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Abstract 

This thesis investigates how climate change affects geohazards, specifically rockfalls, 

debris flows, and shallow landslides in the Susa Valley, a high relief Alpine region in 

northwest Italy. The study combines analysis of historical climate data (1957–2024) and 

predictions of the future (2025–2100) under two greenhouse gas scenarios: RCP 4.5 

(moderate emissions) and RCP 8.5 (high emissions). Multi-hazard susceptibility maps, 

gridded temperature and precipitation datasets, and high-resolution Digital Elevation 

Models (DEMs) were used in a thorough spatial analysis. The study region was divided into 

five altitudinal zones with elevation-based classification, which made the ability to assess 

climate-hazard interactions at different terrain levels.  

Historical temperature analysis revealed a consistent upward trend in both maximum 

and minimum temperatures, with ΔT (temperature range between maximum and minimum 

values) showing a slight narrowing over time. A critical elevation threshold of ~795 m was 

identified, above which freezing maximum temperatures are more frequent. Precipitation 

analysis showed rare but significant 24-hour and 48-hour rainfall extremes, especially during 

late spring and early winter. The study found that these climatic factors significantly 

influence hazard distribution: Rockfall susceptibility increases with ΔT values above 8°C in 

mid-to-high elevation zones; debris flows occur most often in ECM-class catchments, 

characterized by high clay-weathering lithology (CWl) in elevation zones where summer 

rainfall intensity exceeds 20 mm/h; and shallow landslides are concentrated in Elevation 

Class 3 (1000–2000 m), mainly under Susceptibility Class 4, triggered by exceeding the 

rainfall threshold of 120 mm (24 h) or 170 mm (48 h). 

All elevation zones continue to warm, according to future climate projections (2025–

2100) under both RCP 4.5 and RCP 8.5 scenarios. It is anticipated that Tmin will rise faster 

than Tmax, particularly in regions with high elevation. A significant retreat of periglacial 

conditions is indicated by the critical freezing elevation shifting further upward to nearly 

1550 m under RCP 8.5 and rising to about 1427 m under RCP 4.5. Under RCP 4.5, the 

temperature range (ΔT) stays largely constant, but under RCP 8.5, especially in Elevation 

Classes 1 to 3, there is a slight summer increase. These thermal changes are expected to 

amplify rockfall risk, as ΔT values above 8 °C become more frequent in lower and mid-

elevation zones under RCP 4.5 and expand to higher susceptibility classes under RCP 8.5. 

Rainfall projections indicate a slight increase in short-duration extremes during late spring 

and autumn, with May and November exhibiting the steepest upward trends. Under RCP 

4.5, several 24-hour rainfall events are projected to surpass the 120 mm threshold, 

especially in Elevation Classes 3 and 4. In the RCP 8.5 scenario, although average daily rainfall 



 

 

 

may decline slightly, intense events persist and occasionally exceed 170 mm in 48-hour 

windows, posing continued shallow landslide risk in Susceptibility Classes. Debris flows are 

projected to become more frequent in ECM zones under both scenarios, driven by projected 

intensification of summer rainfall. The convergence of rising temperatures, shifting thermal 

thresholds, and localized hydrological intensification suggests that mid- to high-elevation 

areas will remain the most vulnerable to compound climate-driven geo-hazards throughout 

the 21st century. 
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Introduction 

1.1 Background and Motivation 

Climate change describes the long-term shifts in precipitation and 

temperature patterns which human-produced greenhouse gas emissions tend to 

intensify. The changes in geotechnical conditions result from modifications to soil 

behavior as well as hydrology and slope stability. The evaluation of climate-related 

geohazards depends on knowledge about how slopes react to climatic factors 

especially in vulnerable regions (Psarropoulos et al., 2024). 

Climate fluctuations including drought and warmth and heavy rainfall affect 

key geotechnical parameters such as pore-water pressure, matric suction and 

shear strength. The changes in these parameters can lead to erosion, cracking and 

slope failures in unsaturated and fine-grained soils. It is important to understand 

these impacts in order to plan and preserve geostructures in the face of changing 

climate conditions(Kandalai et al., 2023). 

Research indicates that heavy rainfall triggers shallow landslides primarily in 

regions with brittle rock and soil structures. The statistical analysis revealed that 

northwest Italy experienced more landslide events when climate factors such as 

the Montana Coefficient and mean annual precipitation were considered instead 

of topography features. These results highlight how crucial it is to include climate 

data in early warning systems (Tiranti et al., 2019).  

Climate change affects debris flow activity through the combined effects of 

rising temperatures and modified precipitation patterns and changing sediment 

availability. Heavy rainfall at high elevations leads to increased slope failure risk 

because freeze-thaw cycles occur less frequently. The northward movement of 

debris flow beginning zones requires evaluating hydrometeorological and 

sediment supply parameters to assess climate vulnerability (Jomelli et al., 2004). 

The protective function of mountain forests against rockfalls will decrease 

because climate change causes forest density and structure to decline and species 

richness to decrease especially in mid-elevation areas that experience drought. 
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The high-emission RCP8.5 scenario predicts a significant increase in rockfall 

frequency and without forest management intervention the damage risk will 

exceed triple by 2100 (Moos et al., 2021) . 

The rising occurrence of climate-related geohazards demands integrated 

assessments which link climatic indicators to geomorphological susceptibility for 

specific regions. The Susa Valley represents an area of high risk because it features 

steep terrain and high sediment mobility together with expanding infrastructure 

in an alpine region. The current research lacks sufficient studies that analyze 

historical climate patterns in relation to hazard occurrences and project future 

climate changes under various emission scenarios. The research aims to address 

the immediate need for better understanding climate variability effects on hazard 

susceptibility because it will help create more effective risk management and 

adaptation strategies. 

1.2 Problem Statement 

The scientific community now acknowledges the link between climate change 

and geomorphological hazards but most research either studies broad climatic 

patterns or creates local hazard maps without uniting these perspectives. The Susa 

Valley's Alpine region demonstrates how steep terrain and climate fluctuations 

interact yet current research separates these elements which hinders our ability 

to understand hazard development across time and space. 

The majority of hazard assessments depend on fixed topographical 

characteristics yet fail to consider how shifting climate patterns affect vulnerability 

levels. The integration of historical hazard data with climate projections remains 

limited because researchers lack a single framework which can analyze past 

behavior alongside future risk development. 

The research fills this knowledge gap through its multi-hazard analysis which 

evaluates rockfalls and debris flows and shallow landslides based on their 

historical and projected susceptibility levels. The research method differs from 

previous studies because it incorporates elevation classes into its susceptibility 

framework to enhance topographic control representation. The study 

incorporates delta temperature (ΔT) as an additional thermal indicator together 

with daily minimum and maximum temperatures. The research investigates how 
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thermal patterns interact with precipitation trends to understand their combined 

impact on hazard behavior which current literature tends to ignore. 

1.3 Objectives of the Study 

This study aims to investigate the impacts of climate change on 

geomorphological hazard susceptibility in the Susa Valley by analyzing both 

historical patterns and future projections. The specific objectives are: 

✓ To assess long-term trends in temperature (Tmax, Tmin, and ΔT) and 

precipitation from 1957 to 2024 across different elevation bands; 

✓ To classify and evaluate the spatial distribution of rockfalls, debris 

flows, and shallow landslides using susceptibility maps and threshold 

models; 

✓ To explore how susceptibility patterns for each hazard type may shift 

under RCP 4.5 and RCP 8.5 climate scenarios; 

✓ To incorporate elevation as a spatial conditioning factor in both 

historical and projected hazard assessments; 

✓ To examine the combined effects of temperature variation and 

precipitation intensity on hazard triggering mechanisms; 

✓ To compare spatiotemporal overlaps and possible hazard cascades 

across scenarios for better risk understanding. 
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Climate Change and Geo Structures 

The following sections analyze how climate change affects specific geohazards by 

focusing on environmental and physical slope instability factors. The sections examine 

the challenges of predicting future hazard patterns under different climatic scenarios 

while discussing uncertainties and geographical variations and modeling difficulties. 

2.2 Natural Slopes 

Multiple elements including slope geometry and vegetation cover and soil and rock 
types and hydrological conditions and climate affect the natural formation of slopes. 
The slopes receive special attention in geotechnical research because they directly 
relate to landslide and rockfall hazards. The natural equilibrium between these factors 
will be disrupted by climate change which will result in higher slope instability 
according to Figure 1 (Bračko et al., 2025). 

 
Figure 1 Landslides After Temporary Roadway Intervention, Source: Bračko et al. (2025) 

The main reason for slope instability in Alpine regions stems from the breakdown 

of cryospheric elements including glaciers and permafrost. The removal of mechanical 

support through glacial retreat and the weakening of slope integrity due to thawing 

permafrost primarily affects granite terrains at high elevations. The combination of 

increasing summer temperatures with unpredictable hydrological patterns makes 

these changes worse while producing more frequent rockfalls and geomorphic 

adjustments (Castellazzi & Previtali, 2024). 

Slope instability results from multiple factors which include geometry and soil 

composition and vegetation loss and extreme weather events. The strength of 

saturated clays decreases when heated while slopes with angles between 30 and 40 
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degrees have the highest risk of failure. The loss of vegetation through wildfire or land 

use changes or climate stress leads to increased surface erosion and instability. Heavy 

rainfall near old infrastructure causes pore-water pressure to rise which results in 

landslides. Post-glacial terrains experience destabilization through the mobilization of 

debris and collapses which permafrost and glacier changes trigger. The end tipping 

construction method used in British railway projects serves as an example of 

infrastructure-induced instability as shown in Figure 2. The embankment instability 

under wet conditions was frequently caused by this technique (Walker et al., 2022). 

 

Figure 2 Image Showing End Tipping Construction Method Used in British Railway, Source: Walker et al. (2022) 

The stability of natural slopes faces negative impacts from climate change because 

of rising temperatures and modified precipitation patterns and stronger weather 

events. The strength of clay soils decreases when exposed to warm humid conditions 

yet sand soils maintain their stability. The comparison shows that fine-textured terrains 

with moisture-retaining properties are more susceptible to slope (Yavari et al., 2016). 

Natural slopes present dangers but specific elements enhance their stability. The 

binding of soil and reduction of erosion through dense vegetation makes wooded 

regions more resistant to climatic stress. The stability of slopes depends on permafrost 

stability until it is disrupted by prolonged warming but slopes with gentle inclines and 

compacted coarse soils tend to be less prone to failure (Magnin et al., n.d.). 

The recent developments in slope stability modeling demonstrate that climate-

related factors especially heavy rainfall should be taken into account. The simulation 

of a failed slope in Slovenia demonstrated that heavy rainfall elevated pore-water 

pressure and decreased the factor of safety beyond the effects of soil strength 

modifications. The results demonstrate that hydrological stress plays the most 

significant role in climate-induced slope failures as shown in Figure 3 which displays 
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the modeled pore-water pressure distribution throughout the slope after three days 

of rainfall (Bračko et al., 2022). 

 

Figure 3 Computed Poor Water Pressure Within the Slope After 3 Days of Rainfall, Source: Bračko et al. (2022) 

Experimental flume research has demonstrated the transition from slope failure 

to granular flow. The research used sand-water mixtures to model slope collapse 

events. The experimental results demonstrated a sequential transition from 

retrogressive sliding to unstable flow which produced three distinct layers consisting 

of a flowing surface and a sliding center and a static foundation. The sand particles in 

lower strata took longer to settle than water while pore pressure remained slightly 

above hydrostatic levels. The Cellular Automata model together with other simplified 

models successfully replicated essential features including runout and deposition 

(Deangeli, 2008). 

2.3 Shallow Landslides 

Geotechnical engineering has faced landslides as a significant problem throughout 

many years. Varnes (1978) developed a complete classification system based on 

material types (rock, debris, earth) and movement mechanisms (fall, topple, slide, 

spread, flow, complicated). The framework demonstrates mechanical diversity in slope 

failures through its emphasis on slow creep to rapid debris flows which enables 

consistent analysis between different examples. The Yungay landslide of 1970 serves 

as a notable example of these complex events according to Varnes (1978) (Varnes, 

1978). 

The study of shallow landslides under changing climate conditions has utilized 

physically based models together with empirical data. The models show that 

pyroclastic soils in Italy will have more winter and spring events instead of the previous 

fall peaks. The Chinese study showed that land use changes had a smaller effect than 

rainfall intensity did and the future projections indicated a more stable situation. The 
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research demonstrates that rainfall patterns need to be considered in landslide 

predictions for climate adaptation (Rianna et al., 2017 ;Guo et al., 2023). 

A multidisciplinary study of the 2013 Montescaglioso landslide in southern Italy 

found that bedrock fractures and saturated zones below the surface were crucial to 

the collapse. When surface data was scarce, geophysical technologies offered crucial 

information (Figure 4), highlighting the importance of subsurface imaging for hazard 

assessment(Calamita et al., 2023). 

 

Figure 4 Landslide area and survey locations, Source: Calamita et al. (2023) 

According to research on Holocene landslides in Iceland, a large number of them 

happened right below the old permafrost barrier during the Holocene Thermal 

Maximum.  The work highlights the long-term climatic influence on slope stability by 

indicating that delayed permafrost thaw may cause deep-seated slope failures even 

long after glacial retreat (Figure 5). A full landscape view of the Öxnadalur valley with 

mapped landslide deposits may be found in Figure 6 (Booth & Pétursson, 2025). 
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Figure 5 Examples of distinguishing features of bedrock landslides and icy features, Source: Booth & Pétursson. (2025) 

The Piemonte region demonstrated the effectiveness of radar-based rainfall 

monitoring for predicting shallow landslides. Radar data provided better spatial 

resolution and earlier detection of critical rainfall thresholds than traditional rain gauge 

networks. The research findings validate the implementation of radar technology in 

real-time early warning systems for landslide risk management. Figure 6, shows radar 

rainfall intensity overlays with landslide initiation points during the November 2016 

storm event (Cremonini & Tiranti, 2018). 

 

Figure 6 Total rainfall accumulation, estimated by weather radar (grid) and observed by rain gages 

(values) from 21st to 26th November 2016 in the study areas, Source: Cremonini & Tiranti. (2018) 
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2.4 Debris flow 

The fast-moving mixture of water and sediment in debris flows depends on slope 

conditions and rainfall patterns and pore pressure levels. The research established 

water content and slope angle and solid–fluid interactions as fundamental elements 

which led to contemporary runout modeling and rheological classification (Tiranti & 

Deangeli, 2015). 

The abrupt release of glacial water pockets and buried ice within moraines have 

been demonstrated to be significant triggers for several debris flow occurrences in the 

Western Alps' glacial catchments.  Notably, some flows happened without any prior 

precipitation, suggesting that internal glacier dynamics, including ice melt and moraine 

saturation, are important contributors to the start of debris movement.  As a result of 

the melting of the ice-cored moraine, 15,000 m³ of debris were mobilized in Forno Alpi 

Graie. This event is visually documented in Figure 7, showing the coarse debris 

accumulation in the village of Forno Alpi Graie after the 24 September 1993 debris flow 

(Chiarle et al., 2007). 

 

Figure 7 Coarse debris accumulation in the village of Forno Alpi Graie, Source: Chiarle et al. (2007) 

Alpine basins damaged by wildfires exhibit increased susceptibility to debris flows 

as a result of hydrological changes and vegetation loss. Within a year following fire 

incidents, floods in the Western Italian Alps have been caused by rainfall as little as 15 

to 30 mm/h.  This emphasizes how important early warning systems are in the post-

fire environment. Figure 8, illustrates the geological context of one such basin, showing 

an interpolated lithological map of the Rio Casella area based on Piemonte’s regional 

geological map(Tiranti et al., 2021). 
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Figure 8 Geological interpolated map of Rio, Source: Tiranti et al. (2021) 

Pudasaini (2012) developed an extensive model to simulate the complex two-

phase behavior of debris flows. The model distinguishes itself from previous models by 

modeling solid-fluid phase interactions through interfacial momentum exchange and 

includes non-Newtonian viscous stress and virtual mass effects and generalized drag. 

The generalized expression for interfacial force density (Ms) represents the relative 

motion and acceleration between phases which stands as a major advancement. The 

model achieves enhanced capability to simulate realistic debris flow dynamics through 

this advanced formulation. 

 

Where CDG is the generalized drag coefficient and, CVMG is the generalized virtual 

mass coefficient. Generalized drag force. The viscous drag, MD, can be written as MD = 

asFD/Bd, where FD is the drag force (Bd is the particle volume), which in classical form 

reads (Pudasaini, 2012). 

The hydrodynamic model provided by Hübl et al. (2009) incorporates both flow 

height and velocity through the Froude number to calculate impact forces on 

protective barriers, hence improving debris flow mitigation design. The model is more 

accurate than conventional hydrostatic methods and offers scale-independent 

estimations of impact pressure, particularly under dynamic flow settings. It has been 

validated by field observations and laboratory tests (Hübl et al., n.d.). 

As climate change continues, Stoffel et al. (2014) predict that debris-flow activity 

in the Alps will change dramatically. One important finding is that future occurrences 

are probably going to be more common in the spring and fall, while summer events 

might become less frequent. This is because of both snowmelt contributions and an 
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increase in heavy precipitation during the shoulder seasons. Destabilized permafrost 

bodies, increased sediment availability, and more frequent extreme precipitation 

events are also predicted to increase the size of debris flows (Stoffel et al., 2014). 

2.5 Rockfall 

A higher likelihood of large-volume occurrences is implied by the power-law 

volume-frequency distribution of rockfalls, which has lower b-values (0.4–0.6) than 

landslides (~1.2).  This recurring pattern is found when inventories from worldwide, 

Yosemite, and Grenoble databases are analyzed.  The behavior of rockfall is 

significantly influenced by the mechanical characteristics of the rock mass, especially 

cohesiveness and friction (Dussauge et al., 2003).  

To map rockfall susceptibility in the Alpine region, Tiranti et al. (2023) created a 

GIS-based model that included topography and climatic factors such as slope, 

elevation, mean annual precipitation (MAP), daily thermal excursion (ATE), and 

simplified lithology.  They discovered that regions with slopes between 30° and 70°, 

ATE temperatures between 5 and 8 °C, and MAP measurements between 1100 and 

1700 mm accounted for almost 70% of rockfalls.  As a mitigating factor, forest cover 

was incorporated, especially for exposed road networks. The most susceptible areas 

are indicated in dark red, as seen in Figure 9. This study's consideration of forest cover 

as a mitigating factor, particularly when assessing the exposure of road networks, is 

one of its important features (Tiranti et al., 2023). 

 

Figure 9 Rockfall susceptibility map of Piemonte  weighted sum of all parameters), Source: Tiranti et al. (2023) 

Using 30 years of historical and predicted climate data (1990–2100), Mirhadi et al. 

(2023) examined 14 years of rockfall data along a British Columbian railway. Using von 

Mises circular distributions, they found that 78% of rockfall episodes were strongly 
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correlated with precipitation (r = 0.975). There would be a noticeable seasonal shift, 

with rockfalls predicted to increase 9–19% in the winter and decrease 24% in the spring 

under RCP 4.5 (Mirhadi & Macciotta, 2023). 

A GIS-based application called Rockfall Analyst (RA) combines raster modeling and 

3D rockfall trajectory simulation to evaluate hazards in mountainous regions. RA, 

which is built into ArcGIS, simulates rolling, bouncing, and sliding rocks using a lumped-

mass method based on surface and topography data. The tool demonstrated notable 

frequency and energy reductions behind a 5-meter virtual barrier in a case study along 

the Canadian Pacific Railway by simulating over 1000 trajectories from four source 

zones. As shown in Figure 10, the spatial reduction in rockfall activity confirms the 

tool’s value in engineering design and hazard mitigation planning (Lan et al., 2007). 

 

Figure 10 Distribution of rockfalls Spatial Frequency. A 5m high barrier is set near the region, Source: Lan et al. (2007) 

The impact of historical changes in land use and land cover (LULC) on the risk of 

rockfall close to Crolles, Grenoble, was investigated by Lopez-Saez et al. (2016).  They 

discovered that afforestation significantly extended return durations for smaller blocks 

using RockyFor3D modeling and reconstructed LULC maps from 1850 to 2013.  For 

example, the return period for 1.2 m³ blocks increased from 143 years in 1850 to 5000 

years in 2013, demonstrating the forest cover's long-term protective function (Lopez-

Saez et al., 2016). 

By Eurocode 7, Marchelli and Deangeli (2022) presented an analytical design 

approach for reinforced earth embankments.  Their methodology computes kinetic 

energy absorption through compaction and interface friction and estimates the 

minimal embankment height.  According to sensitivity analysis, friction can waste up 

to 25% of energy, allowing for effective designs that don't entirely depend on 

numerical simulation (Marchelli & Deangeli, 2022). 
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2.6 Climate Drivers 

The analysis of this section focuses on climatic drivers through temperature and 

precipitation patterns. The two elements play a major role in different geo-hazards so 

they need thorough examination. 

2.6.1 Temperature: 

The Rochers de Valabres study in France demonstrated that daily heat cycling with 

±8 °C sinusoidal changes could produce rock displacements of 1.5 mm over days. The 

field monitoring data showed that micro-movements occurred three hours after 

temperature peaks thus indicating thermal fluctuations play a vital role in long-term 

slope degradation(Gunzburger et al., 2005). 

According to Shibasaki et al. (2016), declining ground temperatures caused shallow 

landslides in Japan to accelerate in the fall and winter. Cooling to 9 °C decreased shear 

strength and produced creep under continuous load, according to lab tests conducted 

on smectite-rich soils. This highlights the importance of temperature in stability 

evaluations by offering experimental proof that thermal changes alone can cause slope 

displacement (Shibasaki et al., 2016). 

Rockfalls in Switzerland, Mont Blanc, and New Zealand were studied by Allen et al. 

(2013). They discovered that most Swiss incidents occurred during periods of intense 

summer heat.  Trends of long-term warming were also noted at high-altitude locations 

such as Jungfraujoch.  According to these findings, rockfalls may be directly caused by 

thermal extremes, especially in Alpine areas that are influenced by permafrost. As 

shown in Figure 11, the frequency of warm days before rockfall events in the Swiss Alps 

greatly exceeds climatological expectations (Allen & Huggel, 2013). 

 

Figure 11 For the four successive 7-day periods leading up to each rockfall, the observed, Source: Allen & Huggel. (2013) 
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Loche and Scaringi (2025) used national landslide inventories and MODIS satellite 

data to predict landslide susceptibility in more than 100,000 slope units in Italy. The 

GAM model showed that there was a clear correlation between enhanced instability 

and higher land surface temperatures, especially in smectite-rich terrains. 

Temperature plays a crucial role in climate-related slope failures, since field validation 

verified that warming reactivated previous landslides (Loche & Scaringi, 2025). 

By combining rainfall and freezing level height, Ponziani et al. (2020) developed 

the Debris Flow Indicator (DFI) to enhance early warnings for summer debris flows. The 

combined indicator greatly increased accuracy, but rainfall alone lacked predictive 

value, according to an analysis of 18 incidents in the Aosta Valley. The importance of 

incorporating temperature-related factors is demonstrated by the DFI's current 

inclusion in the region's operational warning system (Ponziani et al., 2020). 

2.6.2 Precipitation: 

According to Chien-Yuan et al.'s (2005) analysis of 61 debris flows in Taiwan, 60% 

of them happened within an hour of the hourly rainfall peak. They distinguished 

between two forms of rainfall, each with a distinct threshold: intermittent and 

continuous. Slopes were more vulnerable after the Chi-Chi earthquake in 1999. They 

used these insights to create empirical rainfall thresholds that can be monitored in real 

time using common rain gauges (Chien-Yuan et al., 2005). 

Using high-resolution rainfall data, Iadanza et al. (2016) investigated more than 

260 landslides in Trento, Italy.  To further characterize triggering events, they 

established the Critical Dry Period. They also presented two models: a unique IRP–DRP 

model and the traditional Intensity–Duration (I–D) model.  The latter offered more 

accuracy for brief, powerful storms that are typical in Alpine regions by concentrating 

on event-critical rainfall and its return duration. As shown in Figure 12, it better 

identifies triggering rainfall and reduces false alarms compared to the I–D model 

(Iadanza et al., 2016). 
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Figure 12 (a) Intensity–duration thresholds (b) IRP–DRP thresholds, Sources: Iadanza et al. (2016) 

Over 8,000 rockfalls and daily rainfall in Tenerife and Gran Canaria from 2010 to 

2016 were examined by Melillo et al. (2020).  They determined empirical ED thresholds 

by bootstrapping and the CTRL-T approach.  The findings demonstrated seasonal 

clustering (October–March) and different island responses, with Tenerife requiring 

more severe rainfall and Gran Canaria experiencing rockfalls after shorter storms, 

indicating varying climatic sensitivities (Melillo et al., 2020). 

Using 12 trap nets, Krautblatter and Moser (2009) tracked rockfalls in the Reintal 

Valley, Germany, over a four-year period.  They discovered that when 30-minute 

rainfall surpassed 9–13 mm, rockfall rates sharply increased.  The abrupt, explosive 

nature of rain-induced rockfalls was highlighted by their three logistic models (r1–r3), 

which represented nonlinear responses with R2 up to 0.99. The explosive nature of 

rain-triggered rockfall occurrences is captured in Figure 13, which shows that rockfall 

intensity stays low until a crucial rainfall threshold is achieved, at which point the 

response curve jumps abruptly (Krautblatter & Moser, 2009) 
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Figure 13 Rockfall response function of a single net, Sources: Krautblatter & Moser. (2009) 

Using quantile regression and Mann-Kendall tests, Mazzoglio et al. (2025) 

evaluated changes in short-duration rainfall extremes throughout Italy.  One-hour 

high-intensity rainfall increased significantly in upper quantiles (0.95–0.99) between 

1960 and 2022, especially in Sardinia and the north.  24-hour trends, on the other hand, 

were less reliable.  These results highlight the necessity of taking upper extremes into 

account when planning for climate risk. Six national maps are used in Figure 14, to 

illustrate these tendencies. It draws attention to the fact that short-duration, high-

intensity rainfall is increasing dramatically, particularly in the north and some parts of 

the south, indicating a higher danger of hydrogeology in these regions (Mazzoglio et 

al., 2025). 

 

Figure 14 The basemap of the quantile regressi, Sources: Mazzoglio et al. (2025)
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Presentation Of Case Study 

3.1 Description of Study Area 

One of Italy's most geologically and geomorphologically complicated 

mountainous areas is the Susa Valley, which is situated in the Piedmont Region in 

northwest Italy, in the western sector of the Alps.  The valley has long been a natural 

and physical link between Italy and continental Europe because of its advantageous 

location along the French border, which creates a significant trans-Alpine corridor.  

As a left tributary of the Po River, the Dora Riparia River runs parallel to the valley's 

main axis and is essential to its depositional and erosional processes. 

3.1.1 Geology and Metamorphism: 

The Susa Valley runs through the Western Alpine band's inner sector where it 

passes through both oceanic and continental metamorphic strata according to 

geotectonic (Figure 15). The Penninic Domain contains the Dora-Maira Massif 

together with the Internal and External Piedmont Zones which have experienced 

metamorphism. The lithology contains numerous minerals which have undergone 

high-pressure (HP) or ultra-high-pressure (UHP) metamorphism including 

carbonate-rich calcschists, marbles, serpentinites, orthogneiss and micaschists. The 

P-T evolution of these rocks provides essential information about slope material 

thermal-mechanical responses to climatic stress through exhumation and 

subduction processes (Cadoppi et al., 2007). 
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Figure 15 Lithological map of the Susa Valley showing major metamorphic rock units within 

the study area Source: Tiranti (2024) 

3.1.2 Tectonic Structure and Shear Zones: 

A polyphase tectonic border between the Internal and External Piedmont 

Zones, the Susa Shear Zone (SSZ) is a significant structural feature of the region.  This 

shear zone has a block-in-matrix structure and widespread mylonitic foliations, 

which are signs of several stages of deformation.  The SSZ may be important in 

directing the geographical distribution of cracks and discontinuities, which in turn 

affect water penetration and the precipitation of rockfall events, according to 

structural mapping (Ghignone et al., 2024). 

3.1.3 Geomorphology and Surficial Deposits : 

The Susa Valley shows complex geomorphological features because of 

tectonostratigraphic variations and Quaternary glacial activities. The southern part 

of the valley consists of calcschists and oceanic metabasites from the Piemontese 

region whereas the northern part consists of gneisses, micaschists and metabasites 

of polymetamorphic origin. The Pleistocene glaciers shaped the valley landscape 

through their erosive and depositional activities which produced U-shaped valleys 

and glacial confluences and morainic accumulations. The glacial processes created 

slope dynamic changes through the unloading effects which occurred during glacier 

retreat. The valley floor together with its slopes contains Quaternary deposits that 

consist of talus and landslide debris and lacustrine sediments which were formed 

by past landslide dams (Borgogno Mondino et al., 2009). 

3.1.4 Climate Conditions: 

The Susa Valley's orographic location largely determines its climate, which is 

Mediterranean-subcoastal with autumnal peak precipitation and spring secondary 
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maximums and comparatively dry summers. Snowfall averages 144 cm per year, 

mostly in the winter, and precipitation averages about 800 mm. The amount of 

rainfall that occurs each day is usually moderate, seldom going above 20 mm. Due 

to less influence from both oceanic and Mediterranean air masses, the Susa Valley 

is more xeric than other regions of the Piedmont Alps, particularly in its inner axial 

portion (Fratianni et al., 2009). 

3.1.5 Geohazards and Historical Events: 

Many geo-hydrological hazards, especially debris flows and shallow landslides, 

which are frequently brought on by heavy precipitation events, have occurred in the 

Susa Valley. On August 13, 2023, a localized convective storm in the upper Frejus 

basin caused a colata detritica (debris flow) that affected the alluvial fan area in 

Bardonecchia. This was one of the most recent and noteworthy debris-flow events, 

according to ARPA Piemonte. Based on historical reconstructions of torrential 

activity and sediment connectivity analyses, this event is consistent with the valley's 

high susceptibility to mass movement processes. In particular, ARPA’s assessments 

classify sub-basins based on debris-flow susceptibility (ECM, BCM, GCM), using 

morphometric and hydrological indicators, as well as thresholds of critical rainfall 

(e.g., ECM: 20 mm/h on clay-producing rocks like phyllatic schists; GCM: 30 mm/h 

in limestone-rich basins; BCM: 50 mm/h in resistant lithologies such as gneisses and 

granitoids;(Tiranti et al., 2014)), using morphometric and hydrological indicators, as 

well as thresholds of critical rainfall (Cremonini, 2023). 

3.2 Climatic Characteristics 

The assessment of climatic conditions on slope instability in the Susa Valley used 

multiple long-term meteorological datasets. The datasets contain historical 

observations together with projected future values of climate variables that affect 

hydrological and geomorphological processes. 

• The historical precipitation data were acquired as high-resolution 

gridded time-series in NetCDF format, spanning from 1957 to 2024. Each 

grid cell contains daily cumulative precipitation values for northwestern 

Italy, which allows for consistent spatial and temporal comparisons 

throughout the study area. These data were obtained from regional 

environmental agencies and are frequently employed in climatological 

and hydrological analyses. 
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• The historical temperature data contains daily maximum and minimum 

values which are available in NetCDF format from 1957 to 2024. The 

datasets contain daily temperature values spread across space which 

enables the computation of derived indices including the diurnal 

temperature range (ΔT) that serves as an essential indicator for thermal 

stress and frost-related weathering processes. 

• Future climate projections from 2025 to 2100 and include three 

essential climate variables: monthly total precipitation and monthly 

average maximum temperature and monthly average minimum 

temperature. The datasets originate from global climate models (GCMs) 

that use two greenhouse gas emission scenarios: RCP 4.5 (moderate 

emissions) and RCP 8.5 (high emissions). The future data exist as 

GeoTIFF raster layers which present annual stacks of monthly values 

thus enabling integration into geospatial workflows. 

The evaluation of past and future climatic influences on slope stability becomes 

possible through the analysis of historical and projected datasets. Daily-resolution 

records help identify short-term triggers and thresholds (e.g., extreme rainfall or ΔT 

anomalies) but monthly future projections reveal long-term trends and climate-

driven risk shifts. 

3.3 Source of data 

The research data originated from dependable open-access repositories and 

official institutions which maintained scientific credibility and spatial consistency. 

The data consist of three primary categories. 

• Climatic data were sourced from regional environmental agencies for 

historical observations, including daily precipitation and temperature 

records over northwestern Italy. Future climate projections were 

acquired from the Coupled Model Intercomparison Project Phase 6 

(CMIP6) under two greenhouse gas emission scenarios: RCP 4.5 and RCP 

8.5. These datasets serve as the basis for analyzing both short-term 

variability and long-term climatic trends affecting slope stability. 

• Topographic and geospatial data included high-resolution digital 

elevation models (DEM) and administrative boundary shapefiles. These 

were obtained from national geospatial portals and used to define the 

study area, derive terrain parameters (e.g., slope, aspect), and 

standardize the spatial extent of the analysis. 
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• Susceptibility maps for different slope failure types including rockfall, 

shallow landslides and debris flows were obtained from regional hazard 

zoning projects and previous academic studies. The classified raster 

layers allowed for spatial correlation between hazard-prone areas and 

climate-related indices. 

The datasets required necessary preprocessing to achieve format conversion 

and coordinate system unification and resolution harmonization before they could 

be analyzed together in a single geospatial framework. 

3.4 Spatial data overview 

The spatial analysis of rockfall, shallow landslide, and debris flow susceptibility 

in the Susa Valley required the use of raster and vector geospatial datasets. The 

datasets offer fundamental topographic information which helps identify spatial 

patterns of hazard susceptibility for different slope failure types. 

• Digital Elevation Model (DEM):  A high-resolution (10-meter) raster 

elevation model was employed to derive slope, aspect, and elevation 

classes. These terrain variables are among the primary conditioning 

factors influencing slope instability and were used for zonal classification 

across the study area. 

• Study Area Boundary:  The Susa Valley was defined by a vector shapefile 

that served as the geographic boundary. The boundary functioned as a 

spatial mask to clip all climatic and hazard-related layers which 

maintained analytical consistency within the region of interest. 

• Susceptibility Maps 

A set of three classified raster maps was used to represent terrain 

susceptibility to distinct types of slope failures within the Susa Valley. 

Each map was developed based on different physical criteria and 

classification systems adapted to the nature of the corresponding 

phenomenon. 

✓ Rockfall Susceptibility Map: The study area receives 

classification through an ordinal susceptibility map which ranges 

from very low (1) to very high (5). The classification process relies 

on topographic and structural features including slope angle and 

lithology and fracture intensity. The susceptibility map received 

spatial correlation with climatic triggers through the addition of 

rainfall exceedance data and thermal indices. The analysis 
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revealed areas where high rockfall sensitivity meets essential 

environmental thresholds(Tiranti et al., 2023). 

✓ Shallow Landslide Susceptibility Map: The shallow landslide 

map uses a three-class system (low, moderate, and high 

susceptibility) based on surface processes, soil depth, slope 

gradient, and vegetation cover. It supports comparative analysis 

of slope responses to rainfall intensity and seasonal conditions, 

particularly in colluvial and soil-mantled hillslopes (Tiranti et al., 

2019) 

✓ Debris Flow Susceptibility Map: This map categorizes 

catchments into three susceptibility classes according to the 

clay-generating potential of the dominant lithologies in each 

catchment, following the methodology developed by (Tiranti et 

al., 2014), The three classes include: 

ECM (Excellent Clay-Maker): susceptible at 20 mm/h rainfall 

thresholds; composed of easily weatherable rocks such as 

phylladic calc-schists, black shales, and phyllades. 

GCM (Good Clay-Maker): with a 30 mm/h threshold; 

predominantly limestone and dolostone catchments. 

BCM (Bad Clay-Maker): requiring 50 mm/h rainfall to trigger 

events; composed of resistant lithologies such as granitoids, 

quartzites, gneisses, mica-schists, and ophiolites (Tiranti et al., 

2014). 

The susceptibility layers in Figure16 received spatial alignment with climatic 

datasets and topographic parameters to determine the potential overlap between 

hazard-prone zones and climate-induced triggers. The analysis of multiple maps 

enabled researchers to understand how different slope instability types would react 

to present and future environmental conditions. 
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Figure 16 Susceptibility maps for debris flows (ECM, GCM, BCM), rockfalls (five-class scale), and shallow landslides (three 

classes) in the Susa Valley. All layers are displayed over a shaded relief base map, with study area boundaries outlined in black. 

Inset maps show the regional location within Italy 
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Data, Processing, Results 

4.1 Introduction 

In this chapter, the data processing methods and analytical results from past 

and future climate datasets, with a focus on temperature and precipitation 

variables, are described. The research aims to study how climate factors affect the 

risk of geo-hazards including shallow landslides, rockfalls and debris flows across 

elevation zones in the Susa Valley while assessing future risk changes.  

The analysis consists of two primary sections. 

1) Historical climate analysis, covering the period from 1957 to 2024, 

2) Future climate projections, based on CMIP6 models under RCP 4.5 and 

RCP 8.5 scenarios from 2025 to 2100. 

For temperature, the following metrics were computed and analyzed: 

• Monthly and daily average delta temperatures were calculated and 

compared. 

• Monthly delta temperature (ΔT) was extracted. 

• Monthly maximum and minimum temperatures were also derived. 

With a focus on rockfall sensitivity, these temperature indicators were examined 

across various elevation bands in order to identify critical thresholds and areas 

that are especially vulnerable to thermally induced slope instability. 

The following analyses were carried out for precipitation: 

• 24-hour and 48-hour cumulative rainfall was calculated monthly. 

• Return period analysis was conducted for June, July, and August to identify 

critical rainfall events. 

• Hourly rainfall intensity was estimated in order to assess debris flow 

susceptibility. 

• The effects of 24/48-hour cumulative rainfall on shallow landslides and 

rockfalls were evaluated. 
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Finally, these climatic variables were integrated with slope failure 

susceptibility maps using zonal statistics. This approach enabled the spatial 

correlation analysis between extreme temperature and precipitation events and 

areas characterized by high slope failure susceptibility. The resulting analysis 

provides a comprehensive understanding of both current and projected hazard 

exposure within the study area. 

4.2 Historical Temperature Analysis  

4.2.1 Monthly and Daily Average Delta Temperatures 

In the initial stage of the temperature analysis, daily maximum (Tmax) and 

minimum (Tmin) temperature values were extracted for the period from 

December 1, 1957, to December 1, 2024. These datasets were then used to 

calculate two key indicators: 

• Daily average delta temperature (ΔT = Tmax − Tmin for each day) 

• Monthly average delta temperature (the mean ΔT over each month) 

In order to reduce data volume and improve computational efficiency, the initial 

daily ΔT values were spatially averaged throughout the study area (Susa Valley) 

due to the NetCDF files' large size and high spatial resolution. A representative and 

well-structured dataset was produced, and it was then exported to Excel for 

efficient analysis and visualization. Plotting and comparing daily and monthly 

average ΔT trends improved the evaluation of long-term thermal dynamics 

(Figures 17 and 18). 

 

Figure 17_Monthly Average Delta Temperature (°C) from 1957 to 2024 with Trend Line 
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Figure 18_Daily Delta Temperature (°C) from 1957 to 2024 with Trend Line 

The difference between maximum and minimum temperatures gradually 

decreases over time, according to trend analyses of daily and monthly average ΔT 

from 1957 to 2024 (Figures 17 and 18). The overall pattern indicates a consistent 

narrowing of ΔT over the recorded period, despite short-term fluctuations. 

The following charts (Figures 19, 20, and 21) show monthly trend analyses in 

addition to the aggregated daily data to provide a more thorough understanding 

of average temperature variations. 
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Figure 19_Monthly Average Delta Temperature (°C) from 1957 to 2024 with Trend Line_ Jan to Apr  
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Figure 20_Monthly Average Delta Temperature (°C) from 1957 to 2024 with Trend Line_ May to Aug 
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Figure 21_Monthly Average Delta Temperature (°C) from 1957 to 2024 with Trend Line_ Sep to Dec 
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The monthly average delta temperature (ΔT) trends from 1957 to 2024 

indicate a downward trend in the most of the months, as shown in Figures 19, 20, 

and 21. However, January and December exhibit positive slopes, indicating a 

minor rise in ΔT throughout the winter.  

4.2.2 Monthly Delta Temperature (ΔT) 

A Python script that obtained monthly maximum and minimum temperatures 
from 1957 to 2024 was used to construct the dataset. Long-term changes in 
monthly thermal variability were assessed using the Delta Temperature (ΔT), 
which is the difference between these two values. ΔT, as compared with absolute 
temperature trends, shows how the difference between monthly maximum and 
minimum temperatures has changed over time as opposed to reflecting absolute 
warming or cooling trends.  On the other hand, an increasing ΔT may indicate drier 
conditions, stronger solar input, or less cloud cover, all of which increase 
temperature contrasts. A declining ΔT indicates faster increases in minimum 
temperatures, a recognized signal of ongoing climatic shifts. Figure 22 illustrates a 
slight increase in the ΔT trend from 1957 to 2024. 

 

Figure 22_Monthly Delta Temperature (°C) from 1957 to 2024 with Trend Line 

Monthly delta temperature (ΔT) values from 1957 to 2024 are shown in Figure 

22, alongside a linear trend line. during the period, the data points show significant 

short-term fluctuations, which are indicative of the monthly thermal amplitude's 

associated variability. However, a minor rise in ΔT over time is apparent by the 

trend line's slight positive slope. The slight positive slope of the trend line reflects 

a small but measurable change in ΔT throughout the study period.  Figures 23 to 

26 show the results of a separate analysis of the ΔT values for each month over 

several years in order to better examine these conditions. 
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Figure 23_Monthly Delta Temperature (°C) from 1957 to 2024 with Trend Line_ Jan to Mar 
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Figure 24_Monthly Delta Temperature (°C) from 1957 to 2024 with Trend Line_ Apr to Jun 
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Figure 25_Monthly Delta Temperature (°C) from 1957 to 2024 with Trend Line_ Jul to Sep 
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Figure 26_Monthly Delta Temperature (°C) from 1957 to 2024 with Trend Line_ Oct to Dec 
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Most months have a positive trend, according to monthly temperature data 

from 1957 to 2024, however, a few months have slightly negative slopes. As shown 

by the trend lines in the corresponding figures, this variation is noticeable over the 

years. Across the twelve months, the trend lines predominantly suggest increasing 

temperatures, although the steepness varies from one month to another. 

4.2.3 Monthly Maximum and Minimum Temperatures 

The monthly maximum (Tmax) and minimum (Tmin) temperatures for the 
years 1957–2024 were examined in this section. Assessing long-term patterns in 
temperature extremes and spotting seasonal fluctuations that might indicate 
elevated thermal risk or climate-related shifts in the Susa Valley were the 
objectives. 

The historical NetCDF dataset was used to extract daily Tmax and Tmin values 
for each month of the year, which were then combined using Python to create 
monthly averages. The data were then exported into Excel for visualization and 
trend analysis. To identify gradual changes over the decades, trend lines were 
fitted. An overview of the rising and falling temperature trends from 1957 to 2024 
is first shown in the section that follows (Figure 27). These patterns are then 
analyzed for every month during the previous 60 years. 

 

Figure 27_Monthly Max and Min Temperature (°C) from 1957 to 2024 with Trend Line 

The analysis of monthly maximum and minimum temperatures from 1957 to 

2024 revealed positive linear trends for both variables (Figure 27). The slope for 

maximum temperature (Tmax) was approximately +0.0036°C per year, while 

minimum temperature (Tmin) increased at a slightly lower rate of +0.0023°C per 

year, indicating a consistent yet uneven warming pattern over the study period. 

To investigate this further, monthly Tmax and Tmin values were calculated and 

analyzed separately for each month over the past six decades (Figures 28, 29, and 

30). 
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Figure 28 _Monthly Max and Min Temperature (°C) from 1957 to 2024 with Trend Line_ Jan to Apr 
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Figure 29_Monthly Max and Min Temperature (°C) from 1957 to 2024 with Trend Line_ May to Aug 
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Figure 30_Monthly Max and Min Temperature (°C) from 1957 to 2024 with Trend Line_ Sep to Dec 
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The monthly trend analysis of maximum and minimum temperatures from 

1957 to 2024 reveals distinct seasonal variations throughout the year. All months 

exhibit a positive linear trend in maximum temperature (Tmax), whereas trends in 

minimum temperature (Tmin) are more heterogeneous. While most months show 

an upward trend in Tmin, September stands out as the only month with a negative 

Tmin slope. The steepest increases in Tmax occur in January, February, and 

December, accompanied by comparatively slower increases in Tmin. Conversely, 

June and July display higher slope values for Tmin than for Tmax. In October, the 

trends for both Tmax and Tmin are nearly identical. These seasonal differences are 

illustrated in the corresponding monthly charts. 

4.2.4 Elevation-Based Temperature Analysis 

According to the classification suggested by Tiranti et al. (2023) for the 
Western Alps, the Susa Valley was divided into five major altitudinal classes in 
order to examine the relationship between temperature behavior and elevation. 
In addition to elevation range, this division considered climatic zoning and aspects 
into account (Tiranti et al., 2023). 

• Class 1: 400–700 m a.s.l. (foothills, transition to plains) 

• Class 2: 700–1000 m a.s.l. (low-altitude Alpine zone) 

• Class 3: 1000–2000 m a.s.l. (mid-altitude Alpine environment) 

• Class 4: 2000–3000 m a.s.l. (high-altitude zone with significant slope 
exposure) 

• Class 5: >3000 m a.s.l. (very high-altitude, often vegetation-free) 

This classification served as the spatial framework for extracting temperature 

trends and conducting further statistical analyses related to geomorphological 

processes. Using the regional digital elevation model (DEM) provided by ARPA 

Piemonte, along with masked NetCDF files for Tmin and Tmax, average values and 

linear trend slopes were calculated for each elevation class through Python-based 

geoprocessing. 

The monthly maximum and minimum temperature trends for each elevation 

band from 1957 to 2024 are shown in Figures 31 and 32. The findings show 

significant differences in warming rates between various altitudinal zones. A 

detailed overview of these trends, categorized by elevation class, is presented in 

the following sections . 
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Figure 31_Max and Min Temperature Trend with Elevation Classes 1,2,3 



 Data, Processing, Results 

 

 
41 

 

 

Figure 32_Max and Min Temperature Trend with Elevation Classes 4,5 

Temperature trends differ among the five elevation classes, as shown in 

Figures 31 and 32. Significant variations in the slope of Tmax and Tmin are 

observed along the altitudinal gradient.  Temperature trends exhibit variability 

throughout the altitudinal gradient, with variations in the slope magnitude 

between Tmax and Tmin observed across all classes. 

Class 1 (400–700 m) shows an increasing trend in Tmax of +0.0033°C per year, 

corresponding to an approximate total rise of +2.2°C over the study period, while 

Tmin increases at a rate of +0.0014°C per year (approximately +1.0°C). Class 2 

(700–1000 m) exhibits a Tmax trend of +0.0037°C per year (about +2.6°C) and a 

Tmin trend of +0.0011°C per year (near +0.75°C). Class 3 (1000–2000 m) displays 

the steepest Tmax increase among all classes, with a rate of +0.0046°C per year 

(+3.2°C), while Tmin rises at +0.0025°C per year (around +1.7°C). Class 4 (2000–
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3000 m) records a Tmax increase of +0.0040°C per year (approximately +2.7°C) 

and a Tmin increase of +0.0030°C per year (estimated +2.0°C). Finally, Class 5 

(>3000 m) shows a Tmax trend of +0.0038°C per year (approximately +2.6°C), with 

Tmin increasing at +0.0027°C per year (+1.5°C). 

Class 4 shows relatively balanced trends between Tmax and Tmin, while Class 

3 shows the highest Tmax increase. These trends show that warming rates vary 

across elevation bands.  

To enable a more precise analysis and comparison of maximum and minimum 

temperature trends across the elevation classes, the data are presented in the 

form of bar charts and histograms. To enhance the accuracy and clarity of the 

comparison, the average values of maximum and minimum temperatures for each 

elevation class were calculated and are displayed in Figure 33. 

 

Figure 33_Average Max and Min Temperature per Elevation Class from 1957 to 2024 

The data in Figure 33 shows a clear change in thermal behavior with altitude, 

which means that temperature changes in a systematic way as elevation rises.  The 

highest average maximum temperatures, between roughly 23.2°C and 23.4°C, are 

found in Class 1 (400–700 m) and Class 2 (700–1000 m), with corresponding 

minimum temperatures of about 3.4°C. There is a clear thermal transition zone in 

Class 3 (1000–2000 m), where the average maximum temperature drops to 

roughly 19°C and the minimum temperature gets close to 0°C. The lowest average 

maximum temperature (~17°C) is found in Class 4 (2000 3000 m), while the lowest 

values fall below –1.5°C. Class 5 (>3000 m) has a slightly higher average maximum 

temperature than Class 4, at around 18°C, while the minimum temperature rises 

to about 0°C. 
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The results show a clear temperature gradient across elevation bands, which 

is in line with the spatial patterns seen in the analysis of temporal trends. 

4.2.5 Critical Elevation Identification 

To identify the elevation threshold above which maximum temperatures 
rarely exceed the freezing point, a spatial analysis was conducted using historical 
Tmax data from 1957 to 2024. The original NetCDF files were first converted to 
GeoTIFF format and spatially masked to the extent of the Susa Valley. Elevation-
specific temperature values were then extracted using QGIS and organized into 
tabular format. These data were subsequently analyzed in Python to assess the 
frequency of above-freezing Tmax values across elevation bands. 

The resulting dataset was used to generate a scatter plot showing the 
relationship between elevation and average Tmax (Figure 34). 

 

Figure 34_Elevation Vs Max Temperature, from 1957 to 2024 

Figure 34, displays a clear inverse relationship—Tmax values decrease as 

elevation increases. Based on the distribution of values, a notable shift is observed 

around 795 meters, above which many Tmax points fall below 0°C. This 

observation provides a measurable reference point to distinguish between areas 

where freezing conditions are likely and those where they are less frequent. The 

elevation of ~795 m is therefore noted as a potential thermal threshold based 

solely on historical maximum temperature data. 

4.3 Historical Precipitation Analysis  

The Susa Valley's historical precipitation patterns are examined in detail in 

this section using cumulative rainfall data taken from NetCDF datasets between 

December 1, 1957, and December 1, 2024. Using Python, the study area was 

selected through spatial filtering, and the 24- and 48-hour rainfall totals were 
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analyzed in the same way as the temperature data.  The calculated cumulative 

rainfall values were systematically compared against the established thresholds of 

120 mm for 24-hour cumulative rainfall and 170 mm for 48-hour cumulative 

rainfall, which are frequently linked to the beginning of shallow landslides and 

rockfalls. The results indicate that these thresholds were rarely exceeded during 

the 1957–2024 period. Furthermore, the trend lines for both datasets show a 

slightly negative slope, suggesting no significant long-term increase in extreme 

precipitation events. 

4.3.1 Cumulative 24-Hour Rainfall 

This section mainly focuses on the 24-hour cumulative rainfall values to 
evaluate the short-duration precipitation patterns that may cause localized 
geohazards. Figure 35 displays the overall trend of cumulative 24-hour rainfall 
over the course of the study, based on daily precipitation measurements extracted 
from the historical dataset filtered for the Susa Valley. This broad view makes it 
easier to identify long-term variations in rainfall frequency and intensity. 

 

Figure 35_Cumulative Rainfall per 24 hour from 1957 to 2025  

Although most values fall within a moderate range, as illustrated in Figure 35, 

several notable spikes represent exceptional events that are sporadically 

distributed across the decades.  Plotting the trend line, which shows a slight 

downward trend, provides a visual representation of the long-term variation in 

daily rainfall extremes without suggesting sudden shifts or persistent 

abnormalities. Monthly trends of 24-hour cumulative rainfall were examined to 

find seasonal peaks, changes in the distribution of rainfall, and times when the 

probability of intense events was higher in order to improve comprehension. This 
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method enhances the assessment of seasonal hazards and draws attention to 

climate-driven changes (Figures 36, 37, 38). 

 

 

 

 

Figure 36_Cumulative Rainfall per 24 hours from 1957 to 2024_ Jan to Apr 
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Figure 37_Cumulative Rainfall per 24 hours from 1957 to 2024_ May to Aug 
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Figure 38_Cumulative Rainfall per 24 hours from 1957 to 2024_ Sep to Dec 
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There are clear seasonal patterns throughout the year, according to the 

monthly trend analysis of 24-hour cumulative rainfall from 1957 to 2025 (Figure 

36,37,38). The majority of the months exhibit trends that are either comparatively 

stable or slightly declining, with winter months like January, February, and 

December showing particularly noticeable negative slopes. May is notable for 

showing a definite upward trend, indicating a rise in late-spring short-duration 

rainfall. March and April, on the other hand, exhibit patterns that are either almost 

flat or slightly negative. While August seems to be fairly stable, the summer 

months—especially June and July—show modest upward trends. While 

September and October exhibit minimal or mixed trend behaviors, November is 

marked by the most noticeable increase. These month-specific differences are 

illustrated in the corresponding graphs and reflect how the temporal distribution 

of intense daily rainfall has shifted over time. 

4.3.2 Cumulative 48-Hour Rainfall 

The analysis of 48-hour cumulative rainfall values is presented to evaluate 
medium-duration precipitation patterns that may contribute to rainfall-induced 
geohazards. The overall trend for the entire study period is shown in Figure 39, 
based on data filtered for the Susa Valley. This overview allows the identification 
of long-term variations in rainfall intensity across 48-hour windows. 

 

Figure 39_Cumulative Rainfall per 48 hours from 1957 to 2025 

The distribution of extreme 48-hour cumulative rainfall events is displayed in 

Figure 39, where each bar denotes the highest annual total value. The overall 

trend line indicates a slight long-term decrease, but a number of sharp peaks 

indicate sporadic intense multi-day rainfall. The fluctuation is indicative of the 
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erratic character of precipitation extremes with a medium duration. In order to 

identify seasonal patterns and assist with hazard assessment, monthly trends of 

48-hour rainfall were analyzed (Figures 40, 41, 42). 

 

 

 

 

Figure 40_Cumulative Rainfall per 48 hours from 1957 to 2024_ Jan to Apr 
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Figure 41_Cumulative Rainfall per 48 hours from 1957 to 2024_ May to Aug 
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Figure 42_Cumulative Rainfall per 48 hours from 1957 to 2024_ Sep to Dec 
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Seasonal differences in rainfall extremes are clearly visible in the monthly 

trend analysis of 48-hour cumulative rainfall from 1957 to 2025 (Figure 40,41,42). 

The slight negative trends observed in the majority of winter months, such as 

January, February, and December, point to a long-term decline in medium-

duration rainfall events during colder seasons. Although less noticeable, March 

and April also show negative slopes, suggesting either slight decline or relative 

stability. May, on the other hand, is significant for having a distinctly rising trend, 

which indicates a change toward heavier rainfall in the late spring. The summer 

months exhibit a range of behavior: August is largely stable, while June and July 

show slight upward trends. Over time, September and October show erratic trends 

with slight variations. Interestingly, November exhibits the strongest upward 

trend, pointing to a remarkable rise in the intensity of 48-hour rainfall in late 

autumn. These monthly differences offer important insight into seasonal hazard 

dynamics by illuminating the evolution of rainfall distribution over multi-day 

periods. 

4.3.3 Return Period Analysis of Extreme Events 

The statistical probability and recurrence of high-intensity precipitation 
events were evaluated using the return period concept. This approach provides 
important information about how climate variability affects slope instability and 
flood risk by estimating the average time between two events of comparable 
magnitude. 

The ARPA Piemonte platform provided the return period data used in this 
analysis, which included recurrence intervals ranging from 2 to 200 years and 
durations ranging from 10 minutes to 24 hours. 24-hour cumulative rainfall was 
the main focus in order to meet the goals of the study.  In order to determine 
whether recent extremes are consistent with historically uncommon events, 
historical summer precipitation data (1957–2024) was examined to identify 
maximum events and compare them with return period thresholds. The results 
provide important information for risk assessment and long-term adaptation 
planning in mountainous regions and aid in determining whether climate change 
has affected regional precipitation patterns. 

Given the increased likelihood of convective storms and short-duration 
extreme rainfall during the summer season, the months of June, July, and August 
were selected for focused analysis. In the following section, the 24-hour 
cumulative rainfall charts for these months are presented, along with the 
corresponding 24-hour return period thresholds for 2-, 5-, 10-, 50-, 100-, and 200-
year intervals (Figure 43). 
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Figure 43_Return Period of Cumulative Rainfall per 24 hours with Trend Line from 1957 to 2024_ Jun to Aug 
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Figure 43 summarizes summer 24-hour rainfall extremes with trend lines and 

return period thresholds for key recurrence intervals. In all three months, the 

annual rainfall peaks consistently remain below the 2-year return period 

threshold. The observed trends are slightly increasing in June and July, and slightly 

decreasing in August. The graphs indicate limited interannual variability and no 

occurrences of high-intensity events exceeding the defined return thresholds 

during the summer period. 

4.4 Analysis of Historical Susceptibility Classes under 

Climatic Conditions 

The relationship between topographic susceptibility to three types of slope 

failure (debris flows, shallow landslides, and rockfall) and historical temperature 

and precipitation patterns is examined in this section. Hazard-prone areas 

throughout the Susa Valley were identified and examined using high-resolution 

geospatial datasets, such as susceptibility maps and a 10-meter DEM. 

Three classified susceptibility maps were considered: 

• Rockfall susceptibility was assessed in relation to both temperature 

(Delta T 5–8°C) and precipitation thresholds (120 mm/24h and 170 

mm/48h), with five classes. 

• Shallow landslide susceptibility was evaluated using the same 

precipitation thresholds, with three classes. 

• Debris flow susceptibility was analyzed using intensity-based rainfall 

thresholds of 20, 30, and 50 mm/h, with(three classes: ECM, GCM, 

BCM). 

All susceptibility layers were spatially aligned with climate data to investigate 

how different types of slope instabilities respond to environmental triggers. 

4.4.1 Rockfall Susceptibility under Temperature and Precipitation 

Conditions 

This part of the analysis focuses on the role of daily temperature fluctuations 
(ΔT = Tmax − Tmin) in influencing rockfall susceptibility across the Susa Valley 
during the historical period from 1957 to 2024. The analysis builds upon the 
susceptibility classification developed by Tiranti et al. (2023), which defines five 
susceptibility levels ranging from very low (Class 1) to very high (Class 5). 

A Python-based workflow was developed to calculate daily temperature 
fluctuations (ΔT) across the study area, enabling analysis of their spatial and 



 Data, Processing, Results 

 

 
55 

temporal distribution. Mean ΔT values were computed for each susceptibility class 
and month using a spatial mask derived from the rockfall susceptibility map. These 
monthly averages were stored in structured CSV files to support long-term 
comparisons. 

Elevation was added as a second spatial variable in the following step. The 10-
meter-resolution DEM of the Susa Valley was divided into five elevation bands in 
accordance with earlier analyses. A 5 × 5 matrix was produced by calculating the 
monthly and annual averages of ΔT for every combination of susceptibility class 
and elevation band. Additionally, for each class combination, the percentage of 
area within three ΔT thresholds—below 5°C, between 5°C and 8°C, and above 
8°C—was estimated. The 8°C threshold is especially crucial because, as Tiranti et 
al. (2023) and other Alpine studies have shown, high temperatures above this 
point are known to dramatically speed up rockface failure and degradation. 

Long-term averages of ΔT (1957–2024) were calculated for each month across 
the 5 × 5 class matrix to make interpretation easier and give a better picture of the 
relationship between elevation, topographic sensitivity, and temperature 
variability. The original raster resolution of 10 meters was used for all spatial 
analyses, guaranteeing that thermal patterns across intricate mountainous terrain 
were represented in detail. 

The results are visualized in Figure 44 to 48, which was generated using 
Python code and presents a comparative matrix of rockfall susceptibility classes 
and elevation bands with respect to the defined ΔT thresholds. This figure 
highlights the spatial overlap between susceptibility levels and elevation zones, 
specifically showing the distribution of areas falling below 5°C, between 5°C and 
8°C, and above the 8°C critical threshold. 

 

Figure 44_ Monthly ΔT across rockfall susceptibility classes in Elevation Class 1, between 5 °C and 8 °C thresholds 
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Figure 45_Monthly ΔT across rockfall susceptibility classes in Elevation Class 2, between 5 °C and 8 °C thresholds 

 

Figure 46 _Monthly ΔT across rockfall susceptibility classes in Elevation Class 3, between 5 °C and 8 °C thresholds 

 

Figure 47 _Monthly ΔT across rockfall susceptibility classes in Elevation Class 4, between 5 °C and 8 °C thresholds 
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Figure 48 _Monthly ΔT across rockfall susceptibility classes in Elevation Class 5, between 5 °C and 8 °C thresholds 

Based on the bar charts (Figure44 to 48), for the five elevation classes, the 

following patterns are observed in the monthly distribution of ΔT across rockfall 

susceptibility classes: In most elevation classes, the months of May, June, July, and 

August show the highest average ΔT values, often exceeding the 8 °C threshold. In 

Elevation Classes 3 and 4, Susceptibility Classes 3, 4, and 5 frequently record ΔT 

values above 8 °C during the warmer months. In Elevation Class 5, ΔT values in 

Susceptibility Classes 3 to 5 occasionally exceed 10 °C in summer. In lower 

elevation classes (1 and 2), ΔT values are generally lower and only approach higher 

thresholds during the central months of the year. During colder months 

(November to February), ΔT values across all classes remain mostly below 5 °C. 

Susceptibility Class 3 consistently shows the highest ΔT values in most months, 

particularly in mid- and high-elevation bands. In some months such as June and 

July, the difference in ΔT between susceptibility classes is more pronounced, with 

values decreasing progressively from Class 3 to Class 1. 

In the following section, the effect of precipitation on rockfall susceptibility 

has been examined. 

Building on earlier analyses, established rainfall thresholds were used to 

identify extreme events potentially triggering rockfall.  The research examines how 

rainfall events exceeding these thresholds distribute across the five-class rockfall 

susceptibility map. The analysis of precipitation exceedance patterns used a 

classified Digital Elevation Model (DEM) to compare different altitude ranges while 

incorporating elevation as a secondary factor for more detailed analysis. 

A workflow based on Python was used for all spatial operations, including the 

extraction of precipitation thresholds and intersection with susceptibility and 
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elevation layers. The frequency and distribution of exceedance events across 

elevation bands and susceptibility classes are depicted in Figure 49, which 

summarizes the final results. Every point plotted represents an event that has 

been classified by its elevation class and related rockfall susceptibility class. 

 

 

Figure 49_24 and 48 hours Rainfall Events by Elevation Class and Rockfall Susceptibility 

Data points from all five susceptibility classes are distributed throughout the 

24-hour precipitation plot, which displays a small number of threshold-exceeding 

events (≥120 mm). Importantly, Classes 2 through 5 exhibit fewer events, all of 

which are marginally above the threshold, while Class 1 has the most intense 24-

hour event (over 160 mm). Since the majority of these exceedances are 
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concentrated in the lower to mid-elevation classes (roughly Classes 2 and 3), it is 

possible that these elevations are more vulnerable to intense rainfall that occurs 

for brief periods of time (Figure 49). 

With a more extensive and evenly distributed throughout across susceptibility 

classes, the 48-hour precipitation plot shows a greater number of exceedance 

events (≥170 mm). A number of high-intensity events are present in Class 1 once 

more, and frequent exceedances are also seen in Classes 3 and 4. Despite being 

less frequent, Class 5 events still exceed the crucial 48-hour mark. Overall, Figure 

49 shows that, in contrast to 24-hour events, intense rainfall over 48 hours has 

historically impacted a wider elevation and susceptibility range. 

4.4.2 Debris Flow Susceptibility under Precipitation Conditions 

To evaluate the role of precipitation in triggering debris flow events, daily 
rainfall data from December 1957 to December 2024 were analyzed. Given that 
debris flows are primarily influenced by short-duration rainfall intensity, 12-hour 
precipitation values were estimated from the daily records to approximate high-
intensity episodes.  These estimates were then compared against the predefined 
susceptibility thresholds for the three debris flow classes—ECM, GCM, and BCM—
corresponding to 20 mm/h, 30 mm/h, and 50 mm/h, respectively. The 
susceptibility classes were defined based on lithological characteristics and their 
clay-forming potential.  A spatial overlay was conducted between the debris flow 
susceptibility map and the precipitation intensity data to determine how many 
events exceeded the thresholds in each class. The results allow for a historical 
overview of where and how often critical rainfall conditions have coincided with 
topographic susceptibility. 

Figure 50, presented below illustrates the distribution of threshold-exceeding 
rainfall events across the three susceptibility categories, providing a spatial 
summary of potential debris flow triggers throughout the study period (1957 to 
2024). 
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Figure 50_24 and 48 hours Rainfall Events by Elevation Class and Debris Flow Susceptibility from 1957 to 2024  

Figure 50 shows the temporal distribution of debris flow events that exceeded 

class-specific rainfall thresholds between 1957 and 2024, categorized by 

susceptibility class. Each point on the plot represents a single summer rainfall 

event surpassing the threshold of its respective class. The chart clearly indicates 

that ECM-class (Class 2) events dominate the historical record, both in frequency 

and temporal spread, consistently exceeding their 20 mm/h threshold. BCM-class 

(Class 3) events, though less frequent, display particularly intense rainfall values, 

often well above the 50 mm/h mark and mainly clustered in the more recent 

decades (post-1980), hinting at a possible intensification over time. GCM-class 

(Class 1) events are the least common, scattered across the timeline and showing 

limited exceedances beyond their 30 mm/h threshold. 

The following Python-based analysis evaluated elevation's impact on debris 

flow occurrence in the next step. The predefined elevation bands from this study 

were merged with debris flow susceptibility classes to analyze how rainfall 

intensity interacts with topographic variation. The analysis combined predicted 

hourly precipitation data with these classifications to determine which elevation 

bands experience debris flow events most often within each susceptibility class. 

The spatial comparison reveals how terrain altitude affects debris flow potential 

when rainfall intensities vary (Figure 51) 
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Figure 51_ Rainfall Events by Elevation Class and Debris Flow Susceptibility Summer 

Figure 51 shows between the summer months of 1957 and 2024, all recorded 

debris flow events that exceeded critical rainfall thresholds occurred exclusively 

within Elevation Class 5 (above 3000 meters). No threshold-exceeding events were 

observed in lower elevation classes, underscoring the dominant role of high-

altitude terrain in triggering debris flows during warm-season periods. Moreover, 

all these events belonged to the ECM susceptibility category (Class 2), which has a 

threshold of 20 mm/h. The data indicate that a significant portion of these events 

fell within the 20 to 40 mm/h range, with no occurrences recorded for either the 

GCM (Class 1) or BCM (Class 3) categories, as no GCM or BCM catchments are 

present at this elevation class. 

4.4.3 Shallow Landslide Susceptibility under Precipitation Conditions 

In this phase of the analysis, the methodology applied for rockfall threshold 
assessment under 24-hour and 48-hour rainfall conditions was similarly adopted 
to evaluate shallow landslide susceptibility. However, the focus here is specifically 
on shallow landslides, utilizing the dedicated susceptibility map provided by ARPA 
Piemonte. This map categorizes the study area into three susceptibility classes: 
Class 2 (moderate), Class 3 (high), and Class 4 (very high), which also indicate the 
expected number of shallow landslides when critical rainfall thresholds are 
exceeded, see(Tiranti et al., 2019). 

The Python-based method from previous sections was used to determine 
average rainfall values for each susceptibility class. The following analysis 
examined the relationships between elevation and susceptibility and rainfall 
intensity. The research combined these parameters to establish a better 
understanding of shallow landslide susceptibility patterns across space and time 
under rainfall conditions. The analysis results appear in Figure 52. 
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Figure 52_24 and 48 hours Rainfall Events by Elevation Class and Shallow Landslides Susceptibility Summer 

Susceptibility Classes 2, 3, and 4 are represented by the distribution of events 

in the first chart (24-hour precipitation). Precipitation amounts range from roughly 

121 mm to over 160 mm, with all recorded values exceeding the critical threshold 

of 120 mm. Since every event is classified as belonging to Elevation Class 3, the 

dataset's occurrences are restricted to a particular elevation band.In the second 

chart (48-hour precipitation), a larger number of extreme events is visible, all 

exceeding the threshold of 170 mm. Recorded precipitation values reach above 

220 mm, with data points present across all three susceptibility classes. Most of 

the events are again concentrated in Elevation Class 3, with a few extending into 

lower elevation classes (around Class 2). 
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4.5 Future Temperature Projections Under RCP 4.5 

In order to evaluate the potential impact on the Susa Valley's susceptibility to 

geohazards, this section looks at future temperature trends under the RCP 4.5 

scenario. High-resolution raster datasets (.tif format) from ARPA Piemonte that 

span the years 2025–2100 serve as the basis for the analysis. The projections are 

based on these datasets, which include daily minimum, maximum, and delta 

temperatures (ΔT = Tmax − Tmin). 

RCP 4.5 represents a moderate emission scenario in which greenhouse gas 

emissions peak around 2040 and gradually decline. Under this pathway, global 

temperatures are expected to rise by approximately 1.8 to 2.4°C by the end of the 

century (IPCC, 2014). 

 Due to the limitations of QGIS in handling large raster datasets efficiently, the 

analysis was performed in Python. This allowed for more precise computation of 

daily and monthly temperature indicators and their distribution across elevation 

bands. The following sections present the spatial and temporal trends of these 

variables under RCP 4.5, with a focus on identifying thermal thresholds related to 

slope instability processes. 

4.5.1 Monthly and Daily Average Delta Temperatures  

In contrast to the historical dataset, which included daily maximum and 
minimum temperatures allowing for detailed daily ΔT calculations, the future 
projections provided in .tif format under the RCP 4.5 scenario contain only 
monthly data. Therefore, the analysis of delta temperature in this case was limited 
to monthly average values. 

To compute the Monthly Average Delta Temperature, maximum and 
minimum values were extracted from the raster files using Python-based 
geospatial tools. These values were then used to calculate ΔT (Tmax − Tmin) on a 
monthly basis across the study period from 2025 to 2100. 

The results are presented in Figures 53, which display the temporal evolution 
of Monthly Average ΔT under the RCP 4.5 scenario. 
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Figure 53_Monthly Average Delta Temperature (°C) from 2025 to 2100 with Trend Line, RCP 4.5 

As demonstrated, ΔT values fluctuate seasonally and annually, typically falling 

between roughly 6°C and 9°C. Over time, these variations recur regularly, creating 

a discernible monthly pattern. The graph now has a trend line that indicates a very 

slight negative slope of about -0.000016. This suggests a slow, essentially 

insignificant drop in delta temperature over time. In other words, it is anticipated 

that the daily maximum and minimum temperature difference will decrease very 

gradually, but the change will be so small that the trend as a whole will be regarded 

as stable. As a result, daily temperature variations are predicted to stay constant 

under RCP 4.5, and the thermal regime of the area is probably going to continue 

to follow a largely stable pattern. 

To provide a clearer understanding of average temperature variability, the 

following Figures 54 to 57, present both monthly trend analyses and 

corresponding daily data. 
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Figure 54_Monthly Average Delta Temperature (°C) from 2025 to 2100 with Trend Line, RCP 4.5_ Jan to Mar 
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Figure 55_Monthly Average Delta Temperature (°C) from 2025 to 2100 with Trend Line, RCP 4.5_ Apr to Jun 
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Figure 56_Monthly Average Delta Temperature (°C) from 2025 to 2100 with Trend Line, RCP 4.5_ Jul to Sep 
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Figure 57_Monthly Average Delta Temperature (°C) from 2025 to 2100 with Trend Line, RCP 4.5_ Oct to Dec 
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To gain a clearer understanding of seasonal patterns in daily temperature 

variation, the average delta temperature (ΔT) was analyzed month by month over 

the period 2025 to 2100 under the RCP 4.5 scenario (Figure 54 to 57). The 

projection period shows stable monthly Average ΔT values according to the 

results. Trend lines in January, February and December show a slight downward 

direction, but the changes remain minimal. The summer months of June, July and 

September show upward trends, indicating a small rise in day-night temperature 

differences. Overall, these monthly variations are consistent with the general 

pattern of thermal stability observed across the entire projection period. 

4.5.2 Monthly Delta Temperature (ΔT)  

Delta temperature (ΔT), was taken from RCP 4.5 scenario data for the years 
2025 to 2100 in order to examine future monthly temperature variations.  
Using the same methodology as for historical data, this analysis was performed on 
Excel files created in Python. The difference in temperature between day and night 
is indicated by ΔT. The overall monthly ΔT trend under the RCP 4.5 scenario is 
displayed for the anticipated period in Figure 58. 

 

 

Figure 58_Monthly Delta Temperature (°C) from 2025 to 2100 with Trend Line, RCP 4.5 

The estimated monthly delta temperature (ΔT) values for the years 2025–

2100 under the RCP 4.5 scenario are shown in Figure 58. Every monthly ΔT data 

point is shown on the chart as a grey marker, and the general direction is indicated 

by a red trend line. The trend line's slope is very near zero, but slightly negative 

(about -0.0000076). 
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The ΔT values show natural yearly variations but stay between 13°C and 18°C 

throughout the entire period. The temperature difference between day and night 

shows no noticeable upward or downward trend throughout this period which 

indicates stable monthly temperature variability. The flat trend line indicates that 

RCP 4.5 conditions will not lead to significant long-term changes in monthly 

temperature variability. 

The ΔT for each month over this future period was then looked at in order to 

further elucidate the conditions (Figure 59 to 62). 
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Figure 59_Monthly Delta Temperature (°C) from 2025 to 2100 with Trend Line, RCP 4.5_ Jan to Mar 
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Figure 60_Monthly Delta Temperature (°C) from 2025 to 2100 with Trend Line, RCP 4.5_ Apr to Jun 
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Figure 61_Monthly Delta Temperature (°C) from 2025 to 2100 with Trend Line, RCP 4.5_ Jul to Sep 
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Figure 62_Monthly Delta Temperature (°C) from 2025 to 2100 with Trend Line, RCP 4.5_ Oct to Dec 
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According to a large analysis of the graphs, the majority of the months show 

comparatively constant annual variability over the course of the anticipated 

period, with no notable fluctuations. The trend lines of the colder months 

(January, February, November, and December) usually slope downward and 

exhibit lower ΔT values. The rate of decline, though, is slow and does not portend 

a significant shift. On the other hand, higher ΔT values are found in warmer 

months like June, July, August, and September. A slight increase in day-night 

temperature differences during the summer is indicated by trend lines that slope 

slightly upward in some of these months. These upward trends, however, are 

extremely slow and do not signify significant departures. The trend lines for each 

month are generally flat, suggesting that under the RCP 4.5 scenario, ΔT will be 

mostly stable between 2025 and 2100, with only slight seasonal variations. 

4.5.3 Monthly Maximum and Minimum Temperatures  

In this section, projected monthly Tmax and Tmin under the RCP 4.5 scenario 
were analyzed for the period from 2025 to 2100. The goal is to examine long-term 
trends in temperature extremes and seasonal dynamics that may indicate future 
thermal risks in the Susa Valley. 

 For each month, projected Tmax and Tmin values were obtained from 
monthly GeoTIFF datasets and processed using Python to create time series of 
monthly temperatures. These values were then visualized along with fitted trend 
lines to highlight the overall evolution of Tmax and Tmin over the 21st century. 

In the following section, an overall view of the increasing and decreasing 
temperature trends from 1957 to 2024 is first presented (Figure 63). 

 

Figure 63_Monthly Max and Min Temperature (°C) from 2025 to 2100 with Trend Line, RCP 4.5 

The presented chart illustrates that based on the added trend lines, Tmax 

shows a gradual increase with a slope of approximately 0.0016 °C per year. In 
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comparison, Tmin also follows an upward trend, but with a slightly steeper slope 

of about 0.0018 °C per year, indicating that nighttime temperatures are rising 

faster than daytime temperatures. 

The Tmax and Tmin temperature difference shows an increasing trend which 

indicates a reduction in the delta temperature (ΔT) throughout the study period. 

To explore this further, the maximum and minimum temperatures were calculated 

and analyzed separately for each month over the last six decades (Figures 64 to 

67). 
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Figure 64_Monthly Max and Min Temperature (°C) from 2025 to 2100 with Trend Line, RCP 4.5_ Jan to Mar 
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Figure 65_Monthly Max and Min Temperature (°C) from 2025 to 2100 with Trend Line, RCP 4.5_ Apr to Jun 
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Figure 66_Monthly Max and Min Temperature (°C) from 2025 to 2100 with Trend Line, RCP 4.5_ Jul to Sep 
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Figure 67 Monthly Max and Min Temperature (°C) from 2025 to 2100 with Trend Line, RCP 4.5_ Oct to Dec 
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According to an overall examination of the charts, all months exhibit an 

increasing trend in both the Tmax and Tmin. The trend slope for minimum 

temperature (Tmin) is steeper than that for maximum temperature (Tmax) in the 

majority of months. Maximum temperatures stay higher and continue to rise 

gradually during the warmer months of June, July, August, and September. The 

colder months of January, February, and December also gradually warm, though 

their lowest temperatures typically stay below freezing . 

4.5.4 Elevation-Based Temperature Analysis  

For the future projections under RCP 4.5, the same elevation classification 
proposed by Tiranti et al. (2023) was applied to evaluate temperature behavior 
across altitudinal zones in the Susa Valley. Using monthly GeoTIFF datasets and 
the regional DEM, average Tmax and Tmin values were extracted for each of the 
five elevation classes.  Temperature trends were then analyzed separately for each 
class from 2025 to 2100 using Python-based geoprocessing. The aim was to 
observe how warming patterns vary with elevation under projected climate 
conditions. Figures 68 and 69, present the results, while the following section 
summarizes the trends for each elevation band. 
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Figure 68 _Max and Min Temperature Trend with Elevation Classes 1,2,3, RCP 4.5 
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Figure 69_Max and Min Temperature Trend with Elevation Classes 4,5, RCP 4.5 

Based on the projected temperature data under RCP 4.5, the linear trends of 

monthly maximum and minimum temperatures across the five elevation classes 

in the Susa Valley from 2025 to 2100 reveal a consistent pattern of warming. The 

results show positive slopes for both Tmax and Tmin in all altitudinal bands, 

confirming a persistent warming signal across the entire elevation gradient. 

In Class 1 (400–700 m), Tmax and Tmin are increasing at a rate of +0.0017 

°C/year, showing balanced warming at lower elevations. With slightly lower 

depending temperatures, Class 2 (700–1000 m) shows a similar warming pace to 

Class 1, with both Tmax and Tmin rising at +0.0017 °C/year. Class 3 (1000–2000 m) 

shows steady warming in the mid-altitude Alpine environment, alongside Tmax 

increasing at a rate of +0.0018 °C/year and Tmin complying with closely behind at 

the same rate (0.0018 °C/year). Class 4 (2000-3000 m): Tmax and Tmin both 
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suggest an upward trend at +0.0018 °C/year, continuing the general pattern seen 

in Class 3 but beginning with lower baseline values.Class 5 (>3000 m): Tmax shows 

a trend of +0.0018 °C/year, and Tmin exhibits the steepest increase among all 

classes at +0.0019 °C/year, pointing to slightly accelerated nocturnal warming at 

the highest elevations.With little difference between Tmax and Tmin trends, the 

predicted data under RCP 4.5 show a consistent warming pattern across elevation 

bands overall.  

For clearer comparison, Figure 70 presents bar charts showing the average 

Tmax and Tmin for each elevation class. 

 

Figure 70_Average Max and Min Temperature per Elevation Class from 2025 to 2100, RCP 4.5 

Figure 70, shows the average Tmax and Tmin, projected for the period 2025–

2100 across the five elevation classes in the Susa Valley. The data confirm a 

consistent altitudinal temperature gradient, with both Tmax and Tmin decreasing 

as elevation increases. 

The highest average Tmax (about 15.4°C) and Tmin (~7.1°C) are recorded in 

Class 1 (400–700 m), which is closely followed by Class 2 (700–1000 m), which has 

Tmax of about 14.7°C and Tmin of about 6.5°C. Average Tmax and Tmin decrease 

to roughly 12.1°C and 4.9°C, respectively, in Class 3 (1000–2000 m). Tmax is close 

to 10°C and Tmin is around 3.9°C in Class 4 (2000–3000 m), indicating a further 

decline. The lowest average temperatures are found in Class 5 (>3000 m), where 

Tmax is slightly less than 9°C and Tmin is nearly 3.3°C. 
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4.5.5 Critical Elevation Identification  

In the future scenario under RCP 4.5, the identification of critical elevation 
thresholds was performed using pre-processed monthly GeoTIFF datasets for 
Tmax. Unlike the historical analysis, no data format conversions were needed, 
allowing the workflow to be fully executed within QGIS using consistent geospatial 
tools. Functions such as r.series were applied for temporal aggregation, followed 
by Raster Calculator, Raster pixels to points, and the Point Sampling Tool to extract 
Tmax values at varying altitudes throughout the Susa Valley.  The resulting dataset 
was organized into an Excel table and analyzed to assess the elevation at which 
Tmax values approach or drop below the freezing point. 

A scatter plot was generated to illustrate the correlation between elevation 
and projected average Tmax from 2025 to 2100 (Figure 71) . 

 

Figure 71_Elevation Vs Max Temperature, from 2025 to 2100, RCP 4.5 

Under the RCP 4.5 scenario for the period 2025–2100, the plot shows a clear 

inverse pattern between Tmax and elevation. A distinct threshold appears at 

approximately 1427 meters, above which a large portion of Tmax values fall below 

0 °C. This elevation is identified as the projected thermal tipping point, separating 

areas with predominantly sub-freezing conditions from those that generally 

remain above freezing (Figure 71). 

4.6 Future Precipitation Projections Under RCP 4.5 

This section analyzes projected precipitation trends in the Susa Valley under 

the RCP 4.5 scenario. The dataset, provided by ARPA Piemonte, consists of 

GeoTIFF raster files where each band represents the modeled mean daily 
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precipitation for a specific month in future climate conditions. To focus the 

analysis on the Susa Valley, all raster layers were spatially masked using the 

valley’s boundaries. It is important to clarify that although the data are organized 

monthly, the values refer to the mean daily precipitation—that is, the average 

amount of rainfall per day throughout each month. For instance, a reported value 

of 45.89 mm indicates that each day in that month received, on average, 45.89 

mm of rainfall, assuming a uniform distribution. 

Only mean daily precipitation values were used in this analysis to align with 

the 24-hour time scale of return period thresholds. This approach allows a 

consistent and meaningful comparison between projected rainfall and historically 

defined extreme precipitation events. 

4.6.1 Cumulative 24-Hour Rainfall 

This section examines the Susa Valley's expected 24-hour cumulative rainfall 
under the RCP 4.5 scenario in order to evaluate short-duration rainfall patterns 
that may be connected to hydrogeological hazards. The long-term trend of the 
Susa Valley's anticipated 24-hour average monthly rainfall is depicted in Figure 72.  

 

Figure 72_Cumulative Rainfall per 24 hour from 2025 to 2100, RCP 4.5 

The 2025–2100 period shows multiple distinct peaks which represent sporadic 

intense precipitation events according to Figure 72. The red trend line shows a 

very slight upward trajectory in long-term rainfall intensity with a slope of +0.0020 

mm/year. The small slope value indicates that daily rainfall amounts might rise 

gradually during RCP 4.5 conditions. This method reveals climate changes while 

enhancing seasonal hazard evaluation (Figures 73 to 75). 
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Figure 73_Cumulative Rainfall per 24 hours from 2025 to 2100, RCP 4.5_ Jan to Apr 
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Figure 74_Cumulative Rainfall per 24 hours from 2025 to 2100, RCP 4.5_ May to Aug 
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Figure 75_Cumulative Rainfall per 24 hours from 2025 to 2100, RCP 4.5_ Sep to Dec 
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There are clear seasonal patterns in the Susa Valley's 24-hour cumulative 

rainfall trends for the years 2025–2100 (RCP 4.5). Particularly in winter (January, 

December) and early spring (March, April), the majority of the months exhibit 

steady or somewhat decreasing trends. May (+0.1728) displays the most 

significant increase, indicating enhancing rainfall intensity in late spring, whereas 

February and May remain toward with positive slopes. In the summer, July and 

August observe a slight decline, while June demonstrates a mild upward trend. 

Autumn exhibits contrasting trends, with the highest negative trend (–0.1341) 

occurring in October and a strong positive trend (+0.1461) in November, 

suggesting an increase in late-autumn rainfall. These differences point to possible 

seasonal changes in rainfall intensity that could affect the region's future risks of 

landslides and floods. 

4.6.2 Return Period Analysis of Extreme Events 

This section examines projected summer rainfall intensities (June, July, 
August) under RCP 4.5 against 24-hour return period thresholds.  

The 24-hour cumulative rainfall charts for these months are presented, along 
with the corresponding 24-hour return period thresholds for 2-, 5-, 10-, 50-, 100-, 
and 200-year intervals (Figure 76). 
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Figure 76_Return Period of Cumulative Rainfall per 24 hours with Trend Line from 2025 to 2100, RCP 4.5_ Jun to Aug 
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Based on the projected data for the summer months under the RCP 4.5 

scenario, Figures 76, illustrate the evolution of 24-hour average monthly rainfall 

from 2025 to 2100 for summer monthes, overlaid with return period thresholds 

(T2 to T200). In June, several rainfall peaks exceed the T10 and even T20 

thresholds, with a slight upward trend (slope ≈ +0.0197). July shows moderate 

variability with most values remaining below T10, and a mild decreasing trend 

(slope ≈ –0.0467). August presents a similar pattern, with occasional exceedances 

of T5 and T10, and a gentle downward trend (slope ≈ –0.0235).  

4.7 Analysis of Future Susceptibility Classes under Climatic 

Conditions Under RCP 4.5 

This section provides a brief overview of how climate data were integrated 

with susceptibility maps for rockfall, shallow landslides, and debris flows in the 

Susa Valley. Specifically: 

• Rockfall susceptibility was evaluated using Delta temperature (5–8°C) 

and 24/48-hour precipitation threshold, with five classes. 

• Shallow landslide susceptibility was analyzed based on 24-hour 

rainfall thresholds, with three classes. 

• Debris flow susceptibility was assessed using rainfall intensity 

thresholds (20, 30, and 50 mm/h). 

All susceptibility layers were spatially aligned with climate projections 

to assess the influence of environmental triggers on slope instability, 

with three classes: ECM, GCM, BCM. 

4.7.1 Rockfall Susceptibility under Temperature and Precipitation 

Conditions 

A targeted analysis was carried out under the RCP 4.5 scenario to evaluate 
the potential impact of projected temperature fluctuations (ΔT = Tmax − Tmin) on 
future rockfall susceptibility in the Susa Valley. Using future Tmax and Tmin raster 
datasets in GeoTIFF format, monthly ΔT values for the years 2025–2100 were 
obtained, building on the historical methodology. Using the framework developed 
by Tiranti et al. (2023), these values were calculated and examined across five 
predetermined elevation bands and five rockfall susceptibility classes. 

Long-term monthly averages were calculated for each elevation and 
susceptibility class combination, and the proportion of values falling within three 
important ΔT thresholds (<5°C, 5–8°C, and >8°C) was determined.  The three 
temperature thresholds serve as essential indicators to detect thermal fatigue 
which speeds up rockface instability in Alpine environments. The study provides 
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spatial and seasonal insights about thermal variability under RCP 4.5 warming 
conditions while pinpointing areas where future ΔT values will surpass critical 
limits. The analysis creates a uniform framework to evaluate past and projected 
thermal stress exposure which enables better assessments of changing rockfall 
hazard patterns in mountainous areas. 

The results are summarized in Figures 77 to 81, which display the distribution 
of ΔT values across rockfall susceptibility classes and elevation bands, highlighting 
the proportion of areas falling within key air thermal thresholds (<5°C, 5–8°C, and 
>8°C). 

 

Figure 77_Monthly ΔT across rockfall susceptibility classes in Elevation Class 1, RCP 4.5, between 5 °C and 8 °C thresholds 

 

Figure 78_Monthly ΔT across rockfall susceptibility classes in Elevation Class 2, RCP 4.5, between 5 °C and 8 °C thresholds 
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Figure 79_Monthly ΔT across rockfall susceptibility classes in Elevation Class 3, RCP 4.5, between 5 °C and 8 °C thresholds 

 

Figure 80_Monthly ΔT across rockfall susceptibility classes in Elevation Class 4, RCP 4.5, between 5 °C and 8 °C thresholds 

 

Figure 81_Monthly ΔT across rockfall susceptibility classes in Elevation Class 5, RCP 4.5, between 5 °C and 8 °C thresholds 
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The projected ΔT charts for the period 2025–2100 (Figures77-81) reveal 

consistent seasonal patterns across all five elevation classes. ΔT values peak during 

the warmer months—particularly from May to August—where values often 

exceed the 8 °C threshold, especially in lower elevation bands (Classes 1 and 2). In 

these zones, Susceptibility Classes 1 to 3 consistently register ΔT values above 8 °C 

during summer, indicating increased thermal stress exposure.  In mid-elevation 

bands (Classes 3 and 4), ΔT values remain relatively high during summer, though 

exceedance of the 8 °C threshold is more limited to Susceptibility Classes 1 to 3. 

While Susceptibility Class 3 continues to exhibit elevated ΔT during July and 

August, the highest elevation band (Class 5) exhibits more moderate ΔT values, 

typically staying below 8 °C across all susceptibility classes. With very few 

exceptions, ΔT values for all elevation and susceptibility classes decrease 

dramatically during the colder months of November through February, usually 

staying between 5°C and 7°C. In line with past patterns, Susceptibility Class 3 

generally maintains higher ΔT values throughout the majority of months and 

elevations.  

In the following section, the effect of precipitation on rockfall susceptibility 

has been examined. 

As outlined in previous sections, projected daily precipitation data for the 

period 2025–2100 under the RCP 4.5 scenario were analyzed to assess the 

potential occurrence of rainfall-induced rockfall events. Two critical thresholds 

were considered for identifying extreme events: 120 mm within 24 hours and 170 

mm within 48 hours, both of which are commonly referenced in the literature as 

triggering conditions for rockfall activity. 

In order to investigate the spatial distribution of these extreme events, each 

event's geographic coordinates were taken out, and a Digital Elevation Model 

(DEM) was used to calculate the associated elevation.  

Five predetermined altitude classes were created from these elevation values. 

An aligned susceptibility raster map was then used to spatially match each event 

to a rockfall susceptibility class. Python was used to programmatically carry out 

every analytical step, guaranteeing accuracy, consistency, and reproducibility. This 

included threshold-based filtering and spatial overlay with susceptibility and 

elevation layers. The distribution of extreme precipitation events (based on both 

24-hour and 48-hour thresholds) across susceptibility and elevation classes under 

the RCP 4.5 scenario is depicted in Figure 82, which displays the final classified 

results. This future-focused analysis offers valuable insight into how changing 
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climate conditions may influence the spatial dynamics of rockfall hazards in 

mountainous regions. 

 

 

Figure 82_ 24 and 48 hours Rainfall Events by Elevation Class and Rockfall Susceptibility, RCP 4.5 

In the 24-hour precipitation chart (≥120 mm), a significant number of extreme 

events are observed, predominantly concentrated within Elevation Classes 3 and 

4. These events are mostly associated with higher susceptibility levels—specifically 

Susceptibility Classes 3, 4, and 5—indicating an elevated potential for future 

rockfall occurrences in mid-to-high elevation zones with moderate to very high 

susceptibility (Figure 82). 

In the 48-hour precipitation chart (≥170 mm), the number of extreme events is 

lower, but they are still present within Elevation Classes 3 and 4. These longer-

duration events are also more commonly linked to Susceptibility Classes 3 through 
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5, though their distribution is more limited in comparison to the 24-hour events 

(Figure 82). 

4.7.2 Debris Flow Susceptibility under Precipitation Conditions 

Daily rainfall data from 2025 to 2100 was analyzed and transformed into 
roughly 12-hour intensity values in order to assess the risk of debris flow in the 
future under the RCP 4.5 scenario. Class-specific thresholds of 20 mm/h (ECM), 30 
mm/h (GCM), and 50 mm/h (BCM) were contrasted with these. The analysis 
determines where and how frequently critical rainfall intensities may occur in 
susceptible areas by superimposing these data with the debris flow susceptibility 
map. A spatial summary of potential debris flow triggers during the study period 
(2025 to 2100) is provided by Figure 83, which shows the distribution of threshold-
exceeding rainfall events in the summer months across the three susceptibility 
categories. 
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Figure 83_ Rainfall Events by Elevation Class and Debris Flow Susceptibility Summer, RCP 4.5 

Under the future RCP 4.5 scenario, the spatial distribution of summer debris 

flow events across June, July, and August reveals a notable shift toward lower 

elevation classes (Figure 83). In June, high-intensity rainfall events are recorded 

even in Elevation Class 1, with some exceeding the critical BCM threshold of 

50 mm per hour. During July, events are primarily concentrated within Elevation 

Classes 2 to 4, while Class 1 also shows instances of rainfall approaching critical 
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levels. In August, a high density of intense rainfall events is observed mainly in 

mid-elevation classes (3 and 4), with most cases exceeding the ECM threshold of 

20 mm/h. Overall, the data suggest that critical debris flow–triggering rainfall 

events are distributed across a wider range of elevations during the summer 

months, each month exhibiting its own unique pattern of concentration and 

exceedance. 

4.7.3 Shallow Landslide Susceptibility under Precipitation Conditions 

This analysis evaluates the potential occurrence of shallow landslides under 
future precipitation extremes projected by the RCP 4.5 scenario. Precipitation data 
were clipped and resampled to match the ARPA Piemonte susceptibility map, 
which includes three classes: moderate (Class 2), high (Class 3), and very high 
(Class 4). Using Python, events exceeding 120 mm (24h) and 170 mm (48h) were 
extracted and associated with their corresponding elevation and susceptibility 
classes. This spatial comparison highlights where future extreme rainfall may align 
with vulnerable areas. The results are shown in Figure 84. 

 

 

Figure 84_ 24 and 48 hours Rainfall Events by Elevation Class and Shallow Landslides Susceptibility Summer, RCP 4.5 
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In the 24-hour precipitation window, the majority of intense rainfall events 

occur within Elevation Classes 1, 3, and 4, all of which are associated with 

Susceptibility Class 4 (very high). For the 48-hour precipitation window, a similar 

pattern is observed, but with higher frequency and intensity. Rainfall events 

exceeding 500 mm are predominantly concentrated in the same elevation classes 

(1, 3, and 4), again falling entirely within Susceptibility Class 4.  

4.8 Future Temperature Projections Under RCP 8.5 

This section analyzes projected temperature patterns under the RCP 8.5 

scenario to evaluate their influence on geo-hazard susceptibility in the Susa Valley. 

Using ARPA Piemonte’s high-resolution raster data (2025–2100), daily and 

monthly ΔT (Tmax − Tmin) values were calculated in Python to overcome QGIS 

processing limitations. RCP 8.5 represents a high-emission pathway, with global 

temperatures projected to rise by over 3°C by 2100. The analysis focuses on spatial 

and temporal ΔT trends across elevation bands to identify thermal stress levels 

relevant to slope instability. 

4.8.1 Monthly and Daily Average Delta Temperatures  

Unlike the historical dataset, which enabled daily ΔT calculations, the RCP 8.5 
projections include only monthly temperature layers. Thus, the delta temperature 
analysis was based on monthly average values computed from Tmax and Tmin 
raster files using Python tools. The results, covering the period 2025–2100, are 
shown in Figure 85.  

 

Figure 85_ Monthly Average Delta Temperature (°C) from 2025 to 2100 with Trend Line ,RCP 8.5 

Figure 85 shows the difference between daily Tmax and Tmin, or ΔT values, 

show distinct seasonal and annual fluctuations, typically falling between 6°C and 
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9°C, according to the updated chart for the RCP 8.5 scenario, which spans the years 

2025 to 2100. These fluctuations create a discernible monthly pattern that is 

consistent with an annual cycle. The trend line added to the graph shows a very 

slight positive slope of approximately +0.00019, indicating a minor and gradual 

increase in ΔT over time. In other words, under the RCP 8.5 scenario, the 

difference between daytime and nighttime temperatures is projected to increase 

slightly.  

The following Figures 86 to 89 show monthly trend analyses along with 

corresponding daily data to give a better picture of average temperature 

variability. 
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Figure 86_ Monthly Average Delta Temperature (°C) from 2025 to 2100 with Trend Line, RCP 8.5_ Jan to Mar 
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Figure 87_ Monthly Average Delta Temperature (°C) from 2025 to 2100 with Trend Line, RCP 8.5_ Apr to Jun 
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Figure 88_ Monthly Average Delta Temperature (°C) from 2025 to 2100 with Trend Line, RCP 8.5_ Jul to Sep 
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Figure 89_ Monthly Average Delta Temperature (°C) from 2025 to 2100 with Trend Line, RCP 8.5_ Oct to Dec 
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The following is a summary of the trends in monthly ΔT, plots under the RCP 

8.5 scenario for the years 2025 to 2100: The trend lines exhibit a distinctly positive 

slope during the warmer months of May, June, July, August, and September, 

suggesting a slow rise in the delta temperature throughout the summer. On the 

other hand, ΔT gradually decreases during the colder months of January, February, 

and December, indicating a decrease in day-night temperature differences during 

the winter. More diverse patterns are seen for the spring and fall transitional 

seasons: While October exhibits a noticeably rising slope, which may indicate an 

extension of summer-like conditions into the autumn season, March and April 

show steady or slightly declining trends. 

4.8.2 Monthly Delta Temperature (ΔT)  

Using Excel files created with Python, delta temperature (ΔT), was computed 
in order to examine future monthly temperature variability under the RCP 8.5 
scenario (2025–2100). The same methodology used for historical data is used 
here. Figure 90, presents the projected monthly delta temperature (ΔT) values 
under the RCP 8.5 scenario for the period 2025 to 2100. The 

 

Figure 90_ Monthly Delta Temperature (°C) from 2025 to 2100 with Trend Line, RCP 8.5 

chart shows all monthly ΔT data points as grey markers, with a red dashed 

trend line representing the overall direction. The slope of the trend line is slightly 

negative (approximately −0.0000129), but remains very close to zero. Despite 

evident seasonal and interannual fluctuations, the ΔT values generally range 

between 12°C and 18°C throughout the study period. 

 The Delta Temperature for each month over this future period was then 

looked at in order to further elucidate the conditions (Figure 91 to 94). 
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Figure 91_ Monthly Delta Temperature (°C) from 2025 to 2100 with Trend Line, RCP 4.5_ Jan to Mar 
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Figure 92_ Monthly Delta Temperature (°C) from 2025 to 2100 with Trend Line, RCP 8.5_ Apr to Jun 
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Figure 93_ Monthly Delta Temperature (°C) from 2025 to 2100 with Trend Line, RCP 8.5_ Jul to Sep 
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Figure 94_ Monthly Delta Temperature (°C) from 2025 to 2100 with Trend Line, RCP 8.5_ Oct to Dec 
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Most months exhibit relatively stable year-to-year variability; however, unlike 

the RCP 4.5 scenario, the trend lines in several months under RCP 8.5 are more 

pronounced. Notably, in the warmer months—June, July, August, and 

September—there is a gradual increase in ΔT, indicating an expanding difference 

between daytime and nighttime temperatures during the summer. On the other 

hand, ΔT typically shows a decreasing trend during the colder months of January, 

February, November, and December. In line with more general trends of global 

climate change. While October exhibits a noticeably positive slope, spring months 

like March and April also exhibit a clear downward trend.  

4.8.3 Monthly Maximum and Minimum Temperatures  

In this section, projected monthly Tmax and Tmin values under the RCP 8.5 
scenario (2025–2100) were analyzed to assess long-term trends in temperature 
extremes. Data were extracted from GeoTIFF files and processed in Python to 
generate time series and trend lines for each month, highlighting seasonal thermal 
shifts and potential future risks. 

In the following section, an overall view of the increasing and decreasing 
temperature trends from 2025 to 2100 is first presented (Figure 95). 

 

Figure 95_Monthly Max and Min Temperature (°C) from 2025 to 2100 with Trend Line, RCP 8.5 

The presented chart illustrates the projected trends in monthly Tmax and 

Tmin, from 2025 to 2100 under the RCP 8.5 scenario. According to the fitted trend 

lines, both Tmax and Tmin show clear upward trends. The slope for Tmin is 

approximately 0.0052 °C per year—significantly steeper than that of Tmax, which 

increases by around 0.0048 °C per year.  The figure also highlights persistent 

seasonal temperature cycles, with summer months recording higher 

temperatures and winter months lower ones, consistent across the projected 

period. To explore this further, the Tmax and Tmin were calculated and analyzed 

separately for each month over the last six decades (Figure 96 to 99). 
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Figure 96_ Monthly Max and Min Temperature (°C) from 2025 to 2100 with Trend Line, RCP 8.5_ Jan to Mar 
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Figure 97_Monthly Max and Min Temperature (°C) from 2025 to 2100 with Trend Line, RCP 8.5_ Apr to Jun 
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Figure 98_ Monthly Max and Min Temperature (°C) from 2025 to 2100 with Trend Line, RCP 8.5_ Jul to Sep 
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Figure 99_ Monthly Max and Min Temperature (°C) from 2025 to 2100 with Trend Line, RCP 8.5_ Oct to Dec 
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A comprehensive analysis of the monthly forecasts under the RCP 8.5 scenario 

shows that Tmax and Tmin, are consistently rising throughout the year. Summer 

months (June, July, August, and September) show steeper positive slopes for Tmax 

values. Winter months (January, February, and December) exhibit noticeable 

warming trends, with Tmin rising more rapidly. Spring months (March, April, and 

May) show modest increases in both Tmax and Tmin, while fall months 

(particularly September and October) demonstrate dramatic and sustained 

warming for both parameters. The minimum temperature trend lines are 

consistently steeper than the maximum ones across most months. 

4.8.4 Elevation-Based Temperature Analysis  

For the RCP 8.5 scenario, the elevation classification by Tiranti et al. (2023) 
was also used to assess future temperature trends across different altitudinal 
zones in the Susa Valley. By integrating monthly GeoTIFF projections with the 
regional DEM, average Tmax and Tmin values were extracted for each elevation 
class. The data were then analyzed using Python to identify how warming evolves 
from lowlands to highlands under more extreme climate forcing. The resulting 
trends are visualized in Figures 100 and 101, with a detailed interpretation 
provided in the following section. 
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Figure 100_ Max and Min Temperature Trend with Elevation Classes 1,2,3, RCP 8.5 
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Figure 101_ Max and Min Temperature Trend with Elevation Classes 4,5, RCP 8.5 

Under the RCP 8.5 scenario, a consistent upward trend in both Tmax and Tmin, 

is observed across all elevation classes in the Susa Valley. 

In class 1 (400–700 m), Tmax and Tmin increase at nearly identical rates of 

+0.0049 and +0.0047 °C/year, respectively, showing uniform warming at lower 

elevations. Class 2 (700–1000 m), Tmax and Tmin both increase at +0.0050 and 

+0.0048 °C/year, respectively, following comparable paths. Class 3 (1000–2000 m), 

Tmax and Tmin increase at +0.0053 and +0.0051 °C/year, respectively, maintaining 

the pattern of closely correlated warming. Class 4 (2000–3000 m), Tmax and Tmin 

show consistent warming at higher elevations, growing at +0.0054 and +0.0052 

°C/year, respectively. Class 5 (>3000 m), There is no indication of decreased 

warming even at very high elevations, with Tmax increasing at a rate of +0.0054 

°C/year and Tmin showing a similar rate of +0.0053 °C/year. 
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For clearer comparison, Figure 102 presents bar charts showing the average 

Tmax and Tmin for each elevation class. 

 

Figure 102_ Average Max and Min Temperature per Elevation Class from 2025 to 2100, RCP 8.5 

Figure 102 that shows a clear altitudinal temperature gradient is evident, 

where both Tmax and Tmin systematically decrease with increasing elevation. 

Class 1 (400–700 m) records the highest averages, with Tmax close to 16.7°C 

and Tmin around 8.1°C.  Class 2 (700–1000 m) follows with a slightly lower Tmax 

of approximately 16.0°C and Tmin of 7.6°C.  Class 3 (1000–2000 m) shows a further 

decline, averaging around 13.4°C (Tmax) and 6.1°C (Tmin). Class 4 (2000–3000 m) 

exhibits Tmax near 11.3°C and Tmin about 5.1°C.  Class 5 (>3000 m) records the 

lowest values, with average Tmax around 10.5°C and Tmin close to 4.6°C. 

4.8.5 Critical Elevation Identification  

For the RCP 8.5 scenario, critical elevation thresholds were identified using 
monthly Tmax GeoTIFF datasets directly within QGIS. Temporal aggregation was 
conducted using r.series, followed by spatial extraction with Raster Calculator and 
the Point Sampling Tool. This process enabled efficient retrieval of Tmax values 
across elevation gradients without data format conversions. The compiled data 
was analyzed in Excel to determine the altitudes where Tmax values fall near or 
below 0°C. 

A scatter plot was generated to illustrate the correlation between elevation 
and projected average Tmax from 2025 to 2100 (Figure 103). 
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Figure 103_ Elevation Vs Max Temperature, from 2025 to 2100, RCP 8.5 

The scatter plot clearly shows an inverse relationship between elevation and 

Tmax, under the RCP 8.5 scenario for the years 2025–2100. Above about 1550 

meters, a noticeable thermal threshold is seen, and many Tmax values drop below 

0 °C. The projected tipping point is indicated by this elevation, which separates 

areas with primarily freezing or sub-freezing maximum temperatures from those 

with warmer temperatures (Figure 103). 

4.9 Future Precipitation Projections Under RCP 8.5 

This section examines projected precipitation patterns in the Susa Valley 

under the RCP 8.5 scenario using monthly GeoTIFF data from ARPA Piemonte. The 

raster layers, each representing modeled mean daily precipitation for a given 

month, were spatially masked to the Susa Valley extent. All analyses focused on 

average daily values to maintain consistency with 24-hour threshold standards 

used in return period assessments. This ensures a meaningful comparison with 

historical extreme rainfall events under future climate projections. 

4.9.1 Cumulative 24-Hour Rainfall 

This section examines the Susa Valley's expected 24-hour cumulative rainfall 
under the RCP 8.5 scenario in order to evaluate short-duration rainfall patterns that 
may be connected to hydrogeological hazards.  

The long-term trend of the Susa Valley's anticipated 24-hour average monthly 
rainfall is shown in Figure 104. This summary aids in spotting possible long-term 
changes in hydrogeological hazard patterns as well as slow variations in rainfall 
intensity. 
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Figure 104_ Cumulative Rainfall per 24 hour from 2025 to 2100, RCP 8.5 

The RCP 8.5 scenario shows in Figure 104 that the projected 24-hour average 

monthly rainfall for the period 2025–2100 has a lot of interannual variability with 

many sharp peaks indicating extreme precipitation events. The trend line here 

shows a slightly negative gradient (−0.0861 mm/year), suggesting a gradual 

decrease in overall mean daily rainfall levels over time. While sporadic high-rainfall 

events still occur, this downward trend could imply a shift toward drier baseline 

conditions in the long term. These findings warrant further examination of 

seasonal rainfall behavior and its implications for future hydrological risks in the 

Susa Valley. 

approach highlights climate-driven changes and improves seasonal hazard 

assessment (Figures 105 to 107). 
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Figure 105_ Cumulative Rainfall per 24 hours from 2025 to 2100, RCP 8.5_ Jan to Apr 
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Figure 106_ Cumulative Rainfall per 24 hours from 2025 to 2100, RCP 8.5_ May to Aug 
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Figure 107_ Cumulative Rainfall per 24 hours from 2025 to 2100, RCP 8.5_ Sep to Dec 
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Under the RCP 8.5 scenario, most months in the Susa Valley show a declining 

trend in 24-hour average rainfall, especially in May, April, October, June, and July, 

indicating reduced precipitation in spring and summer. August and September 

also follow this downward pattern. In contrast, February, March, and January 

display positive trends, suggesting a slight increase in winter and early spring 

rainfall. December remains relatively stable. These trends highlight a possible 

seasonal shift, with drier warm months and wetter cold months, potentially 

affecting flood and drought risks in the region. 

4.9.2 Return Period Analysis of Extreme Events 

This section examines projected summer rainfall intensities (June, July, 
August) under RCP 8.5 against 24-hour return period thresholds.  

The 24-hour cumulative rainfall charts for these months are presented, along 
with the corresponding 24-hour return period thresholds for 2-, 5-, 10-, 50-, 100-, 
and 200-year intervals (Figure 108). 
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Figure 108_ Return Period of Cumulative Rainfall per 24 hours with Trend Line from 2025 to 2100, RCP 8.5_ Jun to Aug 
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Based on the projected data for the summer months under the RCP 8.5 

scenario, the charts for June, July, and August illustrate the evolution of 24-hour 

average monthly rainfall from 2025 to 2100, overlaid with return period 

thresholds (T2 to T200). In June, several rainfall values approach or exceed the T10 

and T20 thresholds. However, the overall trend is negative (slope ≈ –0.2340), 

indicating a gradual decline in summer rainfall intensity during this month. In July, 

the data show relatively stable variability, with most values remaining below the 

T10 threshold. The trend is also mildly negative (slope ≈ –0.1629), suggesting a 

slight decrease in rainfall intensity over the century. In August, a more pronounced 

downward trend is observed (slope ≈ –0.1887). Although some years record 

rainfall above the T2 and T5 thresholds, the majority of values remain below the 

T10 level. 

4.10 Analysis of Future Susceptibility Classes under Climatic 

Conditions Under RCP 8.5 

This section provides a brief overview of how climate data were integrated 

with susceptibility maps for rockfall, shallow landslides, and debris flows in the 

Susa Valley. Specifically:  

• Rockfall susceptibility was evaluated using Delta temperature (5–8°C) 

and 24/48-hour precipitation thresholds, with five classes.  

• Shallow landslide susceptibility was analyzed based on 24-hour 

rainfall thresholds, with three classes.  

• Debris flow susceptibility was assessed using rainfall intensity 

thresholds (20, 30, and 50 mm/h). All susceptibility layers were 

spatially aligned with climate projections to assess the influence of 

environmental triggers on slope instability, with three classes: ECM, 

GCM, BCM.  

4.10.1 Rockfall Susceptibility under Temperature and Precipitation 

Conditions 

A monthly analysis was conducted for the 2025–2100 period in order to 
assess the effect of projected temperature fluctuations (ΔT = Tmax − Tmin) on 
future rockfall susceptibility in the Susa Valley under the RCP 8.5 scenario. In 
accordance with Tiranti et al. (2023), ΔT values were obtained from GeoTIFF 
datasets of future Tmax and Tmin and examined across five elevation bands and 
susceptibility classes. Key ΔT thresholds (<5°C, 5–8°C, >8°C) were used to group 
the data. These thresholds show different levels of thermal stress and possible 
rockface degradation. This assessment helps identify regions where increased 
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thermal fatigue may increase future rockfall hazards by highlighting seasonal and 
spatial trends in thermal variability under high-emission conditions. The results 
are summarized in Figures 109 to 113, which display the distribution of ΔT values 
across rockfall susceptibility classes and elevation bands, highlighting the 
proportion of areas falling within key thermal thresholds (<5°C, 5–8°C, and >8°C). 

 

Figure 109_ Monthly ΔT across rockfall susceptibility classes in Elevation Class 1, RCP 8.5, between 5 °C and 8 °C thresholds 

 

Figure 110_ Monthly ΔT across rockfall susceptibility classes in Elevation Class 2, RCP 8.5, between 5 °C and 8 °C thresholds 
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Figure 111_ Monthly ΔT across rockfall susceptibility classes in Elevation Class 3, RCP 8.5, between 5 °C and 8 °C thresholds 

 

Figure 112_ Monthly ΔT across rockfall susceptibility classes in Elevation Class 4, RCP 8.5, between 5 °C and 8 °C thresholds 

 

Figure 113_ Monthly ΔT across rockfall susceptibility classes in Elevation Class 5, RCP 8.5, between 5 °C and 8 °C thresholds 

All five elevation classes exhibit distinct seasonal variability in the projected 

ΔT trends under the RCP 8.5 scenario (2025–2100). Peak ΔT values are consistently 
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found in warmer months (May to August), and the most frequent exceedances of 

the critical 8°C threshold occur at lower elevations (Classes 1 and 2), especially in 

Susceptibility Classes 1 to 3. These circumstances point to increased heat stress, 

which could quicken the weathering process. During the summer, ΔT values in 

mid-elevation bands (Classes 3 and 4) continue to be high, occasionally exceeding 

8 °C, most notably in Susceptibility Class 3.Although Class 3 still records peaks in 

July and August, the highest elevation band (Class 5) generally maintains more 

moderate ΔT levels, with values typically below 8 °C.  All zones see a decrease in 

ΔT values during the colder months of November through February, typically 

falling between 5°C and 7°C while remaining within moderate thermal stress 

thresholds. Class 3 exhibits the highest ΔT values consistently across the majority 

of elevations and months among all susceptibility classes, suggesting a possible 

vulnerability to long-term thermal fatigue effects. These trends suggest that the 

risk of thermally induced rockface instability may increase under RCP 8.5, 

particularly in zones with moderate to high rockfall susceptibility that are lower to 

mid-elevation. 

In the following section, the effect of precipitation on rockfall susceptibility 

has been examined. Event-based data surpassing the specified 24-hour (≥120 mm) 

and 48-hour (≥170 mm) thresholds were examined in order to investigate the 

spatial distribution of future extreme precipitation events under the RCP 8.5 

scenario (Figure 114). In order to classify each event into five predetermined 

elevation classes, the geographic coordinates were extracted, and a Digital 

Elevation Model (DEM) was used to determine the corresponding elevation. At the 

same time, a spatially aligned susceptibility raster was used to assign a rockfall 

susceptibility level to each event. To guarantee consistency and reproducibility, 

automated Python scripts were used for every processing step, including 

threshold filtering, spatial joining, and classification. 
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Figure 114_24 and 48 hours Rainfall Events by Elevation Class and Rockfall Susceptibility, RCP 8.5 

In the 24-hour precipitation chart (≥120 mm), a substantial number of 

extreme events are recorded, primarily clustered within Elevation Classes 3 and 4. 

These events are strongly associated with higher susceptibility levels—particularly 

Susceptibility Classes 3, 4, and 5. No threshold-exceeding events are observed in 

Elevation Classes 1 and 2 (Figure 114). 

In the 48-hour precipitation chart (≥170 mm), the frequency of extreme 

events is lower, yet they continue to occur within Elevation Classes 3 and 4. These 

longer-duration events are also mostly linked to Susceptibility Classes 3 to 5, 

although their spatial distribution appears more limited than the 24-hour events  

(Figure 114). 

4.10.2 Debris Flow Susceptibility under Precipitation Conditions 

Daily rainfall data from 2025 to 2100 was analyzed and converted into roughly 
12-hour intensities in order to evaluate the risk of debris flow in the future under 
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the RCP 8.5 scenario. These were contrasted with susceptibility class-specific 
critical thresholds of 20 mm/h, 30 mm/h, and 50 mm/h. The analysis illustrates 
the frequency and spatial distribution of threshold-exceeding summer events in 
vulnerable areas over the course of the study period by superimposing the results 
with the debris flow susceptibility map (Figure 115). 

 

 

 

Figure 115_ Rainfall Events by Elevation Class and Debris Flow Susceptibility Summer, RCP 8.5  

Under the RCP 8.5 future scenario, the spatial distribution of summer debris 

flow events across June, July, and August reveals notable variability across both 

elevation and susceptibility classes (Figure 115). In June, threshold-exceeding 
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events are widespread, occurring across all elevation classes (1 to 5), with multiple 

instances surpassing the BCM threshold of 50 mm. July shows a slight reduction in 

frequency, yet events are still observed across lower to mid-elevation classes 

(particularly Classes 2 to 4), with exceedances of both ECM and GCM thresholds, 

and occasional BCM-level events. In August, event density increases, especially 

within Elevation Classes 3 and 4, with many occurrences exceeding the 30 mm 

threshold. Across all three months, BCM-class events are prominently 

represented, indicating more intense rainfall and a higher potential for debris flow 

activity under future climate conditions. 

4.10.3 Shallow Landslide Susceptibility under Precipitation 

Conditions 

This study examines the possibility of shallow landslides in the future during 
periods of extreme precipitation predicted by the RCP 8.5 scenario. The ARPA 
Piemonte map was used to identify and spatially match events that exceeded 120 
mm (24 hours) and 170 mm (48 hours) with elevation and susceptibility classes. 
The findings point to areas where high landslide vulnerability may coexist with 
heavy rainfall (Figure 116). 
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Figure 116_ 24 and 48 hours Rainfall Events by Elevation Class and Shallow Landslides Susceptibility Summer, RCP 4.5 

In the 24-hour precipitation dataset (≥120 mm), intense rainfall events are 

primarily concentrated in Elevation Classes 1, 3, and 4. Notably, all of these events 

are associated with Susceptibility Class 4. Similarly, in the 48-hour precipitation 

chart (≥170 mm), the same elevation bands (Classes 1, 3, and 4) exhibit the 

greatest frequency and magnitude of events. All threshold-exceeding occurrences 

are again tied to Susceptibility Class 4, with multiple events surpassing 400 mm. 
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Discussion 

5.1 Overview of Key Findings 

The primary findings are organized and thematically presented in this section. 

To show how historical data (1957-2024) and future climate projections under RCP 

4.5 and RCP 8.5 scenarios have been analyzed, the key climatic and geohazard 

trends are described. Examined are variations in temperature and precipitation 

patterns, elevation-dependent reactions, and their effects on geohazards, 

particularly rockfalls, debris flows, and shallow landslides. In order to facilitate a 

comparison of past and future dynamics and to identify emerging spatial 

vulnerabilities throughout the Susa Valley, each topic is succinctly summarized to 

highlight both observed patterns and anticipated developments. 

5.2 Interpretation of Historical Climate Trends 

Tmax and Tmin increased in all months, but especially in autumn and winter, 

according to historical climate analysis (1957–2024), which showed consistent 

seasonal warming. Tmin frequently increased more quickly than Tmax, which 

resulted in a smaller delta temperature (ΔT), suggesting less daily variability and 

thermally stable nights. 

Since even high-altitude zones (Class 5, >3000 m) demonstrated annual 

increases of +0.0038 °C (Tmax) and +0.0027 °C (Tmin), elevation-dependent 

warming (EDW) was verified. Permafrost stability is at risk, snow cover duration is 

shortened, and hydrological regimes are changed by this warming. 

A seasonal shift in hazard exposure was suggested by precipitation patterns, 

which showed slight decreases in winter and increased rainfall in transitional 

months (May, November). The need for updated risk frameworks is highlighted by 

the fact that extreme 24- and 48-hour rainfall events happened in both 

moderately susceptible zones and high-risk areas. 
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Surface cohesion, vegetation, and slope stability are all impacted by these 

climatic trends, which include decreased ΔT, changed rainfall timing, and 

continuous warming. Rockfalls, shallow landslides, and debris flows are more likely 

to occur during spring and fall when rainfall intensity is higher. This emphasizes 

the necessity of location-specific assessments and seasonally adaptive hazard 

monitoring. 

5.3 Historical Geo-Hazard Sensitivity Analysis 

The analysis of Chapter 4 spatial and temporal patterns leads to this section 

which investigates how climatic factors affect the three main geohazards of 

rockfalls debris flows and shallow landslides in the Susa Valley. The research uses 

ARPA Piemonte susceptibility maps as the baseline to analyze the relationship 

between geohazards and their sensitivity to precipitation intensity and daily 

temperature fluctuations and elevation bands and seasonal dynamics. 

5.3.1 Rockfall Susceptibility under Climatic Conditions 

The findings show that one of the main factors influencing rockfall activity in 

the study area is the delta temperature (ΔT = Tmax − Tmin). The highest ΔT values 

were recorded in high susceptibility classes (3 to 5), especially in elevation bands 

3 to 5, during the warmer months (May to August), according to an analysis of 

average ΔT across susceptibility and elevation classes. Increased rockface 

instability was indicated by ΔT exceeding 11°C in certain cases. 

Even though ΔT tends to decrease during the colder months of November 

through February, the simultaneous drop in Tmin toward the freezing point makes 

conditions for freeze-thaw cycles more favorable. Notable ΔT values (between 5°C 

and 8°C) are still recorded by Susceptibility Classes 3 and 4, which are adequate to 

trigger mechanical weathering and the start of rockfall. These findings highlight 

how crucial it is to take into account both ΔT and Tmin when determining when 

rockfall activity is most likely to occur. 

Additionally, the impact of extreme 24-hour and 48-hour rainfall events was 

assessed. For 24-hour totals, several intense episodes (above 120 mm) were 

recorded across susceptibility Classes 2 , 3 and 4, with one extreme event 

exceeding 160 mm even in Class 2. For 48-hour rainfall, more widespread 
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exceedances above 170 mm occurred, including events in Classes 2, 3, and 4. This 

suggests that prolonged heavy rainfall contributes significantly to rockfall hazards 

across a broader range of zones. 

5.3.2 Debris Flow Susceptibility under Precipitation 

Spatial features and short-duration intense rainfall are strongly associated 

with debris flow sensitivity, according to historical analysis. Estimated 12-hour 

precipitation values were compared to class-specific thresholds (ECM = 20 mm/h, 

GCM = 30 mm/h, and BCM = 50 mm/h) using daily records from 1957 to 2024. 

Whereas GCM and BCM regions saw fewer but sometimes more intense events, 

ECM zones saw the majority of threshold-exceeding rainfall events. 

Subsequent analysis focused on summer months (June, July, August), 

incorporating elevation bands. The spatial-seasonal distribution shows that all 

threshold-exceeding events during this period occurred exclusively in Elevation 

Class 5 (above 3000 meters) and within the ECM susceptibility category. No critical 

exceedance was detected for GCM or BCM during this warm-season window. 

The research shows that debris flow hazards primarily occur in high-altitude 

regions during summer months even though geomorphological sensitivity remains 

moderate in these areas. The results show that elevated zones need specific early 

warning systems and continuous monitoring during warmer months. 

5.3.3 Shallow Landslide Susceptibility under Precipitation 

Shallow landslides are typically caused by cumulative rainfall that surpasses critical 

thresholds (120 mm and 170 mm, respectively), according to analysis of 24- and 

48-hour precipitation events. All recorded events in the 24-hour dataset were 

above the 120 mm threshold and were mostly found in Elevation Class 3, spanning 

susceptibility Classes 2 through 4. This demonstrates that under enough rainfall 

accumulation, even areas that are moderately sensitive become vulnerable. 

Rainfall intensity and spatial spread both increased during the 48-hour 

analysis. In addition to Class 3, some events extended to lower elevation bands 

and exceeded 220 mm. These trends support the idea that the antecedent soil 

moisture, saturation levels, and slope morphology are important factors in the 

initiation of shallow landslides. 
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5.3.4 Spatiotemporal Overlap of Hazards 

Several sites in the Susa Valley showed concurrent or sequential occurrences of 

various geohazards, including shallow landslides or rockfalls followed by debris 

flows. The elevation bands 3 and 4, which are characterized by steep slopes, 

dynamic climate conditions, and high runoff potential, were where these overlaps 

were most common. 

The sequence of events started with temperature-induced stress which led to 

heavy summer rainfall. The sequential nature of these events demonstrates why 

multi-hazard assessment methods are crucial for protecting residential and 

infrastructure areas that face vulnerability. 

5.4 Interpretation of Future Climate Projections  

The Susa Valley's climate is projected under two Representative 

Concentration Pathways (RCPs) in this section: the high-emissions RCP 8.5 and the 

moderate-emissions RCP 4.5, for the years 2025–2100. While RCP 8.5 depicts a 

continuous, unabated increase in radiative forcing over the course of the twenty-

first century, RCP 4.5 assumes emissions stabilize around the middle of the 

century. These scenarios represent divergent greenhouse gas trajectories. With 

significant ramifications for seasonal regimes, altitudinal gradients, and 

geomorphological hazard processes, both pathways lead to persistent—and 

frequently accelerated—climate trends when compared to the historical baseline 

(1957–2024). 

According to RCP 4.5, Tmax and Tmin will warm by +0.0017 °C per year in the 

400–700 m lower elevation band, for a total increase of roughly +1.3 °C by 2100. 

This gradual warming has an impact on vegetation dynamics, snowmelt timing, 

and freeze-thaw cycles. However, compared to RCP 4.5, RCP 8.5 forecasts a much 

faster rate of warming of +0.0049°C/year (Tmax) and +0.0047°C/year (Tmin), or 

+3.7°C over the same time period. The faster warming under RCP 8.5 is linked to 

stronger atmospheric water vapor retention, increased radiative forcing, and 

intensified positive feedback loops (e.g., reduced albedo from snow/ice loss). 

In both scenarios, Elevation-Dependent Warming (EDW) persists across all 

bands but is more pronounced in RCP 8.5 due to combined thermal amplification 
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at high altitudes and snow-albedo feedback. As a result, the elevation at which 

Tmax remains below freezing (0°C)—a proxy for freeze–thaw zone boundaries—

shifts from 795 m (historical) to 1427 m in RCP 4.5 and up to 1550 m in RCP 8.5. 

This vertical displacement of ~755 m under high emissions alters the distribution 

of thermally sensitive geomorphic processes such as frost weathering, ice lens 

formation, and permafrost degradation. 

24-hour rainfall forecasts for the Susa Valley under RCP 4.5 indicate a 

noticeable seasonal intensification, especially in May, June, and November, but 

comparatively stable annual totals. The positive trends in these months (e.g., 

+0.0294 mm/year in May, +0.0586 mm/year in June) frequently surpass the 120 

mm (24h) and 170 mm (48h) thresholds, which are crucial for causing debris flows 

and shallow landslides. The higher atmospheric moisture capacity and increased 

convective instability are the main causes of this.Conversely, RCP 8.5 shows an 

overall negative annual trend (−0.0861 mm/year), especially in spring and summer 

months like May (−0.2664 mm/year) and June (−0.2310 mm/year), yet still 

features sporadic high-intensity peaks, occasionally surpassing T10–T20 

thresholds. These differences suggest that while RCP 4.5 may lead to clustered 

seasonal risks, RCP 8.5 introduces a more irregular and spatially dispersed hazard 

regime, requiring adaptive, threshold-based hazard management frameworks. 

5.5 Future Hazard Susceptibility  

This section evaluates how future temperature and precipitation changes 

may affect the Susa Valley's susceptibility to three main geohazards: rockfalls, 

debris flows, and shallow landslides. It builds on the climate projections discussed 

in Section 5.4. Seasonal and altitudinal trends are combined with ARPA Piemonte's 

susceptibility classification to assess potential spatial and temporal shifts in hazard 

exposure under RCP 4.5 and RCP 8.5 scenarios. 

5.5.1 Rockfall Susceptibility under Future Thermal Conditions 

Rockfall susceptibility in the Susa Valley is largely determined by the delta 

temperature (ΔT) in the RCP 4.5 scenario, particularly during the warm season 

(May to September). Mid- and lower-elevation classes (Classes 2 and 3) more 

consistently surpass the 8°C threshold, whereas ΔT increases in higher elevation 

zones (Classes 4 and 5) are moderate. Rockfall susceptibility in the Susa Valley is 



 Discussion 

 

 
140 

largely determined by the delta temperature (ΔT) in the RCP 4.5 scenario, 

particularly during the warm season (May to September). Mid- and lower-

elevation classes (Classes 2 and 3) more consistently surpass the 8°C threshold, 

whereas ΔT increases in higher elevation zones (Classes 4 and 5) are moderate. 

The daily freezing elevation reaches 1427 meters which reduces freeze-thaw 

action at lower elevations yet higher Tmin values in higher zones maintain a 

favorable environment for thermal fatigue. Slopes with moderate vulnerability to 

instability will become unstable when heavy rainfall occurs (e.g., ≥120 mm in 24 

hours and ≥170 mm in 48 hours). The convergence of thermal stress and 

hydrological triggers requires hazard monitoring to extend beyond traditional 

high-risk areas into lateral terrain and mid-slope corridors where future rockfall 

activity is expected to rise. 

The amount of freeze-thaw action at lower elevations may be lessened by 

higher Tmin values in higher zones, which maintain conditions favorable to 

thermal fatigue even though the daily freezing elevation rises to about 1427 m. 

Even moderately susceptible slopes can become unstable when combined with 

periods of heavy rainfall (e.g., ≥120 mm in 24 hours and ≥170 mm in 48 hours). It 

is recommended that hazard monitoring be expanded beyond conventional high-

risk areas to include mid-slope corridors and lateral terrain, where future rockfall 

activity is anticipated to increase, due to the convergence of hydrological triggers 

and thermal stress. 

Extreme rainfall events are less common but noticeably more intense in RCP 

8.5, especially during June and August. These high-magnitude events may 

exacerbate rock detachment on thermally weakened slopes. Compared to RCP 

4.5, RCP 8.5 has a longer, more intense, and wider risk window. These trends 

highlight the need for long-term, threshold-based early warning systems that 

operate across elevation gradients and seasonal intervals. 

5.5.2 Debris Flow Susceptibility under Future Rainfall Events 

Debris flow susceptibility in the Susa Valley is influenced by the temporal and 

spatial distribution of high-intensity summer rainfall under both climate scenarios. 

A number of events in high elevation classes surpass the GCM and BCM thresholds 

in June, while some events in Class 1 surpass even the 50 mm/h threshold, 

indicating an upward expansion of hazard in RCP 4.5. Even though they are not as 
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severe, July and August frequently surpass ECM-level rainfall in Classes 2 through 

4, indicating a developing lateral extension of risk into lower elevations. Focused 

monitoring is necessary in the early and late summer months due to the hazard's 

spatial dispersion and continued relative moderateness. 

This pattern becomes more pronounced in RCP 8.5. All elevation classes are 

impacted by June events, which frequently surpass the GCM and BCM thresholds, 

particularly in Classes 3 and 4. While August becomes the most critical month with 

a dense concentration of events in Classes 3 and 4, many of which surpass the 50 

mm/h mark, July maintains mid-elevation risk despite slightly fewer events. The 

RCP 8.5 scenario exhibits increased frequency, wider elevation reach, and higher 

rainfall intensities in comparison to RCP 4.5, suggesting a shift toward more 

aggressive and spatially extensive hazard conditions. These modifications highlight 

how urgent it is to create threshold-based early warning systems and revise 

susceptibility classifications to incorporate zones that were previously thought to 

be only moderately at risk. 

5.5.3 Shallow Landslide Susceptibility under Future Cumulative 

Rainfall 

Initial findings under both RCP 4.5 and RCP 8.5 scenarios indicate that shallow 

landslide events are predominantly concentrated in Susceptibility Class 4 and 

Elevation Classes 1, 3, and 4. These events frequently exceed the critical 

thresholds of 120 mm (24-hour) and 170 mm (48-hour) rainfall, with some 

extreme cases recording more than 500 mm in 48 hours, suggesting significant 

instability in certain high-risk zones.  However, the absence of recorded 

exceedance events in Elevation Class 2 under both scenarios should not be 

interpreted as a definitive result. Given the geomorphological context of the Susa 

Valley—particularly the transitional slopes and human-modified terrains—one 

would reasonably expect at least some threshold-crossing events in this class. The 

lack of data here is likely not due to an actual absence of hazard, but rather the 

result of analytical limitations stemming from the high data volume and limited 

computational capacity.  Because the rainfall simulations and exceedance analyses 

were carried out on a personal computer with restricted processing power, it was 

not possible to fully process all raster points at high resolution across the entire 

2025–2100 period. Because of this, it is possible that some events were 

inadvertently excluded during the data extraction or filtering stages, particularly 
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in mid-elevation classes with moderate event density. The conclusions derived 

from this section should therefore be interpreted with some caution. The 

assessment of susceptibility in Elevation Class 2 would benefit from additional 

research using cloud-based processing or HPC clusters for more precise results 

which could validate or improve the current findings. Risk management strategies 

and early warning system designs need improvement especially in transitional 

elevation zones. 

5.5.4 Spatial and Temporal Overlap of Future Hazards 

A growing propensity for spatiotemporal overlap among geohazards in the 

Susa Valley is indicated by future climate projections under both RCP 4.5 and RCP 

8.5. This is most noticeable in Elevation Classes 3 and 4, where climate variability 

and steep slopes meet. Many times, early summer thermal stress (high ΔT) can 

serve as a prelude to heavy rainfall events, causing rockfalls, debris flows, and 

shallow landslides to occur quickly after. Even though this pattern is already 

apparent under RCP 4.5, under RCP 8.5 it becomes more widespread and spatially 

expansive, with hazard cascades increasingly impacting areas that were previously 

thought to be moderately sensitive. These characteristics highlight the necessity 

of adaptive response systems and multi-hazard monitoring across interconnected 

elevation bands. 
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Conclusion  

To investigate how climate change is affecting three major geomorphological 

hazards in the Susa Valley—rockfalls, debris flows, and shallow landslides—this 

study merged historical climate data (1957–2024) with future climate projections 

(2025–2100) under two greenhouse gas scenarios (RCP 4.5 and RCP 8.5). The 

research offered a comprehensive understanding of past and projected hazard 

patterns through a multi-dimensional approach that included elevation zoning, 

ARPA Piemonte's susceptibility maps, and thermal (Tmax, Tmin, ΔT) and 

precipitation (24-hour and 48-hour cumulative rainfall, hourly intensity) indices. 

The research data showed that temperature increase exists throughout all 

elevation zones with the most significant changes observed above 1000 meters. 

The elevation-dependent warming (EDW) effect caused by increasing nighttime 

minimum temperatures (Tmin) has resulted in a decrease of delta temperature 

(ΔT) which intensifies thermal stress during warmer months. The thermal dynamic 

shows a direct relationship with increased rockfall susceptibility when the ΔT 

exceeds 8 °C. The summer threshold exceeded frequently in mid- and high-

susceptibility zones which indicates that thermally driven rockfall will become a 

seasonal threat in Alpine environments in the future. 

Specifically under RCP 4.5, rainfall analysis showed notable increases in 

transitional periods like May, June, and November, but stable or declining annual 

totals in the majority of months. Shallow landslides and debris flows are more 

likely as a result of this seasonal intensification, antecedent soil saturation, and 

compromised surface cohesiveness. Events involving debris flows were more 

common in lithological units with a high potential for clay formation, particularly 

in the ECM class. During summer storms, critical short-duration rainfall thresholds 

(20, 30, and 50 mm/h) were most frequently exceeded in these higher elevation 

zones.   
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In the case of shallow landslides, nearly all recorded 24-hour events exceeded 

the 120 mm threshold and were concentrated in Elevation above 1000 m under 

Susceptibility Class 4. Some 48-hour totals surpassed 220 mm, indicating 

instability even in moderately sensitive zones. Although no exceedance was 

recorded in Elevation Class 2 (400-700 m) , this absence may be due to data 

processing constraints rather than a lack of hazard. Overall, patterns observed 

across both scenarios suggest that higher-elevation, high-susceptibility areas will 

continue to face elevated landslide risks in the future. 

Summer was found to be the most crucial season for climate-related risks out 

of all of them. ΔT regularly surpassed 8°C from May to August, raising the risk of 

rockfall and thermal fatigue. Debris flow and shallow landslide activity were 

accelerated concurrently by intense short-duration rainfall events, particularly in 

June and August, which frequently surpassed the 24- and 48-hour thresholds. The 

necessity of hazard calendars and seasonal early warning systems specific to 

mountainous areas is highlighted by this seasonal concentration. 

Another important finding was the overlap in space and time between 

hazards. Thermal stress, followed by heavy rainfall and cascading hazards, was a 

recurrent pattern in Elevation Classes 3 and 4 (a, especially during warm months. 

Under RCP 8.5, these patterns were more pronounced and widespread in space, 

progressively impacting regions that had previously been categorized as 

moderately susceptible. The critical freezing elevation, for instance, which was 

previously around 795 meters, is predicted to increase by more than 750 meters 

vertically to roughly 1427 meters under RCP 4.5 and 1550 meters under RCP 8.5. 

The thermally vulnerable zone is widened by this upward migration, which also 

exposes higher terrain to increased slope instability and rockface degradation. 

The historical period featured episodic hazards which were primarily 

elevation-class and threshold-based whereas future projections under RCP 8.5 

show a shift toward more frequent and widespread compound hazard 

interactions. The risk landscape has evolved from sporadic geohazard activity to a 

more persistent and systemic risk landscape. 
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