.66 £+ 10.06 24 10.04 £10.73
Velocity-based |3y [[deg//s]] 22 1.33£1.04 21 0.99 £ 1.76

Table 4.24: Bilateral parameters computed for parkinsonian subjects, expressed as mean+SD,
for both lateral and frontal raises. The number of trials used (N and Nypont) is also reported
for each condition.

Table 4.23 shows the mean values and the respective standard deviations (SD)
of the unilateral parameters for both lateral and frontal raises. Some trials were
excluded from the analysis, as some subjects were unable to perform the exercise.
These exclusions were limited to the lateral raises, which were probably more
difficult to perform for this kind of subjects.

Table 4.24 reports the bilateral parameters for both lateral and frontal raises.
Even in this case, some lateral tasks were excluded as some subjects were unable
to perform the movement.

Each parameter exhibits a high standard deviation: this is to be expected as
subjects present different levels of motor impairment, leading to a high inter-subject
variability. This aspect suggests that the system is capable to detect significant
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differences in the movements of Parkinsonian subjects, a fundamental element for
a clinical evaluation.

In the lateral execution, lower mean values are observed compared to those
relative to the frontal execution. This may indicate a more pronounced difficulty
for the subjects in performing lateral movements. It is important to underline that,
as observed in the validation analysis, even in healthy subjects, the parameters
related to the frontal raises tend to be higher both in terms of mean value and
standard deviation, than those observed in lateral raises.

The bilateral parameters present similar mean values and standard deviations
across both executions. These coordination parameters, computed on individuals
with asymmetrical motor abilities between the two arms, are capable to effectively
capture the deviation between the right and left limbs, contrary to what was
observed in the group of healthy subjects.

The analysis of the angular trajectories showed that those related to frontal raises
in parkinsonian subjects were more regular than those observed in healthy subjects.
This regularity represents an advantage, as it reduces the intrinsic variability of
the signal. An example of an angular trajectory from a single-arm frontal raise is
shown in Figure 4.30.

Although some trials were performed while the subject was in a seated position,
this had no significant impact on the tracking quality (Figure 4.31); despite not all
the landmarks were completely tracked.

The relatively clean trajectories obtained even in non-optimal conditions suggest
that the quality of the tracking is strongly influenced by movement speed, which is
substantially lower in parkinsonian subjects than in healthy subjects.

In conclusion, these findings suggest that the MP model allows accurate assess-
ment of motor performance through the exergame Palestra in the target population.
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Left arm - single frontal raise
T

Angle [deg]

Time [s]

Figure 4.30: Angular trajectory related to a single-arm frontal raise of a parkinsonian subject.
The signal exhibits a smoother profile than those observed in healthy subjects.

120 Left arm - single lateral raise

Angle [deg]

5
Time [s]

Figure 4.31: Angular trajectory obtained from a subject who performed the task in a seated
condition. The signal does not appear to be affected by the non-optimal execution posture.
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Chapter 5
Discussions

The exergame was developed as a cost-effective and broadly accessible tool aimed
at supporting motor training of the upper limbs. The main objectives is to collect
data continuously that allows for remote analysis and provides clinicians with
general information regarding skills and changes over time.

In this chapter, the results obtained are discussed in relation to the study’s
goals.

The main results are analysed, highlighting the strengths and limitations of the
proposed methodology, with particular attention on the implications of using the
exergame. Moreover, the potential future developments are exposed.

5.1 Validation of angular trajectories

The validation analysis conducted on the angular trajectories confirms the reliability
of the exergame, both in terms of temporal and spatial resolution.

Temporal domain

Regarding the temporal resolution, despite exergame operating with a variable
frame rate, the average value of approximately 30 fps allows the acquisition of
signals characterized by a high temporal concordance with those recorded by OPT
reference system.

This result is supported by the accurate realignment between the MP and OPT
signals, in which key movement events (such as maxima and minima in the angular
trajectories) are closely aligned. This temporal agreement is observed for both
lateral and frontal raises, as well as for all task types (single arm, alternating
and simultaneous raises). The Bland-Altman analysis confirms this observation,
revealing an excellent agreement in all temporal parameters computed. For instance,
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the PPT parameter exhibits incredibly narrow Limits of Agreement: [-0.09 s, 0.09
s] in lateral raises and [-0.23 s, 0.24 s| in frontal raises.

A great temporal resolution is essential for the accurate computation of temporal
parameters. In fact, even in ideal conditions in which the intrinsic variability
introduced by the segmentation was negligible, if the system fails to identify key
movement events, at the moment in which they occur, the resulting temporal
parameters would not be reliable.

This aspect could be critical for assessing, for example, the patient reactivity
associated with cognitive functions. For instance, in “manual” control mode, the
subject must perform the movement in response to a visual cue. In such case, the
time span between the visualization of the cue and the motor response can be
measured, thus obtaining useful information of the cognitive abilities of the subject.

These findings indicates that the system is sufficiently responsive to the user
movements, allowing the assessment not only of motor, but also of cognitive
functions, which can be further explored in future studies.

Spatial domain

The application of the developed analysis pipeline produced high-quality angular
trajectories, in both lateral and frontal raises. As reported in the Result section
4.1, the analysis performed on the lateral raises yielded lower error metric values
compared to the frontal ones. Furthermore, the alignment between MP and OPT
is nearly perfect in the rising and falling edges of the movement. This latter aspect
is further confirmed by the high linear correlation coefficient (p=0.99).

The trajectories recorded in the lateral raises are more similar to those of the
optoelectronic system that those observed in the frontal raises. This morphological
similarity may be attributed to the nature of the movement, which occurs parallel
to the camera plane. In this condition, the z and y coordinates exhibit larger
excursion and are calculated more precisely by Google MediaPipe Pose. In contrast,
the 2z coordinate (depth), which is only estimated by the model, presents minimal
variations during lateral raises, and therefore does not significantly affect the
computation of the 3D angular trajectories. As the z coordinate is only an
estimation, it could introduces errors and variability in the tracking, but in lateral
raises the z excursion is very narrowed and hence does not affect the morphology
of the signal.

Conversely, in the frontal raises, the movement occurs in a plane perpendicular
to the camera, where the z coordinate is crucial for computing angular trajectories.
However, since the z coordinate is only estimated, it could introduce random
fluctuations in the movement trajectories, in particular at transition points, (i.e.,
the transition from minima to maxima and vice versa), especially when those occur
rapidly.
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This behaviour emerged from the analysis of the z coordinate in the frontal
raises (Figure 5.1), where greater instability was observed at transition points,
compared to the y coordinate. This phenomenon is reflected in the morphology of
the angular trajectories, which appear more “squared” and present more marked
random fluctuations, both in the maximum and minimum points.

Y coordinate - Tmntal raise

| | | |
o 100 200 300 400 500 600 700 800 900
Sample [#]

Z coordinate - Frontal raise
I

| | | | | |
0.1 .
0 100 200 300 400 500 600 700 800 200

Sample [#]

Figure 5.1: Unprocessed y and z coordinates during frontal raises. The z signal is characterized
by spikes and random fluctuation in transition points while the y profile remains smoother.

The analysis of the individual tasks indicates that the single-arm and simultane-
ous raises present trajectories more similar to the reference, in both lateral and
frontal raises, compared to alternating raises. The latter are affected by the tran-
sient undulation problem described in chapter 3 in section 3.2, probably caused by
Google MediaPipe Pose, that tends to generate a sort of “bounce” in the landmarks
associated with the stationary limb while the opposite limb is in motion.

This effect manifests itself as a concave wave in lateral raises, and as a convex
wave in frontal raises. In the latter case, this artifact paradoxically results in a
lower RMSE than the other frontal tasks, as the transient occurs in signal intervals
where the differences between the MP and OPT signals are lower. In fact, in
frontal executions, the RMSE for alternating raises is 9.755 + 2.434°, compared to
10.145 + 3.458° for single-arm raises and 12.516 &+ 2.747° for simultaneous raises.

In both lateral and frontal raises, even in all the tasks analyzed, an overestimation
of angular values by the MP system with respect to OPT is observed, both for the
minimum and maximum points of the trajectories.
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The Bland-Altman analysis of the LA and HA parameters, computing using the
OPT-based segmentation, reveals systematic bias that differs between minimum
and maximum points. For the minimum points (LA), MP shows a bias of -7.55° in
lateral raises and -12.34° in frontal raises. Regarding the maximum points (HA),
the bias is -4.08° in lateral raises and -12.34° in frontal raises. This behaviour could
be due to differences between the anatomical landmark positions estimated by MP
model and those obtained by the OPT marker placement. These differences could
introduce variability that reflects as overestimation in the angular values computed
through MP.

This overestimation was not observed in two of the subjects enrolled in the
study, who showed trajectories nearly perfect aligned between MP and OPT. This
could be explained by various factors, including the anthropometric measurements
of the subject, the clothing worn during data acquisition, the speed of movement
and, in particular, by a better marker placement in OPT, which is presumably the
most influential factor.

Furthermore, the Bland-Altman analysis suggests that these discrepancies are
more dependent by subject-specific factors than by the type of task performed.
In fact, in the two subjects previously mentioned, the trajectory alignment was
excellent across all tasks performed. This is clearly visible in the lateral raises,
and also pronounced in the frontal raises, where only minor discrepancies were
observed. This behaviour suggests the presence of a relationship between the
subject morphology and the estimation of the MP model, which will have to further
investigate in future studies.

A key point to take in account is that the processed angular trajectories them-
selves could provide clinically relevant information for the qualitative description
of the movement. As confirmed by the validation analysis, the morphology of the
trajectories, except for some random fluctuations easily identifiable upon visual
inspection, follows the same morphology as the reference trajectories. By analysing
these trajectories, it is possible to deduce relevant information such as, for example,
the subject’s level of fatigue, movements slowdowns, or difficulties encountered
during the executions of certain tasks. All this information is fundamental for
the clinician’s decision-making process, and the possibility of obtaining such data
remotely, continuously and in real time allows saving time and resources, enhancing
the overall effectiveness of the patient monitoring.

In summary, the results confirm the practical relevance and utility of the
exergame and the body tracking using Google MediaPipe Pose in the context of
telemonitoring and telerehabilitation. In such settings, the high level of accuracy
provided by optoelectronic system is not required. Rather, it is essential to have
reliable data, that allows continuous patient monitoring and supports the clinician
throughout the rehabilitation process.
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5.2 Agreement between systems and acceptabil-
ity of the results in the application context

The validation analysis performed on both the mean parameters and those computed
from the individual repetitions, allows for the evaluation of the tracking accuracy.
It allowed for the identification of parameters that are suitable for use within the
intended application context, as well as those that show critical issues, considering
lateral and frontal executions separately.

Unilateral parameters

Both from the analysis of the aggregate parameters and that conducted on single
repetitions indicate that, in general, MP tends to overestimate most angular
parameters compared to the optoelectronic system. This behaviour is consistent
with what was noted from the angular trajectories, where non-proportional biases
were evident, both in the maxima and minima points, across both lateral and
frontal raises.

Overall, parameters related to the lateral raises exhibit lower error metrics and
standard deviations compared to those computed during frontal executions. This
trend confirms what was already found in the trajectory analysis, where greater
morphological variability in the angular trajectories of frontal raises adversely
influences the computation of the parameters.

The Bland-Altman analysis performed on the single repetitions enabled an
evaluation of the agreement between the two systems, highlighting the presence of
any systematic bias and the relative error associated with each parameter.

The LA parameter, which is influenced by both the systematic bias and the
segmentation algorithm, exhibits relatively wide Limits of Agreement (LoA). In
lateral raises, the LoA define an interval ranged from -9.16° to 13.22°, while in
frontal raises, they delimit a wider interval of [-23.53°, 16.42°]. These relatively wide
intervals could be attributed to differences between the position of the landmarks
defined by the MP model and those determined by the marker placement in
OPT. In the frontal raises the band of agreement is particularly wide, limiting the
applicability of the LA parameter for motor assessment, even in an approximate
manner, within the intended application context.

This limited reliability is further supported by the presence of a limited negative
correlation, which make the interpretation of the LA parameter more difficult, even
if supported by visual analysis of the trajectories.

In contrast, ROM shows acceptable agreement interval within the intended
application context, in particular in the lateral raises, where the interval ranges
from [-18.16°, 3.29°]. Furthermore, it exhibits a strong correlation in lateral raises,
suggesting that the two measures vary coherently (if one measure increases, the
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other also increases). This consistency allows a reliable evaluation of the parameter,
especially when accompanied by visual analysis of the corresponding angular
trajectory.

Even in the presence of an error equal to -18.16°, if the entire signal is character-
ized by the presence of a systematic bias, the average value of the parameter may
still be used as a valid indicator for motor assessment. Indeed, all mean parameters
computed exhibit a high level of agreement between MP and OPT, both in terms
of mean and variability. This tendency is particularly evident in lateral raises,
although still present in frontal raises. In general, this indicates the reliability of
mean parameters as quantitative metrics of the subject’s motor performance.

The velocity parameter RV is also acceptable, for the same considerations above.

All parameters computed over the entire signal, thus not directly influenced
by segmentation (except for PPM, computed through segmentation), exhibit a
notable reliability. The average values obtained for these parameters are practically
identical between the two systems, in both lateral and frontal raises, confirming
the suitability of the exergame for use in rehabilitation setting and telemonitoring.

The PPT temporal parameter reveals an almost perfect level of agreement
between the two systems, both in the lateral and frontal raises. This result is
supported by practically identical mean values, strong correlation coefficient, and
by the extremely narrow limits of agreement observed in the Bland-Altman (i.e.,
[-0.09 s, 0.09 s| in lateral raises, and [-0.23 s, 0.24 s] in frontal raises).

Furthermore, this parameter is sensitive to distinctions between different task
types. In particular, the Bland-Altman analysis reveals a separate distribution in
the measurements related to the alternating raises, forming a well-defined cluster
compared to the those of single-arm and simultaneous tasks. This clusterization is
consistent with the physiologically higher time intervals between two consecutive
peaks, which is a characteristic of the alternating movements.

These findings confirm the excellent reliability of temporal parameters, which
prove to be an excellent metric for an accurate motor assessment.

In general, it should be noted that each parameter must be interpreted in relation
to the trajectory from which it is derived. The analysis of the trajectories has
revealed that the signal generated by the exergame accurately follows the pattern
of the movement, thus following the reference signal’s morphology. Consequently,
even if a parameter presents an apparently high error, it may still provide relevant
information when evaluated together with the visual analysis of the trajectory. In
this case, parameters are not intended to replace the information obtained through
the trajectory observation, instead to integrate it with quantitative information.

In conclusion, all unilateral parameters, except for LA, can be considered
valid metrics to support the analysis of the movement, providing a quantitative
complement to the visual assessment of angular trajectories.

94



Discussions

Bilateral parameters

All bilateral parameters, whether aggregated or extracted from individual repeti-
tions, show comparable values between the two systems. This result is expected,
since all participants enrolled in the study were healthy and presented perfect
symmetry in limb movements. The correlation analysis highlighted weak or mod-
erate correlations for most parameters, other than temporal ones, confirming the
high reliability of temporal measurement. The weak correlation observed in the
remaining parameters, especially in the angular ones, may be attributable to the
nature of their computation, as they are defined as difference between the values of
each limb. In the presence of nearly perfect symmetry, such differences do not show
informative movement information but rather represent the residual variability of
the signals. This is further confirmed by the Bland-Altman analysis, which shows
a random dispersion in the measurements.

For a meaningful assessment of these bilateral parameters, it would be necessary
to acquire data from subjects with motor asymmetries, to evaluate the system’s
capability to capture inter-limb differences.

Similarly, it can also be confirmed that the temporal parameters are reliable
and less susceptible to variability than parameters in other measurement domains,
in both execution modes.

Final considerations

In conclusion, all temporal parameters, both unilateral and bilateral, proved to be
reliable and very accurate, in lateral raises as well as in frontal ones. A comparable
consistency was observed for parameters computed over the entire signal, such
as PPM, CCL and PF, which confirm their validity as reliable measures in the
intended application context of the exergame. Regarding angular parameters,
with the exception of LA, it can be stated that they are sufficiently accurate for
measuring and evaluating upper limb motor functions through the exergame and
the MP model. However, their interpretation should always be integrated by visual
analysis of the angular trajectories, to offer further qualitative information for
enhancing the overall assessment.

Finally, it is important to consider that the accuracy of the MP tracking model
is usually lower for frontal raises than lateral raises, and it should be considered
for the interpretation of the outcomes.

5.3 On the effects of the segmentation algorithm

The developed pipeline proved to be reliable, robust and able to produce high
quality angular trajectories suitable for motor assessment.
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One of the key elements of the pipeline is the application of the moving median
filter, which demonstrated to be effective in reducing spikes and random fluctuations,
especially in trajectories related to the z coordinate.

The segmentation algorithm appeared to be robust and accurate, even in
morphologically variable trajectories, such as those associated with frontal raises.
Misidentification of maxima and minima (false positive) were rare, suggesting
stable behaviour even in the presence of non-ideal signals. These potential errors
inevitably introduce additional variability, which may compromise the accuracy of
parameters.

This variability was observed through the validation analysis based on the
segmentation derived from the OPT signals. Except for the LA parameter and
bilateral outcomes, the Bland-Altman analysis revealed that the limits of agreement
(LoA) narrowed in all parameters, confirming that segmentation introduces a source
of variability in the computation of the parameters.

However, the improvements observed were not sufficiently substantial to change
the overall levels of agreement between the two systems. This result confirms
that, whereas the developed segmentation algorithm introduces a certain grade of
variability, it still guarantees an appropriate level of reliability for the intended use
of the exergame.

5.4 Applicability on subjects with Parkinson’s
disease

The exergame was tested on 12 parkinsonian subjects, characterized by different
levels of motor impairment. The testing was carried out during the initial phase of
the ELEVATOR (NODES PNRR program) project experimentation, for which the
exergame was conceptualized and developed by CNR-IEIIT.

The system did not show any particular tracking issue towards the target
population, even under potentially critical conditions, such as tasks performed in a
seated position. The angular trajectories obtained were generally analyzable but
some trials were excluded because the subject was unable to perform the proposed
exercise. Overall, it can be stated that almost all the subjects enrolled were able to
complete the proposed tasks, except of those exhibiting severe motor disabilities.

In the absence of a control group and a reference measurement system, no proper
statistical analysis could be carried out. The results obtained should therefore be
interpreted as a first assessment of the applicability of the system.

The angular trajectories related to the frontal raises were unexpectedly charac-
terized by lower variability compared to those obtained in healthy subjects. This
behaviour could be due to the reduced execution speed, which seems to ensure
tracking robustness and mitigate the effects of tracking fluctuations.
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The extracted parameters showed to be consistent with the visual inspection of
the related angular trajectories, confirming their ability to provide complementary
and relevant quantitative information.

In summary, the test conducted on the target population highlighted the following
key points:

e The system did not show any limitations neither in tracking slow unstable
movements (e.g., freezing arm lifts) nor movements performed in partial
occlusion conditions (i.e., seated posture).

o The enrolled subjects completed the proposed tasks without difficulty, except
for those characterized by a high level of motor impairment.

o The pipeline generated high quality angular trajectories, appropriate for motor
performance analysis.

o The parameters were consistent with the observation derived from visually
inspecting the trajectories.

In conclusion, this first experimental test indicates that the exergame produced
promising results, supporting its potential application in a telerehabilitation context.

5.5 Limits and future developments

The study conducted has provided positive and encouraging findings, confirming
the usability of the system in the designated application scenario. Nevertheless,
there are some limitations that should be considered to properly understand the
findings and support future research.

The main limitation concerns the composition of the sample included for the
validation analysis, which did not include Parkinsonian subjects. Unfortunately,
due to logistical and administrative barriers, it was not possible to enroll these
subjects to carry out the acquisitions in the laboratory. The inclusion of such data
would have outlined both the prospects and the weaknesses of the system even in
this condition, reinforcing the overall validation process. The inclusion of data from
parkinsonian subject would have allowed for a deeper evaluation of the bilateral
parameters, which are designed for the specific purpose of detecting asymmetries
in upper limb movements.

Another limitation regards the lack of data involving movements performed at
different speeds. To deepen the tracking stability of the exergame under different
conditions, it would have been appropriate to include acquisitions representing at
least 3 different speed levels (i.e., slow, moderate and fast).

An important constraint, which currently limits the applicability of the system,
concerns the dependence on MATLAB for data processing. This makes it difficult
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to produce a complete report, with angular trajectories and outcome parameters,
for users who do not own a license for this tool.

Another relevant aspect that could not be explored concerns the influence
of the environmental conditions on tracking stability. For example, performing
the proposed tasks under different lighting conditions, would enable to establish
guidelines for ensuring a better user experience.

Furthermore, possible errors in the marker placement process may have slightly
influenced the validation results. These could be due to the variability present in
the placement on each subject. These errors, albeit small, should be considered
during result interpretations.

Considering these limitations, the following future developments are proposed:

e Include in the experimental protocol trials characterized by movement with
different levels of speed and asymmetric raises, acquired under different envi-
ronmental conditions. This allows for the evaluation of the system’s robustness
in more challenging scenarios.

o Integrate the entire developed pipeline into the exergame, to display a complete
report directly within the system.

o Analyze the impact of markerization for the optoelectronic system, to correct,
if necessary, small inaccuracies in the comparison between systems.

This work represents an initial stage of a broader project. In the future, it will
be necessary to collaborate with neurologists to evaluate in detail the applicability
of the system in clinical practice, and possibly implement additional features, such
as the computation of new parameters, to respond to new clinical needs that have
not yet been addressed.
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Conclusions

In this work, kinematic data were acquired using the exergame Palestra, subse-
quently analyzed through a specifically developed pipeline, to extract outcome
parameters for a preliminary quantitative motor assessment. A validation procedure
was conducted using data collected from five healthy subjects, to evaluate the
reliability and accuracy of both the exergame and the processing pipeline; for this
purpose, a total of 80 trajectories was analyzed. Finally, Palestra was tested on a
target user group, consisting of parkinsonian patients characterized by different
levels of motor impairment.
The results obtained confirm the attainment of the established goals:

e The developed pipeline proved to be robust and reliable, producing good
quality angular trajectories showing an excellent temporal resolution.

o The validation analysis demonstrated good agreement between the MP model
and the reference optoelectronic system, especially in the lateral raises. Angular
parameters proved to be sufficiently accurate for the telemonitoring context,
while temporal parameters exhibited a high reliability. Trajectories and
parameters related to the frontal executions also proved to be acceptable for
the required application context, although they present a lower accuracy than
lateral raises.

e The system was also tested without any technical issues on parkinsonian
subjects, obtaining promising preliminary results in terms of applicability in
clinical setting.

In the future, several challenges should be resolved, such as the extension of the
system in clinical practice, the integration of new functionalities to meet emerging
clinical needs, and resolving the methodological constraints identified in the present
study.
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Innovation in the field of telemedicine, especially in telerehabilitation, represents
a fundamental aspect to explore and deepen in the near future, as it is one of
the sectors that meets the rising demand to enhance the Quality of Life (QoA) in
an ageing population. Tools such as Palestra allow the opportunity to perform
rehabilitation tasks at home in a continuous, economical, and engaging manner.
Motor performance data can be collected continuously and analyzed remotely,
enabling the referring clinician to perform preliminary and timely assessment of the
patient’s motor progress. A system like this can significantly improve the quality
of care provided to the patient, simplifying the clinical decision-making process,
and reducing the number of visits to congested healthcare facilities; therefore, it
supports the implementation of personalized treatment plans.

In conclusion, Palestra represents a practical, economical, and accessible solution
for upper limb motor training and recovery. The system offers new opportunities
in the field of telemedicine and home-based rehabilitation, positioning itself as a
reliable tool, capable of generating high-quality data with minimal costs. Therefore,
Palestra has the potential to improve the quality of life for elderly subjects and
for those affected by neurodegenerative diseases, supporting clinician in the daily
management of these conditions.
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