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Abstract  
 

Internal logistics is a part of the logistics that deals with the flow of materials or information within 

the organization. In the manufacturing companies, this is focused on the delivery of materials or 

semi-finished products within the manufacturing companies. Thanks to technological 

advancement various industries' operation, particularly internal logistics has significantly 

changed. 

This evolution is driven by Industry 4.0, under which manufacturing industries have embraced 

automation and smart manufacturing to digitalize these internal flows by using autonomous 

mobile robots (AMR) or automated guided vehicles (AGV).  While automating logistics process 

eliminates many manual and repetitive operations, it also introduces new challenges such as  use 

the vehicles as effectively as possible and minimizing their energy consumptions as they are 

dependent on energy sources such as batteries. Therefore, to achieve operational and 

sustainability objectives in manufacturing framework at the same time, an industry 5.0 approach, 

which focuses on protecting the environment and achieving resilient industrial operations, is 

introduced. 

Speed of AMRs and AGVs is one of the critical factors in energy consumption, higher speeds 

deplete the battery much faster. By integration of Digital Twin technology with AMRs, 

manufacturers can have an opportunity to monitor real-time data and collateral adjustment 

based on a continuous performance evaluation, facilitating quick responses to changing 

production conditions to achieve maximum transport efficiency and improving manufacturing 

performance.  

The focus of study is on optimizing energy consumption through speed adjustment while 

simultaneously improving operational efficiency. This thesis aims to contribute to leveraging 

Digital Twin technology with Autonomous mobile robot, specifically MiR100 within 

manufacturing frameworks. The research framework is implemented in Mind4Lab at Politecnico 

di Torino, to collect real time data of the MiR100 robot utilizing Node-Red, FlexSim simulation 

software and the Modbus communication protocol. The first part of the research is aimed at 

evaluating energy consumption and battery behavior across different speeds, specifically high-

speed and low-speed scenarios, while the second part of the study contributes to leveraging 

Digital Twin framework that allows dynamic speed regulation in response to real-time data 

demonstrating how this can enhance energy and operational efficiency. 
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Glossary 
 

Autonomous Mobile Robot: A robot capable of navigating its environment without fixed paths 

or human intervention, using sensors and onboard intelligence. 

Automated Guided Vehicle: A mobile robot that follows predefined paths, typically using wires, 

magnets, or tracks on the floor. 

Cycle Time: The total time required to complete a process or transport task from start to finish. 

Digital Model: It is a static digital representation of an existing or planned physical object without 

automated data exchange 

Digital Shadow: It enables real-time data flow from the physical system to the digital model, but 

does not affect the physical system automatically. 

Digital Twin: A dynamic digital representation of a physical system that is continuously updated 

with real-time data and can interact with the physical system. 

Physical Entity/System: It refers to the tangible components of the system, including the 

autonomous mobile robot (MiR100) and manipulator. 

Interarrival Time: The time between the arrivals of two consecutive items in a system. 
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1. Introduction 
 

Industries are the backbone of a nation’s economy; by improving their performance and efficiency 

they could yield stronger economic growth.  The concept of Industry 4.0 (I4.0) has emerged in 

recent years as a major transformation in the industrial sector. Manufacturing digitalization and 

robotization of  production process is the main purpose of the fourth industrial revolution 4.0, 

also termed Industry 4.0 (I4.0) (Rizqi et al., 2024a); (Pizoń et al., 2024a).  This paradigm focuses 

on increasing productivity and operational efficiency, improving the quality of products and 

processes, and reducing production costs, optimality and transparency of industry processes 

(Fera et al., 2020); (Rizqi et al., 2024b). Industry 4.0 is also used in the field of logistics to be more 

specific internal logistics with the introduction of robotics and automation (Zoubek & Simon, 

2021). For instance, Autonomous Mobile Robots (AMRs) and AGVs are a key component of the 

internal transport system which improves the internal transport processes through eliminating 

many repetitive manual operations (Dobrzańska & Dobrzański, 2025). Development based on 

industry 4.0 presents a challenge such as managing energy consumption for this sector as well as 

opportunities. To deal with sustainability and resilience challenges, Industry 5.0 approach is 

introduced.  The optimization of AMR robots in terms of energy consumption and manufacturing 

parameters is a critical part of successful and sustainable manufacturing performance. Therefore, 

both approaches are considered in this study.  

Minimizing energy consumption can be achieved in several ways, such as finding better routes, 

avoiding frequent accelerations and turns (Mei et al., n.d.).(Wu et al., n.d.) in their study titled 

“Green Automation: Empowering a Sustainable Future with Energy-Efficient Autonomous Mobile 

Robots in Manufacturing” indicated that battery Management Systems (BMS) technologies by 

deployment sophisticated algorithms, monitor battery health, manage charging and discharging 

cycles, predict battery life expectancy and change the operations to keep the optimal energy 

usage during the battery’s lifespan.  Another way is adaptive control strategies that dynamically 

adjust the operational parameters of AMRs such as speed, acceleration, and payload handling 

based on current energy levels and task requirements in real-time. As mentioned, reducing the 

speed of the AMRs could be helpful. However, after conducting research on MiR100 framework, 

there is not any study which analyzes the possible correlation between transporting speed and 

energy consumption. Therefore, the first part of the experiment is done to evaluate battery 

behavior within different speeds, specifically high speed and low speed. The second part of the 

study, the main part of the study, focused on identifying the optimal speed to obtain the lowest 

energy consumption, considering that the speed changes when the floor storage, where it is the 

destination of transported items by MiR100, reaching the maximum content on. 

To implement this adaptive control system, Digital Twin framework is used, which could adjust 

the MiR100 speed, based on the real-time data. This adjustment ensures that the robot operates 

and will not stay idle and decrease energy consumption at the same time. 
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To evaluate the proposed framework, the experiment was implemented in the Mind4Lab at 

Politecnico di Torino.  

The work is divided into following parts: (i) provide the theorical background in industrial 

revolution, Digital Twin concepts and automated mobile robot, (ii) explore relevant previous 

study, (iii) provide a brief description of Digital Shadow and Digital Twin framework and 

motivation (iv) describe the case study and scenarios to evaluate the framework. Then it 

compares the results, indicating how the proposed framework helps to achieve the operational 

and sustainability objectives. 

 

2. Theorical Background 
 

2.1 Overview of Industrial Revolution 

The increasing integration of the Internet of Thing into the industrial value chain has built the 
foundation for Industry 4.0 (Hermann et al., 2016). However, industry growth is fundamentally 
related to social and economic development. Only a decade after industry 4.0, the world came 
across new global challenges, so the European Commission announced Industry 5.0 to address 
these challenges (Aheleroff et al., 2022). These industrial revolutions follows three previous 
industrial revolutions in human history.  

The first industrial revolution was the introduction of mechanical production facilities starting in 
the second half of the 18th century and being intensified throughout the entire 19th century 
(Hermann et al., 2016). This revolution was characterized by single or multiple machines for a 
particular and repetitive task (Zafar et al., 2024).  From the 1870s on, electrification and the 
division of labor (i.e. Taylorism) led to the second industrial revolution (Hermann et al., 2016). 
Industry 2.0 is characterized using the electrical power and mass production (Zafar et al., 2024). 
The third industrial revolution, also called “the digital revolution”, set in around the 1970s, when 
advanced electronics and information technology developed further the automation of 
production processes (Hermann et al., 2016).  

The term "Industry 4.0" was first introduced in Germany. It is associated with digital 
transformation of industrial processes piloted by German industry (Golovianko et al., 2022). This 
transformation is identified by the IoT, cloud computing, AI, machine learning and cognitive 
computing  and complex control systems which enable dynamic and flexible production processes 
(Zafar et al., 2024); (Golovianko et al., 2022); (Barata & Kayser, 2024).  Numerous manufacturing 
technologies play an important role in realizing the promises of Industry 4.0. Within this 
technological framework, Digital Twin has become the leading and important of manufacturing 
digitalization technology, as it connects the physical and cyber worlds by creating high-fidelity 
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virtual models that replicate and simulate the behavior of their physical counterparts (Ouahabi 
et al., 2024). 

Industry 5.0 is introduced by the European commission after about 10 years of industry 4.0 
introduction (Golovianko et al., 2022). Sometimes it is called the “human-centered revolution” as 
it seeks to blend advanced technologies, with human-centric design principle that focus on 
quality of life, sustainability, and social well-being (Zafar et al., 2024). Both Industry 4.0 and 
Industry 5.0 rely on the extensive use of new technologies, while the former is often recognized 
as a technology-driven industry, the latter is a value-driven one (Golovianko et al., 2022). Figure 
1 illustrates the industrial revolution (Zafar et al., 2024). 

 

Figure 1-Industrial Revolution from Industry 1.0 to Industry 5.0  

2.2 Digital Twin Concept 
 

The term Digital Twin introduced by Dr. Michael Grieves in 2003 in his course “Product life cycle 

management” at the University of Michigan (Steinmetz et al., 2022). Then in 2012, was brought 

to the public for the first time in NASA’s integrated technology roadmap under the technology 

area 11: Modeling, Simulation, Information Technology & Processing (Rosen et al., 2015). Digital 

Twin (DT) can be defined in various ways due to differing interpretations of its concept. These 

variations arise from perspectives that view DT as a model, a simulation technology, or its 
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integration with the Internet of Things (IoT). This difference is based on the level of integration 

and the mode of data exchange (Ramasubramanian et al., 2022). 

As illustrated in Figure 2, the concept of Digital Twin can be categorized into three subcategories 

along the product lifecycle: Digital Model (DM), Digital Shadow (DS), and Digital Twin (DT) [23, 3].  

 
Figure 2-Digital Model, Digital Shadow and Digital Twin 

 

The distinction between Digital Model,  Digital Shadow, and Digital Twin is often ambiguous, with 

overlapping definitions and varying interpretations depending on context and application.  

To gain a clear understanding of the Digital Twin concept, it is crucial to differentiate between 

three related terms: Digital Model, Digital Shadow, and Digital Twin. The following sections 

outline the key features of this technology and provide precise definitions for these concepts, 

highlighting their unique roles and interconnections within the realm of Industry 4.0.  
 

Digital Model 

 

A Digital Model is a static digital representation of an existing or planned physical object without 

automated data exchange. While it may include detailed descriptions and rely on manually 

integrated data but lacks real-time interaction between the physical and digital entities. For 

example, simulation models of factories or mathematical models of new products are considered 

as digital models. In a digital model, changes in the physical object do not directly affect the digital 

model, and vice versa (Kritzinger et al., 2018). The modeling and simulation process refers to the 

process of addressing and analyzing a real-world challenge in a practical case study (Yin & McKay, 

2018). These simulation models are commonly used in the design phase to predict how a system 

might perform under certain conditions like operational loads, degradation mechanisms, etc 

(VanDerHorn & Mahadevan, 2021). So this distinction is further emphasized by the fact that the 

Digital Model cannot send or receive data from the physical object, as it primarily comprises a 3D 

virtual representation (Antonelli et al., 2024). 

 
Digital Shadow 

 

According to the definition of a Digital Model, if an automated one-way data flow is established 

from the state of a physical object to its digital counterpart, this configuration is often referred to 
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as a Digital Shadow. In this case, changes in the physical object's state are reflected in the digital 

object, but the reverse interaction does not occur (Kritzinger et al., 2018). 

In summary, Digital Shadow can interface with the real system and receive and process 

information that has already been obtained, as well as manage information that is received in 

real time (Antonelli et al., 2024). 

 
Digital Twin 

 

The last concept, Digital Twin (DT), as previously mentioned, was introduced by Dr. Michael 

Grieves contains three main parts: physical products in real space, virtual products in virtual space 

and the connections of data and information that connects the physical and virtual space (Liau et 

al., 2018). It is called ‘Twin’ because it is like mirroring or twinning of systems between what 

existed in real space to what existed in virtual space and vice versa (Rizqi et al., 2024b).  

Digital Twin aims at creating high-fidelity virtual models for each physical entity to emulate their 

states and behaviors with abilities of evaluating, optimizing, and predicting (Semeraro et al., 

2021). When data flows between a physical object and its digital representation are fully 

integrated in both directions, the system is referred to as a Digital Twin. In this configuration, the 

digital object can also serve as a controlling entity for the physical object. Additionally, other 

physical or digital entities may influence changes in the state of the digital object. A change in the 

physical object’s state directly affects the digital object, and changes in the digital object similarly 

impact the physical counterpart (Kritzinger et al., 2018).  

A key difference between Digital Twin and a traditional simulation lies in how they represent the 

system's state. While simulations are based on predefined assumptions to predict future 

behavior, Digital Twin continuously monitors and reflects the real-time state of an actual, 

operating system (Antonelli et al., 2024).  Sharman et al. (2022) mentioned how Digital Twin can 

be different from existing technologies as described in table 1. 

 

TECHNOLOGY HOW OTHER TECHNOLOGY DIFFERS FROM DT 

SIMULATION SYSTEMS  No real-time twinning  
MACHINE LEARNING No twinning 
DIGITAL PROTOTYPE No IoT components necessarily 
OPTIMISATION No simulation and real-time tests 

AUTONOMOUS 
No self-learning (learning from its past 
outcomes) necessarily 

AGENT-BASED MODELLING No real-time twinning 
Table 1-Difference between Digital Twin and Other Technologies 

 

In the last two decades, Digital Twins have gained a lot of attention for their ability to improve 

industrial processes by creating virtual models of physical systems, leading to increased interest 

in many industries. The basic need which motivates the use of Digital Twin is to monitor and test 

a system that changes over time. Digital twins are used to improve the efficiency of machines, 
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conveyors, and other devices. By tracking and modeling changes that take place over time in the 

virtual representation as a function of input variables to the system, one can approximate the 

past, present, and future states in order to control the decision process(Stączek et al., 2021). One 

of the main advantages of Digital Twin is that it gives real-time data that can help in learning, 

reasoning, and understanding how objects and systems function. It enables users to analyze, 

model, and optimize a physical object’s performance across its lifespan (Javaid et al., 2023). 

Moreover, the conceptualization, comparison and collaboration capability of Digital Twin enables 

us to conceptualize with manufacturing process visually, compare the option and outcome, and 

then finally collaborate with other manufacturing section (Liau et al., 2018). 

 

In summary, a common understanding of the term Digital Twin (DT) is that it is a high-fidelity, 

multi-physics digital model designed to replicate both the micro and macro features of a physical 

system. It mirrors the system's state and behavior while offering the capability to perform 

simulations in the virtual model and synchronize them with the physical counterpart in real-time. 

One of DT's defining features is its two-way, real-time communication with the physical system. 

Overall, the definition of a Digital Twin varies depending on the concepts, context, and specific 

system for which it is developed (Ramasubramanian et al., 2022).  

2.2.1 The Emergence and Evolution of Digital Twin 

 

With the advancement of digital technology, the representation of key factors in product 

manufacturing has evolved significantly. Initially relying on simple coding and identification 

techniques, it has now progressed to sophisticated Digital Twin technology featuring virtual 

reality interaction. This evolution can be categorized into four distinct stages, as illustrated in the 

Figure 3 (Li et al., 2022). 

 

 
Figure 3-Four Stages in Development and Evolution Digital Technology 
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Stage 1: Conceptual Abstraction 

 

The first electronic tube computer, developed in 1946, initiated the digital transformation in 

manufacturing. It enabled high-speed computing by digitizing objects, programming processes, 

and storing results. Without graphical tools, products were represented through abstract data, 

using numbers and letters to define their identity and attributes (Li et al., 2022). 

 

Stage 2: External Resemblance 

 

The emergence of CAD technology in the 1960s revolutionized product design by introducing 

graphical processing in computers. Using interactive graphic tools, designers could create 

geometric designs digitally. The shift from 2D to 3D technology allowed for intuitive visualization 

of ideas through 3D models, giving products both a digital identity and static geometric data 

resembling their physical counterparts (Li et al., 2022). 

 

Stage 3: Simulate Reality with Virtual 

 

The concept of Digital Mock-Up (DMU) introduced the use of digital models to evaluate product 

functions and performance. DMU represents a complete system or subsystem, reflecting not only 

geometric designs but also functional and performance characteristics in specific technical fields. 

By elevating 3D models from static representations to dynamic simulations, DMU laid the 

foundation for modern Digital Twin technology, enabling models to mimic both the shape and 

behavior of physical products (Li et al., 2022). 

 

Stage 4: Interaction Between Virtual and Real 

 

The concept of the "twin" was first applied in the manufacturing industry during NASA’s Apollo 

program, where two identical spacecraft were built: one for the mission and the other, called the 

"twin," remained on Earth. This twin mirrored the spacecraft's status during the mission, enabling 

real-time simulation and supporting astronaut training and operational decisions. The use of the 

twin extended beyond the traditional role of prototypes, which were typically confined to the 

design and manufacturing stages, to include the operational phase of the product. By creating a 

realistic environment for the twin, it could simulate the actual running state of the spacecraft, 

offering critical insights and predictions to assist mission success. This pioneering approach laid 

the foundation for what we now know as Digital Twin Technology, a concept that has since been 

adopted across industries, including manufacturing, to optimize performance, enhance predictive 

maintenance, and improve decision-making through real-time data mirroring and simulations. In 

2003, Dr. Michael Grieves, a professor at the University of Michigan, introduced the concept of a 

"virtual digital representation equivalent to a physical product" in a course document on Product 

Lifecycle Management (PLM). This concept encompassed not only the physical product in the 
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physical space but also the virtual product in the digital space, along with the data, information, 

and process interfaces connecting the two. By linking the virtual product from the design stage 

to the entire lifecycle of manufacturing and operation, this idea laid the groundwork for the Digital 

Twin concept. However, due to the limitations of theoretical frameworks and technological 

advancements at the time, the Digital Twin concept did not gain widespread attention or 

development until later years, when advancements in data integration and simulation 

technologies enabled its full realization and application across industries (Li et al., 2022).  

 

2.2.2 Characteristic and Elements of Digital Twin 

 

The idea of Digital Twin was first introduced by Grieves, who described it as having three main 

elements: the real physical product, its digital version, and a data link that connects the two [17, 

21]. The attributes of the physical systems are collected via sensors and mapped to the virtual 

system through the connection layer, which facilitates the exchange of data between the physical 

and virtual layers (Ramasubramanian et al., 2022). This connection is usually made possible by 

sensors that send data from the physical system to the virtual model. Thanks to this real-time 

data exchange, the virtual model stays up to date with the actual state of the physical asset and 

helps improve its performance through continuous monitoring and analysis (Ferko et al., 2022). 

Later, Jones et al., in their systematic literature review, expanded this basic idea by identifying 13 

important aspects of a Digital Twin: (1) Physical Entity/Twin, (2) Virtual Entity/Twin, (3) Physical 

Environment, (4) Virtual Environment, (5) Realization,(6) State, (7) Parameters, (8) Physical-to-

Virtual Connection, (9) Virtual-to-Physical Connection, (10) Twinning, (11) Twinning Rate, (12) 

Physical Process, and (13) Virtual Process (Jones et al., 2020). 

VanDerHorn and Mahadevan (2021) by looking at many definitions, proposed a more general 

one: a Digital Twin is “a virtual representation of a physical system (and its associated 

environment and processes) that is updated through the exchange of information between the 

physical and virtual systems”. They also described the concept of Digital Twin in 3 main 

components and 8 subcomponents, which are summarized in the table 2 (VanDerHorn & 

Mahadevan, 2021). 

 

COMPONENTS DESCRIPTION 

PHYSICAL REALITY 

PHYSICAL SYSTEM 
The actual assets or components that is being 
modelled. 

PHYSICAL ENVIRONMENT Where the physical system of interest resides. 

PHYSICAL PROCESSES The activities or operations the system performs 
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VIRTUAL REPRESENTATION 

VIRTUAL SYSTEM 
Digital version of the Physical system that we are 
studying like a robot, a machine, or a production 
line. 

VIRTUAL ENVIRONMENT 
The digital version of the space around the real 
system. 

VIRTUAL PROCESSES 
Simulated processes that mirror real-world 
operations. 

INFORMATION INTERCONNECTION 

PHYSICAL-TO-VIRTUAL 
CONNECTION 

This is the process of sending data from the real 
world to the Digital Twin to be synchronized with 
the real system. 

VIRTUAL-TO-PHYSICAL 
CONNECTION 

This is the process of sending back the instructions 
or decisions by Digital Twin to the real system. 

Table 2-Three Main Components of Digital Twin 

 

According to the Sharman et al. (2022) analysis they defined the elementary and imperative 

components of a DT as follows: The elementary components are physical asset, digital asset and 

information flow that without them the Digital Twin cannot exist. The latter components consist 

of IoT devices, Data, Machine Learning, Security and Evaluation metrics/Testing which make 

Digital Twin unique. 
 

2.2.3 Digital Twin in Industry 4.0/5.0 

 
Digital Twin performs unique functions at each phase of a product's life cycle, and many 

international companies have started to explore the application of it in product design, 

manufacturing and service (Liu et al., 2022). Using Digital Twin in the design phase brings benefits. 

It helps designers better understand customer needs, leading to a more accurate design of the 

product’s look and function. By introducing Digital Twin early in the product development 

process, companies can keep production costs lower by reducing the need for physical prototypes 

and avoiding costly redesigns. This early use improves both design precision and cost-efficiency 

(Alnowaiser & Ahmed, 2023). In the manufacturing stage, Digital Twin is designed to support real-

time monitoring and optimization of manufacturing processes (Semeraro et al., 2021). 

Specifically, it helps to increase competitiveness, productivity and efficiency in several key areas 

of production systems such as production planning and control, maintenance and layout planning 

(Kritzinger et al., 2018). By continuously analyzing data from the physical system, they can predict 

future states, such as potential equipment failures or changes in production quality. This 
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predictive capability allows Digital Twin to suggest adjustments in parameters to improve key 

performance metrics like efficiency, quality, and output. Additionally, Digital Twin helps with long-

term planning by providing forecasts, enabling manufacturers to optimize resource allocation and 

maintenance schedules to minimize downtime and maximize productivity (Semeraro et al., 2021). 

In the manufacturing sector, three primary applications of Digital Twin has been identified, as 
noted in (Scott, 2020): 

1. Supervisory: Digital Twin offers real-time insights into the current state of the 
corresponding system, which informs and enhances the decision-making process. 

2. Interactive: Digital Twin actively monitors the physical twin and can automatically modify 
one or several parameters when it detects an abnormal situation, ensuring optimal 
performance. 

3. Predictive: Digital Twin not only tracks the existing conditions of the system but also 
forecasts its future behavior, facilitating the delivery of corrective actions and 
recommendations through automated systems or human-in-the-loop feedback 

The last stage is service in which Digital Twin enhances product utilization and maintenance by 

analyzing user behavior and preferences, allowing companies to tailor their offerings to individual 

needs, ultimately leading to improved customer satisfaction and efficient service delivery 

(Semeraro et al., 2021). 

Alamin et al. (2021) also mentioned that Digital Twin in the lifetime of a production line has an 

important role: 

• It acts as a visual prototype of the production line which allows to evaluate its behavior 

before actual implementation. 

• It helps to effective decision making and reduce possible sources of inefficiencies. 

• It monitors operation lines at run time and by providing a model of its evolution for failure 

detection could create a possible optimization (Alamin Khaled et al., 2021). 
 

2.2.4 Diverse Perspectives on Digital Twin Technology: Insights from Leading Global Companies 

 

Digital Twin technology has become very popular and is transforming industries. It helps 

businesses improve operations, make better decisions, and create value. Many well-known 

companies are using Digital Twin in their work as it includes some positive changes toward the 

targeted outcomes like reducing costs and risk, improving efficiency, improving service offerings, 

security, reliability, resilience, and supporting decision-making (VanDerHorn & Mahadevan, 

2021). For example, General Electric has built Digital Twin of jet engine that can achieve power 

optimization, monitoring and diagnostics of jet engine (Liau et al., 2018). In product design, 

Dassault has established a 3D experience platform based on Digital Twin, which continuously 

improves the product design model in the information world and implements it into the physical 

product improvement, by using the information from user interaction. In manufacturing, Simens 
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has built a production system model that integrates manufacturing processes based on this new 

technology. In terms of service, PTC, by establishing a real-time connection between the virtual 

world and the real world, enabled predictive maintenance and after sales service and support for 

customers (Liu et al., 2022). 

Tabel 3 below provides some examples of how companies apply this technology in the real world 

(Qi et al., 2018). 

 

General Electric 
(GE) 

By combining physical machinery with analytical techniques, machines can 
be tested, debugged, and optimized in a virtual environment. 

PTC 
The PLM process extends into the next design cycle, creating a closed-loop 
system for product design and enabling predictive maintenance. 

Siemens 
Using a consistent data model throughout the product lifecycle, some real-
world operations are accurately simulated. 

Oracle 
Virtual models of devices and products simulate the complexities of 
physical entities, providing insights for practical applications. 

ANSYS 
By combining advanced simulation with powerful data analysis, it helps 
enterprises gain strategic insights. 

Dassault 
Through the 3D experience platform, designers and customers can interact 
with the product during the design or manufacturing process to 
understand how it works. 

SAP 
By building digitized models, product development and innovation are 
driven by real-time data acquisition and analysis. 

Altair 
Using advanced virtual simulation technologies, virtual models are created 
with multiple physical properties, improving the product's characteristics. 

Table 3-Companies and Digital Twin 

2.3 Autonomous Mobile Robot (AMR) in Logistics 
 

Autonomous Mobile Robots (AMRs) and Automated Guided Vehicles (AGVs) are one of the most 

important trends in internal logistic (Dobrzańska & Dobrzański, 2025). AGVs are used to perform 

task which required a lower degree of autonomy, while AMRs develop in dynamic environments, 

using autonomous navigation (Dobrzańska & Dobrzański, 2025). 

The first known AGV which was integrated into warehousing and logistics activities using track-

guided magnetic systems, optical sensors, and color bars as guidance technologies was 

introduced in 1953 (Zhang et al., 2023). The application of AGVs can be categorized in two 

sections. Firstly, they act as suppliers which transporting and delivering packages in warehouses. 

In the second section, they are integrated into assembly platforms supporting operation in the 

production process. By developments in sensors and robot control technology, these systems 

eventually created a new class of vehicles called Autonomous Mobile Robots (AMRs) (Pizoń et al., 

2024b). 
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AMRs are the next generation of AGVs which are equipped with sensors and algorithms to avoid 

obstacles and calculate paths based on an internal map (Bamigbala et al., n.d.). Therefore, unlike 

AGVs, MiR AMRs don’t rely on fixed infrastructure such as magnetic strips or rails. They use 

intelligent mapping and obstacle avoidance to adapt their routes in real-time, offering far greater 

flexibility and scalability (Mobile Industrial Robots – MiR, n.d.). 

A key distinction is the AMR’s ability to sense its environment and respond in real-time. It can 

dynamically plan routes and make decisions autonomously, with these functions seamlessly 

integrated into a single system. The AMR can calculate the optimal trajectory to reach its target, 

avoiding obstacles and navigating using maps it constructs on its own. These capabilities make 

AMRs cost-effective and straightforward to implement in automated logistics systems. 

Furthermore, AMRs can be controlled via user-friendly interfaces, such as tablets or mobile 

devices, requiring minimal programming skills. Users can remotely access the robot’s dashboard 

to monitor parameters, check real-time status, and track its position on the map. This flexibility 

allows users to manage logistics tasks conveniently, regardless of their location. In addition to 

their autonomous functions, AMRs are equipped with proximity sensors, laser scanners, and 

cameras to gather environmental data. They are powered by batteries, and understanding battery 

capacity is essential for efficient operation. Predicting battery usage for specific routes can help 

enhance the performance and sustainability of AMRs in multi-robot systems, particularly in 

logistics and warehouse environments (Aliev et al., 2021). 

3. State of Art 
 

In this section of this study, a literature review is conducted to identify and analyze the relevant 

research and papers to the use of AGVs and AMR Vehicles in Intralogistics.  

He, et al (2022) studied an energy-efficient open-shop scheduling problem with multiple AGVs 

and deteriorating jobs. They formulated a multi-objective model with four objectives, aiming to 

minimize the maximum ending time of all AGVs, the total idle time of machines and AGVs, the 

total tardiness of jobs and the total energy consumption of machines and AGVs. To solve this 

problem an improved population-based multi-objective differential evaluation (IMODE) was 

developed. The result of the experimental results shows that the IMODE is preferable to other 

well-known multi-objective algorithms at solving the problem being considered (L. He et al., 

2022). 

Antonelli and Aliev (2022) develop an intelligent monitoring framework for a mobile manipulator 

and introduce new challenges in managing the recharge cycles as the energy consumption of the 

mobile manipulator is also related to the overall tasks executed. They implemented an intelligent 

monitoring system in which gathered the data online and then  key performance indicators (KPIs) 

calculated by Machine Learning (ML) to optimize energy consumption recharging cycles (Antonelli 

& Aliev, 2022). 

Alamin et al. (2021) they believe that Digital Twin in production lines can focus on the 

management of the production process and monitor and optimize energy consumption and 
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communications. To do so, they extend models of energy consumption, that allow the monitoring 

of production line components throughout the production lifetime (Alamin Khaled et al., 2021). 

Energy constraints are critical for mobile robots as they usually use batteries with limited capacity. 

Mei et al. (2006) investigated robot deployment for the coverage tasks by considering timing and 

energy constraint, which can be conflicting optimization goal. There is a tradeoff: while a robot 

moves at higher speed, it helps to satisfy timing constraints by completing tasks quickly, high 

speed simultaneously leads to higher power consumption. To demonstrate this relationship, they 

built power models for mobile robots and calculated the robots’ power consumption at different 

speeds. According to their studies for the PPRK robot, power increases slowly at low speeds but 

then increases super-linearly (faster than linear) after a certain speed (around 0.1 m/s) (Mei et 

al., 2006). 

Y. He et al. (2015) There is potentially a significant amount of energy savings that could be realized 

by reducing the idle energy consumption through better scheduling. They formulated a 

mathematical model of mixed integer programming. For solving this NP-hard problem, Nested  

Partitions algorithm was used (Y. He et al., 2015). 

Energy-efficient scheduling attempts to decrease energy consumption while keeping the service 

level the same. In energy-efficient scheduling there are two main strategies, switching off 

resources while in idle mode and controlling the resources working speed (Speed Scalable).The 

former helps to balance energy savings from shutting down resources and energy requirements  

to start and warm them up, the latter has to balance energy consumption and productivity. 

Homayouni and Fontes (2021) proposed a mixed-integer linear programming model that 

effectively solved the energy-efficient job shop scheduling problem and transport resource with 

speed scalable machines which are used in the production operations and vehicles which are used 

for job transporting.  The numerical analysis shows that by using the speed scalable resources, 

energy consumption can decrease (Homayouni & Fontes, 2021). 

4. Development of Digital Shadow and Digital Twin for MiR100 
 

4.1 Motivation 
 

Industry 4.0 technologies bring fundamental changes to manufacturing, including internal 

logistics. Among these technologies, in today’s dynamic manufacturing environment, the 

integration of AMRs in this sector enables automated independent material transport within 

production plants, which eliminate many manual and repetitive operations.  

AMRs, such as those developed by MiR, are proof of the successful integration of hardware and 

software innovation. Several studies highlight their potential to reduce in energy consumption in 

logistics operations. However, to fully harness the benefits and advantages of them, optimizing 

their energy usage is necessary.  
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In the evolution to Industry. 5.0, there is a significant shift toward human-centric systems, 

sustainability, and resilience. As a result of this shift, manufactures are trying to organize internal 

logistics that not only enhance efficiency but also support sustainability goals.  

In this context, the performance of AMRs is influenced by several operational factors. While it 

might seem that higher speed improves productivity and guarantees better performance , this is 

not always the case. 

In fact, factors such as bottlenecks, battery usage and the system balance should be considered 

to optimize operational efficiency. Since AMRs rely on battery; the task implementation and 

scheduling depend on the battery capacity and the rate of energy consumption.  

Therefore, understanding how the key operational parameters of AMRs such as speed, 

acceleration, and payload handling affecting power consumption and energy consumption is 

necessary to optimize the process efficiency and energy consumption. Although researchers 

demonstrated that lower speeds in AMRs lead to slower battery depletion and lower power 

consumption, this relationship for MiR100 has not been verified. Therefore, to address this gap 

the first phase of study was conducted to study battery behavior and power consumption in both 

high speed and low speed. Furthermore, based on findings, this study proposed a framework that 

dynamically adjusted speed to contribute to the optimization operational KPI and energy 

consumption. 

 

4.2 Description of Framework 
 

To study battery behavior of MiR100 at different speeds, a Digital Shadow framework is proposed. 

In this framework as it can be seen in Figure 4,  data flows from the physical entity to the virtual 

part, but there is no feedback or control on the opposite side. MiR100 real-time battery data is 

acquired with the use of Node-RED, which allows monitoring of the battery statues. 
 

 

 
Figure 4-Digital Shadow Framework 

In the next step the Digital Twin framework is introduced to optimize the MiR100 performance. 

Figure 5 shows the direction if this framework Unlike Digital Shadow, which only collects data in 

a one-way, Digital Twin enables two-way interaction between the physical entity and virtual 
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counterpart. With this framework, the FlexSim simulation is not only updates the real-time data 

from MiR100, but also send back control signals such as adjusting the MiR100 speed in response 

to the real-time data. Moreover, throughout the process, FlexSim continuously monitors and 

calculates key performance indicators which will be introduced and discussed in the 5 chapter 
 

 
Figure 5-Digital Twin Framework 

4.3 Node-RED 
 

Node-Red is a flow-based programming tool, which provides the opportunity to collect, transform 

and visualize real-time data easily. Users with any background can use it as it has low-code nature. 

can be used to create JavaScript functions. 

The Flow is the main way to organize nodes. Each flow has a specific name and description. The 

flows in Node-RED are managed by the different type of “nodes”. Also known as 'black-boxes', 

where each of them has a specific function or purpose. When data is transmitted to the node, it 

processes data according to the defined function and then it passes that data to the 

subsequent node in the flow. Nodes are connected by wires. The following Figure 6 shows the 

Node-Red flow with nodes and connections. 

https://en.wikipedia.org/wiki/JavaScript
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Figure 6-Node-RED Environment 

 

4.4 Physical Representation 
 

The system under study is an autonomous mobile robot (MiR100): The MiR100 is the mobile base 

of the system. It has two motorized wheels for movement and four caster wheels for stability. 

This robot uses sensors and mapping to move safely and efficiently in different environments. 

Once the environment is mapped, the robot autonomously navigates within the designated map 

which is defined on the portal. Figures 7 and 8 demonstrated the MiR100 robot and 

corresponding map where it is located in the Mind4Lab at Politecnico di Torino. 

 

 
Figure 7-Physical Representation (MiR100) 
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Figure 8-Live map of the Mind4Lab environment 

The MiR100 features a remarkable payload capacity of up to 100 kg and a maximum linear speed 

of 1.5 m/s, making it an essential tool for transporting various materials, components, and 

finished products efficiently. Users can control and create missions through a web-based 

interface. 

A mission consists of a series of actions, such as move, logic, docking, and sounds, that user can 

pick from the menus in the top bar. The main action groups are Move, Battery, Logic, Error 

handling, Sound/Light, PLC, Email address, I/O module, Safety system, Cart, Shelf and UR, as 

illustrated in Figure 9. The actions are executed in a top-to-bottom order.  

 

 
Figure 9-MiR100 Platform 
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In this thesis to build a mission the following actions are used: 

 

Move 

 

1. Move: This action defines a specific position on the map which the robot should move to. 

2. Planner Settings: This action allows the robot to set the desired speed while it runs its 

mission. 

Logic 

 

1. Wait: This action pauses the mission for a given period of time. 

2. Loop: This action provide the opportunity for the robot to repeat a mission for a specified 

number of times or indefinitely. 

3. While: This action check battery level, number of pending missions, PLC registers or input 

from I/O modules and then while these conditions are true actions or missions should be 

executed. In this thesis this action is used just for PLC register, therefore it checks 

continuously if the register is set to certain value. As an example if it is defined While 

Register = 1, it means that the robot pause until register 6 has the value 1. 

 

PLC registers 

 

The PLC registers feature is accessible through the System menu. In this section users can create 

new registers or change the default value of them. Registers 1-100 are 32 bit integers, that is 

whole positive or negative numbers and Registers 101-200 are 64 bit floating point numbers, that 

is positive or negative decimal numbers. 

It is important to know that one PLC register uses two holding register addresses. This register 

address should be inserted in the Modbus control register and Modbus sensor register. 

The following actions are commonly used in relation to PLC registers: 

1. Set PLC Register: This action is used to set a value in a register. 

2. Wait For PLC Register: This action is used to pause the mission until a specified value is 

found in a given PLC register. 

In Figure 10, shows the MiR portal interface for registering PLC values. The right side shows float 

registers, while the left side illustrates for integer registers. 
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Figure 10-PLC Registers 

 

4.5 Virtual Representation 
 

FlexSim is a powerful object-oriented simulation software which is used to model, simulate, and 

analyze complex systems. It is particularly useful for industries such as material handling, 

healthcare, warehousing, mining, logistics, and more. It is both powerful and user-friendly. 

For advanced users, the software supports deeper customization through programming 

languages like FlexScript and C++. FlexSim also provides features for performing "what-if" analysis 

without needing to change things in the real world, which can help identify optimal process 

improvements and anticipate potential bottlenecks in system workflows. 
 

4.5.1 3D Model 
 

The software allows users to develop 3D models to visualize and optimize their processes. They 

are more intuitive and realistic, so they reduce the number of errors that could be made in the 

process of building a simulation model. Moreover, as they are more visual, they can sometimes 

be more effective than graphs, statistics when there is need to communicate with key decision 

makers who do not necessarily have technical or engineering background (FlexSim Documentation: 

Welcome, n.d.). 

One of the core features of FlexSim is its intuitive drag-and-drop interface, which allows users to 

build models by simply placing predefined 3D objects into the simulation. It also offers robust 

logic-building tools with minimal programming requirements, making it accessible even to users 

with limited technical knowledge. Moreover, FlexSim is increasingly recognized for its ability to 

simulate various industries beyond traditional manufacturing, such as healthcare, mining, and 

transportation, by handling both time and spatial dynamics in real-world operations FlexSim. This 

https://www.flexsim.com/
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makes it a versatile tool for improving efficiency, reducing costs, and increasing operational 

sustainability (FlexSim, n.d.). 

In FlexSim, objects serve as the fundamental building blocks for creating simulation models. They 

can be broadly categorized into Flow Items, Fixed Resources and Task Executers. In the Simulation 

Model, Flow Items interact with Fixed Resources and Task Executers. Among the standard 

resources available for model construction, the most widely used are Source, Queue, Processor, 

and Sink. These components represent the entry point, waiting zone, processing unit, and exit 

point of flow items in a simulated system. These components can be strategically combined to 

build dynamic simulations that model processes across a spectrum of complexity. 

Figure 11 presents an example of the layout in FlexSim simulation software. 
 

 
Figure 11-3D Model 

 

Flow items 

 

Flow items are objects that move through the simulation model, typically from one station (often 

a fixed resource) to another. They can represent various entities, such as products, customers, 

paperwork, or parts, and are used to simulate the movement of items throughout the system. 

While flow items are initially represented as boxes by default, their appearance can be customized 

to resemble people, products, or other shapes as needed. 

 

Fixed Resources  
 

Fixed resources are objects that remain stationary within the model. Typically, they interact with 

flow items in the simulation by storing or modifying them. These resources can represent various 

processes or stages in the system, such as processing stations, machines, or storage locations. 
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• Source: It generates Flow Items in FlexSim, serving as the process flow's starting point. 

Items can be created at a set rate, on a schedule, or through other methods. 

• Queue: It temporarily holds Flow Items before processing. In FlexSim, queues can model 

physical storage or virtual buffers, with configurable exit rules (e.g., FIFO, LIFO, or custom 

logic). They also support capacity limits, priority settings, and routing controls. 

• Processor: It (or workstation) is where Flow Items undergo transformation or processing. 

In FlexSim, it simulates tasks like assembly, machining, or inspection, with configurable 

processing times, resource needs, and schedules. 

• Sink: It serves as the exit point for Flow Items, removing them from the simulation upon 

arrival. It can represent completed products, waste materials, or any process outputs. 
 

Task Executor 

 

Task executers are objects that move within the 3D model and perform specific tasks, such as 

transporting flow items or operating machines. The most common type of task executor is the 

operator, which typically represents an employee performing tasks in the simulation model. 
 

4.5.2 Process Flow Model 
 

The Process Flow model in FlexSim constructs the logical framework of a simulation by focusing 

on key procedures and decision-making processes rather than visual representation. Acting as the 

“brain” of the simulation, it defines how objects move, interact with resources, and undergo 

processing based on logical rules and conditions. In the process flow objects are represented as 

tokens (small green circles), abstract entities that can symbolize items, people, orders, calls, or 

grouped pallets. When a simulation model runs, the token moves through the process flow 

activities, executing each activity's logic. To build logic in FlexSim, there are predefined activity 

blocks, which allows users to develop logic. The following Figure shows an example of process 

flow in FlexSim. 
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Figure 12-Process Flow Model 

 

In this thesis to build the process flow the following activity blocks are used: 

 

• Source: Similar to sources in the 3D model in process flow, these activities create the 

token. There are different types of source including Inter-Arrival, Schedule, Date Time, and 

Event-Triggered Sources. In this study, the last one is used to create tokens in response to 

an event while simulation is running. When the event occurs, the token will be created. 

• Assign label: Labels can be used to attach data to tokens and store important data about 

various object or store the emulation variables.  

• Custom code: It allows users to create a custom behavior through predefined custom 

codes or writing their own code in FlexScript. When a token enters this block activity, it 

will evaluate the user-defined code and then release to the next block activity. In this 

study, a predefined custom code is used to add assigned label values to the global tables, 

enabling collecting all data. 

• Resource: This shared asset represents a limited supply of resources that can be acquired 

and then released. In this study, MiR100 is considered as a resource. Resources are useful 

for modeling timing constraints, where multiple tokens are needed to use a limited 

number of shared assets. 

• Acquire: It is used to acquire a resource when it is needed during process flow. Once the 

resource has been acquired, nothing else can acquire it until the acquiring token has 

released it.   

• Release: This activity block is used to release or return a resource during a process flow 

when there is no longer needed. When a resource has been released, it increases the 

availability of that resource by a specified amount. 
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• Decide: Based on conditions that users define, it sends a token to one of two or more 

possible activities. If the specified condition is met, tokens are routed accordingly. The 

condition has various forms, including condition-based logic, case selection, time-based 

routing, percentage splits, statistical distributions, global table lookups, and random or 

round-robin allocation. 

• Wait for event: it will hold the token until a certain event occurs. Once that event occurs, 

the token is released and continues the process flow. 

• Delay: It holds a token for a certain amount of time. 

• Move Object: Moves an object or multiple objects to another place in 3D simulation 

model. Therefore, the process flow and 3D model can be synchronized together. 

• Sink: This activity block destroys tokens, removing all data stored on those tokens. 

• Variable: The value of variables in process flow can be assigned through emulation 

connections or Emulation Variable. Therefore, it is possible to reference an Emulation 

Connection and an Emulation Variable or create them. To reference them first it is 

necessary to create them on the emulation through toolbox, which will be explained in 

part 4.5.4 Emulation tool. 

• Set Variable: This block assigns the value of a Variable shared asset. 
 

4.5.3 Dashboard 
 

Dashboards are blank windowpanes that users can customize with anything that they need to 

access during a simulation run. One of the most common uses of dashboards is providing many 

easy-to-use charts. While simulation run, 3D model and process flow activities collect a standard 

set of statistics continuously and it can be represented by charts. As a result, dashboards provide 

various data visualization tools which allow users to track and evaluate different key performance 

indicators (KPI). Figure 13 shows an example of a dashboard with various charts in the FlexSim 

environment. To extract the real-time state of the MiR100, indicating whether the robot is 

available or currently transporting, a custom code was implemented within the process flow 

model. This logic, which enables accurate calculation of the robot's utilization, is detailed in 

Section 5.3.4: Logic within Process Flow in FlexSim.  

https://docs.flexsim.com/en/25.0/Reference/ProcessFlowObjects/SharedAssets/Variable/Variable.html


24 
 

 
Figure 13-Dashboard 

 

4.5.4 Emulation Tool 
 

The emulation tool is used to connect FlexSim simulation to real-world control systems like 

Programmable logic controllers (PLC) or external software systems, which enable the simulation 

model to receive and send real-time signals. The emulation tool is accessible from the toolbox as 

it is shown on Figure 14. This tool provides different types of protocols, including OPC, UA, OPC 

DA and Modbus. Moreover, multiple simultaneous connections can be supported to integrate 

multiple PLCs or client-server systems. When real-time communication with a PLC is not needed, 

it can be possible to uncheck the “active” option. Therefore, the data would be retrieved from 

the theorical simulation instead of the external source. 
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Figure 14-Emulation Tool for Creating Connection 

 

Emulation allows users to define variables for each of these connections. The term variable refers 

to any inputs or outputs that are received or sent by the PLC. There are two types of variables 

that can be added, Control Register (output) and Sensor Register (input). The properties of these 

variables are described in detail below, and Figure 15 illustrates the properties of emulation, 

control and sensor variables. 

 

Control Register (PLC Outputs) 

 

Control is the output of the PLC. Based on the inputs (values) it receives, the PLC will issue controls 

that will tell the system what actions to take in the simulation model. In FlexSim, control variables 

are used to read data from the PLC, server or data variable.  If “Poll for External Changes” option 

is enabled, FlexSim will regularly ask for changes from the external system using events (polling). 

Moreover, control variables can also be connected to an object of 3D model. 

 

Sensor Register (PLC Inputs) 

 

Sensor is the inputs to the PLC. Sensors provide environmental data from inputs to the PLC and 

then the PLC will decide what actions to take based on that data. Sensor Variables are the 

variables which send data from the simulation FlexSim to the PLC.  
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Figure 15-Modbus Register 

 

In the following part a detailed explanation of  each Modbus Register Type in FlexSim is provided: 

 

• Coil: The coil register in Modbus is a binary writable, which means that the simulation or 

controller can set a value 1 (On) or 0 (Off) to activate or deactivate the physical system. 

• Discrete Input: This type of register is a binary input register which is used to read only the 

current state of external devices or systems. 

• Holding Register: This type of register is writable numeric registers that can store complex 

data typically 16-bit or 32-bit integers. Therefore, it can have a range of numeric values 

rather than just 1 or 0. 

• Input Register: This type of register is similar to input register, but it reads numeric values 

instead of binary one. 

5. Case Study 
 

5.1 Experiment Implementation 
 

The experiment is divided into two main phases: the first phase is preliminary phase, which 

focuses on developing a data acquisition system under digital shadow framework. By collecting 

and storing data under digital shadow, it becomes possible to perform more in-depth analysis and 

gain a clearer understanding of the robot's status and performance over time. The second phase 

is designed for the optimization operational KPI and energy consumption under Digital Twin 

framework. 
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5.2 Preliminary Phase of Study 
 

This phase was conducted without implementing a Digital Twin since it is a data-driven analysis 

of the battery draining of MiR100 robot operating under different speed conditions.  To collect 

the relevant data Node-RED platform is used. The objective of this study is to understand the 

relationship between the speed of the MiR100 robot and its battery consumption, particularly 

focusing on how varying speeds affect the battery. It has been assumed that no failures and 

interruptions occur, therefore it represents a static and ideal framework in which it operates. In 

the first test, the robot operated at a lowest speed (0.1 m/s), and in the second test, it operated 

at a highest speed (1.5 m/s).  

 

5.2.1 Logic within MiR100 

 

The Battery Behavior mission is for analyzing the MiR100  battery consumption. As shown in 

Figure 16, in this mission, the robot moves to Loading (A), wait for 1 second, move to Unloading 

(B), wait for 1 second. This mission is continuing in endless iterations. 

 

 

 
Figure 16- MiR100’s Actions for Monitoring Battery Behavior 

 

5.2.2 Logic within Node-RED 

 

The Node-RED is using Modbus-Read Node to acquire battery data from the MiR100. In the Figure 

below it can be seen how this node is created and configured. The panel allows users to choose 

the IP address and the port, which are important parts of the connection. According to the 

MiR100 robot's Modbus TCP data sheet, the battery level (remaining charge) is available in 

holding register 4008 with type 16int. The Node-RED is using zero-based indexing, therefore 

register 4008 corresponds to register address 7. Every 2 seconds the Node-RED connects to 

MiR100 at IP 192.168.12.20. It reads the battery level from Modbus register 7. Then battery 

values will be saved into CSV file. 
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Figure 17-Logic within Node-RED for Battery Behavior 

5.2.3 Discussion 
 

After collecting and saving data with a resolution of two seconds, a deep analysis is conducted. 

The first column of data set indicates the timestamp, while the second one represents the 

corresponding battery level. The results revealed a clear difference in battery drain between the 

two tests, which is visually represented in Figure 18. When operating at high speed (1.5 m/s), the 

robot consumed battery at a much faster rate, leading to a steeper decline in battery percentage 

over time. Conversely, the low-speed test showed slower, more gradual battery consumption. To 

more conclusively show that speed impacts battery consumption. 

 

 
Figure 18-Battery Discharge Over Time 
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5.3 Second Phase of Study 
 

To evaluate how Digital Twin can enhance the performance of production systems in terms of 

operational and sustainability three scenarios are defined. During the experiment all data related 

to current and voltage until completion of 10 items were monitored in order to assess power 

consumption and energy consumption under three scenarios. The first two scenarios run at the 

lowest speed 0.1 M/S and at the highest speed 1.5 M/S, while the last scenario is dynamic speed 

adjustment that has been developed to respond to the limitation in the warehouse storage 

capacity. This solution aims to solve a key challenge in internal logistics regarding the combination 

of satisfying operational KPIs and sustainability paradigm.  

The last scenario is proposed because using only high speed is not a good option in this specific 

thesis study. Although it reduces transportation time, at the same time it increases power and 

energy consumption, which means the battery will be drained faster. Moreover, when the floor 

storage becomes full, the robot must wait until at least one item goes out. Since the 

transportation time at high speed is shorter than low speed, the floor storage fills up faster, and 

the robot ends up being idle more often, just waiting for one item to go out. 

On the other hand, transporting all the items at low speed reduces power and energy 

consumption, but increases the cycle time of each transportation and overall cycle time for 

transporting all the items. Therefore, there is a trade-off between energy efficiency and 

operational performance. 

To address this, a dynamic logic scenario was introduced that adjusts the robot’s speed based on 

the real-time situation. This solution is specifically designed to the condition of this study, where 

the number of items is limited and the storage has capacity limitations and other assumptions 

that are going to be taken in account is going to be explained in section 5.3.1 Assumptions and 

Characteristics. Therefore, the third scenario aims to strike a balance between minimizing energy 

consumption and maintaining acceptable operational performance. 

Once all 3 scenarios were conducted, the values of Current 1, Current 2 and voltage were 

continuously recorded. These metrics are the robot’s electrical performance while completing 

the mission. To calculate average power consumption, first the sum of Current 1 and Current 2 

was computed at each data point to represent the total Current. Then, power consumption (in 

Watt) was calculated by multiplication of the total current (in Ampere) and the corresponding 

voltage value (in Volt). The average power consumption was obtained by taking the mean of all 

calculated power values. Finally, to calculate energy consumption (in watt-hours) the average 

power consumption is multiplied by the total transportation time. Energy consumption is an 

important factor in evaluating sustainability, as it not only depends on power drawn by robot but 

also on the duration of operation. Time is an important factor as the time required for 

transporting items at lower speed is greater than the time required using a higher speed, directly 

affecting energy usage. 
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Before explaining these scenarios in detail, it is necessary to get in depth with assumptions, logic 

within 3D model and process flow in FlexSim, the mission design within MiR100 and connections 

that enable real-time synchronization between the physical and virtual systems. 

 

5.3.1 Assumptions and Characteristics 
 

All three scenarios follow the same assumptions and characteristics: 
 

1. The inter-arrival time is not deterministic, it is dependent on uniform distribution between 

60 and 150 seconds, therefore it varies by item by item, but is the same within three 

scenarios. 

2. A total of 10 items is processed in each scenario. 

3. Each scenario followed the same sequence of missions to ensure consistency in data 

collection and comparability of results. 

4. A maximum of 5 items is allowed in the floor storage at any given time. 

5. Each item will remain in floor storage for up to 500 seconds. 

6. The pick-and-place operations are performed manually by a human operator, maintaining 

a constant working pace throughout the process. 

7. To ensure synchronization between the FlexSim model and the robot, a 5-second delay 

block is implemented within the process flow. 

 

5.3.2 Logic within 3D Model in FlexSim 
 

The following Figure shows the 3D model of virtual system, consisting of Source, Queue, Task 

Executor, Floor Storage and Sink. In the following the properties of each component will be 

discussed. 

 

 
Figure 19-Logic within 3D Model 
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The process starts with the arrival of 10 items to the system with uniform distribution. The inter-

arrival time is distributed uniform between 60 seconds and 150 seconds. Figure 20 illustrates the 

properties of source. To track the timing of arrivals two labels “lastExitTime” and 

“interarrivaltime” are defined. The former records the time when the previous item was created, 

while the latter shows the inter-arrival time. 

In the triggers session, a custom code “on creation” is defined, which is responsible for updating 

those labels each time a new item is created. The “on exit” trigger is used to control when the 

source should not create items. This triggers check the condition how many items are currently 

in the output port, once the condition is true, then this action will close the output port, which 

will not all additional items exit the source. Therefore, with this logic the total number of created 

items are limited to 10. 

 

 
Figure 20- Source Properties 

Items temporarily are stored in Queue1 while waiting for the MiR100 to transport them to floor 

storage one by one. In the triggers section, “on entry” the label “Arrivaltime” is assigned to item 

with the value of Model.time, to capture exact time of arrival to the queue. When the item exits 

the queue (when it is picked up by task executor) two labels are defined in “on exit” trigger: 

“LeaveTime” with the value of Model.time and “StayTimeinQueue” which is calculated by 

subtracting the Arrivaltime from LeaveTime. These two labels can later be viewed by clicking on 

the box when it is being transported by the task executor, which in this case represent MiR robot. 

The following Figures illustrate queue and box properties. 
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Figure 21-Queue Properties 

 

 

 
Figure 22-Box Properties 

 

The boxes one by one are transporting with task executor. In the triggers section, “on entry” the 

label “StartTime” is assigned to item with the value of Model.time, to capture exact time 

transportation begins. When the item exits the task executor (when it reaches floor storage) two 
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labels are defined in “on exit” trigger: “finishTime” with the value of Model.time and “CycleTime” 

which is calculated by subtracting the StartTime from finishTime or model.time. This helps to keep 

track of the transportation duration. Figure 23 illustrates the configuration of the Task Executor's 

triggers which are used to calculate the cycle time of transported items. 

 

 
Figure 23- Task Executor Properties 

 

The transported items are kept in FloorStorage for 500 seconds. In the triggers section, “on entry” 

the label “EnterTimetoFloorStorage” is assigned to item with the value of Model.time, to capture 

exact time entering the floor storage. Figure 24 illustrates the trigger configuration and the 

assigned label used to track the item's entry time into the storage, while Figure 25 demonstrates 

all the labels that an item has while it is kept in floor storage. After remaining there for 500 

seconds, the items are removed from the system through a sink. 
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Figure 24- Floor Storage Properties 

 

 

 
Figure 25- Box Properties at the end of the model 
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5.3.3 Connections 
 

To understand how the logic within process flow works, it is necessary to explain the connection 

between the physical system (MiR100) and virtual model (Flexsim). The connections are made 

through the variables in the process flow. In this study five emulation variables and one emulation 

connection is used as illustrated in Figure 26. 

 

 
Figure 26-Process Flow Variables 

In this study, Modbus TCP protocol is used to make this communication. As shown in the Figure 

below, the connection is configured by setting the IP address of the MiR100 robot 

(192.168.12.20), client type and communication port 502. The configuration steps are defined 

within the emulation properties as described in section 4.5.4 Emulation Tool. Once this 

connection is built, in the process flow it is possible to add a variable and link it to the previously 

defined Modbus TCP Connection through the emulation connection toolbox as it illustrates in 

Figure 27. 
 

 
Figure 27-Emulation connection 
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To complete this connection, control and sensor variables should be defined. 

Control Variables are used to receive real-time data from the MiR100, specifically the battery level 

and robot state. Figure 28 shows Modbus control register and control variable in detail. 

 

• Battery Level variable: In this setup, PLC register 4008 within MiR100 portal corresponds 

to register 7 in FlexSim, which helps to take the real-time battery level.  

 

• Robot State variable: PLC register 99 within MiR100 portal corresponds to register 1196 

in FlexSim. When PLC register 99 has a value of 0, this condition is mirrored in FlexSim 

through control variable ‘Robot State’ which takes the value 0. This indicates that MiR100 

is available at the loading point (Ponit A). In contrast, if the register 99 is 1, it means the 

robot is busy and control variable ‘Robot State’ takes 1 in FlexSim. Control variable ‘Robot 

State’ is responsible for synchronization between the physical part (MiR100) and virtual 

model (FlexSim). 

 

 

 
Figure 28-Modbus Control Register & Control Variable  

 

Sensor Variables are used to send real-time data from virtual system (FlexSim) to physical system 

(MiR100) specifically Start and Stop, Max Speed and Min Speed. Figure 29 presents the 

configuration of the Modbus sensor register along with the sensor variable in detail. 

• Start and Stop variable: Register 1 in MiR100 portal corresponds to register 0 in FlexSim. 

This variable is configured as a Coil type register, which means that it is a binary signal 
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register (0 or 1). It is responsible for the activation and deactivation of the MiR100. Unlike 

variables that are initialized at simulation start, in this set up, this is done through the Set 

Variable block in the process flow. Assigning a value of 1 through this block to this sensor 

variable sends start command to MiR100. 

• Max Speed variable: This variable is sensor variable in FlexSim to control the speed of the 

MiR100 in real-time by sending signal to it. Register 98 in MiR100 portal corresponds to 

register 1194 in FlexSim. This variable is configured as a Holding Register. In a process flow 

the Set Variable block will set the value of 1 to the Max Speed variable when a certain 

condition is met. This will act a command signal to the MiR100 to operate at high-speed 

mode. 

• Min Speed variable: This variable functions similar to the Max Speed variable, but it is 

used to command the MiR100 to operate at low speed. This variable is configured as a 

Holding Register, Register 97 in the MiR100 portal and Register 1192 in FlexSim. When in 

the process flow, a Set Variable block assigns a value of 1 to the Min Speed variable under 

certain conditions, the MiR100 will receive it as command to reduce its speed. 

 

 
Figure 29-Modbus Sensor Register & Sensor Variable 

 

Figure 30 illustrates the speed control logic configuration, where sensor variables such as Start 

and Stop, Max Speed, and Min Speed are set using "Set Variable" blocks. These variables are 

connected to sensor logic, enabling dynamic adjustment of the robot’s speed based on defined 

conditions. 
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Figure 30-Speed Control Logic Configuration 

 

5.3.4 Logic within Process Flow in FlexSim 
 

The following Figure illustrates the whole process flow that monitors the system performance 

through collecting real-time data through control variables and controlling the operational 

behavior of the system through sensor variables. 

 

 
Figure 31- Digital Twin Process Flow 
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The process starts with the Event-Triggered Sources block. This block is connected on Source 3D 

model on exit, so whenever an item in 3D model created and exits from the source object in 3D 

model, an event-based trigger activates the source block in process flow. As a result, a token will 

be appeared in the process flow. The token passes through the Set Variable block to assign value 

1 to start and stop sensor variable acts as a trigger, sending a signal to MiR100 to begin its task. 

Then the token enters the Assign Labels block to capture real-time data: the robot’s battery level 

and robot state via get emulation variable (linked to the control variables Battery Level and Robot 

State). These labels indicate the current battery level of MiR100 and whether it is still processing 

a task or has finished and it is waiting for the next mission. Additionally, two other labels are 

assigned to the token, the interarrival time of the item, and the current queue size. These labels 

retrieve the current inter-arrival time from Source1 and the current number of items in Queue1 

within the 3D model. The following figure shows the properties of the blocks discussed above. 

 

 

 
Figure 32-Source, Set Variable and Assign Labels Properties 

 

All this information captured through these labels is passed to Custom Code block, which is stores 

in a global table named “BatteryLevel” for monitoring and analysis. Next, the Acquire block 

reserves the task executor (as a resource) to ensure only one task is done at a time. the Custom 

Code block sets the robot’s status to “busy”, which is later used in the dashboard to calculate the 

robot’s utilization. The token moves to the Decide block that evaluates the number of items 

already in the floor storage using the subnode.lenght function which counts the number of items 

in the 3D model. If there are 5 or more than 5 items in floor storage, indicating that there is no 

more space there, the flow shifts to the path 1 which corresponds to low-speed path. This speed 

adjustment helps to allow time for items in storage to be processed and prevents the 

accumulation of items in the queue area. These configurations are demonstrated in Figure 33. 
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Figure 33-Custom Code and Decide Properties 

 

The flow then continues along two parallel branches, both are following the same structure, the 

only difference between them is the applied speed, which is determined based on the number of 

items in the floor storage. The Wait for Event block is connected to the control variable named 

Robot Satet and is configured to trigger on change.  This allows FlexSim to monitor and detect the 

robot’s state changes. If the robot’s state changes from 0 (Unloading point) to 1 (Loading point), 

the condition is met and the token continues along the process flow. Until this condition is met 

the token will be kept here. In this study, the event being monitored is the signal received from 

the physical system  MiR100 robot, which updates the robot state variable to 0 once it has 

returned to the loading point and ready to transport a new item. This synchronization ensures 

that the virtual model waits for the robot’s real-time availability before assigning the next mission. 

Once this condition is true, the system proceeds by Set Variable block to assign value 1 to a sensor 

variable (either High Speed or Low Speed) to determine the MiR100 speed. Following this, the 5-

second delay is introduced to simulate the observed latency between sending the speed signal 

and the robot beginning its movement. 

Next the Assign Labels block attach important real-time data to the token: current battery level 

(under the label batterystarthigh) and start time of task executor (under the label StartTime). 

These labels then are used in the Custom code block named StartTask1, which records these in 

the global table named FS High Speed. To synchronize the process flow and 3D model together, 

the Move Object block is used, which moves items from the queue to task executor. Figure 34 

illustrates this step in the process. 
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Figure 34-Assign Labels, Custom Code and Move Object Propertiess 

 

The Wait for Event block is connected to the control variable named Robot State to monitor the MiR100 

state change: when the Robot State changes from 1 (Loading point) to 0 (Unloading point). The event 

is triggered only when this exact changes occur, allowing the flow to continue. If this condition is not met, 

then the token remains here until the robot finishes its task and becomes available in the loading point. 

Therefore, this block ensures proper synchronization between the physical robot and the process flow. 

Next, the Assign Labels attach important real-time data to the token: current battery level (under the label 

batteryfinishhigh), finish time of task executor (under the label EndTime) and total duration of process 

which is calculated as cycle time (under the label CycleTime). Then these labels are inserted into the same 

global table where the StartTime was previously recorded, using a custom code block named FinishTask1. 

The following Figure demonstrates how these functions are implemented within the process flow. 

 

 

 
Figure 35-Wait for Event, Assign Labels and Custom Code Properties 

 

As can be seen in Figure 36, the Move Object moves the item from task executor to the floor storage, 

synchronizing the process flow and 3D model together. The Custom Code block assigns the robot’s state 

back to "idle" and the Release block frees the robot for the next task. Finally, the item stays in floor storage 

for 500 seconds before being removed from system via the Sink block. 
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Figure 36-Move Object, Custom Code and Delay Properties 

 

The following Figure provides simplified process flow that shows how sensor variables wroks 

between the FlexSim simulation and the real system. 

 

 
Figure 37-Process Flow of Communication via Sensor Variables Between FlexSim and MiR100 
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5.3.5 Logic within MiR100 
 

The MiR100’s operation is programmed within the portal. In the Mission tab, users can create a 

new mission through dragging a series of actions. Figure 38 shows the logic configuration for 

controlling the MiR100's motion through the actions. In the following there is an explanation of 

the logic in MiR100, which ensuring real-time synchronization between the MiR100 and FlexSim.  

The mission in MiR100 is running in a loop, which means it repeats the mission for unlimited 

iterations. First, the robot sets PLC register 99 to 0 which indicates the MiR100 is available. The 

MiR100 moves to Loading Point (A) and waits for 1 second, which simulates loading time. Then, 

PLC Register 99 is set to 1, which indicates to the FlexSim that the robot has a Mission (now is 

busy).  

From this point, PLC register 97 (for low speed) and PLC register 98 (for high speed) are constantly 

monitored through the While action. Only one of these While action will become activate 

(become 1), which depends on the signal received from the FlexSim. If Register 98 is 1, then the 

MiR100 will go with high speed. It waits for PLC Register 98 to become 1, then the speed sets to 

1.5 m/s, moves to Unloading point (B), waits for 1 second and then returns to the Loading Point 

(A). sets PLC Register 98 to 0 to reset the high-speed path.  

If Register 97 is 1, then the MiR100 will go with low speed. It waits for PLC Register 97 to become 

1, then the speed sets to 0.1 m/s, moves to Unloading point (B), waits for 1 second and then 

returns to the Loading Point (A) and set low speed (PLC Register 97) back to 0 to reset it. Finally, 

to indicate the robot is ready for the next task, PLC Register 99 is set to 0. 

 

 
Figure 38-MiR100’s Actions 
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5.4 Scenario Description 
 

Once the simulation starts, items are created based on a uniform inter-arrival time. As soon as an 

item enters Queue1, the MiR100 takes the item from the loading point (A), waits for 1 second, 

then goes to the unloading point (B), where there is the storage. Here the robot stays 1 second 

to unload the item. After unloading it returns to the loading point (A) to repeat this process for 

the rest of the 10 items.  All the assumptions that are mentioned in section 5.3.1 Assumptions 

and characteristics are applied for three scenarios. 

 

5.4.1 First Scenario: Transporting at Low Speed (0.1 m/s) 
 

In this scenario, MiR100 performs all transportation processes at the lowest speed (0.1 m/s). If 

the warehouse storage reaches full capacity, the robot must wait until at least one item goes out 

of the system. The transportation cycle starts from loading point (A) to reach unloading point (B) 

and then returns to loading point (A), with an average cycle time of 118 seconds. Items, on 

average, spent 176 seconds waiting in the queue before being transported with an average queue 

length of 1.26 items. The utilization in this scenario is 95.38%, indicating that the robot is working 

most of the time. The Figure below shows the operational system performance generated by 

FlexSim software. 

 

 
Figure 39-First Scenario Operational Performance Indicator 

 

 

Figure 40 shows power consumption changes overtime for transporting each item at low speed. 

There are some fluctuations during the transportation of each item, which is normal as the 

current and voltage depends on movement dynamics and pauses during the mission. 
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Power consumption is calculated by multiplying the current by voltage. In the Figure below, the 

red dashed line indicates the mean power consumption which is around 7.95 W. However, power 

consumption alone is not a good KPI. Therefore, energy consumption is also defined, calculated 

by multiplying the average power consumption by the duration of the simulation which is 1374 

seconds. 

 

 
Figure 40-First Scenario Power Consumption Indicator 

 

5.4.2 Second Scenario: Transporting at High Speed (1.5 m/s) 
 

In this scenario, the robot performs all transport tasks at its maximum speed of 1.5 m/s, enabling 

much faster cycle times in comparison to slower speed. The average cycle time takes only 42 

seconds, moving from the loading point (A) to the unloading point (B) and returning. In this 

scenario, items experience significantly shorter waiting times in the queue, with an average of 

25.40 seconds and a queue length of 0.24 items. However, despite transporting items fast, the 

robot’s utilization drops to 58.56%, which means that the robot spends more time idle and often 

waiting for the next item to be available. Therefore, while robot’s speed increases alone, does not 

improve the performance when downstream capacity (floor storage) is restricted. The following 

Figure shows the results of this scenario in terms of operational performance. 
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Figure 41-Second Scenario Operational Performance Indicator 

In this scenario, the robot transports each item faster, but this comes with a noticeable trade-off 

in energy behavior. As shown in Figure 42, there are some sharp changes due to the robot’s fast 

acceleration, deceleration and short pauses. The average power consumption during the scenario 

reaches 34.46 W, which is significantly higher than the low-speed scenario. This increase reflects 

the pressure on the battery system while robot is moving at high speed. As a result, the battery 

drains much faster, as it showed in section 5.2.3 Discussion.  Like the first scenario, energy 

consumption is calculated by multiplying the average power consumption by the toral duration 

of the simulation which is 1074. Although high speed reduces task completion time, it leads to 

much higher energy consumption, which is a concern in sustainability approach. 

 

 
Figure 42-Second Scenario Power Consumption Indicator 
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5.4.3 Third Scenario: Transporting with Dynamic Speed (1.5 m/s or 0.1 m/s) 
 

In this proposed solution, the robot performs transport at high speed (1.5 m/s), but then when 

the floor storage reaches the maximum capacity (5 items), the robot will not stopped its work, it 

starts to transport the item at lowest speed (0.1 m/s).  

In this scenario, items experience significantly shorter waiting times in the queue, with an average 

of 23.20 seconds and a queue length of 0.22 items. However, despite transporting items fast, the 

robot’s utilization increases to 73.41%, which means that the robot does not spend more time 

idle. Figure 43 provides an overview of the results related to operational performance indicators. 
 

 
Figure 43-Third Scenario Operational Performance Indicator 

 

As is shown in the Figure below, item numbers 6, 7 and 9 are transported at a low speed because 

at those moments the floor storage was already full. To avoid the robot being idle, it reduces its 

speed. The red boxes clearly highlight these intervals, during which power consumption 

decreases significantly compared to other high-speed intervals. Power consumption during the 

transport of items 6, 7 and 9 is mostly below the average, which is 19.57 W (Red dashed lines). 

Therefore, it supports the idea that transporting at low speed results in lower power 

consumption, reflecting energy saving behavior. In contrast, for items 1 to 5 and 8 and 10 which 

are corresponding to high speed transportation in some points reaching over 120 W. This pattern 

confirms that the dynamic speed adjustment logic helps to optimize the power consumption 

based on real-time system constraints, showing the balance between operational indicators and 

sustainability. 
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Figure 44- Third Scenario Power Consumption Indicator 

5.4.4 Discussion 
 

In this section, a comprehensive comparison among three scenarios is presented.  
The Figure 45 shows the transportation timelines of ten items under three scenarios: Scenario 1 
(Low Speed, 0.1 m/s), Scenario 2 (High Speed, 1.5 m/s), and Scenario 3 (Digital Twin, dynamic 
speed). The red vertical lines represent the arrival times of each item into the system. While the 
two Tables below represent the operational and sustainability indicators’ results. 
In scenario 1, from operational perspective, each item is transported at low speed, resulting in 
the longest average time (118.3 seconds) per item and also longest cycle time of 1374 seconds 
for all 10 items. The utilization rate in this scenario also is the highest at 95.38%, which indicates 
that the robot is rarely idle. In this scenario, there is no problem in terms of reaching full capacity 
at the floor storage as the robot moves at lowest speed, the transported items will have time to 
leave the system. However, transporting at the low-speed results in long queues, with an average 
of 1.26 items in the queue and an average queue stay time of 176 seconds. In terms of 
sustainability, this scenario achieves the lowest average power consumption (7.95 W) and lowest 
energy consumption (3.03 Wh), which is calculated through dividing the power consumption by 
the cycle time. 
In contrast, in scenario 2, in terms of operational, it shows significantly shorter transportation 
time for each item and shorter cycle time for transporting all 10 items. The robot’s utilization rate 
drops to 58.56%, which means that the robot has substantial idle time. This is confirmed by the 
Gantt chart, where after item 5, the robot waits because the floor storage is full. The average 
number of items in the queue is only 0.24 and stay time in queue is reduced to 25.4 seconds, 
showing that while the robot transports items quickly, the limited capacity of the floor storage 
causes delay, which makes robot to wait and become idle. This can be considered as a bottleneck 
at the unloading point. In terms of sustainability, scenario 2 consumes the most power (34.45 W 
average power) and energy (10.27 Wh), which makes it the least sustainable one. 
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Scenario 3 (Digital Twin), using dynamic speed adjustment, shows a balanced approach. It 
dynamically changes to low speed when the floor storage is full. As it can be seen in the Figure 
below for items 6, 7 and 9. This approach gives time to the floor storage to clear the items from 
it. The average utilization is 73.41%, which is higher than the high-speed scenario, but lower the 
low-speed scenario. The queue content and stay time are the lowest (0.22 items, 23.2 seconds), 
showing excellent flow management. Although the average transport time varies, the total cycle 
time is 1072 seconds, nearly matching the high-speed scenario, but with much better balance. In 
terms of sustainability, scenario 3 again makes a balance with 19.56 W average power and 5.82 
Wh total energy consumption, which is substantially better than high speed, while maintaining 
strong operational results. 
In conclusion, Scenario 3 (Digital Twin) is the most efficient approach in this case study. It 

dynamically adapts to system limitations, avoiding unnecessary idling and battery waste while 

maintaining nearly optimal cycle time and queue management. It successfully balances 

operational KPIs and sustainability goals within the specific conditions of this thesis. 

 

 

 

 
Figure 45-Item Transportation Timeline in Low-Speed, High-Speed, and Digital Twin Scenarios 

 

 

 

Operation Performance Indicators  Low Speed High Speed DT 
Average Time per each item 118.3 42.2 Dynamically changed 
Utilization Rate 95.38% 58.56% 73.41% 
Cycle Time (Seconds) 1374 1074 1072 
Average Items in the Queue 1.26 0.24 0.22 
Stay Time in the Queue (Seconds) 176 25.40 23.20 

Table 4-Operational Performance Results Comparison 
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Sustainability Performance 
Indicators  

Low Speed High Speed DT 

Average power consumption (W) 7.95 34.45 19.56 
Energy Consumption (Wh) 3.03 10.27 5.82 

Table 5-Sustainability Performance Result Comparison 

 

6. Conclusion and Future Works 
 

This thesis explored the application of Digital Twin technology in order to improve internal 

logistics operations by synchronizing a virtual model in FlexSim with a physical system specifically 

MiR100 Autonomous Mobile Robot. The main objective of the study was to develop and evaluate 

speed adjustment by considering both operational efficiency and sustainability metrics, 

particularly where there is constrained storage. By integrating real-time data from MiR100 into 

the model built in FlexSim via Modbus TCP, the system was able to monitor and dynamically 

respond to bottlenecks.  

Three different scenarios were analyzed: constant low speed, constant high speed and dynamic 

speed adjustment representing Digital Twin. The results demonstrated that while robot transport 

items at a high speed, transportation cycle time is reduced, which leads to idle periods due to 

warehouse capacity limitation which is creating a bottleneck at the unloading point, resulting in 

greater both power and energy consumption. Conversely, operating at low speed preserved 

battery and reduced energy consumption, but it resulted in longer cycle times and increased 

queue buildup.  

The proposed Digital Twin scenario achieved a balanced solution. By adapting the robot’s speed 

based on real-time system status, such as storage availability, this method successfully managed 

to reduce the idle time while optimizing both operational KPIs and sustainability indicators. Power 

consumption analysis was based on real-time data including current and voltage reading obtained 

from the MiR portal. By calculating average power and total cycle time, energy consumption is 

assessed for three scenarios. The results showed that the developed model confirms the potential 

of Digital Twin framework in supporting smarted control logic and data-driven decisions in 

internal logistics.  

However, this study also has some limitations. In this experiment, the system was limited to ten 

items and assumed uniform interarrival times. While this setup effectively demonstrated how 

different speed strategies impact energy and operational performance, the limited number of 

missions may not fully capture the complexities of a real logistics environment. In larger scale 

operations, the benefits of dynamic speed adjustment may become even more significant. 

Moreover, the pick and place task was performed by an operator at a fixed pace across all tasks. 



51 
 

In reality, an operator can have different working speeds, then introducing this variability could 

improve the realism of the model 

For future work, the system could be extended to include multiple robots transporting 

collaboratively or explore the integration of a manipulator mounted on the MiR100 for pick and 

place operation for full automation exploring more dynamic arrival patterns to evaluate long term 

performance. Moreover, logic could be improved by using predictive algorithms or machine 

learning models that learn from historical patterns to optimize speed adjustments and energy 

usage. 

In conclusion, this research confirms that Digital Twin implementation, when properly integrated 

with real-time data, can improve system performance and energy efficiency in internal logistics. 

As internal logistics systems continue to become more complex, Digital Twin will become an 

increasingly important tool in developing and implementing flexible and responsive solutions. 
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