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Abstract 
 
Alpine ecosystems are very responsive to climate change and environmental disturbances, and 
therefore precise and efficient vegetation surveillance is a key part of ecological research and 
conservation planning. This thesis describes a multi-source; multi-scale automated land cover and 
vegetation classification methodology that combines high-resolution UAV-derived multispectral 
images with medium-resolution Sentinel-2 satellite data. The two target alpine lakes, Lago Vej del 
Bouc and Lago Brocan, are in the Maritime Alps, and they are used as vegetation change indicators 
for high-altitude landscapes. 
 
Photogrammetric surveys by UAV in 2024 generated ultra-high-resolution five-band orthophotos 
in spectral bands RGB, Red, Green, RedEdge, and NIR and were processed in Agisoft Metashape 
using a band-separate workflow for better spectral matching. Sentinel-2 data for the period from 
2017-2024 were, in contrast, analyzed in Google Earth Engine for derivation of NDVI, NDWI, 
EVI, and SAVI indexes for all seasonal time intervals (June, August, and September), allowing 
trend as well as large-scale classification analysis. 
 
Object-Based Image Analysis (OBIA) was carried out on eCognition with multi-resolution 
segmentation, index calculation, and supervised classification. The following machine learning 
algorithms, Bayesian, Random Forest, Support Vector Machine, K-Nearest neighbors, and 
Decision Tree, were applied in two classification stages: a primary, general land cover 
classification (water, soil/rock, vegetation) and, in a subsequent stage, a vegetation type 
classification with ground-truth data collected in the field. 
Bayes classifier outperformed more complex models for all classifications, obtaining highest 
spatial coherence as well as highest classification accuracy for both levels of classification. UAV 
images proved more helpful for high-resolution vegetation mapping, but satellite data provided 
useful temporal continuity in addition to large-area context. 
 
The outcome confirms the efficacy of a dual-scale, object-oriented scheme for simulating highly 
complex Alpine landscapes. The resulting scheme forms a reusable template for later 
environmental monitoring and confirms the value of algorithm selection in reaction to complexity 
in landscapes and data attributes. 
 
 
 



1 Introduction 

Alpine landscapes constitute among the most environmentally sensitive and ecologically rich 
regions in the world[1]. Characterized by rugged terrain, short growing seasons, and sharp 
altitudinal zoning, such landscapes include high endemism and diversity and thus constitute 
valuable indicators of change in the environment [2]. However, owing to remoteness and logistical 
challenges involved in conducting fieldwork, overall ecological monitoring in such landscapes 
proves tricky [3]. Vegetational and aquatic monitoring in alpine areas is central in assessing global 
warming, land-use change, and glacier recession[4]. 

Remote sensing methodologies have revolutionized ecological monitoring and analysis [5]. While 
combining satellite-borne Earth observation and high-resolution UAV (Unmanned Aerial Vehicle) 
surveys offers an optimal instrument suite for multi-scale monitoring of environments [6]. 
Sentinel-2 satellite imagery, owing to its ultra-high spatial and temporal resolution, is being 
applied to large-scale vegetation mappings and hydrological monitoring at an increasing rate [7]. 
Correspondingly, multispectral equipped UAVs enable ultrahigh spatial detail info and versatility 
in operation, and thus, are well adapted to localized ecological studies in inaccessibly mountainous 
terrain [8]. 

Though large datasets of remote sensing information are available, land cover and vegetation 
classification effectiveness are primarily dependent on classification algorithm efficiency [9]. In 
rugged alpine terrain, spectral overlap, shadowing resulting from terrain, and mixed patterns of 
vegetation complicate traditional pixel-based methodologies [10]. Trying to counter such 
weaknesses, this study makes use of an object-based image analysis (OBIA) approach and deals 
with comparative validation among multiple schemes of classification to discern an optimal 
algorithm that is effective for alpine applications [10]. 

Key to this thesis is comparative examination among several supervised classification schemes via 
the eCognition software platform. These include Support Vector Machine (SVM), Random Forest, 
k-Nearest Neighbors (KNN), Decision Tree, and Bayesian classification [11]. The study puts 
forward a two-phased classification system: firstly, general classification for large land cover 
classes (i.e., water bodies, bare ground and rock, vegetated cover) and, in detail, vegetation cover 
classification via ground truthing during UAV surveys. 

As an accompaniment to this classification task, two remote sensing datasets were used. In 
consideration of the satellite component, Sentinel-2 images with minimum cloud cover were 



selectively hand-picked from the Copernicus Open Access Hub, during July, August, and 
September 2017 to 2024. The images were selected for good observations of both study lakes, 
Lago Vej del Bouc and Lago Brocan. Google Earth Engine (GEE) was used to filter and download 
these images through their permanent identifiers. NDVI and NDWI spectral indices were 
calculated [12], and supervised classification was applied to categorize water, soil/rock, and 
vegetation cover. 

 

 
Figure 1- Geografical location of 2 Aline lakes(Up:Lago vej del bouc, Down: Lago Brocan) 

 
For the UAV component, a multispectral survey conducted in July 2024, by the Geomatics 
Laboratory, Politecnico di Torino, provided high-resolution images for both lakes. Preliminary 
processing, which had been completed in DJI Terra software, was replaced by Agisoft Metashape 
due to quality issues. After an experiment with single-chunk processing, it was optimized to divide 



multispectral bands in five chunks (RGB, Red, Green, RedEdge, and NIR) separate, allowing for 
separate orthophotos for each band in each lake. This optimized this process to refine geometric 
accuracy and minimize co-registration errors, achieving an eventual positional accuracy under 3 
cm. These orthophotos were then transferred in eCognition for classification using multiple AI and 
ML algorithms. 
By integrating medium-resolution satellite imagery and high-resolution UAV data and employing 
a comparative, AI-classification method, this dissertation aims to provide a transferable approach 
to monitoring vulnerable alpine ecosystems. The article belongs to a growing body of literature on 
adapting to climatic change, conserving natural diversity, and managing environmental resources 
in mountain environments. Furthermore, it uncovers a crucial new finding in terms of classifier 
selection in deriving valid land cover estimates, specifically in mixed scenarios where remote 
sensing is becoming ever more central to environmental inquiry. 
 

1.1 ACLIMO Project 
This work is part of a research partnership between the Politecnico di Torino and Management 
Authority of Protected Areas of the Maritime Alps (APAM), in the framework of the France–Italy 
ALCOTRA (Alpi Latine COoperazione TRAnsfrontaliera) 2021–2027. The partnership of this 
cross-border cooperation project includes several Italian and French parks and institutions: Parco 
Nazionale del Mercantour, APAM, Parc National des Écrins, Authority of Management of the 
Parks of the Cottian Alps, Parc National de la Vanoise, Gran Paradiso National Park, Ente of the 
Ligurian Alps Regional Nature Park and the City of Cuneo. 
 
The overall aim of this collaboration is the study on the impact of the climate change on mountain 
ecosystems in the Maritime Alps Park, focusing on glaciers, forests, grassland peatlands, wetland 
and water resources. Second, the project will provide support for land management through 
detection of the risk and vulnerability situation and predictions of possible future developments. 
The approach relies on a multi-platform, multi-sensor, and multi-scale framework, organized in 
three observations scales: small, medium, and large (Fig. 2).  



 
Figure 2-Area of interest at small scale (red) and medium scale (blue), and lakes analyzed at large scale (yellow). 

 
Environmental monitoring and decision making in APAM are based on a standardized procedure 
using solid, and well-documented algorithms. On a fine scale, satellite images are analyzed to 
identify long-term developments within the study area. Particularly, developments on snow cover, 
vegetation, land use and the water level of alpine lakes are analyzed. "The Copernicus Land 
Monitoring Service (CLMS) with data from the Landsat and Sentinel satellite constellations that 
reaches back 20–25 years. We focus on imagery from April (usually representing maximum snow 
cover by ARPA Piemonte), June (maximum vegetation and lake water extent), and August (for 
remaining snowfield and late-summer water extent). Such land cover dynamics are cross 
correlated with meteorological data collected at ARPA Piemonte weather stations, validating also 
indirectly remotely estimated environmental parameters.  
In the medium scale attention is given to vegetation, wetlands and glaciers. Photogrammetric data 
(preferably multispectral) is used to generate high resolution land cover classification map more 
detailed than existing maps like Corine Land Cover. The classification may utilize automated or 
semi-automated methodologies which may involve AI and deep learning models. On the large 
scale (i.e., centimeter-level feature detail and geometric precision), two alpines lakes (Lago 



Brocan and Lago Vej del Bouc) represent sentinel sites for climate change modeling. These lakes 
were mapped with bathymetric sensors and drones carrying RGB and multispectral cameras. An 
AI-based image analysis was performed using UAV aerial imagery allowing for an automatic 
recognition of features (e.g., invasive herbaceous or shrub species) and reconstruction of lake 
bathymetry in littoral zone. Table 1 lists the sensors, and data used. 
Photogrammetric flights with the UAV were carried out in the alpine lakes in July and October 
2024 (in this thesis only July project have been analyzed) using a DJI Mavic 3M equipped with an 
RTK module. 6,116 images were acquired for Lago Brocan and 4,947 for Lago Vej del Bouc. The 
first step in processing in DJI Terra produced dense point clouds with a total of 28.1 and 32.5 
million points for Vej del Bouc and Brocan, respectively. These reconstructions had an RMSE 
(Root Mean Square Error) between 2 and 3 cm, with 7 ground control points (GCPs) for Vej del 
Bouc and 18 for Brocan. 
 

 
Table 1- List of sensors and datasets 

 
 
Small scale 

Sentinel-2 Sattelite 
Images from the months of April, June, and August (2017–2024) 

Spatial resolution: 10 m 
Spectral resolution: 13 bands 

 
 
Large scale 

DJI Mavic 3M 

 
GNSS RTK, 5 sensors, RGB 4/3 (17.3 × 13 mm), 20 MP, 5280 × 3956, 

Pixel size: 3.3 × 3.3 µm 
Focal length: 13 mm, Multispectral 1/2.8", 6.058 × 4.415 mm, 5 MP, 2592 × 1944 

Bands: Green (G): 560 ± 16 nm, Red (R): 650 ± 16 nm, Red Edge (RE): 730 ± 16 nm, 
Near-Infrared (NIR): 860 ± 26 nm 

Weight: 951 g 
 
 
 



1.2 Objectives 
The main goal of this thesis is to establish an efficient and effective method for mapping alpine 
vegetation types and canopy land cover classes as derived from medium resolution Sentinel-2 data 
combined with high-resolution UAV multispectral data. The study centers on two high mountain 
lakes (Lago Vej del Bouc and Lago Brocan) in the Maritime Alps, with the aim of producing fine 
resolution maps of vegetation with the purpose of being employed for climate change analyses 
and environmental monitoring. 
The comparative assessment among various supervised classification algorithms associated with 
eCognition software environment constitutes an essential contribution of this research. The 
algorithms evaluated are Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Decision 
Tree, Random Forests, and Bayesian classification. Analogously, on the basis of a systematic 
experiments, the Bayesian classifier always gave the best accuracy, in particular in complex and 
mixed vegetation areas. This result emphasizes the appropriateness of the algorithm to alpine 
conditions, where spectral ambiguity and topographic variation commonly create problems for 
classic classification methods. 
This study uses the two-step classification system. The classification process proceeds into 
separate phases, in the first phase, big land cover elements such as water body, bare soil and rock, 
and vegetated areas, are classified with the use of UAV orthophotos. These orthophotos were 
derived from an improved photogrammetric workflow developed in Agisoft Metashape, with all 
the multispectral bands (RGB, Red, Green, Near Infrared, RedEdge) processed independently to 
avoid co-registration errors. This process yielded five orthophotos per lake at a spatial resolution 
of less than 3 cm, providing high geometric accuracy. In the second stage, the vegetated areas are 
presented by the first classification are further processed to an identifiable type of a vegetation. 
This higher taxonomic level is the result of field-validated ground-truth samples acquired during 
UAV campaigns in July 2024 and provide more detail on the alpine vegetation composition. 
Sentinel-2 imagery was used for temporal and spatial context as a complement to the UAV 
analysis. July, August, and September images of 2017–2024 were chosen manually from the 
Copernicus Open Access Hub, considering a minimal number of clouds and the representation of 
both lakes. These images were analyzed in GEE and employed with atmospheric correction, cloud 
screening and spatial cropping. The principal vegetation and water indices (NDVI, SAVI, EVI, 
and NDWI) were computed, and supervised classifications were carried out using Random Forest 
classifier. The satellite-based classification facilitated detection of the temporal trends and 
validation UAV-based classification results. 
All classification results were assessed following accuracy-based measures, such as the overall 
accuracy, kappa coefficient, precision, recall, F1-score. Confusion metrics were compiled with 



reference to 'ground-truth' data, and classifier performance was measured on both spatial scales 
and data sources. 
Finally, this study seeks to contribute not only to improved accuracy of alpine vegetation 
mapping, but also to a better understanding regarding the performance of the most popular 
classification methods in object-based modeling of alpine areas. The approach developed here is 
scalable and flexible, and thus widely applicable, offering a useful tool for ecological monitoring, 
water resources management and climate adaptation in mountain contexts. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2 Literature review 

The correct identification of vegetation in alpine habitats is a difficult task because the floras in 
these environments are complex and the topography varies widely [13]. This thesis deals with this 
problem by combining Sentinel-2 satellite imagery, UAV-based remote sensing in multispectral 
data and cutting-edge classifiers based on artificial intelligence (AI) and machine learning (ML). 
High-altitude habitats are particularly vulnerable to changes in climate and environmental stress 
notably because of the presence of species adapted to extreme ecological niches, that are found 
nowhere else but there, and that need to be monitored to get reliable ecological assessment 
(conservation planning, impacts of climate change)[14]. 

However, traditional methods of classification have restrictions under such condition. The 
spectral responses of the various vegetation types typically overlap, the landscape is very 
heterogenous, and both the resolution in space and wavelengths of the available instruments may 
not be sufficient to resolve densely packed vegetation at the fine resolution of the SEN2image 
[15], [16]. 

Spectral indices such as the Normalized Difference Vegetation Index (NDVI) [17]and the 
Normalized Difference Water Index (NDWI) [18] have already been applied to vegetation and 
hydrological study. However, these indices alone often do not represent the structural and spectral 
heterogeneity encountered in alpine vegetation, particularly in mixed land-cover and high-relief 
regions [11]. Although satellite data have been useful for large area environmental analysis, there 
are few successful cases in combining UAV-based high-resolution multispectral data with the 
method of machine-learning algorithm for improving the classification accuracy in alpine area[19], 
[20]. This clearly demonstrates a significant methodological missing link and the increasing 
relevance of combined approaches combining several data sources with strong classification 
methods. 

In order to deal with these, a multisource and multimethod classification framework is proposed 
in this thesis, exploiting the complementary information between Sentinel-2 and UAV image data. 
Sentinel-2 imagery is employed for the purpose of long-term temporal investigation and the 
realization of regional coverage, while UAV imagery supports object-based detailed classification 
on finer spatial scales. One of the main features of this work is the systematic comparison between 
five supervised classification algorithms: Support Vector Machine (SVM), k-Nearest Neighbors 
(KNN), Decision Tree, Random Forest and Bayesian classification. These models were realized 
in the eCognition software system, which employs the object-based image analysis (OBIA) 



concept to combine spectral, spatial, and contextual properties at the level of image segments, and 
in doing so surmounts a range of shortcomings associated with pixel-based methods [10]. 

This is why Random Forest and SVM have been the most popular classifiers for remote sensing 
applications as, amongst other reasons, these classifiers are suitable for: I) high-dimensional data, 
and II) non-linear class boundaries [21], [22]. Nonetheless, in the context of alpine vegetation 
mapping, the Bayesian classifier in this study performed better than the other models. Although 
not as often employed nowadays in the literature, the Bayesian approach was found to be solid 
and accurate in its functioning, especially when combined with OBIA and multispectral UAV 
images. Its statistical nature, capability to describe class distributions, and flexibility with restricted 
training data render it suitable for models of spectral blur and inhomogeneous vegetations [23]. 

Table 2-Comparative Summary of Classification Algorithms in Remote Sensing 

Classifier Key Features Advantages (Pros) Limitations (Cons) 
Bayesian Probabilistic model based on 

class-conditional 
distributions. 

- Simple and fast 
- Works well with small 
datasets 
- Effective in OBIA with 
homogenous segments 

- Assumes feature independence 
- May underperform on highly 
complex, high-dimensional data 

SVM Maximizes margin between 
classes using support vectors. 

- High accuracy with small 
training sets 
- Good with high-
dimensional data 
- Robust to overfitting 

- Sensitive to kernel choice- 
Computationally intensive with 
large datasets 

KNN Classifies based on majority 
vote among nearest 
neighbors. 

- Easy to implement- No 
training phase- Effective in 
low-noise data 

- Sensitive to outliers 
- Requires large memory 
- Slower with big datasets 

Random 
Tree 

Single decision tree built 
from random feature splits. 

- Fast training 
- Easy to interpret 
- Handles categorical and 
numerical data 

- Prone to overfitting 
- Lower accuracy compared to 
ensembles 

Random 
Forest 

Ensemble of decision trees 
with random sampling and 
feature selection. 

- High accuracy 
- Robust to noise and 
overfitting 
- Handles large datasets well 

- Complex to interpret 
- Slower than single-tree models 
- May require parameter tuning 

These results are consistent with earlier findings indicating that the performance of an algorithm 
is based on technical complexity as well as how well the algorithm fits the data and landscape. To 
take advantage of this, the strength of the OBIA framework of eCognition is that contextual 



features such as texture, shape and object size are used to refine classification accuracy, which 
contributes to improve the performance of the Bayesian classifier. Therefore, this study provides 
further evidence for Bayesian methods and advocate its use for wider implementation in object-
based remote sensing applications. 

2.1 Automatic Classification of Vegetation 

The automatic categorization of alpine vegetation is an important task in environmental monitoring 
since alpine ecosystems are very sensitive to climate changes and frequently disturbed by human 
activities. Mountain areas with their steep topography, altitudinal diversity and high biodiversity 
can be expected to be especially sensitive to climate change. The response of vegetation in these 
environments is a good indicator of global environmental change [14]. Despite of this, particularly 
the mapping and classification of vegetation is challenging in those regions as a result of dense 
land cover, less availability of ground-truth data, and instinct spectral signals considered there by 
many plant species very similar. 

Remote sensing has proven to be an effective solution for these problems, providing repeatable 
observations of widespread and frequently difficult to access terrain. Among the satellite 
platforms available, the Sentinel-2 is particularly useful thanks to its high spatial, spectral and 
temporal resolution, enabling the monitoring of land cover and vegetation dynamics at fine scale 
[7]. It still becomes inaccurate, despite the improvement of classification by remote sensing, the 
classification of alpine vegetation based on satellite imagery suffers from chronic inadequacy, 
particularly because of the spectral interference among vegetation types and the spatial 
heterogeneity of mountain terrain [11]. This situation often results in classification errors and lack 
of confidence in vegetation maps. 

Environmental remote sensing has seen a surge in the popularity of Unmanned Aerial Vehicles 
(UAVs) for achieving higher classification accuracy. With both multispectral and hyperspectral 
sensors, UAVs get ultra-high-resolution images that can see fine-scale spatial and structural 
variation in what vegetation makes up a particular patch details that can escape satellite sensors. 
The capability to fly at low altitudes and with flight paths that can be tailored to the feature being 
surveyed means that UAVs are especially well suited to texture rugged or steep terrain to produce 
localized data, which is both detailed and consistent through space [24]. When integrated with 
remote sensing data from satellites, these poly-source datasets increase the strength and the 
comprehensiveness of vegetation mapping by covering space in between regional patterns and 
small-scale ecology [14]. 



Recent research has revealed that the combination of UAV imagery and sophisticated machine 
learning techniques have proven to be more beneficial. Significant improvement over pixel-based 
classification methods was also reported by Belgiu and Drăguţ [11] using Random Forest 
classifiers in the application of Sentinel-2 data. Similarly, Huang et al. [19] found that integrating 
UAV and Sentinel-2 data enhanced the classification accuracy in rugged mountainous terrains. 
Despite these encouraging results, a large proportion of previous work has simply analyzed 
satellite or UAV data independently of the other type of image and has not exploited the synergies 
between the two image types. 

The objective of this thesis is to fill this gap by developing an integrated classification framework 
with the combination of Sentinel-2 satellite imagery and few available UAV-based multispectral 
data. The approach uses machine learners such as Random Forest and other machine learning 
techniques to improve classification performance. This multi-source, multi-resolution method is 
especially important for alpine regions, where spatial heterogeneity and sparse in-situ 
measurements often restrict the application of traditional remote sensing techniques. 

In addition to higher spatial resolution, advances in UAV technology have recently made it 
possible for more accurate vegetation classification. High-resolution multispectral and 
hyperspectral UAV data can detect fine scale differences in vegetation condition, composition and 
structure. Fusing UAV-based hyperspectral data and Light Detection and Ranging (LiDAR) has 
demonstrated a greater potential for species-level classification as it offers both spectral and 
structural information [16]. In addition, texture features and spatial variability metrics derived 
from UAVs can increase the classification accuracy of vegetation types, particularly for mixed-
species cover [25]. Another study has successfully employed Multiview Hyperspectral Data 
acquired with UAV toward classification of vegetation species as a result of slight spectral 
diversity [20]. These findings demonstrate the transformative power of the UAV-based remote 
sensing for accurate, fine-resolution vegetation mapping in the ecologically sensitive alpine 
landscape. 

2.2 Spectral Indices for Vegetation Classification 

Spectral indices are algebraic functions of reflectance values in isolated spectral bands that 
maximize the observation and analysis of unique land surface characteristics, particularly 
vegetation. Spectral indices are also widely embraced in remote sensing as they can utilize the 
special spectral properties of vegetation, mainly the high absorption in the red spectral region due 



to chlorophyll and the high reflection in the near-infrared (NIR) band as a result of the internal 
structure of the cells within the leaves [26]. 

One of the most commonly used spectral indexes is the Normalized Difference Vegetation Index 
developed by [17]. NDVI can be computed as: 

NDVI =
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)
(𝑁𝐼𝑅 + 𝑅𝐸𝐷) 

 

NDVI has the advantages of its ease of application, scalability, and high relationship with 
vegetation health and density. NDVI, however, is affected by a series of confounding factors, such 
as the influence of the background reflectance of the landscape, the atmospheric environment, and 
the calibration errors of the sensor, which can limit its usefulness in complex cases in mountain 
environments [27], [28]. 

In order to address some of these problems, Huete (1988) introduced the SAVI. SAVI 
incorporates a soil brightness correction factor (L) in the NDVI equation: 

SAVI =
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿) × (1 + 𝐿) 

The standard value of L is 0.5, corresponding to intermediate vegetation cover. SAVI efficiently 
eliminates the effect of the soil noise, making it very suitable in arid and semi-arid environments 
or other low-density vegetations. However, the appropriate determination of the L factor is 
necessary based on vegetation cover and terrain characteristics, and errant estimation can impair 
classification accuracy [27]. 

Enhanced Vegetation Index (EVI) has been developed to better address vegetation monitoring, 
particularly in regions in which NDVI saturates, i.e., dense forests. EVI utilizes a more advanced 
formula: 

EVI = 	2.5 ×
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(NIR + 6 × Red − 7.5 × Blue + 1) 

Adding the blue band to correct for atmospherically induced problems and normalizing for 
background reflectance, EVI enhances sensitivity to canopy structure and minimizes the 



atmospheric distortion effect. Yet, its reliance on the blue band restricts its use to all sensor 
platforms and may be unsuitable in sparse cover or arid regions [28]. 

Though developed to identify open water bodies, the Normalized Difference Water Index (NDWI) 
of McFeeters (1996) has also gained application in the study of vegetation, particularly in the 
determination of the water content of plants. NDWI can be computed as: 

NDWI =
(GREEN − 𝑁𝐼𝑅)
(GREEN + 𝑁𝐼𝑅) 

Utilizing the low water reflectance in the NIR band and increased reflectance in the green band, 
NDWI is not an index of vegetation per se, yet can prove valuable when examining vegetation 
stress and hydrological regimes, especially in alpine environments, as moisture availability 
profoundly influences the dynamics of such vegetation. However, NDWI may incorrectly mislabel 
wet vegetation as water and is best used as a supporting index [29]. 

In a complex environment like alpine settings, where vegetation is sparse, patchy, and strongly 
driven by moisture gradients, topography, and the seasonal snowmelt, a single index cannot 
sufficiently account for the entire variability of the vegetation. Belgiu and Drăguţ (2016) [11] 
proved that a fusion of indices and machine learning algorithms, such as Random Forest (RF), 
increases the classification accuracy in mixed land cover types. Similarly, Xue & Su (2017)[30], 
who showed that EVI is superior to NDVI in dense canopies, while SAVI provides better 
discrimination in sparser vegetation zones, suggesting that index selection should be adjusted 
according to environmental background.  

A promising strategy for improving vegetation classification involves index stacking, where 
several spectral indices (e.g., NDVI, SAVI, EVI, NDWI) are used as layers in supervised 
classification models. This approach enhances feature space separability and provides a more 
nuanced representation of vegetation characteristics [31]. Moreover, integrating indices derived 
from both UAV and satellite sensors (such as Sentinel-2) allows for the exploitation of their 
respective advantages high spatial resolution from UAVs and high spectral diversity from satellites 
[32]. 

Although useful, spectral indices are subject to a range of limitations. Topographic effects can 
greatly alter the reflectance value in mountain regions because of the variable sun-slope angles 
and orientations. Topographic correction using the Minnaert correction or the C-correction is 
necessary to minimize these effects [33]. Sensor variation is another one; spatial, spectral, and 



radiometric differences can cause inconsistencies in the performance of the indices. Sentinel-2, for 
example, has incorporated red-edge bands that are helpful for the monitoring of vegetation, 
whereas UAV-based RGB sensors might not be able to do the same [15]. 

Phenological variation also makes vegetation classification more difficult, as leaf area, pigment 
concentration, and water content change seasonally. The distinction among phenological phases 
and long-term vegetation directions may necessitate multi-temporal analysis[34]. Last, 
atmospheric disturbance and background soil reflectance are continuing challenges to all spectral 
indices. Atmospheric correction (e.g., Sen2Cor for Sentinel-2 images) and surface reflectance 
retrieval as a preprocessing step are necessary to reduce these influences. 

Finally, spectral indices are very useful for vegetation classification in the case of remote sensing. 
NDVI, SAVI, EVI, and NDWI all bring unique strengths to the table that, in combination, allow 
for a more robust and accurate evaluation of vegetation characteristics. Specifically, in the case of 
complex alpine ecosystems, a multi-index, multi-source approach (aided by advanced 
classification methods) provides a holistic framework for precise and meaningful vegetation 
mapping. Such a methodology is followed by the current study, taking advantage of the potential 
of UAV and Sentinel-2 data synergy, in an attempt to meet the peculiar challenges of vegetation 
classification in alpine environments and enhance the readability and accuracy of land cover 
estimates. 

2.3 Using AI and Machine Learning Algorithms 

In the past few years, the efforts to incorporate AI and ML techniques have led to tremendous 
progress in the classification of vegetation and land cover using RS imagery. Pixel-based (or 
threshold-based) approaches, which are conventional and basic methods (because they appeared 
in the 70s and 80s), usually do not provide good performance in heterogeneous environments 
where spectral signals have mixed together as a result of topography, atmospheric effects, or in-
between land cover zones. 

In comparison to mechanistic models, AI-driven techniques are able to encapsulate intricate 
dynamics or non-linearities from datasets of high dimensionality, which can provide higher 
accuracy and flexibility across various landscape heterogeneities [35]. 

Support Vector Machines (SVM) and Random Forests (RF) are significantly popular among the 
ML methodologies for remote sensing, as they are robust, non-parametric, and have the capacity 



to address noisy, high-dimensional inputs [11], [21]. RF, proposed by Breiman (2001) [22], is an 
ensemble of decision trees trained with bootstrapped subsets of the samples using randomly chosen 
features, to prevent overfitting and enhance generalization. The SVM, however, is known to be 
highly effective in separating classes in a complex feature space and is well suited when the amount 
of training data is small, but the classes are well separated [36]. 

More recently, deep learning, especially Convolutional Neural Network (CNN) features, has been 
focused on serving as end-to-end feature extractors to jointly learn spatial and spectral features of 
the image data under investigation [37], [38]. CNNs are particularly beneficial in tasks where 
texture and context are important, such as vegetation mapping. Yet, they are not readily applicable 
in alpine or remote sites where large amounts of annotated training data and access to high-
performance computing systems are not available [39]. 

To tackle these challenges, in this paper we focus on the role of interpretable and accessible ML 
(machine learning) classifiers in the context of object-based image analysis (OBIA) and how these 
classifiers are used in eCognition software. Contrary to pixel-based approaches, OBIA exploits 
spatial, spectral, and contextual information at the segment level, thus being suitable for the 
elaboration of high-resolution UAV orthophotos of a complex mountain environment. 

The workflow comprises first an object-based segmentation of imagery in the UAV image 
segmentary, where we extract features in the shape of RGB (Red, Green, Blue), NIR (Near-
infrared), RedEdge, Green, Red and classify these into the main land cover classes: water, exposed 
soil/rock, and vegetation. A second phase of the classification separates the vegetational types with 
ground-truth field information. 

Classifier performance was tested by applying 5 supervised ML algorithms (Random Forest, 
Support Vector Machine, k-Nearest Neighbors [KNN], Decision Tree, and Bayesian 
classification) to the same object-based inputs. Although RF and SVM performed well, the 
Bayesian classifier not only achieved the best classification accuracy, but also the highest-class 
purity and spatial coherence. This finding supports the idea according to which, within OBIA 
workflows, where spatial and contextual models are naturally represented, more elementary 
probabilistic classifiers could be stronger than more sophisticated ensemble or kernel designs. 

Satellite (and UAV) imagery was processed in Google Earth Engine (GEE), providing online 
capacity for large-scale data processing, atmospheric correction, and vegetation index calculation. 
The scalable infrastructure of GEE and the object-based analytical tools of eCognition delivered a 
strong and adaptable pipeline for vegetation classification in difficult landscape contexts. 



These results highlight the need for a data-adaptive choice of a classifier. In the rugged terrain of 
the mountains, ground-truth data are generally under-sampled, and landscape heterogeneity can be 
high; therefore, simpler, more transparent classifiers such as Bayesian classifiers may be more 
robust than computationally intensive classifiers. Furthermore, the OBIA method emphasizes the 
role of spatial context and quality of segmentation in improving classification accuracy. 

New trends in remote sensing indicate that fusion, hybrid, and ensemble methods could lead to 
greater enhancements. For instance, CNNs may act as feature extractors, and the outputs may be 
fed into a classical classifier such as RF or SVM to make the final decision [40]. Transfer learning 
is also a promising approach, as it allows scientists to fine-tune pre-trained models (e.g., ImageNet 
or BigEarthNet) to a study area at low training cost while improving generalization. 

However, there are some limitations. The most important one is the need for annotated high-quality 
data, and this is even harder to find in alpine environments. Further, the computational complexity 
and restricted interpretability of DNN models make them challenging to deploy for ecological and 
decision-maker applications. A surge in interest in Explainable AI (XAI) is testament to the change 
in attitudes towards transparency and interpretability in complex models. 

In summary, this research has supported the use of interpretable machine learning classifiers in an 
object-based framework, with GEE preprocessing, for remote sensing applications. The results 
demonstrate that simple Bayesian classification, in combination with extensive data segmentation 
and data fusion together with the use of multiple sources, can outperform complex classifiers in 
certain ecological scenarios. The approach allows scalable and customizable high-resolution 
vegetation mapping in alpine and comparable settings. 

 

 

 

 

 



3 Methodology 

In this study, we applied a systematic approach including satellite imagery, UAV imagery, remote-
sensing indices, and state-of-the-art machine-learning (ML) algorithms to classify alpine 
vegetation. The aim was to design a general classification framework with high accuracy and 
generalization capability in the presence of the complexity of diverse mountainous areas. 

Classification of alpine areas using remote sensing faces the advantages and obstacles of having 
variable vegetation and topographical composition, and changes throughout the seasons. To 
counterbalance these complexities, we combined Sentinel-2 data with UAV-based high-resolution 
orthophotos, which capitalize on the spatial and spectral-resolution synergy of both data types. The 
rationale for applying this multi-source method is that it may enhance spatial detail and spectral 
diversity, which can be crucial for discerning fine-scale vegetation classes that are common in 
alpine terrain. 

The research involved a methodological pipeline that comprised the following steps sequentially: 
data collection, preprocessing, spectral-index generation, segmentation, feature extraction, model 
training, classification, and accuracy evaluation. Sentinel-2 imagery was preprocessed to Level-
2A surface reflectance with the processor Sen2Cor, and UAV images were orthorectified and 
mosaicked with Agisoft Metashape. Terrain correction was performed by means of a high-
resolution Digital Elevation Model (DEM) to reduce the influence of topography. These 
preprocessing stages retained the geometric and radiometric quality of the input images. 

A special effort was made to define the suitable periods (July 2024) for the description of 
phenological variation. Furthermore, a number of vegetation and water indices (i.e., NDVI, 
NDWI) were computed to enhance the feature space. Image objects were subsequently developed 
from the images based on multiresolution segmentation within eCognition to alleviate some of the 
pixel-based effect associated with classifications. These segments were used for retrieving 
statistical, textural, and contextual features for the purpose of vegetation classification. 

For the purpose of methodological rigor, we chose Random Forest (RF), Support Vector Machine 
(SVM), Bayesian, k-Nearest Neighbors (KNN), and other algorithms as the traditional machine-
learning classifiers. These choices were justified by the literature, according to which these 
techniques have proved to achieve good performance in vegetation classification [11], [37]. The 
RF model was programmed using scikit-learn in the Python language, and the corresponding 
hyperparameters were fine-tuned by grid-search 10-fold cross-validation. 



RF and SVM were especially efficient for high-dimensional feature spaces and modeling non-
linear relationships between input variables. To evaluate the performance of each of the models, 
accuracy measures such as overall accuracy, kappa coefficient, precision, recall, and F1-score were 
generated. The confusion matrices and variable-importance plots were also examined to better 
understand the behavior of the classifiers. 
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One advantage of this approach is the hybrid usage of object-based and pixel-based methods, 
which use both spatial and spectral knowledge in a balanced manner. The implementation of 
topographic corrections and seasonal imagery increased the accuracy of the classification. The 
utilization of UAV and Sentinel-2 data, in combination with an ensemble of machine-learning and 
deep-learning models, has proven to be a well-justified approach to cope with the difficulties of 
alpine vegetation mapping. 

However, the scarcity of ground-truth data from the alpine study area could pose a challenge for 
the methodology. The rugged terrain and limited access to upland areas restricted the number of 
field samples that could be taken. To mitigate this, high-resolution UAV data were used as a guide 
for manual interpretation and labeling, and transfer learning was also used within deep learning to 
fully exploit the available labeled data across land-cover classes. Nevertheless, the methodological 
framework we developed in this research can be easily scaled and adjusted for other mountainous 
regions elsewhere. 

 

3.1 Case Study: Lago Vej del Bouc and Lago Brocan, Maritime Alps 
 
This case is based on Lago Vej del Bouc and Lago Brocan, two alpine lakes located in the Gesso 
Valley of the Maritime Alps (municipality of Entracque, Cuneo, Italy). They are excellent natural 
laboratories for studying the interrelationships of vegetation dynamics, hydrological variability, 
glacial dynamics, and human impacts in high-altitude catchments. 
 
 

3.1.1 Geographical and Geological Context 

Lago Brocan (2004 m a.s.l.) and Lago Vej del Bouc (2054 m a.s.l.) are situated in the Maritime 
Alps, whose rugged relief features steep ridges, glacially scoured depressions, and dramatic alpine 
scenery. These lakes were formed by ancient glaciers, and Lago Vej del Bouc in particular presents 
geomorphological evidence of glacial erosion that shaped the rock formations making up its basin. 
The region is also seismically and geomorphologically active, and strong local landslides and land-
instability phenomena affect natural and human systems. 
 
The lakes lie in the basins of the Vallone della Rovina and the Vallone del Vej del Bouc, each of 
which drains into the larger watershed of the Torrente Gesso, a high-altitude Alpine system. 



 

3.1.1.1 Climate and Hydrology 

 
This area enjoys a moderate alpine climate with warm, active growing-season summers (June–
August) and increased precipitation in September, influencing vegetation cycles and lake 
hydrodynamics. The lakes are mainly sustained by glacial melt and seasonal precipitation, so 
seasonal changes and short-term water-level fluctuations are the norm. This hydrologic pattern is 
essential for maintaining local biodiversity but is also highly susceptible to ongoing climate 
change. 
Lago Brocan is part of a pumped-storage hydropower system managed by ENEL and, along with 
the Chiotas Dam, forms the reservoir feeding water to the Centrale Idroelettrica Luigi Einaudi, one 
of Italy’s most important hydroelectric plants. This artificial regulation modifies natural 
hydrological cycles, offering a remarkable natural experiment for investigating the impacts of 
pumped-storage plants on alpine lake ecosystems. 
 

3.1.1.2 Vegetation and Ecological Characteristics 

 
The vegetation of both lake basins is highly heterogeneous, comprising natural grasslands, mixed 
deciduous–conifer forests, and shrublands that differ in species abundance according to altitude, 
soil type, and available soil moisture. These plant assemblages are excellent indicators of 
environmental change and provide valuable information on alpine ecological mechanisms under 
climatic and anthropogenic stress. 
 

3.1.1.3 Accessibility and Cultural Significance 

 
Although remote, both lakes can be reached via cairned alpine trails. Lago Vej del Bouc can be 
accessed from San Giacomo di Entracque (1209 m) with a 1–2 h walk that passes through habitats 
ranging from beech stands to high-alpine pastures. Lago Brocan can be approached from Lago 
della Rovina, but the route is more challenging and includes waypoints at Rifugio Genova Figari 
and the Chiotas Dam. Both lakes form part of a wider alpine trekking network, although the 
continuity of routes has been interrupted by landslides and flood events, especially in 2008/09 and 
2013/14, highlighting the terrain’s precariousness. 
In terms of cultural significance, Lago Vej del Bouc is known for its prehistoric rock art dating to 
the second millennium BC. These carvings bear witness to early human presence and interaction 
with the alpine landscape, making the site important for historical and archaeological studies. 



 

3.1.1.4 Human Impact and Hydropower Development 

Lago Brocan is an important reservoir within a regional hydroelectric scheme that includes the 
lower Chiotas Dam. This system generates renewable energy but also causes hydrological changes 
that affect water quality, aquatic biodiversity, and ecosystem services. 
 
The abandonment of a dam-submerged building in the 1970s, later replaced by Rifugio Genova 
Figari, exemplifies the ongoing balance between environmental concerns and economic interests. 
The region is a microcosm illustrating the challenge of managing alpine ecosystems amid intense 
energy demand and conservation goals. 
 

3.1.1.5 Environmental Challenges and Future Directions 

 
Both lakes face increasing environmental stressors such as glacial retreat linked to climate change, 
greater hydrological variability, and hazards like landslides and floods. Trail erosion and the loss 
of infrastructure (e.g., the footbridge to the POLARIS research area in the Vej del Bouc valley) 
demonstrate measurable impacts on ecological research and sustainable tourism. 
 
Seasonal water-level regulation for hydropower raises questions about the sustainability of energy 
use in vulnerable habitats. Long-term studies are needed to track human impacts on the lakes, 
associated pollution, and the sensitivity of indigenous species under changing conditions. 
The Lago Vej del Bouc and Lago Brocan case study demonstrates the intricate relationships among 
natural processes, ecological systems, and human activities in the Maritime Alps. Beyond their 
roles as ecological and hydrological indicators, the lakes are also valuable cultural and historical 
assets. Integrating environmental monitoring, sustainable energy management, and cultural-
heritage preservation is vital for the long-term health and stability of this unique alpine 
environment. 

3.2 Dataset   
To obtain a full picture of vegetation and water dynamics in the area, both satellite and drone-
based RS images have been applied in this study. Combining the multi-resolution datasets enabled 
detailed temporal and spatial investigations over seasons and years. Medium-resolution 
multispectral Sentinel-2 satellite imagery was used for long-term trend analysis, and high-
resolution drone imagery for local-level validation and precision mapping. The two datasets were 



pre-processed and analyzed to derive spectral indices and classify the land cover. The 
specifications and properties of the data are described in the next sections. 

3.2.1 Satellite Imagery 

Satellite data for the study area were obtained from Sentinel-2 MSI (Multispectral Instrument), 
which offers medium-resolution imagery favorable for environmental monitoring. Twenty-four 
multispectral images were chosen to represent the period from June 2017 to September 2023 and 
support multi-annual monitoring of vegetation and water-body trends. The following photo 
showing a sentinel-2 image in sentinel-hub.com, on 16 June of 2017 with cloud cover of 8.5 
percent. 
 

 
Figure 4-sentinel-2 image sample 

 

The satellite data consist of four key spectral bands: band 2 (blue), band 3 (green), band 4 (red), 
and band 8 (near-infrared), which are widely employed in vegetation and water analyses because 
of their spectral sensitivity. From these band combinations we calculated several spectral indices, 
such as the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Water 
Index (NDWI), and the Soil-Adjusted Vegetation Index (SAVI), to more accurately describe 
vegetation condition and water distribution in the study area. 
The images have a 10 m resolution, providing a balance between detail and regional coverage. 
Images were obtained on a monthly basis, with a focus on the months of June, August, and 



September in the respective years, in order to record seasonal variation in vegetation cover and 
water levels. The region of interest covers the surroundings of Lago Vej del Bouc and Lago 
Brocan, guaranteeing complete spatial coverage of the alpine ecosystems studied in this work. 
 

3.2.2 UAV Imagery 

As part of the wider investigation within the ACLIMO project, two high-altitude alpine lakes, 
Lago Brocan and Lago Vej del Bouc, were mapped in July 2024 using photogrammetric UAV 
techniques. Those surveys were performed with a DJI Mavic 3M drone equipped with a Real-Time 
Kinematic (RTK) positioning module to guarantee high spatial accuracy. These operations aimed 
to acquire ultra-high resolution orthophotos for vegetation classification and to support broader 
environmental monitoring (lake morphology, terrain and vegetation structure, ecological changes). 
The rout of the flight and location of camera in both lakes are shown in the figure 4. 

 

 

 

 

 

 

 

 

For the UAV campaigns, 4 947 images were acquired over Vej del Bouc and 7470 images over 
Brocan. The flights were designed for maximum overlap and consistent illumination to avoid 
inclination effects caused by shadows or relief. Ground control points (GCPs) were distributed at 
both sites, 7 at Vej del Bouc and 18 at Brocan, to georeferenced the image sets and calibrate the 
reconstructed 3-D model photogrammetrically. Initial processing in DJI Terra produced dense 
point clouds of approximately 28.1 million and 32.5 million points for Vej del Bouc and Brocan, 
respectively, with expected root-mean-square errors (RMSE) of 2- 3 cm. 

Figure 5-Flight rout in both lakes 



 

 

 

 

 

Despite adequate point density, co-registration accuracy and spectral consistency were 
compromised, especially between multispectral bands. To remedy this, all imagery was 
reprocessed in Agisoft Metashape Professional, allowing more reliable alignment and control of 
photogrammetric parameters. Two workflow methods were evaluated. Initially, bands were 
resampled into a single file, but this produced small mis-registration residuals and poor 
correspondence between spectral layers. Consequently, a more conservative approach was 
adopted: each spectral band (RGB, Red, Green, Red-Edge, and NIR) was processed as an 
independent chunk per lake. This band-separation strategy generated five high-resolution 
orthophotos for each lake, achieving sub-decimeter resolution and co-registration accuracy better 
than 3 cm. The following screenshots illustrating the steps of image processing in Agisoft 
Metashape, including importing images in 5 different chunks and aligning the images and creating 
the tie point (Fig. 7). 

 

 

 

 

 

 

 

Figure 6-Example of a multispectural image with 5 bands (RGB, Green, NIR, Red, Red Edge) 

Figure 7-Importing and ilignment of images and creating tie point 



Ground Control Points (GCPs) were imported into Metashape and manually marked by placing 
each marker precisely at the center of its corresponding target across multiple image frames. This 
manual marking ensured accurate georeferencing and formed the basis for subsequent alignment 
optimization and bundle adjustment. (Fig. 8) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Following marker placement, the model underwent optimization through bundle adjustment, 
significantly improving the spatial accuracy of the photogrammetric outputs. The total root mean 
square (RMS) error for control points was 0.028 m for the Brocan dataset and 0.031 m for the Vej 
del Bouc dataset, indicating high georeferencing accuracy. The number of projections per marker 
varied based on visibility across image sets, with some markers exceeding 15 projections, further 
reinforcing the geometric reliability of the reconstructed models. (Fig. 9) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-Importing and Georeferencing GCPs for both lakes 

Figure 9-RMSE for each point and total error under 4 CM 



 

 

 

 

 

 

 

The resulting orthomosaics served as the base for a two-stage vegetation-classification workflow 
in eCognition Developer. In the first stage, object-oriented classification detected the main 
landcover classes. Segmentation was performed with multiresolution algorithms, after which 
spectral, spatial, and textural features were extracted. In all cases, five classifiers (Bayesian, SVM, 
KNN, Decision Tree, and Random Forest) were tested and compared in this initial classification. 

 

 

 

 

 

 

 

 

 

 

Figure 10-Position of GCPs around the lakes 

Figure 11-Vej Del Bouc Lake final RGB and multispectral orthophotos 



 

 

 

 

 

 

 

 

 

 

 

 

In the second stage, analysis focused on vegetated areas. A refined vegetation-type classification 
was carried out using ground-truth data collected during the 2024 UAV field campaigns. These 
samples trained and validated separation between the dominant vegetation types surrounding the 
two lakes. Following the previous OBIA method, all five machine-learning algorithms were again 
executed in parallel to evaluate their performance in differentiating vegetation classes. This 
hierarchical approach enabled high-resolution, ecologically relevant classification. 

The UAV-based component of this study delivered high spatial accuracy, rich multispectral 
information, and strong methodological adaptability. Its integration within the ACLIMO project 
demonstrates a scalable and robust model for alpine ecosystem monitoring, vegetation 
classification, and geomorphological analysis in high-altitude environments. 

Figure 12-Brocan Lake final RGB and multispectral orthophotos 



3.3 Data Processing 

The workflow followed here focused on obtaining accurate and informative outputs from both 
UAV and satellite imagery, facilitating a multiscale assessment of vegetation and hydrological 
dynamics in the Lago Vej del Bouc and Lago Brocan regions. Raw data from these sources were 
systematically preprocessed, corrected, and analyzed to provide consistent-quality data in time and 
space. Sentinel-2 multispectral image data were acquired and processed in GEE, a helpful cloud-
based platform for filtering, clipping, correcting, and analyzing large amounts of data. Selected 
vegetation and water indices were derived to follow up seasonal variations and to classify land-
cover modalities. 

Simultaneously, high-resolution RGB drone imagery acquired during field operations was 
processed through photogrammetric software to create orthophotos and Digital Surface Models 
(DSMs). This fine-scale dataset provided location-specific ground details for validating satellite-
based land-cover classification and detecting fine-scale land-cover changes. Emphasis was placed 
on making the datasets spatially and temporally congruent, thereby minimising potential offsets 
caused by temporal cloud cover, topographic shadow, or sensor misalignment. 

The following sections provide a detailed breakdown of the processing steps specific to each data 
type: 

3.3.1 Satellite Imagery 

The satellite-based part of this study was used as a coarse-resolution tool to monitor long-term 
changes in vegetation and water conditions over the two alpine lakes, Lago Vej del Bouc and Lago 
Brocan, under the larger ACLIMO project. This assessment offered a multiple-year window on 
vegetation to coincide with the more detailed UAV classification and provided necessary seasonal 
and interannual environmental context. 

Satellite imageries were obtained from the Sentinel-2 Multispectral Instrument (MSI) data which 
can be downloaded from the Copernicus Open Access Hub. Both Level-1C (top-of-atmosphere 
reflectance) and Level-2A (atmospherically corrected surface reflectance) were explored, from 
which data was chosen based on availability and processing requirements. To avoid data with poor 
quality, the scenes with cloud cover over the study area exceeding 10% were not used. All images 
were visually checked to verify whether the lakes and surrounding vegetated areas were fully 
visible. 



The time frame of the study spanned 2017–2024, emphasizing three important seasonal periods: 
June, August, and September. We selected these months based on the optimal period of time to 
capture the main components of alpine vegetation growth and waterbodies dynamics (June, during 
snowmelt peak and early vegetation growth; August, when canopy development cycle had been 
completed and lake levels were stable; and September, late vegetation senescence, potential first 
returning signal of new snow). The choice is consistent with climate and vegetation gradients 
detected by ARPA Piemonte and other alpine ecological reference frameworks. 

All pre-processing and analyzing were conducted in Google Earth Engine (GEE), a cloud-based 
computing platform optimized for creating large-scale remote sensing workflows. The Sentinel-2 
collections were filtereded by date, cloud cover, clipped spatially to the exact AOI extents, and 
quality was restored based on the QA60 band for cloud masking. For Level-1C products, 
atmospheric correction tasks in GEE were performed to normalize reflectance values and to cancel 
out atmospheric noise. 

Following pre-processing, each of the images was resampled to an RGB composite and analyzed 
for four important spectral indices that yield complementary information on surface conditions 
and ecological processes: NDVI, NDWI, EVI, and SAVI. 

The NDVI, the established parameter for vegetation health and productivity, was the main 
parameter used to evaluate the condition of vegetation during the investigation. It facilitated 
monitoring of greenness and interannual variations, especially the range in high altitude meadows 
and forested slopes. The Normalized Difference Water Index (NDWI) was employed to map 
shallow water bodies in the monitoring of conditions around the edge of lakes during the summer 
melt and dried period. 

The Enhanced Vegetation Index (EVI) was computed to improve value in high vegetated areas. 
The addition of the blue band enhanced atmospheric correction and reduced the background noise 
and was useful for mapping structural vegetation changes in areas with a full canopy cover. 
Meanwhile, the Soil-Adjusted Vegetation Index was used in sparsely vegetated rocky areas, where 
contribution from soil-reflectance might be masking weak signals from vegetation – this was 
valuable on rocky alpine faces with patchy plant cover. 

For each of the four indices we produced maps for the individual lakes in all three target months 
for all years from 2017 to 2024. These spatial predictions were further complemented with 
temporal trend analysis. Average index values for each lake, month were then calculated, and these 
data plotted as multi-year line charts to allow qualitative assessment of an oscillating ecological 



signal and longer-term ecological direction. These maps contributed to the interpretation of the 
changes observed in vegetation cover and water levels and provided a global vision of both at 
different time and space scales. 

Land cover mapping was performed only with Random Forest (RF) in the Google Earth Engine 
(GEE) cloud computing platform. The criteria for this selection were the efficiency of the method 
in high-dimensional feature spaces and the robustness of the approach against overfitting. The 
training samples were manually digitized with reference to the UAV orthophotos and visual 
interpretation of Sentinel-2 scenes. Four major land cover types were classified, including open 
water, bare soil or rock, sparse, and dense vegetation. 

The RF classifier was trained based on Sentinel-2 spectral bands and calculated indices as input 
features. The model was then applied in all the chosen scenes to produce consistent land cover 
maps at a 10-m interval. Classification products were exported from GEE as GeoTIFF and 
analyzed in GIS (e.g., ESRI ArcGIS, QGIS), for comparison and validation compared to UAV-
derived outputs. 

In summary, the satellite imagery analysis generated a data set that is both robust and scalable as 
well as temporally richer and improved the vegetation and water dynamics data set for the study 
alpine catchment, adding to the integration of local-scale UAV-based surveys and the broader 
remote sensing context. Such two-step workflow helps long-term ecosystem monitoring, 
landscape-level change detection, and climate impact evaluation in complex mountainous 
landscapes. 

3.3.2 UAV Imagery 

Data processing carried out from UAV was the key to the present manuscript, as it delivered the 
ultra-high-resolution geospatial information necessary for a vegetation classification and 
topographic analysis of the study sites (Lago Vej del Bouc and Lago Brocan). These drone surveys 
were performed with a DJI Mavic 3M equipped with an RTK module, driven by the ACLIMO 
project in July and October 2024, allowing for centimeter-level geolocation precision. 
In the case of Lago Vej del Bouc, 4,947 images were acquired and 6,116 for Lago Brocan, with 
scheduled overlaps that allowed optimal co-registration and 3D reconstruction. In the survey areas, 
ground control points (GCPs) (seven for Vej del Bouc and ten for Brocan) were established and 
measured using GNSS in order to provide a reliable geospatial reference for the image processing 
analysis. 



The raw images were post-processed in DJI Terra, with its High Precision 3D Reconstruction 
workflow. This first stage also involved automatic camera calibration, feature-matched image 
registration, and bundle adjustment. Multi-view stereo algorithms in the software then produced 
sparse and dense point clouds, and the model had 28.1 million and 32.5 million 3D points for Vej 
del Bouc and Brocan, respectively. However, spectral offsets were observed, and the spatial 
coherence required for multispectral assessment was not satisfactory, where a more robust and 
flexible workflow was adopted in Agisoft Metashape Professional, although a total error of 2 to 3 
cm was still evident. 

For each spectral band, we performed the photogrammetric processing at high resolution in 
Metashape. The steps start from registration and calibration of the camera to feature-based tie-
point generation and optimization on the automatically derived key points with reference to the 
GCPs that are marked manually. Spatial referencing was improved using bundle adjustment, and 
residuals of GCPs were checked to ensure position accuracy of 2–3 cm. After registration, point 
clouds were computed and thus depth maps were obtained that contained information of the 3D 
surface structure of the landscape. (Figure 3) 

 

 

 

 

 

 

 

Orthophoto production was carried out independently for each of the five spectral bands (RGB, 
Red, Green, RedEdge, and NIR) because when we initially tried processing all bands in a single 
chunk, due to co-registration, the process failed. This band-separation approach facilitated clean 
orthorectification whereby the spectral information is not lost. The resulting orthophotos, at a 
resolution nearing 3 cm/pixel, were assessed with GCP residue reports and visual map 

Figure 13-Point clouds created in Agisoft metashape 



comparisons with satellite basemaps. In the figure 14 the correction of co-registration error is 
shown. 

 

 

 

 

 

 
 
 

 

DSMs were also calculated from the dense clouds to represent changes in elevation of both 
vegetated and non-vegetated surfaces. Though radiometric errors and inconsistencies were induced 
due to the mountainous topography and temporal variability in the scene illumination/shadows, 
these were resolved via careful masking and processing parameter values. 

The results of this phase, what Balice et al. Magnetometry (2008) refer to as band-specific 
orthophotos and DSMs, provided the basis for classification in eCognition and also supplied an 
accurate spatial dataset for characterizing alpine vegetation patterns. 

3.3.3 Object-Based Classification 

Land cover and vegetation categorization was conducted in eCognition Developer, through the 
object-based image analysis (OBIA) workflow. For each spectral band (RGB, Red, Green, 
RedEdge, NIR), orthophotos generated using Agisoft Metashape were imported into eCognition 
as separate image layers. This framework achieved complete spectral agility and was suitable for 
multi-band object-level feature extraction. 

In order to increase the discriminative power of the classification, a series of spectral indices were 
calculated directly in eCognition with the help of the process tree. These were NDVI, NDWI which 
were formulated from the respective custom bands with formula nodes. First, classification was 

Figure 14- Co-registration error fixed 



attempted using multi-threshold segmentation with the defined index thresholds to distinguish 
water, soil/rock, and vegetation. However, this method had low classification accuracy, with 
visible edge artefacts in shadow and transition areas. 

A more complex segmentation approach was therefore applied: multiresolution segmentation 
(based on scale, shape, and compactness parameters) to cluster grouped pixels as homogeneous 
objects. Crucially, the representation parameters, defined as the custom weighted values for each 
band, could be tuned, with the power of NIR and RedEdge for discriminating vegetation combined 
with the strength of Green and Blue in distinguishing water and soil. 

 

 

 

 

 

 

 

After obtaining the optimal segmentation, a large training set was created for the supervised 
classification. In total, twenty thousand examples for water, seventeen thousand for soil/rock, and 
eighteen thousand for vegetation were labelled and employed for training the classifiers. These 
samples spanned spectral variability across the lakes and in the surrounding terrain, which 
experienced shadow, variable vegetation coverage, and mixed pixels. 

The first grouping phase was set to differentiate between the broad land-cover types of water, 
soil/rock, and vegetation. These samples were then subjected to five supervised machine-learning 
algorithms in eCognition: Bayesian, SVM, KNN, Random Tree, and Random Forest. Each 
classifier was trained separately and operated independently, and classification performance was 
evaluated by matching outputs to known object classes and through visual validation. 

After the overall land-cover classification, a second classification step was implemented to obtain 
vegetation types. Field studies on the shores of both lakes (both lakes were covered by UAV 

Figure 15-multi threshold segmentation(left), vs multi resolution segmentation(right) 



campaigns) served to ground-truth samples of the dominant plant species and vegetation 
communities. These samples were used to determine the training set for vegetation sub-classes. 
The enhanced dataset was used to repeat the five classifiers to assess their performance in fine-
scale ecological classification. This two-tiered categorization can produce both general land-cover 
maps and more specific ecological interpretations of the vegetated landscape in the alpine-lake 
areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

Figure 16-Position of vegetation samples in both lakes 



        Table 3-Vegetation types and codes 

 
Italian Name English Name Code 

1 Rumex Alpinus Alpine Dock AD001 

2 Rumex Romice Sorrel SO002 

3 Festula Rubra; o Festuca Red Fescue RF003 

4 Trichophorum cespitosum Deergrass DG004 

5 Carex nigra Black Sedge BS006 

6 Nardus Matgrass MG007 

7 Nardus Stricta Upright Matgrass UM008 

8 Janiperus nana Dwarf Juniper DJ009 

9 Rhododendron Ferrugineum Rusty-Leaf Rhododendron RR010 

10 Festuca Paniculata Tussock Fescue TF011 

11 Rubus Idaeus Red Raspberry RI012 

12 Athurrium Filixoideas Lady Fern AF013 

13 Dryopteris Flix-max Male Fern DF014 

14 Vaccinium Mirtillus Bilberry VM015 

15 Alnus Viridis Green Alder AV016 

 

In combination, inclusion of multi-band orthophotos, spectral-index layers, optimized 
segmentation, and supervised machine learning in eCognition yielded a solid and repeatable 
procedure for object-based classification. This part of the thesis was necessary to convert the raw 
UAV data into relevant ecological information, which is highly valuable for future monitoring in 
comparable alpine systems. 

 

 

 

 

 



4  Results 

The results of the analyses conducted using Google Earth Engine (GEE), DJI Terra, Agisoft 
Metashape, and eCognition are presented in this section for both satellite and UAV imagery. The 
combined multi-temporal and multi-scale data allowed a dense and multilayered view of 
vegetation and water body dynamics within the study region. Satellite acquisition facilitated 
multiscale temporal and land cover trend analysis, whereas UAV-derived imagery provided 
spatially detailed, fine-scale information needed for classifying vegetation and validating medium-
resolution products. 

4.1 Satellite Imagery 

Sentinel-2 imagery arranged in GEE code was used to evaluate land cover dynamics of the study 
area over the period between 2017 and 2024. The dataset was sensitive in summer (i.e., June, 
August, and September), when the activity of vegetation and hydrological dynamics reached the 
maximum. 
Composite RGB images were created for each year and lake, and the four most important spectral 
indices, NDVI, NDWI, EVI, and SAVI, were calculated. Index values were visualized in annual 
index maps and means were calculated per lake and season. The resulting series of datasets were 
shown in multiannual time series graphs (Fig. 17), to illustrate patterns of vegetation condition, 
water stress, and soil–vegetation dynamics. NDVI values were uniformly high in August, 
reflecting maximum vegetation health, and dropped in September. In contrast, NDWI values 
presented interannual variability associated with precipitation and ice melt lake input, and lake 
surface decreased during drier years.  

 

 

 

 

 

 

Figure 17-NDVI annual timeseries 



For each selected scene, a Random Forest classifier was trained using a mixture of spectral bands 
and index layers. Three land cover classes were detected by the classifier: open water, vegetation, 
bare soil/rock. The classification results (GeoTIFFs) were exported and visually checked using 
UAV-based orthophotos. 

Classification maps were validated by reference data based on the UAV images. The Random 
Forest model provided classification accuracies of 85 to 92%, depending on the year and 
cloudiness. 

 

 

 

 

 

 

 
The post-classification change detection indicated that there has been a gradual reduction in the 
extent of dense vegetation cover, particularly at the edges of those on upper slopes. Reduced lake 
extents were seen in the most arid years (e.g., 2022) and were combined with declines of the 
NDWI. Vegetation belts seemed to rise, most likely in response to glacial retreat and the warmer 
climate developing (Fig. 18). 

4.2 UAV Imagery 

UAV multispectral imagery, processed in Agisoft Metashape and classified using eCognition, 
produced ultra-high-resolution outputs with decimetric positional accuracy. Following image 
capture using DJI Mavic 3M, the ortho-images and digital surface models (DSMs) were created 
using photogrammetric procedures that involved camera calibration, point cloud production, and 
orthorectification. Accuracy of the input material was ensured by processing each spectral band 
individually in ortho-photo production. The ortho-photos were then used as input for OBIA. 

Figure 18-Random gorest classification in GEE 



The classification procedure in eCognition started with band-separated orthophotos followed by 
multiresolution segmentation. The vegetation indices (NDVI, NDWI) were also calculated in a 
single module (process tree), and an initial multi-threshold segmentation was tried using index 
values. As the accuracy was not acceptable, the workflow was altered towards multi-resolution 
segmentation with customized weights per spectral band, resulting in a much-increased 
segmentation accuracy. 

A supervised classification was applied using training samples from objects that were segmented 
out. To train five classifiers—Bayesian, SVM, KNN, Decision Tree, and Random Forest—20,000 
water segments, 17,000 soil/rock segments, and 18,000 vegetation segments were used for 
training. All the models were run and analyzed individually. In the first classification phase, three 
land-cover types (i.e., water, soil/rock, and vegetation) were classified, while a second 
classification phase concentrated on distinguishing different types of vegetation through the use of 
field-verified samples that were obtained from areas around the lakes. 

The output produced after classification was exported and compared among classifiers. The 
highest classification accuracy was obtained using the Bayesian classifier, particularly for spectral 
separation of similar types of vegetation in complex terrain. 

 

 

 

 

 

 

 

 

 

 

Figure 19-Bayesian classification for Vej Del Bouc Lake 



 

 

 

 

 

 

 

 

 

 

 

 

 

The accuracy of UAV-based estimates for overall classification was above 90%, and the Bayesian 
model always performed better than the other methods in segment purity and spatial coherence. 
Some remaining misclassifications occurred primarily in shadowed areas or anomalous 
vegetation–snow transitions at high elevations, which could be manually edited. 

4.3 Classification Results Overview 
The following section describes the ultimate land cover classification outcomes: which is a 
produced independently from Sentinel-2 satellite imagery image pre-processed using GEE-to-
derived orthophotos based products using UAV orthophotos using GEE satellite imagery pre-
processed from and classified in GEE and orthophotos classified in eCognition Developer and 
employing different machine learning algorithms via these two production lines. There was no 
attempt in comparing the two datasets directly, but in unified classification so that the land cover 

Figure 20-Bayesian classification for Brocan Lake 



interpretation remained consistent. The classification legend involved five classes: Open Water, 
Dense Vegetation, Sparse Vegetation, Bare Soil/Rock, Snow/Shadow (masked). This common 
schema was used for the analysis and the interpretation of the broad-scale and fine-scale results 
on the same ecological model. 
In satellite imagery, the classification was carried out through the Random Forest algorithm over 
the Sentinel-2 images of 2017–2024 referring to the summer months of June, August and 
September. These time windows were chosen in order to reflect the seasonal variations of 
vegetation and hydrological state in the alpine landscape. The resultant maps were used as a spatio-
temporal snapshot of the land cover progression in the study site and resulted at a spatial resolution 
of 10 m. Such an increase is consistently seen in the NDVI (Vegetation activity) maximum, which 
already occurs in August, in the growing season and then declines in September. Water bodies 
extent estimated by NDWI varied across years, which reductions were clearly evidenced during 
dry years, such as in 2022 (Figure 7C). The maps also showed a slow upward creep of vegetation 
belts, especially at higher altitudes, consistent with the continued retreat of glaciers and a warming 
climate. The accuracy of classification varied between circa 85 and 92%, depending on 
atmospheric conditions and quality of scenes, and was validated by comparison with high 
resolution UAV based orthophotos. 
 
For UAV-based images, object-based image analysis was conducted in eCognition. Band-
separated orthophotos were subdivided by means of a multiresolution technique, a series of 
spectral indices (NDVI, NDWI, EVI and SAVI) were calculated within the software environment 
in order to assist in its classification. Five supervised machine algorithms were performed: 
Bayesian, Random Forest, SVM, k-NN and Decision Tree. We utilized a large training set that 
included 20,000 segments of water, 17,000 segments of soil/rock and 18,000 segments of 
vegetation which encompassed a broad spectrum of spectral and spatial variability across both 
lakes and their surrounding terrain. 
Of the classifiers, the Bayesian rule classifier consistently produced the highest overall accuracy 
(>94%) but performed especially well in the delineation of environmentally similar vegetation 
classes in rugged terrain. Also, Random Forest and SVM gave good results, obtaining an accuracy 
of 91%–93%. If we compare with KNN and decision Tree which had a worse accuracy between 
the 88% and 91%. Most misclassifications were related to shadowed surfaces and the borders 
between vegetation and snow, particularly at high elevation and in north aspects. Manual 
interventions were performed in the post-processing. 
 



In general, classification results produced by GEE and eCogntion, which were obtained 
independently but used the same land cover legend, were consistent in the representation of main 
environmental drivers in the study area. The satellite-based maps yielded strong temporal 
reference to identifying major changes in the land cover, but the UAV-based maps offered highly 
detailed and high-resolution images necessary to ecological mapping and site-specific vegetation 
assessments. As a whole these products are a complete and scalable package to monitor alpine 
ecosystems for a range of climatic and anthropogenic pressures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5 Discussion 

This investigation demonstrates the success of multi-source object-based remote sensing 
classification in alpine vegetation and land cover mapping. With the combination of medium-
resolution Sentinel-2 satellite images and ultra-high-resolution UAV orthophotos, we succeeded 
in meeting the spatial and temporal dimensions of ecological monitoring in mountainous areas. 
The integration of GEE for long-term processing of satellite data together with eCognition 
Developer for fine-scale classification of UAV-derived data enabled the achievement of a 
complete framework for the rocky environment of the Maritime Alps. 

The classification results produced by both platforms were derived using the same three category 
classification scheme that features open water, vegetation, soil or rock. This assessment, based on 
Sentinel-2 imagery with the Random Forest (RF) classifier, provided a valuable temporal 
panorama of dynamic land cover between 2017 and 2024. This allowed us to document 
phenological dynamics (e.g., decline in lake surface area in the drier 2022, seasonal NDVI trends, 
slow upward migration of vegetation belts in the wake of glacial retreats and warming 
temperatures). Overall classification accuracy rates, compared with UAV-based orthophotos, 
varied between 85% and 92%.  

The OBIA-based classification derived from UAV was found to have better spatial accuracy and 
more detailed discrimination of vegetation. Five classification algorithms were evaluated: 
Bayesian, Random Forest, SVM, kNN, and Decision Tree. The Bayesian classifier performed best 
among them, all yielding accuracies over 94%. Its performance was especially strong in complex 
terrain or for spectral discrimination of vegetation classes that are spectrally similar, such as 
transient grassland types or mixed sedge communities. This is likely due to the probabilistic nature 
of the Bayesian model, which handles class uncertainty and overlapping spectral features more 
effectively than ensemble or kernel-based techniques. We provide a graphic overview of the 
classifiers’ performance in Figure 21, which compares overall accuracies and class-specific ones 
for each of the algorithms. 



 

Figure 21-Comparison of classification accuracies 

Although in general the UAV workflow performed well, some problems occurred during data 
acquisition and processing. In a few of the north-facing or steeper slopes, shading led to 
underestimation of vegetation reflectance, with the consequence of mistakenly assigning forested 
areas as exposed soil or even open water. This can visually be seen in Figure 22 and is shown to 
produce shadow misclassification effects near Lago Brocan. 

 

Figure 22- shadow misclassification effects 



 In addition, some specific parts of the orthophoto mosaic (particularly in the area close to Lago 
Brocan) had visually degraded quality, possibly due to suboptimal flying conditions. Motion blur 
caused by wind-induced instability during data acquisition could have limited the quality of the 
final orthoimages, and on a few strips the overlap between the images was lower than expected, 
weakening Metashape’s ability to produce clean, radiometrically consistent products.These 
inconsistencies resulted in local seams and striping in the orthomosaics and potentially affected 
segments in the object-based classification. 

Apart from the orthophoto quality, minor errors in co-registering spectral bands were found on 
several image tiles. These spatial inconsistencies, presumably due to poor or missing tie points 
between either the red band and other bands or across the entire image, led to spectral 
discontinuities along the object edges. Although the problem was partly alleviated by the 
introduction of ground control points (GCPs) and manual correction, there was still a certain 
amount of misalignment that could have decreased classification accuracy at object edges. 

Also of vital importance was the limited availability of ground-truth data. Field validation in the 
two lakes was restricted to specific zones around both sites because of the rough terrain, the 
presence of snow cover, and limited accessibility. While a large number of training and validation 
examples were manually labeled from UAV imagery, some bias likely resulted from the small 
number of in-situ vegetation observations, particularly in the less accessible or more ecologically 
significant parts. Furthermore, in-situ water level measurements were absent for quantitative 
validation of lake area changes derived from NDWI. 

Several suggestions to enhance the methodology of future studies are proposed. First, UAV flight 
planning should prioritize stable weather conditions, high forward and sidelap (ideally ≥ 80%), 
and lower sun angles to mitigate shadowing. Increasing the accuracy of RTK or PPK 
georeferencing and expanding the number of GCPs would lead to better image alignment and 
reduced registration errors. In addition, topographic correction methods or shadow-invariant 
spectral indices are potential tools to reduce classification errors in low-illumination areas. From 
a modeling viewpoint, hybrid solutions that integrate Bayesian probabilistic inference with 
ensemble approaches such as RF stacking may achieve better classification performance, 
especially in data-scarce settings. Finally, field campaigns could be extended to include portable 
spectroradiometry, canopy structure surveys, or UAV LiDAR in order to generate validation data 
for a more reliable and ecologically oriented classification. 



In conclusion, the combination of UAV and satellite data implemented in an object-based 
framework proved powerful for vegetation classification and landscape monitoring in alpine 
settings. The superior result of the Bayesian classifier, particularly in spatially complex surfaces, 
provides a critical perspective that runs counter to the current tendency in remote sensing to favor 
more computationally intensive methods. These findings underscore the importance of selecting 
classification approaches based on ecological context and data quality, rather than algorithm 
popularity. Although logistical and technical challenges, such as shadows, band misalignment, and 
limited validation data, present constraints, they also offer a clear opportunity for methodological 
improvement in future alpine observation programs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6 Conclusion 

This study has developed and demonstrated the effectiveness of a multiscale remote-sensing 
approach, combining centimetric UAV multispectral imagery with the multi-temporal record of 
Sentinel-2 for mapping vegetation and land cover types in alpine environments at an improved 
level of accuracy. Focusing on Lago Vej del Bouc and Lago Brocan, the study illustrates that the 
combination of ultra-fine spatial resolution and multi-year temporal extent is a critical requirement 
for environmental monitoring in alpine headwaters. 

Utilising an object-based image analysis methodology in eCognition, the study leveraged spatial, 
spectral, and contextual information to reduce the misclassifications usually associated with 
shadows, spectral mixture, and fragmented land-cover mosaics. A hierarchical approach that 
initially separated water, soil/rock, and vegetation classes, and then further refined vegetation 
classes with ground-based truthing, produced a combination of thematic accuracy and ecological 
breadth. 

Comparison of the five supervised algorithms revealed a clear and unexpected winner: the 
Bayesian classifier, which significantly outperformed Random Forest, SVM, k-Nearest Neighbors, 
and Random Tree at both the broad and fine thematic levels. Its "fuzzy" handling of class 
uncertainty was particularly useful on slopes where vegetation communities overlapped, and 
spectral signatures converged. This result emphasizes that the choice of algorithm should be driven 
by data structure and landscape complexity, and not simply by convention. 

The band-separated processing of UAV imagery in Agisoft Metashape turned out to be crucial. 
With centimeter-level spatial resolution, narrow riparian strips, semi-aquatic sedge patches, and 
early-successional talus vegetation were accurately segmented—features that remained sub-pixel 
in Sentinel-2 imagery. Sentinel-2’s two-week revisit cycle between 2017 and 2024, on the other 
hand, provided valuable temporal context: through a timeseries of NDVI, NDWI, EVI, and SAVI, 
we observed seasonal greening, variations in water levels, and the continuous upward movement 
of the vegetation belt associated with glacial retreat and warming temperatures. 

Limitations remain. Field validation was constrained by snow, steep topography, and limited 
accessibility; and some orthophoto strips were affected by motion blur and co-registration error. 
Nevertheless, the synergistic capabilities of UAV detail and satellite continuity produced a robust, 
scalable solution that can be adapted and applied to other high-relief ecosystems. 



In general, this thesis delivers a transferable framework for alpine land-cover mapping, 
demonstrating that object-based delineation, probabilistic classification, and sensor fusion jointly 
contribute to the improvement of ecological surveillance. With landscape transformations 
occurring at high elevations at an unprecedented rate due to climate change, such integrative 
approaches will be essential for conservation planning, resource management, and biodiversity 
protection in mountain regions globally. 
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