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Abstract  

 

Injuries represent one of the most critical challenges in professional football, with 

significant implications for both on-field performance and the financial sustainability of 

clubs. This thesis explores the predictive potential of machine learning (ML) models in 

forecasting injury risk, while also identifying the most informative variables contributing to 

injury occurrence, based on match-level performance data and longitudinal injury histories. 

A comprehensive dataset was constructed for 100 outfield players in Italy’s Serie A, covering 

the 2021/22, 2022/23, and 2023/24 seasons. Match statistics were collected from FBref and 

merged with injury records from Transfermarkt, restricted to time-loss events. 

The entire methodological pipeline was implemented in Orange3 and included data 

preprocessing, feature selection, hyperparameter optimization, and model evaluation. Three 

target variables were defined: one categorical, classifying injury presence and type, and two 

binaries, aimed at predicting injury occurrence in the medium and short term. The models 

selected, Logistic Regression, Random Forest, and Gradient Boosting were trained on both 

original and rebalanced datasets using the oversampling technique called SMOTENC, and 

evaluated through F1-score, Matthews Correlation Coefficient (MCC), Confusion Matrix, 

and Log-loss. 

The results underscore the complexity of the problem and emphasize the added value that 

more complete and accurate datasets, including parameters currently unavailable from public 

sources, to achieve satisfactory predictive performance. The study identifies a subset of 

variables with informative value, offering actionable insights for the future integration of 

ML-based tools into injury prevention and decision-support systems in professional football 

environments. 
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1. Introduction  

The football industry is one of the most valuable and globalised sectors in the sports 

economy, with top-tier clubs operating as complex businesses driven by commercial, media, 

and sporting performance (Deloitte, 2025). 

Simultaneously, football remains a complex contact sport characterised by relatively high 

injury risks during both training and matches. Players perform at higher speeds and with 

greater physical intensity, demanding exceptional levels of fitness and increasingly rigorous 

training schedules (Pfirrmann et al., 2016). In this context, professional football clubs are 

increasingly exposed to both economic and performance-related challenges due to the 

growing incidence of player injuries, which represent a growing issue in terms of financial 

performance and competitive success (Howden’s Professional Sport, 2024). International 

football organizations have expressed growing concern over the mounting physical and 

psychological pressures faced by elite athletes, which are contributing factors to the rising 

number of injuries (Pfirrmann et al., 2016). 

Since 2020, a total of 14,292 injuries have been recorded across the top five European 

football leagues, excluding those related to COVID-19. Injury statistics show a consistent 

upward trend, largely driven by increasing fixture congestion due to the expansion of 

competitions. This culminated in 4,123 injuries during the 2023/24 season alone, resulting 

in an estimated financial loss of approximately €732 million (Howden’s Professional Sport, 

2024). 

Given the relevance and complexity of the subject, it became essential to standardize the 

injury definition in professional football. For this purpose, an Injury Consensus Group was 

convened under the supporter of the Fédération Internationale de Football Association 

(FIFA) Medical Assessment and Research Centre. Using a nominal group consensus model, 

a panel reviewed and refined a working document outlining definitions, methodological 

standards, and implementation guidelines. As a result, injuries were categorised into two 

distinct types: a 'medical-attention injury', defined as any injury requiring medical evaluation 

or treatment, and a 'time-loss injury', referring to any injury that prevents a player from 

participating fully in future training sessions or match play (Fuller et al., 2006). In the context 

of this thesis, only the latter category, 'time-loss injuries', will be taken into consideration, as 

they are more directly linked to player availability and have clearer implications in terms of 

performance and economic impact. Thanks to the large amount of data collected during 
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training sessions and official matches, and to the adoption of electronic tracking and 

performance monitoring systems, research on injury prevention has become increasingly 

important.  

In order to exploit the complex interaction between these various data sources, sports 

scientists have increasingly begun to apply Machine Learning (ML) techniques to predict 

potential injury risks (Leckey et al., 2024). 

By definition: 

"A computer program is said to learn from experience E with respect to some class of 

tasks T and performance measure P, if its performance at tasks in T, as measured by P, 

improves with experience E." (Hierons, 1999). 

This definition highlights the core concept of machine learning: the ability of a system to 

improve its performance through exposure to increasing volumes of data. In the context of 

professional football, ML represents a powerful tool capable of uncovering complex and 

non-linear relationships among factors that precede injury occurrence, relationships that 

could otherwise remain unknown (Leckey et al., 2024). 

Building on this theoretical framework, the present study applies machine learning 

techniques to develop predictive models aimed at supporting injury risk forecast. In 

particular, this thesis aims to answer the research question: ‘How machine learning models 

can improve the prediction of injury risk in football players, and which variables provide the 

most relevant information for forecasting purposes’’. To address this research question, a 

data collection was conducted on professional Serie A footballers. The resulting dataset 

encompasses detailed match-level metrics spanning three complete seasons. Concurrently, 

each athlete’s longitudinal injury record was reconstructed from the date of his first 

professional appearance. Following data acquisition, each phase of the analytical pipeline, 

from feature preprocessing to model comparison, was carried out within the Orange3 

environment. Specifically, Orange3 was employed to execute feature preprocessing, during 

which injury records were merged with match-by-match performance data to align temporal 

and clinical events with performance metrics, composite metrics were generated to more 

effectively capture player load dynamics; feature selection, designed to reduce 

dimensionality and enhance model training efficiency; hyperparameter tuning for each 

candidate predictive algorithm; and subsequently, model comparison, to identify the 

approach exhibiting optimal predictive performance. 



3 

 

Finally, the algorithms results and features importance were thoroughly evaluated, 

examining model interpretability and performance metrics, and the inherent limitations of 

the study were critically discussed.  
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2. Literature Review 

 

2.1. Design of the literature review  

In the initial stage of this analysis, a review of the literature was conducted to assess 

whether existing studies demonstrate the impact of injuries on team performance and the 

economic outcomes of football clubs. This investigation aimed to evaluate the practical 

relevance of predictive approaches to injury prevention and forecasting, with the goal of 

supporting strategic decision-making in the management of players as key assets within the 

club structure. Building on this premise, the review proceeded to examine how current 

research has addressed injury prediction through the application of machine learning models. 

These guiding questions reflect the key dimensions relevant to the development of injury 

prediction models and inform the subsequent sections of the review:  

• To what extent do injuries, in quantitative terms, affect a club’s overall profitability 

through both direct costs and indirect costs ? 

• What is the relationship between injury incidence and burden and team performance 

indicators, according to the available longitudinal evidence? 

• Which operational definition of injury is most appropriate for predictive modelling and 

inter-study comparability? 

• How does the categorization of injury severity influence the performance of machine 

learning models? 

• Which sets of variables are most frequently used in existing models, and what is their 

relative importance? 

• How does data segmentation affect the risk of information leakage and the external 

validity of the models? 

•  To what extent does sample size or specificity influence the accuracy, statistical 

robustness, and generalizability of predictive results? 

The primary sources consulted were four major academic databases: Scopus, PubMed, 

Web of Science, and IEEE Xplore. In addition, non-scientific but institutionally relevant 

sources, such as websites of national football associations, players unions, and specialized 

sports analytics platforms, were consulted to complement the academic literature with sector 

specific data and context. 
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The temporal scope covered the period from 2010 to 2025, with most selected studies 

published within this range. A few earlier contributions were included when considered 

conceptually significant. 

Keyword combinations were progressively refined and adapted to the syntax of each 

database. Examples of Boolean search strings include: 

• "soccer*" AND "injury" AND "machine learning" 

• "football" AND "injury risk" AND ("load monitoring" OR "training load") 

• "sports injuries" AND ("prediction" OR "forecasting") AND ("data mining" OR 

"AI") 

• "injury prevention" AND ("external load" OR "ACWR") AND "athlete" 

• "deep learning" AND "injury prediction" AND "time series" 

The search process was carried out iteratively, with titles and abstracts screened for 

relevance and full texts consulted to ensure alignment with the objectives and guiding 

questions of the review. 

This design framework provides the conceptual and methodological foundation for the 

critical analysis presented in the following sections, where the literature is reviewed 

considering the guiding questions introduced above. 

 

2.2. Injuries as a Strategic Cost Factor in the Football Industry  

 

2.2.1. Football as Global Industry 

Soccer is the most popular global sport, with 200,000 professional and 240 million 

amateur players, and with injury incidence higher than any other sport. (Majumdar et al., 

2024a) 

This exceptionally participation base underscores the game’s unmatched capacity to 

attract worldwide interest and generate substantial revenues (Majumdar et al., 2024a; 

Schilde, 2025). It has long been observed that football occupies a central position within the 
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international sports economy (Schilde, 2017). Of the €45 billion generated by the global 

sports-events market in 2009, including ticket sales, media rights and marketing income, 

football alone accounted for €20 billion (Schilde, 2025). Also, annual revenue continued to 

rise, reaching €28.9 billion in Europe during the 2018/2019 season (Schilde, 2025).  

This sustained expansion of the sport’s income streams has been mirrored in club 

valuations (Football Benchmark, 2024). The aggregate enterprise value (EV) of the 32 

leading European clubs rose from €26.3 billion in 2016 to €59.1 billion in 2024, an increase 

of 124 per cent in just eight seasons (Football Benchmark, 2024). Because EV reflects the 

debt-free price an investor would have to pay to acquire a club, it offers a comprehensive 

view for underlying corporate worth and shows how rising revenues translate directly into 

higher market valuations (Football Benchmark, 2024). To derive these estimates, It is 

employed an adjusted revenue-multiple model that weights five key factors:  

(i) Profitability is measured by the staff costs-to-revenue ratio over the last two financial 

years. Since player and staff wages account for most total expenditures, a lower ratio reflects 

a stronger ability to generate profits (Football Benchmark, 2024). 

(ii) Popularity is measured through the club’s reach on major social media platforms, 

including Facebook, X, Instagram, YouTube, TikTok, and Weibo. This indicator serves as a 

view for brand strength and fan engagement (Football Benchmark, 2024). 

(iii) Sporting potential is captured by the aggregate market value of the squad, based on 

Football Benchmark’s Player Valuation tool. As the squad represents the club’s core asset, 

its estimated value reflects the likelihood of on-field success and related revenue streams 

(Football Benchmark, 2024). 

(iv) Broadcasting rights refer to the future income already secured at the league level and 

the related distribution mechanisms. This element plays a critical role in shaping the club’s 

revenue-generating capacity over the medium term (Football Benchmark, 2024). 

(v) Stadium ownership is also included in the model, as owning the home ground enables 

greater control over matchday revenues and offers additional commercial opportunities 

compared to leasing arrangements (Football Benchmark, 2024). 
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2.2.2. Injury-Related Financial Costs and Club Revenue Losses 

As previously outlined, the overall value of a football club is determined by five key 

dimensions. A growing body of research suggests that injuries significantly affect several of 

these dimensions, both directly and indirectly, impacting not only sporting performance but 

also financial sustainability and the valuation of broadcasting rights (AIC, 2024; Eliakim et 

al., 2020; Pulici et al., 2023).  

Focusing on the cost side of profitability, Pulici et al. (2023) quantify only the wages that 

become economically unproductive when players are unavailable, deliberately excluding 

variable match-bonuses, medical expenses and any loss of transfer market value, elements 

that will be addressed by subsequent studies in this chapter (Pulici et al., 2023).  Drawing on 

injury‐surveillance data from professional adult male players in the top five European 

leagues, the English Premier League, Spanish La Liga, Italian Serie A, German Bundesliga, 

and French Ligue 1, and limiting the analysis to studies conducted from 2005 onward, the 

authors combine epidemiological injury data with the average daily salary of professional 

players (~€5,868) to convert the injury burden (days lost per 1,000 hours of exposure) into 

a direct salary cost (Pulici et al., 2023). Their analysis shows that knee injuries alone account 

around €204,000 per 1,000 hours, while thigh and joint/ligament injuries impose comparable 

burdens in the range of €180,000–€225,000 per 1,000 hours. Scaled to the injury profile of 

a top-tier club (around 50 injuries per season), these figures translate into more than €6 

million per year in wages paid to players who cannot contribute on the pitch, before 

considering performance-linked revenues or additional medical outlays (Pulici et al., 2023). 

A more recent contribution within the same analytical framework is provided by the Men’s 

European Football Injury Index 2023/24, published by Howden. This report also focuses on 

the direct financial impact of injuries sustained by clubs competing in Europe’s top five 

leagues (Howden’s Professional Sport, 2024). Applied to a sample of 96 clubs, the report 

estimates a total injury-related cost of €732.02 million for the 2023/24 season, based on 

4,123 reported injuries, a figure that reflects the ongoing upward trend (Howden’s 

Professional Sport, 2024). 

The “Injury Cost over Time” chart included in the report clearly illustrates a consistent 

increase in both the frequency and financial burden of injuries over the past four seasons 

(Howden’s Professional Sport, 2024). Figure 1 supports the trend described and 

contextualise the cumulative impact on club finances (Howden’s Professional Sport, 2024). 
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This trend highlights the mounting economic pressure that injuries has on elite football clubs, 

reinforcing the strategic importance of targeted prevention programmes and efficient 

medical management protocols (Howden’s Professional Sport, 2024) .  

 

 

Figure 1 — Injury count and cost per season 

 

Beyond the immediate financial outlay associated with paying the salaries of unavailable 

players, the economic repercussions of prolonged injuries extend to the capital valuation of 

the athletes themselves (AIC, 2024). Evidence from a recent study conducted across Serie 

A, the Premier League, and La Liga demonstrates that the depreciation in a player’s market 

value, calculated exclusively for injury-related absences exceeding the critical threshold of 

90 cumulative days,  consecutive or not, can surpass the corresponding wage loss, which is 

instead accounted from the first day of unavailability (AIC, 2024). In the analysis, the total 

estimated loss in market value reached €785 million, compared to €707 million in salary 

payments made to injured players (AIC, 2024).  These findings underscoring how injuries 

affect not only short-term profitability but also the asset value of the squad. Consequently, 

their impact extends to at least two of the five dimensions that determine a football club’s 

enterprise value (AIC, 2024). 

Extending the analysis to the broadcasting rights, evidence from a study conducted on 

Spain’s top-flight division highlights how injuries erode a club’s capacity to capture merit 

based broadcasting revenues (Torrejón et al., 2024). 
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Focusing specifically on lower limb muscle injuries, the authors analysed publicly 

available injury reports from all 20 La Liga clubs during the 2018/19 season, obtaining a 

total of 270 muscular injuries recorded (Torrejón et al., 2024).  

To evaluate the impact on broadcasting revenue, the study compared each club’s expected 

league position, with their actual end-of-season standing, taking in account the injuries for 

each club. Applying the redistribution rules set by Real Decreto-ley 5/2015, which allocates 

25% of centrally pooled broadcasting income based on final league position, the authors 

estimated that nine clubs underperformed relative to expectations, resulting in a collective 

loss of €45.2 million in broadcasting revenues (Torrejón et al., 2024); Real Decreto-ley 

5/2015). 

Taken together, the studies reviewed highlight that the economic consequences of injuries 

in football extend well beyond the immediate costs associated with player salaries. Injuries 

negatively affect the asset valuation of players, resulting in potential losses in their market 

value (AIC, 2024). They also undermine overall club profitability by increasing the share of 

unproductive wages and reducing the ability to generate net profits (Pulici et al., 2023). 

Furthermore, injuries limit access to merit-based broadcasting revenues distributed 

according to final league standings (Torrejón et al., 2024). Collectively, these impacts reveal 

a multidimensional financial pressure that significantly undermines the enterprise value of 

football clubs, as defined by the five-pillar framework developed by (Football Benchmark, 

2024). 

 

2.2.3. Impact on performance and team success 

The analysis of football injuries represents a critical aspect in the evaluation of team 

performance and competitive success. A growing number of studies have confirmed the 

strong correlation between injury rates and team performance indicators in professional 

football (Eliakim et al., 2020; Hägglund et al., 2013; Pulici et al., 2023) . 

A demonstration of this relationship is provided by a longitudinal study conducted on 24 

elite European football clubs (Hägglund et al., 2013). Over an observation period of 11 

seasons, the researchers reported an average injury incidence of 7.7 injuries per 1,000 hours 

and an injury burden of 130 days lost per 1,000 hours (Hägglund et al., 2013; Pulici et al., 

2023). 
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The results show that teams with a higher injury burden compared to the previous season 

experienced a significant decline in performance: every additional 100 days lost due to injury 

per 1,000 hours was associated, on average, with one position lower in the final league 

standings and 7.6 fewer points over the course of the season (Hägglund et al., 2013). Player 

availability, defined as the percentage of match opportunities in which players were fit to 

play, was also positively correlated with performance: a 5% increase in availability led on 

average, to 3.6 additional points and an improvement of 0.4 positions in the league table 

(Hägglund et al., 2013). A similar effect was observed at the international level, where both 

injury burden and match availability significantly influenced the UEFA Season Club 

Coefficient, an indicator of a team’s European success (Hägglund et al., 2013). 

A similar pattern emerges from a study that examined Premier League clubs over the 

2012–2017 seasons: each additional 271 injury-days lost within a single campaign was 

associated, on average, with one place lower in the final league standings, whereas 136 

injury-days corresponded to one league point fewer (Eliakim et al., 2020). The association 

between injury burden and the gap between expected and actual ranking proved statistically 

significant (Pearson’s r = –0.46, r² ≈ 0.21), denoting a moderate inverse linear relationship; 

the corresponding coefficient of determination indicates that approximately 21 % of the 

variance in final position is attributable to injury-related player unavailability (Eliakim et al., 

2020). A comparable yet slightly weaker correlation was observed for total points gained (r 

= –0.38; r² ≈ 0.14) (Eliakim et al., 2020). In overall, across the observation window, Premier 

League clubs recorded a seasonal mean of 1,410 injury-days and 58 discrete injuries, a level 

of absenteeism that corresponds to an estimated shortfall of roughly 4.8 league positions and 

nine points relative to the performance predicted by squad market value (Eliakim et al., 

2020). 

These findings collectively underscore the substantial impact of injury incidence and 

burden on team success, emphasizing the critical importance of effective injury-prevention 

and player-availability strategies in sustaining competitive performance at both national and 

international levels (Eliakim et al., 2020; Hägglund et al., 2013) 
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2.3. Injury definition and overview  

As previously discussed in the introduction, the need to standardize terminology and 

methodological approaches in studies addressing football injuries led to the publication of 

the paper “Consensus statement on injury definitions and data collection procedures for 

studies of football (soccer) injuries” (Fuller et al., 2006). This definition provides a consistent 

framework for the classification and analysis of injuries in the context of professional 

football: 

“Any physical complaint sustained by a player that results from a football match or 

football training, irrespective of the need for medical attention or time loss from football 

activities. An injury that results in a player receiving medical attention is referred to as a 

‘medical attention’ injury, and an injury that results in a player being unable to take a full 

part in future football training or match play as a ‘time loss’ injury” (Fuller et al., 2006). 

An operational application of the definition proposed by Fuller et al. (2006) is found in 

the work of Ekstrand et al., (2011) developed within the framework of the UEFA Elite Club 

Injury Study, a longitudinal research programme carried out in collaboration with 

professional European clubs (Ekstrand et al., 2011). In this context, an injury is defined as 

any physical damage occurring during scheduled football activities (training sessions or 

matches) that prevents the player from fully participating in subsequent training sessions or 

matches (Ekstrand et al., 2011), exactly the definition of the time-loss injuries. The main 

goal is to objectively quantify the impact of injuries on player availability, thereby enabling 

standardised epidemiological comparisons across teams and seasons (Ekstrand et al., 2011). 

In response to the evolution of scientific standards, a new definition of injury has been 

proposed within the context of football. Unlike the 2006 formulation, which explicitly linked 

the occurrence of injury to participation in training sessions or matches, the updated version 

adopts a more general and physiologically grounded perspective (Waldén et al., 2023). Injury 

is now defined as: 

“Tissue damage or other derangement of normal physical function, resulting from rapid 

or repetitive transfer of kinetic energy” (Waldén et al., 2023) 

The removal of the explicit reference to football activity allows for a clearer distinction 

between the clinical definition of injury and its contextual classification. According to the 

authors, this choice aims to harmonise the definition with the separate categorisation of 



12 

 

health problems based on their relationship to sports activity, thereby contributing to greater 

methodological consistency in injury surveillance and reporting systems (Waldén et al., 

2023) 

 

2.3.1. Conceptualization and classification of injuries in football   

In the early 2000s, a methodology was proposed to classify and assess injury risk in 

professional football by integrating more characteristics into a unified metric (Drawer & 

Fuller, 2002). This framework consider the injuries not only as countable events, but it is 

classified across multiple operational dimensions: severity (expressed as days of absence 

and classified into slight, minor, moderate, and major categories), anatomical location, 

clinical nature (e.g., muscle strains, contusions, sprains, fractures), and causal mechanism 

(e.g., receiving a tackle, running, shooting). Although not yet formalized as a theoretical 

framework, this structure represented a rigorous empirical application (Drawer & Fuller, 

2002). 

A structured and multidimensional classification of injuries is proposed articulates injury 

reporting across five distinct yet complementary dimensions: 

• Causal mechanism, distinguishing between traumatic and overuse injuries (Fuller et 

al., 2006); 

• Anatomical location, including the affected body part and side (Fuller et al., 2006); 

• Clinical diagnosis, to be provided by a qualified healthcare professional when 

applicable (Fuller et al., 2006); 

• Severity, expressed in terms of time loss from football activity (Fuller et al., 2006); 

• Recurrence, identifying whether the injury is new or a repeated event (Fuller et al., 

2006); 

This classification system reflects a pragmatic approach to codifying injury data within 

the specific context of football, and has served as a reference model for numerous subsequent 

studies (Fuller et al., 2006). 

Waldén et al., (2023) not only advanced an updated injury definition but also introduced 

a more granular classification framework tailored to professional football.  While retaining 
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the core dimensions introduced by Fuller et al. (2006), the updated model introduces more 

categories of injury severity, ranging from 0 days to >180 days of time-loss, and expands 

definitions related to recurrence, tissue pathology, and return-to-play criteria (Waldén et al., 

2023). Additionally, the framework formalizes football-specific mechanisms of injury, 

incorporates contextual variables such as player action at the time of onset, and provides 

detailed guidance on how to classify subsequent or exacerbated injuries (Waldén et al., 

2023). This updated consensus serves as a comprehensive methodological reference for 

injury surveillance in modern football (Waldén et al., 2023). 

In the broader literature, however, injury classification practices often deviate from the 

comprehensive structure proposed by Fuller et al. (2006). Among the approaches found in 

the literature, some studies adopt simplified categorization schemes focused primarily on the 

duration of absence from training or match play (Falese et al., 2016; Freitas et al., 2025). A 

commonly used framework, aligned with UEFA’s operational standards, defines severity 

using four levels: light (1–3 days), minor (4–7 days), moderate (8–28 days), and severe 

(more than 28 days), without integrating diagnostic or anatomical specificity (Falese et al., 

2016). Similarly, other empirical works classify injuries into broad macro-categories (e.g., 

muscle/tendon, ligament/joint) and group non-specific conditions under residual labels such 

as "other", limiting the resolution of injury typology and site (Freitas et al., 2025). 

An additional specification, common in the context of injury prediction, concerns the 

exclusive focus on non-contact time-loss injuries (Rossi et al., 2018). Several recent studies 

in the field of injury prediction, particularly those focused on muscle injuries and employing 

machine learning algorithms, have further simplified the classification scheme by 

exclusively including non-contact time-loss injuries (Rossi et al., 2018). This choice, while 

aligned with the UEFA definition, is typically motivated by the need to reduce variability 

caused by unpredictable traumatic events (e.g., collisions), which may act as confounding 

factors in predictive analyses based on workload metrics and biometric data (Rossi et al., 

2018). 
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2.3.2. Epidemiological evidence as a basis for injury impact 

Following the conceptual definition and classification of injuries in football presented in 

the previous section, this chapter focuses on the epidemiological dimension. 

In professional football, decision-makers such as club owners, top managers, directors of 

health and performance, and technical staff increasingly rely on accurate and time-efficient 

methods to assess injury risk and monitor performance, with the dual objective of 

safeguarding athletes’ health and enhancing team outcomes (Nassis et al., 2023). 

Within this context, injury epidemiology is the discipline concerned with studying the 

incidence, severity, causes, and distribution of injuries within a defined athletic population 

(Palmer, 2015). Its main objective is to provide a robust quantitative basis for understanding 

the magnitude of the problem, identifying key risk factors, and informing the design of 

effective prevention strategies thanks to the implementation of well-structured observational 

studies and the use of standardized metrics (Palmer, 2015). Without systematic 

epidemiological analysis, the allocation of medical resources and the development of 

targeted interventions would remain largely speculative (Palmer, 2015). 

To support the effective application of injury epidemiology in football, researchers 

commonly rely on a set of standardized metrics that enable the quantification of injury 

patterns and their impact on players and teams (López-Valenciano et al., 2020). A notable 

example of epidemiological research in football is the systematic review and meta-analysis 

conducted by López-Valenciano et al., (2020), which focused on professional male players. 

The authors reported an overall injury incidence of 8.1 per 1000 hours of exposure, with 

match-related injuries occurring at a substantially higher rate (36 per 1000 hours) compared 

to training-related injuries (3.7 per 1000 hours). Injuries most frequently affected the lower 

extremities (6.8 per 1000 hours), with muscle and tendon injuries being the most common 

types (4.6 per 1000 hours), often resulting from traumatic events.(López-Valenciano et al., 

2020) Minor injuries, defined as those causing 1 to 3 days of absence, were the most 

prevalent severity category. The authors applied a random-effects model for the meta-

analysis to account for between-study variability, and statistical heterogeneity was assessed 

using the I² statistic (López-Valenciano et al., 2020). 

Another prominent example of epidemiological research in elite football is offered by a 

longitudinal surveillance study that systematically tracked injury and illness data across male 

and female squads of England’s national teams over eight competitive seasons, providing a 
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robust empirical basis for understanding exposure-related risk differentials (Sprouse et al., 

2024). As in the previous study, injury incidence was calculated per 1000 hours of exposure, 

distinguishing between training and match settings. Among senior male players, match-

related injuries occurred at a rate of 31.1 ± 10.8 per 1000 hours, while training-related 

injuries were significantly lower at 4.0 ± 1.0 per 1000 hours. Similarly, the injury burden, 

expressed as days lost per 1000 hours of exposure, was markedly higher during matches 

(454 ± 196 days) than during training sessions (51 ± 22 days) (Sprouse et al., 2024). The 

statistical approach adopted in the study included two-way ANOVA, Bonferroni post-hoc 

comparisons, chi-square tests, and independent-samples t-tests, aimed at identifying 

significant differences in injury incidence, burden, and severity across sex, age groups, and 

exposure type (Sprouse et al., 2024).  

Unlike the study by Lopez-Valenciano et al. (2020), which synthesised aggregated results 

from a broad set of published studies, the report written by Sprouse et al., (2024) was based 

on a consistent and standardised dataset collected prospectively within a single institutional 

context. Furthermore, while Lopez-Valenciano et al. (2020) focused primarily on injury 

types and anatomical locations, the study conducted by Sprouse et al., (2024) placed 

emphasis on the distinction between traumatic and overuse injuries, highlighting how the 

former predominated in match contexts, whereas the latter were more frequent during 

training. These findings underscore the role of stratified epidemiological surveillance and 

rigorous statistical analysis as essential sources of injury-related data. Such information is 

critical for the development of effective injury prevention or prediction strategies, as well as 

for ensuring the efficient allocation of medical resources within professional football 

settings. 

Epidemiological research provides the quantitative backbone on which injury-prediction 

models are built: large-scale surveillance defines risk factors(Carey et al., 2018; Rossi et al., 

2018; Van Eetvelde et al., 2021). Contemporary machine-learning studies consistently 

embed these epidemiological metrics as model features, selecting them as the most 

informative predictors of injury risk (Carey et al., 2018; Rossi et al., 2018; Van Eetvelde et 

al., 2021). The ability to identify, quantify and standardise population-level risk factors is 

essential for the selection of relevant input features and the definition of clinically 

meaningful prediction targets. (Rossi et al., 2018; Van Eetvelde et al., 2021). 
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2.4. The role of Machine Learning  

 

2.4.1. Introduction of Machine Learning 

Before exploring the many scientific applications of machine learning, it is essential to 

define a predictive algorithm: a set of rules or processes that enables a system to learn from 

data and estimate new outputs, and to outline the formal criteria by which such algorithms 

are classified (IBM, n.d.). The machine learning algorithm is a set of rules or processes used 

by an AI system to conduct tasks, most often to discover new data insights and patterns, or 

to predict output values from a given set of input variables (IBM, n.d.). 

 Predictive machine-learning algorithms can be formally classified according to the 

nature of the target variable, the learning paradigm adopted, the temporal structure of the 

data, and the possible aggregation of multiple models (Bai et al., 2018; Wakefield, n.d.). The 

first fundamental distinction among predictive algorithm types is based on the nature of the 

target variable. Problems are categorized as classification or regression tasks, depending on 

whether the target variable is discrete or continuous, respectively (Hu et al., 2020; Tizikara 

et al., 2022) 

When the response variable Y takes real-valued measurements, such as physical, 

economic, or biological quantities, the task is defined as regression. Conversely, when Y 

represents a binary or categorical class, the task falls under the domain of classification. (Hu 

et al., 2020; Tizikara et al., 2022) 

The distinction is clearly articulated in the literature, by definition: regression aims to 

“predict a continuous-valued output,” whereas classification is used to “predict a discrete-

valued output” (Tizikara et al., 2022). This theoretical distinction is further illustrated by a 

range of practical applications. A spam-filtering model that assigns an email to either the 

“spam” or “not-spam” category is a classic example of binary classification (Hu et al., 2020; 

Tizikara et al., 2022). By contrast, a regression model can be employed to estimate the 

Optical Signal-to-Noise Ratio (OSNR) of an optical channel, producing a continuous value 

expressed in decibel (Tizikara et al., 2022). 

A further classification of predictive algorithms concerns the learning paradigm they rely 

on (IBM, 2024). The first and most established form is supervised learning, a technique that 

relies on the use of labelled data, that is, input–output pairs in which the correct output is 

manually provided during training (IBM, 2024). The goal is to build a model capable of 
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learning the underlying relationships between inputs and outputs, and to generalize these 

relationships to unseen (IBM, 2024). The learning process is carried out across multiple 

stages: the available data is typically divided into training, validation, and test sets (IBM, 

2024). Using optimization techniques the model's internal parameters are updated iteratively 

to minimize this error and enhance predictive accuracy (IBM, 2024). A concrete example is 

the development of an image classification model designed to automatically recognize 

vehicle types such as cars, motorcycles, or trucks (IBM, 2024). The model is trained on a 

labelled dataset containing images of vehicles along with their corresponding categories. 

Once trained, the system is able to accurately classify new, unseen images tests used to 

distinguish human users from automated bots (IBM, 2024).  

Beyond supervised learning, a central role is played by unsupervised learning, a branch 

of machine learning that operates on unlabelled data, meaning that no explicit target variable 

is provided (IBM, 2024). In contrast to supervised learning, where each data point is 

associated with a known output, unsupervised algorithms are designed to discover hidden 

patterns, relationships, or intrinsic structures within the data, without any prior knowledge 

or human-provided labels (IBM, 2024; GeeksforGeeks, 2025).  

This learning process is based on the analysis of similarities and differences among 

observations in the dataset, with the goal of uncovering implicit regularities (IBM, 2024). A 

representative application of unsupervised learning is the use of k-means clustering for 

market segmentation. This approach allows organizations to divide a customer base into 

distinct groups based on purchasing behaviour or preferences, without requiring predefined 

labels. The algorithm autonomously identifies shared characteristics among consumers, 

enabling the creation of meaningful segments to support targeted marketing strategies and 

personalized service delivery (IBM, 2024). 

The third category of machine learning algorithms is represented by semi-supervised 

learning models (SSL), which lie conceptually between supervised and unsupervised 

learning paradigms (AltexSoft Editorial Team, 2024). 

These algorithms leverage a small quantity of labelled data together with a large volume 

of unlabelled data. This approach mitigates the high costs and time demands of manual 

annotation while enhancing model performance beyond what unsupervised methods alone 

can achieve (Padmanabha Reddy et al., 2018). An illustrative example is the application of 

SSL in fraud detection. In scenarios where only a small fraction of transactions, say, 5%, 
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have been manually labelled as “fraud” or “non-fraud,” SSL can process the remaining 95% 

of the data by leveraging its structure and partial labels to identify potentially fraudulent 

behaviour, without requiring complete human annotation  (AltexSoft Editorial Team, 2024). 

Another key dimension for the classification of predictive algorithms concerns the 

temporal structure of the data and the model's ability to incorporate time-dependent 

information (Madhavan, 2016). A first distinction is made between static and dynamical 

models, based on whether or not the algorithm accounts for temporal dependencies when 

generating predictions (Madhavan, 2016). 

Static models operate under the assumption that each observation is independent and 

identically distributed: the output is predicted solely from the input variables at the current 

time step with no reference to historical context.  (Madhavan, 2016). 

By contrast, dynamical models explicitly incorporate past observations or time-lagged 

features (Madhavan, 2016). They are designed to capture temporal evolution, making use of 

recursive real-time learning algorithms that update model parameters as new data becomes 

available (Madhavan, 2016). In these cases, input-output mappings are expressed in terms 

of both current and previous values, enabling the model to recognize trends (Madhavan, 

2016). 

Finally exist an architectural distinction that separates single-based algorithms from 

ensemble algorithms (Ganaie et al., 2022). Single-based models rely on a lone learner to 

generate predictions, whereas an ensemble combines the outputs of multiple base learners to 

achieve a level of generalization that surpasses any individual constituent, such as the 

Logistic Regression (Ganaie et al., 2022). On the other hand, an ensemble aggregates the 

diverse predictions produced by its base models, through strategies such as averaging, 

majority voting, or related fusion techniques, so that the collective outcome is demonstrably 

superior to that of each single component (Ganaie et al., 2022). Two notable examples of 

ensemble methods are Random Forest, which relies on bagging and decision trees, and 

Gradient Boosting, which builds sequential models by minimizing the prediction error of the 

previous ones (IBM, 2024). 
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2.4.2. Machine learning use in soccer fields.  

Early machine-learning research on football focused on the RoboCup Soccer Server, a 

software simulator in which two teams of eleven virtual agents play matches whose every 

action is recorded in log files (Raines et al., 2000; Stone & Veloso, 1998). In 2000, Raines, 

Tambe and Marsella introduced, an offline analyst that turns RoboCup logs, time-ordered 

traces recorded by the simulation server for every robot action, into coach-oriented natural-

language reports (Raines et al., 2000). 

A representative log fragment for a shot stores variables such as ball velocity < 2.37 m/t 

and shot aim > 6.7 m from goal centre; the offline analyist exploits these values to learn rules 

explaining why the attempt fails (Raines et al., 2000). 

Three complementary behavioural models: individual event, multi-agent interaction and 

global outcome are induced with decision-tree algorithm, which yields interpretable rules, 

augmented by pattern-matching procedures that detect recurrent action sequences (Raines et 

al., 2000). 

On RoboCup ’99 logs, the global model reproduces 87 % of training scores and 72 % of 

unseen matches, subset achieves 70 % pre-match accuracy in win–loss prediction (Raines et 

al., 2000). 

Over the years the number of research papers on machine learning use in soccer has 

increased significantly, despite that it is still unclear what machine learning can offer to 

soccer clubs now and in the future, and how scientists and practitioners can prepare to take 

advantage of machine learning capabilities (Nassis et al., 2023). 

In recent years, the application of machine learning techniques within the football domain 

has increased significantly, enabling new approaches for performance monitoring (M. Wang, 

2014). One application of machine learning in the context of football was aimed at 

objectively and automatically evaluating the technical and tactical abilities of the teams 

participating in UEFA Euro 2012, with the goal of predicting each team’s overall 

performance based on a set of statistical indicators (M. Wang, 2014). The core challenge 

addressed was a multi-criteria evaluation problem, namely, how to assign a comprehensive 

performance score to each team by simultaneously considering a variety of heterogeneous 

metrics (M. Wang, 2014). The resulting predictions were found to align with the actual 
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outcomes of the tournament, highlighting the potential of machine learning techniques for 

performance assessment in elite football settings. (M. Wang, 2014). 

Building on this team-centred perspective, research shifted to an individual focus, seeking 

to characterise each player’s contribution in finer detail (Pappalardo et al., 2019). PlayeRank, 

the studies carried out by Pappalardo et al., (2019), employs a supervised Linear Support 

Vector Classifier to learn the weights of seventy-six technical–tactical variables and assign 

an interpretable rating to every footballer; a soft k-means clustering routine identifies eight 

canonical roles, permitting cross-positional comparisons (Pappalardo et al., 2019). The 

model achieves 74 % unanimous agreement with professional talent scouts; in other words, 

whenever all three scouts chose the same player as better, PlayeRank made the same choice 

in 74 % of those comparisons, combining methodological transparency with external validity 

(Pappalardo et al., 2019). 

Further advances leveraged high-frequency positional data: unsupervised algorithms 

automatically identified dynamic sub-groups of players during attacking phases, providing 

a context-sensitive classification of tactical patterns (Goes et al., 2021). A large-scale 

investigation based on 118 Eredivisie matches refined this approach by using a single k-

means model to segment defenders, midfielders, and forwards frame by frame, achieving a 

mean silhouette score of 0.63 while deliberately eschewing ensemble techniques to preserve 

interpretability (Goes et al., 2021). The same analysis showed that successful attacks were 

preceded by a marked decline (Cohen d ≈ –0.41) in longitudinal synchrony between 

defenders in possession and opposing forwards (Goes et al., 2021). 

After the descriptive phase on sub-groups, research turned to complex tactical events 

capable of altering a match’s outcome. Stein et al. (2022) address gegenpressing detection 

using Bundesliga event streams. Gegenpressing is defined as a team’s attempt to regain 

possession within five seconds of losing the ball and as close as possible to the turnover 

location, through coordinated pressure by multiple players; only defensive transitions 

meeting these criteria are labelled positive, yielding a dataset of 11 108 instances (Bauer & 

Anzer, 2021). The primary algorithm, XGBoost, is described as a tree-boosting ensemble; 

two optimised configurations achieve, on the test set, an AUC of 0.874 and an F1-score of 

0.67, outperforming Random Forest, Logistic Regression and naïve-rule baselines (Bauer & 

Anzer, 2021). The operational output consists of video playlists and reports importable into 
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analysis software, from which objective indicators of counter-pressing effectiveness can be 

derived across six Bundesliga seasons (Bauer & Anzer, 2021). 

Finally, to close the loop from micro-tactical analysis to full-match prediction, a study in 

the Decision Analytics Journal (2024) forecast “home-win versus non-win” outcomes in the 

Premier League by integrating fifty-two performance, fatigue and meteorological variables 

(Wong et al., 2025). Six supervised models, Logistic Regression, Random Forest, Support 

Vector Machine, XGBoost, LightGBM and a Convolutional Neural Network, were 

combined in a stacking ensemble defined by the authors as a heterogeneous architecture; the 

system reached roughly 65 % accuracy, approaching bookmaker reliability without 

compromising stability (Wong et al., 2025). 

Collectively, the evolution from the firsts model to the heterogeneous supervised 

ensembles demonstrates how machine learning has progressively expanded its descriptive 

and predictive capabilities in football. 

 

2.4.3. Machine Learning in the Injuries Studies  

The increasing complexity of modern football and the growing availability of high-

frequency data have encouraged practitioners to adopt advanced technologies such as GPS 

tracking, inertial sensors, and psychophysiological monitoring to assess athletes’ condition 

and exposure. Although machine learning already holds a consolidated role in health 

sciences, its adoption in sports medicine, and specifically in football, remains emergent 

(Nassis et al., 2023). 

In line with the emerging trend, two-season investigation on 36 professional footballers 

from the Polish Ekstraklasa club KKS Lech Poznań developed a multi-method framework 

for predicting weekly, non-contact lower-limb injuries by combining expert knowledge and 

machine-learning techniques (Tomasz Piłka, Bartłomiej Grzelak, Aleksandra Sadurska & 

Dyczkowski, 2023). GPS-derived external-load data: total distance, sprint and high-speed-

running (HSR) distances, player-load, accelerations, decelerations and on-field time, were 

enriched with: their aggregates for the three preceding weeks, the acute-to-chronic ratios 

such as ACWR and finally six handcrafted expert rules capturing relative changes in sprint, 

HSR and player-load profiles; fuzzy linguistic variables further expanded the feature space 
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to model uncertainty (Tomasz Piłka, Bartłomiej Grzelak, Aleksandra Sadurska & 

Dyczkowski, 2023). 

The full dataset comprised 1 064 micro-cycles (67 labelled injuries). It was partitioned 

into a training set of 693 observations and an independent test set of 371 (Tomasz Piłka, 

Bartłomiej Grzelak, Aleksandra Sadurska & Dyczkowski, 2023). Class imbalance in the 

training data (36 injuries) was mitigated with SMOTE, while missing values were median-

imputed. Hyper-parameter tuning relied on 5 × 10 cross-validation, after which final 

evaluation was carried out exclusively on the untouched test subset containing the remaining 

31 injury cases (Tomasz Piłka, Bartłomiej Grzelak, Aleksandra Sadurska & Dyczkowski, 

2023). 

Three modelling strategies were compared: 

• Deterministic rule-based model: averaged the six expert-rule scores and raised an 

alert when the mean exceeded 6.5 (Tomasz Piłka, Bartłomiej Grzelak, Aleksandra 

Sadurska & Dyczkowski, 2023). 

• Fuzzy rule-based controller: generated a continuous risk score on the [0, 10] scale, 

classifying risk as high when the score surpassed 0.6. Unlike crisp rules, fuzzy logic 

represents each input through linguistic labels (e.g., low, medium, high) with graded 

membership (Tomasz Piłka, Bartłomiej Grzelak, Aleksandra Sadurska & 

Dyczkowski, 2023).  

• Cost-sensitive Extreme Gradient Boosting (XGBoost): 500 trees, max depth 7, 

learning rate 0.05, trained on the full feature set and balanced with SMOTE(Tomasz 

Piłka, Bartłomiej Grzelak, Aleksandra Sadurska & Dyczkowski, 2023). 

On the hold-out test set, XGBoost achieved the best performance (accuracy = 90.0 %, 

precision = 92.0 %, recall = 97.6 %, F1 = 94.7 %), clearly outperforming the rule-based 

approach (F1 = 53.0 %) and the fuzzy system (F1 = 18.7 %) (Tomasz Piłka, Bartłomiej 

Grzelak, Aleksandra Sadurska & Dyczkowski, 2023). Shapley value analysis identified total 

training time two weeks earlier, counts of decelerations and accelerations, and current-week 

HSR distance as the strongest predictors, highlighting the importance of rapid directional 

changes and cumulative load (Tomasz Piłka, Bartłomiej Grzelak, Aleksandra Sadurska & 

Dyczkowski, 2023). 
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Another study conducted on 34 professional football players from a Portuguese first-

division club developed an automated system for daily prediction of non-contact injury risk, 

using GPS data collected over 36 weeks of the 2020–2021 season, covering a total of 255 

sessions (Freitas et al., 2025). The initial dataset included 1,379 variables, which were 

reduced to 260 through a combination of zero-variance feature elimination (Freitas et al., 

2025). The retained variables comprised 237 GPS metrics and 23 descriptive features, such 

as player position, day of the week, session type, and duration, with the addition of “dummy 

days” to capture sudden changes in training load. The binary target variable indicated the 

presence or absence of an injury on a given day (Freitas et al., 2025). To address the dataset’s 

high heterogeneity and imbalance, only 0.2% of records corresponded to injury events, the 

models were trained using both traditional and cost-sensitive approaches, coupled with 

stratified subject-independent cross-validation (Freitas et al., 2025). Three algorithms were 

compared: Support Vector Machines (SVM), three-layer Feedforward Neural Networks 

(FNN), and Adaptive Boosting (AdaBoost) with decision stumps (Freitas et al., 2025).  

The best results were achieved by the cost-sensitive SVM, which reached a sensitivity of 

71.43%, specificity of 74.19%, accuracy of 74.22%, and an AUC of 0.85, using only 20 

features. AdaBoost exhibited a higher sensitivity of 78.57%, at the expense of specificity 

(65.02%) and required a larger number of features (Freitas et al., 2025). Despite the absence 

of physiological or clinical measurements, the study highlights how the integration of GPS 

and contextual variables can support short-term decision-making without requiring manual 

data collection (Freitas et al., 2025). 

While the model proposed by Freitas et al. demonstrates the feasibility of injury 

prediction using only GPS and contextual data within a tightly controlled club-level 

environment, broader generalizability requires larger samples and more heterogeneous 

feature sets (Freitas et al., 2025). In this direction, a multi-season study explores a richer 

combination of physiological, psychological, historical, and workload indicators to model 

injury risk across a longer temporal horizon (Majumdar et al., 2024b).  

This multi-season study analyses the association between training load and non-contact 

injuries, exploiting five years of data from thirty-five Premier League players for a total of 

10 653 observations (Majumdar et al., 2024b). The information set comprises 106 variables: 

forty GPS metrics, fourteen physical measures (skinfolds, body mass, body-composition 

indices), four psychological indicators, six demographic characteristics, forty-two workload 
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ratios derived from ACWR, MSWR and EWMA, and two historical variables (last injury 

area and days since last injury) (Majumdar et al., 2024b). The binary target flags the onset 

of an injury within the subsequent seven-day window (Majumdar et al., 2024b) 

The pronounced class imbalance, injuries represent 3.7 % of the sample, is mitigated 

through the Synthetic Minority Oversampling Technique and cost-sensitive weighting 

(Majumdar et al., 2024b). Model selection compares Extreme Gradient Boosting with a two-

layer Artificial Neural Network (200–100 neurons, 0.5 dropout, Adam optimiser), both 

validated with ten-fold cross-validation; training incorporates the first four-and-a-half 

seasons, while testing involves the remaining half-season partitioned into three monthly 

subsets (Majumdar et al., 2024b). 

On the test set, the neural network attains a recall of 77 %, a precision of 13 % and an 

AUC of 0.69, marginally outperforming XGBoost, which records 73 % recall and 10 % 

precision (Majumdar et al., 2024b). Post-hoc interpretability via Shapley Additive 

Explanations assigns the highest contributions to last injury area, body mass, EWMA of 

meta-energy, daily meta-energy, and age, indicating that historical and anthropometric 

variables exert greater predictive influence than many detailed GPS metrics (Majumdar et 

al., 2024b). 

Taken together, the three empirical studies show that machine-learning models, whether 

gradient-boosted trees, cost-sensitive support-vector machines or neural networks, 

outperform rule or threshold-based approaches and, by integrating GPS load metrics with 

contextual, historical and anthropometric information, offer a club-level decisions aimed at 

reducing non-contact injuries in professional football. (Freitas et al., 2025; Majumdar et al., 

2024b; Tomasz Piłka, Bartłomiej Grzelak, Aleksandra Sadurska & Dyczkowski, 2023). 

 

2.5. Gaps in the literature, research contributions and future perspectives                

Despite the growing scientific output on the application of machine-learning (ML) 

techniques for injury prediction in football, numerous gaps and limitations still hinder the 

operational implementation and generalizability of existing models. A recurring issue is the 

limited predictive performance of current approaches, particularly in terms of sensitivity and 

precision. Although some studies report high specificity, sensitivity often falls below 
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clinically acceptable thresholds, between 15.2 % and 55.6 %, with area-under-the-curve 

(AUC) values generally ranging from 0.66 to 0.83 (Nassis et al., 2023). 

Low precision further highlights the need for recalibrating decision thresholds or adopting 

more sophisticated cost-sensitive learning techniques before operational deployment 

(Majumdar et al., 2024b). In addition, several studies are built and validated on small, highly 

imbalanced datasets, often with fewer than 1,000 observations, conditions that undermine 

statistical robustness and model reliability (L. Wang, 2024). The limited number of injury 

cases constrains inferential power, indicating the importance of multi-season or rolling-

origin validation schemes to support long-term generalizability (Freitas et al., 2025). 

A further methodological concern is the risk of information leakage during model 

development, especially when temporal or player-specific dependencies are not properly 

handled in data splitting, potentially leading to an overestimation of predictive performance 

(Freitas et al., 2025). Moreover, the interpretability of complex algorithms, particularly deep-

learning models, remains a significant barrier to their integration into technical-staff 

decision-making because of their black-box nature and limited transparency in feature 

attribution (L. Wang, 2024). 

From a data-perspective, most investigations rely exclusively on external-load metrics 

obtained from wearable GPS devices, such as distance covered, accelerations and player 

load. This narrow focus overlooks physiological and psychological factors that substantially 

influence injury risk, thereby limiting the comprehensiveness of the predictive framework  

(Tomasz Piłka, Bartłomiej Grzelak, Aleksandra Sadurska & Dyczkowski, 2023) 

Input variables have emerged as a critical limitation in current injury prediction models 

(Nassis et al., 2023). The absence of real-time indicators reduces model accuracy. 

Furthermore, low data veracity and poor standardisation across studies further compromise 

predictive performance (Nassis et al., 2023). Enhancing model robustness therefore requires 

the inclusion of high-quality, context-aware, and physiologically relevant variables (Nassis 

et al., 2023).  

External validity is further constrained by datasets drawn from a single club or 

competition, which restricts the applicability of findings to wider athlete populations and 

organisational contexts (Tomasz Piłka, Bartłomiej Grzelak, Aleksandra Sadurska & 

Dyczkowski, 2023). 
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Future research should expand existing datasets in both breadth and depth by 

incorporating multi-season time windows, data from multiple clubs and a more 

heterogeneous set of predictors, including biomarkers, subjective fatigue indicators and 

contextual variables. Greater attention should also be devoted to the interpretability of ML 

models through explainable-AI techniques that enhance practitioner understanding and trust. 

Such developments are essential to ensure that predictive tools are not only accurate but also 

acceptable and usable within professional-football environments (Nassis et al., 2023; L. 

Wang, 2024). 
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3. Methods and Materials 

3.1. Aims of the chapter  

The purpose of this chapter is to delineate the research design and methodological 

decisions undertaken to answer the research question: “How machine learning models can 

improve the prediction of injury risk in football players, and which variables provide the 

most relevant information for forecasting purposes ?”. Specifically, it presents the sample-

selection criteria, the data sources, the instruments used for data processing, and the 

analytical techniques applied. The chapter centres on the quantitative approach adopted, 

grounded in the use of machine-learning algorithms, with the aim of identifying the most 

informative features and evaluating the predictive performance of different models. 

 

3.2. Data collection 

The empirical foundation of this study is based on a dataset constructed from performance 

and injury data relating to a selected sample of 100 professional football players active in 

Italy’s top-tier league, Serie A, in all three consecutive seasons: 2021/22, 2022/23, and 

2023/24. 

In order to ensure the generalizability of the results and avoid distortions in the modelling 

process, goalkeepers were deliberately excluded from the sample. Their physical demands, 

playing style, and injury profiles differ substantially from outfield players, and their 

inclusion would have introduced outliers and imbalanced the distribution of relevant 

variables. 

The dataset was stratified across five positional groups: 

• 20 Center Backs 

• 27 Central Midfielders 

• 13 Forwards 

• 25 Fullbacks 

• 15 Wide Midfielders 
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The sample was defined through a structured selection process, guided by quantitative 

and qualitative criteria aimed at ensuring the robustness and internal consistency of the 

analysis. Firstly, all players who did not take part in at least one match in each of the three 

seasons were excluded, as such lack of continuity would have compromised the possibility 

of a temporally consistent observation. Secondly, a minimum participation threshold of 40 

total appearances across the three-year period was applied, including substitute appearances. 

This requirement was introduced to guarantee a sufficient volume of individual-level data, 

thereby supporting meaningful model training and reducing statistical noise. Finally, players 

who, despite meeting the continuity and participation criteria, had no registered injury 

throughout their professional career were also excluded. This category included, for 

instance, some younger players who, while having reached the appearance threshold, had 

not yet sustained any documented injuries. The exclusion of such cases was necessary to 

avoid incorporating observations with no variation in the target variable, a condition that 

could have undermined the effectiveness of the predictive model training. 

The data used for this study were collected and organized into two distinct CSV tables. The 

first table contains the performance data of each selected player, recorded for every official 

match played during the three-season period. All competitions are included without 

exception: Serie A matches, Coppa Italia fixtures, any national team appearances (in case of 

international call-ups), and European club competitions such as the UEFA Champions 

League, Europa League, and Conference League. 

The second table compiles the complete injury history for each player, adopting the 

definition of injury based on the concept of time-loss injury, in accordance with the 

conceptual framework established by Fuller et al. 2006 and discussed in the literature review 

chapter. In line with this definition, only injuries that resulted in the player's inability to take 

part in at least one subsequent training session or match were included. Conversely, episodes 

classified as medical attention injuries, that is, injuries requiring treatment but not causing 

any interruption of football activity, were excluded. This methodological choice ensures that 

the dataset reflects only injuries with a measurable impact on player availability, which is 

essential for developing a predictive model that is both consistent and analytically 

meaningful. 
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Performance data collection  

For the collection of individual performance data, the website FBref was used, a public 

and widely recognized platform that provides detailed statistics on professional football 

players and international football competitions.  

The choice of this source was driven by its reliability, historical consistency, and 

completeness, as well as by the availability of comprehensive, match-level data, a 

fundamental requirement for constructing a dataset suitable for predictive modelling. 

Moreover, FBref adopts standardized variable names and follows a data collection 

methodology based on the StatsBomb framework, one of the most authoritative international 

providers of advanced football analytics. 

Specifically, for each of the 100 selected players, the FBref’s section titled Match Logs 

was consulted for each relevant season, allowing access to data on every official match 

played.  

Within this section, the match data are organized across multiple sub-sections, each 

focusing on a specific area of player performance. In particular, the following statistical 

categories are provided separately for each match: 

• Summary 

• Passing 

• Pass Types 

• Goal and Shot Creation 

• Defensive Actions 

• Possession 

• Miscellaneous Stats 

All of these tables were accessed and their contents were systematically merged to form 

a single, unified dataset. During this integration process, the variables that appeared in more 

than one sub-section with identical values, were identified and removed, retaining only one 

unique version of each. 

The complete list of variables extracted from FBref and included in the dataset, along  

with their respective definitions, is reported below in Table 1 . 
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Table 1: Perfomarce features 

Column Description 

Player Player Name 

Born Date of birth of the player 

Height Player height 

Weight Player weight 

Date Date listed is local to the match 

Day Day of week 

Competition 

Competition, Number next to competition states which 

level in the country's league pyramid this league 

occupies 

Round Round or phase of competition 

Venue If the player play in the Home stadium or Away 

Result Match Result 

Squad Refers to the team that the player belongs to 

Opponent Refers to the opposing team in the match 

Starter 
Describe if the player is in the starting lineup * = squad 

captain 

Position 

Position most commonly played by the player (GK - 

Goalkeepers, DF - Defenders, MF - Midfielders, FW - 

Forwards, etc.) 

Min Minutes played 

Goals Number of Goals scored 

Assists Number of Assists 

PenaltyMade 
The number of penalty kicks the player successfully 

made. 

PenaltyAttempted The number of penalty kicks attempted by the player 

TotalShot Shots Total (Does not include penalty kicks) 

TotalShotonTarget 
Shots on Target (Note: Shots on target do not include 

penalty kicks) 

YellowCards Number of Yellow Cards received during the match 

RedCard Number of Red Cards received during the match 

Tackles 
The number of successful tackles made by the player 

(how many players they successfully tackled) 

Interceptions 

The number of interceptions made by the player (the 

number of times the player intercepted a pass from the 

opponent). 

xG 

Expected Goals. This is a statistical measure of the 

likelihood of a player scoring based on the quality of 

their chances, including penalty kicks but excluding 

penalty shootouts. 
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npxG 
Non-Penalty Expected Goals. This is the same as xG, 

but it excludes penalty kicks from the calculation. 

xAG 

Expected Assisted Goals. This represents the expected 

goals that were created by a player's assist, based on the 

quality of the assist. 

ShotCreatingActions 

Shot-Creating Actions. These are two offensive actions 

that directly lead to a shot, such as passes, take-ons, or 

drawing fouls. A player can be credited with multiple 

actions if they lead to a shot. 

GoalCreatingActions 

Goal-Creating Actions. These are two offensive actions 

that directly lead to a goal, such as passes, take-ons, or 

drawing fouls. Like SCA, a player can be credited with 

multiple actions. 

PassesCompl 

Passes Completed. This refers to the total number of 

passes made by the player that reached their intended 

target. Includes live ball passes (including crosses) as 

well as corner kicks, throw-ins, free kicks and goal 

kicks. 

PassesAttemp 

Passes Attempted. The total number of passes attempted 

by the player Includes live ball passes (including 

crosses) as well as corner kicks, throw-ins, free kicks 

and goal kicks 

PassComplPerc 

Pass Completion Percentage. This is the percentage of 

successful passes out of the total passes attempted. 

Includes live ball passes (including crosses) as well as 

corner kicks, throw-ins, free kicks and goal kicks. 

ProgressivePasses 

Completed passes that move the ball towards the 

opponent's goal line at least 10 yards from its furthest 

point in the last six passes, or any completed pass into 

the penalty area. Excludes passes from the defending 

40% of the pitch 

TotPassDist 
Total Passing Distance: Total distance, in yards, that 

completed passes have traveled in any direction 

ProgressivePassDist 

Progressive Passing Distance: Total distance, in yards, 

that completed passes have traveled towards the 

opponent's goal. Passes away from the opponent's goal 

are counted as zero progressive yards. 

ShortPassesCompl 
The total number of passes completed by a player that 

are between 5 and 15 yards in distance. 

ShortPassesAttemp 
The total number of passes attempted by a player that 

are between 5 and 15 yards in distance. 
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ShortPassesComplPerc 

The percentage of successful passes completed (between 

5 and 15 yards) out of the total passes attempted in that 

range. 

MediumPassesCompl 
The total number of passes completed by a player that 

are between 15 and 30 yards in distance 

MediumPassesAttemp 
The total number of passes attempted by a player that 

are between 15 and 30 yards in distance. 

MediumPassesComplPerc 

The percentage of successful passes completed (between 

15 and 30 yards) out of the total passes attempted in that 

range 

LongPassesCompl 
The total number of passes completed by a player that 

are longer than 30 yards. 

LongPassesAttemp 
The total number of passes attemped by a player that are 

longer than 30 yards. 

LongPassesComplPerc 

The percentage of successful passes completed (longer 

than 30 yards) out of the total passes attempted in that 

range. 

xA 

The expected assists measure the likelihood that each 

completed pass will become a goal assist. It is 

determined by the pass type, location, distance, and the 

phase of play. It is also provided by Opta. 

KeyPasses 

A key pass is a pass that directly leads to a shot. This is 

a measure of the number of passes that have the 

potential to result in a goal (an assisted shot). 

PassesinFinalThird 

Passes into Final Third: Completed passes that enter the 

1/3 of the pitch closest to the goal (not including set 

pieces) 

PassesinPenaltyArea 

The total number of completed passes into the 18-yard 

box (penalty area). Set-piece passes are excluded from 

this measure. 

CrossesinPenaltyArea 
The total number of completed crosses into the penalty 

area (18-yard box), excluding set-piece crosses. 

LivePasses Passes that are actively in play during normal gameplay. 

DeadPasses 
Passes made during a stoppage in play (e.g., free kicks, 

corner kicks, throw-ins, goal kicks). 

FreeKicks 
Passes attempted from a free kick situation, either 

aiming for a shot or a teammate. 

ThroughPasses 
A pass played through the opponent's defense into open 

space, typically for a teammate to run onto. 

Switches 

Passes that cover a distance of more than 40 yards across 

the width of the field to create space on the opposite 

side. 
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Crosses 
Passes played from the wings into the penalty area to 

create scoring chances. 

ThrowIns 
The number of throw-ins a player has taken during a 

match after the ball goes out of bounds on the sideline. 

CornersKicks 
The number of corner kicks a player has taken when the 

ball goes out over the goal line off a defender. 

InswingingCornerKicks 
Corner kicks that curve inward toward the goal, making 

them more difficult to defend. 

OutswingingCornerKicks 
Corner kicks that curve outward, away from the goal, 

providing a different angle of attack. 

StraightCornerKicks 
Corner kicks that are kicked straight with minimal 

curvature, typically aiming for a teammate. 

PassesOffside 

Passes attempted when the receiving player is in an 

offside position, closer to the opponent's goal line than 

both the ball and second-to-last defender. 

PassesFailed 
Passes that are blocked by the opponent, typically by 

positioning themselves in the ball's path. 

LivePassesShotCreat Completed live-ball passes that lead to a shot attempt. 

DeadPassesShotCreat 

Completed dead-ball passes (such as free kicks, corner 

kicks, kick-offs, throw-ins, and goal kicks) that lead to a 

shot attempt. 

TakeOnShotCreat Successful take-ons that lead to a shot attempt. 

ShotsleadShot Shots that lead to another shot attempt. 

FoulsDrawnShotCreat Fouls drawn that lead to a shot attempt. 

DefensiveActionsShotCreat Defensive actions that lead to a shot attempt. 

LivePassesGoalCreat Completed live-ball passes that lead to a goal. 

DeadPassesGoalCreat 

Completed dead-ball passes (such as free kicks, corner 

kicks, kick-offs, throw-ins, and goal kicks) that lead to a 

goal. 

TakeOnGoalCreat Successful take-ons that lead to a goal. 

ShotsleadGoalshot Shots that lead to another goal-scoring shot. 

FoulsDrawnGoalCreat Fouls drawn that lead to a goal. 

DefensiveActionsGoalCreat Defensive actions that lead to a goal. 

TacklesWin 
The number of tackles where the player wins possession 

of the ball from the opponent. 

TacklesInitialThird 
Tackles made in the defensive third of the field, closest 

to the player’s own goal. 

TackelsMediumThird Tackles made in the middle third of the field. 

TackelsFinalThird 
Tackles made in the attacking third of the field, closest 

to the opponent’s goal. 

DribblersTackledSucc 

This refers to the number of times a player successfully 

tackles a dribbler (an opponent who is carrying the ball 

and attempting to get past the defender) 
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DribblesChallenged 

This refers to the total number of attempts by a player to 

challenge a dribbler. It includes both successful tackles 

and failed challenges. A failed challenge occurs when 

the defender doesn't win possession or allows the 

dribbler to get past. 

PercentageTackledWin 

This measures the percentage of dribblers successfully 

tackled out of all the attempts to challenge dribblers. It is 

calculated as the number of dribblers tackled divided by 

the number of attempts to challenge them 

ChallengesLost 

This refers to the number of unsuccessful attempts made 

by a defender to challenge a dribbling player. A 

challenge is considered lost if the defender does not 

successfully stop the dribbler or if the dribbler gets past 

them. 

Blocks 
The number of times a player blocks the ball by 

positioning themselves in its path. 

ShotsBlocked 

This is the number of times a player blocks an 

opponent’s shot on goal by standing in the path of the 

ball. 

PassesBlocked 

This refers to the number of times a player blocks a pass 

made by the opponent, often by positioning themselves 

in the way of the ball to stop it from reaching its target. 

Interceptions 
The number of times a player intercepts an opponent’s 

pass. 

Clearances 

This refers to the number of times a player clears the ball 

away from the defensive area, usually by kicking the 

ball out of the defensive zone 

Errors 
This refers to mistakes made by the player that lead 

directly to an opponent’s shot on goal 

Touches 

The number of times a player touches the ball during a 

match. For example, receiving a pass, dribbling, and 

sending a pass counts as one touch. 

DefPenTouches 
The number of times a player touches the ball within 

their own penalty area when defending. 

TouchesInitialThird 
The number of times a player touches the ball within 

their defensive third of the field (closest to their goal). 

TouchesMediumThird 
number of times a player touches the ball within the 

middle third of the field. 

TouchesFinalThird 

The number of times a player touches the ball within the 

attacking third of the field (closer to the opponent's 

goal). 

AttPenTouches 
The number of times a player touches the ball within the 

opponent's penalty area when attacking. 
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LiveTouches 

The number of times a player touches the ball during 

active play, excluding corner kicks, free kicks, throw-

ins, kick-offs, goal kicks, or penalty kicks. 

TakeOnsAttemp 
The number of times a player attempts to dribble past an 

opponent. 

SuccessfulTakeOns 
The number of times a player successfully dribbles past 

an opponent. 

TakeOnSuccPercentage 
The percentage of successful take-ons (successful 

dribbles past an opponent) out of all attempted take-ons. 

TackledDuringTakeOn 
The number of times a player is tackled while attempting 

to dribble past an opponent. 

TackledDuringTakeOnPerc 
The percentage of take-on attempts in which the player 

is tackled by the defender. 

Carries 
The number of times a player carries the ball with their 

feet, as opposed to passing or shooting. 

TotalCarryDistance 
The total distance, in yards, that a player moves the ball 

while controlling it with their feet, in any direction. 

ProgressiveCarryDistance 

The total distance, in yards, that a player moves the ball 

toward the opponent's goal. This counts as progressive 

when the ball moves at least 10 yards from its starting 

point. 

ProgressiveCarries 

Carries that move the ball at least 10 yards toward the 

opponent's goal or into the penalty area. Carries ending 

in the defending half of the pitch are excluded. 

CarriesIntoFinalThird 

The number of times a player carries the ball into the 

final third of the field, which is closest to the opponent’s 

goal. 

CarriesIntoPenaltyArea 
The number of times a player carries the ball into the 

opponent's 18-yard penalty box. 

Miscontrols 

The number of times a player fails to control the ball 

after attempting to receive it, often resulting in a 

turnover. 

Dispossessed 

The number of times a player loses possession of the 

ball after being tackled by an opponent. This does not 

include failed take-ons. 

PassesReceived 

The number of successful passes received by a player. A 

successful pass is one that reaches the player without 

being intercepted or going out of bounds. 

ProgressivePassesReceived 

The number of completed passes that move the ball at 

least 10 yards toward the opponent’s goal or into the 

penalty area. 

SecondYellowCard Second Yellow Card received 

FoulsCommitted Number of Fouls Committed 
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The performance data collection process represents the first pillar of the dataset 

construction. Data was collected for all official matches played by the selected players during 

the previously defined three-season period, resulting in a dataset of 12,634 rows, each 

corresponding to a single match appearance by one of the 100 players. 

It is important to highlight that some performance metrics were not available on FBref 

for competitions such as: international matches played with national teams, UEFA Europa 

League, UEFA Conference League, and Coppa Italia. In these cases, the corresponding 

values were recorded as missing data, in order to preserve the integrity and chronological 

continuity of the match logs. 

 

Injuries data collection 

This section focuses on the second component of the dataset: the collection and 

structuring of injury records, which define the target variable for the supervised learning 

framework. 

For the construction of the dataset, the Injury History section of Transfermarkt website 

was consulted, an internationally recognized source for football statistics and data analysis. 

FoulsDrawn Number of Fouls Drawn 

Offside Number of offside 

PenaltyWon Number of Penalty Won 

PenaltyConceded Number of Penalty Conceded 

OwnGoals Own Goals 

BallRecoveries Number of loose ball recovered 

AerialWon 

Refers to the number of times a player successfully wins 

an aerial duel. An aerial duel occurs when the ball is in 

the air, and the player competes with an opponent to 

gain possession of the ball 

AerialLost 

Refers to the number of times a player loses an aerial 

duel. In this case, the player competes for the ball in the 

air but does not win possession, and the opponent gains 

control instead. 

ArealSuccPerc 

This value is the percentage of aerial duels won by a 

player compared to the total number of aerial duels they 

attempted. It is calculated as the number of aerial duels 

won divided by the total number of aerial duels (won + 

lost) and then multiplied by 100 to give the percentage 
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For each of the selected players, records of all time-loss injuries sustained during their 

professional careers were extracted, excluding injuries that occurred during youth-level 

competition, in order to ensure a complete and individualized coverage of professional injury 

histories. 

The key fields extracted from Transfermarkt for each injury are summarized below (Table  

2) 

 

Table  2: Injuries features 

Column Description 

Player Player name 

Season 

The football season in 

which the injury occurred 

(e.g., 2021/22). 

Injury 

Description of the injury 

type (e.g., muscle injury, 

cruciate ligament tear). 

From Start date of the injury. 

Until End date of the injury. 

Days 

Duration of the recovery 

period, calculated as the 

difference between Until 

and From. 

Games Missed  

Number of official matches 

missed by the player due to 

the injury, including the 

relevant team name. 

 

The final dataset obtained from this process contains a total of 1,575 injury events, each 

meeting the criteria of a time-loss injury and linked to a specific match timeline. These 

injuries span across 176 distinct categories, ranging from muscular and ligament-related 

traumas (e.g., hamstring strain, cruciate ligament tear) to surgical conditions, joint 

inflammations, and systemic illnesses (e.g., pubalgia, eye injuries, concussion). 
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3.3 Data preprocessing and features selection 

The preprocessing phase began with the two previously described CSV files. As a first 

step, a semantic restructuring of the injury dataset was carried out through the addition of a 

new column containing a classification of injury events into four clinical macro-categories: 

• MTI – Muscular and Tendon Injuries (e.g., strains, muscle tears, tendinopathies) 

• ALI – Articular and Ligamentous Injuries (e.g., sprains, ligament tears, joint 

instability) 

• BCI – Bone and Contusion Injuries (e.g., fractures, bone bruises, impact-related 

microtraumas) 

• Other – Systemic Conditions and Miscellaneous Causes (e.g., illnesses, viral 

infections, non-traumatic clinical conditions) 

The complete mapping of the injury types included in the dataset into the four categories 

above is presented in Table  3. 

Table  3: Injuries categorization 

Category Description Injuries reported 

MTI: Muscular and 

Tendon Injuries 

Tears, strains, ruptures, 

and inflammations of 

muscles and tendons 

Abdominal muscle strain, Abdominal 

problems, Achilles Problems, Achilles 

heel problems, Achilles tendon 

contusion, Achilles tendon irritation, 

Achilles tendon rupture, Achilles tendon 

surgery, Adductor injury, Arch 

problems, Back problems, Calf muscle 

tear, Calf injuries, Calf strain, Chest 

injury, Contracture, Fatigue fracture, 

Hamstring injury, Hamstring strain, 

Hamstring muscle injury, Hip flexor 

problems, Hip Muscle Strain, 

Inflammation, Inflammation of the 

biceps tendon in the thigh, Leg injury, 

Muscle contusion, Injury to abdominal 
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muscles, Lumbago, Muscle fatigue, 

Muscle strain, Muscle tear, Muscle 

contusion, Muscle Fatigue, Muscle 

injury, Muscle problems, muscle 

stiffness, Muscle strain, Muscle tear, 

Muscolar problems, overstretching, 

Patellar tendon dislocation, Patellar 

tendon irritation, Peroneus tendon 

injury, Pubalgia, Pubic irritation, Pubic 

stress, Right hip flexor problems, Sore 

Muscles, Strain in the thigh and gluteal 

muscles,  Tendon irritation, Torn muscle 

fiber, Thigh injury, Thigh problems, 

Thigh strain, Torn thigh muscle, Tendon 

rupture, Torn muscle bundle, Torn 

muscle fiber, Torn muscle fiber in the 

adductor area, Torn thigh muscle 

ALI: Articular and 

Ligamentous 

Injuries 

Sprains, ligament 

injuries, meniscus 

lesions, and joint 

traumas 

Ankle problems, Ankle injury, Ankle 

sprain, Ankle Surgery, Capsular tear of 

ankle joint, Collateral ligament injury, 

Cruciate ligament injury, Cruciate 

ligament Surgery, Cruciate ligament 

tear, Elbow injury, Groin injury, Groin 

problems, Hip tendon injury Inner knee 

ligament tear, , Inflammation in the 

head of fibula, Inflammation in the 

knee, Inflammation in the spine, 

Inflammation of ligaments in the knee, 

Injury to the ankle, Inner knee ligament 

tear, Inner ligament injury, Inner 

ligament stretch of the knee, Internal 

ligament strain, Knee collateral 

ligament strain, Knee medial ligament 
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tear, Knee inflammation, Knee injury, 

Knee problems, Ligament injury, 

Meniscus injury, Meniscus tear, Patellar 

tendon dislocation, Tear of the lateral 

meniscus, Syndesmosis ligament tear, 

Tendon irritation, Tendon rupture, Torn 

lateral knee ligament, Torn ligaments, 

Torn ligaments in the tarsus 

 

 

BCI: Bone and 

Contusion 

Injuries 

Fractures, contusions, 

hematomas, and 

impact-related injuries 

Back injury, Broken arm, Broken 

cheekbone, Broken collarbone, Broken 

fibula, Broken foot, Broken nose bone, 

Bruise, Bruised on ankle, Bruised knee, 

Bruised ribs, Bone edema, Facial 

fracture, Finger injury, Foot bruise, Foot 

injury, Foot Surgery, Fracture, Head 

injury, Heel spur Rib fracture, 

Inflammation of pubic bone, Knee 

bruise, Knock, Laceration, Lumbar 

vertebra fracture, Metatarsal fracture, 

Minor knock, Nose injury, Nose 

surgery, Rib fracture, Scaphoid fracture, 

Scaphoid surgery, Shin bruise, Shoulder 

Injury, Stress reaction of the bone, 

Thumb injury, Tibia contusion, Toe 

injury, Wrist fracture, 

Other: Systemic 

Conditions and 

Miscellaneous 

Causes 

Fever, infections, viral 

illnesses, general non-

traumatic conditions, 

and physical discomfort 

Angina, Appendectomy, Bronchitis, 

Chickenpox, Cold, Concussion, 

Coronavirus, Covid-19, Dead leg, Eye 

injury, Fever, Fitness, Flu, 

Gastroenteritis, ill Influenza, Infection, 

Herniated disc, Inguinal hernia, Injury, , 
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Tonsillitis, , Intestinal virus, Lung 

contusion, , Fatigue fracture, Lack of 

fitness, Minor Injury, Physical 

discomfort, Pneumonia, Precautionary 

rest, Quarantine, Rest, sprain, Stomach 

flu, stomach problems, strain,  Stress 

reaction of the bone, surgery, Testicular 

cancer, Tonsillitis, traffic accident, 

Virus, Unknown injury.  

 

This aggregation was adopted with the aim of reducing the fragmentation of the original 

target variable, characterized by a high heterogeneity of textual descriptions, while retaining 

sufficient information to preserve the clinical and sporting relevance of the data. Moreover, 

this classification enables the extraction of features and the development of analyses adapted 

to specific injury categories, rather than treating injury as a generic and undifferentiated 

event. 

Once the column containing the categorization of injuries was obtained, the two main 

datasets, one related to player performance and the other to injury records, were divided in 

two subsets: a training set, used to fit the predictive models, and a test set, reserved for the 

subsequent evaluation of their generalization ability. 

The split was performed according to a chronologically ordered 80 percent (training) to 

20 percent (test) ratio, a widely adopted practice in the machine learning literature that 

ensures a suitable trade-off between model learning and robust evaluation. Rather than being 

defined through random sampling, the division followed a temporal logic, considered more 

appropriate given the predictive goals of this study and the inherently sequential structure of 

time-stamped football data. 

Specifically, the training set included all official matches played during the 2021/22 and 

2022/23 seasons, as well as those up to December 5th, 2023 (part of the 2023/24 season). 

The remaining data from the current season were assigned to the test set. This same criterion 

was consistently applied to both datasets (performance and injury records), thus ensuring 

temporal coherence between predictors and target labels. 
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The adoption of a time-based split addresses two fundamental concerns. Firstly, it avoids 

data leakage, that is, the unintentional use of future information during the training phase, 

which would invalidate the statistical rigor of the evaluation. Secondly, it reproduces a 

realistic operational scenario, where predictions must be made based solely on historical data 

available at a given time. 

Subsequently, the data preprocessing phase was carried out using Orange3, an open-

source environment for data mining and machine learning, built around a visual interface 

based on interactive workflows. The environment enables the construction of analytical 

pipelines through connection between functional modules, known as widgets, each of which 

performs specific operations such as variable transformation, statistical analysis, feature 

selection, and model training. For the purposes of this study, version 3.38.1 of Orange3 was 

employed, running within Anaconda, an integrated platform for managing Python 

environments and specialized data analysis packages. The integration between the tools 

allowed for the combined use of visual tools and custom Python scripts, ensuring both the 

transparency and traceability of all operations, and a high degree of flexibility and control 

over the transformations applied to the dataset. 

The following section presents the main components of the Orange3 workflow, each 

accompanied by a detailed description. The objective is to provide a transparent account of 

the data transformations performed, the reasoning behind each methodological decision, and 

the implications of the operations carried out. 

The accompanying figures document the workflow, while the corresponding explanatory 

notes clarify the specific role and contribution of each step within the overall data processing 

pipeline. 
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Figure 2a – Initial section of the preprocessing workflow in Orange3 

 

Figure 2a illustrates the initial section of the preprocessing workflow implemented in 

Orange3. The workflow begins with the upload the CSV file containing the performance 

dataset. 

Upon import, each variable in the dataset is automatically assigned a specific data type, 

chosen among the following: 

• Text: non-numeric string values, typically used for identifiers, such as player names 

or team names. 

• Categorical: discrete values representing qualitative information, such as match 

outcome, player position or match venue (home or away). 

• Numeric: continuous or discrete numerical values, suitable for mathematical 

operations and statistical modelling. Examples include minutes played, number of 

passes, or shots taken. 

In addition to the data type, each variable is also assigned a functional role within the 

Orange3 environment: 

• Feature: a predictive variable used as input by machine learning algorithms. 

• Meta: a contextual or descriptive variable, not used directly for training but retained 

for interpretation, filtering, or result annotation. 

The second widget in the workflow was employed to correct the data type assigned to 

certain variables during the initial import process. Specifically, variables such as Penalty 

Won, Penalty Conceded, Own Goals, and Penalty Attempted were erroneously classified as 
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categorical, due to their low cardinality and discrete integer values (e.g., 0, 1, 2). While such 

classification may appear syntactically appropriate, it does not accurately reflect the 

semantic and functional nature of these variables within a predictive modelling context.  

A Formula widget was subsequently employed to generate a set of normalized 

performance variables by dividing selected metrics by the number of minutes played in each 

match. This transformation allowed for the extraction of intensity-based indicators, 

capturing not only the volume of an action but also its frequency relative to the player's 

actual time on the field. By accounting for time exposure, the normalization mitigates 

variance associated with unequal match durations, and supports more reliable statistical 

learning. 

Moreover, the decision to express variables on a per-minute basis ensures dimensional 

compatibility with widely adopted composite indicators in the sports science literature, such 

as the Acute:Chronic Workload Ratio (ACWR), which rely on temporally standardized units. 

This preprocessing step facilitates the integration of diverse performance metrics into 

cumulative workload models without structural inconsistencies. 

The variables normalized through this transformation are summarized below (Table 4) 

 

Table 4: Variables Normalized per Minute 

Original Variable Normalized Variable 

Touches Touches_min 

TakeOnsAttemp TakeOnsAttemp_min 

TotalCarryDistance TotalCarryDistance_min 

PassesAttempted PassesAttempted_min 

TotalShot TotalShot_min 

DribblerChallenged DribblerChallenged_min 

Carries Carries_min 

ProgressiveCarryDistance ProgressiveCarryDistance_min 

 

In addition, using the same Formula widget, several new variables were created through 

the aggregation of related metrics and subsequent normalization by minutes played. This 
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process produced aggregated features that can capture multifactorial stress patterns and 

biomechanical demands that may not be evident from singular metrics. 

 

Table 5: Aggregated and Normalized Variables 

New Variable Formula Description 

AerialDuelsTotal_min 
(AerialLost + AerialWon) / 

Min 

Frequency of aerial 

duels, indicative of 

player involvement in 

physical contacts. 

FreeKicksStats_min 
(FreeKicks + CornersKicks 

+ PenaltyAttempted) / Min 

Volume of set pieces 

taken, potentially 

stressing lower limbs 

through repetitive 

technical execution. 

ActionInPenaltyArea_min 

(DefPenTouches + 

AttPenTouches + 

CarriesIntoPenaltyArea) / 

Min 

Actions in the penalty 

area, a zone of 

heightened collision risk. 

LongPassesStats_min 

(Crosses + 

LongPassesAttemp + 

Clearances) / Min 

Long-range deliveries 

involving ballistic 

movements and muscular 

exertion. 

DefensiveImpactActions_min 
(Tackles + 

FoulsCommitted) / Min 

Defensive challenges and 

fouls with high-intensity 

body impacts. 

DefensiveBlocks_min 
(ShotsBlocked + 

Interceptions) / Min 

Defensive blocks, 

indicative of dynamic, 

high-load interventions. 

OffensiveImpactActions_min 
(TakeOnsAttemp + 

FoulsDrawn) / Min 

Offensive 1v1 actions 

and fouls suffered, 

associated with muscular 
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overload and sudden 

acceleration  

 

Finally, to capture individual morphological factors potentially associated with injury 

propensity, the Body Mass Index (BMI) was computed using the following formula: 

𝐵𝑀𝐼 =
𝑊𝑒𝑖𝑔ℎ𝑡

𝐻𝑒𝑖𝑔ℎ𝑡
𝑥 10000  

The multiplicative factor of 10,000 was applied to account for the measurement units in 

the dataset, where height was expressed in centimetres, thereby converting the denominator 

to square meters. This calculated variable allowed for the inclusion of anthropometric 

characteristics in the predictive framework, supporting the hypothesis that physiological 

profile may modulate injury risk. 

To further refine the feature space, a Correlation widget was connected to the Formula 

widget to evaluate the linear relationships among the variables. This step allowed for the 

identification and subsequent removal of features exhibiting excessively high correlation. 

The reasoning for this choice is grounded in a well-established principle of statistical 

learning: highly correlated predictors introduce redundancy and may compromise the 

performance of machine learning models. The presence of multicollinearity can lead to 

unstable parameter estimates, hinder the interpretability of feature importance, and increase 

the risk of overfitting, as the model may end up memorizing redundant patterns instead of 

learning the underlying data structure. 

Moreover, the removal of redundant features improves computational efficiency and 

reduces the dimensionality of the dataset, thereby enhancing both the robustness and 

interpretability of the resulting models. 

Following the feature selection performed through the Select Columns widget, which 

enabled the isolation of only those variables deemed relevant to the analysis pipeline, a 

subsequent Python Script widget was employed to convert two text-based columns: Date 

and Born, into numerical representations. Specifically, both variables were transformed into 

the number of days elapsed since January 1, 2000, resulting in the creation of two continuous 

variables: Date_Days and Born_Days. This transformation was a prerequisite for enabling 

dynamic calculations of each player’s age at the time of every match. By aligning temporal 

and biographical data in a common numeric format, it became possible to compute match-
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specific age values directly, which are essential in evaluating how age-related physiological 

changes may influence injury susceptibility throughout a player’s career. 

To reduce the heterogeneity inherent in the original “Roles” column, where each match 

record described the specific positions covered by the player using role codes (e.g., “CM”, 

“AM”, “LW”), a Python script was employed to convert this categorical information into 

five binary macro-role indicators. Each of these new columns corresponds to a broader 

tactical category and takes value 1 if the player performed that macro-role in the given match, 

and 0 otherwise. Importantly, as players can occupy multiple tactical roles within a single 

match, the binary indicators are not mutually exclusive. This transformation served two key 

purposes. Firstly, it reduced dimensionality and increased interpretability by consolidating a 

large number of detailed roles into a manageable and analytically meaningful structure. 

Secondly, it enabled the model to capture role-specific injury risks while preserving 

positional flexibility, which is essential for reflecting the dynamic nature of player 

deployment in elite football. 

The mapping applied for this transformation is summarized in Table 6. 

 

Table 6: Role Categorization into Binary Macro-Positions 

Macro-Role Role Codes Included 

Center Backs CB 

Fullbacks FB, LB, RB, WB 

Central Midfielders DM, CM, AM 

Wide Midfielders LM, RM, LW, RW 

Forwards FW 

 

To complement the initial preprocessing phase, Figure 2b presents the subsequent 

section of the Orange3 workflow. 
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Figure 2b – Second section of the preprocessing workflow in Orange3 

 

The first widget illustrated in Figure 2b – Second section of the preprocessing workflow 

in Orange3computes the player's age on the exact date of each match by applying the 

following formula: 

𝐴𝑔𝑒 =
(𝐷𝑎𝑡𝑒𝐷𝑎𝑦𝑠 − 𝐵𝑜𝑟𝑛𝐷𝑎𝑦𝑠)

365.25
 

The divisor 365.25 is used to account for leap years and convert the result into years with 

decimal precision. This transformation allows for the inclusion of a continuous variable 

capturing the player's precise age at the time of each appearance. 

The subsequent Python Script widget extends the set of derived features and incorporates 

additional temporal and morphological indicators. These variables, described below, were 

derived by aggregating the minutes played by each athlete within predefined temporal 

windows preceding each match, using the chronological match dates as reference points. 

This allowed for a time-sensitive reconstruction of workload dynamics leading up to every 

game. 

• MinutesLast7days, MinutesLast15Days and MinutesLast30Days: cumulative 

minutes played over the previous 7, 15 and 30 days, respectively. These serve as 

intermediate and chronic workload proxies, providing a broader picture of the 

player's physiological load. 

• ACWR (Acute Chronic Workload Ratio): calculated as the ratio between 

MinutesLast7Days and the average weekly load over the previous five weeks (i.e., 

MinutesLast35Days / 5). This metric, widely adopted in sports science, serves as an 
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indicator of training-load imbalance, with extreme values often associated with 

elevated injury risk. 

• SymPctMinutesLast15vsPrev15: symmetric percentage change in minutes played 

between the most recent 15-day period and the preceding 15-day window. This 

feature captures fluctuations in workload, which may not be detected by raw 

accumulation metrics and are considered potential red flags for injury onset. 

• DaysSincePrevMatch: number of days since the player’s last official match. This 

indicator helps quantify recovery time and detect instances of fixture congestion, 

both of which may influence injury susceptibility. 

Subsequently, all performance variables previously normalized on a per-minute basis, 

intended to capture the intensity of player actions during individual matches, were employed 

to transition the dataset from a post-match to a pre-match structure. 

The aim of this transformation was to align the dataset with a realistic predictive scenario, 

in which the algorithm must rely exclusively on information available before the start of 

each match. To achieve these two additional types of features were computed: 

• a cumulative historical average, calculated across all matches played by the player 

starting from their first appearance in the dataset up to, but excluding, the current 

match. 

• a 15-day moving average, based solely on matches played during the 15 days 

preceding the match in question. 

This approach enables the model to learn not only the player’s typical workload levels 

over time but also short-term fluctuations in exposure, thereby introducing a dynamic and 

context-sensitive component. In particular, the ability to compare recent versus long-term 

averages enhances the model’s capacity to detect acute spikes or sudden drops in load, 

conditions widely recognized in the sports science literature as strong predictors of injury 

risk. 

In order to obtain a dataset that was entirely pre-match compliant, all original per-minute 

variable, those derived directly from post-match statistics, were subsequently removed using 

a Select Columns widget. This ensured that each remaining variable represented only 

information that would have been available prior to the match. 
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The result is a dataset in which each row constitutes a valid ex ante observation, meaning 

it is constructed entirely from information that would have been available prior to the match 

it refers to. This structure is essential to ensuring the logical and methodological integrity of 

any predictive application in a real-world sports context. 

 

Integration between Performance and Injuries dataset 

Once the construction of the performance dataset was completed, it was possible to 

proceed with the integration of the injury dataset. This operation aimed to enrich each row 

with historical data on injuries sustained by the same player up to that point, rigorously 

excluding any information pertaining to events occurring after the date of the observed 

match. 

Following this integration, two additional variables were derived to enrich the dataset 

with synthetic indicators of each player's individual injury history. The first, labelled 

Injury_Count_Before, represents the cumulative number of documented injuries sustained 

by a player before the date of the match in question. This is a dynamic variable whose value 

increases over time in relation to prior injury events, allowing the model to assess whether a 

higher incidence of past injuries may be associated with an increased probability of future 

occurrences. 

The second variable, Injury_Past30Days, is binary and takes the value 1 if the player had 

completed an injury spell within the 30 days preceding the observed match, and 0 otherwise. 

The purpose of this feature is to capture potential residual risk conditions, such as cases in 

which an athlete returns to play shortly after an injury episode, a situation that could be 

associated with an elevated likelihood of recurrence or overload. 

The subsequent steps of the data preprocessing pipeline are depicted in the following 

figure which illustrates how the integration of the injury dataset is finalized and how the 

target variables are computed to support the supervised learning framework. 
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Figure 2c  - Third section of the preprocessing workflow in Orange3 

 

At this stage, for each observation, the player’s injury history is queried to determine 

whether a new injury event begins within the 20 days following the date of the match. If an 

injuries occur within this timeframe, the earliest event in chronological order is identified, 

and its corresponding categorization (MTI, ALI, BCI, or OTHER) is assigned to the new 

field Injury_Categorization_Next20Days. In the absence of any injury, the variable is set to 

“None.” 

Subsequently, two additional binary indicators were computed to capture the presence or 

absence of injury events. These variables were derived by comparing the match date with 

each player's individual injury history, in order to determine whether a new episode occurred 

within a specific post-match time frame. 

Specifically, the variable Injury_Next20Days takes the value 1 if the player sustained an 

injury within the 20 days following the match, and 0 otherwise. This feature is less specific 

than the first one, maintaining the observation window at medium term and serves as a proxy 

for assessing cumulative workload management and medium-term injury risk. 

The variable Injury_Next3Days applies a more stringent threshold, identifying whether 

an injury occurred within three days of the match. This narrower window is particularly 

suited to capturing acute overload conditions or insufficient recovery, enabling the analysis 

of situations in which the player's performance or physical state in a short term may have 

directly contributed to the injury onset. 

The combined definition of these three target variables was designed to support varying 

levels of predictive complexity. Injury_Categorization_Next20Days introduces a multi-class 

classification task, requiring the model not only to predict the occurrence of an injury but 
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also to distinguish among its main clinical categories. Although this approach increases the 

modelling complexity, it yields more informative and operationally actionable outputs for 

coaching and medical staff. 

In contrast, the two binary variables (Injury_Next20Days and Injury_Next3Days) enable 

a more manageable exploration of the problem through standard binary classification tasks, 

aimed solely at predicting whether an injury will occur. These variables offer a valuable basis 

for comparative model evaluation, depending on the time horizon of interest. 

A subsequent filtering step was undertaken to eliminate all observations that lacked an 

adequate historical context, namely, the first recorded match for each player. The absence of 

prior data prevented the computation of many engineered features, especially those based on 

temporal aggregations or injury history, thereby generating missing values flagged as “?”. 

Because these rows offered no predictive value and risked undermining both model training 

and evaluation.  

All preprocessing steps detailed thus far, ranging from data cleaning to normalisation and 

feature engineering, were fitted on the training set and then identically reapplied to the test 

set using the parameters learned during training, thereby guaranteeing feature-space 

consistency and enabling an unbiased evaluation of the trained algorithms. 

Finally, to tailor the analysis to each prediction task, a dedicated workflow was 

configured, complete with the selected learning algorithms and the corresponding evaluation 

widgets. The three pipelines are summarised in the Figures below, where Figure 2d depicts 

the workflow for Injury_Categorization_Next20Days, Figure 2e presents the workflow for 

Injury_Next20Days and Figure 2f  illustrates the pipeline developed for Injury_Next3Days. 
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Figure 2d – Prediction workflow for Injury_Categorization_Next20Days 

 

 

 

 

Figure  2e  – Prediction workflow for Injury_Next20Days 
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Figure 2f – Prediction workflow for Injury_Next3Days  

 

To address the pronounced class imbalance in the target variables, Injury_Next3Days and 

Injury_Next20Days, a resampling strategy was adopted. The native dataset, designed to 

mirror the real-world incidence of injuries, exhibited a substantial disparity between positive 

and negative cases; while this asymmetry reflects clinical prevalence, it cause supervised 

models to favour the majority class at the expense of correctly identifying rare events.  

As depicted in Figure 2g for Injury_Next20Days and Figure 2h for Injury_Next3Days, an 

alternative branch of the workflow was introduced to assess the effect of training on 

rebalanced datasets, employing the Synthetic Minority Oversampling Technique for Nominal 

and Continuous features (SMOTENC) via a Python widget. For each continuous numerical 

attribute, SMOTENC generates new minority instances by interpolating between a genuine 

minority case and one of its nearest minority neighbours. When the attribute is numeric but 

restricted to integer values, the synthetic value is subsequently rounded to the nearest integer 

and clipped to the empirical minimum–maximum range, preventing implausible outcomes. 

Categorical variables, which cannot be sensibly interpolated, are replicated by assigning the 

most frequent category observed among the reference instance and its neighbours, ensuring 

that every synthetic level already belongs to the attribute’s original domain.  
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Two distinct rebalancing scenarios were implemented. For Injury_Next3Days, a moderate 

oversampling increased the share of positive cases from 3 % to 10 % while preserving a 

credible class distribution; for Injury_Next20Days, a slightly more pronounced 

oversampling raised the positive proportion from 16 % to 25 %, obtaining a ratio of one 

positive instance for every four observations. The rebalanced datasets were subsequently 

employed to train predictive models in parallel with models fitted on the unaltered data, in 

order to verify whether a modest rebalancing could improve the detection of rare events. 

 

 

 

 

 

 

 

 

 

 

Figure 2g – Prediction workflow for Injury_Next20Days with SMOTE applied 

  

Figure 2h – Prediction workflow for Injury_Next3Days with SMOTE applied 
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3.4 Model selection and evaluation 

All performance metrics discussed in this chapter were computed using a stratified 20-

fold cross-validation applied exclusively to the training set. This technique ensures that each 

fold maintains the same class distribution as the original dataset, which is particularly 

important in settings with class imbalance. 

Compared to more common configurations such as 10-fold cross-validation, the choice 

of 20 folds reflects a trade-off tailored to the specific characteristics of this study. Given the 

relatively large number of observations in the training set and the low presence of positive 

cases, a higher number of folds is an option that allows for more reliable validation without 

excessively reducing the number of observations for each training subset. This enhances the 

reliability of performance estimates, especially for rare-event detection. 

As illustrated in the figures of the previous chapter, each of the three prediction features 

(Injury_Categorization_Next20Days, Injury_Next20Days, and Injury_Next3Days) was 

modelled and evaluated using the same trio of predictive algorithms: Gradient Boosting, 

Random Forest, and Logistic Regression. 

• Gradient Boosting incrementally trains a sequence of weak decision trees, each one 

focused on correcting the residual error of the ensemble built so far (IBM, 2025). 

This sequential refinement allows the model to learn intricate non-linear interactions 

across heterogeneous features and to balance bias and variance effectively, an 

advantage when positive cases are scarce, though it increases computational cost and, 

if excessively deep or numerous trees are used, can heighten the risk of over-fitting 

(IBM, 2025).   

• Random Forest aggregates a large number of decorrelated decision trees, each grown 

on a bootstrap sample, in example a training subset drawn with replacement, and on 

a random subset of predictors (IBM, 2025). The bootstrap procedure lowers model 

variance and confers robustness to noisy or partially missing data, while built-in 

estimates of feature importance support domain validation; the trade-offs are higher 

memory consumption and reduced immediate interpretability compared with a single 

tree (IBM, 2025).  
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• Logistic Regression provides a fast, linear baseline that outputs well-calibrated class 

probabilities and remains readily interpretable, making it suitable for communicating 

results to non-technical stakeholders (IBM, 2025). Its linear decision surface, 

however, may underperform when relationships among variables are strongly non-

linear or when multicollinearity is present (IBM, 2025).  

To rigorously assess classifier performance on the training set, four metrics were adopted: 

F1-score, Matthews Correlation Coefficient (MCC), Confusion Matrix, and Log-loss. Each 

parameter is selected to address a specific methodological need within the injury prediction 

context. 

The F1-score is the harmonic mean of Precision and Recall:  

 

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
. 

 

This formulation penalises imbalances between the two components and is therefore 

particularly suited to settings with rare positive cases, as is the case with imminent injuries. 

In this study, the primary objective is to maximise the model’s ability to detect as many 

injuries as possible while keeping false alarms within acceptable bounds. Relying on 

Precision or Recall in isolation would mean favouring one aspect at the expense of the other, 

ultimately compromising the decision-making balance. The F1-score encapsulates this trade-

off in a single scalar measure. 

 

Matthews Correlation Coefficient (MCC) 

The MCC combines all four entries of the confusion matrix and returns a value between 

–1 and +1 (with 0 indicating random classification). Unlike Accuracy or AUC, it remains 

informative even under severe class imbalance because it simultaneously balances true and 

false positives and negatives. In this research it is used as an indicator of overall robustness: 

a high MCC confirms that the model behaves consistently across the entire set of 

observations, not only within the minority class. 
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Confusion Matrix 

The confusion matrix reports the counts of True Positives (TP), False Positives (FP), True 

Negatives (TN), and False Negatives (FN). Although it is not a scalar metric, it constitutes 

the most direct tool for operationally interpreting model outcomes, as it immediately 

quantifies the number of injuries correctly predicted and those that were missed. 

 

Log-Loss 

Finally, Log-loss was included as a metric to assess the probabilistic accuracy of 

predictions rather than simply the correctness of binary classifications. It evaluates how close 

the predicted probabilities are to the true outcomes, assigning heavy penalties to incorrect 

predictions made with high confidence. In other words, a classifier that assigns a high 

probability to the wrong class is penalised far more than one that makes the same mistake 

with uncertainty. 

Within the scope of this research, Log-loss is used to assess model calibration, or the 

ability to provide reliable estimates of injury risk in probabilistic terms. This becomes 

particularly relevant in operational applications: for instance, two observations may both 

receive a negative binary prediction (no injury expected), yet the predicted probabilities 

might differ significantly: 0.10 in the first case, 0.40 in the second. Although both outputs 

result in the same classification, the latter indicates a much higher underlying risk, which 

may warrant a preventive medical intervention. 

Therefore, the inclusion of Log-loss enables the evaluation to move beyond the binary 

outcome and towards a more nuanced understanding of the informational quality of the 

predicted probabilities. In a decision-making environment where the intervention threshold 

may vary depending on resource constraints or medical priorities, having access to well-

calibrated risk estimates represents a tangible strategic advantage. 

Taken together, these four metrics allow for a comprehensive, multi-level assessment of 

model performance. 
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3.5. Hyperparameters tuning 

This chapter provides a discursive account of the hyper-parameter configurations adopted 

for the three algorithms under consideration, Logistic Regression, Random Forest, and 

Gradient Boosting, while maintaining a uniform setup across the various target variables, 

with the aim of ensuring a comparability of results. 

 

Gradient Boosting 

The Gradient Boosting model was configured with 100 trees and a learning rate of 0.10. 

In the initial configuration, the model was trained with a lower number of trees and reduced 

tree depth; however, under these conditions, it failed to effectively identify injury cases, 

producing nearly null sensitivity in all classification tasks. This limitation highlighted the 

need to enhance model capacity to capture the rare and multifactorial nature of injury events. 

As a result, both the number of trees and the maximum depth were increased in a controlled 

manner. This combination represents a balanced trade-off between predictive capacity and 

training stability: enough trees allow the model to gradually correct residual errors, while a 

moderate learning rate prevents each individual tree from having an excessive impact. 

Each tree was limited to a maximum depth of 20 levels, enabling the model to capture 

complex interactions among predictors, such as those between workload, recovery time, and 

injury history. Greater depths would have produced overly specific trees, increasing the risk 

of replicating noise present in the training data. Conversely, a lower number of trees would 

have limited the model’s ability to learn the underlying structure of the phenomenon to be 

predicted. 

A minimum of five observations per internal node was also enforced to allow further 

splits. Lower values would make the model more sensitive to local fluctuations, while 

excessively high values would reduce the model’s adaptability. 

The sub-sampling parameter, which determines the fraction of observations used by each 

tree, was set to 1.00, meaning that all available data were used at every iteration. 
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Random Forest 

The first hyperparameter that characterises the Random Forest model is the number of 

trees composing the ensemble. In general, increasing the number of trees helps reduce the 

variance of the model and improves its overall stability. However, beyond a certain 

threshold, the marginal gains become negligible. Conversely, setting this value too low may 

fail to provide sufficient coverage of the feature space, particularly in the presence of 

heterogeneous predictors. As with Gradient Boosting, the first experiments conducted with 

a lower number of trees led to unsatisfactory results, with the model showing limited ability 

to identify injury cases across all targets, this has led to a progressive increase in the number 

of trees. In this study, the number of trees was fixed at 100, a value which, according to both 

the literature and preliminary experimentation, represents a practical compromise, beyond 

which the error tends to stabilize and further increases yield only minimal improvements at 

the cost of longer training times. 

A second relevant parameter is the number of candidate variables evaluated at each split. 

In a Random Forest, only a random subset of predictors is considered at each node to 

encourage diversification among the trees and to reduce the risk that dominant variables 

influence the entire ensemble. Increasing this number tends to reduce variance but may also 

raise the correlation between trees, while excessively low values can increase diversity at 

the cost of potentially overlooking relevant predictors. In this case, the value was set to 10, 

which approximates √𝑝, where p is the total number of predictors (≈ 50). This choice allows 

the model to maintain low correlation between trees while ensuring that the most informative 

variables are not systematically excluded from the decision process. 

Regardless of whether SMOTENC was applied or not, class balancing was enabled within 

the bootstrap samples used to train the individual trees. In this context, a bootstrap sample 

refers to a subset of the original dataset generated by randomly drawing observations with 

replacement, meaning that the same instance may appear multiple times while others may 

be excluded. Enabling class balancing within these samples ensures that positive cases are 

adequately represented in the training of each tree, thus reducing the risk that the model 

neglects the minority class during learning. 

Finally, for the Injury_Next3Days target variable only, three additional constraints were 

introduced to mitigate overfitting risks: the maximum number of trees in the ensemble was 
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reduced to 8, the maximum depth of each individual tree was capped at 5 levels, and splitting 

was inhibited on subsets containing fewer than 10 samples. 

 

Logistic regression 

The Logistic Regression model was configured using L2 (Ridge) regularization, which 

introduces a penalty term into the loss function in order to constrain the magnitude of the 

coefficients. This helps control the model’s variance and counteracts potential 

multicollinearity, particularly relevant in this study, which involves a large number of 

engineered and potentially correlated predictors. 

The strength of the regularization is governed by the C parameter, set to 1.0. Preliminary 

analyses showed that this value represents a suitable compromise: it minimises the log-loss 

while maintaining a good level of recall. Stronger regularization led to underfitting, 

especially for the minority class, whereas weaker constraints increased variance without 

yielding meaningful improvements in F1-score or MCC. 

To address the residual class imbalance, again automatic class weighting was enabled, 

regardless of whether SMOTENC was applied upstream. This option assigns greater 

penalties to misclassified instances of the minority class, enhancing the model’s sensitivity 

to rare events. 

Overall, the hyperparameter configurations adopted for each algorithm reflect a balance 

between model complexity, predictive performance, and robustness to class imbalance. 
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4. Results  

To address the research question guiding this study, this chapter is structured into three 

distinct sections. The first section presents the results obtained during cross-validation on 

the training set, with the aim of evaluating the models in terms of accuracy, robustness, and 

predictive reliability. The second section reports the results achieved on the test set, 

enabling an objective assessment of the generalization capabilities of the selected models. 

Finally, the third section is dedicated to analysing the relative importance of predictors, in 

order to identify the variables that contributed most significantly to the algorithmic 

decisions, despite the absence of data related to training sessions, biometric indicators, or 

physiological measurements. In line with the quantitative approach adopted, all results are 

presented in tabular and graphical form, without subjective interpretation, which will be 

developed in the subsequent discussion chapter. 

 

4.1. Model Performance on the Training Set 

This section concisely and rigorously reports the results obtained by the three selected 

algorithms: Logistic Regression, Random Forest, and Gradient Boosting, during validation 

on the training set, performed by means of cross-validation. Performance is presented 

solely through the metrics defined in the model evaluation chapter (F1-score, Matthews 

Correlation Coefficient, Log-loss and the Confusion Matrix). 

 

4.1.1. Training-Set performance for Injury_Categorization_Next20Days  

Table 7, reported below summarizes the average evaluation metrics obtained during 

validation on the training set for the three algorithms considered. Gradient Boosting records 

the highest scores for both F1-score (0.898) and Matthews Correlation Coefficient (0.635), 

indicating superior ability to balance precision and recall while maintaining a strong overall 

correlation between predictions and observations. Random Forest follows with an F1 of 

0.859 and an MCC of 0.502 yet achieves the lowest Log-loss (0.309), reflecting more 

accurate probabilistic calibration than the other models. Logistic Regression exhibits 

markedly lower performance (F1 = 0.383; MCC = 0.086) and a Log-loss of 1.528, 
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underscoring the limitations of a linear model when confronted with non-linear 

relationships and imbalanced classes. 

 

Table 7: Training-set metrics for Injury_Categorization_Next20Days 

 

 

Building on these aggregate results, Figure 3 shown below displays, for each algorithm, 

the class-normalized confusion matrix; absolute counts are provided at the bottom of each 

matrix. 

• Gradient Boosting correctly classifies 40.4 % of ALI, 39.1 % of BCI, 54.9 % of 

MTI, 98.8 % of None and 45.5 % of Other. Misclassifications concentrate mainly 

on the None category: approximately 59 % of ALI and BCI instances are reassigned 

to this class. 

• Random Forest correctly identifies 28.1 % of ALI, 22.5 % of BCI, 33.2 % of MTI, 

99.6 % of None and 26.2 % of Other. Errors again gravitate towards None, which 

absorbs between 66 % and 78 % of injury-related observations. 

• Logistic Regression yields lower class-level accuracies across the board: 37.9 % 

(ALI), 46.4 % (BCI), 26.6 % (MTI), 28.0 % (None) and 41.5 % (Other), and 

exhibits a more dispersed error pattern, without a single predominant sink class. 

 

 

Figure 3 - Confusion matrices for Injury_Categorization_Next20Days 
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4.1.2. Training-set metrics for Injury_Next20Days 

To assess the impact of class rebalancing in a comprehensive manner, this section is 

divided into two complementary subsections: the first examines model performance on the 

non-rebalanced dataset, which preserves the original injury distribution, whereas the 

second presents the same metrics computed on the dataset rebalanced with SMOTENC, 

thereby enabling a direct comparison between scenarios with and without minority-class 

oversampling. 

 

4.1.2.1. Training-Set Performance on Original Imbalanced Data (Injury_Next20Days) 

Table 8 reports the average performance metrics obtained on the training dataset, 

without class rebalancing, for the prediction of Injury_Next20Days. Gradient Boosting 

emerges as the best-performing model in terms of both F1-score (0.902) and Matthews 

Correlation Coefficient (0.628), confirming its ability to capture a balanced trade-off 

between sensitivity and precision while maintaining overall predictive coherence. Random 

Forest follows closely with an F1-score of 0.870 and an MCC of 0.527; despite a slightly 

lower discriminative power, it achieves the lowest Log-loss (0.252), indicating a more 

calibrated probabilistic output. Logistic Regression, performs considerably worse (F1 = 

0.656; MCC = 0.129; Log-loss = 0.664), reaffirming its structural limitations in modelling 

complex and non-linear relationships, especially in the presence of an imbalanced outcome 

variable. 

 

Table 8 - Training-set metrics for Injury _Next20Days 
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Figure 4 provides further insight by showing, for each model, the normalized confusion 

matrices. These illustrate how predictions are distributed across the actual classes, 

highlighting the internal classification dynamics underlying the metrics presented above. 

• Gradient Boosting achieves a recall of 53.2% for the positive, while maintaining a 

specificity of 98.2%. This configuration results in a well-balanced classifier, 

capable of detecting more than half of all injuries without compromising 

performance on the majority class. 

• Random Forest yields slightly lower performance for the minority class, with 

35.3% of true positives correctly identified and 99.4% of true negatives retained. 

The increased specificity comes at the expense of missed. 

• Logistic Regression correctly classifies 56.3% of positive instances but at the cost 

of substantial misclassification of negatives (only 61.0% accuracy on class 0). The 

relatively high false positive rate contributes to the model's poor Log-loss and 

MCC. 

 

Figure 4 - Confusion matrices for Injury_Next20Days 

 

4.1.2.2. Training-Set performance on rebalanced data (Injury_Next20Days) 

Table 9 presents the average performance metrics obtained on the training set for the 

Injury_Next20Days target after applying class rebalancing via SMOTENC. Among the 

models evaluated, Random Forest achieves the best overall performance with an F1-score 

of 0.889 and the highest Matthews Correlation Coefficient (MCC) at 0.714, alongside the 

lowest Log-loss (0.282). Gradient Boosting closely follows with an F1-score of 0.885 and 

an MCC of 0.691, while showing slightly less accurate calibration (Log-loss = 0.586). 
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Logistic Regression remains clearly inferior, with an F1-score of 0.626, an MCC of 0.162, 

and a Log-loss of 0.664, confirming the difficulties faced from classifiers in capturing 

complex relationships, even after oversampling. 

 

Table 9: Training-set metrics for Injury _Next20Days on rebalanced data 

 

 

Building on these summary metrics, Figure 5 shows the class-normalized confusion 

matrices for each algorithm, allowing for a more inspection of prediction behaviour. 

Absolute counts are provided below each matrix. 

• Gradient Boosting correctly identifies 69.6% of injured players and 95.3% of non-

injured players. The false negative rate remains non-negligible (30.4%), but is 

substantially reduced compared to the non-SMOTENC scenario. 

• Random Forest achieves a true positive rate of 62.5% and a true negative rate of 

98.8%, leading to the best Log-loss among the three algorithms. Its F1-score also 

slightly exceeds that of Gradient Boosting, confirming its overall superior balance 

between classification performance and probabilistic calibration. 

• Logistic Regression continues to show weaker results, with a true positive rate of 

57.8% and a true negative rate of 60.8%. The model struggles to learn the minority 

class despite oversampling. 

 



67 

 

 

Figure 5 - Confusion matrices for Injury_Next20Days on rebalanced data 

 

Comparing these outcomes with those obtained without class rebalancing reveals 

several important trends. Both Gradient Boosting and Random Forest show improvements 

in true positive rates and MCC when SMOTENC is applied. Specifically, Random Forest 

benefits most in terms of F1-score (+0.019) and MCC (+0.187), while Gradient Boosting 

shows a marginal decrease in F1 but a notable improvement in MCC (+0.063). On the other 

hand, Logistic Regression experiences an increase in F1 but maintains a relatively low 

MCC, indicating that oversampling alone is insufficient to compensate for its lack of non-

linear modelling capacity 

 

4.1.3. Training-set metrics for Injury_Next3Days 

Consistent with the structure adopted for the Injury_Next20Days variable, the analysis 

of Injury_Next3Days is likewise divided into two distinct subsections. The first presents 

the results obtained on the original data, preserving the real-world distribution of injuries; 

the second reports the model performance following the application of the SMOTENC 

rebalancing technique.  

 

4.1.3.1. Training-Set performance on original imbalanced data (Injury_Next3Days) 

Table 10 reports the average performance metrics obtained on the training set for the 

Injury_Next3Days target in the absence of class rebalancing. As expected, the prediction 

task proves considerably more challenging given the huge imbalance of the target variable, 

positive cases account for less than 4% of the total observations. The Gradient Boosting 

algorithm achieves a F1-score (0.948) and the lowest Log-loss (0.347), although its 

Matthews Correlation Coefficient (0.054) remains low. Random Forest yields a slightly 
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lower F1-score (0.896) and higher Log-loss (0.525), but records the highest MCC (0.077), 

indicating a marginally better balance between true and false classifications under these 

extreme conditions. Logistic Regression, by contrast, performs poorly across all metrics, 

with an F1-score of 0.731, an MCC of 0.051, and the highest Log-loss (0.661), 

underscoring the model's structural limitations 

 

Table 10 - Training-set metrics for Injury _Next3Days 

 

 

These results are further clarified by the class-normalised confusion matrices reported 

in Figure 6. Absolute values are indicated at the base of each matrix. 

• Gradient Boosting classifies 99.7% of non-injury instances correctly, but fails to 

detect the majority of positive cases, with a true positive rate of only 2.1%.  

• Random Forest shows a better balance, identifying 24.2% of injury instances while 

maintaining a high specificity (88.2%). Its improved MCC reflects a more equitable 

distribution of classification errors, though the true positive rate remains low in 

absolute terms. 

• Logistic Regression, as anticipated, exhibits the weakest performance. It correctly 

identifies 51.8% of injuries but misclassifies 38.3% of non-injury cases, leading to 

significant loss in both discrimination and calibration, as evidenced by the high 

Log-loss. 
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Figure 6 - Confusion matrices for Injury_Next3Days  

 

 

4.1.3.2 Training-Set performance on rebalanced data (Injury_Next3Days) 

Table 4.6 presents the average performance metrics obtained on the training set for the 

Injury_Next3Days target after applying class rebalancing via SMOTENC. Among the 

models evaluated, Gradient Boosting achieves the highest F1-score (0.939) and the best 

Matthews Correlation Coefficient (MCC = 0.659), reflecting a strong trade-off between 

precision and recall and a consistent alignment between predicted and actual outcomes. 

Random Forest follows closely with an F1-score of 0.932 and an MCC of 0.628, and 

outperforms the other models in terms of probabilistic calibration, as indicated by the 

lowest Log-loss value (0.165). Logistic Regression remains less effective, with an F1-score 

of 0.693, an MCC of 0.121, and a Log-loss of 0.660, confirming its limited capacity to 

model complex, non-linear interactions even after oversampling. 

 

Table 11 - Training-set metrics for Injury _Next20Days on rebalanced data 

 

 

Building on these summary metrics, Figure 7 shows the class-normalized confusion 

matrices for each algorithm, providing a detailed overview of classification performance 

across the binary outcome. Absolute instance counts are reported below each matrix. 
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• Gradient Boosting correctly identifies 51.8% of injured players and 99.4% of non-

injured players. The model displays a relatively balanced distribution of errors and 

high classification accuracy for the majority class. 

• Random Forest achieves the highest true negative rate (99.9%) among all 

algorithms and identifies 43.1% of the injured class correctly. While its recall is 

lower than that of Gradient Boosting. 

• Logistic Regression classifies 57.6% of injured players correctly and achieves a 

true negative rate of 62.1%. Despite improvements from the original dataset, the 

model still struggles to reach competitive levels of predictive reliability. 

 

 

Figure 7 - Confusion matrices for Injury_Next20Days on rebalanced data 

 

A comparison with the performance obtained without class rebalancing reveals clear 

improvements, particularly for tree-based models. Gradient Boosting maintains similar F1 

performance while improving in MCC (+0.605), confirming a more stable predictive 

structure. Random Forest also shows marked improvements across all metrics: F1 increases 

by +0.036, MCC by +0.551, and Log-loss drops from 0.525 to 0.165. Conversely, Logistic 

Regression sees a decline in F1-score (–0.038), a marginal increase in MCC (+0.070), and 

a nearly unchanged Log-loss. These results confirm that oversampling via SMOTENC 

enhances model robustness and reliability, particularly when combined with ensemble 

methods capable of capturing non-linear patterns.  
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4.2. Model Performance on the Test Set  

This section rigorously reports the performance of the three selected algorithms when 

evaluated on the independent test set. As the previous chapter, also in this one the results 

are presented exclusively through the metrics established in the Model Evaluation chapter, 

without any interpretative commentary, which is deferred to the subsequent Discussion 

chapter. 

 

4.2.1. Test-Set performance for Injury_Categorization_Next20Days  

Table 12 reports the evaluation metrics obtained on the independent test set for the 

multiclass target Injury_Categorization_Next20Days. The three algorithms produce 

closely aligned F1-scores, all below 0.19. Random Forest obtains the highest F1-score 

(0.186) and a Matthews Correlation Coefficient equal to zero, together with the lowest Log-

loss (0.865). Gradient Boosting reaches an F1-score of 0.186 and an MCC of –0.006, while 

displaying the highest Log-loss (2.403). Logistic Regression records an F1-score of 0.179, 

an MCC of –0.009, and an intermediate Log-loss (1.382). 

 

Table 12 - Test-set metrics for Injury_Categorization_Next20Days 

 

 

Figure 8 - Confusion matrices for Injury_Categorization_Next20DaysFigure 8 depicts 

the class-normalized confusion matrices for the three models; absolute counts are 

indicated below each matrix. 

• Gradient Boosting assigns 100 % of all instances to the class None. 

• Random Forest exhibits the same behaviour, predicting exclusively the class 

None. 

• Logistic Regression exhibits limited performance in identifying most injury 

categories, with only the 'None' class being correctly classified in more than 50% 

of cases (61.3%). All other classes show low correct classification rates, ranging 

from 2.6% to 22.0%. 
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Figure 8 - Confusion matrices for Injury_Categorization_Next20Days  

 

 

4.2.2. Test-Set performance of models trained on original and rebalanced data 

(Injury_Next20Days) 

The present subsection reports the results achieved by the algorithms on both the 

original dataset and the rebalanced one. Performance is summarised in Table 13 through 

F1-score, Matthews Correlation Coefficient (MCC), and Log-loss; the associated 

confusion matrices are shown in Figure 9. 

Table  13 summarizes the test-set performance in both of dataset. In the rebalanced 

configuration, Random Forest achieves the highest F1-score (0.240) and the greatest 

proportion of correctly classified positive and negative cases, although with the highest 

Log-loss among the tree-based approaches (1.288). Gradient Boosting, evaluated on the 

SMOTENC dataset, records an F1-score of 0.236 and an MCC of –0.017, accompanied by 

the largest Log-loss overall (3.742), indicating limited calibration accuracy. Logistic 

Regression exhibits marginal improvements after oversampling, F1 rises to 0.179 and 

MCC to 0.004, while its Log-loss (0.633) remains essentially unchanged relative to the 

Plain variant (0.628). Under the original class distribution, both Gradient Boosting and 

Random Forest assign every observation to the non-injury class, yielding F1-scores of zero; 

Random Forest nonetheless attains the lowest overall Log-loss (0.447). 
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Table  13 - Test-Set metrics for Injury_Next3Days: Models trained on original and rebalanced data 

 

 

These results are further clarified by the Confusion matrices reported in Figure 9. The 

top row refers to the model performance on the original dataset, while the bottom row 

corresponds to results obtained after applying a rebalancing strategy. Percentages are 

normalized by the actual class. 

• Gradient Boosting (original) classifies 100.0 % of non-injury instances correctly 

but fails to detect any injury cases, with a true positive rate of 0.0 %. 

Trained after the rebalancing, the same model shows an inverted trend, assigning 

83.9 % of class 0 and 82.1 % of class 1 instances to the positive class. 

• Random Forest (original) behaves identically to Gradient Boosting, predicting all 

instances as non-injury and resulting in a null sensitivity. When trained on the 

rebalanced dataset, it reassigns the majority of samples to the positive class, with 

91.1 % of non-injury cases and 89.8 % of injury cases classified as such. 

• Logistic Regression (original) detects 21.8 % of injury cases while maintaining 78.0 

% specificity. With rebalanced data, it displays a comparable pattern, correctly 

classifying 24.0 % of injuries and 76.6 % of non-injury instances. 
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Figure 9 - Confusion matrices on Test Set: Models trained on original vs rebalanced data 

  

4.2.3. Test-Set performance of models trained on original and rebalanced data 

(Injury_Next3Days) 

The present subsection reports the results achieved by the algorithms on both the 

original dataset and the rebalanced one, considering a prediction horizon of 3 days.  

Under the original class distribution, both Logistic Regression and Random Forest 

assign all instances to the non-injury class, yielding F1-scores and MCC values equal to 

zero. Gradient Boosting slightly deviates from this trend, reaching a minimal true positive 

rate of 8.5 %, with a corresponding F1-score of 0.0409 and MCC of –0.0091. Among the 

three, Logistic Regression records the lowest Log-loss (0.1425), while Gradient Boosting 

exhibits the highest (0.6937), reflecting poorer calibration. 

After applying the SMOTENC rebalancing strategy, all models improve in terms of 

positive class detection. Random Forest achieves the best F1-score (0.0589) and the highest 

true positive rate (67.1 %) but also registers a high Log-loss (1.0631). Gradient Boosting 

performs comparably in terms of F1 (0.0567), although with the highest Log-loss overall 

(1.5115). Logistic Regression shows limited change, with an F1-score of 0.0413 and a 

relatively low Log-loss (0.5996). 
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Table 14 -  Test-Set metrics for Injury_Next3Days: Models trained on original and rebalanced data 

 

 

These results are clarified by the confusion matrices reported in Figure 10. As the 

previous paragraph the top row refers to the model performance on the original dataset, 

while the bottom row corresponds to the rebalanced configuration.  

• Gradient Boosting (original) classifies 89.9 % of non-injury instances correctly and 

detects 8.5 % of injury cases. After rebalancing, it correctly identifies 54.9 % of 

positive cases, but misclassifies 58.2 % of non-injury instances. 

• Random Forest (original) mirrors the behaviour of Logistic Regression, with 100.0 

% of instances predicted as non-injury. Post-rebalancing, it reaches a true positive 

rate of 67.1 %, while classifying 69.1 % of non-injury instances correctly. 

• Logistic Regression (original) assigns all instances to the non-injury class, yielding 

100.0 % specificity and 0.0 % sensitivity. With rebalanced data, sensitivity 

increases to 14.6 %, while specificity drops to 80.6 %. 
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Figure 10 - Confusion matrices on Test Set: Models trained on original vs rebalanced data 

 

 

4.3. Features Importance 

This section presents the results of the feature importance analysis, conducted to 

quantify the contribution of each predictor to the injury risk classification task. Feature 

importance scores are reported as computed with respect to the target variables, based on 

the initial training dataset. The analysis aims to assess the statistical association between 

each predictor and the outcome labels, and results are presented separately for each of the 

three classification tasks: injury categorization into five classes, injury occurrence within 

the next 20 days, and injury occurrence within the next 3 days. 

To estimate the relevance of each predictive variable in the classification process, three 

filter methods, recognized in the literature, were employed: ReliefF, Information Gain and 

Chi-Square. Each method assigns a score that quantifies the extent to which a given 

predictor contributes to the differentiation between the classes of the target variable. 

Information Gain measures the reduction in entropy: that is, the uncertainty associated 

with the distribution of the target variable, resulting from splitting the dataset based on the 

values of a specific predictor. This metric quantifies how much information a feature 
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provides about the output to be predicted: a high Information Gain indicates that the 

variable effectively distinguishes between output classes, making it particularly valuable 

for predictive models. 

The Chi-Square test, used to assess the statistical association between an independent 

variable and a categorical target, is based on comparing the observed frequencies with 

those expected under the assumption of independence. Although this method is formally 

applicable only to categorical variables, the Orange3 software automatically applies a 

discretization procedure when the test is used on continuous variables. The resulting 

score reflects the extent to which the probability distribution of the target classes differs 

across the intervals created. A high Chi-Square value thus indicates a statistically 

significant dependency between the predictor and the target variable. 

Unlike methods based on global statistics, ReliefF evaluates each observation by 

considering its specific characteristics and identifying the most similar instances in the 

dataset. For each instance, the algorithm compares the values of each predictor with those 

of its nearest neighbours belonging to the same and different target classes. A predictor is 

considered important if, within similar contexts, its variation is consistently associated with 

changes in the target class. This local analysis enables the detection of patterns that vary 

across subgroups and allows the algorithm to capture complex relationships, including 

interactions (e.g., between workload and player role) and non-linear effects that would not 

be detected by globally aggregated methods. 

 

4.3.1. Feature importance with respect to Injury_Categorization_Next20Days 

The importance of each predictor was computed with respect to the five-class injury 

categorization target (MTI, ALI, BCI, Other, None). To facilitate a clear and independent 

evaluation of each relevance metric, the results are reported in three separate columns, one 

for each method. This structure enables a direct comparison of the relative contribution of 

each feature to the classification task, according to different statistical criteria.  

Table 15 shows the top 20 features for each metric, allowing a direct comparison of the 

variables identified as most informative by each statistical criterion. 
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Table 15 - features ranked by Relief, Info. Gain and Chi-square with respect to Injury_Categorization_Next20Days 

 

 

The magnitude of the importance scores varied across the three evaluation criteria. For 

Information Gain, the highest values ranged between 0.012 and 0.009, with a slow decline 

beyond the top five predictors. Chi-square scores were generally higher in absolute terms, 

with the top three variables exceeding 80 and a maximum value of 97.026. ReliefF scores 

showed a more gradual distribution, with top values between 0.073 and 0.060, and several 

additional features scoring in the 0.045–0.050 range. Overall, the strongest signals were 

concentrated among a limited number of features, particularly those related to previous 

injury history. 

When considering each metric individually: 

• Information Gain: the top-ranked features were Other_Before (0.012), MTI_Before 

(0.011), and ALI_Before (0.010). All these predictors are related to previous injury 

history. The highest-scoring non-injury feature was BMI (0.009), followed by 

TotalShotPerMin_Avg (0.009). 

• Chi-square: the most relevant features were ALI_Before (χ² = 97.026), MTI_Before 

(89.799), and Injury_Count_Before (83.314), all significantly associated with the 

injury categorization target. Among non-injury variables, excluding the binary 

variable ‘Forwards’, the highest ReliefF scores were obtained by 

TotalShotPerMin_Avg (59.834) and TakeOnsAttempPerMin_Avg15 (54.506). 
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• ReliefF: the highest relevance scores were assigned to BCI_Before (0.073), 

MTI_Before (0.071), and Other_Before (0.070). BMI and ALI_Before also 

obtained relatively high values (0.060 and 0.066, respectively). Among match-

related statistics, ProgressiveCarryDistancePerMin_Avg and MinutesLast30Days 

scored above 0.045. 

 

4.3.2 Feature importance with respect to Injury_Next20Days on the original and 

rebalanced training dataset 

This subsection reports the feature importance values obtained through two 

separate analysis: the first conducted on the original training dataset, and the second 

on a rebalanced version obtained by applying the Synthetic Minority Over-

sampling Technique. The results are presented separately for each case. 

Table 16 shows the top 20 features ranked by Information Gain, Chi-square, and 

ReliefF with respect to the Injury_Next20days features, as computed during the 

training phase on the original dataset. 

Table 16 - features ranked by Relief, Info. Gain and Chi-square with respect to Injury _Next20Days on original dataset 

 

The magnitude of the importance scores varied across the three evaluation criteria. 

Information Gain values were generally low in absolute terms, with the top-ranked features 

scoring between 0.007 and 0.006, followed by a gradual decline below. Chi-square scores 
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reached higher values, with the three most significant predictors exceeding 55 and the 

highest reaching 56.866. ReliefF values showed a broader distribution, with a maximum 

of 0.058 and several features scoring between 0.030 and 0.039. Across all metrics, a limited 

number of variables contributed the most to the classification task, many of which were 

related to past injuries or short-term physical exposure. 

When considering each metric individually: 

• Information Gain: the top-ranked features were Other_Before (0.007), 

Injury_Count_Before (0.006), and BMI (0.006), followed by MTI_Before and 

ALI_Before (both 0.006). Among non-injury-related features, 

OffensiveImpactActionsPerMin_Avg and TotalShotPerMin_Avg reached 0.006 

and 0.004, respectively. 

• Chi-square: the most relevant features were Injury_Count_Before (χ² = 56.866), 

ALI_Before (55.549), and MTI_Before (55.140). Other significant variables 

included TotalShotPerMin_Avg (44.989) and Forwards (44.232), followed by 

several performance metrics such as TakeOnsAttempPerMin_Avg15 and 

OffensiveImpactActionsPerMin_Avg. 

• ReliefF: the top scores were assigned to Injury_Past30Days (0.058), BCI_Before 

(0.039), and Other_Before (0.037). BMI, SymPctMinutesLast15vsPrev15, and 

ALI_Before followed closely, each scoring above 0.034. Exposure and workload 

indicators such as MinutesLast30Days, MinutesLast15Days, and 

Injury_Count_Before were also present in the top 10. 

The analysis now focuses on the the binary classification target Injury_Next20Days, 

evaluated during the training phase on the SMOTE-rebalanced dataset. Table 17 shows the 

top 20 features ranked by Information Gain, Chi-square, and ReliefF with respect to this 

target. 
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Table 17 - features ranked by Relief, Info. Gain and Chi-square with respect to Injury _Next20Days on rebalanced dataset 

 

Overall, the magnitude of the importance scores remained modest across all three 

metrics. Information Gain values peaked at 0.014 and declined gradually below 0.010. Chi-

square scores were substantially higher, with several predictors exceeding 100 and a 

maximum value of 140.744. ReliefF values ranged from 0.045 to 0.020, with only a few 

variables scoring above 0.030. 

When considering each metric individually: 

• Information Gain: the most relevant predictors were TakeOnsAttempPerMin_Avg15 

(0.014), Other_Before (0.013), and ALI_Before (0.011). Other notable features 

included OffensiveImpactActionsPerMin_Avg15, Injury_Count_Before, and 

MTI_Before, each scoring between 0.009 and 0.006. 

 

• Chi-square: the top three variables were TakeOnsAttempPerMin_Avg15 (χ² = 

140.744), Injury_Count_Before (109.974), and 

OffensiveImpactActionsPerMin_Avg15 (109.500). Additional relevant features 

included MTI_Before, ALI_Before, and both TotalShotPerMin_Avg15 and 

OffensiveImpactActionsPerMin_Avg, with scores ranging from 90.691 to 81.689. 

 

• ReliefF: the highest-ranked features were BCI_Before (0.045), Age (0.041), and 

ALI_Before (0.036), followed by MTI_Before (0.033), BMI (0.029), and 
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Injury_Count_Before (0.028). Other variables such as MinutesLast30Days and 

ProgressiveCarryDistancePerMin_Avg15 also appeared in the top positions. 

A comparison between the two training configurations highlights both consistencies and 

shifts in feature relevance. In both cases, prior injury history variables (e.g., Other_Before, 

ALI_Before, MTI_Before, Injury_Count_Before) consistently ranked among the top 

features across all metrics, confirming their stable predictive contribution. However, the 

application of SMOTENC notably increased the relative importance of technical and 

match-derived variables such as TakeOnsAttempPerMin_Avg15, which became the top-

ranked predictor in both Information Gain and Chi-square. Similarly, ReliefF scores 

revealed a greater dispersion in the rebalanced dataset, with a wider set of moderately 

relevant features. 

 

4.3.3 Feature importance with respect to Injury_Next3Days on the original and 

rebalanced training dataset 

As in the previous analysis, this subsection reports the feature importance values 

computed with respect to the Injury_Next3Days target. Two separate evaluations 

were performed: one on the original, and one on the rebalanced version.  

Table 18 presents the highest-ranked predictors for the Injury_Next3Days 

classification task, as derived from the feature relevance analysis performed during 

the training phase on the original dataset.  
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Table 18 - features ranked by Relief, Info. Gain and Chi-square with respect to Injury _Next3Days on original dataset 

 

The results highlight differences in the scale and distribution of scores across the 

selected metrics. Information Gain values were extremely low in absolute terms. Chi-

square scores were slightly more dispersed, with a maximum of 24.896 and only five 

variables exceeding the threshold of 14. ReliefF, on the contrary, showed a broader and 

more structured distribution: the top features reached values above 0.090, with at least ten 

predictors exceeding 0.050, suggesting a stronger local discriminative power for this 

metric. 

When analyzing the results by metric: 

• Information Gain identified ALI_Before (0.002), Injury_Count_Before (0.002), 

and MTI_Before (0.002) as the most informative features.  

• Chi-square highlighted ALI_Before (χ² = 24.896), Injury_Count_Before (17.576), 

and TotalShotPerMin_Avg15 (16.628) as the most statistically associated with the 

target, with MTI_Before, Forwards, and BCI_Before also showing moderate 

relevance. 

• ReliefF yielded considerably higher scores overall, with Age (0.094), BCI_Before 

(0.092), ALI_Before (0.092), and MTI_Before (0.080) emerging as the top 

contributors. 
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The analysis now focuses on the the binary classification target Injury_Next3Days, 

evaluated during the training phase on the rebalanced training dataset.  

Table 19  - features ranked by Relief, Info. Gain and Chi-square with respect to Injury _Next3Days on rebalanced dataset 

 

 

 

The magnitude of the relevance scores varied across the three evaluation criteria. 

Information Gain values peaked at 0.011. Chi-square scores showed dispersion, with the 

most significant variable reaching 92.113 and several others exceeding 70. ReliefF has the 

highest-ranked predictors scoring between 0.079 and 0.060, and additional features above 

0.030. 

When examining each criterion individually: 

• Information Gain ranked TakeOnsAttempPerMin_Avg15 and 

FreeKickStatsPerMin_Avg15 as the most relevant (both 0.011), followed by 

TotalShotPerMin_Avg15 (0.010). Injury history variables such as ALI_Before, 

MTI_Before, and Injury_Count_Before followed closely. 

• Chi-square highlighted TotalShotPerMin_Avg15 (χ² = 92.113), 

TakeOnsAttempPerMin_Avg15 (90.749), and 

OffensiveImpactActionsPerMin_Avg (81.373) as the most statistically associated 

with the target. Additional variables exceeding 70 included 
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OffensiveImpactActionsPerMin_Avg15, ALI_Before, MTI_Before, and 

Injury_Count_Before. 

• ReliefF showed the highest scores for BCI_Before (0.079), followed by BMI 

(0.067), MTI_Before and ALI_Before (both 0.060). Several exposure and workload 

indicators such as MinutesLast30Days, ProgressiveCarryDistancePerMin_Avg, 

and DribblerChallengedPerMin_Avg also appeared among the top contributors. 

A comparative analysis between the original and rebalanced training datasets for the 

prediction of Injury_Next3Days reveals a shifts in the most relevant features. While history 

injury variables consistently appeared among the top-ranked predictors across, their 

relative importance decreased slightly in the rebalanced dataset, particularly in the 

Information Gain and Chi-square rankings. In contrast, match-related performance metrics 

showed a marked increase in relevance, occupying leading positions in the rebalanced 

scenario. ReliefF scores also highlighted a broader range of physical exposure and 

workload indicators, including ProgressiveCarryDistancePerMin_Avg, 

MinutesLast30Days, and SymPctMinutesLast15vsPrev15, which were less prominent in 

the unbalanced configuration.  
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5. Discussion  

This section critically discusses the key findings of this study.  

The results obtained during the development phase highlight a superiority of tree-based 

algorithms over the linear model. For the variable Injury_Categorization_Next20Days, 

both Gradient Boosting and Random Forest achieved very high macro-F1 scores, however, 

this apparent effectiveness is largely sustained by a strong tendency to classify instances as 

“None”, as illustrated by the confusion matrices in the previous chapter, suggesting an 

optimistic bias driven by class imbalance. 

A similar pattern emerges for the variable Injury_Next20Days. During training, the 

ensemble models correctly identify situations with a high risk of injury when injuries do 

occur, while keeping the false-positive rate low. After applying SMOTENC, the precision 

to detect an injury increases, and the number of false-positive remain low. In contrast, 

Logistic Regression, limited by its linear structure and inability to capture nonlinear 

interactions, performs consistently worse already in the development phase. 

The variable Injury_Next3Days, affected by extreme class imbalance (≈ 3 % positive 

cases), presents additional challenges, both ensemble approaches show low performance 

with near-zero recall; similarly, the results of logistic regression are unreliable, as the model 

tends to behave randomly when predicting whether an injury will occur. In this case, the 

application of SMOTENC, restores sensitivity for the tree-based models without increasing 

false alarms, confirming the utility of rebalancing. 

However, during the testing phase on data from the second half of the 2023/24 season, 

the performance observed in training is not replicated. The ensemble models trained on the 

original dataset fail to detect any injuries, highlighting their sensitivity to class imbalance. 

On the other hand, when trained on rebalanced data, the models tend to overcompensate, 

classifying most cases as "injuries" due to overly shifted decision boundaries. 

Increasing number and depth of trees allowed the ensemble models to learn specific 

decision rules within the training set, resulting in improved performance metrics during 

training. However, these rules were overly adapted to the training data, leading to poor 

generalization on new samples. Attempts to reduce model complexity by lowering the 

number and depth of trees did not lead to meaningful improvements. Logistic Regression 
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showed no clear signs of overfitting during training, also failed to perform satisfactorily on 

the test set. 

Overall, the comparison between simple and more complex models suggests that the 

prediction difficulties encountered are not attributable to the learning algorithm itself. 

Rather, they reflect the intrinsic complexity of the phenomenon under study, which is 

influenced by multiple external factors that are either unobservable or not represented in 

the dataset. These factors limit the ability to produce replicable predictions under realistic 

conditions, regardless of the level of sophistication of the model employed.  

Despite the intrinsic limitations of the problem, the analysis still made it possible to 

identify which variables contribute the most to predicting injury risk, both in the short term 

(3 days) and in the medium term (20 days). In the case of short-term prediction, the main 

challenge lies in the rarity of positive events. Medium-term prediction slightly benefits 

from a higher number of positive cases and from greater temporal stability, which allows 

the models to detect patterns associated with workload accumulation and injury history. 

 

As reported in the Table 18 from the Results chapter, the features associated with short-

term injury prediction showed very low Information Gain values. This indicates that, when 

considered individually, these variables have limited informational power in distinguishing 

between injured and non-injured cases. 

However, the same variables obtained higher scores when evaluated using ReliefF and 

Chi-square metrics. These indicators account not only for the distribution of the target 

variable, but also for local feature interactions (ReliefF) and statistical dependence between 

categorical variables and the output (Chi-square). This suggests that some features, while 

weak in isolation, may still offer relevant information when combined with others. 

Across all importance measures, injury history emerged as the most informative group 

of features. In particular, the total number of previous injuries (Injury_Count_Before) and 

the breakdown by type (e.g., MTI, ALI, BCI) ranked among the top predictors, as they 

reflect accumulated player vulnerability over time, an established risk factor in the 

literature. 
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Following this, some variables related to the athlete’s individual profile, such as Age 

and BMI, also demonstrated significant informational value, confirming the role of 

structural predispositions in injury risk modelling. 

The recurring presence, among the most informative variables, of offensive indicators: 

as TotalShotPerMin, TakeOnsAttemptPerMin, OffensiveImpactActionsPerMin, and the 

categorical variable Forwards suggests that players with a clearly offensive role and active 

involvement in attacking phases are exposed to a higher risk of injury. These variables, 

along with ProgressiveCarryDistancePerMin_Avg, reflect not only the physical intensity 

sustained during matches but also the number of high muscular load actions (accelerations, 

changes of direction, sprints) that typically define the functional profile of attacking 

players. 

Lastly, among workload-related indicators, variables such as 

SymPctMinutesLast15vsPrev15 and MinutesLast30Days proved particularly informative. 

Notably, the model assigned greater relevance to cumulative workload over the last 30 days 

than to shorter periods (7 or 15 days), suggesting that long-term fatigue accumulation may 

play a more prominent role in injury risk than acute exposure. At the same time, quickly 

variations in recent workload, captured by the SymPct variable may indicate an increased 

risk due to a mismatch between physical demand and the player's physiological adaptation 

capacity. 

In the case of medium-term injury prediction, the average Information Gain values are 

higher than those observed for short-term prediction. This suggests that the input features, 

when considered individually, contain a greater amount of useful information to distinguish 

between injured and non-injured cases. As a result, the predictive signal appears more 

stable, allowing the model to identify more robust patterns. 

As already observed in the three-day prediction model, injury history remains the most 

influential group of predictors across all evaluation metrics. This further reinforces the 

evidence that chronic vulnerability represents a central risk factor. 

Also features such as Age and BMI also maintain high informational value, as previously 

noted. One of the most significant differences concerns the variable Injury_Past30Days, 

which played a marginal role in the three-day model but becomes the top predictor in the 



89 

 

20-day prediction according to ReliefF. This highlights how recent injury events have a 

delayed but meaningful impact on the athlete’s vulnerability over the medium term.  

The study therefore highlights that injury prediction in football can hardly rely on linear 

models or the isolated analysis of individual variables, as the phenomenon is driven by 

complex and non-linear dynamics. The interaction between factors is crucial and must be 

properly captured to enhance the predictive performance of the algorithms. 

Despite the structural limitations of the available data, the analysis made it possible to 

identify a set of particularly informative variables that provide a concrete foundation for 

risk modelling. The results suggest paying special attention to athletes with a high history 

of injuries: an injury should not be treated as an isolated, time-bound event, but rather as a 

persistent indicator of vulnerability, capable of increasing the likelihood of recurrence. 

Additional relevant factors include the player’s age and physical condition, a high 

workload over the past 30 days, significant workload variation over the previous 15 days, 

and a role-specific predisposition to engage in numerous high-intensity actions during 

matches. When combined, these variables can help guide player management throughout 

the season. 

If integrated into an effective monitoring system, these elements can assist clubs in 

reducing prolonged absences, containing the financial losses associated with injuries, and 

maintaining the expected level of sporting performance, as discussed in the previous 

chapters. 
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6. Conclusion 

This study shows that injuries are a critical issue for Football clubs, affecting both 

finances, through direct and indirect costs, and on-field performance. It evaluates how well 

machine-learning models can predict injuries in the short term (3 days) and medium term 

(20 days), analysing data from more than 12 000 matches and a heterogeneous sample of 

100 Serie A players across three seasons. 

Three algorithms: Logistic Regression, Random Forest and Gradient Boosting, were 

trained, and class imbalance was addressed with the SMOTENC oversampling technique. 

Although the models achieved good precision during training, their external F1-score 

settled at about 0.20, underlining the complexity of injury prediction and the need for richer 

data. Feature-importance analysis identified injury history, age, BMI and several high-

intensity offensive indicators (e.g. take-ons, shots per minute, progressive carries) as key 

variables. This suggests that future studies should include these features and that decision-

makers in sports contexts should closely monitor them when managing player workload 

and match availability 

While the study offers theoretical and practical contributions, it presents several 

limitations that should be considered. To improve clinical reliability, it should incorporate 

data not currently available in public repositories: GPS metrics (distance covered, sprint 

counts, accelerations, changes of direction); perceived-fatigue scores; physiological 

indicators such as heart-rate variability, sleep quality, hydration status and blood 

biomarkers (haemoglobin, creatine kinase, cortisol). Match-context variables, such as 

opponents’ high-intensity defensive actions and weather conditions that affect pitch quality, 

could also add value. 

Further research could include economic variables such as salary, current market value 

and projected end-of-season value for each player, so that injury probability can be 

combined with indices estimating a club’s financial risk. 

Finally, this thesis demonstrates that injury prediction is a multifactorial challenge. 

Publicly available data alone cannot provide fully reliable medical support, but they offer 

a useful starting point for identifying risk profiles and informing management decisions 

during the season. 
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