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Abstract 

Traditional manufacturing systems were static, rigid and disconnected and they were designed 

for mass production with low flexibility. Those systems had predefined schedules and fixed 

processing speed. Therefore, they were not able to adapt in real time data which leads to 

unbalanced workflows, excess inventory. With the fourth industrial revolution, new 

manufacturing systems, especially Smart Manufacturing systems, can respond fast to global 

competitiveness and customization. Smart manufacturing systems gather real-time data with 

improvement in decision making, increasing efficiency and performance and total production.  

By emerging Digital Twin, it is considered as a core component in smart manufacturing. Digital 

Twin through the virtual component of physical assets, is updating the systems based on real-

time data. As smart manufacturing needs quick decision based on real-time data, Digital Twin 

enables this process and makes the manufacturing process more reactive and smarter. 

However, in the real world, the capacity of the warehouses is limited and imbalances between 

workstations and warehouses can create bottlenecks and disrupt the production flow. Therefore, 

Having the synchronization between warehouse capacity and workstations is necessary to have 

stable manufacturing process. Increasing the speed of robotic systems in workstations does not 

always guarantee better performance as it causes congestion, so it is important to keep the 

processing speed of the processing and warehouse availability balanced and prevent blocking 

or overflow. 

The proposed solution is to integrate a Digital Twin framework to adjust the speed of the robot 

manipulator with respect to the limited capacity of the warehouse. This study is done in 

Mind4Lab at Politecnico di Torino by utilizing FlexSim simulation software, a UR3e 

collaborative robot for picking and place applications, a mobile robot MiR100 for moving the 

items to a warehouse and the Modbus communication protocol for exchanging data between 

physical and digital components. 
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Glossary 

 Autonomous Mobile Robot: A robot capable of navigating its environment without fixed 

paths or human intervention, using sensors and onboard intelligence. 

Automated Guided Vehicle: A mobile robot that follows predefined paths, typically using 

wires, magnets, or tracks on the floor. 

Cycle Time: The total time required to complete a process or transport task from start to 

finish. 

Digital Shadow: A one-way data flow from the physical system to the digital system, used 

for monitoring and analysis but without interaction. 

Digital Twin: A dynamic digital representation of a physical system that is continuously 

updated with real-time data and can interact with the physical system. 

Physical Reality: The actual robotic and mechanical components in a system, such as the 

mobile robot and manipulator. 

Interarrival Time: The time between the arrivals of two consecutive items in a system. 

Throughput: The number of items or tasks completed in a system over a given period. 
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1 Introduction 

Today, manufacturing is evolving thanks to the new technologies which are introduced by 

Industry 4.0. Designing and managing production systems is being reshaped due to new 

concepts like cyber-physical systems, real-time data analytics and smart automation. Among 

these innovations, Digital Twin technology has emerged as a powerful tool to create a dynamic 

connection between physical and virtual reality. This enables real-time monitoring, decision-

making and performance optimization. (Glaessgen & Stargel, 2018; Tao et al., 2022) 

A Digital Twin is not just a digital model. It is a virtual representation of a physical system that 

mirrors its behavior based on real-time data and it is continuously updated (Negri et al. 2017). 

This technology is widely used in different industries from manufacturing to healthcare and 

where it helps improve throughput, reduce downtime and manage variability (Soori et al., 

2023;Cimino et al., 2019) 

While many studies focus on using Digital Twins for predictive maintenance or optimization, 

fewer have looked at how this technology can support real-time decision-making in production 

systems. In particular, the challenge of synchronizing robot behavior with warehouse capacity 

has not been fully addressed in the literature. (Attaran & Celik, 2023) 

One common challenge in production lines is managing the mismatch between workstation 

speeds and storage capacities. When warehouse space is limited, processing items at a constant 

high speed can lead to bottlenecks, idle robots, and inefficient use of resources. It is important 

to note that increasing speed does not always lead to better performance as it can actually cause 

congestion and reduce the stability of the system. 

This study addresses this challenge by proposing a Digital Twin framework that adjusts the 

robot manipulator’s speed in real time based on warehouse capacity. The goal is to create a 

more balanced and responsive material handling system that avoids bottlenecks and improves 

overall process flow. In this framework, a UR3e collaborative robot and a MiR100 mobile robot 

are used along with a virtual model built in FlexSim and synchronized via Modbus TCP/IP. 

This study is developed and tested in a laboratory setting in Mind4lab in Politecnico di Torino 

and, and the model offers practical insight which can be extended to more complex industrial 

environments. 

The structure of the thesis is organized as follows: section 2 provides a historical overview of 

the industrial revolutions and the definitions of industry 4.0. Section 3 presents a general 

overview of Digital Twin and explores its application and challenges in the real world. Section 

4 focuses on collaborative robots and their applications in manufacturing. Section 5 studies the 

mobile robots and the differences between Autonomous Mobile Robots (AMR) and 

Autonomous Guided Vehicles (AGV) and their development with manipulators. Section 6 

discusses motivation for this study and describes the physical setups, including the UR3e and 

mobile robot and presents the virtual model developed in FlexSim with detail about 3D model 

and process flow. Section 7 explains the implemented logic and analyzes scenarios and results. 
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2 Industry 4.0 

The first industrial revolution (F.I.R) was the transition to new manufacturing processes in 

Europe, the United States and the rest of the world. 

In 1760 with the invention of steam engine, the first industrial revolution occurred. In that time, 

train which consumed coal as the main source of energy, was considered as the main 

transportation system and second industrial revolution begins with the invention of combustion 

engines where run by oil.  This leads to mass production. The third revolution started in 1960 

with using information technology and electronics to automate production. The industry 4.0 

started with a project by German government in 2011. The key goal of this revolution is 

interconnection, information transparency and decentralized decision. Figure 1 shows the 

industry revolutions and the main reason behind them over time.  (Rahman et al., 2023) 

 

Figure 1. Industrial revolutions 

The term industry 4.0 stands for the fourth industrial revolution. The main objective of industry 

4.0 is to satisfy customer needs by affecting order management, research and development, 

delivery up to utilization and recycling. Vaidya et al. (2018) Industry 4.0 is characterized by a 

combination of new technical components and main principles to design and form this concept. 

The main components of industry 4.0 are:  

1. Identification (RFID system): the first step is to identify how to process good. 

2. Locating (RTLS): identification used with location or recording the place of 

identification. 

3. Sensing or Cyber-physical system (CPS): the physical production is with computed 

based process. A CPS includes sensors which can collect and send data. 

4. Networking or Internet of things (IoT): with IoT companies can control their product 

in real time. IoT is part of the CPS. 

5. Data collection and analysis (Big Data and Data mining): With industry 4.0, the variety, 

volume and velocity of data has increased, which is due to advances in sensor 

technology. 

6. Business Service or Internet of Services (IoS): this service helps service providers to 

offer their services through the Internet. (Mohamed, 2018) 

In table 1, there are some definitions of industry 4.0.(Mohamed, 2018) 
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Table 1. Definiation of Industry 4.0 

Authors Definition of Industry 4.0 

Koch et al. (2014) “The term Industry 4.0 stands for the fourth industrial revolution 

and is best understood as a new level of organization and control 

over the entire value chain of the life cycle of products, it is geared 

towards increasingly individualized customer requirements”. 

MacDougall (2014) “Industry 4.0 or Smart industry refers to the technological 

evolution from embedded systems to cyber-physical systems. It 

connects embedded system production technologies and smart 

production processes to pave the way to a new technological age 

which will radically transform industry and production value 

chains and business models”. 

McKinsey Digital (2015) “Industry 4.0 seen as a digitization of the manufacturing sector, 

with embedded sensors in virtually all product components and 

manufacturing equipment, ubiquitous cyber physical systems, and 

analysis of all relevant data”. 

Deloitte AG (2015) “The term Industry 4.0 refers to a further development stage in the 

organization and management of the entire value chain process 

involved in manufacturing industry” 

Geissbauer et al. (2016) “Industry 4.0 - the fourth industrial revolution, focuses on the end-

to-end digitization of all physical assets and integration into 

digital ecosystems with value chain partners”. 

*Adapted from Mohamed (2018) 

Groumpos (2021) In their study, they grouped the impacts of industrial revolutions into positive 

and negative categories. After the first industrial revolution, the GDP per capita increased for 

the first time in history. By shifting from work by hand at home to factories, the average income 

increased. Moreover, technological innovations like mechanized spinning, weaving and 

locomotives paved the way for future industrial advancement. There was a start to form a 

middle class of skilled workers and shape modern capitalist economies. As is mentioned, 

industrial revolutions had also negative impacts like poor and unsafe working conditions, no 

job security, increase in child labor and inequality in social classes. 

AS shown in figure 2, the nine pillar technologies that form the modern industrial production 

under the fourth industrial revolution are: 

1. Additive manufacturing (AM): Nowadays, companies can produce small batches of 

customized products with the help of 3D printing instead of prototyping components.  

2. Augmented Reality (AR): AR systems help to do a variety of tasks like guiding 

operators in training courses with smart devices. 

3. Autonomous Robots: Autonomous robots can communicate with each other and work 

alongside a human in a safe environment. 

4. Big Data and Analytics: As digitalization grows and creates more datasets, data and 

analytics are crucial to industrial and digital economy. Analytics is the process of 

creating information from raw data by filtering, categorizing, contextualization and 

processing. 
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5. Cloud: Cloud manufacturing is a combination of existing advanced manufacturing 

models with enterprise information technologies like cloud computing.  

6. Cybersecurity: By increasing cyber-attacks and threats, the demand for protection of 

industrial system and manufacturing are increased. 

7. Horizontal and vertical system integration: The totally automated value chain is due to 

the evolution of cross-company and universal data integration network. 

8. The Industrial Internet of Things (IIoT): With I4.0, devices can communicate and 

interact with each other under the IIoT. 

9. Simulation: Simulation tools and techniques are used in smart factory operations to 

create the digital counterpart of the physical asset. (Mourtzis et al., 2024) 

 

Figure 2. The nine pillars of Industry 4.0. 

With the emergence of the industry 4.0, there is a significant shift in the technological 

advancements and their application in industry. During this phase of revolution, the use of data 

analyzed, advanced automation, machines and smart factories helps to enhance efficiency and 

productivity of production throughout the value chain. The concept of smart manufacturing is 

focused on integration of information technology which includes IoT, cloud computing and 

artificial intelligence. Currently factories are focused on deploying Digital Twin technology to 

facilitate the adoption of smart manufacturing strategies which can enhance production speed 

and quality and overall system efficiency. (Ebni et al., 2023) 

Horváth & Szabó (2019), proposed the driving forces and barriers to adopting industry 4.0 

technologies in manufacturing. Figure 3 shows the forces and barriers. They categorized the 

driving forces into 5 groups: 

1. Human resources: with the labor shortage, companies want to automate the repetitive 

task and assign workers for higher value task but on the other hand there was a lack of 

skilled employees and also retraining them was time-consuming and expensive. 
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2. Financial resources and profitability: Through digitalization, companies could decrease 

the cost like labor cost and inventory cost, but digitalization needs a higher initial 

investment, and many companies worry about return of investment. 

3. Market pressure: Companies for survival in the market and being competitive must 

digitalize which allows new business models and strengthen customer relationships. 

While those do not digitize, they will fall behind. 

4. Management expectations vs reality: Management wants real-time control and 

performance data through smart systems while lack of planning and leadership, causes 

unsuccessful implementation. 

5. Productivity and efficiency: Industry 4.0 reduces errors, lead times and improving 

efficiency and product quality but in order to achieve improved performance, it needs 

optimized processes and flexible structures. Moreover, there might be the resistance of 

workers in change due to fear or uncertainty. 

 

Figure 3. Driving forces and barriers of Industry 4.0. 
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One of the pillars of the industry 4.0 framework is simulation. The new simulation modeling 

paradigm is based on the concept of Digital Twin (DT). It combines real-time data with 

simulation models for better performances in productivity. In the next session, the concept of 

Digital Twin will be discussed in detail. 

3 Digital Twin 

 

3.1 General Overview of Digital Twin 

The concept of the Digital Twin (DT) was introduced by Glaessgen and Stargel during the 53rd 

Structures, Structural Dynamics, and Materials Conference for the first time. They described it 

as a powerful simulation framework that combines multiple physical models, real-time sensor 

data, and historical information to mirror the life of a physical system like a vehicle or machine. 

A Digital Twin acts as a virtual replica of a physical object, which allows engineers and 

decision-makers to understand better the performance and therefore leads to smarter and more 

efficient decisions. (Glaessgen & Stargel, n.d.) 

The term "Digital Twin" is often used interchangeably with "Digital Model" and "Digital 

Shadow”. while these concepts are different based on the level of data integration between the 

physical and digital objects. Some digital representations are manually created and not linked 

to real-time data; others are fully synchronized with the physical object. Therefore, the authors 

classify Digital Twins into three subcategories as can be seen in figure 4: Digital Model, Digital 

Shadow, and Digital Twin, based on the extent of data integration. (Kritzinger et al., 2018) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Digital flow in Digital Model, Digital Shadow and Digital Twin 
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AS it can be seen in the figure 5, there are differences in capabilities of performing different 

functions between Digital Twin, digital shadow and digital model. It should be notable that 

Digital Twins are not replacing digital models or digital shadows.(Iranshahi et al., 2025) 

 

Figure 5. Comparing the capability of Digital Twins, Digital Shadow, Digital Model 

Fuller et al. (2020) in their studies, they categorize the research on Digital Twins into three 

primary areas: manufacturing, healthcare, and smart cities. They highlight that many of studies 

are concentrated within the manufacturing sector, which shows that the industry considers 

Digital Twin technology for enhancing operational efficiency and predictive maintenance. 

They also recognize several important challenges that interrupt the implementation of Digital 

Twins. These challenges include the need for stable IT infrastructure, the availability of useful 

and high-quality data, concerns regarding privacy and security, and the necessity for trust and 

standardized modeling practices. Responding to these challenges is important for having a 

successful integration of Digital Twins across different areas, as they represent both a 

technological advancement and a paradigm shift in how industries operate and interact with 

data. 

According to Jones et al. (2020), the definition of a Digital Twin is linked to 13 key 

characteristics that shape its operation and interaction with the physical world. These 

characteristics include elements such as the physical and virtual entities, the twinning process, 

state, and fidelity, among others. All together they form the foundation of how a Digital Twin 

functions, emphasizing its role in synchronizing the physical and virtual environments to 

accurate monitoring, simulation, and optimization. 

According to Negri et al. (2017) , the Digital Twin (DT) is defined as a virtual and computerized 

counterpart of a physical system which is linked with the concept of Industry 4.0 and cyber-

physical systems (CPS). In the beginning it was conceptualized by NASA for aerospace which 

DTs offer real-time synchronization between the physical and virtual worlds through sensors 

and data integration. In manufacturing, DTs help optimize production systems, enhance 
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decision-making, and support predictive maintenance by continuously updating virtual models 

based on real-time data from their physical objects. 

Jeremiah et al. (2024) in their study, they explore different applications of DT and their security 

challenges and also categorized it into five different groups based on application and 

characteristics. Product Digital Twins are digital replicas of physical products which mostly 

are used in manufacturing for simulations, design, and testing. System Digital Twins represent 

larger systems like factories or cities, integrating multiple products and processes to provide a 

whole view. Process Digital Twins focuses on simulating and optimizing workflows or 

processes, especially in industries like manufacturing and logistics. IoT-Enabled Digital 

Twins leverage real-time data from IoT sensors to create dynamic models. Finally, Human 

Digital Twins are used in the healthcare area for personalized medicine, health monitoring, and 

predicting health outcomes. 

In the context of manufacturing, the concept of a Digital Twin by Dr. Michael Grieves is 

defined as a virtual representation of a physical product that enables a comparative analysis 

between the designed product and its actual object. This iterative feedback loop between design 

and execution has an important role in enhancing the manufacturing process, as it allows for 

real-time data and adjustments that align production outcomes with design specifications. By 

facilitating this comparison, Digital Twins contribute to improved efficiency and quality in 

manufacturing operations. (Grieves, n.d.) 

AS Shao and Helu explain, the scope and constraints of a Digital Twin depend on three key 

factors: application, which defines its fidelity and objectives; viewpoint, determining whether 

it focuses on a product, process, or system; and context, which influences how information is 

presented, and which data is needed for decision-making. These factors ensure the Digital Twin 

is specified to unique use cases while maintaining cost-effectiveness. (Shao & Helu, 2020) 

According to Liu et al. (2024) the most important difference between DT and conventional 

digital models is the dynamic nature of DT. This means that any changes happening in the DT 

are synchronized in real-time with the physical objects it represents. Additionally, DTs form a 

closed loop with these physical objects which means that analyses and decisions made based 

on the DT are fed back to the physical object in real time and influencing its behavior 

A Digital Twin offers various benefits in Industry 4.0/5.0 technologies, including data 

acquisition, modeling, integration, analytics, visualization, and maintenance. (Asranov 

Mansurand Aliev, 2024). In the next section, the application of Digital Twins has been 

discussed. 

 

3.2 Application for Digital Twin  

After the first definition of DTs in aerospace, the concept has expanded over the past decade to 

other areas such as manufacturing, healthcare, and construction.  

Digital Twin technology can support a wide range of functions across the manufacturing 

system. As shown in figure 6 one of the important applications is improving equipment 
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reliability through a “Machine Health Twin” which uses sensor and process and monitor data 

and predicts potential failures. This reduces downtime machine. Another application is 

production planning optimization to decide what to produce, when and with which resources. 

A digital Twin can collect real-time data from different systems like ERP and analyze them and 

based on this analysis it can adapt the production plan automatically. This enables better 

coordination, reduced cycle times and increase efficiency of machine usage. Additionally, 

during equipment commissioning a “Commissioning Twin” allows manufacturers to test and 

validate system virtually which reduce costs. (Shao & Helu, 2020) 

 

Figure 6. The use of Digital Twin in manufacturing 

 

They reviewed the papers of Digital Twin application in the product life cycle which most of 

the studies are related to production, prognostics and health management and design. 

(Dzedzickis et al., 2021)  

Figure 7 shows Percentage share of research areas in Digital Twin application.  

 

Figure 7. Percentage share of research areas in Digital Twin application  

In the context of Manufacturing, Digital Twins can be used to optimize the production process, 

predict and prevent equipment and machine failures, and improve efficiency and quality of 

production. (Soori et al., 2023). 

Soori et al. categorize the use of Digital Twins in a manufacturing system into three phases: 

A) System Design Phase: In the system design phase, the Digital Twin is utilized to 

validate and test the manufacturing system, identifying inefficiencies and 

evaluating the feasibility of physical manufacturing solutions. Real-time 
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monitoring data helps predict potential failures and optimize system operations 

before serious problems happen. 

B) System Configuration/Reconfiguration Phase: During this phase, the Digital 

Twin is designed based on the physical system’s specifications, such as geometry, 

material properties, and operating conditions. It simulates system behavior under 

different conditions, including changes in input parameters or the introduction of 

new components. The semi-physical simulations by the Digital Twin allow for 

validation of the system's performance and help identify potential failures. 

C) System Operation Phase: In the operation phase, Digital Twins continuously 

monitor the manufacturing system's performance in real-time. They provide 

important feedback and adjustment instructions to the physical system and enabling 

manufacturers to predict and resolve issues before they lead to downtime. This 

reduces waste, enhances efficiency, and optimizes the production process and 

improves production performance. 

Digital Twins have emerged in manufacturing and providing virtual representations of physical 

systems that enable real-time monitoring, predictive maintenance, and optimization. However, 

despite the extensive theoretical framework of DTs, there is significant gaps between their 

conceptualization in literature and their practical implementation in real-world cases. (Cimino 

et al., 2019) 

Cimino and colleagues found that many existing DT applications are not fully integrated with 

manufacturing systems, particularly in their ability to interact with Manufacturing Execution 

Systems (MES). A critical finding is that most DTs cannot control physical systems from the 

digital environment which decrease their effectiveness in optimizing manufacturing processes. 

This gap suggests a need for enhancement of communication between digital and physical 

objects to facilitate real-time adjustments and decision-making. To address these issues, a 

practical implementation of a DT was conducted in a laboratory setting at Politecnico di Milano 

by focusing on a mobile phone assembly line. This application specifically studied the 

monitoring of energy consumption and machine states in real time and demonstrating how DTs 

can improve operational efficiency. They propose a structured approach to developing a DT 

that aligns with the operational needs of manufacturing systems. This framework includes three 

key aspects: 

(I) Real-Time Data Acquisition: Using protocols such as OPC UA to ensure effective 

communication and data exchange between the Digital Twin and the physical 

manufacturing environment. 

(II) Energy Consumption Monitoring: Developing functionalities within the DT to track 

energy usage across different machine states. 

(III) User-Friendly Interfaces: Creating graphical user interfaces (GUIs) that enhance 

interaction with the DT which make it accessible for operators and decision-makers. 
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By focusing on these aspects, the proposed framework aims to decrease the gap between 

theoretical models of Digital Twins and their practical applications and finally improve the 

integration of DTs into manufacturing systems. 

Caputo et al. (2019) studied on a Digital Twin (DT) framework for evaluating ergonomic 

performance in assembly line stations. They show how DT can improve workplace design. This 

framework helps to identify and correct design errors which could lead to ergonomic issues 

and delays in production. This approach reduces costs and time if the potential problems are 

considered during the early design stages, rather than after the start of production. The authors 

applied their framework to a Fiat Chrysler Automobiles (FCA) assembly line, utilizing a 

Concurrent Engineering (CE) approach to create the Digital Twin. CE allowed the 

simultaneous evaluation of ergonomics alongside the design and engineering phases, rather 

than performing ergonomic checks after the start of production. This integration helps to be 

sure that ergonomic considerations are embedded into the process from the outset. The DT 

replicated the workstation in a virtual environment, simulating the tasks performed by workers. 

This helps to assess ergonomic conditions during the design phase by analyzing worker 

postures and material handling requirements. The use of Virtual Reality (VR) technology and 

digital human models (DHM) within the Digital Twin made it possible to simulate workers 

performing tasks and providing a detailed assessment of how ergonomic factors would affect 

real-world performance. This study shows the value of Digital Twin technology as a tool for 

considering ergonomics into the design phase, ensuring safer and more efficient workplaces 

while avoiding costly design corrections later in the production process. 

Karanjkar et al. (2018) developed a Digital Twin to optimize energy consumption in an 

automated Surface Mount Technology (SMT) assembly line. The main aim of the study was to 

enhance energy efficiency while simultaneously improving production throughput. To achieve 

this, they employed an IoT-driven Digital Twin. They installed sensors throughout the assembly 

line to monitor energy consumption and collect comprehensive data on machine performance 

over a three-month period. 

Using SimPy, an open-source discrete-event simulation library, the authors constructed the 

Digital Twin of the SMT-PCB assembly line. This model helps them to do "what-if" analyses 

which helps to study scenarios and the evaluation of different parameters to assess their impact 

on energy consumption. The Digital Twin helps this simulation to evaluate the optimal buffer 

size for enhancing energy efficiency. The results showed that through the buffering, they could 

achieve a 2.7 times reduction in energy consumption without negatively impacting production 

throughput. This study highlights the potential of Digital Twin technology in manufacturing, 

particularly in optimizing energy use while having operational efficiency.  

In recent advancements in healthcare technology, the concept of Digital Twins has emerged as 

a transformative approach, particularly in emergency departments dealing with anonymous 

patients who lack accessible health information. The proposed model by Aluvalu et al. (2023) 

leverages Digital Twin technology to enhance patient care by integrating several key 
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components: digital health records, smart devices health trackers, expert advisors, and 

blockchain communication. 

When a patient arrives at the emergency department, this model enables healthcare providers 

to quickly access the patient's digital health records, even in cases where the patient is unable 

to provide their medical history. Additionally, real-time data from wearable devices is made 

available, allowing for continuous monitoring of the patient's vital signs and health metrics. 

With immediate access to comprehensive health information, medical professionals can make 

more accurate and timely decisions regarding treatment. This capability is crucial in emergency 

situations where every second counts. The implementation of this Digital Twin model has 

demonstrated a remarkable 95.6% improvement in the detection and treatment of patients 

within the emergency department. Overall, the integration of Digital Twin technology in 

healthcare not only streamlines the process of obtaining critical patient information but also 

significantly enhances the quality of care provided to patients in urgent medical situations. 

The manufacturing sector is under a fast transformation which is because of technological 

advancements, particularly in the decision-making and monitoring tools that facilitate the 

implementation of Digital Twin technology. This innovation makes it possible to monitor and 

optimize manufacturing processes in real time. Using virtual objects to monitor, simulate, and 

remotely control physical assets is one use for Digital Twins. Moreover, this technology helps 

us to understand customer need better and therefore improves customer satisfaction. With these 

predictive techniques, factories can predict machine failures, plan repairs, enhance machine 

performance, increase the useful life of machines, and redesign systems for higher efficiency. 

(Attaran & Celik, 2023) 

Kumbhar et al. (2023)They proposed a Digital Twin framework for detecting and improving 

bottlenecks throughput in manufacturing systems. The framework utilizes a utilization-based 

method for detecting bottlenecks, which has demonstrated the capability to achieve a minimum 

throughput improvement of 10% in existing systems. This approach not only enhances 

operational efficiency but also provides a robust mechanism for real-time monitoring and 

decision-making, allowing manufacturers to respond swiftly to changing conditions on the 

shop floor. Furthermore, the integration of process mining techniques within the framework 

facilitates the generation of dynamic process maps, enabling a comprehensive understanding 

of resource interactions and dependencies. The findings underscore the critical role of data-

driven methodologies in modern manufacturing, particularly in the context of Industry 4.0, 

where digital transformation is essential for maintaining competitive advantage. 

Attaran & Celik (2023) Studied on the use cases and application of DT. DT technology in 

manufacturing is used by designing products and optimizing production lines and predicting 

the maintenance needs. In Agriculture, it is used for making better decisions related to 

resources, weather conditions, soil health and reducing waste.  In the healthcare sector, it is used 

for personalizing treatment, drug development and designing smart hospitals. In the automative 

sector, it is used to improve design and monitor performance. Also, in the construction and real 

estate sector, it is used for tracking the project, managing resources and assessing quality. 

Digital Twin use cases and applications can be seen is figure 8. 
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Figure 8. Digital Twin use cases and applications 

 

3.3 Challenges of Digital Twin  

Although Digital Twin is used in a wide range of industries, it has its own challenges which 

depend on the domain the DT is being implemented. These challenges are mainly technical: 

1. High fidelity 2-way synchronization is difficult especially for large factories that 

require resources and high-steam IoT. 

2. Interoperability with the software which is used in a production lifecycle: factories use 

different software for tasks like inventory, operations and product management. One of 

the issues is the compatibility of DT with this software. 

3. Cybersecurity and IoT security: with the DT operating across multiple industrial 

partners and inventory sites, the security becomes more important.  

4. Add-Ons: using Dt entails add-ons like cost, resources and research. DT can be costly 

if the duration of the project is short. Moreover, DT needs to be in line among different 

components, real-time tools and big data resources, therefore, putting all these together 

might be time consuming. (Sharma et al., 2022) 

Kober et al. (2024) studied the challenges of the Digital Twin in manufacturing. They group 

the main challenges into 3 main groups, technical, organizational and methodological and 

many of the challenges overlap as is shown in figure 9. The definition of each of challenges is 

on table 2.  
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Figure 9. Challenges of Digital Twin application 

 

Table 2. Main challenges of Digital Twin 

Main Challenges Characteristics  Definition 

Technical 

Standardization 
Lack of unified protocols, interfaces and process causes delay in 

system integration and real-time data exchange 

Data Quality Incomplete data from older machines are hard to integrate or interpret 

Data protection 
Concerning privacy and legal restrictions, limit data collection and 

storage 

IT security Risk of cyber attacks  

User interfaces Difficulty in creating minimal and simple interfaces 

Interoperability 
Difficulty in integration of data from different systems with different 

formats 

Capabilities Lack of skilled personnel to develop and assess DT systems 

Organizational 

Costs Needing high initial investment and recurring costs 

Acceptance Lack of trust of employees and unclear expectations 

Fear Fear of loss of jobs in employees 

Culture Resistance to data-driven decision making and internal politics 

Regulatory 

constraints 
Internal and external objections due to regulatory requirements 

Methodological 

Understanding 

Objectives 
Difficulty in understanding the objective of the DT  

Understanding 

Benefits 
Difficulty in understanding the benefit of the DT  

Efficient 

Modeling 

Efficiency in modelling  
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4 Collaborative Robot 

 

4.1 Overview 

Market globalization and demand growth are pushing industries to move from mass production 

to new technologies with humans. Therefore, by changing in demand of customers, 

manufacturing systems are moving towards customization. Moreover, these days human 

factors are considered important for improving the work conditions and reducing the risks 

which are because of new technologies. Industry 4.0 offers new ways to improve human-

machine interactions through using Collaborative Robots (cobots).  

According to the study the main market for cobots is small and medium-sized enterprise which 

are responsible for 90% of the world’s enterprises and have an important role in economic 

growth. SMEs are using the cobots to produce low-volume with high variant products in a 

minimum time as they are safe, low cost and easy-installation. (Kumar et al., 2023) 

The main aim of cobot is to work alongside a human worker without fences to perform tasks.  

There are different types of interactions between cobot and worker, where there are 

coexistence, synchronization, cooperation and collaboration. Coexistence interaction, the 

workers and robots are close to each other, but they do not work in the same workspace. 

Synchronized interaction, both are using the same workspace but not at the same time. 

Cooperative interaction, they are working closely and interacting but on different tasks at the 

same time. In Collaborative interaction, they are in direct contact and working at the same time 

and on the same task. (Dzedzickis et al., 2021) Figure 10 shows the five typical level of human-

robot cooperation. 

 

 

There was a gradual transition of robots from caged robots to human robot teaming. Figure 11 

illustrates the Different types of shared workspace in human robot collaboration (HRC) 

systems. Zafar et al. (2024) introduce a brief overview of the important stages during this 

transition: 

Figure 10. Five typical level of human-robot cooperation  
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Caged robots: in the early years of industrial automation, robots were in protective cages. The 

main objective of these cages was to ensure safety in the workplace . 

Collision coexistence: with the advancement of technology, robots equipped with sensors and 

cameras which helped them to detect the presence of humans close by them and respond 

appropriately in order to prevent potential collisions or accidents. This was a significant step 

in enhancing safety and reducing the risk of injuries and accidents. 

Human-robot interaction (HRI): with progress in robotics, they are equipped with natural 

language processing and speech recognition. These technologies enabled robots to respond 

verbally. This phase introduced interactive and responsive robot behavior which makes it easier 

for humans to work alongside robots effectively. 

Human robot collaboration (HRC): In this phase, human and robots collaborate with each other 

on tasks. 

Physical HRC (pHRC): In the next phase of evolution of robotics, they are not only 

collaborating with humans but also physically interacting with them. This interaction includes 

passing objects, jointly manipulating. 

Human-Robot Teaming (HRT): In this stage, robots are integrated into human ream as partners 

rather than tools. These robots are equipped with AI and machine learning algorithms which 

enable robots to adapt human behaviors, preferences and decision-making processes. 

Therefore, in this stage, robots are not just passive instruments, they are active and adaptive.   

 

Figure 11. Different types of shared workspace in HRC systems 
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4.2 Application of Collaborative Robots in Manufacturing 

Cobots have a wide range of features and capabilities which enable them for industrial use. 

They are used for picking and placing tasks, inspection, assembly and co-manipulations. 

The application of cobot in manufacturing is various. In Assembly line, they are used to assist 

workers by doing various tedious and repetitive tasks, which help to increase the speed of the 

process. In this way, workers can focus on more skilled tasks. These are used for quality check 

of the products through camera and sensors. (Javaid et al., 2022) 

They identified 5 main categories as the challenges for introducing collaborative robots in 

SMEs. In the following, the challenges are presented: 

Safety: Since workers and collaborative robots are working closely together, safety is one of 

the main concerns. cobots must follow safety rules like SO/TS 15066, but some researchers are 

mentioning these current standards are not enough. 

Performance: it is expected to improve the speed, quality and efficiency by using the 

collaborative robots but in some cases, cobots are too slow especially when they are close to 

humans. 

Strategy: cobots are a long-term investment for companies. Therefore, companies need a clear 

plan for production. Many of SMEs have difficulty in choosing the right cobot and right task 

for it. 

Involvement and training: workers must understand and accept the usage of cobots to be used 

effectively. Therefore, training is important.  

Smart technology: While researchers are excited about smart technologies, many SMEs aren’t 

as focused on them—often because of concerns about cost, complexity, or simply not being 

fully aware of what's possible. That said, some companies do recognize the value of smarter 

systems, especially when it comes to automatically spotting defective products and improving 

quality control.  (Schnell & Holm, 2022) 

According to the study of European Parliament, collaborative robotics technology has benefits 

and disadvantages. cobots are safe for humans as they are working together, which reduces the 

commissioning costs as they do not need fencing or being isolated. They are easier to program 

and can be relocated. By entering cobots into industry a new paradigm of automation 

introduced in which the operator is not replaced by machine. It assists the operator to improve 

and complement his/her capabilities like accuracy, endurance and power and make their work 

more productive. They play a main role in agile production and can contribute to deploying 

new business models. On the other hand, cobots do not have a high payload, long reach and 

high productivity, which limits their use especially in a high-volume production. Gambao 

(2023) In the table 3, the main benefits and disadvantages are shown: 
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Table 3. Benefits and disadvantages of cobots 

Benefits Disadvantages 

Easy installation and relocation Short reach 

Maximum flexibility in production Low payload 

Low risk for operators Need acceptance by workers 

Higher process quality Need safety assessments 

Increased productivity 

 

In terms of application, as is shown in figure 12, based on the data from Statistica in 2023, 

almost a third of the collaborative robots are used for material handling, assembly and pick and 

place. This result shows that cobots are now mainly for handling parts to reduce the workload 

of the workers. Today, cobots are not used in quality control specially in SMEs where they 

prefer traditional methods. (Puttero et al., 2025) 

 

 

Figure 12. Percentage size of the collaborative robot market by application 

 

5 Mobile Robots  

 

5.1 Autonomous Mobile Robots  

Barrett Electronics of Northbrook introduced the first Automated guided vehicles (AGV) in 

1953. The structure was complicated as it was a tow truck that followed on a wire in the floor 

instead of a rail. They were inflexible, expensive, difficult to install and unreliable. It was used 

in warehousing and logistical activities.  

Table 4 shows the complete development schedule and different types of AGVs which are 

integrated with different technologies.  (Zhang et al., 2023) 
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Table 4. An overview of AGVs completions over the time period 

Year Products Accomplishments 

1950s 

 

Some of them used optical sensors and colored bars and some of them used 

magnetic sensor 

1960s 

  

In the food industry, it is used these vehicles with electric and magnetic 

sensors. They followed a fixed path and when they reached a stop sign, 

they stopped automatically. 

1970s 

 

AGVs have a computer and control system. They often follow special 

wires on the floor, which guide them using an active magnetic signal. This 

method is commonly used to help them stay on the right path. 

1980s 

 

AGVs use lasers and infrared sensors to find their way. They’re equipped 

with smart electronics and microprocessors which help them know exactly 

their locations. 

1990s 

 

AGVs use special wheels that let them move in any direction and have 

sensors for navigation. They can also spot and fix small errors. This makes 

their movement more accurate, especially for long-distance travel. 

 

2000s 

 

AGVs now use artificial intelligence to help them find their way and see 

their environment. They often use wireless networks to track their position 

and can even work together as a team to do jobs more efficiently. 

2010s 

 

Open-source software is used in AGVs, especially ROS (Robot Operating 

System), which helps control and manage robots. 

2020-

present 

 

These vehicles can move in any direction, which increases productivity. 

They can also connect easily with a company’s IT systems at different 

levels. They’re flexible, easy to upgrade or reconfigure. 

 

AGVs were originally used in transporting goods in warehouses and logistics industry. They 

are using tracks or predefined routes and also it needs the operator supervision. By 

advancement in technology, Autonomous mobile robots (AMRs) evolved. They are an 

evolution of AGVs which can understand and move independently in the environment.  

There are some differences between AGV and AMR. AGVs work on fixed routes through 

wires, magnetic strips or sensors. These predefined routes need installation which can be 

expensive and disruptive to production. AGVs can detect objects in their ways but they cannot 

navigate around them. Therefore, they stop until the obstacle is removed. While AMRs are 
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equipped with intelligent navigation capabilities. They use cameras, sensors and laser scanners. 

They are able to detect obstacles and without removing the obstacle, choose the best alternative 

route. They are also different in the case of applications. AGVs have limited applications 

because they are dependent on fixed routes and need infrastructure therefore it is difficult to 

change the production line and make them less adaptable. On the other hand, AMRs are much 

more flexible as if the production cells are relocated or new processes are introduced, they can 

re-map the site and upload the new map. Safety in AMRs and AGVs are different. As AGVs 

follow fixed route, in case of being obstacles on their way, they detect through their sensors, 

and it needs a manual intervention to resume operation, and it makes disruptions on workflow. 

While for the AMRs, as they are using 3D cameras, LiDAR and AI-detection of obstacles, they 

are able to navigate dynamically. It can be concluded that AMRs are an ideal choice for modern 

facilities as they can continuously analyze and react in real-time and keep operations running 

safely. (Mobile Industrial Robots, n.d.) 

As shown in figure 13, there are several methods and techniques of navigation and localization 

of AMRs that have been developed and each of them has its own principal and accuracy 

performance. Localization techniques can be categorized based on positioning algorithms as 

follows: trilateration/triangulation, scene analysis/fingerprinting, and proximity detection. 

Trilateration and triangulation approaches use measurements like Time of Arrival (TOA), Time 

Difference of Arrival (TDOA), Received Signal Strength (RSS), and angle-based methods like 

Angle of Arrival (AOA) and Angle of Departure (AOD). These are typically used with 

technologies such as UWB or Wi-Fi. Scene analysis and fingerprinting involve techniques like 

LiDAR, radio wave mapping, and vision systems, including SLAM (Simultaneous 

Localization and Mapping). These methods build and refine maps of the environment in real-

time, making them suitable for dynamic and unstructured settings. Proximity detection includes 

simpler techniques based on RFID, QRCode, ArUco markers, or line-following, which are 

cost-effective but less flexible for dynamic navigation. (Semborski & Idzkowski, 2024) 

 

Figure 13. The classification of methods for localizing a mobile robot 
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According to the data from Statistica as it is shown in the figure 14, the global market for 

Autonomous Mobile Robots (AMRs) was valued at approximately 2.4 billion USD in 2021. 

With a projected annual growth rate of around 23%, it is expected to surpass 10.5 billion USD 

by 2028, reflecting the increasing demand for intelligent automation in industries such as 

manufacturing, logistics, and warehousing. 

 

Figure 14. Size of the global market for AMR 

 

5.2 Mobile Manipulators 

In the age of mass customization, companies with a high mix volume production need to adopt 

a flexible manufacturing system in order to survive. As customized products are popular, 

traditional industrial robots may not be suitable for these applications as they are inflexible and 

have a high cost in reprogramming of new tasks. Therefore, a possible solution is using 

combination of autonomous mobile robots (AMR) and lightweight collaborative robot arms 

(cobots) which are mobile manipulators. (Gros et al., 2023) 

The background of mobile manipulators goes back to 1984 with the development of the MORO 

(MObiler ROboter). The main idea behind this approach comes from making standard 

manipulator robots more flexible which are stationary and fixed.  

The architecture of Autonomous industrial mobile manipulators (AIMM) is an integrated and 

battery-driven robotic system which includes a robot manipulator mounted upon a mobile 

platform extended by a sensor and tooling system. The local running software (distributed or 

central) is responsible for control and coordination.  (Hvilshøj et al., 2012) 

Figure 15 shows the conventional architecture of an AIMM robot system. 



22 

 

 

Figure 15. The conventional architecture of an AIMM robot system 

 

The application of autonomous mobile manipulators in industrial robots include assistive tasks, 

logistics tasks and service tasks. The logistics tasks refer to the transporting items between 

workstations and stations and the process of loading components into machines. The assistive 

tasks include the processes of loading/unloading items into machines for assembling, observing 

and comparing the items in order to identify and correct defects and actual processing like 

welding, bending, etc. The service tasks include maintenance, repair and overhaul of 

production machines and cleaning. (Hvilshøj et al., 2012) 

Bøgh et al. (2011) provided an overview of the history of mobile manipulators from 1984 to 

2010 as can be seen in figure 16. 
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Figure 16. An overview of the history of mobile manipulators 

According to the report of market segment analysis of mobile manipulators, the warehouse and 

distribution segment has the largest market share in 2021, and it is anticipated to grow at a 

CAGR of 11.5% by revenues over 2022-2027 which is due to the increase in demand. With 

flexible automation and mobile manipulators, the changes related to the warehouse 

infrastructure are minimal and less expensive. Therefore, there is an upsurge in demand for 

these robots. (IndustryARC, n.d.) 

Thakar et al. (2023) present an overview of where mobile manipulators are used in practice as 

it is demonstrated by figure 17. It shows examples from different fields like transportation, 

warehouses, machine tending, assembly and farming. Each application has different needs 

when it comes to making decisions. For example, in warehouses it is important for the base 

and the arm to work together smoothly for picking and placing items while in healthcare the 

robot needs to move safely around people and deal with unexpected situations.  

 



24 

 

 

Figure 17. Example of mobile manipulators in various applications 
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6 Dynamic Speed Allocation Digital Twin 

 

6.1 Motivation 

Industry 4.0 shows the revolution of computers, machines and human interconnectivity which 

results in higher manufacturing efficiency, and a larger production scale. The main idea behind 

the fourth industrial revolution is its capability to automate decision-making and problem 

solving. It enables both operations of asset real-time performance management and engaging 

all stakeholders equally through vertical and horizontal integration. In vertical integration, 

through interconnection network of the digital and physical process within different 

departments of an organization, it responds to unexpected order changes due to demand 

fluctuations, equipment shortage or stock shortage, while in the horizontal integration, through 

the networking of the different processes, entities forming the global value chain of any 

product, ensure coordination of operation and information flow. 

In the real world of manufacturing and warehousing, capacity is limited. Products cannot be 

processed and stored at a constant rate as the warehouse becomes full. If products are processed 

at maximum speed without considering warehouse limitations, there would be problems like 

having queues, inefficiencies in systems, and having delays. In many industrial systems, the 

speed of the robot is predefined and fixed, but this rigidity leads to bottlenecks especially in 

warehouses. A dynamically adaptable robot speed based on the warehouse availability 

introduces responsive and automation.  To address these problems, it is necessary to have 

adaptable systems where the speed of product processing is dynamically adjusted based on the 

number of the products in the warehouse. The proposed solution is embedded in the values of 

smart manufacturing by avoiding unnecessary production and synchronization of the process 

flow with real-time warehouse capacity. 

Digital Twin technology enables dynamic and responsive systems. By modelling physical 

representative and integrating with simulation environments, Digital Twin helps to dynamically 

control robot behavior based on actual conditions. While simulation models are used for 

planning and testing in manufacturing, their effectiveness is limited due to the lack of real-time 

response. This thesis aims to enable two-way communication between virtual and physical 

entity through Digital Twin. By integrating FlexSim software with real robots via Modbus TCP, 

the system responds in real-time based on the actual condition. 

This work aims to show that by embedding Digital Twin logic into AMR and cobot, 

manufacturing systems can achieve higher efficiency, reduce waiting time and increase 

utilization rate. The motivation lies not only in improving logistics but also in aligning with 

broader goals of industry 4.0. 

While this study is done in a controlled lab environment, the logic and framework are scalable 

and can be done in large and real-world manufacturing settings. 
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6.2 Physical Reality  

Physical system includes one collaborative robot (UR3e), shown in figure 18.b, which performs 

tasks and then the mobile industrial robot (Mir), shown in figure 18.a, moves to load the item 

and unload them into a warehouse.  

 

Figure 18. (a) Mobile Industrial Robot, (b) UR3e 

 

6.2.1 An Overview of UR3e Collaborative robot 

UR3e is a light collaborative robot which is developed by Universal Robots. It is part of the e-

series and as it is small, it is a good solution for small scale automation. Payload capacity is 

3kg (6.6lbs) which means the arm of this robot can lift to 3 kg. Reach arm is 500 mm which 

means the arm can extended to 500mm. This cobot is 11.2 kg which is very light and easy to 

move. Based on the specifications, this robot is ideal for assembly, material handling and 

screwdriving. (Universal Robots, n.d.) 

The programming of the robot is through the Polyscope as shown in figure 19 graphical 

interface which is user-friendly without requiring coding knowledge for basic programs. The 

red button is used to stop the robot in case of emergency stop. There is a black button which is 

behind the screen, and it is used to move the robot freely while the user is holding the button. 

(a) (b) 
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Figure 19. Teach pendant 

 

In the tab of the program, there are 3 sections which are used for defining the program of the 

robot: 

1. Basic: The most common commands are “Move”, “Waypoint”, “Wait”, “Set” and 

“Halt” as it is shown in figure 18. Move controls the motion of the robot through the 

waypoints. Waypoints must be under the Move command. It is possible to define the 

speed and acceleration of the moves. 3 types of the moves can be defined. MoveJ which 

results in a curved path, MoveL which results in linear movements and MoveP which 

performs linear movements with circular. Wait and Set are used for communicating with 

other devices. The Set command assigns a value to a variable or output, while the Wait 

command is used to pause the operation of the robot until an event occurs, such as an 

input or a variable reaching a specific value, or a set amount of time passing. Halt 

command is used for stopping the program. 

 

2. Advanced: This section includes complex command for controlling the robot, like if, 

thread, script, loop, wait and etc. If and if … else commands change the robot’s behavior 

based on sensor inputs and variable values. If a condition is evaluated as True, the 

statements within this If command are executed. An If statement can have only one Else 

statement. Use Add Else If and Remove Else If to add and remove Else If expressions. 

A thread is a parallel process to the robot program. A thread can be used to control an 

external machine independently of the robot arm. A thread can communicate with the 

robot program with variables and output signals. In this application, if and loop are 

used. In figure 20, the advanced commands are shown. 
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Figure 20.  Advanced section of the programming tab 

 

6.2.2 An Overview of Mobile Robot 

An autonomous mobile robot which is used in this experiment is Mobile industrial robot 100 

(MiR100) from the Company of Mobile Industrial Robot, one of the leading companies in 

Autonomous mobile robots. This robot is suitable for small and medium sized transport tasks 

in logistics and healthcare. The maximum payload that could be carried is 100 kilograms (220 

lbs). It uses a Lithium-ion battery which offers up to 6 hours 53 minutes of active operation 

with full payload. It uses several safety mechanisms such as 360 personnel detection; 

emergency stop buttons and ultrasonic sensors. MiR 100 supports WI-FI, USB and Ethernet 

connectivity which makes it easy to integrate with Digital Twin platforms. It is compatible with 

Modbus TCP and can communicate with simulation software like FlexSim. 

The programming of the Mobile Robot can be done through a PC, Tablet or Smartphone. First, 

the user needs to sign in with a username and password. To start programming, the Setup tab 

must be accessed and then Missions should be selected. A mission is a predefined series of 

tasks that the robot performs. There are some predefined tasks as is shown in figure 21, where 

tasks can be dragged and dropped to create a mission. The set of the tasks used are: 

• Move: This Action includes several sub-actions like, docking, check position status, 

Move and …. in this model, Move is used to navigate to a predefined locations on the 

map which are set according to the map of the of Mind4Lab Laboratory at Politecnico 

di Torino figure 22.  

• Logic: in the tab of the logic, there are several actions including if, loop, wait, while 

and …. In this model, the loop is used to run the mission continuously without stopping. 

The While action is also used to check if a PLC register is set to a certain value or not. 

• PLC: this tab includes actions which are used for the connection between the FlexSim 

and mobile robot. The set PLC register action is used to set a value in a register address 

which must match with the register address in FlexSim. The Wait for PLC register 
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action is used to wait for a value and continue to the next action as soon as the value is 

found in the set register. 

• UR: This action includes Run UR program which is used to communicate with a UR 

which is mounted on the top of the mobile robot. This action starts with a .urp file saved 

on the Universal robot (cobot which is mounted on the mobile robot). 

 

Figure 21. Predefined tasks to create a mission  

 

Figure 22. Map of Mind4Lab 
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6.3 Virtual Representation 

In this study, FlexSim simulation is the virtual representation. FlexSim is simulation software 

which includes collection of tools for simulation applications. It is a mixture of modeling, 

artificial intelligence, 3D models and data processing. It has two modelling environments, 3D 

and process flow. It has a user-friendly interface to build a model even with limited knowledge 

of coding. Through emulation tool it is possible to connect the model to the real-world system 

to exchange data. This feature enables real-time synchronization between digital and physical 

system. Therefore, it is a key feature for the implementation of Digital Twin. The 3D model 

provides realistic visual, and the process flow environment allows to create logic. In some 

cases, it is not possible to use only the 3D model as it has some limitations. Therefore, along 

with the 3D model, process flow is used. FlexSim Software Products (n.d.) 

In the following sections, the 3D model environment and process flow environment will be 

discussed. 

6.3.1 3D Model 

One of the main features which makes FlexSim unique is that there is a possibility to create a 

3D system. 3D models are more visual and sometimes can be more effective, especially for 

decision makers who do not have a technical background. For creating a 3D model, objects are 

used. Some of the most common objects are as follows as also it is shown in figure 23: 

1. Flow items: These objects move from one station to another station. They can be 

materials, customers or products. 

2. Fixed resources: Objects which are static and interact with flow items. Each fixed 

resource is used for a specific function. The most common fixed resources are sources 

which are used to create flow items. Each source creates an item per inter-arrival rate, 

scheduled arrival list and can be labeled or colored. The queue is used to keep flow 

items when a downstream object cannot accept them and by default it is in a FIFO, but 

it can be LIFO or adjust it. It receives flow items until it reaches the maximum capacity. 

The processor simulates the processing of flow items, and the total time is summed up 

with the set-up time and a process time. The sink is used to destroy flow items which 

are finished. 

3. Task executers: Objects that are moved in the 3D model and do tasks like transporting 

flow items. One of the common task executers is AGV which travel, load and unload 

flow items. 

Figure 24 represents an example of a 3D model in which a source is creating items and in a 

processor is being processed and then are going to the queue. 
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Figure 23. Common objects of 3D model 

 

Figure 24. An example of a 3D model 

 

6.3.2  Process Flow 

The process flow environment is an environment where it is possible to create the logic of the 

model. There are a set of predefined elements which can be adjusted based on the required 

logic as it is demonstrated in figure 25. Tokens are the basic component which flows through 

activities in process flow when a simulation is running.  

Their functionality is like flow items in 3D model. But tokens, unlike the flow items, can be 

more abstract. For example, they can represent a customer’s order is ready. At the basic level 

each token has ID, Name and labels. In figure 26 an example of process flow is presented. 

In this study the following components are used and in the following section it is discussed: 

1. Event-Triggered Source: It creates a token in response to an event. When the event 

happens, it will create a Token. The Token can interact with activities in process flow 

like updating systems state. In this study it is linked to Source in 3D model. 
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2. Assign labels: It creates or modifies labels. Labels are used for storing important data 

about objects. Labels can be assigned to an incoming (entering) token. a parent token, 

flow items, 3D objects such as an Operator or Processor and ect. In this study 4 labels 

are considered, interarrival time, item color. 

3. Create object: It creates one or objects in 3D model. In the study it creates boxes. 

4. Decide: This activity sends a token to one of two or more possible activities based on 

defined conditions. Deciding can be based on a condition, case, time or percentage etc. 

In this study, the decision is based on the number of items in each floor storage on 3D 

model. 

5. Wait for Event: When a token reaches this activity, the token will wait until an event 

occurs. In this study, when a token reaches it, it remains there until the physical robot 

is ready to start. 

6. Custom code: with this activity, it is possible to create custom behavior in process flow. 

It is possible to use pre-defined options and write new code in FlexScript. As soon as 

the token enters this activity, it will evaluate the code and then release it to the next 

activity. Here, it is used for having the interarrival time and the type of the items in a 

global table. 

7. Resource: These shared assets show an asset with limited capacity. A resource is 

acquired by an Acquire Resource activity and released by a Release Resource activity. 

For example, if there is one machine in the station which is shared between two other 

stations. When one station uses this machine, it would acquire that machine as a 

resource. When it finished in that station, it will be released. In this study, two resources 

are used to represent the UR3e and Mobile industrial robot which are shared between 

two stations. 

8. Delay: This activity keeps the token for a certain length of time. It can be fixed or follow 

a statistical distribution. 

9. Variable: This shared asset stores any kind of data and can read or change data. The 

variable can be used like a label on a Token or other object. The variable is changed by 

a Set variable activity and read by a Get Variable activity. Variable value can be a 

number, string, array, object, emulation connection or emulation variable. The 

Emulation tool is a tool which creates a link between FlexSim and external PLCs or 

clients/servers that communicate with PLCs. This tool supports multiple protocols like 

Modbus, OPC DA, OPC UA etc. Emulation tools are discussed in the following section. 

In this study, there are two variables as a connection for UR3e and Mobile industrial 

robot.  

10. Set Variable: this activity sets the value of a Variable shared asset. They are used to 

track and manipulate data within the simulation. 
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Figure 25. Predefined elements in process Flow 

 

Figure 26. An example of process flow 

 

6.3.2.1 Emulation Tool 

As it is mentioned, Emulation tool creates a link between FlexSim and external PLC. It is 

supported by multiple protocols like Modbus, OPC DA, OPC UA etc. This tool is used for 

communication and interaction between physical systems and virtual models. In this way, data, 

signals and commands are sent and received in real time. In this study Modbus TCP protocol, 

which is Ethernet-based, is used. In figure 27 the properties of an emulation connection are 

shown. In this study 2 types of Modbus connection are used, one for connection of the UR3e 

and the other for the mobile industrial robot.  
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Figure 27. Emulation properties 

 

6.3.3 Dashboard 

Dashboard of the FlexSim is one of the tools for collecting data during the running of the 

simulation. Users can choose different types of visualizations like charts and graphs. It is a 

useful tool which users can easily monitor the KPIs, and statistics during over the time. It helps 

with analyzing the simulated system and taking corrective actions if needed or adjusting inputs 

or outputs. Dashboard supports data from simulation models like variables, output and 

attributes. Figure 28 shows an example of a dashboard with different types of charts. 
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Figure 28. An Example of the dashboard 
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7 Case Study and Result Description 

 

7.1 Process Description 

Before describing the model, it is necessary to introduce the key elements of the proposed 

solution:  

• 1 source which creates 20 items and arrives at the start station 

• 1 Robot: which is responsible for picking and placing items from Start station to Station 

1 and Station 2. 

• 2 Stations: Station 1 and Station 2 where item 1 and type 2 are being stored temporarily 

and waiting for pick up by mobile robot. 

• 1 Task executor as mobile robot for transporting the items from station 1 and 2 to the 2 

warehouses. 

The proposed Digital Twin framework is designed for a process involving 2 types of items. In 

total, 20 items are generated; 70% of them are item type 1 and 30% are item type 2. These 

items enter the system in a random order with an interarrival time of uniform distributed 

between 20 and 40 seconds. As soon as one item arrives at the system, the robot immediately 

starts its task to put the item in station 1 or station 2 based on item type. Once an item is placed 

at either station, the mobile robot is triggered to start and transport item to the corresponding 

warehouse. Reflecting the real-world constraints, each warehouse has a limited capacity, and 

this is modeled in the simulation. 

Before the robot starts its tasks for picking and placing, it checks the current capacity of the 

warehouses; if the warehouse is close to reaching its maximum capacity, the robot adjusts its 

speed through the sensor variable which sends the command to robot and operates at a slower 

pace to allow time for stored items to exit. Consequently, the robot dynamically adjusts its 

speed based on the number of items in the warehouse to avoid congestion and ensure 

continuous flow.  

Figures 29 and 30 show the 3D model of the proposed solution and process flow. The logic 

behind the model is discussed in the following section. 
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Figure 29. 3D model of proposed solution 

 

 

Figure 30. Process flow of proposed solution 
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7.1.1 Logic within the 3D Model and Process Flow 

The process starts with the arrival of 20 items to the system. This is done by one Source 

element. The arrival of items is random based on the uniform distributed between 20 and 40 

seconds. Moreover, it is added a condition as in figure shown, in order to just create 20 items 

as it is shown in figure 31. 

 

Figure 31. Condition of arrival items 

 The source is connected to the Start Station where the items are grouped into 2 types randomly. 

70% of them are type 1 and 30% are type 2. When the items arrive here, the robot starts its task 

to pick and place the item to put in Station 1 and Station 2. As it is shown in the figure 32, when 

first item is available, by enabling the “Use Transport” option, Robot1 is responsible for 

picking item up and delivering to the next destination. 

 

Figure 32. Properties of Start Station  

In Station 1 and Station 2, the label of Type is defined to determine 2 types of items. Label 

Type in Station 1 has the value of 1 and in Station 2 has the value of 0 as it is shown in the 

image. Figure 33 shows the properties of the labels. 

 

Figure 33. Properties of Station 1 and Station 2 
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FloorStorage 1 and FloorStorage 2 are the places where the items arrived by Task executer. 

“Max Content” defines how many flow items will be allowed to hold at a given time. For the 

FloorStorage 1 is 6 and FloorStorage 2 is 3 items. “Minimum Dwell Time” show how long a 

flow item must stay in the rack before it is released to continue downstream. For FloorStorage 

1 and FloorStorage 2 are 170 and 200 seconds respectively. In figure 34, the properties of 

FloorStorage 1 and FloorStorage 2 are shown. 

 

Figure 34. Properties of FloorStorage 1 and FloorStorage 2 

In the process flow, the source listens for the “On Entry” event from the 3D object of Start 

Station as can be seen in figure 35. When an item enters that station, it triggers the activity and 

assigns the entering item to a label named item. This label is used for further operations. 

 

Figure 35. Properties of source 

Assign label block, assigns label to the tokens as more details can be seen in figure 36. The 

first label is interarrivaltime which shows the time when the item exits from the source. 

Another label is itemtype which is specified by percentage, 70% of items would have value 1 

as Type1 and 30% of them have the value 0 as Type2 and randomly are assigned.  

The reason for having this percentage is to show item type 1 is the high demanding items in 

manufacturing while type 2 are low demanding. 
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Figure 36. Properties of assign labels 

A custom code is used in order to have some data of the tokens inside a global table. As it is 

shown in figure 37, in the table, by entering the items, there would be the interarrival of each 

item and the item type. 

 

Figure 37. Properties of custom code 

The first decide block is used for distinguishing between item type. It checks the condition if 

the Token.Itemtype==1, it means that item is type 1, otherwise it means that it is type 2. The 

two next decide blocks are used for deciding if the UR should move the items at normal speed 

or low speed. This decision is based on the number of the current items of FloorStorage 1 and 

FloorStorage 2. If the number of stored items exceeds a certain threshold, the robot adjusts its 

speed to low, in order to prevent congestion. Otherwise, it continues operating at normal speed. 

Figure 38 provides properties of the decision. 
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Figure 38. Properties of decide  

 

 When the item is in one of the stations, the Mobile Industrial Robot starts its task and moves 

to the station. There is a wait for Event block which is connected to the variable of state Mir. 

This block is used to pause the process while the robot is busy. It waits specifically for the 

robot’s state to change from busy (1) to available (0) as can be seen in figure 39 

As long as the robot is working on another task, the process is on hold. Once the robot finishes 

its job and becomes free, the process continues, and the robot can be assigned a new task. 

 

Figure 39. Properties of Wait for Event 
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7.1.2  Variables of the Process Flow 

 

7.1.2.1 Emulation properties  

In the proposed Digital Twin, the connection between physical reality and virtual representation 

is through TCP Modbus communication protocol which is Ethernet-based. 

The IP address of Mobile industrial Robot is 192.168.12.20 and for the UR3e it is 

192.168.81.97. Port 502 is the default port for Modbus TCP/IP communication. The Modbus 

TCP Client of FlexSim connects to the server’s IP address on port 502 to send requests like 

"read register," "write register” …. Change Interval is 1.00 seconds which means the client 

polls the server every 1 second. Both connections are active, which means the system will 

attempt to communicate with both servers. Figure 40 shows the details of the connections. 

 

Figure 40. Emulation properties 

 

7.1.2.2 Variables of UR3e  

The proposed solution is to use variables as shown in figure 41 for sending and receiving 

commands to or from the robot. For the UR robot, 5 sensor variables are considered. Start and 

stop are sensor variables which send a signal on the start of the simulation to start the UR robot. 

When the signal is no longer received robots stop working and the program is stopped. 

Each type of the item has 1 sensor variable for speed. Normal speed Type 1 and normal speed 

type 2 are for adjusting the speed of the UR. Here it is considered the constant speed for all 

items without considering the capacity of the warehouse. If these 2 conditions are not correct, 

then items are moving at a low speed through sensor variable of low-speed type 1 and low 

speed type 2. 

State UR is the control variable which receives a signal when the robot picks an item and stops 

once the robot placed the item. It controls the movements of robots in simulation.  
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Figure 41. Sensor and control variable of UR3e 

 

7.1.2.3 Variables of MiR 

For the MiR variables, as shown in figure 42, are also used for sending and receiving command. 

Two sensor variables and one control variable are used in the model. Start sensor variable is 

used for sending the command to start the MiR as soon as the token arrives this block in the 

process flow with the register type of coil and address 0. The control variable of State MiR is 

used for receiving the data from the MiR in FlexSim to know if the robot is busy or not. This 

helps to keep the tokens in process flow until the robot is available. This variable is a 32-bit 

integer holding register with register number 1194. The sensor variable of Processing is used 

to send the command to robot to move to the station to pick the item. It is also a 32-bit integer 

holding register with register number 1196. 

 

Figure 42. Sensor and control variables of MiR 
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7.1.3 Logic in the UR3e 

To ensure the accurate execution of Pick and place by UR3e, logic according to the figure 44 

was developed. This program is structured based on the conditional statement and predefined 

waypoints which allows the robot to adapt its movement based on digital output signals.  

The logic starts with a waiting mechanism which holds the robot idle until it receives a trigger 

signal From Robot 1. Once it is activated, the robot enters a continuous loop where it monitors 

the state of the digital outputs (DO [0], DO [1], DO [2], DO [3]). Each signal corresponds to a 

different task. 

DO [0] is corresponds to when the token inside the virtual model is item type 1 and the storage 

has enough capacity therefore, robot pick and places the item with normal speed to the Station 

1, while DO [1] is corresponds to the item type 1 where the warehouses it reaches to the 

threshold and therefore, robot must do the pick and place task with low speed. In virtual model, 

the register address of DO [0] and DO [1] are 16 and 17. 

On the other hand, for item type 2, Do [2] is on, it means the token in virtual model where there 

is enough capacity in warehouse so the UR can do the task with normal speed but if DO [3] is 

on, this means there is not enough space in warehouse and UR must work with slower speed.  

In virtual model, the register address of DO [0] and DO [1] are 18 and 19. 

DO [4] is used in order to control the robot whether it is busy and processing an item or free 

and ready to do the task. When the token enters one of the active branches, DO [4] is set to Off. 

This sends the signal to FlexSim that the robot is busy now and therefore, no new item should 

be released into the system. When the robot has completed the placing operation and is ready 

to start a new task, DO [4] is turned back on. This update notifies the FlexSim that the robot 

has finished its task and is ready to accept a new item. 

Additionally, the digital output register that originally triggered the action (DO [0], DO [1], 

DO [2], DO [3]) is also reset and set to False. This ensures that the system clears the previous 

condition and prepares for the next signal, preventing unintended repetitions of the same task. 

Table 5 provides a summary of all the variables with corresponding digital outputs. 

Figure 43 shows the process flow of how the digital outputs are working in the proposed 

solution. 
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Figure 43. Process flow of UR3e 

 

 

Table 5. Variables of the virtual system and signals of the physical System 

Variable of Virtual System UR3e Signal 

Start and stop 

State UR 

Speed Type 1 

Low Speed Type 1 

Speed Type 2 

High Speed Type 2 

DO [From Robot 1] 

DO [4] 

DO [0] 

DO [1] 

DO [2] 

DO [3] 
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Figure 44. Logic of UR3e 
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7.1.4 Logic in the MiR 

In this system, tasks are defined on the MiR portal for moving items from Station 1 and Station 

2 to Storage 1 and Storage 2. These tasks are controlled by a set of conditional rules. To 

synchronize FlexSim with the MiR robot and send commands to it, three PLCs are used as it 

is shown in table 6. 

• PLC register 98 indicates the robot's current state. When its value is 0, it means the 

MiR is available to pick up an item from one of the stations. Once an item is placed in 

a station, the MiR moves to the loading point to grab it, and PLC register 98 changes 

to 1. 

• PLC register 99 and PLC register 97 are used to track items at Station 1 and Station 

2. When PLC register 99 is equal to 1, it indicates that an item is waiting at Station 1. 

Similarly, when PLC register 97 is equal to 1, it means an item is waiting at Station 2. 

• After the MiR loads an item, it moves to the unloading location. Once the item is 

unloaded, PLC register 99, PLC register 97, and PLC register 98 are all reset to 0, 

signaling that the robot is ready for the next task. 

This loop continues until all 20 items are moved to the storage, then the MiR will stop. 

Table 6. PLC and register address  

PLC  Register Address 

PLC register 97 

PLC Register 98 

PLC register 99 

1194 

1192 

1196 

 

AS it can be seen in figure 45 the logic of mobile robot starts with a unlimited loop and this 

loop continues until all 20 items are moved to the warehouses. Once all items are moved, the 

mobile robot stops automatically.  

Inside this loop, there is conditional logic, and this conditional logic will be checked all the 

time. When the mobile robot is available, it receives the signal from FlexSim and moves to the 

loading point. At this moment, the robot is busy and set the PLC 98 to 1.  

FlexSim sends a signal to determine the pick-up station either Station1 or Station 2. This is 

communicated by setting one of the PLC 97 or PLC 99 to 1. Based on this signal, the 

appropriate UR program runs. If Station 1 is selected, UR program 2 is launched and if Station 

2 is selected, UR program 1 runs. These programs control the collaborative robot arm which is 

mounted on top of the mobile robot and enable it to pick the item. 

Once the item is picked up, the mobile robot proceeds to the unloading point. 
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Figure 45. Logic of MiR100 

 

In the following section, 2 scenarios are discussed to see the impact of speed adjustment of 

system performance. 

In scenario 1 the UR3e works at a constant speed without considering the capacity of the 

warehouse. In contrast, scenario 2 shows the application of Digital Twin technology where the 

speed of the UR3e is adjusted dynamically based on real-time status of the warehouse.  
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7.2 Scenario 1 

In this scenario, the UR3e robot picks and places items at a steady speed, without considering 

how full the two warehouses are. It continues working at the same pace, placing items into 

Station 1 and Station 2. Meanwhile, the MiR robot transports the items one by one to the 

warehouses. But once the warehouses are full, the items can’t be moved right away as they 

have to wait in the stations until space becomes available. 

The whole process takes 856 seconds, and during this time, the UR3e is active only 23.63% of 

the time. On average, items of type 1 wait about 106.8 seconds in Station 1, while type 2 items 

wait around 97.4 seconds in Station 2. These waiting times show how long the items are stuck 

in the stations before the MiR can move them. At most, there were 5 items waiting in Station 

1 and 2 items in Station 2. The UR3e continues operating without considering downstream 

bottlenecks. As a result, even though the robot can work faster, the full warehouses reduce 

overall efficiency. This mismatch leads to unnecessary waiting times and underutilization of 

resources. These results suggest that introducing logic to adapt the UR3e's speed based on 

warehouse availability could improve resource utilization and reduce item wait times. This 

insight forms the basis for the next scenario, where speed adjustment is explored. Figure 46 

shows the result of this scenario in FlexSim dashboard. 

 

Figure 46. KPIs of Scenario 1 without DT 
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7.3 Scenario 2 

In this scenario, the system uses a Digital Twin approach to keep the process running smoothly. 

It constantly monitors how full the warehouses are, and when they’re getting close to maximum 

capacity, it automatically slows down the speed of the Universal Robot (UR). The important 

part is that the process doesn’t stop. 

By adjusting the robot’s speed instead of halting everything, we can avoid creating bottlenecks 

at the stations. Normally, when the UR runs at a constant speed, items tend to pile up at the 

stations and have to wait for the robot to pick them up. But in this case, by slowing the robot 

down when needed, the system gives itself more time to clear space in the warehouse. This 

helps keep the manufacturing flow continuous and balanced, even under changing conditions. 

The whole process takes 879 seconds in total with the utilization rate of 80,92% of the robot. 

On average item type 1 and type 2 are waiting in station 1 and station 2, 22,67 seconds and 

40.00 seconds respectively. The maximum number of items in station 2 and station 1 while 

they are waiting for the mobile robot are 1 and 2. Although in this scenario the cycle time is 

slightly longer than the scenario without Digital Twin, the system avoids congestion and 

interruptions by dynamically adjusting the speed based on the warehouse capacity. In figure 

47, the results of the adaptive speed of UR3e are shown. 

 

 

Figure 47. KPIs of  Scenario 2 with DT 
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7.4 Discussion  

Comparing the results of the two scenarios clearly shows the effectiveness of the proposed 

Digital Twin framework. It not only enhances the overall system performance but also helps 

prevent bottlenecks, leading to a smoother and more efficient process flow. In Scenario 1, the 

UR3e robot is working at a constant speed no matter what is happening in the rest of the system. 

At first glance, it might seem efficient as the process finishes in 856 seconds which is shorter 

than scenario 2. Moreover, items spend a long time waiting in the station for over 100 seconds 

on average for type 1 and nearly 97 seconds on average for type 2, which is due to the 

unavailability of the warehouses. On top of that, the UR3e is underutilized with 23,63% which 

shows that a faster robot does not guarantee better performance when downstream resources 

become bottlenecks. 

On the other hand, scenario 2 with introducing a Digital Twin speed adjustment, allows the 

system to react in real time to changes in warehouse availability. When storage is close to being 

full, the UR3e robot automatically slows down and gives more time to be free space. This 

adaptive behavior reduces the waiting time in station 1 and station 2 to 22.67 seconds for type 

1 and 40 seconds for type 2 respectively. This leads to a higher utilization rate of 80.92%. 

Although the cycle time increases slightly to 879 seconds, the system avoids congestion, 

reduces idle time and keeps a more stable workflow. 

This suggests that constant speed is not always beneficial in logistical processes. System 

responsiveness and coordination between robots, stations and warehouses are important factors 

for efficiency of systems.  

Table 7 shows the key results of both scenarios: 

Table 7. Result comparison 

Performance indicators First Scenario Second Scenario 

Number of processed items 20 20 

UR3e Utilization rate 23,63% 80,92% 

Total process time (seconds) 856 Sec 879 Sec 

Average Stay time in 

Stations 

Station type 1 106,80 Sec 33,67 Sec 

Station type 2 97,40 Sec 40,00 Sec 

Maximum number of 

Items in Stations 

Station type 1 5 2 

Station type 2 2 1 
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8 Conclusion and Future Studies 

This thesis showed how a Digital Twin can improv the performance of internal logistics using 

a collaborative robot UR3e and an Autonomous Mobile Robot Mir100. By analyzing 2 

scenarios, it becomes clear that when UR3e is working at a constant speed without considering 

system conditions as seen in scenario 1, it leads to inefficiencies in system like long waiting 

time, low robot utilization rate and bottlenecks at stations.  

In contrast, scenario 2 showed that with logic based on warehouse capacity through Digital 

Twin can make a difference in system efficiency. By adjusting the speed of UR3e in real time, 

system decreased idle time and waiting time while increasing utilization rate and a more 

continuous flow. Although the process time was slightly longer, the overall system was more 

balanced. 

These results highlight the importance of adaptability and real time decision making. Digital 

Twin is a powerful tool that enables smart manufacturing and brings flexibility into operations. 

Another factor that can be considered is the speed of the mobile robot as well as the UR3e. 

Since both robots are working together, considering their speeds could lead to even better 

system performance. 

Moreover, predictive logic where decisions are not just based on current situations can be 

studied. Using past data to forecast helps the system to make smarter and productive 

adjustments. 

Another area which is valuable to consider is energy consumption optimization. While this 

thesis focused on timing and process flow, energy consumption is also important. Balancing 

speed and energy consumption of UR3e and MiR100 can bring environmental and operational 

benefits. 
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