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Abstract

The Achilles tendon (AT) is the strongest tendon in the human body, playing
a critical role in gait by transmitting forces from the triceps surae (gastrocnemius
and soleus muscles) to enable plantarflexion. Despite its strength, the AT is highly
susceptible to injury due to the repetitive high-load stresses it endures during loco-
motor activities such as walking and running.
Rehabilitation following Achilles tendon rupture or surgical repair is often prolonged
and complex. Traditional protocols based on joint immobilization can lead to persis-
tent deficits in plantarflexor strength, proprioception, and tendon stiffness, primarily
due to adverse changes in muscle-tendon morphology and function—particularly

affecting the soleus muscle.

Active ankle-foot orthoses (AFOs) have emerged as promising tools for facilitating
active rehabilitation by delivering controlled assistance that can offload the Achilles
tendon and support functional recovery. By generating assistive torque in response
to gait events, these devices can provide adaptive support tailored to the individual
needs of the recovery process. Still, evaluating their effectiveness remains challeng-
ing due to the lack of feasible in vivo techniques for measuring AT force during
dynamic movement. Invasive methods are not clinically viable, and non-invasive
options like tensiometry are limited by placement complexity and postprocessing de-
mands. Consequently, musculoskeletal modeling has become a scalable and accessible

method for estimating AT load and assessing the biomechanical effects of such devices.

This study aims to investigate the interaction between active AFO support and
the musculoskeletal system to inform more effective rehabilitation strategies for lower
limb injuries. To this end, we conducted a comparative musculoskeletal modeling
analysis to estimate Achilles tendon (AT) loading during walking across five experi-
mental conditions: walking without an AFO, with a passive AFO, and with three
increasing levels of powered assistance.

Surface electromyography (sEMG), kinetic, and kinematic data were collected from
11 healthy subjects walking at two speeds. Two simulation platforms, OpenSim and
MyoSuite, were used to process the experimental data and estimate joint kinematics,
muscle activations, and AT forces across conditions. Full time series and summary
metrics were analyzed, with inverse kinematics results validated against motion
capture data. Results showed strong agreement between platforms in estimating hip,

knee, and ankle angles.

Focus was placed on the Triceps Surae and Tibialis Anterior muscles, whose
activation levels, recorded via sEMG and modeled through simulation, served as
indirect indicators of AT loading. Results showed that higher powered assistance
levels were associated with reduced muscle activation and tendon forces, supporting

the potential of robotic AFOs to lower the mechanical demand on the Achilles tendon



during gait.

These findings underscore the potential of powered AFOs as tools for active
rehabilitation targeting tendon recovery. Additionally, this work highlights the value
of simulation-based musculoskeletal modeling using OpenSim and MyoSuite to inform

both biomechanical research and clinical decision-making.

II
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Chapter 1

The Motion Analysis Lab

The Motion Analysis Lab (MAL) is a state-of-the-art research facility located at
Spaulding Rehabilitation Hospital in Boston, Massachusetts. Operated in collabora-
tion with the Department of Physical Medicine and Rehabilitation at Harvard Medical
School, the lab focuses on the quantitative assessment of human movement, with
applications in rehabilitation, assistive technology, and neuromuscular biomechanics.
Equipped with advanced instrumentation, including marker-based motion capture
systems, instrumented treadmills, force platforms, and wearable sensors, the MAL
supports both clinical and research investigations aimed at improving functional
outcomes in individuals with neurological and musculoskeletal disorders. The in-
terdisciplinary nature of the lab fosters collaborations among clinicians, engineers,
and scientists, providing an ideal environment for the development and validation of

innovative technologies in human movement science.

1.1 Contribution to Apollux Validation Study

During my research period at the Motion Analysis Lab (MAL) at Spaulding Rehabil-
itation Hospital, I actively contributed to a parallel project focused on validating the
joint angle estimation pipeline of Apollux, a novel wearable sensing system designed
to enable out-of-lab monitoring of human motion. The overarching objective of
the Apollux project is to develop a lightweight, cost-effective solution capable of
providing accurate biomechanical information by integrating kinematic and muscular
data through custom-designed inertial sensors.

The aim of the study was to evaluate the accuracy of Apollux-derived joint angles
for the elbow and knee during locomotor and upper-limb tasks in healthy adults. To
do so, the Apollux system was tested alongside two reference platforms: the Vicon
motion capture system (the gold standard in 3D kinematic analysis) and the
Xsens Awinda system, a commercial wearable IMU-based solution. These systems

were used concurrently to benchmark Apollux joint angle estimations.

Experimental Setup and Data Collection
I was responsible for the execution of experimental sessions, managing every aspect

from system preparation to data acquisition. Each participant was equipped with:
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o Reflective markers placed on anatomical landmarks (e.g., pelvis, thigh, shank,

arm, forearm) for Vicon tracking.
e Xsens Awinda IMUs securely mounted on the same segments.

e Apollux IMU-based devices, fixed with adhesive tape and straps to prevent

motion artifacts.
Participants performed two types of tasks:
1. Walking trials along a 12-meter instrumented walkway at a self-selected pace.
2. Hand-reaching trials to assess upper-limb motion.

Each session was conducted under my supervision, ensuring that all three systems

recorded synchronized data throughout the trials.

Data Extraction and Processing

After data acquisition, I handled the entire pre-processing workflow for all systems:

e Vicon: Marker labeling, trajectory filtering, gap filling, and segment orientation

reconstruction using Nexus.
e Xsens: Extraction of joint angle and orientation data via MVN Analyze.

e Apollux: Parsing and pre-processing of raw accelerometer and gyroscope data

logged by the custom hardware.

Data Synchronization
Given the asynchronous nature of the three systems, precise temporal alignment was

essential. I developed custom MATLAB scripts to:
o Extract and parse timestamps from Vicon and Apollux logs.

o Identify shared reference events (e.g., still postures or foot strikes) for initial

alignment.

o Apply interpolation and offset correction for precise signal alignment across

systems.

These scripts enabled frame-level alignment of the joint kinematic data and

allowed for consistent comparison between platforms.

Code Development and Documentation

To facilitate reproducibility, I developed a structured and well-documented codebase
capable of automating the extraction, synchronization, and processing of data across
multiple trials and subjects. This pipeline significantly accelerated the processing

and minimized human error in data handling.

Summary

This project provided an opportunity to strengthen my practical skills in experimental
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biomechanics, multi-platform motion capture, and sensor fusion. My contributions
ensured datasets that are currently being used to validate the Apollux joint angle
estimation pipeline. The experience also deepened my understanding of inertial sensor
integration, real-time data processing, and algorithmic validation in the context of

wearable biomechanics research.



Chapter 2

Introduction

Anatomically positioned at the back of the lower leg, the Achilles tendon is the largest
and strongest tendon in the human body. It connects the triceps surae muscle group -
comprising the gastrocnemius and soleus - to the calcaneus (heel bone). Contraction
of these muscles transmits force through the tendon, producing foot plantarflexion.
This musculotendinous unit plays a vital role in locomotion and propulsion during
walking, running, and jumping, enduring some of the highest mechanical loads in the
human body [1]. Despite its strength, the AT is highly prone to injury, particularly
in physically active men aged 30-50 [2].

Traditional rehabilitation often involves ankle immobilization, which offers protec-
tion but may lead to muscle atrophy, thrombotic risk, and impaired tendon function.
Active AFOs present a promising alternative by providing controlled mobility that
supports functional movement, reduces pain, and lowers re-injury risk. Powered
AFOs, in particular, can assist gait by offloading the triceps surae, thereby decreasing
AT loading.

The following section outlines the anatomical and physiological characteristics
of the AT, current clinical management strategies, and available rehabilitation
approaches. It also introduces the musculoskeletal modeling platforms used in
this study to simulate movement and assess human-robot interaction, laying the

groundwork for the analyses presented.

2.1 Achilles Tendon Overview

2.1.1 Anatomy, Function, and Injuries

The Achilles tendon (AT) is the largest and strongest tendon in the human body,
connecting the gastrocnemius and soleus muscles (triceps surae) to the calcaneus [3].
It spans the knee, ankle, and subtalar joints and plays a central role in plantarflexion
during push-off in gait [3]. Structurally, the AT consists mainly of type I collagen and
features a spiral architecture with a medial rotation of 11 to 90 degrees, enhancing
energy storage and mechanical efficiency while rendering the mid-portion (watershed

area) more vulnerable to poor vascularization and rupture [4].
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Functionally, the AT stores elastic energy during mid-stance via eccentric con-
traction of the triceps surae and releases it during push-off, improving locomotor
efficiency [5, 6]. Its high stiffness supports effective force transmission and lowers the
metabolic cost of walking and running.

Despite its strength, the AT is susceptible to injuries, that often result from sudden
plantarflexion, overuse, or degenerative changes, and are frequently misdiagnosed.
Long-term effects include tendon elongation, reduced stiffness, and impaired function,
which can significantly hinder mobility and performance [3, 7].

Both operative and nonoperative treatments are effective for managing rup-
tures. Postoperative strategies have shifted from prolonged immobilization toward
early functional rehabilitation, with modern orthotic designs enabling immediate

weightbearing and improved recovery [8].

2.1.2 Passive and Active Ankle-Foot Orthoses in Achilles Tendon
Rehabilitation

Ankle-foot orthoses (AFOs) affect plantar flexor activation during walking and are
increasingly used to reduce muscle and tendon loading during rehabilitation. However,
the intensity and timing of the external torque they apply can influence neuromuscular
coordination and muscle-tendon dynamics, underscoring the need for careful design
and control [9].

Passive AFOs generate torque through their mechanical properties, primarily
stiffness and equilibrium angle, which define resistance to ankle dorsiflexion and
plantarflexion. They help limit joint motion, stabilize the ankle, and facilitate early
gait retraining, while potentially lowering metabolic cost [10]. In AT rehabilitation,
passive AFOs support early weight-bearing and help prevent reinjury [11]. However,
their biomechanical impact on the muscle-tendon unit (MTU) is not fully understood,
and their inability to actively generate torque limits their adaptability to individual
needs [12].

Active (powered) AFOs use actuators to provide adjustable torque in both
magnitude and timing [9]. They are particularly effective during push-off, when AT
loading peaks, by reducing plantar flexor activation and unloading the tendon [13].
Their programmability allows for subject-specific assistance across rehabilitation
phases. However, their added mass and mechanical complexity may increase metabolic
cost and require more refined biomechanical integration [9].

A deeper understanding of how active AFOs affect AT loading and MTU dynamics

is essential to inform the design of effective, evidence-based rehabilitation strategies.

2.2 Non-invasive estimation of Achilles Tendon Unload-

ing

Although joint kinematics, ground reaction forces, and muscle activity can be mea-

sured non-invasively using motion capture systems, force plates, and electromyography,
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quantifying internal structures such as muscle-tendon forces and joint contact loads
remains a significant challenge [14]. Direct in vivo measurements of tendon loading
are invasive and not feasible in most research settings, suggesting the development of
indirect, non-invasive techniques to estimate AT force.

Among these, ultrasound imaging has proven to be a powerful tool to evaluate
tendon elongation and estimate force when combined with tendon stiffness. Accuracy
improves with a subject-specific measure of stiffness and when the relative activation
of the triceps surae muscles is taken into account through EMG data. Dick et
al. [15] demonstrated that ankle moments derived from ultrasound-based tendon
strain match inverse dynamics estimates within approximately 10%. However, the
method’s sensitivity to the tendon slack length that is assumed and non-uniform
strain distribution is a source of ongoing limitations.

Another promising technique is shear wave tensiometry, which estimates tendon
stress based on wave propagation speed. Keuler et al. [16] validated this method by
calibrating it against isometric contractions, finding a strong correlation (R? ~0.90)
between squared wave speed and tendon stress. This approach has the advantage of
capturing loading dynamics during gait phases, such as late swing, that are difficult
to evaluate with inverse dynamics. Nevertheless, the method requires subject-specific
calibration, which may be problematic in pathological populations, and relies on
assumptions regarding tissue density and wave propagation mechanics.

Bolus et al. [17] introduced an alternative wearable approach using burst vibrations
from a skin-mounted actuator and accelerometer. Their system quantifies the tendon’s
transient mechanical response and infers load through machine learning. With R?
values around 0.85 for ankle moment prediction, it shows potential for real-time
AT monitoring. However, sensor placement sensitivity, the absence of a standard
calibration protocol, and technological readiness for clinical deployment remain
critical limitations.

In summary, although non-invasive methods for estimating AT load are advancing
rapidly, each comes with limitations imposed by accuracy, complexity or applicability.
Ultrasound and shear wave methods provide physiologically interesting data but
require calibration and specialized equipment. Vibration-based systems show promise
wearable-oriented solution, but need further validation. These constraints underscore
the need for complementary strategies that can bridge the gap between laboratory-

based accuracy and outside-world feasibility.

2.2.1 Musculoskeletal Simulations to Study Achilles Tendon Load

To address the limitations of experimental techniques, musculoskeletal (MSK) model-
ing has gained traction as a powerful, non-invasive approach for estimating internal
biomechanical quantities such as muscle and tendon forces. MSK simulations inte-
grate motion capture, ground reaction forces, and anatomical models to estimate
how muscles coordinate movement and load tendons throughout dynamic tasks [18].

MSK simulations provide a non-invasive alternative, enabling the estimation of
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internal quantities such as muscle and tendon forces. Although promising, subject-
specific models for studying AT load after tendon rupture and repair remain lim-
ited [19].

By modeling muscle coordination during gait, MSK simulations offer insight into
how plantar flexors contribute to propulsion and tendon loading, especially during
push-off. This is essential for assessing the biomechanical impact of interventions
such as ankle-foot orthoses.

In this study, we employ two platforms - OpenSim and MyoSuite - to estimate
AT forces during walking under varying assistance conditions, aiming to improve our

understanding of tendon loading and recovery.

Opensim

OpenSim is a widely used open-source platform for modeling, simulating, and ana-
lyzing the neuromusculoskeletal system [20]. It enables the construction of detailed
biomechanical models that incorporate bones, joints, muscles, and physiological
dynamics such as muscle-tendon interactions and joint constraints.

A major advantage of OpenSim is its ability to generate subject-specific models,
allowing simulations to be tailored to individual anatomy and clinical conditions [21].
This makes it particularly useful in rehabilitation research, where it can be used to
study the biomechanical impact of injuries, surgeries, and assistive devices.

OpenSim’s muscle models are based on decades of experimental research and have
been adapted for human movement analysis. The platform includes computational
tools for inverse kinematics, inverse dynamics, static optimization, and forward
simulations, enabling the estimation of muscle forces, joint moments, and tendon
loads. It is especially effective for analyzing lower-limb function during gait and has

been extensively applied in clinical and performance-related studies.

MyoSuite

MyoSuite is a simulation framework that integrates physiologically accurate muscu-
loskeletal modeling with reinforcement learning and control algorithms [22]. Built
on the MuJoCo physics engine, it enables real-time simulation of muscle-driven
movements, including complex, contact-rich tasks [23]. Compared to traditional
biomechanical platforms, MyoSuite prioritizes computational speed, modularity, and
compatibility with machine learning, making it ideal for exploring adaptive motor
control and personalized assistance strategies.

MyoSuite models are derived from OpenSim models and converted using a

dedicated pipeline called MyoSim [23], which includes:

e Geometry transfer: maps segment geometries, muscle attachment points,

and wrapping surfaces.

e Moment arm optimization: adjusts 3D positions of wrapping sites to match

realistic moment arms.
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e Muscle force optimization: tunes muscle parameters to replicate biome-

chanical behavior in MuJoCo.

By simulating neuromuscular control under various conditions, MyoSuite provides
a powerful tool for investigating muscle coordination, tendon loading, and subject-
specific interventions. Although still under active development, it complements
platforms like OpenSim by offering faster, more flexible simulations suited for learning-

based approaches and real-time applications.

2.3 Objectives of the Manuscript

This study has two main objectives, both clinical and methodological. The first
objective of this study is to evaluate the impact of active AFOs on muscle activa-
tion patterns and Achilles tendon (AT) loading. We tested three levels of torque
assistance - low, medium, and high - applied bilaterally by Dephy ExoBoots (De-
phy, Inc. [24]) worn by healthy participants walking on an instrumented treadmill.
Surface electromyography (SEMG) signals were recorded from the triceps surae and
Tibialis Anterior muscles to examine changes in muscle activation across conditions.

Specifically, we hypothesized:

e a reduction in triceps surae muscle activity with increasing levels of external

torque;

e a stable activation pattern in the Tibialis Anterior, indicating that the AFO

assistance does not interfere with normal dorsiflexor function.

To estimate Achilles tendon loading, we conducted both EMG-informed and non-
informed forward dynamic simulations using OpenSim (v4.4) and MyoSuite. These
simulations reproduced lower-limb motion and generated muscle-tendon dynamics
across assistance levels. The activations of the Soleus, Gastrocnemius (Medialis and
Lateralis), and Tibialis Anterior were used to assess the extent to which external
torque reduced muscle demand and tendon force.

The second objective of this work was to compare the outcomes of two muscu-
loskeletal simulation platforms - OpenSim and MyoSuite - in estimating AT loading,
from inverse kinematics to muscle force generation under assisted walking conditions.
This comparison aims to identify the strengths, limitations, and consistency of each

tool in the context of human-robot interaction and rehabilitation research.
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Figure 2.1: Conceptual flow of the study rationale. Overview of the Achilles tendon’s
biomechanical function, common injury mechanisms, and current rehabilitation
strategies using passive and active ankle-foot orthoses (AFOs). Due to the invasiveness
of direct tendon load measurements, emerging non-invasive techniques are explored,
though each has notable limitations. Musculoskeletal simulations offer complementary
solutions to estimate internal tendon loading during gait, with OpenSim and MyoSuite
providing two distinct modeling platforms used in this study.



Chapter 3

Materials

3.1 Participants

Data were collected from 11 healthy participants (5 female, 24.4 + 1.7 years),
recruited from Spaulding Rehabilitation Hospital in Charlestown, MA. The average
body weight was 71 + 8kg. All participants met the inclusion criteria: they were
free from medical conditions that could affect lower-limb movement or compromise
safety during study procedures, and had no skin lesions, infections, or rashes in
areas where motion capture markers would be placed. Prior to participation, each
subject underwent screening and was thoroughly informed about the study objectives,
procedures, potential risks, and benefits. Written informed consent was obtained
from all participants. The study was approved by the Institutional Review Board
(IRB) at Spaulding Rehabilitation Hospital (protocol #2024P000655).

Table 3.1: Anthropometric data of study participants.

Code Height (m) Weight (kg)

Poo 1.96 86.02
PO1 1.74 63.04
P02 1.70 70.84
P03 1.63 60.34
P04 1.75 71.86
P05 1.89 81.60
P06 1.66 66.97
PoO7 1.64 71.76
Po8 1.78 65.25
S05 1.85 81.60
S06 1.80 67.50
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3.2 Study procedure

3.2.1 Preliminary steps

All experimental procedures were performed at the Spaulding National Running
Center (SNRC), located within the Spaulding Hospital Cambridge (SHC). Each
participant completed a single study visit lasting approximately 3.5 hours.

Prior to the visit, a brief screening questionnaire was administered to determine
eligibility. Eligible individuals were invited to participate and instructed to wear
comfortable clothing on the day of testing.

Upon arrival, participants were guided through the informed consent process,
which was conducted by a trained member of the research team with appropriate
academic or professional credentials, as designated by the Principal Investigator.
Once consent was obtained, demographic data (e.g., age, gender) and anthropometric
measurements were collected using standard tools. These included height, weight, limb
segment lengths, joint widths, and limb circumferences, necessary for personalized
biomechanical modeling.

Participants were then prepared for data collection. Reflective markers and surface
EMG electrodes were applied according to standard procedures, with appropriate
skin preparation to ensure signal quality. Electrodes targeted key lower limb muscles
(gastrocnemius lateralis/medialis, soleus, tibialis anterior) and were secured with
adhesive and wrap. Additionally, smartphone video recordings were acquired using

the MyoLab app (MyoLab, USA) for qualitative assessment and calibration.

3.2.2 Instrumentation
Vicon motion capture system

The Vicon Motion Capture System (Vicon, Oxford, UK) is a high-precision optical
tracking technology widely used in biomechanics and clinical research, and is consid-
ered the gold standard for human movement analysis [25]. It employs an array of
infrared cameras to track the three-dimensional positions of retroreflective markers
placed on anatomical landmarks across the body. Using triangulation, the system
determines marker trajectories with sub-millimeter accuracy within a calibrated
laboratory space.

As illustrated in Figure 3.1, the laboratory setup included ten high-resolution
infrared cameras and two standard RGB cameras, all operating at a frame rate of 250
Hz. The RGB cameras, along with smartphone video recordings, were positioned at
the back and left sides of the capture volume. These additional recordings provided
complementary visual perspectives, particularly focused on the lower limbs, to assist
with qualitative analysis and facilitate system calibration.

To enable replication of full-body motion within musculoskeletal (MSK) modeling
software, we aimed to acquire accurate kinematic data during both unassisted and

assisted walking trials. Motion capture was performed using 53 reflective markers
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strategically placed across the body. These included both anatomical markers,
positioned over key joint landmarks for precise biomechanical analysis, and tracking

markers used to support segment orientation.

Figure 3.1: Spaulding National Running Center, located within Spaulding Hospital
Cambridge. Ten high-resolution infrared cameras, two standard RGB cameras and
AMTT instrumented treadmill.

For upper body and trunk motion, we adopted the Plug-In Gait Full-Body marker
set [26], while lower limb kinematics were captured using the IOR Gait Full-Body
model [27], as illustrated in Figures 3.2 and 3.3. In situations where the Dephy
ExoBoot interfered with direct marker placement on the knee and ankle (e.g., due
to mechanical obstruction), we replaced anatomical markers with clusters of four
tracking markers on each thigh and shank to ensure reliable segment tracking.

To maintain marker stability and reduce the risk of detachment during walking, all
markers were secured using double-sided tape and reinforced with adhesive material
when necessary. In Figure 3.2, an example of marker placement on the body of a

subject during data collection is shown.

Surface Electromyography Acquisition with the Delsys System

To assess muscle activation during gait, we employed the Delsys Trigno System
(Delsys Inc., Natick, MA, USA) for wireless surface electromyography (sEMG) data
acquisition. This system is widely recognized for its high signal fidelity and low noise
interference, making it ideal for biomechanical and neuromuscular analysis during
dynamic tasks.

sEMG signals were recorded from eight muscles, four per lower limb, focusing
on those primarily involved in plantarflexion and linked to Achilles tendon loading.
This selection aligns with the main objective of evaluating tendon unloading across
varying levels of external torque. Additionally, we included one key dorsiflexor muscle

to verify that the exoskeleton assistance did not disrupt normal activation patterns
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Figure 3.2: (a) IOR Gait Full-Body model (Lower body). (b) Plug-in Gait upper
body model.

Figure 3.3: Example of marker placement on a subject during motion capture data
acquisition. Reflective markers were positioned according to the full-body protocol
to track the three-dimensional motion of body segments during walking.
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during gait.

The muscles monitored (see Figure 3.4) included:

e Soleus: A uniarticular muscle in the posterior lower leg, fundamental for
maintaining posture and producing plantarflexion during the push-off phase of

gait.

e Gastrocnemius Medialis and Lateralis: Biarticular muscles crossing both
the knee and ankle joints, involved in knee flexion and ankle plantarflexion,

essential for propulsion.

« Tibialis Anterior: Located in the anterior compartment of the lower leg, it

plays a crucial role in dorsiflexion and foot clearance during the swing phase.

Tibialis Anterior Gastrocnemius Medialis

Figure 3.4: Muscles considered for the ankle joint analysis: gastrocnemius medialis,
gastrocnemius lateralis, and soleus (plantarflexors), and tibialis anterior (dorsiflexor).

Before electrode placement, the skin was cleansed using isopropyl alcohol to remove
surface contaminants and ensure good electrical contact. Sensors were positioned
over the midline of each muscle belly, aligned with the muscle fiber orientation, using
the Delsys Adhesive Sensor Interface [28]. This alignment ensures that the parallel
bar detection surfaces accurately capture electrical activity along the direction of
propagation.

To validate sensor positioning, subjects performed brief isometric contractions of
each target muscle. Electrode placement was adjusted as needed to maximize signal
amplitude and reduce cross-talk. Once optimized, electrodes were further secured
with medical-grade tape to minimize motion artifacts during data collection.

Figure 3.5 illustrates the anterior and posterior electrode configurations used

during testing.

Instrumented Treadmill

To collect kinetic data during walking trials, we used an AMTI tandem instrumented
treadmill (AMTI, Watertown, MA, USA) equipped with two six-axis force platforms
embedded beneath each treadmill belt. The treadmill features a compact, front-to-

back split-belt design, which avoids limitations associated with traditional side-by-side

14



Materials

Figure 3.5: EMG placement on lower limbs, targeting plantaflexor muscles of the
triceps surae and tibialis anterior (dorsiflexor).

configurations. This setup allows for the independent measurement of ground reaction
forces (GRFs) from each limb, including during the double-support phase of gait.

Each force plate captures three-dimensional force components—vertical, anterior4
posterior, and medial-lateral—as well as moments about the sagittal (flexion-
extension), frontal (abduction-adduction), and transverse (internal-external) axes.
These measurements are critical for evaluating external loads acting on the body
during locomotion.

The treadmill system was connected to a data acquisition unit, and the force
signals were processed using Visual3D (C-Motion, Inc.), that enables synchronized
integration of kinetic and kinematic data, allowing for the estimation of joint forces
and torques through inverse dynamics.

The treadmill was installed at the Spaulding Running Center Laboratory in
Cambridge, MA, and configured to facilitate both unassisted and assisted walking

trials.

Figure 3.6: AMTI Tandem Instrumented Treadmill used at the Spaulding Running
Center Laboratory (Cambridge, MA).

Active Dephy ExoBoot

As discussed previously, active ankle-foot orthoses (AFOs) offer significant advantages
for rehabilitation by not only providing mechanical support and stability, but also
actively assisting movement. Unlike passive devices that limit joint motion, active

AFOs apply controlled torques to promote functional muscle use, facilitate weight-
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bearing activities, and enable progressive motor recovery while minimizing the risk
of re-injury.

In this context, Dephy Inc. (Maynard, MA, USA) developed the ExoBoot EB60,
a lightweight, wearable robotic AFO designed to provide assistive torque at the ankle
joint. The ExoBoot delivers external torque during plantarflexion, targeting the
stance phase of gait when activation of the triceps surae muscles and consequently

loading of the Achilles tendon is at its peak. The device is illustrated in Figure 3.7.

Figure 3.7: Active Dephy ExoBoot (EB60) by Dephy Inc. [24].

The ExoBoot system includes actuators mounted on the shanks and rigid braces
attached to the shoes, with each unit weighing approximately 1.2 kg. Participants
wore a pair of ExoBoots bilaterally to promote symmetrical gait patterns and natural
loading conditions across limbs. During data collection, both unassisted and assisted
walking trials were performed, structured into five conditions based on the level of
device engagement.

To modulate the assistance provided, we adjusted a device-specific parameter
called the Augmentation Level, which controls the magnitude of the torque applied at
the ankle during gait. This setup enabled a systematic investigation of the ExoBoot’s
effects across varying support levels.

The experimental design aimed to evaluate the device’s capacity to influence
lower-limb muscle recruitment and modulate Achilles tendon loading. By analyzing
both EMG and biomechanical data under different augmentation levels, we assessed
the ExoBoot’s potential as a tool for functional rehabilitation and performance

support.

3.2.3 Softwares

Six primary software tools were employed to carry out the data processing and

analysis for this study:

o OpenSim (version 4.4, Delp et al., 2007) [29]: Used for generating subject-
specific musculoskeletal simulations, OpenSim played a central role in estimating
muscle activations and Achilles tendon forces. The software enabled the con-
struction of personalized models and the execution of inverse kinematics (IK),
Reisdual Reduction Algorithm (RRA), and Computed Muscle Control (CMC)

to investigate biomechanical aspects of assisted and unassisted walking.
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e Vicon Nexus (version 2.15, Oxford Metrics, UK): This software was responsible
for acquiring and labeling both kinematic and surface electromyography (SEMG)
data. Nexus served as the initial interface for motion capture, managing data

collection and marker tracking from the Vicon system.

e Visual3D (C-Motion Inc.) [30]: Visual3D was used to compute and extract
kinematic and kinetic data, including ground reaction forces (GRFs), joint
angles and joint torques. Static calibration trials and dynamic gait trials
exported from Vicon Nexus were processed in Visual3D to generate GRF and

IK outputs, which were later exported for downstream analyses.

o« MyoLab App [23]: An early-stage smartphone application developed within
the MyoSuite ecosystem, MyoLab was used to record RGB video data from
range-of-motion (ROM) tasks. The app collects metadata (e.g., body mass,
subject ID) and captures full-body motion to support the creation of subject-

specific digital twins for future simulation and analysis.

e MyoSuite Executables: A suite of command-line tools developed in the

MyoSuite pipeline [23], including;:
— embeddedIK.exe — for performing inverse kinematics on motion capture
trials.

— estimateATF.exe — for estimating Achilles tendon force using forward

dynamics simulations.

getMarkerErrors.exe — to quantify residual marker errors during IK
fitting.

— moveMarkerSet.exe — for marker set transformation and model alignment.

These executables enabled automated batch processing of IK and ATF estima-
tions across trials and subjects, contributing to an efficient and reproducible

simulation workflow.

Together, these software platforms enabled a comprehensive pipeline for capturing,
processing, and analyzing experimental and simulated biomechanical data. The
integration of motion capture, musculoskeletal modeling, and data-driven tools
facilitated a detailed investigation into muscle coordination and Achilles tendon

unloading across different assistance conditions.

3.2.4 Experimental procedure

Each experimental session was structured into a sequence of standardized steps to
ensure consistency and high-quality biomechanical data acquisition. The protocol
combined full-body motion capture, electromyographic recordings, and wearable

robotics testing, across multiple walking and calibration conditions.
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Preparation and Setup

Before initiating data collection, all equipment was tested to confirm proper recording
functionality. Participants were prepared by applying 53 reflective markers and eight
sEMG electrodes, as previously described. The Delsys EMG system was synchronized
with the Vicon Nexus platform by naming each electrode and linking muscle channels
in the software configuration.

Vicon System Calibration: The laboratory was first cleared of reflective
objects, and the Vicon camera system was calibrated using a wand emitting infrared
light. The global coordinate system was then defined using the Vicon calibration
plugin, centering the volume around the instrumented treadmill. This ensured spatial
accuracy for the 3D motion capture.

MVC Recordings: Maximum voluntary contractions (MVCs) were recorded for
each monitored muscle to normalize the SEMG signals across subjects and walking

conditions.

Baseline Trials

Static Trial Without Device: A baseline static trial was conducted with par-
ticipants standing upright (arms extended, feet shoulder-width apart) to capture
anatomical landmarks and body mass distribution without the ExoBoots. This
served to scale the musculoskeletal model and calibrate marker positions.

Range of Motion (ROM) Assessment: Participants completed isolated joint
movements (15 seconds per trial) to assess ROM in the neck, shoulders, elbows,
wrists, hips, knees, ankles, and spine. Each joint was tested across specific planes
(flexion/extension, abduction/adduction, inversion/eversion) to support model scaling
and digital twin development.

Balance and CoM Tasks: Participants performed:
e Standing

e Seated

Single-leg balance

e Squats

Weight shifting

These tasks evaluated postural control and provided additional input for dynamic
modeling.

Unassisted Walking Trial: Participants walked at 3 and 3.3 mph (1.34 and
1.47 m/s) on the instrumented treadmill for 1.5 minutes per speed. This trial served
as the control condition, capturing natural gait and muscle activation without device

interference.
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Figure 3.8: Example of a walking trial performed with the Dephy ExoBoot during
the experimental data collection.

ExoBoot Trials

Second Static Trial (with ExoBoot): A second static trial was collected after
fitting the bilateral Dephy ExoBoots to account for weight redistribution and altered
ankle alignment.

Unpowered Walking Trial: With the ExoBoots worn but turned off, partici-
pants repeated treadmill walking at the same speeds. This allowed the isolation of
mechanical effects due to device mass from the effects of active torque assistance.

System Synchronization: Prior to the powered trials, study stuff performed
three rapid shaking motions of the ExoBoots while recording with both Vicon and
the Dephy software. This enabled time alignment between external torque data,
kinematics, and sEMG signals.

Assisted Walking Trials: With the ExoBoot activated, participants completed
trials at three augmentation levels (50, 100, 150) for both speeds. After each level
adjustment, a 5 minute acclimatization period allowed the device to stabilize. Data
collection resumed once participants maintained a steady gait rhythm. Each trial
lasted 1.5 minutes or until 30 full gait cycles were recorded.

Final Synchronization: The session concluded with a second set of three
shaking motions to finalize synchronization across all recorded data streams.

This comprehensive protocol ensured the capture of high-resolution, multimodal
data under both unassisted and assisted walking conditions, forming the basis for
downstream musculoskeletal simulation and Achilles tendon force estimation. Figure

3.8 shows an example of a walking trial performed with the Dephy ExoBoot.
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Chapter 4

Methods

4.1 Processing of Kinematics in Vicon Nexus 2.16 and

Gait Cycle Segmentation

For each study participant, trajectories from 53 reflective markers were collected to
reconstruct full-body kinematics using the Vicon motion capture system. Marker

trajectories were processed using Vicon Nexus 2.16.

Labeling Skeleton and Model Calibration

The first step in the pipeline involved defining a labeled skeleton template using
the Labeling Template Builder in Nexus. Markers were assigned to anatomical
segments based on the IOR Full-Body model for the lower limbs and the Plug-in
Gait model for the upper limbs. Anthropometric data, including body height, weight,
leg lengths, and joint widths (knee and ankle), were entered to estimate joint center
locations. An example of the static calibration trial and the resulting skeletal model
reconstruction is shown in Figure 4.1. A static calibration trial was performed with
the subject in an A-pose, standing on the treadmill. During this step, each marker
was manually labeled to match the template structure. Two models were created
for each participant: one for unassisted walking trials and one for trials with the
ExoBoots, accounting for the added device weight.

Subsequently, the Plug-in Gait Static and Static Subject Calibration

pipelines were run to finalize model scaling and segment alignment.

Dynamic Trial Processing

The Reconstruct and Label pipeline was used to assign marker trajectories to the
model in dynamic trials. Although the pipeline automatically labels markers, it may
not resolve brief gaps when markers disappear from view (i.e., when not seen by at

least three cameras). Manual gap filling was therefore applied as needed:

e Spline Fill: Used for short gaps by interpolating trajectories with spline

curves.

20



Methods

Figure 4.1: Example of static calibration trial. (a) Marker set applied on the
subject during the A-pose acquisition. (b) Skeletal model reconstruction generated
after marker labeling, showing the segment definitions based on the IOR Full-Body
and Plug-in Gait models.

« Rigid Body Fill: Applied when three or more rigidly connected markers were

available to estimate the missing marker.
o Pattern Fill: Employed for repetitive movements based on cyclic patterns.

After verification of marker labeling accuracy, the dynamic processing pipeline
was executed. This included filtering trajectories using a Woltring filter, computing
upper joint kinematics (Plug-in Gait Dynamic Model), and exporting the processed

trial as a .c3d file.

Gait Cycle Segmentation

Gait events were identified using the AMTI Treadmill Gait Cycle Events pipeline,
which is designed for the lab’s specific treadmill configuration. The pipeline was
executed via MATLAB while the trial was loaded in Vicon. It used the vertical
ground reaction force (Fz) signal from each force plate to detect heel strikes and
toe-offs.

Key inputs included subject name, front and back force plate names, and a
threshold for force detection (set at 5% of body mass). The pipeline returned gait
cycle events directly into the Vicon environment. Manual inspection ensured correct
detection, especially of foot-off events which can be underestimated.

The final .c3d files contained all relevant analog and kinematic data (raw EMG

and GRFs, marker trajectories), ready for further analysis in MATLAB, OpenSim,
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or MyoSuite. An example of the gait cycle segmentation process displayed in the

Vicon environment is shown in Figure 4.2.
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Figure 4.2: Example of gait event detection using the AMTI Treadmill Gait Cycle
Events pipeline. Heel strikes and toe-offs were identified based on vertical ground
reaction force signals while the trial was loaded in Vicon.

4.2 Visual3D Processing Pipeline

Visual3D (C-Motion Inc.) was used to process kinematic and kinetic data and to
compute joint angles, joint moments, and ground reaction forces (GRFs). All trials
were processed by importing . c3d files into the software and building subject-specific

skeletal models.

Model Definition and Joint Configuration

For each participant, a personalized biomechanical model was constructed by combin-
ing two existing templates: the Plug-in Gait model [26] for the upper body and the
IOR model [27] for the lower limbs. Anatomical marker locations and anthropometric
measurements (height and weight) were used to define the geometry and inertial
properties of each segment.

The upper body model included nine segments: pelvis, thorax, head, left /right
upper arms, forearms, and hands. For each segment, anatomical and tracking markers
were assigned, and calibration markers (e.g., medial/lateral knee) were used to define
joint centers and segment orientations. The lower body model was adapted from the
IOR Full-Body template to match the available marker set.

Visual3D automatically creates joints between adjacent segments when the distal
end of one segment and the proximal end of another are within a defined proximity.
These joints are not mechanical constraints but serve as reference points for calculating
joint reaction forces and net internal moments. All joints used in this study had

6 degrees of freedom (DOF) and followed the standard segment hierarchy for gait
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analysis (e.g., foot—shank—thigh—pelvis).

Once the model was defined and scaled using a static trial, it was applied to
all dynamic trials. Two subject-specific models were created per participant: one
for unassisted walking (body weight only) and one for assisted walking (including

ExoBoot mass).

Ground Reaction Force Extraction

GRF data were extracted from trials recorded on an AMTTI instrumented treadmill
with two embedded force plates. Because each foot alternates contact between
the two plates during walking, the system required segmenting and assigning GRF
data from each plate to the corresponding foot. This was accomplished using the
Compute Model Based Data tool in Visual3D, which assigns forces and moments to
the appropriate foot segment based on contact timing and location.

Visual3D outputs included 3D force vectors and moments projected on each foot.
These were visually verified within the software, with GRF projections shown as blue
vectors beneath the feet. Vertical GRFs (Z-axis) were extracted and validated for each
foot separately. An example of ground reaction force extraction and visualization in
Visual3D is shown in Figure 4.3. Finally, GRF and moment data were exported to
.mat format for further analysis in MATLAB. The resulting files were organized as
tables with time stamps along rows and force/moment components along columns
(X, Y, Z directions).
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Figure 4.3: Example of ground reaction force extraction in Visual3D. Force vectors
are assigned to the corresponding foot segments, with 3D forces and moments
displayed alongside GRF time series in the X, Y, and Z directions.

4.2.1 Computation of Joint Angles and Torques in Visual3D

Joint angles and joint moments were computed using Visual3D (C-Motion Inc.),
following a model-based approach grounded in rigid-body kinematics and inverse

dynamics.

23



Methods

Joint Angle Computation

Joint angles were calculated as the relative orientation of a distal segment with respect
to a proximal reference segment using a sequence of three rotational transformations

(Cardan angles). For all lower limb joints, the standard XYZ Cardan sequence
was applied, where:

« X-axis: Flexion/Extension
e Y-axis: Abduction/Adduction
o Z-axis: Internal/External Rotation

The coordinate system used in Visual3D assumes Z as the axial (vertical) direction
and Y as the anterior—posterior (direction of progression), in line with commonly
accepted biomechanical conventions [31]. No normalization was applied, meaning

that joint angles were expressed directly in relation to the static calibration posture
without any offset adjustment.

The following joint angles were computed for each participant:
o Right/Left Hip Angle: Thigh relative to Pelvis
o Right/Left Knee Angle: Shank relative to Thigh

o Right/Left Ankle Angle: Foot relative to Shank

The resulting signals were stored under the LINK-MODEL-BASED folder in Visual3D
and only the X-components (flexion/extension) were retained for further analysis.

An example of joint angle computation and visualization in Visual3D is shown in
Figure 4.4.

’\A

M
I | / ‘
N \\r‘ ‘“\J‘ \“ oY W \m W \\' i

Figure 4.4: Example of joint angle computation in Visual3D. Joint angles for ankle

knee, and hip are displayed along the sagittal plane (Z-axis) over multiple gait cycles,
together with the 3D model reconstruction.
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Joint Moment Computation

Joint moments were computed via inverse dynamics using the same segment coordi-
nate systems and joint definitions. Moments were resolved in the local coordinate
system of the prozimal segment (e.g., for the right knee, moments were expressed in
the coordinate system of the right thigh).

Visual3D computes net internal moments, representing the total moment
generated by muscles, ligaments, and passive structures to counteract external loads
such as ground reaction forces. The sign of each component follows the Right-Hand

Rule, meaning:

e Flexion moment about the X-axis is positive for the hip and ankle, but negative

for the knee (unless negated).

¢ Adduction moment about the Y-axis is positive for the right leg and negative
for the left leg.

o Internal rotation moment about the Z-axis is positive for the right leg and

negative for the left leg.

To ensure consistent sign conventions across joints, the X-component of the knee
joint moment was negated post-processing, so that flexion moments were positive
across all joints.

All joint moments were normalized to subject body mass (Nm/kg) by default

using Visual3D’s built-in normalization tools.

4.3 Preparation of GRF and EMG data for simulation

analyses

Ground Reaction Forces

Ground reaction forces (GRFs) were extracted from Visual3D and converted into

OpenSim-compatible format through a three-step process:

« Reference System Conversion: The GRF and moment components were
reordered to align with OpenSim’s coordinate system, following documentation
from both Visual3D and OpenSim.

o Filtering: A low-pass Butterworth filter was applied to remove high-frequency

noise from the force and moment signals.

o« Export to .mot: Processed data were saved in .mot format, compatible with

OpenSim’s musculoskeletal simulation tools.

This pipeline ensured consistency across trials and subjects, allowing downstream

analysis of joint kinetics in OpenSim.
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EMG Signal Extraction and Processing

Electromyographic (EMG) signals were acquired using the Delsys system, synchro-
nized in real time with the Vicon Nexus system, and saved within the .c3d files.
From each file, analog signals were extracted using the Biomechanical ToolKit (BTK)
in MATLAB:

e btkReadAcquisition: to load the .c3d file

e btkGetAnalogs: to extract analog EMG signals

Signals were recorded at 2000 Hz for four muscles per leg: Soleus, Gastrocnemius
Medialis, Gastrocnemius Lateralis, and Tibialis Anterior.

The EMG processing pipeline included the following steps:

1. Rectification: Absolute value of the signal to preserve activation magnitude.
2. Band-pass filtering: Fourth-order Butterworth filter with 10-450 Hz cutoffs.

3. Normalization: Each signal was normalized to the Maximum Voluntary
Contraction (MVC) recorded for that muscle.

This processed and normalized EMG data was then used to assess muscle recruit-

ment under different walking conditions and device assistance levels.

Ankle Torque Extraction from the Dephy ExoBoot

The torque profiles generated by the Dephy EB60 ExoBoot were recorded using
the companion tablet application provided by the manufacturer. This app enabled
configuration of device parameters, selection of assistance levels, and real-time
recording of both timestamps and external torque data during walking trials.
Three distinct assistance conditions were defined: low, medium, and high, each
corresponding to increasing levels of support delivered during the stance phase of the
gait cycle. As the assistance setting increased, the magnitude of the applied torque
also rose, particularly during the push-off phase (approximately 40-60% of the gait
cycle). During swing, the device remained passive, allowing unassisted motion.
The torque signals recorded for each condition were exported directly from the
app and later integrated into the OpenSim and MyoSuite simulations. These data
served as the external input for the actuated ankle joint in the musculoskeletal model,

enabling a direct comparison between assisted and unassisted walking biomechanics.

4.4 MyoSuite Processing Pipeline

The musculoskeletal simulation workflow developed for this study leverages the
MyoSuite framework and is organized into a structured, four-stage pipeline. This
pipeline transforms experimental motion capture data and ground reaction forces

(GRFs) into neuromuscular simulations capable of estimating joint kinematics, muscle
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activations, and Achilles tendon force (ATF) under both assisted and unassisted
walking conditions. Each stage is executed using a dedicated computational tool,
enabling a reproducible and scalable analysis across multiple subjects and trials. A
typical example of the MyoSuite simulation environment is shown in Figure 4.5,
which provides a physiologically-inspired virtual space for musculoskeletal modeling

and control development [23].
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Figure 4.5: Example of the MyoSuite simulation environment. MyoSuite provides
a physiologically-inspired virtual platform for neuromuscular modeling and motor
control development, enabling realistic simulations of musculoskeletal systems.

4.4.1 Subject Preparation and MarkerSet Definition

The process begins with subject preparation and marker set definition. For each
participant, a subject-specific marker set file was manually curated and saved in
XML format. This file establishes the anatomical correspondence between the
experimental markers acquired via motion capture and the virtual markers placed on
the musculoskeletal model. The model used in this phase is either the myoskeleton
[32] or myolegs [33] variant from the MyoSuite model library, both of which are

based on OpenSim and include muscle-tendon units and torque actuators.
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!
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Figure 4.6: MyoSuite-based Achilles tendon force estimation pipeline. Overview
of the processing steps used to estimate Achilles tendon force (ATF) using muscu-
loskeletal simulations in MyoSuite. The pipeline includes data collection and process-
ing, marker set adjustment (moveMarkerset.exe), scaling and inverse kinematics
(embeddedIK.exe), and finally, inverse dynamics and MuJoCo-based simulations
(estimateATF.exe).
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4.4.2 Model Scaling and Inverse Kinematics (IK)

After associating the marker data with the base model, the subject’s anatomy is
calibrated by scaling the model dimensions to match their anthropometry. This
is achieved by minimizing the distance between experimental and virtual mark-
ers in a static pose, a process implemented through the moveMarkerSet.exe and
getMarkerErrors.exe executables.

Following scaling, dynamic trial data are used to compute joint kinematics
through inverse kinematics using embeddedIK.exe. Although scaling and IK are
often treated as separate steps, they form two complementary aspects of the same
optimization problem, deriving joint angle trajectories from experimental marker
data. For every time instant, the IK solver minimizes a cost function that adjusts
the angular positions of the model to reduce the marker position error. Without
accurate scaling, IK results become meaningless, and vice versa: one cannot correctly
interpret joint angles unless the model has first been anatomically matched to the
subject.

This process produces subject-specific joint angle trajectories and residual marker

errors, both essential inputs for the subsequent stages of biomechanical simulation.

4.4.3 Inverse Dynamics and Muscle Force Estimation

The second stage focuses on inverse dynamics (ID) and muscle force estimation using
a modified myolegs model adapted from the Rajagopal full-body model. Given
the joint angles from IK, the goal of ID is to compute the net joint torques and
corresponding muscle forces necessary to produce the observed motion.

This is formulated as a constrained optimization problem, where the objective is
to minimize the error between the torques generated by the muscles and the torques
required by the kinematic trajectories. A regularization term is included to penalize
excessive muscle activation, favoring biologically plausible, energy-efficient activation
strategies. This addition addresses the muscle redundancy problem, where multiple
combinations of muscle activations can lead to the same joint kinematics. Among the
many possible solutions, the solver selects the one that minimizes overall activation,
consistent with human neuromuscular control principles.

Technically, the process begins with estimating required joint accelerations and
torques using mj_inverse, then proceeds to solve for the muscle activations that
best reproduce these torques. This approach builds upon the methodology illustrated
in MyoSuite’s tutorial_6 [34], and was implemented in batch using dedicated

command-line tools.

Incorporating the Dephy ExoBoot

To simulate assisted walking conditions, the model incorporates the Dephy ExoBoot
as an ideal torque actuator at the ankle joints. The actuator is driven by the
experimental torque profiles recorded during walking with the device, and its inertial

mass is added to the tibial segments to account for its mechanical effect on limb
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dynamics. This modification ensures that the simulations realistically reflect the

altered loading conditions introduced by the exoskeleton.

4.4.4 Muscle Force and Activation Outputs

The final stage of the pipeline yields a comprehensive set of simulation outputs,
including time-resolved profiles of muscle activations, individual muscle forces, net
joint torques, and angular velocities. Among these, special focus is placed on the
estimation of Achilles tendon force (ATF), which is computed as the sum of the
forces produced by the soleus, gastrocnemius medialis, and gastrocnemius lateralis
muscles. These muscles collectively contribute to plantarflexion torque and are
primary transmitters of force through the Achilles tendon.

The tibialis anterior is also analyzed due to its antagonistic function in dorsiflexion
and its critical role in ensuring appropriate foot clearance during both the swing
and push-off phases of gait. Monitoring both plantarflexor and dorsiflexor activity
enables a more complete understanding of neuromechanical coordination and potential
compensatory strategies introduced by the exoskeleton.

The entire simulation is executed within the MuJoCo (Multi-Joint dynamics with
Contact) physics engine, which underlies the MyoSuite framework. This environment
enables fast and physiologically plausible simulations of musculoskeletal dynamics,
providing an efficient platform for inverse dynamics computations and torque tracking
under both unassisted and exoskeleton-assisted conditions.

The estimation of the ATF is conducted using the estimateATF.exe tool, which
integrates outputs from the inverse dynamics and muscle activation stages to produce
a continuous tendon force profile over the gait cycle. This output is particularly
important for quantifying the mechanical offloading provided by the AFO device,
and serves as a key metric in evaluating the exoskeleton’s efficacy in reducing tendon

loading during locomotion.

4.4.5 Post-Processing and Export for Analysis

Finally, simulation outputs are post-processed for standardized comparison. All
joint angle, muscle activation, and force trajectories are interpolated to a normalized
101-point gait cycle. These results are organized into structured matrices suitable for
both statistical analysis and visual representation.

This standardization facilitates comparisons across conditions and platforms,
including benchmark models such as OpenSim and Visual3D, allowing for robust
cross-validation of the estimated joint kinematics and musculoskeletal dynamics

under different walking scenarios.

Batch Automation with MyoSuite Tools

To ensure consistency and efficiency across trials, the simulation pipeline was auto-

mated using a suite of MyoSuite command-line executables:
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e embeddedIK.exe — performs inverse kinematics from marker trajectories.
e estimateATF.exe — calculates Achilles tendon force from dynamic simulations.

e getMarkerErrors.exe — extracts marker tracking error metrics during IK
fitting.

e moveMarkerSet.exe — transforms and aligns subject-specific marker sets.

These tools allowed for parallel processing of simulations across all subjects and trials,

ensuring reproducibility and scalability in large-scale gait analysis.

4.5 OpenSim Processing Pipeline

OpenSim is an open-source and extensible software platform for simulating human
movement using musculoskeletal (MSK) models. It offers a comprehensive library
of biomechanical components, such as joints, muscles, and ligaments, and tools
for customizing generic models based on subject-specific anatomical data. Using
experimental inputs like marker trajectories, ground reaction forces (GRFs), and
surface electromyography (SEMG), OpenSim enables detailed biomechanical analysis
through inverse kinematics and forward dynamics. Ten gait cycles were analyzed for
each condition and each speed, so the first step involved the manual cutting of the
trials, in order to extract the single gait cycle to give as an input to the Opensim
pipeline.

The overall processing pipeline, illustrated in Figure 4.7, outlines the steps from
pre-processed experimental data to the estimation of Achilles tendon force (ATF).
All analyses were performed using a custom MATLAB toolbox, Batch OpenSim Pro-
cessing Scripts (BOPS). This user-friendly tool, equipped with a graphical interface,
automates batch processing of complex datasets using core OpenSim procedures:
Inverse Kinematics (IK), Inverse Dynamics (ID), Residual Reduction Algorithm
(RRA), and Computed Muscle Control (CMC).

The pipeline begins with subject-specific scaling of the MSK model, aligning
it to individual anatomical dimensions. IK is then used to reconstruct movement
from marker trajectories, providing estimates of joint kinematics. Based on these
kinematics and external loads, the Inverse Dynamics (ID) step computes the net
joint forces and moments required to produce the observed motion. RRA follows,
integrating marker and GRF data to reduce dynamic inconsistencies by minimizing
residual forces and refining model parameters.

Finally, CMC estimates the muscle activations needed to replicate the observed
motion. In this study, we employed both standard CMC and an EMG-informed
CMC approach, which incorporates experimental EMG data to better constrain the
optimization.

This pipeline enables in-depth exploration of human biomechanics and mus-
cle-tendon unit (MTU) dynamics. The following sections provide detailed descriptions

of each processing step.
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Figure 4.7: OpenSim pipeline for muscle force and tendon load estimation. Workflow
used to estimate muscle activations and Achilles tendon force using OpenSim. The
pipeline includes data collection, kinematic and kinetic scaling, inverse kinematics and
dynamics, followed by the Residual Reduction Algorithm. Muscle force estimation
is performed using either standard Computed Muscle Control (CMC) or an EMG-
informed CMC approach.

4.5.1 Rajagopal Full-Body Musculoskeletal Model

The Rajagopal Full-Body Musculoskeletal Model is a comprehensive simulation
framework designed to investigate muscle-driven human gait, including both walking
and running [18]. It features 37 degrees of freedom (DOF) to define joint kinematics
and incorporates 80 Hill-type muscle-tendon units in the lower limbs. These units
act as massless actuators responsible for generating force and driving movement.
Additionally, 17 ideal torque actuators are included to control upper body motion.
The model’s muscle-tendon parameters are based on anatomical measurements
from 21 cadaveric specimens and magnetic resonance imaging (MRI) data from 24
healthy young adults [18]. Muscle force generation is modeled using the Hill-type
formulation, which includes two primary components: a passive elastic element
representing viscoelastic properties of the tendon and passive tissues, and an active

contractile element that produces force during muscle activation.

4.5.2 Scaling of the Musculoskeletal Model

To ensure subject-specific accuracy, the generic Rajagopal musculoskeletal model was
scaled to match each participant’s anthropometry. This scaling process involves both
geometric and kinetic adjustments, aimed at adapting the model’s dimensions and

force-generating capabilities to individual anatomical and physiological characteristics.

Geometric Scaling

Geometric scaling is performed using a combination of measurement-based and
manual scaling methods. The process begins by placing a set of experimental markers
on anatomical landmarks of the subject using motion capture. Corresponding virtual
markers are embedded in the unscaled model at equivalent anatomical locations. By
comparing the average distances between experimental markers (from the .trc file)
and virtual markers (in the model’s default pose), scale factors for each segment are
computed. For example, distances between pairs such as {R.ASIS, R.Knee.Lat} and
{L.ASIS, L.Knee.Lat} are used to derive scale factors along the X, Y, and Z axes.
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Kinetic Scaling

In addition to geometric scaling, a kinetic scaling step was performed to refine the
force-generating capacity of the model’s musculature. This was done by adjusting
the maximum isometric muscle force, which is directly proportional to the specific
tension value (in N/cm?) used in the Hill-type muscle model.

The default Rajagopal model uses a muscle specific tension of 60 N/cm? [35], which
enables the model to simulate high-performance tasks such as running. However,
this can lead to an overestimation of muscle forces and joint power during lower-
intensity activities like level walking. To address this discrepancy, we adopted a
literature-recommended value of 30 N/cm? for walking studies, which better reflects
physiological norms during submaximal effort.

This adjustment ensures that the simulated muscle forces and resulting joint
kinetics are more consistent with empirical observations for typical walking trials,

thereby enhancing the physiological accuracy of the simulation results.

4.5.3 Inverse Kinematics

The Inverse Kinematics (IK) tool estimates generalized coordinates at each time
frame to align the model’s virtual markers with the corresponding experimental
markers collected during motion capture. This is achieved by solving a weighted least
squares optimization problem that minimizes the distance between each pair of virtual
and experimental markers throughout the recorded motion [20]. The importance of
each marker in the optimization was adjusted by assigning custom weights, allowing
us to emphasize anatomical markers over others, that are subducted to soft tissue
artifacts or not perfectly placed [20].
The IK tool requires the following input files:

o Subject-specific OpenSim model (.0sim): A scaled version of a generic
model (e.g., the Rajagopal model), adjusted using the Scale Tool to reflect the

subject’s anthropometry and including a set of virtual markers.

o Experimental motion data (.trc): Marker trajectories recorded during a

movement trial using a motion capture system.

o Setup file (.xml): A configuration file specifying the paths to the model
and motion data, along with solver parameters such as marker weights, which
influence how closely the virtual markers follow the experimental ones. These

weights are typically adjusted to prioritize markers on segments of interest.

The IK analysis produces a motion file (.mot) as output. This file contains
time-varying joint kinematics and serves as input for subsequent steps in the analysis
pipeline. The accuracy of this output depends on the marker tracking weights chosen

during setup, which guide how well the model follows the recorded motion.
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4.5.4 Inverse Dynamics

The Inverse Dynamics (ID) Tool in OpenSim computes the net joint moments and
forces that produce a recorded motion, based on known kinematics and external
loads. It applies Newtonian mechanics (i.e., F = ma) in reverse, using the model’s
motion and ground reaction forces (GRFs) to estimate the internal joint torques
required to reproduce the observed movement.

This process requires three key inputs:

o Motion file (.mot): Contains joint kinematics over time, typically obtained

from the Inverse Kinematics (IK) analysis.

o External loads file (.xml): Specifies the GRFs and their points of application,

referencing a corresponding .mot file with the actual force data.

o Subject-specific model (.osim): A scaled musculoskeletal model with accu-
rate segment inertial properties. The model may include additional elements

(e.g., muscles, ligaments), which can be excluded if not relevant to the analysis.

The output is a .sto file that stores the time histories of the generalized forces,
joint torques and reaction forces, calculated by the tool. These results can be used in
subsequent simulations or for evaluating joint loading during specific tasks. Accurate
results depend on precise inputs, especially complete and correctly applied external

forces.

4.5.5 Residual Reduction Algorithm

The Residual Reduction Algorithm (RRA) is an OpenSim tool designed to improve
the dynamic consistency between experimental motion data and external forces,
such as ground reaction forces (GRFs). Its primary goal is to reduce non-physical
residual forces and moments, artifacts that arise due to modeling simplifications,
mass distribution inaccuracies, and errors in marker-based motion capture data.

RRA achieves this by adjusting the model’s torso mass properties and allowing
small deviations in joint kinematics from the original inverse kinematics (IK) solution.
These modifications aim to ensure that the simulated motion adheres more closely to
Newtonian mechanics, thereby minimizing the need for artificial forces (residuals) at
the model’s base.

Inputs:

o Motion file (.mot): Joint angles and translations over time, typically from
IK.

o External loads file (.xml): Specifies how GRFs are applied to the model.

o Subject-specific model (.osim): Scaled musculoskeletal model with inertial

properties.
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o Actuator file (.xml): Defines ideal torque and residual actuators for each

degree of freedom.
o Task file (.xml): Sets tracking priorities and weights for each coordinate.
Outputs:
o Adjusted model (.osim): Model with a modified mass distribution.

o State trajectories (.sto): Time-resolved joint angles and velocities after
RRA.

o Actuator controls (.xml): Control signals for the applied ideal actuators.

o Residual summary (.sto/.txt): Average and peak residual forces and mo-

ments.
o Position errors (.sto): Quantifies tracking deviation per coordinate.

RRA is a critical preprocessing step before running Computed Muscle Con-
trol (CMC), ensuring that the movement can be reproduced primarily by internal
forces (e.g., muscles) rather than artificial residuals, leading to more physiologically

meaningful simulation outcomes.

4.5.6 Computed Muscle Control (CMC)

Computed Muscle Control (CMC) is the final stage in the musculoskeletal simulation
pipeline used to compute a set of muscle excitations and, more generally, actuator
controls, that reproduce a desired movement while respecting biomechanical and
physiological constraints. Given a set of joint kinematics and external forces (e.g.,
ground reaction forces), CMC drives a dynamic model to follow the target motion by
solving a forward dynamics problem with control optimization at each time step.

The algorithm operates by combining proportional-derivative (PD) feedback
control with static optimization. PD control calculates the accelerations needed to
minimize the difference between simulated and experimental kinematics, while static
optimization distributes the required joint torques across the available actuators
(muscles, reserves, residuals) by minimizing a cost function based on actuator effort
and tracking error. A short initialization phase (typically the first 0.030 s of simulation)
is used to stabilize muscle states, and therefore the analysis is started slightly earlier
than the time window of interest.

Inputs:

o Subject-specific model (.osim): Includes adjusted torso mass center from
RRA.

o Adjusted motion file (.mot): Joint angles and translations from RRA.

o External loads file (.xml): Specifies ground reaction forces and points of

application.
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o Actuators file (.xml): Defines muscle, reserve, and residual actuators.

» Control constraints file (.xml): Specifies activation limits and activation
timing for actuators. This file was also used to model assistance provided by
the ExoBoot device, by switching “on” the corresponding actuator only during

periods of active torque delivery.
o Task set file (.xml): Sets tracking weights for individual coordinates.
o Setup file (.xml): Contains paths and global simulation settings.
Outputs:
e controls.xml: Time-resolved excitations for all actuators.
o forces.sto: Muscle forces and torques applied by reserve/residual actuators.

o states.sto: Simulated joint kinematics and muscle fiber states (activation,
length).

CMC is particularly valuable when comparing simulated muscle activity with
experimental electromyography (EMG). In this study, we employed EMG-informed
actuator constraints to assist the simulation in the reconstruction of the muscle
activations, as well as to simulate the torque provided by an external ankle-foot
orthosis (ExoBoot). By incorporating this device into the model as a torque actuator
and activating it according to experimental timing profiles, we ensured that assistance
was realistically synchronized with the biological motion.

This approach allows for the generation of physiologically plausible simulations
of assisted walking, enabling the evaluation of muscle force production, joint loading,

and neuromuscular adaptations in response to wearable robotic interventions.
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Chapter 5

Technical analysis: Comparison

across softwares

5.1 Results

The objective of this section is to compare the outcomes of different simulation
frameworks in order to understand their relative performance and determine which
provides more accurate or physiologically meaningful results in the context of esti-
mating the AT load. Specifically, we analyze outputs from MyoSuite, OpenSim,
and Visual3D to assess the accuracy of joint kinematic reconstruction, the validity
of estimated muscle activations, and the modulation of Achilles tendon loading and
ankle torque generation across varying levels of assistance.

We begin by assessing inverse kinematics accuracy across the three platforms
by comparing hip, knee, and ankle joint angles in the sagittal plane. Standard
comparison metrics are employed, including range of motion (ROM), root mean
square error (RMSE), normalized RMSE (NRMSE), and coefficient of multiple
correlation (CMC). Visual3D, based on unconstrained marker reconstruction, is used
as a reference due to its independence from model-based assumptions. MyoSuite
and OpenSim are compared against this reference and against each other to quantify
agreement and identify modeling differences.

The second part of this analysis focuses on lower-limb muscle activations. We
compare experimental electromyography (EMG) data with simulated muscle acti-
vation outputs from both OpenSim and MyoSuite. Within OpenSim, we examine
two approaches: traditional computed muscle control (CMC) and an EMG-informed
CMC pipeline. Additionally, MyoSuite is evaluated as an independent solution. The
goal is to identify the modeling framework that best reconstructs muscle activation
patterns in terms of shape, timing, and amplitude of the signal, enabling the
selection of the most physiologically relevant pipeline for downstream tendon force
analysis.

Next, we analyze Achilles tendon force outputs generated from both OpenSim-
based pipelines (CMC and CMC-EMG) to assess how simulated tendon loading

varies with the level of external assistance provided by the AFO. This evaluation
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supports the clinical objective of reducing AT loading and muscle demand during
assisted walking.

This results section is organized to address the following aims:
e Assess inter-platform consistency in joint angle estimation.

o Evaluate the quality of muscle activation estimations across MyoSuite and

OpenSim pipelines.

o Evaluate how different approaches behave in estimating Achilles tendon loading
enabled by AFO assistance.

Both subject-specific and population-level analyses are presented to capture

individual variability and overall trends in the dataset.

5.2 Inverse Kinematics Comparison Across Platforms

To assess the consistency and accuracy of inverse kinematics reconstruction in the
sagittal plane, we compared joint angle estimations from MyoSuite and OpenSim,
using Visual3D as a reference. Analyses were conducted for the hip, knee, and ankle
joints during treadmill walking across two representative conditions: a normative
walking condition without the AFO (No) and a fully assisted condition (150). Repre-
sentative results are presented in Figure 5.1 for one subject and at the population

level in Figure 5.2.
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Figure 5.1: Sagittal plane joint angle estimation for subject P04 during treadmill
walking. Hip, knee, and ankle flexion/extension (FE) angles are expressed in degrees
over the gait cycle. MyoSuite estimations are shown in red, OpenSim in blue, and
Visual3D in gray. Shade rapresent 4+ standard deviation Visual3D serves as the
reference kinematic solution based on unconstrained marker reconstruction. Two
levels of assistance are shown, No on top, 150 below.
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Figure 5.2: Population level sagittal plane joint angle estimation. Hip, knee, and
ankle flexion/extension (FE) angles are expressed in degrees over the gait cycle.
MyoSuite estimations are shown in red, OpenSim in blue, and Visual3D in gray.

Range of Motion (ROM) Analysis

Table 5.1 summarizes the average range of motion (ROM) across subjects for each
platform during slow walking. These values were computed across the full gait cycle,

averaging 10 left gait cycles per trial.

Hip OpenSim produced the highest average ROM (48.70 +5.06°), followed by
MyoSuite (47.75+ 3.34°), with Visual3D yielding the lowest values (44.72 £ 3.24°).
The elevated ROM in OpenSim may result from pelvis-thigh coupling and global opti-
mization, while the reduced ROM in Visual3D likely reflects the use of anthropometric

estimation for the hip joint center.

Knee ROM estimates were highly consistent across platforms.

MyoSuite (63.56 £9.47°) and OpenSim (64.73 £ 6.59°) aligned closely, while Visual3D
estimated slightly higher values (68.91 + 5.88°), possibly due to unconstrained segmen-
tal tracking and swing-phase exaggeration. These results suggest strong robustness

in knee kinematics across all models.

Ankle MyoSuite predicted the highest ROM (36.25 +6.01°), followed by Visual3D
(34.72 £ 4.13°), with OpenSim predicting the lowest values (31.43 +4.56°). These
differences reflect model-specific handling of foot-ground contact, with OpenSim
applying stricter constraints, and MyoSuite modeling more compliant foot dynamics.

Visual3D, being unconstrained, often reflects heel and toe marker paths more directly.

5.2.1 Joint Angle Estimation During Stance Phase: MyoSuite vs
OpenSim

To assess the agreement between MyoSuite and OpenSim in estimating sagittal plane

joint kinematics, we computed standard waveform similarity metrics, root mean
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Table 5.1: Range of motion (ROM) in degrees for each subject and joint. Values
are expressed as mean £+ SD.

Subject Joint MyoSuite OpenSim  Visual3D
P00 Hip 47.88 +£2.28 43.71 +£3.07 43.91+2.73
Knee 62.80+2.89 62.524+2.20 65.17+3.19
Ankle 24.60+3.13 23.18+2.60 34.40+ 2.85
PO1 Hip 52.33 +£2.77 52.40+248 46.88+1.99
Knee 61.23+2.65 59.56+1.90 59.36 +2.53
Ankle 31.36 +4.07 26.45+3.67 28.83+ 3.56
P02 Hip 41.35+2.68 42.65+1.28 41.01+1.19
Knee 64.35+4.97 61.34 £4.40 65.23 +4.41
Ankle 30.33+6.38 27.42+5.53 29.53 +4.35
P03 Hip 50.43 +£2.36 52.18 £2.38 47.52+1.70
Knee 67.79+2.52 66.86+3.56 67.79+ 2.92
Ankle 36.09+4.57 32.954+4.14 38.77+4.74
P04 Hip 46.54 +£2.35 41.38 £1.68 42.81+1.46
Knee 62.59+5.41 62.92+5.72 66.28+5.77
Ankle 38.97+6.96 37.54+541 42.53+5.73
P05 Hip 48.78 £ 1.09 47.97+1.68 47.46+1.74
Knee 72.88+1.76 75.264+1.87 79.99+ 2.22
Ankle 36.37+3.06 33.05+2.76 34.72+2.47
PO6 Hip 48.18 £2.19 45.27+1.63 46.65+1.43
Knee 72.07+3.50 64.68+3.33 71.93 % 3.55
Ankle 39.03+£6.11 36.00+5.16 34.924+6.18
Po7 Hip 4442 +2.26 48.63+1.77 48.41+1.56
Knee 68.35+2.27 65.53+1.92 68.15+ 2.03
Ankle 38.43+6.79 34.85+6.18 34.46+6.77
Po8 Hip 50.47 +2.55 56.93 +2.82 46.86 + 1.62
Knee 74.03+3.37 77.74+4.19 77.96+ 4.39
Ankle 35.19+4.44 27.60+4.13 30.93 +4.57
S05 Hip 50.72 +2.47 54.46 £2.83 38.74 +1.87
Knee 46.59 £2.80 59.67+4.49 66.93+3.54
Ankle 41.004+4.10 32.254+3.75 34.12+4.77
S06 Hip 44.20 +£2.89 50.13+3.64 41.67+1.79
Knee 46.50£2.50 55.93+3.30 69.27+2.75
Ankle 47.344+7.97 34.43+6.00 38.74+ 8.06

Table 5.2: Range of Motion (ROM) estimates across platforms for hip, knee, and
ankle (mean + SD in degrees)

Joint OpenSim

Hip
Knee
Ankle

MyoSuite Visual3D

47.75 £ 3.34 48.70 £ 5.06 44.72 £ 3.24
63.56 £ 9.47 64.73 £ 6.59 68.91 £+ 5.88
36.25 £ 6.01 31.43 £4.56 34.72 £ 4.13
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square error (RMSE), normalized RMSE (NRMSE), coefficient of multiple correlation
(CMC), and ROM error, for each joint during the stance phase. Results were computed
per subject and aggregated across the population, pooling all assistance conditions

to focus solely on modeling differences.

Subject-Level Analysis

Table 5.3 reports the stance-phase metrics for all subjects. The hip joint showed the
largest variability in RMSE and CMC across subjects, highlighting its sensitivity to
modeling assumptions such as joint center estimation and pelvis scaling. While some
subjects (e.g., P04, PO1) demonstrated high hip CMCs above 0.9, others like P02
and P07 fell well below, indicating inconsistent agreement across individuals.

The knee exhibited the most consistent agreement, with low RMSEs (generally
<5°) and high CMCs (>0.85 for nearly all subjects), reflecting its relatively constrained
motion and the robustness of its marker definition.

Ankle joint differences were intermediate, with slightly elevated RMSEs and
NRMSEs compared to the knee. The CMC values were more variable, suggesting dif-
ferences in shape, especially near toe-off, where modeling assumptions like compliant

foot-ground contact in MyoSuite may contribute to more pronounced plantarflexion.

Population-Level Summary

The population-wide averages for each joint are reported in Table 5.4. These values
support the subject-level findings: highest agreement at the knee, moderate differences

at the ankle, and the largest discrepancies at the hip.

5.3 Muscle Activation Analysis

In this section, we evaluate how well MyoSuite, OpenSim CMC, and OpenSim CMC-
EMG informed pipelines replicate the experimental EMG envelopes during treadmill
walking at 3 mph in the NoDephy condition, i.e., without any exoskeletal assistance.
By isolating this baseline condition, we aim to assess each model’s intrinsic ability
to reconstruct physiological activation patterns without the confounding effects of
device support. The other conditions have been analyzed, but apart from a different
level of activation given by the presence of the assistance, show consistent behaviours
with what we have for the No condition, in terms of comparison across systems.

We analyze four muscles crucial to ankle function and Achilles tendon loading;:
Gastrocnemius Lateralis, Gastrocnemius Medialis, Soleus, and Tibialis Anterior. For
each muscle, we assess whether the estimated activation waveforms correctly replicate
the:

e Shape of the activation curve,
o Amplitude and modulation across the gait cycle,

o Timing of peak activation,
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Table 5.3: Subject-level comparison metrics between MyoSuite and OpenSim during

the stance phase. Values are reported as mean =+ standard deviation.

Subject Joint RMSE (°) NRMSE CMC ROM Error (°)
P00 Ankle 244 4+03 0.13+0.02 0.91 +0.04 4.01 £ 1.03
Hip 79+149 0.17 £ 0.03 0.94 £ 0.02 7.06 £ 0.65
Knee 3.89 £0.65 0.15+0.02 0.9+ 0.03 3.37 £ 2.1
PoO1 Ankle 4.64 £0.7 0.18 £0.03 0.85 + 0.04 6.43 + 1.01
Hip 26.11 = 1.15 0.51 £0.04 0.59 £ 0.06 1.87 + 1.08
Knee 329+£033 01+0.01 0.96+0.01 4.79 £ 1.12
P02 Ankle 3.64 +£0.28 0.14 +0.04 0.92 £ 0.02 5.46 + 1.39
Hip 743 £0.46 0.18 £0.02 0.95 £ 0.01 1.98 £ 1.59
Knee 3.8£04 0.11 £0.01 0.92 £ 0.01 4.17 £ 0.64
P03 Ankle 45 +0.93 0.15£0.06 0.91 £ 0.04 4.1 +£1.26
Hip 16.19 +£ 2.08 0.35 £ 0.05 0.82 £+ 0.04 1.65 £ 1.31
Knee 327 £0.31 0.08 £0.01 0.96 £ 0.01 473 £ 1.45
P04 Ankle 2.17+£0.3 0.07£0.01 0.98 £ 0.01 4.36 + 2.64
Hip 4.46 £ 049 0.1 £0.02 0.98 £ 0.01 6.2 £ 0.91
Knee 451 £0.34 0.15+0.01 0.88 £ 0.02 2.1 £0.39
P05 Ankle 9.39 +1.23 0.32 +£0.03 0.62 + 0.09 6.2 £ 0.96
Hip 10.38 £ 1.15 0.22 £0.02 0.91 £+ 0.02 4.84 £ 1.57
Knee 4.71 £0.22 0.11 £0.01 0.94 £ 0.01 1.19 £ 0.6
P06 Ankle 493 +£0.46 0.18 £0.06 0.83 £ 0.07 5.67 £ 2.28
Hip 33.97 £0.79 0.84 £ 0.05 0.31 £ 0.07 1.16 + 0.39
Knee 955+ 0.35 0.24 £0.02 0.69 £ 0.05 7.78 £ 0.35
PoO7 Ankle 5.55 +1.23 0.21 £ 0.03 0.81 £ 0.06 6.07 £ 2.7
Hip 16.6 £1.84 04 £0.03 0.77 £0.03 4.25 £1.81
Knee 5.02+0.3 0.16 £0.01 0.86 £ 0.01 5.73 £ 0.36
PO8 Ankle 3.53 +£0.44 0.12 +0.01 0.94 £ 0.01 7.88 £ 1.81
Hip 3.61 £ 0.87 0.08 £0.02 0.99 £ 0.0 3.69 + 1.38
Knee 154 £0.32 0.04 £0.01 0.99 £ 0.0 1.21 £ 0.79
S05 Ankle 79+0.81 0.23+0.05 0.7+ 0.06 9.16 £+ 1.68
Hip 6.83 = 0.53 0.14 £ 0.01 0.96 £ 0.01 4.24 + 2.69
Knee 431 +£0.64 0.15+0.03 0.89 + 0.04 5.34 £ 1.44
S06 Ankle 15.82 +£1.87 0.47 £0.11 0.38 £ 0.13  10.32 + 4.48
Hip 4.78 £1.53 0.11 £0.04 0.97 £ 0.02 6.05 £ 2.91
Knee 957 £0.16 0.41 £0.02 0.81 £ 0.05 5.84 £+ 3.64

Table 5.4: Population-level comparison metrics between MyoSuite and OpenSim
during stance phase.

Joint RMSE (°) NRMSE CMC  ROM Error (°)
Hip 1257 £9.81 0.28 £0.23 0.83 +021  3.91 + 2.04
Knee 4.91 251 0.154+0.10 0.89 = 0.08  4.21 + 2.07
Ankle 5.87 +3.95 020+ 0.11 0.80+0.18  6.33 + 2.05
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e Overall muscle recruitment pattern.

The results are shown for each subject and for the population average (Figures 5.3

and 5.4). Shaded areas represent standard deviation across gait cycles.
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Figure 5.3: Muscle activation comparison for subject P00 during treadmill walking
at 3 mph in the NoDephy condition. The estimated muscle activations are shown
for MyoSuite (red), OpenSim CMC (blue), and OpenSim CMC-EMG informed
(green), and compared against the experimental EMG envelopes (gray). Each panel
corresponds to one of the four analyzed muscles: Gastrocnemius Lateralis (GasLat),
Gastrocnemius Medialis (GasMed), Soleus (Sol), and Tibialis Anterior (TibAnt).

5.3.1 Gastrocnemius Lateralis and Medialis

Both gastrocnemii contribute significantly to propulsion during late stance by gener-
ating plantarflexion torque and aiding knee flexion. Their EMG envelopes typically
peak around 50-60% of the gait cycle.

CMC-EMG informed outputs consistently replicate this timing and magnitude,
validating its use in simulating gastrocnemius-driven push-off.

In contrast, OpenSim CMC underestimates the activation of both heads of
the gastrocnemius across subjects. This behavior likely stems from the optimizer
prioritizing muscles with lower excitation cost or from overly simplified neuromuscular
control assumptions in the absence of experimental priors.

MyoSuite usually captures the timing of peak activation but tends to overes-
timate amplitude and introduces non-physiological features such as double peaks
(e.g., in subject P03). These artifacts may reflect the lack of a muscle-specific force

normalization procedure and absence of kinetic scaling.
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Population — 3 mph — Condition: NoDephy
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Figure 5.4: Population-level normalized muscle activations (mean + SD) for the
NoDephy condition at 3 mph. EMG envelopes are shown in gray; MyoSuite (red),
OpenSim CMC (blue), and CMC-EMG informed (green).

5.3.2 Soleus

The soleus is the primary plantarflexor in mid to late stance and plays a central role
in supporting body weight and enabling forward propulsion.

CMC-EMG informed simulations yield accurate reconstructions of soleus
activity in terms of both timing (peak around 40-60%) and amplitude. MyoSuite
shows more variability, but often captures peak value correctly, even though it does
not perform well in estimating the peak time.

OpenSim CMC, however, slightly underestimates soleus activation amplitude.
This again reflects the limitations of purely optimization-driven approaches without
EMG constraints in accurately resolving the force contribution of key stabilizing

muscles.

5.3.3 Tibialis Anterior

The tibialis anterior is active during early stance and swing, producing a characteristic
double-peak EMG pattern (at 10-20% and 70-90% of the gait cycle) for dorsiflexion
and foot clearance.

This double-burst behavior is well captured by the CMC-EMG informed
pipeline.

MyoSuite exhibits exaggerated, prolonged activation of the tibialis anterior,
sometimes spanning the entire gait cycle. This behavior is clearly non-physiological
and suggests a breakdown in either torque tracking or neural control modeling.
Notably, MyoSuite lacks subject-specific scaling and does not implement kinetic

scaling, which likely contributes to overestimated joint torques and unnecessary
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dorsiflexor engagement.
OpenSim CMC again fails to activate tibialis anterior sufficiently, producing
flat or damped activation patterns in most subjects, which would compromise foot

clearance and heel-strike control in dynamic simulations.

5.4 Achilles Tendon Load Estimation

The Achilles tendon plays a pivotal role during walking, primarily by transmitting
forces from the triceps surae muscle group (gastrocnemius lateralis, gastrocnemius
medialis, and soleus) to the calcaneus to generate plantarflexion torque during
push-off. Accurate estimation of Achilles tendon force is thus contingent on reliable
predictions of muscle force in these contributors, which in turn depend on the quality

of muscle activation profiles derived from simulation.

5.4.1 Computation of Achilles Tendon Load

In this study, Achilles tendon force was computed as the sum of the muscle forces
from the gastrocnemius lateralis, gastrocnemius medialis, and soleus. These forces

were extracted from two different simulation pipelines:

1. OpenSim CMC, which predicts muscle forces based on a static optimization

solution constrained by joint kinematics.

2. OpenSim CMC-EMG informed, which incorporates subject-specific EMG
envelopes as soft constraints to guide the optimization toward physiologically

plausible activation timing and magnitude.

The resulting tendon force waveforms, normalized by body weight, are shown in

Figures 5.5 and 5.6 for each subject and for the group average, respectively.

5.4.2 Comparison Across Conditions

The Achilles tendon load curves exhibit the characteristic double-burst pattern
associated with walking: a first peak during early stance and a second, higher
peak during push-off (approximately 40-60 % of the gait cycle). These peaks are
predominantly driven by the force output of the soleus and gastrocnemii.

Across all assistance conditions (NoDephy, DephyOff, Dephy50, Dephy100, De-
phy150), the CMC-EMG informed pipeline consistently generates higher tendon
forces than standard CMC, particularly during push-off. This reflects the higher
activation magnitudes introduced by EMG-informed constraints, especially for the
plantarflexors as previously observed in the activation analysis (Section 5.3).

One notable feature is the presence of a small peak in tendon force around
mid-stance in many subjects under the CMC-EMG informed pipeline. This peak is
absent in standard CMC simulations. Biomechanically, this may arise from a more
physiological activation of the soleus early in stance, contributing to load support and

forward propulsion before the main push-off phase. This early activation is typically
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P02 — 3 mph — Achilles Tendon Load

Dephy No Dephy Off Dephy 50 Dephy 100 Dephy 150

@
8

@
8
@
8
@
g8

N
8
N
&
a
3

@
8
@
8
@
8

N
8
N
8
N
8

3

BW-normalized Load (N/kg)
3

BW-normalized Load (N/kg)

BW-normalized Load (N/kg)
BW-normalized Load (N/kg)

N
8

3

BW-normalized Load (N/kg)

o

/ ! - | o | | : ! | | | : N | 0 / / z I | o | I |
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Gait Cycle (%) Gait Cycle (%) Gait Cycle (%) Gait Cycle (%) Gait Cycle (%)

—— OpenSim CMC

CMC-EMG

Figure 5.5: Achilles tendon load (normalized by body weight) across the gait cycle
for subject P02 walking at 3 mph under five different AFO assistance conditions
(NoDephy, DephyOff, Dephy50, Dephy100, Dephy150). Each subplot shows mean +
SD tendon load estimated using OpenSim Computed Muscle Control (CMC, blue)
and EMG-informed CMC (green) across 10 left gait cycles. A reduction in peak

tendon loading is observed with increasing assistance, particularly in the EMG-
informed estimates.
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Figure 5.6: Population-level Achilles tendon load (normalized by body weight)
across the gait cycle at 3 mph walking speed, shown for five AFO assistance conditions
(NoDephy, DephyOff, Dephy50, Dephy100, Dephy150). Curves represent the mean
+ SD across all subjects for OpenSim Computed Muscle Control (CMC, blue) and
EMG-informed CMC (green) estimations. A consistent reduction in tendon load is

observed during the push-off phase (40-60% gait cycle) with increasing assistance,
particularly in EMG-informed simulations.
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underrepresented in standard CMC due to cost function regularization and absence
of EMG priors.

5.5 Discussion

This section discusses the interpretation of results from three core perspectives:
(1) inverse kinematics estimation, (2) muscle activation profiles, and (3) Achilles
tendon force modulation under AFQO assistance. We reference the outcomes presented
in Section 5.1 to contextualize the modeling choices, validation strategies, and

biomechanical implications.

5.5.1 Kinematics: Platform Differences and Model Fidelity

Visual3D as Reference Framework

Visual3D was used as an unconstrained reference to estimate joint angles directly
from marker trajectories, without enforcing joint constraints. The model adopts a full-
body, six-degree-of-freedom (6-DoF') configuration, where joints maintain independent
rotational and translational freedoms. No inverse kinematics optimization was applied,
ensuring maximal fidelity to experimental marker data (Section 5.2).

In contrast, both OpenSim and MyoSuite constrain joint behavior through
anatomical definitions and kinematic optimization routines. Notably, the hip joint
centers in Visual3D are computed using the anthropometric method by Bell et
al. [36], while OpenSim and MyoSuite use functional joint center estimation during
inverse kinematics. Moreover, Visual3D models the pelvis as two separate hemipelves,
whereas OpenSim and MyoSuite treat it as a rigid segment. These structural
differences contribute to systematic offsets in estimated joint angles, particularly at
the hip.

Modeling and Scaling Differences

OpenSim uses the Rajagopal musculoskeletal model, which is scaled to subject
anthropometry using geometric marker-based methods and virtual marker registration.
Marker weights are adjusted to reduce the impact of soft tissue artifacts. The scaled
model is consistent across trials for each subject.

In contrast, MyoSuite performs internal scaling and kinematic estimation per trial,
without user-defined marker weighting. This can result in inconsistencies in joint
center placement across trials. The impact of this is evident in subjects S05 and S06,
where marker placement on technical clusters (due to AFO interference) introduced
additional scaling artifacts. These inconsistencies increased the deviation of MyoSuite
and OpenSim from the Visual3D reference but preserved relative agreement between

each other.
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Kinematic Interpretation and Conclusions

Across joints, the knee displayed the highest consistency between MyoSuite and
OpenSim, with excellent waveform alignment and comparable ROM estimations
(Section 5.2). The ankle showed moderate variability, particularly during late stance,
due to platform-specific foot modeling. The hip exhibited the largest discrepancies,
likely due to upstream differences in pelvis modeling and scaling procedures.

These results justify the selection of Visual3D as the unconstrained reference
and reinforce the validity of OpenSim and MyoSuite kinematics for downstream use,
provided the differences in scaling and joint estimation are acknowledged. Across
all joints, the computed kinematic errors remained within acceptable thresholds
reported in the literature. For instance, root mean square errors (RMSE) below 6°
and CMC values above 0.75 are commonly considered good to excellent for joint

angle comparisons [37, 38, 39].

5.5.2 Muscle Activations: Physiological Validity and Model As-
sumptions

Kinetic Scaling and Force Capacity

A key distinction between platforms lies in the treatment of muscle strength. In
OpenSim, following geometric scaling, a kinetic scaling step was implemented by
adjusting muscle specific tension from 60 N/cm? to 30 N/cm? [35], reflecting force
capabilities appropriate for walking. This ensured that muscle-generated joint torques
remained within physiological ranges and avoided overestimation (Section 5.3).
MyoSuite, on the other hand, lacks kinetic scaling. The default muscle capacities
remain unadjusted, potentially leading to overactivation or antagonistic co-contraction
in the optimization results. This was particularly evident in the tibialis anterior
and gastrocnemius, whose activation patterns deviated substantially from both

physiological norms and experimental EMG envelopes.

Activation Source Selection for Tendon Estimation

Based on these findings, we excluded MyoSuite muscle activations from tendon force
estimation. Although timing was sometimes accurate, activation amplitudes and
shapes, especially in the tibialis anterior, were inconsistent with expected neuromus-
cular control.

We retained both OpenSim CMC and EMG-informed CMC activations for
tendon force simulation. While standard CMC tended to underestimate activation
amplitudes, it preserved physiological timing and provided a reliable control strategy
baseline. EMG-informed CMC, incorporating experimental envelopes, showed the
best alignment with physiological activation in both amplitude and timing.

Thus, for all downstream tendon force analyses, EMG-informed CMC was used as

the primary activation source, with standard CMC used for reference. This decision
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ensured accurate and interpretable force generation patterns while enabling a direct
comparison between optimization-based and EMG-driven simulations.

This decision ensured accurate and interpretable force generation patterns while
enabling a direct comparison between optimization-based and EMG-driven simula-
tions. Previous studies have shown that RMS differences of 0.1-0.2 a.u. and timing
differences within 10% of the gait cycle are typical when comparing simulated to

experimental EMG, and are considered acceptable for lower-limb gait analyses [40].

Biomechanical Implications of Activation Patterns

Accurate muscle activation is essential for valid estimation of joint torques, contact
forces, and tendon loads. Underestimations in plantarflexor activation or exaggerated
antagonist activity may distort push-off dynamics. For instance, incorrect tibialis
anterior timing affects swing clearance and heel strike control, while misestimations
in the gastrocnemius or soleus impair propulsion.

By selecting physiologically valid activation patterns (OpenSim CMC and EMG-
informed), we ensured that simulated muscle-tendon dynamics remained realistic

and interpretable, especially when evaluating device-related modulations.

5.5.3 Tendon Load Modulation: Impact of AFO Support
Observed Reductions with EMG-Informed Inputs

Across subjects, Achilles tendon force estimated via EMG-informed CMC revealed
consistent reductions with increasing AFO assistance, particularly during push-off
(Section 5.4). Subjects such as P01, P02, and P06 exhibited clear decreases in peak
tendon load from Dephy Off to Dephy150, demonstrating the mechanical offloading
effect of the exoskeleton.

These reductions were most apparent in the EMG-informed condition, which
directly reflects experimental neuromuscular dynamics. Reported errors in tendon
force estimations, such as peak deviations within 10-20% of body weight and RMS
errors under 3Nm, are in line with those found in prior EMG-informed musculoskeletal
simulations of walking[41]. Our results fall within this validated range, supporting

the reliability of the computed unloading effects.

Limitations of Standard CMC in Capturing Unloading

Standard CMC simulations, while temporally aligned, consistently underestimated
activation amplitudes, leading to reduced force predictions even under baseline
conditions. As a result, CMC failed to reflect the progressive unloading effect of the
AFO. This finding highlights the necessity of EMG-informed activations to detect
assistance-driven changes in tendon load, especially in submaximal tasks such as

walking.
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Activation—Force Coupling and Residual Force Phenomena

In Hill-type muscle models, activation levels directly influence muscle force generation.
Consequently, underestimations in activation (as seen with CMC) translate to lower
tendon forces. By contrast, EMG-informed simulations maintained activation profiles
that matched both the magnitude and timing of expected neuromuscular control.
A notable feature in EMG-informed simulations was the presence of a secondary
force peak during swing. This may reflect residual activation in the soleus or
gastrocnemius, carried over from late stance, due to electromechanical delay and the
slow deactivation of slow-twitch fibers. This phenomenon underscores the value of

EMG-driven modeling in capturing fine-grained neuromuscular dynamics.

Summary and Rationale for Model Choice

In summary, EMG-informed simulations provided the most accurate estimation of
tendon forces across assistance conditions, capturing both the expected unloading
effect and the physiological characteristics of muscle recruitment. Standard CMC,
while informative in timing, lacked the amplitude fidelity necessary to evaluate force

modulation.

o EMG-informed simulations captured consistent reductions in Achilles tendon

load during push-off with increasing AFO support.

e Secondary peaks in the force profiles likely reflect residual muscle activation

beyond toe-off, captured only with EMG-driven inputs.

e Accurate force estimation depends on selecting activation sources that preserve

both timing and magnitude fidelity.

These conclusions guided our selection of EMG-informed CMC as the primary

framework for tendon force evaluation in this study.
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Chapter 6

Impact of Ankle-Foot Orthosis
Assistance on Neuromuscular

and Biomechanical Parameters

This section investigates the clinical objective of the study: quantifying the biome-

chanical and neuromuscular effects of a powered ankle-foot orthosis (AFO) across

varying levels of assistance during treadmill walking at two different levels of speed.

The analysis focuses on how external support influences muscle activation, joint

kinetics, and Achilles tendon loading, with particular attention to the push-off phase

of gait, a critical period for propulsion and forward progression.

The evaluation is organized around three key biomechanical themes:

1. Neuromuscular response: We examine the modulation of muscle activation

levels across AFO conditions, focusing on both plantarflezors (e.g., soleus,
gastrocnemii) and dorsiflezors (e.g., tibialis anterior). A decrease in activation
with increasing assistance would indicate effective mechanical offloading and

potential neuromuscular adaptation.

. AFO torque integration: The correct implementation of the exoskeleton
torque profile within the OpenSim simulation framework is verified to ensure
that the device’s mechanical support is accurately represented. This validation
step is essential to isolate AFO-induced changes in joint kinetics from simulation

artifacts.

. Achilles tendon load: We assess changes in the Achilles tendon force across
conditions, as a surrogate for triceps surae loading. A consistent reduction in
tendon force with increased AFO support would support the device’s efficacy

in offloading the plantarflexors and mitigating strain on the Achilles tendon.

The NoDephy (no AFO) condition is used as the physiological baseline, repre-

senting unassisted natural gait. All subsequent comparisons are referenced to this

state to evaluate the effect of both passive and active exoskeletal support. The
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DephyOff condition (AFO worn but unpowered) is particularly informative as it
allows us to isolate the influence of passive device properties (e.g., inertia, stiffness,
physical constraint) on gait mechanics, independent of active torque application.

In addition to examining propulsion-related dynamics, we specifically investigate
the behavior of the tibialis anterior, the primary ankle dorsiflexor. Its function
during early stance and swing phase is critical for foot clearance and controlled foot
contact. Evaluating both activation patterns and generated forces in the dorsiflexors
allows us to determine whether increasing plantarflexor support via the AFO induces
compensatory reductions or deficits in dorsiflexor activity, an important consideration
for overall gait symmetry and safety.

Lastly, the relationship between muscle activation and tendon force is explicitly
addressed. Since tendon force is the resultant of the sum of individual muscle forces
acting in series, any change in neural activation (especially under EMG-informed
conditions) directly modulates tendon load. Understanding this interplay is essential
for interpreting how neuromechanical control strategies adapt to external assistance

and for designing effective rehabilitation or support protocols.

6.1 EMG Activation Reductions Across Assistance Lev-
els During Push-Off

This section analyzes the impact of AFO torque on muscle activation during the gait
cycle, with a specific focus on the push-off phase (40-60% of the gait cycle), where
the orthosis is actively delivering mechanical assistance. We evaluated reductions in
normalized EMG signals across the triceps surae muscles, gastrocnemius lateralis,
gastrocnemius medialis, and soleus, as well as the tibialis anterior, to assess potential
compensatory activation. Analysis was conducted at both walking speeds: 3 mph
and 3.3 mph.

Population-Level Results

Figures 6.1 and 6.2 show the average EMG profiles and percentage reductions in root
mean square (RMS) and area under the curve (AUC) during push-off.
Key findings include:

e Soleus showed the largest and most consistent reductions in EMG during push-
off. At 3mph speed, RMS reductions increased from 9.2% at 50% assistance to
25.2% at 150%. At 3.3mph speed, reductions were slightly more pronounced,
reaching 27.7% at 150%.

e Gastrocnemius lateralis exhibited moderate reductions. At 3.3 mph, the
reduction increased from 3.4% at 50% to 9.5% at 150%. At 3 mph, reductions
were 3.4%, 13.8%, and 17.9% at 50%, 100%, and 150%, respectively.

e Gastrocnemius medialis presented more variable behavior. Reductions

remained below 10% at all levels in the 3.3 mph condition.
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Population EMG Reduction — 3 mph

— GasLat GasMed Sol TibAnt
3 EaryStance | PushOff | Swing EarlyStance | PushOff | Swing EaryStance | PushOff ; Swing EaryStance | H
s AUC3S%  JAUCOS%)  AUC-38% AUC 103% Aucm, AUC432% AuCton A2 AUC3.7% AUC 409% um‘ AUC-05%
s ' ' : ' ' ' ' '
T ' ' ' ' ' ' ' '
53 ' ' ' : I I ' I
Bos ' ' 05 05 ' 05 '
< ' ' i ' : '
' ' ' ' ' '
5 ’_A = N\ /_’/\ N L
s L h o L .
) 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
3 EarlyStance Swing Eanysum | PushOff | ing EaryStance | Swing Eanysxanu | PushOff | Swi
s AUC3.3% ,AUC T AT lAUCod% | AUG-297% Ao AR AKOR 82%  |AUC-22%,  AUCOS%
T 1l RUS30%  RMSTIOW  RMS22% o REIE R RRRE 1} RUSTE%  RMSTZeW  RUS-11% o RSTERE RWBEL ARSH
s ' ' '
% ' ' ' ' H H ' '
32 ' ' ' ' I ' ' '
o5 ' ' 05 p ' 05 ' ' 05 ' '
2 ' I ' y I ' '
1 ' | ' | s
2 f ! 1 h N
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
El EarlyStance | PushOff | Swing EarlyStance | PushOff | Swing EaryStance | Swing EarlyStance | PushOff | Swing
s AUCI09%  IAUCA0%  AUG3S% AUC30%  |AUGOU%!  AUC-483% PN N AUC244%  lAUCTO%!  AUCSS%
T o} RMssow  RMSZED  RWSTIX af RUS3ZL RuSSsd)  RUSTEITL o} RSDEL RuSHan  AVSESE b RUSZEGL  RuSOTE  AUSESE
S ' ' I ' i 1 ' '
8§ | | : ' 1 | | |
T gos ' ' 05 ' ' 05 ' 05 ' '
< 4 : . . N i '
£ v ' ' ' v ' ' '
. 1 s ' | i i I '
o 1 L 1 it — 1 L 1
z
— [ 20 40 60 80 100 o 20 40 60 80 100 0 20 40 60 80 100 [ 20 40 60 80 100
El EaryStance | PushOff | Swing EarlyStance | PushOff | EaryStance | PushOff | Swing EaryStance | PushOff | Swing
s AUC19%  AUCZ3G%W  AUC109% Ty v A AUC-144%  AUCZT1%  AUC-10.1% AUC-308% C212%  AUC-82%
T 1l RNSOT%  RWS247TH  RMS-86% gL RUSISE  RMSTO9%  AMS-T103% 4l RMSTTE%  RMSZTTH  RMS-96% gl RUSTEOY  RUS21EW  RMS-T01%
g ' ' ' ' ' '
2% ' ' I ' . H ' '
53 ' ' ' ' I ' ' '
g 05 ' ' 05 . ' 05 ' I 05 ' '
< . ' ' P I I '
£ A _/\ P“& ’k H &
d ' | d | g}
K] L L L h i
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Gait Cycle (%) Gait Cycle (%) Gait Cycle (%) Gait Cycle (%)

No Assisted

Figure 6.1: Normalized EMG activation profiles are shown for four muscles, lateral
gastrocnemius (GasLat), medial gastrocnemius (GasMed), soleus (Sol), and tibialis
anterior (TibAnt), cross four exosuit assistance levels: Off (top row), 50% (second
row), 100% (third row), and 150% (bottom row). Shaded areas represent the standard
error across subjects. Vertical dashed lines denote approximate gait cycle phase
transitions: Early Stance, Push-Off, and Swing. For each phase, the Area Under the
Curve (AUC) and Root Mean Square (RMS) percentage change are reported for the
Assisted condition relative to the No Assistance condition. Negative values indicate
a reduction in muscle activity.
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Figure 6.2: Population-level EMG activation profiles and reduction metrics for four
muscles (Gastrocnemius Lateralis, Gastrocnemius Medialis, Soleus, Tibialis Anterior)
during treadmill walking at 3.3 mph across increasing levels of AFO assistance (Dephy
Off, 50, 100, 150). For each condition, the mean + SD normalized activation (a.u.)
is shown over the gait cycle, comparing the unassisted baseline (gray) to the assisted
condition (colored).
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o Tibialis anterior generally showed no increase in activation and was often
reduced, with RMS decreasing by up to 14.4% at 150% in the 3.3 mph condition.

Subject-Specific Results

Figures 6.3 and 6.4 illustrate results from a representative subject. Reductions varied

substantially across individuals:

e P02, P04, and S05 showed consistent and large reductions across all plan-
tarflexors at both speeds. Notably, S05 exhibited over 40% RMS reduction in
GasLat at 150% assistance, alongside parallel reductions in ATF.

e P01 and P07 displayed mixed responses. POl showed minimal modulation in
GasMed and TibAnt across speeds. P07 presented GasLat and Sol reductions
at 3 mph, but irregular GasMed activation bursts post push-off at 3.3 mph,
potentially due to altered MVC calibration or prolonged deactivation.

o P08 and S06 were highly responsive at high assistance. S06 showed a 32% Sol
RMS reduction and 13.8% TibAnt reduction at 150%. P08 displayed reductions
exceeding 40% across GasLat, GasMed, and Sol, and up to 77% in TibAnt.

e Secondary peaks in GasLat or GasMed post push-off were observed in a
few subjects (e.g., P04, P06), potentially due to compensatory activity or slow

muscle deactivation. These were isolated and not widespread.
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Figure 6.3: Subject P05, EMG activation profiles and phase-specific reduction
metrics at 3 mph walking speed. Normalized EMG signals (mean £+ SD across 10
left gait cycles) are shown for four muscles (Gastrocnemius Lateralis, Gastrocnemius
Medialis, Soleus, Tibialis Anterior) across four AFO assistance conditions (Dephy Off,
50, 100, 150). The gray line represents the unassisted baseline (NoDephy). Vertical
dashed lines mark the Early Stance, Push-Off, and Swing phases. Reductions in
muscle activation are quantified using Area Under the Curve (AUC) and Root Mean
Square.
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Subject P05 — 3.3 mph
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Figure 6.4: Subject P05, EMG activation profiles and phase-specific reduction
metrics at 3.3 mph walking speed. Normalized EMG signals (mean + SD across
10 left gait cycles) are shown for Gastrocnemius Lateralis, Gastrocnemius Medialis,
Soleus, and Tibialis Anterior across increasing AFO assistance levels (Dephy Off, 50,
100, 150). The unassisted baseline (NoDephy) is shown in gray for reference. Dashed
vertical lines delineate the gait phases.

6.2 Achilles Tendon Force Reduction Across Assistance

Levels

This section presents the analysis of Achilles tendon force (ATF) during gait under
different levels of AFO assistance, estimated through CMC-EMG simulations. The
primary goal is to evaluate the mechanical offloading provided by the AFO during
the push-off phase (40-60% of the gait cycle), where the device actively contributes
to propulsion.

Figures 6.5 and 6.6 show the average population profiles at 3 mph and 3.3 mph,

respectively.

Population-Level Reductions
At 3 mph:

o Off: 2.2% reduction (+3.4%)

50%: 9.3% (£6.3%)
e 100%: 16.3% (+7.0%)
o 150%: 22.6% (+9.7%)
At 3.3 mph:
e Off: 2.1% (£3.6%)

o 50%: 16.2% (£6.5%)
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e 100%: 18.0% (£6.2%)

o 150%: 25.5% (+9.1%)

POPULATION — CMC-EMG Achilles Tendon Load — 3 mph
off 50 100 150
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Figure 6.5: Population-average Achilles tendon load estimated via EMG-informed
CMC at 3 mph for four AFO conditions. The black curves represent the mean
NoDephy baseline, and the colored curves represent assisted conditions (Dephy Off,
50, 100, 150). Shaded regions denote inter-subject variability. Vertical lines segment
the gait into Early Stance, Push-Off, and Swing phases. Annotated percentages
indicate the average reduction in peak tendon load during push-off for each assisted
condition compared to the baseline.

POPULATION — CMC-EMG Achilles Tendon Load — 3.3 mph
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Figure 6.6: Achilles tendon load across the population at 3.3 mph, estimated using
EMGe-informed CMC for increasing levels of AFO support. Baseline (NoDephy)
curves are shown in black, with assisted conditions overlaid in color. Shaded areas
represent between-subject standard deviations. Vertical dashed lines mark gait
phases, and annotated values indicate the percentage reduction in peak tendon load
during push-off relative to baseline. A consistent unloading trend is observed with
higher levels of assistance.

Subject-Specific Reductions

Figures 6.7 and 6.8 show data from a representative subject. Notably:

« P02, P06, and P07 showed peak ATF reductions up to 35-40% at high

assistance levels.

« P00, P03, P08, and S05 exhibited moderate, consistent reductions (20-25%
at 150%).
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e S06 and P04 showed minimal reductions (<10% at 150%), possibly due to
poor EMG quality, fit, or gait pattern variability.

« P01 displayed inconsistent reductions and secondary ATF peaks beyond push-
off.

P02 — CMC-EMG Achilles Tendon Load — 3 mph
off 50 100 0 150
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Figure 6.7: Achilles tendon load for subject P02 at 3 mph, estimated using EMG-
informed CMC. Each subplot corresponds to one AFO condition (Dephy Off, 50, 100,
150) and overlays the assisted (colored) and baseline (black) tendon load profiles.
Shaded areas denote variability across gait cycles. The peak reduction in tendon load
during push-off is annotated above each plot, highlighting a progressive unloading
effect with increasing AFO assistance.

P02 — CMC-EMG Achilles Tendon Load — 3.3 mph
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Figure 6.8: Achilles tendon load estimated with EMG-informed CMC for subject
P02 walking at 3.3 mph under increasing AFO assistance (Dephy Off, 50, 100, 150).
Each subplot shows the mean + SD of normalized tendon force over the gait cycle.
The black line represents the unassisted baseline (NoDephy), while the colored line
shows the assisted condition. Vertical dashed lines indicate Early Stance, Push-Off,
and Swing phases. Percentage values indicate peak Achilles tendon load reductions
during push-off relative to baseline.

Population-Level Reductions During Push-Off

To further characterize the mechanical and neuromuscular offloading provided
by the AFO, we quantified the percentage reduction in both EMG RMS signals and
Achilles tendon force (ATF) during the push-off phase (42-61% of the gait cycle)
across all subjects. Figures 6.9 and 6.10 report the mean 4+ standard deviation of the

reduction values for each assistance level (50%, 100%, 150%) at both walking speeds
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(3 mph and 3.3 mph), separately for the lateral gastrocnemius, medial gastrocnemius,

and soleus muscles, along with the corresponding ATF reduction.
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Figure 6.9: Population-level percentage reduction in EMG RMS activity and Achilles
tendon force (ATF) during the push-off phase (42-61% of the gait cycle) for each
AFO assistance level (50%, 100%, 150%) at slow walking speed (3 mph). Results
are shown for three plantarflexor muscles, lateral gastrocnemius (GasLat), medial
gastrocnemius (GasMed), and soleus, as well as for ATF. Error bars indicate standard
deviation across subjects. The plots show a clear increase in tendon offloading and
EMG reduction with increasing assistance, especially for the soleus.
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Figure 6.10: Population-level percentage reduction in EMG RMS activity and
Achilles tendon force (ATF) during the push-off phase (42-61% of the gait cycle) for
each AFO assistance level (50%, 100%, 150%) at fast walking speed (3.3 mph).
Results are shown for three plantarflexor muscles, lateral gastrocnemius (GasLat),
medial gastrocnemius (GasMed), and soleus, as well as for ATF. A consistent
offloading pattern is observed with increasing AFO assistance, with the soleus again
showing the highest EMG reduction across subjects.

At both speeds, an increasing trend in ATF reduction is observed with rising
assistance levels, reaching approximately 25-30% reduction at 150%. This supports
the efficacy of the AFO in mitigating the mechanical load borne by the Achilles
tendon during push-off.

In terms of muscle activity, the soleus consistently shows the highest EMG
reduction across both speeds, reaching values above 20% at 150% assistance. The
gastrocnemii exhibit more variable patterns, with moderate reductions that tend
to increase with assistance but are accompanied by larger inter-subject variability,
particularly for the medial head. These results reflect differential muscle contributions
during push-off and highlight how plantarflexor unloading is achieved both through
direct mechanical support and a corresponding decrease in neuromuscular drive.

Taken together, these findings confirm that the AFO effectively reduces both
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muscle effort and tendon loading in a dose-dependent manner, with the strongest
effects observed at the highest assistance level. The agreement between EMG and
ATF reductions provides compelling validation of the device’s offloading capability

during the most demanding phase of gait.

6.2.1 Validation of AFO Torque Implementation

To verify the correct integration of the ankle torque information provided by the
exoskeleton into the musculoskeletal simulations, we compared the input AFO
torque profiles (as derived from the recorded exoskeleton command signals) with
the output AFO torques estimated from the simulations. Figure 6.11 displays this
comparison across the three levels of active assistance (50%, 100%, and 150%) for a
representative subject, averaged across ten left gait cycles.

Each subplot shows the mean + standard deviation of the input (gray shaded
area) and simulated output (pink shaded area) torque profiles over the gait cycle.
Qualitatively, we observe that the output torques closely follow the shape and
magnitude of the input profiles, especially during the stance phase, where the AFO
is actively assisting.

50 100 150

Input AFO RMS = 1.21£0.36 RMS = 3.181.87 RMS = 2.2041.08
35 1 35 1 35
Output AFO CMC = 0.940.07 CMC =0.86£0.18 CMC = 0.9740.07

Torque (Nm)
Torque (Nm)
Torque (Nm)

SW_//\—A | |
0 0 0

20 40 50 80 100 20 40 60 80 100 20 40 60 80 100
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Figure 6.11: Comparison between input (gray) and output (red) ankle torque
profiles across the gait cycle for three levels of AFO assistance: Dephy50, Dephy100,
and Dephy150. Each subplot shows mean + SD torque (Nm) over 10 gait cycles.
Input torque represents the reference signal provided to the AFO controller, while
output torque corresponds to the measured actuation response. The agreement
between signals is quantified using Root Mean Square Error (RMS) and Coefficient
of Multiple Correlation (CMC), reported in each subplot. Higher assistance levels
yield greater peak torques, with consistently high CMC values indicating accurate
reproduction of the target signal.

Agreement was high:

o RMSE remained under 3.2 Nm across all levels (e.g., 1.21 +0.36 Nm at 50%,
3.18 £1.87 Nm at 100%, and 2.29 £1.08 Nm at 150%)
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o CMC values exceeded 0.94 at 50% and 150% (0.94 +0.07, 0.97 £0.07), with
slightly lower agreement at 100% (CMC = 0.86 + 0.18)

6.3 Discussion

Neuromuscular Effects of AFO Assistance

The observed reduction in triceps surae muscle activity with increasing AFO support
confirms that the exoskeleton effectively decreases the need for active plantarflexor
recruitment during push-off. This effect was most pronounced in the soleus, a key
contributor to propulsion. Interestingly, at the highest level of assistance, we also
observed increased tibialis anterior activity during early stance, suggesting a degree
of co-contraction with the soleus under these conditions. This pattern may reflect
a neuromuscular strategy to stabilize the ankle joint in response to the elevated
external torque provided by the AFO. Overall, these findings are consistent with
previous reports of EMG reductions under powered assistance [42, 43|, while also

highlighting the potential for altered activation patterns at higher support levels.

Mechanical Offloading of the Achilles Tendon

EMG-informed simulations revealed that tendon load reductions scaled with AFO
assistance, reaching up to 25.5% at high assistance levels. This result supports the
AFOQO’s capacity to offload the plantarflexor-tendon unit in a dose-dependent and
phase-specific manner. Comparable reductions in simulated tendon force have been

observed in studies combining exoskeletons with EMG-informed modeling [40, 41].

Inter-Subject Variability and Clinical Implications

Although group-level trends were clear, individual responses varied. Some participants
showed minimal change in ATF or EMG with assistance, highlighting the influence
of gait strategy, AFO fit, or neuromechanical adaptation. Additionally, differences in
body weight and height likely contributed to how the same levels of external assistance
affected each subject, altering the mechanical demands and resulting muscle and
tendon responses. This variability underscores the importance of subject-specific

modeling and justifies future studies on personalized AFO control strategies.

Validation of Torque Implementation

Simulation outputs closely matched recorded AFO torque profiles, with low RMSE
and high CMC values across all levels. This confirms that the mechanical input from
the device was faithfully integrated into the musculoskeletal simulation, isolating

observed changes as genuine effects of assistance.
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Conclusion

This study confirms that powered AFO assistance reduces both neuromuscular
activation and Achilles tendon loading in a dose-dependent fashion. The findings
support the hypothesis that mechanical support during push-off reduces plantarflexor
effort and strain, without inducing detrimental compensation. These results provide
a robust basis for the future design and control of assistive devices aimed at reducing

lower-limb workload during gait.
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Chapter 7

Limitations and Future

Directions

Modeling Limitations and Experimental Constraints

While the present study provides promising evidence of the AFQ’s capacity to reduce
Achilles tendon loading and muscle activation during walking, several modeling
assumptions and experimental limitations should be considered when interpreting

the results.

Simplified Modeling of the AFO

The ankle torque provided by the exoskeleton was modeled as an ideal actuator
applying torque at a single joint coordinate. This simplification does not account
for the complex biomechanical interaction between the human limb and the device,
including factors such as misalignment, soft tissue deformation, or contact dynamics
at the cuff-leg interface. As such, although the net torque application is replicated
in the simulation, the internal joint and muscle forces might differ from those that
would occur under real-world human-robot interaction. Future implementations
should consider a more realistic interface modeling, for example using contact models
or elastic couplings, to better approximate the effect of the exoskeleton on internal

musculoskeletal loading.

Treadmill Locomotion Effects

Data collection was performed on an instrumented treadmill to enable synchronized
motion capture and ground reaction force acquisition. While this setup is advan-
tageous for clean, continuous data acquisition, it introduces an inherent limitation:
walking on a treadmill lacks the forward propulsion typically present in overground
walking. This could affect muscle activation strategies and potentially bias the simu-
lation results, as the OpenSim algorithm assumes a forward walking intent. Caution
is therefore advised when generalizing results from treadmill-based simulations to

real-world overground walking conditions.
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EMG Normalization Methodology

EMG signals were normalized using maximum voluntary contraction (MVC) tasks
performed for each target muscle. However, the MVC procedure involved isolated
contractions, which may not have elicited the true isometric maximal force for each
muscle, especially in deep or synergistic muscles. This introduces a potential source
of error in EMG normalization. While we partially mitigated this limitation by
kinetically scaling the musculoskeletal model, thereby allowing muscles to express
their subject-specific maximum isometric force, this approach does not correct for
non-optimal MVC recordings. Future studies could explore dynamic normalization

techniques or use standardized isometric protocols for more reliable EMG scaling.

Limited Muscle Recordings

EMG data were collected from only four muscles per leg (lateral gastrocnemius,
medial gastrocnemius, soleus, and tibialis anterior). While this limited dataset may
restrict a comprehensive understanding of all muscular adaptations, it was a conscious
trade-off to maintain a minimally invasive and practical setup. Interestingly, the
results suggest that even with this reduced set of sensors, it is possible to robustly
estimate Achilles tendon offloading. This supports the idea that minimal sensing
strategies could be effective for clinical or wearable deployment, where sensor economy

is critical.

7.1 Future Directions

Validating CMC-EMG Estimations

The Achilles tendon force estimations in this study relied on the Computed Muscle
Control (CMC) algorithm in OpenSim, informed by experimental EMG. Although
OpenSim is a globally recognized and validated modeling framework, the specific
performance of the CMC-EMG-informed approach in predicting tendon loading has
not been explicitly validated in our context.

A promising direction for future work is to design targeted validation experiments.
For instance, a controlled walking task could be performed by a therapist or subject
under two conditions: (1) normative gait and (2) deliberate co-contraction of antag-
onist muscle groups. In such a scenario, we would expect a significant increase in
estimated tendon loading from the EMG-informed CMC pipeline due to increased
muscular effort, while the standard CMC pipeline (without EMG input) may not
show this increase. Observing such divergence would strengthen confidence in the

EMGe-informed model’s sensitivity and accuracy in estimating internal loads.

Beyond EMG as Sole Evidence of AFO Effectiveness

It is important to emphasize that a reduction in EMG amplitude alone is not sufficient

to claim effective mechanical offloading by the AFO. Muscle activation can decrease
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Limitations and Future Directions

due to a variety of factors, such as altered neural strategies or compensation, without
necessarily reflecting a corresponding change in joint or tendon loading. That is why
our multi-modal approach, combining EMG analysis with tendon force estimation, is
crucial. Future studies should continue integrating mechanical and neuromuscular

indicators to holistically assess the performance of assistive devices.
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Chapter 8

Conclusions

Understanding the dynamics of muscle-tendon units (MTUs) plays a crucial role
in numerous fields, including injury prevention, rehabilitation, sports science, er-
gonomic design, assistive technologies, and clinical diagnostics. In rehabilitation
and preventive care, detecting abnormal muscle forces allows for the design of more
effective interventions aimed at reducing injury risk and promoting safe recovery. In
sports science, optimizing MTU behavior not only enhances athletic performance
but also accelerates recovery and mitigates the risk of re-injury, especially given the
high incidence of tendon-related injuries in athletes. Clinical applications further
benefit from MTU analysis, aiding in the diagnosis of neuromuscular disorders and
supporting surgical planning and post-operative recovery.

This study explored the biomechanical and neuromuscular impact of powered
ankle—foot orthoses (AFOs) on lower limb function, with a specific focus on triceps
surae muscle activity and Achilles tendon loading during walking. By integrating
experimental data with advanced musculoskeletal (MSK) simulations, we demon-
strated the potential of active AFOs to reduce muscular workload and tendon forces,
particularly during the push-off phase of gait.

Surface electromyography (EMG) recordings consistently showed reduced acti-
vation levels in the soleus and gastrocnemii muscles as AFO assistance increased.
These findings indicate that active torque support provided by the Dephy ExoBoot
effectively offloads the plantarflexor muscles. Supporting this evidence, OpenSim
simulations revealed a reduction in muscle-generated ankle moments and Achilles
tendon force across increasing assistance levels. These converging results underscore
the functional contribution of powered AFOs in supporting locomotion and their
promising therapeutic potential in rehabilitation settings.

Beyond localized effects, this study contributes to a broader understanding of
how wearable robotic devices interact with human biomechanics. Through a rigorous
validation of simulation outputs, including inverse kinematics, joint angle comparisons
(MyoSuite, OpenSim, and Visual3D), and analysis of muscle and tendon loading, we
have confirmed the reliability of our integrated modeling approach. This includes
a thorough examination of signal alignment, gait segmentation, and individualized

assistance response across subjects and walking speeds.

64



Conclusions

Importantly, this work demonstrates that MSK modeling can serve as a powerful
non-invasive alternative to traditional invasive measurement methods for studying
MTU dynamics. Our framework enables the isolation of individual joint and muscle
contributions and supports the virtual testing of assistive device parameters before
clinical implementation. Such tools can enhance the design and personalization
of rehabilitation protocols, ultimately improving functional outcomes for patients
recovering from injury or surgery.

In summary, the outcomes of this thesis offer several key insights:

o Active AFOs significantly reduce plantarflexor muscle activation and Achilles
tendon force during the push-off phase, confirmed by both EMG and simulation
data.

e Simulation results closely align with experimental data, supporting the use of

EMG-informed MSK modeling to estimate internal biomechanical variables.

e The reduction of EMG activity alone is insufficient to evaluate device effec-
tiveness; tendon force estimations provide a more comprehensive assessment of

mechanical unloading.

o The integration of minimal sensor data (4 EMG channels per leg) proved
sufficient for effective modeling and evaluation, suggesting a feasible path for

future wearable implementations.

e Model validation steps, including torque profile matching and cross-platform

kinematics comparison, confirmed the robustness of the pipeline.

Outlook and Future Work

While this study provides strong evidence of the assistive effects of powered AFOs,
several limitations must be acknowledged, such as the idealized actuator modeling,
treadmill-based data collection, simplified EMG normalization, and limited muscle
recordings. These aspects provide opportunities for improvement in future research.

Additionally, future work should focus on further validating EMG-informed
simulations by evaluating their sensitivity to physiological changes, such as co-
contraction strategies. Testing under controlled walking tasks with varying muscle
activation profiles (e.g., with and without deliberate co-contraction) could help
confirm that tendon force estimates truly reflect underlying neuromuscular control.

Ultimately, this research sets the stage for developing more accurate, efficient,
and personalized rehabilitation strategies. By leveraging MSK modeling, we can
move toward designing assistive devices and therapeutic protocols that are both
patient-specific and clinically effective, with the long-term goal of improving mobility,

reducing recovery time, and enhancing quality of life.
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Appendix A

Appendix A

A.1 Evaluation Metrics

This section reports the mathematical definitions of the evaluation metrics used to

compare simulation outcomes across platforms.

Root Mean Square Error (RMSE)

1 N

i=1
Measures the average squared difference between two signals x; and y; (e.g., MyoSuite

vs. Visual3D) across N samples. Lower values indicate greater similarity.

Normalized RMSE (NRMSE)

NRMSE = RMSE x 100 (A.2)

max(y) — min(y)

The RMSE normalized to the range of the reference signal y. Expressed as a

percentage, it enables comparisons across signals with different scales.

Coefficient of Multiple Correlation (CMC)

oMC = |1 Sy S (g — )2
Yy St (i — T)?

Evaluates the similarity between multiple waveforms x;; (e.g., different gait cycles or

(A.3)

subjects) and their average ;. Ranges from 0 to 1; values closer to 1 indicate higher

similarity.

Range of Motion (ROM)
ROM = max(z) — min(z) (A4)

Defines the joint angular excursion during a gait cycle. Expressed in degrees.
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ROM Error
ROM Error = |ROMmodel - ROMreference‘ (A5)

Absolute difference between the ROM estimated by the model and that from the

reference. Evaluates how well the model captures the joint dynamics.

Root Mean Square (RMS)

1 N
RMS = NZ:J;Z (A.6)

1
i=1
Used to estimate the average power of a signal (e.g., muscle activation or EMG

envelope).

Peak Reduction (%)

B aseline — Pcon ition
Peak Reduction = —22¢! dition 100 (A7)

Pbaseline
Percentage reduction of the peak value (e.g., tendon force or activation) compared to

a baseline condition. Quantifies the unloading or assistance effect.
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