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Abstract

Infant Electroencephalogram (EEG) preprocessing presents unique challenges due to the
characteristics of the signal and the higher presence of artifacts. To address these dif-
ficulties, the MATLAB-based APICE pipeline was developed. Recognizing the limi-
tations of a proprietary platform, APICE-Py was developed as its fully open-source
Python counterpart. This translation aims to enhance accessibility, foster collabora-
tion among research teams, and integrate seamlessly with modern machine learning
tools.

The shift in programming languages necessitated key modifications, notably the paral-
lelization of the Spherical Spline Interpolation (SSI), which dramatically improved com-
putational efficiency for large datasets compared to the original MNE-Python library
function. While numerical differences in filter implementations led APICE-Py to be more
conservative in the number of retained epochs, validation demonstrated comparable per-
formance. Using the Standardized Measurement Error (SME), no significant statistical
differences were found in the extracted Evoked Response Potential (ERP) between the
Python and MATLAB versions. Computational time analyses confirmed that the paral-
lelized Python version achieves similar processing speeds.

APICE-Py is the fully open-source Python counterpart of the APICE pipeline. It de-
mocratizes robust infant EEG preprocessing, fosters collaboration, and promotes broader
research and clinical applications. The pipeline is openly available in the NeuroKidsLab
GitHub repository: https://github.com/neurokidslab/apice-py.

Keywords: Preprocessing, Artifact correction, EEG, ERP, Infant, Newborns, Develop-
ment
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1 Introduction

The concept of children as a "small adult" is increasingly discarded thanks to precious
findings on their biological and cognitive development during their transition from infancy
to adulthood. Their evolving cognitive functions are divided in several small steps which
are the results of the interaction of exogenous stimuli which constitute the personal expe-
rience with endogenous genetically determined characteristics (Larcher 2015). This new
perspective on neurodevelopment has generated significant interest, driving the research
to better understand the relative contributions and their influential order.
During the years different behavioral studies were done to achieve a better understanding
of the different stages spanning the extrema of human development, but only recently a
quantitative and objective measure has been introduced in the study of this specific target
population: the Electroencephalogram (EEG). This technology represents a valuable tool
for investigating the high level brain functions with higher temporal resolution compared
to other technologies such as the functional Magnetic Resonanse Imaging (fMRI) and at
lower cost compared to Magnetoencephalography (MEG) remaining non-invasive. The
downside of the EEG, however, is its high sensitivity to noise, especially the biological
artifacts generated by subject movements, which can corrupt the signal, hiding the ex-
tractable information. When dealing with infants, the percentage of artifacts increases
significantly when compared to the adult population due to their inability to remain com-
pletely still and the number of the trials is reduced for their lack of patience for long
recording session.
Consequently, when dealing with infant EEG data preprocessing becomes a mandatory
and pivotal step to be done before any further analysis to ensure the correct extraction
of information. While the complexity of the experimental paradigms on cognition is in-
creasing, requiring a higher number of trials, infants’ inherent difficulty in remaining still
persists. This makes a robust data recovery an essential need.
Different attempts were made over the last years to build the more suitable pipeline to
identify and correct the data before more depth analysis. Up to now, the majority of
proposed solutions to deal with infant EEG signals are MATLAB-based. Since it is a
proprietary software, it influences negatively their broader applicability in the research
field.
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The aim of this work is to validate the open-source fully-automated pipeline Python-
based to preprocess infant EEG data. The fulcrum of the new implementation is the
MNE-Python library which is a massive collaborative effort, very popular for EEG anal-
ysis. Adapted from the MATLAB version, its innovation lies in increased age-scalability,
free-availability and easier integration with machine learning due to the selected pro-
gramming language. This work aims to democratize the access to robust infant EEG
preprocessing, fostering broader research and clinical applications.
The different programming languages might lead to a different output even when the
input data are the same. To objectively evaluate any possible difference with the new
implementation, the comparison was made using the same metrics used to validate the
MATLAB implementation. Since the objective is to avoid any performance decrease,
other parameters, such as the computational time, were evaluated as well.
This work first provides a brief background, followed by a general description of the
implemented pipeline and existing solutions. Finally, the results of the validation are
presented.
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2 Theoretical background

2.1 Historical parenthesis

The EEG played one of the major technological advancements which enabled a better
understanding of the brain along with its underlying activity. The discovery of the elec-
trical current as the so far invisible hand driving the brain function was achieved by
small steps, starting with Galvani’s discovery of muscle contraction when an electrical
current was applied in 1828. From this peripheral point of view, in the mid-19th century
the concept swam upstream following the nerves which are the link between the central
nervous system and the periphery. This was evident with the work of Du Bois, who
described a negative wave propagating along the nerves and then to the muscle, which,
nowadays, it is called action potential (Edu 2024), and Von Helmholtz, who provided a
better characterization of this new finding by computing its speed which, with surprise,
was smaller than the speed of the current (≈ 25/40 m

s
) (Edu n.d.). Finally, the brain

electrical sensitivity was explored using the same idea that guided Galvani and the mus-
cle: Fritsch and Hitzig applied a direct electrical stimulation of the cerebral cortex. The
electrical stimulation on some areas of the cerebral cortex provoked some contraction in
the opposite part of the body proving once again the contra laterality of the brain and
the nature of the communication method employed by the cells. Playing on the current
intensity, they managed to see also the correlation between the amplitude of the stimula-
tion current and the extension of the contraction of the body. They detected the motor
area of the cerebral cortex (Hagner 2012). The relationship between the current and the
brain became stricter, but it’s only with Caton in 1875 that the first electric signal of
the brain was recorded, demonstrating that the gray matter of the cerebral cortex pro-
duces small currents. His experiences moved even further, allowing him to be the first
to detect the visual Evoked Response Potential (ERP) in the occipital cortex of a rabbit
when some light was directly pointed to its eyes (Haas 2003). In a single shot both the
electroencephalographic and the evoked potential are born.

Up to now the substantial link between the brain activity and the current was established.
The missing tile to complete the mosaic was the ability to measure this electro-magnetic
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variable with a non-invasive method. The progress must be credited to Hans Berger who
in 1924 placed some electrodes on the scalp of his son and recorded the electrical activity
of the brain (Fig. 2.1), marking it as the first EEG done on a human subject (Haas
2003).

Figure 2.1: An example of the first human EEG signal. Image taken from Berger 1929.

He discovered the change in the waves frequency correlated with the mental work load
required by the subject while the EEG was recorded, coining the two different conditions
as "alpha" and "beta" waves and establishing a standard protocol for the acquisition of the
differential signal. His work was furthered by Herbert H. Jasper in the 20th century. With
him, the clinical relevance of these non-invasive exams was introduced thanks to a proper
definition of the electrodes’ placement. With a better methodological setup, he was able
to start exploring the state of consciousness, the developmental learning, along with some
clinical pathologies such as the epilepsy (Avoli 2012). He also managed to monitor the
activity of a single neuron, with the use of extracellular or intracellular microelectrodes.
The power of the newly introduced technology was perfectly interpreted by William Grey
Walter who redefined the interpretations of the different rhythms, being able to analyze
them in real-time. He also introduced the localization of a brain tumor through the obser-
vation of the slow frequency rhythms and made progress on the epilepsy (Bladin 2006).
The technological development of the last decades of the 20th century and the begin-
ning of the 21th century allowed the EEG to increase its performances and reliability.
With the digitalization of the acquired data, their manipulation became easier opening
the method to be used outside the clinical environment. An increased availability of
raw observations and new technical achievements allowed to define better experimental
paradigms and thus to make inferences on explanatory concepts on the way the brain
works. This field of research is known under the name of cognitive neuroscience. In
children and infants, the use of fMRI or MEG is harder to implement and thus limited
because movement severely disrupts the acquired signal, making EEG more suitable for
these conditions.

2.2 Action potential

The fundamental cells of the brain are called neurons, and they were firstly described and
drawn by Ramon Y Cajal after being stained by the "reazione nera" of Golgi (Fig. 2.3).
The cell is made by the soma which is where the nucleus is stored, the dendrites which
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Figure 2.2: Three drawings of cortical lamination by Santiago Ramon y Cajal, each
showing a vertical cross-section, with the surface of the cortex at the top,
with explicit layers identification. Left: Nissl-stained visual cortex of a hu-
man adult. Middle: Nissl-stained motor cortex of a human adult. Right:
Golgi-stained cortex of a 1.5 month-old infant. The Nissl stain shows the
cell bodies of neurons; the Golgi stain shows the dendrites and axons of a
random subset of neurons.

allow capturing the signals coming from the other neurons and the axon which is the road
along which the response of the single neuron travels to the dendrites tree of the next
neuron. As all the cells of the human body its membrane maintain a resting potential of
-70 mV .
The electro-magnetic field captured by the EEG consists of the sum of all the depolar-
izations that occurs in the 6 layers of the pyramidal neurons under the probe electrode.
These layers are numbered following a decreasing order from the innermost part (layer
V I), close to the white matter, to the outermost part (layer I), just before the pia mater
(Fig. 2.2) and in each layer a different type of neurons can be found. The results of
their activity are all the high-level brain functions: cognition, sensory perception, spatial
reasoning, generation of motor commands and language.

The communication between neurons is performed following different consequential steps.
Following the information flow in a single brain cell, the different stages are:

• The structure that allows the exchange of information between the sender and the
receiver is called a synapse and two general classes can be identified based on the
nature of the medium used:
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Figure 2.3: Drawing of Purkinje cells (A) and granule cells (B) from pigeon cerebel-
lum by Santiago Ramón y Cajal, 1899. Instituto Santiago Ramón y Cajal,
Madrid, Spain.

1. Chemical synapses:
The cell to cell communication is guaranteed with the secretion and release
of neurotransmitters in the synaptic gap or synaptic cleft which has a dimen-
sion between 20 and 40 µm. The neurotransmitters are then absorbed in the
dendritic level of the receiver neuron. This kind of communication is slower,
but allows modulating the information between an inhibitory and excitatory
stimuli.

2. Electrical synapses:
In this situation a direct, passive flow of electrical current flows from one neuron
to another. This exchange is faster, and it depends on the existence of gap
junctions, dedicated membrane channels connecting two neurons.

• The role of the dendritic tree is to assimilate all the different signals that comes
from the sending neurons to the receiving neuron.

• At the level of the soma the veritable neuronal response is generated. The stimuli
that came from the others neurons can increase or decrease the cell membrane
potential. If the depolarization of the membrane increases to more than -55 mV a
response is released with no more possibility to stop it following an all or none law.
The response is called action potential.
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Figure 2.4: Computational model of neuron proposed by McCulloch and Pitts. The den-
dritic trees are represented by the synaptic weights, the soma as the summing
junction, the membrane potential threshold by the activation function.

• The action potential moves from the soma to the axon of the neuron with a saltatory
mechanism.

• When the action potential reaches the end tip of the axon, the information is given
to the linked neurons’ dendritic tree using one of the two synapses structures.

An oversimplification which allows a better understanding of the information elaboration
of a neuron was given by Warren McCulloch and Walter Pitt in 1943 with the first
computational model of a neuron (McCulloch et al. 1943) (Fig. 2.4).

The shape of an action potential is very well known, and it is always the same every time
it occurs (Fig. 2.5). When the excitatory inputs which come from the dendrites reach the
threshold, the cell membrane potential depolarizes rapidly up to 40 mV , followed by a
hyperpolarization period that takes the membrane potential at a lower point (≈ -90 mV )
than the rest potential. During the hyperpolarization the neurons can’t be excited again,
this phase is called refractory period.

The depolarization follows the axon, and it happens at each node of Ranvier, points where
the myelin is not present making possible for the ions to be exchanged between the inner
and the outer part of the cells. At the tip of the axon, the depolarization causes the
release of the neurotransmitter in the synaptic gap.

2.3 EEG

Even if it’s possible to measure the activity of a single neuron (Avoli 2012), the infor-
mation from its activity is generally not relevant enough to extract a correlation with a
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Figure 2.5: The action potential of a neuron cell. If the thresholds reached (a), the
depolarization inverts the polarity of the cell membrane. It follows a re-
polarization and hyper-polarization of the cell before the rest potential is
achieved again. In case the stimulus is not strong enough, the action poten-
tial doesn’t happen (b). Image adapted from Chris et al. 2007.

cognitive function. Moreover, the method is invasive and thus this kind of electrodes can
be placed only on subjects suffering from epilepsy.
The corresponding non-invasive method suitable for research purpose, in particular when
infants are involved, is the EEG. The method consists in placing electrodes on the scalp
of the subject whose brain activity needs to be recorded. The number of electrodes
can differ from a low-density electrodes nets, when the number of electrodes is smaller
than 32 electrodes, to the high-density which are more technological advanced reach-
ing up to 256 electrodes. The electrodes themselves can be grouped in two main cate-
gories.

1. Gel-based Electrodes
A conductive gel or paste is used to achieve a better electrical contact between the
electrodes and the scalp reducing the impedance. This solution maintains a lower
noise providing a better recorded signal. The use of gel requires a large amount
of time to correctly prepare the subject and achieve optimal performance, but the
setup time can be faster when a saline solution is used instead of the gel.

2. Wet Electrodes
These electrodes use an alternative medium to gel: a saline, saltwater, solution.
The advantage introduced by this method is a faster setup while preserving the
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Figure 2.6: The influence of the cortical orientation of the neurons on the recorded signal
amplitude. The optimal recording is when the neurons under the electrodes
are perpendicular to the scalp and consequently to the electrode. Image
taken from Brienza et al. 2019.

performances of the gel-based electrodes, with a low impedance and a good quality
signal. The issue of choosing this method is the lower stability over long recording
sessions compared to the gel-based method.

3. Dry Electrodes
This solution is more commonly implemented outside clinical and research environ-
ments. Their appeal stems from the absence of a conductive medium, making them
exceptionally user-friendly and facilitating the adoption of this technology in real-
world settings. Since these electrodes are in direct contact with the scalp without an
intermediate substance, the impedance is typically higher, which results in poorer
signal quality when compared to wet electrode methods.

The recorded signal can be then analyzed using different wave patterns grouped by their
frequency bands: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and
gamma (30 Hz and above). Over the years, a different subject state has been associated
with each of these.
As with all the imaging techniques, two metrics are used to evaluate a method: temporal
resolution and spatial resolution. The former is perfectly represented by the EEG thanks
to its high sampling frequency offering a ms resolution. This makes it particularly useful
for studying dynamic processes such as sensory perception, motor responses, and cognitive
tasks. The resolution duo is inversely related, meaning that the spatial resolution is low
compared to its high counterpart. Indeed, when compared to other technique, such as
fMRI, the signal recorded are the result of the volume conduction of electrical activity,
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making it challenging to pinpoint the exact location of brain activity.
It is important to remark that the signal captured by an EEG electrode, no matter how
small, is the result of the thousands of neurons which are under it.

2.4 Evoked Response Potential

In cognitive neuroscience, it is important to be able to record an objective response to
a specific stimulus from the subject. In the context of the EEG, the brain response to
specific stimuli or events is called ERP. The spontaneous activity of millions of neurons
communicating unpredictably under a single electrode gives rise to a signal associable
with a casual process. In the middle of all these voices, the ERPs are difficult to be
directly seen after the stimulus presentation because of its low amplitude, especially if the
presented stimulus is not visual. To increase the chances of detection of the ERP, the best
extraction method of the stimulus answer consists in the averaging technique. The key
idea of behind this strategy is that the ERP are consistent along the same stimulus which
is not the case for the underlying brain activity. Several sensory stimuli are regularly
presented to the subject multiple time during which the EEG activity is recorded. The
signal is then preprocessed and segmented in smaller time windows containing the stimuli.
Each extracted segment is called epoch. Then each epoch is realigned with the others
and the average of all the recorded epochs is computed. This time-locked analysis of
the signal increases ERP amplitude to the detriment of the casual activity underneath
making the Signal-to-Noise Ratio (SNR) increase and the ERP detection possible. From
a biological point of view, the ERPs are produced by the synchronous firing of a huge
amount of similarly oriented cortical pyramidal neurons (Sur et al. 2009). Two different
kinds of ERPs can be classified in humans:

• Early waves
When the response peak is reached before 100 ms after the stimulus presentation,
they are mainly dependent on the physical parameters of the stimuli, and they are
usually called "sensory" or "exogenous".

• Later waves
When the response peak occurs after this time interval, it is usually caused by a
higher information processing. This kind of ERPs is usually used with the terms
"cognitive" or "endogenous".

Other features are used to provide a better description such as latency, amplitude and
polarity. Their high reproducibility among different subjects leads to the definition of a
nomenclature. The capital letter with which the ERP waveform name begins define the
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Figure 2.7: The average ERP of a 21-week-old infant in response to a central visual
stimulus. The mid-occipital cluster of the electrodes used is presented below
the plots. Image taken from Adibpour et al. 2018.

positivity (P) or negativity (N) of the peak. The following number define the latency in
ms of the onset of the peak for the ERP. An example of visual ERPs can be seen in Figure
2.7. In detail, it is possible to see the stimulus presentation at time 0 s, followed by the
P100, an early wave of the stimulus response, and the P400, a later wave response. The
ERP is computed using the electrodes from the occipital region.
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3 Related work

The EEG represents a valuable tool for investigating the high level brain functions with
higher temporal resolution compared to other technologies such as fMRI at lower cost
compared to MEG, and remaining non-invasive. To the scalp electrophysiological poten-
tial recorded with this instrument it is possible to apply different analysis to extract the
meaningful information of the underlying cognitive processes hidden by the casual signal
originated by all the activity running in parallel in the brain. The common requirement
among the existing approaches, like time-frequency analysis or ERP analysis, is the avail-
ability of a high number of trials with a low variability. Once several trials are extracted
and realigned with the stimulus presentation, their average allows unveiling the cognitive
process signature from the intrinsic chaotic nature of the EEG signal. The reproducible
shape of the neural activity time-locked to the stimulus is defined as ERP. The downside
of this solution is the high sensitivity to the artifacts that can corrupt the signal, espe-
cially when their magnitude is bigger than the signal itself.
The preprocessing of the recorded signal becomes a fundamental step to be applied be-
fore the extraction of the ERP to avoid any distortion on the final shape that can lead
to a misinterpretation of the results. When the experimental population is young, i.e.,
infants or young babies, the challenge’s difficulty increases even more. Indeed, if for the
adults a longer attention focus and stillness during the experiment allows longer and less
artifacted recordings, when dealing with younger populations, their lack of patience and
the impossibility for them to follow the request of avoid movement results in shorter and
more artifacted signals. Along with movements and physiological phenomena, the detri-
ment of the signal quality is as well caused by environmental factors, like the power line
noise. The difference between the adults and infants is not only marked by the higher
presence of artifacts, but also by the different properties of the EEG signal itself which
depend on the age of the subject and its sleep-wakefulness stage during the acquisition:
the power spectrum and the characteristics of the ERP change during the development
with the maturational changes the brain undergoes (Naik et al. 2023). This introduces
an uncorrectable intrinsic variability in the signal, affecting the extracted ERP.
The heterogeneous combination of all the sources of noise generates non-stereotypical ar-
tifacts, thereby removing some denoising methods, like Independent Component Analysis
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(ICA), from the spectrum of effective techniques. Since the number of segments to aver-
age is limited, their rejection based in the artifact presence should be cautiously evaluated
and avoided as much as possible because it sacrifices relevant aspects of the EEG signal
necessary to extract a correct ERP and it reduces the experimental power. The necessity
of preprocessing the raw data is in general accepted, but there is no unique definition on
the consequential steps that should be applied to the data, leading to a high variability
on the implemented actions among different labs. Among these stages sometimes, the
user is required to select manually some parameters or even remove some bad electrodes
based on subjective decisions increasing even more the already non-negligible preprocess-
ing variability.
Another aspect to not discard is the necessity of longer recording period to be able to
investigate more complex cognitive activities. In this scenario, the ability to reconstruct
the corrupted signal which is highly redundant by the diffusion of the electric field allows
the implementation of different signal denoising techniques (Jiang et al. 2019). This pos-
sibility leads to an increase in the retained data without losing data quality.

3.1 Literature Review

With the aim of reducing the problem, different automatic pipelines were proposed to de-
tect and correct the raw recorded signal efficiently from large datasets: NEAR (Kumaravel
et al. 2022), MADE (Debnath et al. 2020), HAPPE (Gabard-Durnam et al. 2018). Since
APICE-Py is the translation from the MATLAB version and its steps do not differ from
the original implementation, its discussion is omitted for an in-depth analysis in section
4.1.

NEAR HAPPE MADE

Highpass filter (Hz) from 0.15 to 0.3 1 0.3
Lowpass filter (Hz) 40 X before 50

Table 3.1: Summary of the filter parameters implemented by different pipelines.

In all the pipelines, filtering of the recorded signal represents the initial step of prepro-
cessing. In general two filter are used in cascade to bandpass filter the signal. While
there is a consensus over the necessity to apply a high-pass filter to remove the drifts and
slow activity in the data that doesn’t have a neural origin but related to other external
or biomechanical sources, the selection of the cutoff frequency is not univocally defined
by the literature. From the different pipelines analyzed, a broad range of values were
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proposed, from 1 Hz of HAPPE to 0.15 Hz of NEAR (Tab. 3.1). When from the experi-
mental paradigms an ERP is expected, the spectrum of the frequency value to be chosen
is reduced: the ERP shape can be dangerously modified if a frequency higher than 0.3
Hz is picked (Luck 2014). Another issue with high pass filtering is distortion in the data,
especially in the presence of fast artifacts (Cheveigné et al. 2019). In general, the data
might be used for different analyses and having a pipeline that can be elastic enough to
preprocess the data destined to different analyses is better.
The signal is also contaminated by the environmental noise caused by the electrical fre-
quency at 50 or 60 Hz. Since applying a notch filter or a more advanced method to
remove this noise are not perfectly able to maintain the brain activity components, the
more effective solution is to low-pass the data with a lower frequency. Another reason to
apply this criterion is that the Electromyography (EMG) frequency components are more
represented in the higher frequencies.
For all the pipeline (except HAPPE which didn’t provide any details), the filters applied
are non-causal Finite Impulse Response (FIR) filters. In details, for MADE the non-
causal FIR filter with latency shift correction integrated in the FIRfilt plugin is used on
the continuous data (Widmann et al. 2015) whereas for NEAR the EEGLAB’s default
filter is used.
Once the data are filtered, they undergo the process of artifact detection in all the pipelines
except NEAR, where the segmentation is applied before any further analysis to reduce the
computation to only the segments of interest. At this stage each pipeline uses different
methods to identify the artifacts.

• MADE
From FASTER EEGLAB plugin, the channel_properties is used to extract the met-
rics used for the artifact detection. The long range dependence of the time series
is evaluated via the Hurst exponent, the signal similarity among neighbor channels,
which should be similar but not identical because of volume conduction, is investi-
gated with the channel correlation and the variability which should not be too high
with the channel variance. For all the metrics, z-score normalization is applied and
a threshold of 3 define the presence of artifacts.
It is possible to remove a priori the outlier rings of electrodes from the recorded sig-
nal. This choice can be done based on the assumption that these channels are more
susceptible to noise and thus marked as bad. If it is applied, they are removed before
the application of channel_properties to not influence the standardized values.

• HAPPE
A subset of 19 electrodes based on the 10-20 system along with the channels of
interest is extracted from the whole number of recorded data. This is made to avoid
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any possible data overlearning of the ICA decomposition that could happen in high-
density recordings.
The normed joint probability of the average logarithmic power from 1 to 125 Hz
is computed over the extracted subset. All the values that are further than three
times the Standard Deviation (SD) from the mean are marked as bad. The method
is applied twice to achieve a better result.

• NEAR
The clean_flatlines function from the EEGLAB clean_rawdata detects a bad chan-
nels if a flat signal is present for more than 5 seconds.
To detect artifacts corrupting temporary the signal, a density-based data-driven ap-
proach is implemented. The Local Outlier Factor (LOF) defines the values for each
channel which should be considered outliers when compared to its k neighbors. The
optimal value for the hyperparameter k is chosen from the application of a Natural
Neighbors algorithm to the data and the threshold applied to mark as an outlier
one channel is defined from a Training dataset on the basis of a standard scoring of
the bad channels.
An optional periodogram analysis can be applied to identify motion related arti-
facts predominantly corrupting a channel. If a decrease in the Delta and Alpha
band power is associated with an increase of the Beta band power, the channel is
labeled as bad.

HAPPE is the only pipeline which does not use a lowpass filter to remove the line noise
component, relying on the multi-taper regressiion approach implemented in the CleanLine
program.
In both MADE and HAPPE, the artifacts correction is made using ICA or a derived
method, making the pipelines not suitable for infants’ recordings which can be corrupted
by not stereotyped artifacts.
The NEAR pipeline avoids the use of the ICA, implementing the Artifacts Subspace Re-
construction (ASR) to get remove the artifacts. It makes use of an empirically optimal
value for the parameter of the ASR obtained from a Training dataset. The performances
of this solution are dependent on the choice of these parameters which should be defined
on the quality of the collected data which on their turn depends on the EEG setup.
The NEAR pipeline is the only among the presented that performs the analysis on the
segmented data. It enhances its computational speed since a lower amount of data need to
be processed, but it reduces also its generalizability avoiding analysis outside the epochs.
Channel rereferencing to the average is allowed for all the pipelines, whereas for the reref-
erencing channel-wise is not allowed only by MADE (Tab. 3.2).
The common limitation between all these pipelines is the required MATLAB license which
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is an obstacle to their widespread use in the scientific community. To address this limi-
tation, APICE-Py represent the first fully open-source EEG pipeline to preprocess infant
EEG data without any licensing cost restrictions based on an existing pipeline. The
choice of the programming language lies on its native integration with machine learn-
ing and ease of new module or function integration. The full python code is distributed
openly, and it is compatible with all major existing EEG libraries, such as MNE-Python
or SciPy. APICE-Py implementation was validated against its counterpart in MAT-
LAB.

NEAR HAPPE MADE

Segmentation Applied after filter Optional Done
Rereferencing average Yes Yes Yes
Rereferencing channel Yes Yes No

Table 3.2: Summary of the main parameters and preprocessing step chosen by different
pipelines.
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4 Methodology

4.1 Pipeline Overview

APICE-Py relies on MNE-Python (Gramfort et al. 2013) to perform the most of the
standard processing steps, like importing the data, filtering and epoching. For more
specific tasks, a personalized implementation was done, also modifying some MNE-Python
functions to achieve faster computation. The structure of the pipeline is highly modular
giving to the user the freedom to edit the order of the different functions or even introduce
a personal function as a new step. The processing flow that the data follows is the same
as described by APICE (Fig. 4.1).

1. Raw data import

2. Filtering

3. Artifacts detection

4. Definition of bad samples and channels

5. Correction of artifacts

6. Bad epochs’ definition

7. Preprocessing report

4.1.1 Raw data import

Since APICE-Py is based on MNE-Python (Gramfort et al. 2013), the file is imported
automatically using the correct reader if one of the following file formats is provided: .fif,
.mat, .vhdr, .bdf, .cnt, .edf, .set, .egi, .mff, .nxe, .gdf, .data, .raw and .lay. The available
formats are quite numerous, allowing the software to read the most common EEG raw
data file formats.
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Figure 4.1: Overview of the proposed preprocessing pipeline usually applied on the in-
fants’ data. The preprocessing steps are grouped according to the functions
implemented in the software pipeline.

4.1.2 Filtering

In signal processing, filtering is at the same time essential and critical because it allows
to reduce the undesired noise coming from the non-relevant frequencies but with the
potential of introducing signal distortions if not correctly applied.
The primary aim of a filter is to attenuate frequencies primarily associated with noise
and outside the band of interest for the analysis. In the case of infants/newborns the
frequency range of interest spans between 0.1 to 40 Hz, and they are extracted applying
the cascade of a low-pass filter followed by a high-pass filter. Selecting the low-pass cut
frequency at 40 Hz enable to attenuate higher frequency noise coming from the muscle
activity which are typically up to far more than 100 Hz and moreover efficiently remove
the line noise at 50 Hz or 60 Hz. The choice of a high-pass cutoff frequency is more
discussed in the literature. The standard choice for the presented pipeline is set at 0.1
Hz : while it removes the slow drifts of the signal without introducing distortions is still
leaving the freedom to the user for an harsher definition for different successive analysis on
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the preprocessed data. It is worth noticing that a high-pass filtering frequency higher than
0.5 Hz introduce substantial distortions in the shape of the ERP (Kappenman et al. 2010).
The application of the high-pass filtering should be applied only on the continuous data
to avoid edge effects, whereas the low-pass filter can be applied even after the following
steps.
Both the low-pass and high-pass filters are FIR for their easier control, their stability and
can be corrected to zero-phase without additional computations (Widmann et al. 2015).
The default parameters of the MNE-Python library is used.

4.1.3 Artifacts detection

The detection of artifacts corrupting the signal represents a crucial step before performing
any kind of correction. First of all the differences in the signal properties between the
adults and the infants/children make ineffective the tools already implemented and tested
for the former age group. Second the number of artifacts is higher in pediatric record-
ings: the young subjects lacks of patience moving more their head or body during the
experiments causing electrodes displacement. Finally to increase the recordings length, it
is common practice to reduce as much as possible the gap time between the EEG sensors
placement and the beginning of the recording leading to imperfect electrode contact, poor
stability and a variability of the electrode impedance. For these different reason the high
presence of artifacts in the EEG data required a robust artifact detection.
In the previous proposed pipelines except APICE, the signal re-referencing is performed
only at the last step. This choice is made because the mean which is subtracted from the
signal to obtain an overall scalp potential equal to zero can be influenced by the artifacts,
leading to a wrong re-reference. At the same time, in unipolar recordings the signal is the
potential difference between the electrodes with a selected electrode which is the reference.
This measurement system makes the use of fixed threshold biased for artifact detection:
since the signal amplitude increases as the distance from the reference increases, a same
level of noise can be labeled differently just because of the farther position of the elec-
trode respect to the reference electrodes. Different solutions were proposed: the LOF
operates the detection based on the "distance" between each channel (Kumaravel et al.
2022), the normed joint probability of the mean log power in the 1-125 Hz frequency
band for user-selected channels (Gabard-Durnam et al. 2018) or a combination of Hurst
exponent, correlation with other channels, and channel variance (Debnath et al. 2020).
Another workaround of this circular dependency between computing the most accurate
mean and the re-referencing of the signal is to detect bad period in the recordings apply-
ing thresholds on extracted electrodes characteristics and using amplitude independent
techniques. After the first detection, the first mean is computed and removed from the
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data without considering the detected bad periods. Only after this step is performed, the
re-referenced data are used to successive artifacts’ detection. The choice of replicating
APICE in python, it’s mostly due to its scalability through the use of adaptive thresholds
which are not defined at a protocol or population level. It brings with it an increase in
the processing standardization enhancing data comparability among different studies and
across subject.
To increase the data retention, the artifacts’ identification is done on the continuous data.
Indeed, if a transient artifact corrupt an epoch, its correction is no more possible and its
remotion from the available epochs should be done to not corrupt the ERP, whereas in
case of the continuous data is possible to correct them retrieving more information. Be-
sides this, the estimation of the thresholds and the EEG characteristics are more accurate
when done over a bigger amount of data. Lastly, since more complex paradigms that are
more and more implemented nowadays to explore infant cognition require different types
of analysis, a common preprocessing pipeline is more flexible.
All the measures used by APICE-Py to detect the artifacts are computed from a slid-
ing time window or from each timestamp. The artifact label is assigned to a timestamp
when the extracted value exceed the relative thresholds which are set by default. The
limit of acceptance for each value is based on the analysis of the usually normal dis-
tribution, and it is conceived on a variation of the simple graphical method based on
box-plot proposed by Tukey in 1977. Despite its straightforward appearance, this ap-
proach effectively calculates a measure of spread by design, specifically avoiding the use
of extreme potential outliers, which could otherwise skew the calculation and diminish the
measure’s resilience to anomalous data. For each distribution the threshold is computed
using Thresh+ = Q3 + k · IQR and Thresh+ = Q1 − k · IQR where the inter-quartile
range (IQR) is computed as (Q3 − Q1) with Q1 and Q3 being the first and the third
quartiles of the distribution. The parameters k can be modified, by default set to 3. Even
if the use of adaptive thresholds is in general a better idea, the pipeline gives to the user
the freedom to work using fixed absolute threshold, using a single threshold for all the
electrodes or individuals thresholds per electrodes. More flexibility is provided with the
option to run the artifact detection on average reference data or data z-scored per channel.
The algorithms that are applied to the continuous data can be grouped in three groups.

1. Algorithms to detect non-working electrodes
It groups two complementary approaches: one analyzes the activity correlation along
the channels marking the ones with a low correlation, the other confronts the chan-
nels’ power spectrum across frequency bands.

2. Algorithms to detect motion artifacts
This kind of controls relies on the abnormal increase of the running average, the
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signal’s amplitude and the temporal variance in case of motion artifacts.

3. Algorithms to detect discontinuities in the signal
When the signal presents abrupt changes or jumps, this last detection group is able
to label them as artifacts.

The results of each detection step are stored in a boolean matrix of the same shape of the
recorded signal, i.e., epochs x channels x samples. The Bad Channel and Time (BCT)
matrix marks with True the presence of an artifact with the same resolution of the original
signal. Before proceeding, the BCT is refined via some analysis performed on the matrix
without looking at the signal: a mask of 50 ms is applied to all bad segments, good data
that are in the middle of bad data and shorter of 2 s are likely a transient period of the
same artifacts and thus rejected and bad segments that are too small, default 20 ms, are
included again.
Even if the group of algorithms used to detect the artifacts proved to be effective in the
detection of the majority of the artifacts, more considerations are done based on the BCT
matrix itself. Since the key aspect of the pipeline is the correction of the detected artifacts,
the first control that should be done to get a good quality interpolation is to have enough
good data in a specific timestamp. Indeed, if most of the channels are identified as bad,
the interpolation based on small number of electrodes is likely to be poor. A percentage
threshold of 30% on the total number of working electrodes is used to define a timestamp
as Bad Times (BT). To increase the method specificity the BT label is removed for the
segments shorter than 100 ms. Due to the possible earlier onset of the artifact compared
to the actual timestamp when it is detected, a mask of 500 ms before and after any bad
time segment and short segments of less than 1 s. At the end of these steps a BT boolean
matrix is obtained with a shape of epochs x samples.
Thanks to the high redundancy of the information in the EEG signal, a channel-wise
additional control is made on the proportion between good data and identified bad data
in the BCT matrix. A default limit of 30% is applied on the computed proportion values
to define a whole channel as bad. The boolean matrix Bad Channel (BC) has shape of
epochs x channels.
The same steps to detect artifacts is applied after the artifacts correction and to the
segmented epochs to ensure a good data quality. The only difference consists in the
marking of bad channel all the channels that presents a bad tags for more than 100 ms.
It is at this stage that the epochs dimension in the boolean matrixes is different from
1. At the end of the process the boolean matrix stores all the detected artifacts (Fig.
4.2).
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Figure 4.2: Overview of the proposed preprocessing pipeline usually applied on the in-
fants’ data.

4.1.4 Correction of artifacts

The detected artifacts corrupting the signal are corrected through data cleaning using
artifact estimation coupled with its subtraction or data reconstruction using the interpo-
lation. A sufficient number of good electrodes is crucial for effectively correcting times-
tamps, particularly for longer artifacts. However, even if all channels are affected, shorter
artifacts (less than 100ms) can still be corrected by removing the first components, even
if they aren’t explicitly marked by the BT criterion.
For the other types of artifacts, BC and BCT, the correction is performed. For APICE-Py
the use of ICA is avoided because the success of the technique in separating neural and
non-neural sources is reduced when applied to infants/children data due to the ERP in-
creased variability in amplitude and time and to the subtle similarity between signal and
artifacts. This signal characteristics reduce the decomposition quality making difficult the
automatic classification of the noise components. The data reconstruction is performed
using two strategies:

• Principal Components Analysis (PCA)
This method targets transient artifacts like jumps or discontinuities which are very
limited in time. It identifies and removes the initial PCA components that account
for 90% of the total variance, effectively eliminating most of the signal’s variance.
This process is applied simultaneously to all relevant data segments; the PCA is per-
formed on a concatenated dataset of all segments showing "jumps" and "glitches".
Assuming these transient artifacts are associated with high variance, the first com-
puted component is removed. While some neural activity might be removed along
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with the artifact, this negative effect is considered negligible. This is because the
method is applied only to signal segments with a maximum length of 100ms, and
only if the first principal component’s variance exceeds 90% of the total channel
variance. The benefit of reducing artifacts and avoiding the loss of longer data
segments outweighs the minimal downside.

• Spherical Spline Interpolation (SSI)
After PCA is applied, the pipeline addresses artifacts affecting longer time segments
and small number of electrodes. In this scenario, the Spherical Spline Interpolation
(SSI) (Perrin et al. 1989) is made to recover as much data as possible. Usually this
technique is used to interpolate electrodes labeled as bad during the whole record-
ing. The innovation of the pipeline is to apply the same idea also to recover the
data for channels which stops working for a limited period. A good interpolation
of this transient artifacts can be done only if enough good channels are present.
The default percentage used by APICE-Py is set to 30% and if it is not reached
the timestamp is marked as bad time. Since an interpolation is done, no new in-
formation is added, but it helps for a between-subjects analysis and to recover data
segments that other approaches end up rejecting.

To summarize, artifact correction is applied considering an increasing order of artifact
time length corrupting the signal: from the PCA which deals bad times up to 100 ms
to the SSI which is applied in a first run to the bad segments and finally to whole bad
channels.

4.1.5 Bad epochs definition

At this stage of the preprocessing, the corrected continuous data undergoes the segmen-
tation process. The software asks the user to provide the event label that should be used
to extract the epochs. The same artifacts detection is applied to the segmented signal
and the SSI is applied to correct the artifacts affecting a channel during an epoch. After
the interpolation, the epochs are analyzed on three criteria to detect the epochs which
should not be used to compute the ERP:

1. More than 30% of the epoch’s channels are labeled as bad

2. More than 50% of the data is interpolated

3. Any BT are contained
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All the percentage are the default values implemented in the pipeline, but the user is free
to modify them.

4.1.6 Preprocessing report

At the end of the preprocessing different output files are generated. First of all the prepro-
cessed EEG data are saved along with the different segmented epochs and computed ERP
with a .fif extension. For a more descriptive view over the preprocessing, the log report
contains the output of all the different processing steps, and it is saved in a .txt format,
whereas for a more informative summary of the data an HTML file contains the visual
representation of the artifact matrix before and after the correction, the Power Spectrum
Density (PSD) and the plot of the raw signal, the epochs and the computed ERP. More
than that CSV files summarizes the different percentage of detected artifacts in the raw
and corrected timestamps in the continuous and segmented data.

4.2 Python Implementation

4.2.1 Translation Process

The APICE MATLAB implementation is based on EEGLAB, a free toolbox developed
by Delorme et al. 2004. The counterpart for APICE-Py is MNE-Python (Gramfort et al.
2013) which is used in several step of the pipeline.
The first correspondence to be found between the two software is the filtering. In MAT-
LAB the pop_eegfiltnew function based on the FIRfilt plugin is used to filter the raw
data using a non-causal FIR filter. In the Python version, the MNE-Python library pro-
vides the method .filter() which by default applies a zero-phase FIR filter to the data.
To increase the performance the computation is parallelized through the use of n_jobs
parameters which define the number of jobs to run in parallel and can be defined by the
user based on its resources. The method is based on the SciPy library.
For the artifacts’ detection, the functions used by APICE-Py use NumPy library to ma-
nipulate the data stored in vectors or matrixes.
The artifact correction, in particular the SSI which was implemented in MATLAB was in
a first time applied using the MNE-Python method interpolate_bads, replaced afterward
with a parallelized version of the same function to enhance computational speed. The
method automatically applies the spherical splines to interpolate the bads EEG data. For
the MATLAB version, the function was coded from scratch following Perrin et al. 1989.
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The segmentation and the extraction of the ERPs is performed through the use of the
built-in methods of MNE-Python.

4.2.2 Challenges & Workarounds

The interpolation of the bad segments and whole channels was initially done by the
MNE-Python method interpolate_bads. This solution provided good results when com-
pared with MATLAB, but the performance in time was significantly decreased leading
the Python pipeline to be unusable for large datasets. The slowdown is mainly caused
by the repeated calling of the method which manipulates the MNE Raw_object which is
not computationally efficient. A workaround consisted in the manual implementation of
the interpolation function with the foresight to enable it to run the interpolation of the
different bad segments in parallel using a user-defined number of cores. The achievement
is possible by avoiding the object structure and using the extracted information from it,
computing the interpolation and storing back the output data to the object for the fol-
lowing steps.
Parallel processing splits a task into smaller, independent chunks that multiple processors
can work on at the same time enabling a faster computation. The joblib.Parallel is used
to separate processes along with its special mechanism of memory mapping to reduce
the overhead that a serialization of the data would imply. It automatically generates
a temporary file on the filesystem. This removes the need to generate multiple copies
of the data since each worker can rely on the reference to the memory-mapped file as
input.

4.3 Datasets

To assess APICE-Py’s scalability in preprocess EEG data from different experimental
conditions, three datasets were used.

4.3.1 Dataset 1: neonates auditory task

The auditory task dataset is composed by the neural activity of 24 healthy full-term
infants (11 males) with normal pregnancy and birth. The data were recorded at a sampling
frequency of 250 Hz using 128-electrodes net (Electrical Geodesics, Inc) in a soundproof
booth during quite rest or while sleeping at the Port Royal Maternity (AP-HP) in Paris,
France. The electrical activity of the brain was measured with respect to the vertex
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electrode. The experiment consisted in 216 trials for each infant. During a single trial,
the participants heard between 4 and 5 syllables lasting 250 ms every 600 ms. The
informed consent of the parent was provided.

4.3.2 Dataset 2: 5-months old infants visual task

The visual task dataset consists of 26 (12 males) infants with an average age of 22.98
weeks, SD 1.41, maximum age of 27 weeks and minimum age of 20.86. A 128-electrodes
net (Electrical Geodesics, Inc) was used to capture the scalp electrophysiological activity
referred to the vertex with a sampling frequency of 500 Hz. The recordings were made in
a soundproof shielded booth in which the infant was held by their parent on their lap at
NeuroSpin, in Gif-sur-Yvette, France. The experiment had not a fixed duration, lasting
until the subject patience allowed. Around 80 up to 160 trials for all participants were
collected (mean ± SD: 126.35 ± 26.07). A successful trial consisted in an attention grabber
shown at the center of the screen for 0.6 s, then an image appears lasting 1 s followed by
a second image lasting 1.2 s. Another attention grabber for 1.0-1.2 s marked the ending
of the trial. The informed consent of the parent was provided.

4.3.3 Dataset 3: 7-years old children and their parents
collaborative task

The collaborative task dataset is made by 32 pairs of children-parents (12 male chil-
dren, 13 male adults). Two synchronized 32 electrodes gel-based Smarting Pro system
(mBrainTrain) assured the recording of the scalp electrophysiological activity in both
participants simultaneously at a sampling frequency of 500 Hz, reference at the frontal
electrodes, ground on central. The experimental environment was a shielded booth lo-
cated at NeuroSpin, in Gif-sur-Yvette, France. The experimental task consisted in a
numerical puzzle, with a paradigm included a naturalistic interaction between the couple
of participants with free movement and verbal communication allowed. All the dyads
completed three trials each of them did not have a defined duration set a priori, with
a mean of 5.6 ± 2.07 minutes (mean ± SD). The informed consent of the parent was
provided.
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4.4 Validation and Results

The pipeline itself was already proven to be effective in its MATLAB version (Fló et al.
2022). The validation of its python counterpart is done taking in account different met-
rics. The first and the more important is to avoid a decrease in the performance between
the two implementation. To assess the same performances, the Standardized Measure-
ment Error (SME), proposed by Luck et al. 2021, was used to make a comparison with
the results shown in the original paper. Its magnitude is correlated with the variability
across the different epochs: the larger it is, the more distant the single epochs’ responses
are from each other. On the contrary, the smaller it is with increased trials, the stronger
is the power of an eventual statistical analysis. To resume, it quantifies the data quality
in terms of precision, and it can be applied to any metrics extracted from the ERP wave-
form. In this cse the metrics used was the mean amplitude in time and space.
The validation implied also the exploration of other metrics such as the retained epochs,
the percentage of detected artifacts before and after the correction and, finally, the com-
putational time. The former metrics analysis should be coupled with the results obtained
from the SME computation since a smaller number of retained epochs influence the overall
SME value. The two latter parameters are used to evaluate the consistency of the results
among the three datasets.
To increase the robustness of the analysis and to prove the scalability of the pipeline on
the number of electrodes and age of the participants, the three different dataset were used.
The first dataset comes from an auditory paradigm with sleeping neonates passive listen-
ing to syllables. In this dataset the software is expected to detect a few artifacts since the
participants even if infants is sleeping. The second dataset is expected to be more noisy
since it involves 5-month-old infants awake. The visual paradigms consist in watching
sequence of images running on the screen. The third and last dataset consist of paired
data from parents and children involved in solving a cognitive task. The artifacts should
be in a range between the two previous situation since the movement is allowed and at the
same time the subjects are older. Since no stimuli were given to the subjects, no ERP can
be computed leaving this dataset outside the SME computation.

4.4.1 Comparison with MATLAB Outputs

The first comparison between the two programming languages is defined by the SME’s
results. The computation for both dataset was identical: a same amount of the retained
epochs is randomly sampled with replacement for each subject. The average is computed
along the selected time window and selected electrodes’ subspace dimension. This com-
putation is repeated 1000 times and the SD of the collected measure corresponds to the
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SME of each subject ERP. For the Dataset 1, the central electrodes were used to com-
pute the SME over the auditory response (Dehaene-Lambertz et al. 2001) between 250
and 350 ms (Fig. 4.3a), whereas for the Dataset 2 the occipital region was used in a
period between 550 and 650 ms to evaluate the quality of the visual P400 (Nelson et al.
2001) (Fig. 4.3b).

From the Figure 4.3 is possible to see that the two methods return a slight different grand
average ERP. This difference was statistically tested using a running one-sample t-test
(False Discovery Rate (FDR) corrected by the number of sample) between the subjects’
ERP: even if the distance between the two signal appears large for some timestamps,
no significant difference (p > 0.05) where found. The discrepancy between the results
is non-consistent across subjects, but might be driven by a single subject. The Python
implementation doesn’t introduce any important biases.
Since no statistical differences were detected between the two implementations, the SME
was evaluated to have a more robust metrics of the equivalence between the methods
(Fig. 4.4). For both dataset, the SME distribution was not normal so the Wilcoxon
Signed-Rank test was used to define any statistical difference between the paired values.
For both Dataset 1 (Fig. 4.4a) and Dataset 2 (Fig. 4.4b) no statistical difference were
found.

A necessary metric to be coupled with the SME is the proportion of retained epochs,
computed as the ratio between the number of epochs after the rejection and the total
number of epochs. A good pipeline should result in a high number of retained epochs
coupled with a small SME’s value meaning a high accuracy on the ERP of each sub-
ject.

Results show that the python implementation is more conservative compared to its coun-
terpart in MATLAB with a significant smaller number of retained epochs (Fig. 4.5).
The pipelines’ performance are also assessed across different datasets by looking at the
percentage of detected artifacts both before and after interpolation. Specifically, it is a
comparison of the percentage of bad data, bad channels, and bad times between the two
implementations.

• Dataset 1
As expected the number of artifacts is not highly corrupted since the participants,
even if infants, are asleep (Fig. 4.6).

• Dataset 2
In this other situation the participants (5-months-old) are awake during the record-
ings, increasing significantly the number of artifacts detected (Fig. 4.7).
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(a) This plot displays the grand average ERP computed on the central electrodes (top right of
the figure) for Dataset 1, shown in the top right of the figure. The peaks appearing after
the dotted lines (which mark the syllables’ onset) represent the auditory ERP following
each syllable. The shaded area highlights the time window where the SME was calculated
(250-350 ms), corresponding to the peak of the auditory response evoked by the last syllable
of the epoch.

(b) This plot displays the grand average ERP computed on the occipital electrodes (top right
of the figure) for Dataset 2. The first two dotted lines indicate the onset of two images,
and the third dotted line marks the appearance of the attention grabber. P1 and P400
components are visible after the onset of the images, followed by the visual response to
the attention grabber. The shaded area highlights the time window where the SME was
computed (550-650 ms), corresponding to the P400 evoked by the second image.

Figure 4.3: Grand average ERPs obtained using the Python and MATLAB with pipeline
with the same parameters for artifact rejection.
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(a) SME for Dataset 1 (b) SME for Dataset 2

Figure 4.4: SME with Wilcoxon Signed-Rank test to detect a possible statistical differ-
ence.

(a) Percentage of retained epochs for
Dataset 1

(b) Percentage of retained epochs for
Dataset 2

Figure 4.5: Percentage of retained epochs with Wilcoxon Signed-Rank test to detect a
possible statistical difference.

• Dataset 3
This last dataset identifies an intermediate number of artifacts because even if the
subjects are older (children with parents), the movement and the talking is allowed
during the recording (Fig. 4.8).

In all the three conditions the software is able to interpolate the bad channels and to
reduce the overall number of bad data. When the percentage of detected artifacts are
compared between the two implementation, a difference is found: the Python version ap-
pears to be more conservative detecting an overall higher amount of artifacts. For Dataset
3, the percentages of detected artifacts exhibit a consistent order of magnitude across both
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Figure 4.6: Summary of the artifacts detected before (top row) and after (bottom row)
the correction methods on the continuous data for Dataset 1.

Figure 4.7: Summary of the artifacts detected before (top row) and after (bottom row)
the correction methods on the continuous data for Dataset 2.

populations (children and adults), thereby demonstrating the software’s age-versatility in
population analysis.
The computational time was a side parameter to provide another proofs on the main-
tained performances of the Python implementation. Before the implementation of the
parallelized computation for the SSI, the inefficiency of the Python implementation made
it not suitable for the everyday use or for the preprocessing of large datasets. The par-
allelized pipeline’s computational time is evaluated with a variable number of cores (Fig.
4.9).
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(a) Summary of the artifacts detected before (top row) and after (bottom row) the correction
methods on the continuous data for the children of Dataset 3.

(b) Summary of the artifacts detected before (top row) and after (bottom row) the correction
methods on the continuous data for the parents of Dataset 3.

Figure 4.8: Summary of the artifacts detected in the children (a) and parents (b) before
and after the correction methods on the continuous data for Dataset 3.
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Figure 4.9: Interpolation time requested by the pipeline to perform the SSI. The results
are from a single subject taken from the Dataset 2 which is supposed to be
the noisier among the three. It’s evident that the MNE-Python method is
unoptimized for large dataset, whereas the new implementation is reducing
the computational time approaching the MATLAB as the cores used in the
computation increases.
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5 Discussion

To evaluate the correct translation of the pipeline between the two programming lan-
guages, the same metrics of the original pipeline was followed (Fló et al. 2022). Multiple
random selection with repetition of computed ERP were used to evaluate their mean
values distribution. This technique is sensible to detect remains of unwanted noise in
the epochs that can affect the averaged results and thus affecting the distribution of the
means. Indeed, a single epoch with an artifact, which, when leading with infants’ record-
ings, it is characterized by large value of noise, can introduce a large change in the ERP
shape even if the number of epochs is large. This concept proposed for the first time by
Luck et al. 2021 is called SME and can be applied to a selected metrics that should be
extracted from an ERP to define its quality. The lower is it, the better. The results of this
analysis can be better interpreted if the number of retained epochs is considered along: a
higher percentage of retained epochs with a low SME value means a more stable results
which leads to a higher statistical result. Another measure for the pipeline evaluation is
the overall percentage of detected artifacts which was compared in two successive steps:
before and after the artifact correction algorithms. The last validation was made over the
computational time required by the two software making different trial using a variable
number of cores.
Both pipelines were used in their standard implementations using their default parame-
ters. Even if implemented with the same parameters, the Python implementation con-
sistently showed higher rejection levels in the three datasets compared to the MATLAB
counterpart. This difference could be linked to the difference in the filter numerical imple-
mentation between them. In details, a lighter low frequencies filter can lead to an overall
increase in the signal amplitudes making the thresholds to be more sensible to mark a
timestamp as an artifact. The threshold can be increased to match better the Python
version and the MATLAB version.
The filtering in both pipelines is made using two cascaded FIR filters, specifically a high-
pass and a lowpass filter. The application of the highpass filter after each interpolation
is crucial because interpolating bad data segments with PCA or SSI can introduce sig-
nal drifts due to the necessary realignment of different data segments. To counteract
these drifts, the data must be highpass filtered following the application of PCA and
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segment-based SSI. In the MATLAB implementation it is the pop_eegfiltnew EEGLAB
function, which uses the FIRfilt plugin, whereas in Python the standard MNE-Python
is used. Even if there is a direct correspondence on the frequencies pass edges and the
possibility to specify the transition band, they compute the filter length using a different
algorithm. If in MNE-Python the value is defined incrementing by one the order of the
filter, the popeegfiltnew estimate the order automatically based on the frequency provided
and sampling rate. This low-level implementation difference is at the origin of the output
difference between programming languages. Therefore, the impact of the small differences
in filter characteristics could be amplified by the repeated highpass filtering for signal re-
alignment.
The interpolation process is made in parallel in the Python implementation to achieve a
comparable speed of the MATLAB counterpart. The number of cores affects the prepro-
cessing speeds, but using more than two is enough to achieve a higher computation speed
than the not-parallelized version proposed by MNE-Python. The proposed MNE-Python
function is more optimized for a single run (for the whole channel interpolation), but since
it is dealing with an MNE Raw object, when introduced in the for loop for the correction
of small segments its speed is lowered significantly. An attempt was made to parallelize
the interpolation using the MNE-Python function, but pickling is not designed for stable
persistence, making the attempt fail (MNE-Python Developers n.d.).
A difference from the MATLAB pipeline is that it doesn’t provide the possibility to use
ICA or the Denoising Source Separation (DSS) to denoise the data since it is shown to
be not effective for infant population. Nevertheless, the clear structure implementation
of the pipeline gives the freedom to insert personalized preprocessing function.
APICE-Py allows the user to preprocess the raw signal without performing any kind
of segmentation and even if the segmentation is applied, the continuous preprocessed
data are saved by default in case different analysis on the signal should be performed.
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6 Conclusion and Future Work

This pipeline aims to introduce a standardized methodology for preprocessing EEG data
of pediatric population, in both clinical settings and neurodevelopmental studies. Its full
open-source nature makes it suitable to enhance an inter-laboratory collaboration. The
mutual help between research teams enables to develop a better and more general solu-
tion by implementing new functions, suggesting modification or reporting issues via the
GitHub repository.
The ability of APICE-Py to be adapted to preprocess data from a wide range of age and
for diverse analyses, eased by its use of adaptative thresholds, makes it a suitable choice for
preprocessing data from various experimental paradigms. The recovery of the corrupted
data increase the data quality and quantity, which is crucial for the ERP analysis. By
the punctual identification and subsequent correction, APICE-Py ensure the restoration
of the underlying neural activity, leading to more reliable results. These characteristics
become even more desirable with challenging experimental populations such as infants,
where movement artifacts and short patience critically affect long paradigms.
The presented pipeline is not addressing all kind of artifacts, but just the more common.
Future enhancements include identification and correction of physiological artifacts, i.e.,
eye blinks or eye movements. However, the existing methods that tackle this gap are
grouped under the category of Blind Source Separation (BSS) which are not accurate
enough to discriminate between neural activity and artifact component. This inaccuracy
can potentially lead to the removal of genuine signal and the necessity of implementing
such techniques is not suggested by the already achieved pipeline performance. Never-
theless, the modularity of the pipeline allows for future integration if the physiological
artifact needs to be managed.
No statistical difference in the SME performance of APICE-Py is detected when com-
pared to the MATLAB implementation, meaning that the shift in programming language
does not affect the reliability and precision of the original implementation. The consistent
difference on the retained epochs could be attributed to the subtle variation in the numer-
ical implementation of the high-pass filter between languages. This statistical difference
suggests a further investigation to achieve a tuning between the two implementations,
achieving the same data retention without loosing in data quality.
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In the future, the development of a Graphic User Interface (GUI) for APICE-Py could sig-
nificantly increase its accessibility and application across laboratory. A user-friendly GUI
could reduce the barrier of adoption for researcher who are not familiar with command-
line interfaces, promoting more standardized preprocessing methods. This, in turn, would
enhance the inter-laboratory comparability of results, a critical step to achieve stronger
knowledge in neurodevelopental research.
The pipeline is available at in the NeuroKidsLab GitHub repository:
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A Appendix A

Spherical Spline Interpolation proposed by Perrin et al. 1989

The interpolation method involves several steps. First, the electrodes are projected onto a
unit sphere using 3D coordinates. Then, a matrix is computed to map the good channels
to the bad channels. Finally, this matrix is used to interpolate the bad channels.
The method assumes that the potential V (ri) at all points ri on the surface of the sphere
can be represented by Eq.A.1:

V (ri) = c0 +
NØ

j=1
cigm(cos(ri, rj)) (A.1)

where:

• C = (c1, ..., cN)T are constants to be determined;

• gm(·) is a function of order m given by

gm(x) = 1
4π

∞Ø
n=1

2n + 1
(n(n + 1))m

Pn(x) (A.2)

with Pn(x) as the Legendre polynomials of order n.

The estimation of the constants C involves solving the following system of two equations
simultaneously: GssC + Tsc0

T T
s C = 0

. (A.3)

with

• GssϵR
N×N is a matrix with entries Gss[i, j] = gm(cos(ri, rj))

• XϵRN×1 corresponds to the potentials V (ri) of the good channels

• Ts = (1, 1, ..., 1)T is a 1-column vector of dimension N
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The first equation of the system A.3 is the matrix formulation of Eq. A.1, while the second
equation effectively applies an average reference to the data. Combining the equations of
the system A.3: c0

C

 =

T T
s 0

Ts Gss


−1  0

X

 = CiX (A.4)

Ci corresponds to the matrix with its first column deleted, having a shape of (N + 1) ×
N . The estimation of the potentials X̂ϵRM×1 for the bad channels is done using Eq.
A.5.

X̂ = GdsC + Tdc0 (A.5)

where GdsϵR
M×N maps the bad and good channels using gm(ri, rj). Combining Eq. A.4

and Eq. A.5:

X̂ =
5
Td Gds

6 c0

C

 =
5
Td Gds

6
CiX (A.6)

VIII



Bibliography

Adibpour, P., J. Dubois, and G. Dehaene-Lambertz (2018). “Right but not left hemi-
spheric discrimination of faces in infancy”. In: Nat Hum Behav 2, pp. 67–79. doi:
10.1038/s41562-017-0249-4.

Avoli, Massimo (2012). “Herbert H. Jasper and the Basic Mechanisms of the Epilepsies”.
In: Jasper’s Basic Mechanisms of the Epilepsies. Ed. by Jeffrey L. Noebels, Massimo
Avoli, Michael A. Rogawski, et al. 4th. National Center for Biotechnology Information
(US). url: https://www.ncbi.nlm.nih.gov/books/NBK98150/.

Berger, Hans (1929). “Über das Elektrenkephalogramm des Menchen”. In: Archives für
Psychiatrie 87, pp. 527–70.

Bladin, Peter F. (2006). “W. Grey Walter, pioneer in the electroencephalogram, robotics,
cybernetics, artificial intelligence”. In: Journal of Clinical Neuroscience 13.2, pp. 170–
177. issn: 0967-5868. doi: https://doi.org/10.1016/j.jocn.2005.04.010. url:
https://www.sciencedirect.com/science/article/pii/S096758680500398X.

Brienza, Marianna and Oriano Mecarelli (2019). “Neurophysiological Basis of EEG”. In:
Clinical Electroencephalography. Ed. by Oriano Mecarelli. Cham: Springer International
Publishing, pp. 9–21. isbn: 978-3-030-04573-9. doi: 10.1007/978-3-030-04573-9_2.
url: https://doi.org/10.1007/978-3-030-04573-9_2.

Cheveigné, Alain de and Israel Nelken (2019). “Filters: When, Why, and How (Not) to
Use Them”. In: Neuron 102.2, pp. 280–293. doi: 10.1016/j.neuron.2019.02.039.

Chris, Diberri, and tiZom (June 14, 2007). Schematic of an action potential without labels.
Wikimedia Commons. Original by Chris 73, updated by Diberri, converted to SVG by
tiZom. url: https://commons.wikimedia.org/wiki/File:Action_potential.svg.

Debnath, Ranjan et al. (2020). “The Maryland analysis of developmental EEG (MADE)
pipeline”. In: Psychophysiology 57.6, e13580. doi: https://doi.org/10.1111/psyp.
13580. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/psyp.13580.
url: https://onlinelibrary.wiley.com/doi/abs/10.1111/psyp.13580.

Dehaene-Lambertz, G. and M. Pena (2001). “Electrophysiological evidence for automatic
phonetic processing in neonates”. In: Neuroreport 12.14, pp. 3155–3158.

IX

https://doi.org/10.1038/s41562-017-0249-4
https://www.ncbi.nlm.nih.gov/books/NBK98150/
https://doi.org/https://doi.org/10.1016/j.jocn.2005.04.010
https://www.sciencedirect.com/science/article/pii/S096758680500398X
https://doi.org/10.1007/978-3-030-04573-9_2
https://doi.org/10.1007/978-3-030-04573-9_2
https://doi.org/10.1016/j.neuron.2019.02.039
https://commons.wikimedia.org/wiki/File:Action_potential.svg
https://doi.org/https://doi.org/10.1111/psyp.13580
https://doi.org/https://doi.org/10.1111/psyp.13580
https://onlinelibrary.wiley.com/doi/pdf/10.1111/psyp.13580
https://onlinelibrary.wiley.com/doi/abs/10.1111/psyp.13580


Delorme, Arnaud and Scott Makeig (2004). “EEGLAB: an open source toolbox for analysis
of single-trial EEG dynamics including independent component analysis”. In: Journal
of Neuroscience Methods 134.1, pp. 9–21. issn: 0165-0270. doi: https://doi.org/10.
1016/j.jneumeth.2003.10.009. url: https://www.sciencedirect.com/science/
article/pii/S0165027003003479.

Edu, World History (n.d.). Hermann von Helmholtz - World History Edu — worldhis-
toryedu.com. https://worldhistoryedu.com/hermann-von-helmholtz/. [Accessed
12-05-2025].

– (2024). Emil du Bois-Reymond: The German Physiologist who discovered nerve action
potential - World History Edu — worldhistoryedu.com. https://worldhistoryedu.
com/emil-du-bois-reymond-the-german-physiologist-who-discovered-nerve-
action-potential/. [Accessed 12-05-2025].

Fló, Ana et al. (2022). “Automated Pipeline for Infants Continuous EEG (APICE): A
flexible pipeline for developmental cognitive studies”. In: Developmental Cognitive Neu-
roscience 54, p. 101077. issn: 1878-9293. doi: https://doi.org/10.1016/j.dcn.
2022.101077. url: https://www.sciencedirect.com/science/article/pii/
S1878929322000214.

Gabard-Durnam, L. J. et al. (2018). “The Harvard Automated Processing Pipeline for
Electroencephalography (HAPPE): Standardized Processing Software for Developmen-
tal and High-Artifact Data.” In: Frontiers in neuroscience 12.97. doi: https://doi.
org/10.3389/fnins.2018.00097.

Gramfort, Alexandre et al. (2013). “MEG and EEG Data Analysis with MNE-Python”.
In: Frontiers in Neuroscience 7.267, pp. 1–13. doi: 10.3389/fnins.2013.00267.

Haas, L F (Jan. 2003). “Hans Berger (1873-1941), Richard Caton (1842-1926), andelec-
troencephalography”. en. In: J. Neurol. Neurosurg. Psychiatry 74.1, p. 9.

Hagner, Michael (2012). “The electrical excitability of the brain: toward the emergence
of an experiment”. In: Journal of the History of the Neurosciences 21.3, pp. 237–249.
doi: 10.1080/0964704X.2011.595634.

Jiang, Xiaotian, Gui-Bin Bian, and Zaojian Tian (2019). “Removal of Artifacts from EEG
Signals: A Review”. In: Sensors 19.5, p. 987. doi: 10.3390/s19050987.

Kappenman, Emily S. and Steven J. Luck (2010). “The effects of electrode impedance
on data quality and statistical significance in ERP recordings”. In: Psychophysiology
47.5, pp. 888–904. doi: https://doi.org/10.1111/j.1469-8986.2010.01009.x.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8986.2010.
01009.x. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-
8986.2010.01009.x.

Kumaravel, Velu Prabhakar et al. (2022). “NEAR: An artifact removal pipeline for human
newborn EEG data”. In: Developmental Cognitive Neuroscience 54, p. 101068. issn:

X

https://doi.org/https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/https://doi.org/10.1016/j.jneumeth.2003.10.009
https://www.sciencedirect.com/science/article/pii/S0165027003003479
https://www.sciencedirect.com/science/article/pii/S0165027003003479
https://worldhistoryedu.com/hermann-von-helmholtz/
https://worldhistoryedu.com/emil-du-bois-reymond-the-german-physiologist-who-discovered-nerve-action-potential/
https://worldhistoryedu.com/emil-du-bois-reymond-the-german-physiologist-who-discovered-nerve-action-potential/
https://worldhistoryedu.com/emil-du-bois-reymond-the-german-physiologist-who-discovered-nerve-action-potential/
https://doi.org/https://doi.org/10.1016/j.dcn.2022.101077
https://doi.org/https://doi.org/10.1016/j.dcn.2022.101077
https://www.sciencedirect.com/science/article/pii/S1878929322000214
https://www.sciencedirect.com/science/article/pii/S1878929322000214
https://doi.org/https://doi.org/10.3389/fnins.2018.00097
https://doi.org/https://doi.org/10.3389/fnins.2018.00097
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.1080/0964704X.2011.595634
https://doi.org/10.3390/s19050987
https://doi.org/https://doi.org/10.1111/j.1469-8986.2010.01009.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8986.2010.01009.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8986.2010.01009.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8986.2010.01009.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8986.2010.01009.x


1878-9293. doi: https://doi.org/10.1016/j.dcn.2022.101068. url: https:
//www.sciencedirect.com/science/article/pii/S1878929322000123.

Larcher, Vic (2015). “Children Are Not Small Adults: Significance of Biological and Cogni-
tive Development in Medical Practice”. In: Handbook of the Philosophy of Medicine. Ed.
by Thomas Schramme and Steven Edwards. Dordrecht: Springer Netherlands, pp. 1–
23. isbn: 978-94-017-8706-2. doi: 10.1007/978-94-017-8706-2_16-1. url: https:
//doi.org/10.1007/978-94-017-8706-2_16-1.

Luck, Steven J. (2014). An Introduction to the Event-Related Potential Technique. 2nd.
Cambridge, MA: MIT Press, p. 227.

Luck, Steven J et al. (2021). “Standardized measurement error: A universal metric of data
quality for averaged event-related potentials”. In: Psychophysiology 58.6, e13793. doi:
10.1111/psyp.13793.

McCulloch, Warren S and Walter Pitts (1943). “A logical calculus of the ideas immanent
in nervous activity”. In: The bulletin of mathematical biophysics 5.4, pp. 115–133.

MNE-Python Developers (n.d.). Why is it dangerous to pickle my MNE-Python objects
and data for later use? url: https://mne.tools/1.0/overview/faq.html#why-
is-it-dangerous-to-pickle-my-mne-python-objects-and-data-for-later-use
(visited on 06/17/2025).

Naik, Shruti et al. (2023). “Event-related variability is modulated by task and devel-
opment”. In: NeuroImage 276, p. 120208. issn: 1053-8119. doi: https://doi.org/
10.1016/j.neuroimage.2023.120208. url: https://www.sciencedirect.com/
science/article/pii/S1053811923003592.

Nelson, Charles A and Christopher S Monk (2001). “9 The Use of Event-Related Poten-
tials”. In: Handbook of developmental cognitive neuroscience, p. 125.

Perrin, F. et al. (1989). “Spherical splines for scalp potential and current density map-
ping”. In: Electroencephalography and Clinical Neurophysiology 72.2, pp. 184–187. issn:
0013-4694. doi: https://doi.org/10.1016/0013-4694(89)90180-6. url: https:
//www.sciencedirect.com/science/article/pii/0013469489901806.

Sur, S. and V. K. Sinha (2009). “Event-related potential: An overview”. In: Indian Journal
of Psychiatry 18.1, pp. 70–73. doi: 10.4103/0972-6748.57865.

Widmann, Andreas, Erich Schröger, and Burkhard Maess (2015). “Digital filter design for
electrophysiological data - a practical approach”. In: Journal of Neuroscience Methods
250. Cutting-edge EEG Methods, pp. 34–46. issn: 0165-0270. doi: https://doi.org/
10.1016/j.jneumeth.2014.08.002. url: https://www.sciencedirect.com/
science/article/pii/S0165027014002866.

XI

https://doi.org/https://doi.org/10.1016/j.dcn.2022.101068
https://www.sciencedirect.com/science/article/pii/S1878929322000123
https://www.sciencedirect.com/science/article/pii/S1878929322000123
https://doi.org/10.1007/978-94-017-8706-2_16-1
https://doi.org/10.1007/978-94-017-8706-2_16-1
https://doi.org/10.1007/978-94-017-8706-2_16-1
https://doi.org/10.1111/psyp.13793
https://mne.tools/1.0/overview/faq.html#why-is-it-dangerous-to-pickle-my-mne-python-objects-and-data-for-later-use
https://mne.tools/1.0/overview/faq.html#why-is-it-dangerous-to-pickle-my-mne-python-objects-and-data-for-later-use
https://doi.org/https://doi.org/10.1016/j.neuroimage.2023.120208
https://doi.org/https://doi.org/10.1016/j.neuroimage.2023.120208
https://www.sciencedirect.com/science/article/pii/S1053811923003592
https://www.sciencedirect.com/science/article/pii/S1053811923003592
https://doi.org/https://doi.org/10.1016/0013-4694(89)90180-6
https://www.sciencedirect.com/science/article/pii/0013469489901806
https://www.sciencedirect.com/science/article/pii/0013469489901806
https://doi.org/10.4103/0972-6748.57865
https://doi.org/https://doi.org/10.1016/j.jneumeth.2014.08.002
https://doi.org/https://doi.org/10.1016/j.jneumeth.2014.08.002
https://www.sciencedirect.com/science/article/pii/S0165027014002866
https://www.sciencedirect.com/science/article/pii/S0165027014002866

	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Theoretical background
	2.1 Historical parenthesis
	2.2 Action potential
	2.3 eeg
	2.4 Evoked Response Potential

	3 Related work
	3.1 Literature Review

	4 Methodology
	4.1 Pipeline Overview
	4.1.1 Raw data import
	4.1.2 Filtering
	4.1.3 Artifacts detection
	4.1.4 Correction of artifacts
	4.1.5 Bad epochs definition
	4.1.6 Preprocessing report

	4.2 Python Implementation
	4.2.1 Translation Process
	4.2.2 Challenges & Workarounds

	4.3 Datasets
	4.3.1 Dataset 1: neonates auditory task
	4.3.2 Dataset 2: 5-months old infants visual task
	4.3.3 Dataset 3: 7-years old children and their parents collaborative task

	4.4 Validation and Results
	4.4.1 Comparison with MATLAB Outputs


	5 Discussion
	6 Conclusion and Future Work
	A Appendix A
	Bibliography

