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Summary

The primary objective of this work is to introduce a Mixed-Integer Linear Pro-
gramming (MILP) model for the Multi-Fleet Electric Vehicle Scheduling Problem
(MF-EVSP), incorporating a cycle compression approach. This model defines a
unified transport system that integrates buses utilizing diverse energy sources.

In order to reduce deadhead kilometers, the suggested model includes crucial
features like real-time battery tracking, effective route assignment, and optimized
depot assignment. The research successfully illustrates the operational capabilities
and benefits of managing both defining and developing heterogeneous fleets through
these assessments. The evaluation was conducted through a test using generated
city and line data, tailored to the real-world scenario of Torino.
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Chapter 1

Introduction

Given the pressing challenges by climate change the intention of implementation
of energy transition in public transport in the recent years have one of the more
important steps. Historically, diesel-powered vehicles have constituted the majority,
and in some cases, the sole source, for meeting urban transportation demands. Their
use result in high emissions of pollutants as carbon monoxide(CO), sulfur dioxide
(SO2), nitrogen oxides (NOx, and particulate matter (PM10) and (PM2.5)[1] .
Around the 25% of CO2 emissions from road transportation are caused by heavy-
duty vehicles, such as trucks, buses, and coaches[2].

Moreover, the use of this traditional-diesel diesel-vehicles considerate health
impacts, noise pollution and their mentioned contribution of greenhouse gas emis-
sions. Consequently, exist a growing imperative to transition for technologies of
lower emissions transport, especially from the options that affront some of the
consequences of use diesel vehicles. The European Union has set an ambitious
target to reduce CO2 emissions from buses by 90% by 2030 [3].

For arrive to cities with less emissions in the transport system, the implementa-
tion of different technologies are under investigation and present in some initial
cities. Some of this vehicles are the diesel-electric hybrids, Battery electric vehi-
cles(BEVs), and various natural gas and bio-fuel options such liquefied natural
gas(LNG), propane(LPG), compressed natural(CNG), and bio-diesel blends [1].
Between this options the electrification contemplate a promising solution due to
high efficiency, expanding infrastructure, potential for reduced operational cost
expenses and zero tailpipe emissions [4]. However, the implementation of BEVs
considerate their own complexities, as charging limitations and range constraints
[5].

The present work is focuses on the Multi-Fleet Vehicle Scheduling Problem
(MF-EVSP) inspired in transport systems that aims to use different vehicle sources
for feed the demand. The problem selected considerate general public transport
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Introduction

constraints and electric vehicle characteristics. Many cities are transitioning progres-
sively, maintaining a mix of diesel, natural gas, and electric vehicles due to factors
such as higher initial costs [6]. Some examples are Milan(Italy), Berlin(Germany),
Torino(Italy) and Madrid(Spain) that considerate electric, diesel, natural gas and
in some cases hydrogen energy source in their vehicles.

The objective of this work is formalize a mathematical model for the MF-VSP
and tested using thought cities scenarios. Also is modeled thought some lines, as
simple case, with the actual information of Torino, Italy. This model is used for
minimize the operational deadhead costs and maximize the use of less-emissions
vehicles.

2



Chapter 2

Literature Review

Optimization in public transportation involves various strategies to achieve cost
reduction and emission mitigation objectives. In the past years, the use of diesel and
Compressed Natural Gas (CNG) vehicles enabled the development of fundamental
operational characteristics as a basis for improving the public transport system.
Table 2.1 presents a selection of research related to the Vehicle Scheduling Problem
(VSP) and other problems focused on minimizing operational costs. Given the
specific characteristics of the system under study, the consideration of multiple
depots is essential to evaluate their contributions effectively.

To accomplish the minimization of the cost target, the segments unpaid as the
non-passenger kilometers, are considered constant as a point of study. Characterized
by instances for pull-in, pull-out, and distances between the ending points of
the before trip for the starting point of the following trip. Some approaches for
addressing this type of cost-related research by [9] and Prakash et al. [7], optimizing
the allocation of vehicles to depots based on starting and ending costs. Eliiyi et
al. [9] further expanded on this by considering passenger satisfaction and demand.
Extending the problem, Macini et al. [14] developed models that incorporate vehicle
heterogeneity, including diverse capacities, hourly costs, and other characteristics.

Each author adopts distinct approaches to analyze and address public transport
problems concerning depot assignment or scheduling. To compare and describe
the constraints of the research presented in Tables 2.1, 2.2, and 2.3, the following
points are considered:

1. Each Trip is run by just one vehicle

2. Each depot has a limited number of vehicles

3. Each vehicle return to the same depot from which it started

4. The total time during which a vehicle is away from its depot is limited to a
pre-specified time

3



Literature Review

Authors Journal(year) Problem Method Used Fleet Dead
km

Prakash et.
al.[7]

EJOR(1999) MD-VSP(parking
depot)

Not nominated solu-
tions

Hom ✓

Mahadikar
et. al.[8]

JAT(2015) MD-
VSP(allocation
to depots)

MILP; Brach and
cut method

Hom ✓

Eliiyi et.
al.[9]

Elsevier(2012) MD-BSP Fuzzy parametric
approach

Hom ✓

Narashimha
et. al.[10]

Swarm
Evol. Com-
put.(2013)

MD-VRP Ant Colony Hom ✓

Haghani et.
al.[11]

Tranps.
Res(2002)

MD-VSP;MD-
VSRTP

Heuristic approach Hom ✓

Salhi et.
al.[12]

COR(2014) MD-VRP Formulation & vari-
able neighborhood
search

Het -

Olariu et.
al.[6]

Procedia
Comput.
Sci.(2020)

MD-VSP Heuristic Hom -

Willoughby
et. al.[13]

Omega(2002) MD-
BDMP(allocation
to depot, multi
period)

Mixed Integer Pro-
gramming(MIP)

Hom ✓

Mancini et.
al.[14]

Transp.
Res. Part C
Emerg.(2015)

MD-VRP(multi pe-
riod)

Adaptative Large
Neighborhood
Search based
Matheuristic

Het -

Table 2.1: Overview of Research on Vehicle Scheduling and Dead Mileage Consid-
erations

5. Limited number of vehicles of one type

6. Depot feasibility for the vehicle

7. Maximum general length of time constraint

8. Feasibility Constraints

9. Battery constraints

10. Electric charger disposability

11. Limited peak of energy for charge in the station

The constraints enumerated include a preliminary general constraints (1)-(4) for
[11]. This is included with or without of electric vehicles. Then the constraint (5)
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Literature Review

Author Journal
(year)

Problem Method Used

Wang et. al.[4] Energy
(2024)

MD-(E)VSP (limita-
tion in charging facil-
ities)

Adaptive Large Neigh-
borhood search

Yao et. al.[15] SCS (2020) MD-EBSP (multiple
vehicle types)

Genetic Algorithm

Zhang et. al.[16] Int. J.
Sustain.
Transp.
(2022)

EBSP (Partial mixed
route strategy and par-
tial recharging)

Adaptive large neigh-
borhood search

Cui et. al.[17] Transp.
Res. E
Logist.
Transp.
Rev (2023)

Mixed Fleet Vehicle
Scheduling Problem
(MF-VSP) and Charg-
ing Scheduling

Mixed Integer Pro-
graming Problem

Olsen et. al.[18] Cent Eur J
Oper Res
(2022)

MD-VSP(Multi Fleet) Time space network

Kepaptsoglou et.
al.[19]

J. Transp.
Eng.(2010)

Multi Depot-
allocation bus to
depot

Mixed integer-
quadratic program-
ming problem

Pepin et. al.[20] J Sched
(2009)

MD-EBSP Heuristics

Wen et. al.[21] Comput
Oper Res
(2016)

MD-(E)VSP (charging
considered)

Adaptive large neigh-
borhood search heuris-
tic

Table 2.2: Overview of Studies on Electric Vehicle Routing and Scheduling
Problems, Part 1

assimilated the heterogeneous fleet limitation. (6) is determined in a strong part
by the sources and technical availability in the depots. (7) and (8) consider the
limitation of work time of drivers and define feasible pairs of trips based on the
time needed for a vehicle to travel from the end location of one trip to the start
location of another trip, respectively. Finally, (9)-(11) are constraints related to
the charger area of electric vehicles. Tables 2.4 and 2.5 demonstrate the presence
of these constraints.

The Objective Functions presented in the Literature Review mostly consider
the cost associated with some distance or time, charging infrastructure cost, and

5



Literature Review

Author Journal (year) Problem Method Used
Wang et.
al.[22]

Appl Soft Com-
put (2021)

MD-(E)VSP
(connection net-
work)

Column gener-
ation approach
based on a ge-
netic algorithm

Wu et.
al.[23]

Transp Res
Part B
Methodol(2022)

MD-(E)VSP
(pricing and
peak)

Branch-and-
price

Xu et.
al.[24]

Energy (2023) MD-
EBSP(timetabling)

Lagrangian
relaxation
heuristic

Foda et.
al.[25]

Energy (2023) MD-EBSP
(heterogeneous
charging station
network)

Surrogate model-
based space map-
ping

He et.
al.[26]

Transport Res
Transport Envi-
ron (2023)

Charging
scheduling
for Battery
Electric Buses
(BEB)

Mixed-integer
nonlinear
program-
ming(MINLP)
horizon method

Gairola et.
al.[27]

Transport Res
Transport Envi-
ron (2023)

BEB Robust optimiza-
tion

Gkiotsalitis
et. al.[5]

Eur J Oper Res
(2023)

MD-
(E)VSP(with
time windows)

MINLP, exact
optimization

Table 2.3: Overview of Studies on Electric Vehicle Routing and Scheduling
Problems, Part 2

buying buses and the opening/closing of depots. To compare the objective function
for each author is consider the following enumeration with cost related.

1. Deadhead cost: Pull-in and Pull out

2. Deadhead cost: Between trips

3. Vehicle cost: Variable

4. Vehicle cost: Fixed

5. Capital cost: New depots

6



Literature Review

Reference (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Prakash et.
al.[7]

✓ ✓ ✓ ✓

Wang et.
al.[4]

✓ ✓ ✓ ✓ ✓ ✓ ✓

Mahadikar
et. al.[8]

✓

Eliiyi et.
al.[9]

✓ ✓ ✓

Narasimha
et. al.[10]

✓ ✓ ✓ ✓

Haghani et.
al.[11]

✓ ✓ ✓ ✓

Salhi et.
al.[12]

✓ ✓ ✓ ✓ ✓ ✓ ✓

Olariu et.
al.[6]

✓ ✓ ✓ ✓ ✓

Willoughby
et. al.[13]

✓ ✓ ✓ ✓

Mancini et.
al.[14]

✓ ✓ ✓ ✓ ✓

Olsen et.
al.[18]

✓ ✓ ✓ ✓ ✓ ✓ ✓

Yao et.
al.[15]

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Zhang et.
al.[16]

✓ ✓ ✓ ✓ ✓ ✓

Cui et.
al.[17]

✓ ✓ ✓ ✓

Pepin et.
al.[20]

✓ ✓ ✓

Wen et.
al.[21]

✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2.4: Constraints in the literature, Part 1

6. Capital cost: Close depots

7. Capital cost: Charging station infrastructure
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Literature Review

Reference (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Wang et.
al.[22]

✓ ✓ ✓ ✓ ✓ ✓ ✓

Wu et.
al.[23]

✓ ✓ ✓ ✓ ✓ ✓

Xu et.
al.[24]

✓ ✓ ✓ ✓ ✓

Foda et.
al.[25]

✓ ✓

He et.
al.[26]

✓ ✓ ✓ ✓ ✓ ✓ ✓

Gairola et.
al.[27]

✓ ✓ ✓ ✓

Gkiotsalitis
et. al.[5]

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Kepaptoglou
et. al.[19]

✓ ✓ ✓ ✓

Table 2.5: Constraints in the literature, Part 2

8. Capital cost: Buying electric buses

9. Vehicle cost: For charging type

From these characteristics, (1) and (2) are the deadhead costs, been the second
about the waiting and reincorporation cost for second trips. (3) is about the
distance relation for the driving activity, which can include multi-vehicle cases. (4)
is the cost of activation of the trip in one vehicle, usually the driver’s cost. (5)
and (6) are the costs of the strategy of the depots available. (7) and (8) have a
high relation to the necessity of having the infrastructure for the new buses in the
strategy. The (9) objective function is for the divided consideration of the batteries.
Table 2.6 includes the details of the objectives of the research.

Gerbaux et al.[28] use machine learning for solution the VSP considering only
electric vehicles, with column generated schedules.

The Multi Depot Vehicle Scheduling Problem is an NP-hard problem [10].
Aggregated a heterogeneous fleet characteristic is a Multi-Fleet Vehicle Scheduling
Problem is NP-hard because that can be reduced to a Vehicle Scheduling Problem,
as suggested by Salhi et al.[12].

To address this problem, the following authors present various solution ap-
proaches. Olsen et al. [18] introduce a Mixed Fleet Electric Vehicle Scheduling

8



Literature Review

Reference (1) (2) (3) (4) (5) (6) (7) (8) (9)
Prakash et. al.[7] ✓
Wang et. al.[4] ✓ ✓ ✓ ✓
Mahadikar et. al.
[8]

✓

Eliiyi et. al.[9] ✓ ✓ ✓
Narasimha et.
al.[10]

✓ ✓

Haghani et.
al.[11]

✓ ✓ ✓

Salhi et. al.[12] ✓ ✓
Olariu et. al.[6] ✓ ✓ ✓ ✓
Willoughby et.
al.[13]

✓ ✓ ✓ ✓

Mancini et.
al.[14]

✓ ✓ ✓

Olsen et. al. [18] ✓ ✓ ✓ ✓
Yao et. al.[15] ✓ ✓ ✓ ✓ ✓ ✓
Zhang et. al.[16] ✓ ✓ ✓ ✓ ✓
Cui et. al.[17] ✓
Pepin et. al.[20] ✓ ✓ ✓
Wen et. al.[21] ✓ ✓ ✓
Wang et. al.[22] ✓ ✓ ✓ ✓
Wu et. al.[23] ✓ ✓ ✓ ✓ ✓
Xu et. al.[24] ✓ ✓ ✓ ✓
Foda et. al.[25] ✓ ✓ ✓ ✓ ✓
He et. al.[26] ✓ ✓ ✓
Gairola et.
al.[27]

✓ ✓ ✓

Gkiotsalitis et.
al.[5]

✓ ✓ ✓ ✓

Kepaptsoglou et.
al.[19]

✓ ✓

Table 2.6: Objective Functions in the Literature

Problem (MF-EVSP) as an extension of the traditional Vehicle Scheduling Problem
(VSP), aiming to minimize operational costs. Thought a Time-Space network
framework proposed by Kliewer et al. [29], elaborated a efficiency and real-world
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Literature Review

applicability. Their procedure starts in a mixed-integer linear program (MILP) for
the VSP without range limitations, then incorporating driving range limitations
through flow decomposition methods, and finally, the integration of charging proce-
dures into vehicle rotations. Olsen et al. [18], Cui et al. [17] investigated about a
mixed bus fleet problem. with a single depot. The both formulated a mixed-integer
lineal model to optimize the Vehicle Scheduling Problem and recharging activities
for electric vehicles, with constraints of restricted charging range.

Regarding to the multi-objective lineal programming model with mixed fleets,
is founded the research by Ercan et al. [1] and Battaia et al. [30]. Ercan et al. [1]
is focused by minimizing life cycle assessment impacts, while Battaia et al. [30]
aimed to maximize the route-weighted total passenger capacity of electric buses.

Wang et al. [4] proposed a mixed-integer programming model for optimize the
Multi-Depot-Electric Bus Scheduling Problem(MD-EBSP). This model is non linear
due the interaction related to the battery variables and assignation to trip variables.
The batteries system are one of the more complicated characteristics when is
introduced the electric vehicles. Yao et al. [15] also present for the Multiple Vehicle
Types Electric Vehicle Scheduling Problem (MVT-E-VSP) in the public transport
relations between the level of battery, the decision of charging and the decision
of assign a trip demonstrating the complexity of find solutions for this problems.
Gairola et al. [27] follow a focus in the planing and strategy of the battery system
included the charging sector, the relation between the both decisions are strongly
related. They emphasized the strong relationship between these two decision areas,
explaining how a smaller battery require a greater number of chargers and a higher
charging frequency compared to a larger battery. Notably, their solution did not
provide a mixed-integer linear programming (MILP) model.

The real-world complexity of the public transport transition unfolds in nu-
merous steps and detailed descriptions. This work’s primary contribution is the
development of a Mixed-Integer Linear Model(MILP) capable of managing the ex-
panding diversity of vehicles in these systems. This model accounts for the current
trend of cities adopting multi-energy fleets, including the operational specificity of
range-limited vehicles like BEVs.

The Problem Description is detail in the Section ??. The development of a model
for reach the features describes in the Section ?? are presented in the Section ??.
Eventually to generated a Mathematical Model, the Section 4 present the results
of the programming application. The conclusion and Future work are describe in
the Section 6.

10



Chapter 3

Problem Description and

Mathematical Model

Considering the different solutions and interpretations of the public transport system
in the Literature, specially to the inclusion of electric vehicles this chapter present an
specific Problem and developed a Mathematical Model to address it. First, Section
3.1 present Mixed Fleet Electric Vehicle Problem details, including the explanation
of the given information and assumptions to considerate for the mathematical
formulation. Following this, Section 3.2 describes the model’s evolution, starting
from a foundational model from the literature review and progressively integrating
new constraints and variables to create a Mixed-Integer Linear Programming (MILP)
model tailored to the Problem Description’s characteristics. The final model is
then evaluated in Section 4 and Section 5, utilizing both randomly generated city
data and a real-world application.

3.1 Problem Description

The constitution of the transport system for urban cities presents diverse type of
vehicles about size and energy sources. Considering this context, Olsen et al. [18]
introduced the Mixed Fleet-Electric Vehicle Scheduling Problem(MF-EVSP) as
an extension of the traditional Vehicle Scheduling Problem(VSP). This problem
integrate both electric and traditional vehicles-compressed natural gas(CNG) and
diesel, addressing the charging scheduling complexities.

Even if the electrification of the transport system is growing, the actual and
future cities will not easily operate with only electric vehicles. The transitions need
time, improvement, and investment. The problem addressed by this document does
not include the budget segment for vehicles, instead the focus is in the operational
cost by type of vehicle. In this way, the mixed fleet approach includes diverse
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energy sources of the current transportation landscape- diesel, CNG, and electric
vehicles.

A critical consideration when discussing electric vehicles is battery capacity,
which affects both their application within the model and the associated costs.
In essence, in current and future electric systems, the range of battery size is
not homogeneous. The variety can significantly impact the operational decisions:
vehicles with larger batteries are available of longer distances without recharging
requirements, while smaller batteries need charging between trips through previous
planning in charging stations and recharging times. As a result, for incorporating
the batteries into the public system, their capacity has a significant influence on
economic and logistical decisions. An important feature to add to the MF-VSP
is the incorporation of non-identical sizes of batteries, measuring their effect on
operational choices.

The primary objective of the MF-(E)VSP is equal to the traditional Vehicle
Scheduling Problem. The task consists of assigning a timetable trip to a fleet
of vehicles characterized by their attributes, such as energy sources and distance
capacity. The problem selected doesn’t consider the after or on procedure changes
in the fleet through acquisition activities. Each trip is assigned to a specific vehicle,
and the vehicle is related to a selected depot for starting and ending its loops. Each
vehicle’s rotation constant is from a set of feasible trips, including pull-in, pull-out,
deadhead, and service trips, with fixed distances for each segment.

Furthermore, the efficiency of each vehicle is highly related to the distance
capacity. For concept of this model does not consider the behavior of each driver.
The State of Charge(SoC) of each battery electric vehicle has minimum and
maximum levels, which are as follows in the travel and charging activities. Charging
is only permitted at select depots, each equipped with a limited number of chargers
operating at a uniform charging rate. All electric vehicles are assumed to be
compatible with the existing charging infrastructure. In contrast, diesel and CNG
vehicles are treated as having unlimited driving capacity or with non-time charging,
and variations in passenger capacity are not addressed due to a lack of demand
data. It is understated that the creation of the lines and their timetables in real
cities is associated with investigations of demand. This problem considers the
punctuality of the vehicles.

The compatibility of charging across multiple depots also depends on the actual
distribution model and distances related to the different energy sources. Thus,
utilizing an electric vehicle for a given trip involves considerations related not only
to driving costs but also to minimum distance requirements and the availability of
return depots.
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3.2 Mathematical Formulations

For the definition of the model that integrates the characteristics outlined in the
Problem Description (Section ??), the proposed model by Yao et al. [15] serves as
the foundation. The starting point is a model that incorporates features of electric
vehicles and the task of assigning a scheduled timetable to a fleet of buses.

The following sections detail the modeling process, providing greater information
about each specific features. Section 3.2.1 grant the model developed by Yao et
al. [15], the basis model for the formulation that incorporate the characteristics
proposed for the MF-(E)VSP. After this Section is generated a logical evolution
formulated for defined a final model for study, this process include some features
step by step into the models of the problem defined, the end is a model available
for measure. For simplify the non-linear aspects of the initial model 3.2.1, initiating
with the model in the Section 3.2.2 omitting certain charging features. For improve
the model, in the Section 3.2.3 is introduce the temporal division for track battery
and charging information. This case considerate a base for computational evaluation.
The Section 3.2.4 considerate a larger number of periods to achieve minute-level
detail. This case is the higher specific for a realistic battery and charger use, but
could be to complicated for find solutions. For the incorporation of traditional
vehicles, the model in the Section 3.2.5 present the multi fleet use, considering the
constraints for electric vehicles proposed i the Section ??. The temporal detail
significative a complication with the programming measurement, for this reason is
applied to a less detail cycle case of modeling at 3.2.6.

3.2.1 Model of Literature

For a base due the Literature Review is selected the model proposed by Yao et al.
[15]. The model defined the trips i, j ∈ S with S as the Set of trips. The Set S is
indexed by the type of vehicle feasible u ∈ U , in result the Set Su represent the
conjunct of scheduled trips for a vehicle type u. Consequently S =

S
u∈U Su.

For the vehicle considerations, the Set K is the conjunct of Electric Buses(EBs),
indexed by the type of vehicle u ∈ U as Ku. This notation allows different vehicles
characteristics into the Optimization Model. Been, ku the vehicle by type u from
the Set Ku of vehicles of this type. In essence, the Set K =

S
u∈U Ku. Additionally,

the depot q is part of the Set of depots Q and the charger p of the Set of Chargers
P . The Table 3.1 present the variables and parameters of the Model. The equations
(3.1) to (3.9) present the Function Objective and Constraints that are developed
by the author.

While Yao et al. [15] formulated their objective function based on a yearly plan,
this analysis, focusing on operational considerations, will only take into account
the equations relevant to a short-term problem.
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Parameters:
Du the maximum driving range of the EB for vehicle type u, in km;
cuq the capacity of depot q for vehicle type u
α the discharging depth of EBs for all vehicles types;
θu the recharging rate (i.e., the extended driving distance with the

energy recharged per minute) of the EB for vehicle type u, in
km/min;

tup the recharging duration of the EB for vehicle type u, in min;
ei end time of timetabled trip i, in min;
sj start time of timetabled trip j, in min;
tij the deadheading distance between the destination of i to the origin

of j, in min;
liq deadheading distance between depot q and the origin of j, in km;
lqj deadheading distance between the destination of i and depot q, in

km;
c1u operating cost per unit deadheading distance of the EB for vehicle

type u, in CNY/km;
c2u operating cost per unit passenger-carrying distance of the EB for

vehicle type u, in CNY/km;
lij deadheading distance between the destination of i and the origin of

j, in km;
li, lj driving distance timetabled trip i,j, in km;
Variables:
Yku 0-1 variable indicating if EB ku has been used within a day;
Rp 0-1 variable indicating if charger p has been used within a day;
Zp

i 0-1 variable indicating of the EB is recharged by charger p after
performing timetabled trip i;

X ij
ku

0-1 variable indicating if timetabled trips i and j are connected, and
both performed by EB ku;

Xqj
ku

0-1 variable indicating if EB ku performs timetabled trip j after
going out of depot q;

X iq
ku

0-1 variable indicating if EB ku goes into depot q after performing
timetabled trip i;

Ei/Ej extended driving distance with the residual energy at the end of i/j,
in km;

Sq
ku

0-1 variable indicating if EB ku departs from depot q at the begin-
ning;

Eq
ku

0-1 variable indicating if EB ku returns to depot q at the end of its
schedule.

Table 3.1: Variables and Parameters of Yao et. al. [15] Model
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1. Objective Function

min Z =
X
u∈U

X
ku∈Ku

X
i∈Su

X
j∈Su

culijX
ij
ku

(3.1)

2. Constraint: Limitation of charger useX
p∈P

Zp
i ≤ 1, ∀i ∈ Su (3.2)

3. Constraint: Every timetabled must to be performed by one vehicleX
u∈U

X
ku∈Ku

(
X
i∈Su

X ij
ku

+
X
q∈Q

Xqj
ku
) = 1, ∀j ∈ Su and i /= j (3.3)

4. Constraint: Every timetable must to be performed by one vehicleX
u∈U

X
ku∈Ku

(
X
i∈Su

X ij
ku

+
X
q∈Q

X iq
ku
) = 1, ∀i ∈ Su and i /= j (3.4)

5. Constraint: Connection between trips

ei + tijX
ij
ku

≤ sj, ∀i, j ∈ Su,∀ku ∈ Ku (3.5)

6. Constraint: Minimum battery level

Ei − liq ≥ (1− α)Du, ∀i ∈ Su,∀u ∈ U (3.6)

7. Constraint: Recharging and residual energy

Ej =

(
Ei − liq + θut

u
p − lqj − lj, if Zp

i = 1

Ei − lij − lj, if Zp
i = 0

∀i, j ∈ Su, ∀u ∈ U and X ij
ku

= 1

(3.7)
8. Constraint: The initial and end depot are the same for each vehicle

Sq
ku

= Eq
ku
, ∀ku ∈ Ku,∀q ∈ Q (3.8)

9. Constraint: Capacity of the depotX
ku∈Ku

Sq
ku

=
X

ku∈Ku

Eq
ku

≤ Cu
q , ∀q ∈ Q,∀u ∈ U (3.9)

The model incorporates constraints related to the electric vehicle application.
Constraint (3.2), ensure the non multiple use of charger by a battery electric
vehicle(BEV). Constraints (3.3) and (3.4) guarantee that each timetabled trip i or
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j is exclusively assign to an unique BEV given the type. The correct link between
trips is realized by the constraint (3.3) connecting a trip j to a preceding trip,
possible trip i or from a depot q. Similarly, constraint (3.4) related a trip i into
a sequence of trip with a following trip j or a return to depot. The association
between two trips are secure by constraint (3.5). About the battery management,
constraint (3.6) guarantees that the level of State of Charge(SoC) is higher than
the minimum defined, while constraint (3.7) tracks the residual charge at the end
of a trip. For operational definitions the constraint (3.8) ensure that all the vehicles
return to their assigned depot after completing the schedule for recharging and
maintenance activities. This constraint is detailed by the each vehicle. Lastly,
constraint (3.9) check that the number of vehicles by a type are less or equal to
the capacity of storage for them.

The model proposed by Yao et al. [15], the change in the SoC is related to the
variables X ij

ku
and Zp

i by constraint (3.2). Both variables linked to a positional
information, indicating whether the vehicle is available for use the a charger.
Subsequent to introducing their model, Yao et al. [15] proceeded to apply a genetic
algorithm for the main procedural flow, complemented by an additional algorithm
for obtaining feasible schedules of EBs.

3.2.2 E-VSP with charging paths

Based on Yao at et. [15] model is proposed a formulation that assimilated the
charging state change thought the taking paths decision. In this way, there is not
a Zp

i , instead is used a X ij
ku

with connections between i ∈ D and j ∈ F , been F a
set of available chargers. The optimal function rest the same.

For aggregate the chargers thought the decision variable X ij
ku

is applied a serial
of constraints about the charging and battery limitations.

The presented formulation integrate a flow of BEVs, but without the time
consideration, charging events are not available to follow on detail. The constraint
?? brings the limitations that should follow the charging and discharging actions.
But as the equation brings all the events during the total period for the existing
charging.

1. Objective Function

min Z =
X
u∈U

X
ku∈Ku

X
i∈Su∪Q

X
j∈Su∪Q

culijX
ij
ku

(3.10)

2. Constraint: Every timetabled trip can only be performed by one
vehicle X

u∈U

X
ku∈Ku

(
X
i∈Su

X ij
ku

+
X
q∈Q

Xqj
ku
) = 1, ∀j ∈ Su and i /= j (3.11)
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3. Constraint:Every timetabled trip can only be performed by one
vehicle X

u∈U

X
ku∈Ku

(
X
i∈Su

X ij
ku

+
X
q∈Q

X iq
ku
) = 1, ∀i ∈ Su and i /= j (3.12)

4. Constraint: Connection between trips

ei + tijX
ij
ku

≤ sj, ∀i, j ∈ Su,∀ku ∈ Ku (3.13)

5. Constraints: Flow by the electric battery

αDu ≥
X

i∈Q,j∈P

X ij
ku
θu −

X
(i,j)∈Su∪Q,i/=j

X ij
ku
lij ≥ 0, ∀ku ∈ Ku,∀u ∈ U (3.14)

6. Constraint: Limitation of energy to chargeX
{i∈Q,j∈P}

X ij
ku
θu ≤ βαDu, ∀ku ∈ Ku,∀u ∈ U (3.15)

7. Constraint: In-out of charging station

X ij
ku

= Xji
ku
, ∀i ∈ Q, ∀j ∈ P (3.16)

8. Constraint: Initial and end depot are the same for a given vehicle

Sq
ku

= Eq
ku
, ∀ku ∈ Ku,∀q ∈ Q (3.17)

9. Constraint: Depot capacityX
ku∈Ku

Sq
ku

=
X

ku∈Ku

Eq
ku

≤ Cu
q , ∀q ∈ Q,∀u ∈ U (3.18)

The present model defines the constraint 3.11 and 3.12 to ensure that every
trip is assigned to a vehicle. Constraint 3.13 relates previous and later trips as
the model before. Following the SoC changes at each vehicle delimitates the total
flow through the constraint 3.14, been α is the percentage available to use of the
total battery Du. Searching to delimitate the total charge that can be performed a
charging station is applied the constraint 3.15. As is added a trip-charging case, the
constraint 3.16 verifies that if a charging event also returns to the depot. Constraint
3.17 determines that the same depot of start is the end point for the vehicle. 3.18
presents the depot capacity at the start and end of the day.

For this model, the control of the battery and the charging activities is free. In
this case, for not following the availability of a charger at a time, their use doesn’t
follow a limit in number or charging capacity.

17



Problem Description and Mathematical Model

3.2.3 E-VSP with periods

To determine the changes in the State of Charge (SoC) resulting from charger usage
and travel, this approach employs discrete time periods, thereby avoiding the need
to consider every hour or minute. The proposed methodology involves the division
of the day into 3, aligned with anticipated demand patterns. In this context, the
energy level of a vehicle at the end of the final period, r = 3, is specifically tracked.
In the same way, E0ku = Du indicate that at the beginning of the day the SoC of
the vehicle ku is equal to the complete charge battery(100%).

For the variable X ij
rku

, representation the decision of the trip i to j for a vehicle
ku in a defined period r, the level SoC of the battery at the start of a the period is
measured. Consequently, the amount of energy available for charging during the
same period is determinate.

For a given scenario, the charging action is delimited to a unique charging event
within a single period. The objective function, defined in equation (3.19), considers
the sum of total cost without passengers during the periods R, based on the variable
decisions X ij

rku
.

1. Objective Function

min Z =
X
u∈U

X
ku∈Ku

X
r∈R

X
i∈Su∪Q

X
j∈Su∪Q

culijX
ij
rku

(3.19)

2. Constraint: One trip per vehicle, flow-inX
u∈U

X
ku∈Ku

X
r∈R

(
X
i∈Su

X ij
rku

+
X
q∈Q

Xqj
rku

) = 1, ∀j ∈ Su and i /= j (3.20)

3.Constraint: One trip per vehicle, flow-outX
u∈U

X
ku∈Ku

X
r∈R

(
X
i∈Su

X ij
rku

+
X
q∈Q

X iq
rku

) = 1, ∀i ∈ Su and i /= j (3.21)

4. Constraint: Connection between trips

ei + tijX
ij
rku

+ ≤ sj, ∀i, j ∈ Su,∀ku ∈ Ku (3.22)

5. Constraint: Initial and end depot are the same for a given vehicle

Sq
ku

= Eq
ku
, ∀ku ∈ Ku,∀q ∈ Q (3.23)

6. Constraint: Depot capacityX
ku∈Ku

Sq
ku

=
X

ku∈Ku

Eq
ku

≤ Cu
q , ∀q ∈ Q,∀u ∈ U (3.24)
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7. Constraint: Initial energy available in the period for a given vehicle

Er+1ku = Erku +
X

i∈Q,j∈P

X ij
rku

θu −
X

(i,j)∈Su∪Q,i/=j

X ij
rku

lij, ∀r ∈ R, ∀u ∈ U,∀ku ∈ Ku

(3.25)
8. Constraint: Available energy for charge during a period for a given

vehicle X
i∈Q,j∈P

X ij
r+1ku

θu ≤ Du − Erku , ∀r ∈ R, ∀u ∈ U,∀ku ∈ Ku (3.26)

9. Constraint: Energy availability of chargerX
u∈U

X
ku∈Ku

X
j∈P

X ij
rku

≤ CCf , ∀r ∈ R, ∀i ∈ Q (3.27)

For this model, constraints 3.20 and 3.21 present the assignment of a trip to a
only vehicle. Constraint 3.22 define the connection between trips. As [15], constraint
3.23 ensures that the vehicle starts and ends at the same depot. Additionally,
constraint 3.24 limits the number of vehicles available to stay at the depot. To
integrate the period characteristic is follow the energy in each vehicle ku at period
r, Erku is present at constraint3.25 including the battery flow. The information of
parallel charging is not available for the extensive of the period time, constraint
3.27 is add for delimited the energy for charge during the period.

3.2.4 E-VSP with minute time

Following the previous Models in the Section 3.2.2 and Section 3.2.3 with the
temporal considerations. The present model includes time track periods for battery
level and use of chargers. For this model, the periods reflect the minute-by-minute
information. This type of use availability to an exact measure of battery level by
vehicle, parallel use of chargers without a period delimited.

1. Objective Function

min Z =
X
r∈R

X
u∈U

X
ku∈Ku

X
i∈Su∪Q

X
j∈Su∪Q

culijX
ij
rku

(3.28)

2. Constraint: Each Trip is run by just one vehicle, flow-inX
u∈U

X
ku∈Ku

X
r∈R

(
X

j∈Su,i /=j

X ij
rku

+
X
q∈Q

Xqj
rku

) = 1, ∀j ∈ Su (3.29)
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3. Constraint: Each Trip is run by just one vehicle, flow-outX
u∈U

X
ku∈Ku

X
r∈R

(
X

i∈Su,i /=j

X ij
rku

+
X
q∈Q

X iq
rku

) = 1, ∀i ∈ Su (3.30)

4. Constraint: Connection between trips

ei + tijX
ij
rku

≤ sj, ∀i, j ∈ Su, ∀ku ∈ Ku (3.31)

5. Constraint: Initial and end depot are the same for a given vehicle

Sq
ku

= Eq
ku
, ∀u ∈ U,∀ku ∈ Ku, ∀q ∈ Q (3.32)

6. Constraint: Depot capacityX
ku∈Ku

Sq
ku

=
X

ku∈Ku

Eq
ku

≤ Cu
q , ∀q ∈ Q,∀u ∈ U (3.33)

7. Constraint: Battery energy

Er+1ku = Erku +
X

i∈Q,j∈P

X ij
rku

θu −
X

(i,j)∈Su∪Q,i/=j

X ij
rku

lij, ∀r ∈ R, ∀u ∈ U,∀ku ∈ Ku

(3.34)
8. Constraint: Available energy for chargeX

i∈Q,j∈P

X ij
r+1ku

θu ≤ Du − Erku , ∀r ∈ R, ∀u ∈ U,∀ku ∈ Ku (3.35)

9. Constraint: Minimum level of battery

Erku ≥ (1− α)Du, ∀r ∈ R, ∀u ∈ U,∀ku ∈ Ku (3.36)

10. Constraint: Not parallel use in chargerX
u∈U

X
ku∈Ku

X
q∈Q

X ij
rku

≤ 1, ∀r ∈ R, ∀j ∈ P (3.37)

This model offers a higher level of temporal specification. As in previous models,
its objective function minimizes the cost of empty vehicle travel (distance without
passengers), as shown in Constraint 3.28. Initially, Constraints 3.29 and 3.30 ensure
each trip is assigned to a unique vehicle. Constraint 3.31 links consecutive trips
with time restrictions. To guarantee that a vehicle’s starting depot is the same as
its ending depot, constraint 3.32 is added. Constraint 3.33 limits the number of
vehicles that can start or end at a depot due to capacity. Regarding the battery
level during a session, Constraint 3.34 models the energy flow between use and
charging. Constraint 3.36 ensures the State of Charge (SoC) remains above its
minimum level. Finally, Constraint 3.37 prevents a charger from being used by two
or more vehicles simultaneously at a given time r.
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3.2.5 Mixed Fleet-EVSP

The motivation is the use of more than one type of energy source, driven by the
actual cities’ compositions. For this reason, the type of vehicle is divided into
traditional and electric vehicles. In this case, traditional vehicles don’t follow a
limitation on distance capacity during the session. However, traditional vehicles
should start and end in the same depot, among other basic constraints.

In this model, is define the set of Electric Vehicles as EV and the set of
Traditional Vehicles as TV . The complete set of vehicles, denoted by K, is the
union of these two sets: K = EV ∪ TV .

1. Objective Function: Minimization of distance

min Z =
X
r∈R

X
u∈U

X
ku∈Ku

X
i∈Su∪Q

X
j∈Su∪Q

culijx
ij
rku

(3.38)

2. Constraint: Each Trip is run by just one vehicle, flow-inX
u∈U

X
ku∈Ku

X
r∈R

(
X

i∈Su,i /=j

X ij
rku

+
X
q∈Q

Xqj
rku

) = 1, ∀j ∈ Su (3.39)

3. Constraint: Each Trip is run by just one vehicle, flow-outX
u∈U

X
ku∈Ku

X
r∈R

(
X

j∈Su,i /=j

X ij
rku

+
X
q∈Q

X iq
rku

) = 1, ∀i ∈ Su (3.40)

4. Constraint: Connection between trips

ei + tijX
ij
rku

≤ sj, ∀r ∈ R, ∀i, j ∈ Su,∀u ∈ U,∀ku ∈ Ku (3.41)

5. Constraint: Depot assignation

Sq
ku

= Eq
ku
, ∀u ∈ U,∀ku ∈ Ku,∀q ∈ Q (3.42)

6. Depot CapacityX
ku∈Ku

Sq
ku

=
X

ku∈Ku

Eq
ku

≤ Cu
q , ∀q ∈ Q,∀u ∈ U (3.43)

7. Depot Capacity for Electric VehiclesX
u∈EV

X
ku∈Ku

Sq
ku

=
X
u∈EV

X
ku∈Ku

Eq
ku

≤
X
u∈EV

Cu
q , ∀q ∈ Q (3.44)

8. Depot Capacity for Traditional VehiclesX
u∈TV

X
ku∈Ku

Sq
ku

=
X
u∈TV

X
ku∈Ku

Eq
ku

≤
X
u∈TV

Cu
q , ∀q ∈ Q (3.45)
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9. Constraint: Battery energy

Er+1ku = Erku +
X

i∈Q,j∈P

X ij
rku

θu −
X

(i,j)∈Su∪Q

X ij
rku

lij, ∀r ∈ R, ∀u ∈ EV, ∀ku ∈ Ku

(3.46)
10. Constraint: Available energy for chargeX

i∈Q,j∈P

X ij
r+1ku

θu ≤ Du − Erku , ∀r ∈ R, ∀u ∈ EV, ∀ku ∈ Ku (3.47)

11. Constraint: Minimum level of battery

Erku ≥ (1− α)Du, ∀r ∈ R, ∀u ∈ EV, ∀ku ∈ Ku (3.48)

12. Constraint: One charge at timeX
u∈EV

X
ku∈Ku

X
q∈Q

Xqj
rku

= 1, ∀r ∈ R, ∀j ∈ P (3.49)

The objective function of the Model is defined in the equation 3.38, which aims
to minimize the total distance cost made by vehicles. To ensure the realization of
trips are the constraint 3.39 and constraint 3.40. The connection between trips is
related to the constraint 3.41. The charging and depot stay case are between the
trips. Constraint 3.43 defines the capacity of vehicles by type. While constraint
3.44 and constraint 3.45 delimit the number of available vehicles for rest in the
depot by energy source. Constraint 3.46 determines the battery level at time
r + 1, considering the flow during the previous periods. To the maximum charge,
constraint3.47 ensures the energy available for charge into the battery in the period.
To verify the minimum level of SoC, constraint 3.48 is used. Finally, constraint
3.49 ensures that during the use of a charger, only one vehicle is related to the
action.

Nerveless, the higher level of detail into the temporal use is related to an intensive
use of resource for find a solution. Prior work by Yao et al. [15] worked this through
employing and initial information algorithm and a supplementary tool for find
feasible solutions. Conversely, Olsen et al. [18] adopted a phased approach due the
complexity of the problem. The procedure aims to find through divisions, solutions.
For this reason, is proposed the use of cycles, defined by vehicles with a structure
for less detail but without leaving some feature developed into this point.

3.2.6 MF-EVSP by Cycle

Following the time and space information is one of the challenges for understand
how the vehicles and their charge develop their days of service. As was proposed the
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use of periods of times as tools significative a high weight of work for computational
sources. Its define the use of Cycles, as a own defined period or conjunct of trips
allows without charging actions between. During this route the vehicle accomplish
a time-feasible trips. This sections of time are related in between for avoid that
a vehicle assignation distribute the trips with same segments of time or without
considering the time of charging used.

The velocity during passenger service periods is a predetermined value (v). The
charging conversion time, denoted as tc, is determined by the specific characteristics
of the vehicle and charger. To account for charging as an equivalent distance,
a decision variable wrke is introduced. This variable represents the amount of
kilometers gained from charging at the start of period r ∈ R for vehicle ke ∈ Ke

The concept of using Cycles aims to identify critical points where a vehicle’s
operation might necessitate charging. For instance, a vehicle’s autonomy, defined by
its battery capacity, allows for strategic optimization of energy use. By minimizing
wasted energy during deadhead operations within a cycle, the goal is to maximize
accomplished tasks before charging becomes essential. The optimal charge level for
a vehicle should, therefore, depend on its subsequent trips. This means that if a
vehicle is not scheduled for use for several hours, immediate charging is unnecessary.
This approach currently focuses solely on battery usage and does not include a
charging schedule, which would be handled by a separate algorithm.

This model seeks to minimize the temporal size of operations. However, as noted,
it doesn’t create a charging schedule. It does, however, assume that a charger is
available at the selected depot.

Objective Function

Z =
X
u∈U

X
ku∈Ku

(
X

i,j∈S,i /=j

Xrku
ij culi +

X
q∈Q

X
i∈S

Xrku
qi culqi +

X
q∈Q

X
i∈S

Xrku
iq culiq) (3.50)

Constraint 1: Each trip, flow inX
r∈R

X
ku∈Ku

(
X

i∈S,i /=j

Xrku
ij +

X
q∈Q

Xrku
qj ) = 1, ∀j ∈ S (3.51)

Constraint 2: Each trip, flow outX
r∈R

X
ku∈Ku

(
X

j∈S,i /=j

Xr
ijku +

X
q∈Q

Xrku
iq ) = 1, ∀i ∈ S (3.52)

Constraint 3: Connection between trips

Ei +Xrku
ij tij ≤ Si, ∀i, j ∈ S,with i /= j, if Si > Ei (3.53)

Constraint 4: Depot Assignation

Sq
ku

= Eq
ku
, ∀q ∈ Q,∀ku ∈ Ku (3.54)
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Constraint 5: Beginning of the Cycle

Xrku
qi ≤ Sq

ku
, r ∈ R, ∀q ∈ Q, ∀ku ∈ Ku,∀i ∈ S (3.55)

Constraint 6: Final of the Cycle

Eq
ku

≤
X
r∈R

X
i∈S

Xr
iqku, q ∈ Q, ∀ku ∈ Ku (3.56)

Constraint 7: Unique depot for each vehicleX
q∈Q

Sq
ku

= 1,∀ku ∈ Ku (3.57)

Constraint 8: Flow between begging and endingX
i∈S

Xrku
qi =

X
i∈S

Xrku
iq , ∀q ∈ Q, ∀ku ∈ Ku (3.58)

Constraint 9: Depot General CapacityX
ku∈Ku

Sq
ku

=
X

ku∈Ku

Eq
ku

≤ Cu
q , ∀q ∈ Q (3.59)

Constraint 10: Initial Battery Energy

SoCrku = SoC(r−1)ku + wrku

−
X

i,j∈S,i /=j

X
(r−1)ku
ij (lij + lj)−

X
i∈S

X
q∈Q

X
(r−1)ku
qi (lqi + li)

−
X
q∈Q

X
i∈S

X
(r−1)ku
iq liq, ∀r ∈ R− {0},∀ku ∈ Ku

(3.60)

Constraint 11: Available Energy for charge

wrku ≤ Du − SoC(r−1)k, ∀r ∈ R− 0,∀ku ∈ Ku (3.61)

Constraint 12: Minimum level of charge

0 ≤ SoCrku , ∀r ∈ R, ∀ku ∈ Ku (3.62)

Constraint 13: Only one charger use for each cycle endedX
p∈P

X
q∈Q

Xrku
qp ≤ 1 (3.63)
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Constraint 14: Flow of nodesX
j∈S,i /=j

Xrku
ji +

X
q∈Q

Xrku
qi =

X
j∈S,i /=j

Xrku
ij +

X
q∈Q

Xrku
iq , ∀r ∈ R, ∀i ∈ S,∀ku ∈ Ku

(3.64)
Constraint 15: Cycle starting time

X
q∈Q

X
i∈S

Xrku
qi si ≤

X
j∈S

 X
i∈S,i /=j

Xrku
ij (li (v) + tij)

+
X
q∈Q

Xrku
qj (li (v) + sj)

!
, ∀r ∈ R, ∀ku ∈ Ku

(3.65)

Constraint 16: Cycle ending timeX
j∈S

(
X

i∈S,i /=j

Xrku
ij (liv + tij) +

X
q∈Q

Xrku
qj (liv + sj)) ≤

X
q∈Q

X
i∈S

Xrku
iq ei (3.66)

Constraint 17: Cycle relation time

M

 
1−

X
i∈S

Xrku
qi

!
+
X
i∈S

Xrku
qi si ≥

X
i∈S

Xfku
iq ei +

X
p∈P

Xfku
qp wrkutc,

if r > f, ∀r ∈ R \ {0},∀f ∈ R, ∀q ∈ Q, ∀ku ∈ Ku

(3.67)

Constraint 18: Charge relationX
p∈P

X
q∈Q

XqpDu ≥ wrku , ∀r ∈ R, ∀ku ∈ Ku (3.68)

Constraint 19: Limit distance per CycleX
q∈Q

X
i∈S

Xrku
qi (lqi+li)+

X
i,j∈S,i /=j

Xrku
ij (lij+lj)+

X
i∈S

X
q∈Q

Xrku
iq ≤ Du,∀ku ∈ Ku,∀u ∈ EV

(3.69)
The objective function include the cost of deadhead kilometers given the decisions

of buses assignation thought the 3.50. For accomplish all the trips of the journey the
constraints 3.51 and constraint 3.52 ensure the flow thought trip points. Constraint
3.53 guarantee the temporal feasibility between the trips driven by a vehicle. For
don’t exceed the maximum available storage the constraint 3.59 limits the number
of vehicles for a depot.
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For the case of Cycle, the constraint 3.55 the starting from a depot of the a
vehicle is connected to the initial assignation bus to depot. In this way, if is decide
to start at a depot q to a trip i, the information of selection of the depot is taking
into account. As the beginning, the cycle is closed thought the constraint 3.66.

For following the level of battery the constraint 3.60 related between the cycles
and count the consume and the charging for made before start the cycle. The
initial charge is assume complete. The energy that can be charge in the final of
a cycle for start the next one is defined by the constraint 3.61. As the the state
of charge is always equal or more than the minimal, the constraint 3.62 enforce
the non-negativity. For define a non double charge or distributed charge, the
constraint 3.63 define the use of only one charger when is required. The initial
model developed by Yao et al. [15] with pre generated trips don’t ensure the chain
flow, for aggregated this feature the constraint 3.64 check the flow into and out
the node. All the trips feasible for a vehicle should be with a starting time trip
higher than the moment of start plus the time for arrive to the starting point of the
trip, as is suggest by 3.65. At the same way, for return into the depot should be
considerate the time of driving between trips, the trips and return, include in the
constraint 3.66. For relate cycles the constraint 3.67 define the temporal affirmation
for don’t parallel driving cases. Finally, constraint 3.69 limit the available driving
distance of a vehicle during a cycle.

Unlike models found in the literature, the proposed model does not rely on
non-linear constraints. Furthermore, the definition of time-space variables does not
necessitate an excessively high number of definitions, as is common with minute-
by-minute tracking models. The cycle-based approach allows for the selection of
trips based on an initial battery level, with the assigned depot remaining consistent
for a vehicle across all cycles. Before starting a new cycle, charging is possible,
and this decision updates the battery level for that cycle. For any cycle (r ¿ 0),
the earliest possible start time for its trips is determined by the end time of the
previous cycle at the depot and any charging time utilized. There is no enforced
obligation to start from cycle (r=0). It is expected that due to the non-parallel
nature of charging activities and cycle-specific limitations, the model will distribute
charger usage across cycles, though this distribution is not strictly tied to real-time
events.

The benefits derived from the application of cycles include the vehicle-specific
definition of charging requirements and the accurate temporal connection between
trips within the same cycle and across different cycles. This implies that the model,
through its constraints, handles trip assignments without relying on a pre-processed
structure. The primary disadvantage of this model, however, is the unconstrained
simultaneous use of chargers by multiple vehicles during the same period.
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Chapter 4

Model Implementation and

Experimental Setup

The mathematical model selected for the study of a program application is the
MF-(E)VSP by Cycle, given the resource uses. The notation, objective function
and constraints available in the Section 3.2.1 and 3.2.6. The implementation
is in the program language Python 3.11. The libraries used are Pyomo, for
optimization model definitions, the solver Gurobi, and Random for generated
instances. All the computational experiments were measured using a Apple M1
machine with 8 GB of memory. This section starts with the description of the
parameter values, sets, and variables. Then, the test case generation with a general
information. Subsequently, the results of the implementation with the selected
cases are presented. The complete code developed is provided in the Appendix A.

4.1 General Parameters and Assumptions

For the experiments is considered a variety of electric vehicles and only a general
type of non-traditional vehicle is considered. Regarding to the energy pricing,
the study considers a single price for the traditional vehicle and a related vehicle
price for electric vehicles due to their consumption and conversion to kilome-
ters. In all the cases, the energy cost of diesel 1.323EUR/l is higher than the
electricity0.216EUR/kWh. The prices are considered by public data of GTT[31].

The average speed for deadhead(non-passenger) kilometers is fixed to 20 km/hr.
Typically, the traditional vehicles exhibit a long autonomy, for the studies are defined
as 210 km, with a consumption of 52 l/100km. The cost related is 0.69EUR/km for
this vehicle type. The specific operational limits and parameters used for generating
the test cases are comprehensively detailed in Appendix A.3.
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Model Battery Consumption Charge Time 1 Charge Time 2 # Vehicles
(kWh) (Wh/100km) (6.6 kW) (80 kW)

Cacciamali Elfo 67 95 10.15 h N/A 17
BYD K7 165 95 N/A 2.07 h 8
BYD K9 (1) 324 104 49 h 4.05 h 50
BYD K9 (2) 348 91 52.7 h 4.35 h 20

Table 4.1: Characteristics of GTT Electric Vehicles [31] before 2025.

Operational Costs for EVs: Two specific cost cases were developed for these
EV models, based on their energy consumption rates:

• 0.207,2EUR/km for vehicles consuming 95Wh/100km

• 0.224,6EUR/km for those consuming 104Wh/100km

The cost are based in the 2024 contract define in the public documents by
GTT[31].

Usable EV Autonomy: Segments of energy available for use considering a
the battery heath and operational security. Given this, is considered the 60% of
the total battery characteristic for each vehicle. As a result, the representation of
SoC is between the 20% and the 80% of the original battery Du. This measure is
transcript to kilometers for easy use in the model.

4.2 Test Case Generation and Computational
Limits

To measure the model’s performance, 20 distinct city scenarios were generated.
Each city is characterized by a few depots, a size of timetabled and a fleet available
for use, among other details. A maximum solution time is defined as 5 minutes,
300 seconds for each optimization run.

The following tables present the essential details for the model’s implementation.
Table 4.2 contains the parameters and set descriptions. While Table 4.3 values are
considered by each case applied, the details of results are presented in the next
subsections. Finally, the Table 4.4 summarizes the objective function values and
time incurred for each case. These results will be discussed later.

4.3 Computational Results and Scenario Analysis

Given the parameter’s values, the following sections describe four conjuncts of the
test realized. The sections are divided into general assumptions generated for study
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Symbol Description
Sets:
R Set of available cycles for the EVs
S Set of trips
Q Set of Depots
K Set of general vehicles
Ke Set of Electric Vehicles
Kt Set of Traditional Vehicles
U Set of vehicle types
Parameters:
Cq Capacity of depot q
si Start time of trip i [min]
ei End time of trip i [min]
lij Deadhead distance between endpoint of

trip i and start point of trip j, i, j ∈
S[km]

lqi Deadhead distance between depot q and
start point of trip i, q ∈ Q, i ∈ S[km]

liq Deadhead distance between endpoint of
trip i and depot q, i ∈ S, q ∈ Q[km]

tij Deadhead travel time between endpoint
of trip i and start point of trip j [min]

Cu Price per kilometer by vehicle type u ∈
U [€/km]

li Distance of trip i ∈ S[km]
Du Usable battery capacity (autonomy) by

vehicle type u[km]

Table 4.2: Sets and Parameters Descriptions

the results of the model. A general observation across the cases consists of the
comparison between the use of traditional vehicles, with higher operational costs,
and the use of electric vehicles, which considers the distance to the chargers. The
set of cities only brings charging services to depots. For this reason, a charging
action is found a related to the distances between the trip area and the depots,
compared to the cost of diesel vehicles per kilometers a fundamental point for the
model.
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City #S #Q K Ke Kt

C1 50 2 10 6 4
C2 64 2 7 4 3
C3 40 2 7 4 3
C4 55 2 7 4 3
C5 48 2 7 4 3
C6 70 2 7 4 3
C7 72 2 4 3 1
C8 110 2 6 3 3
C9 110 2 7 4 3
C10 110 2 6 4 2
C11 130 2 8 5 3
C12 140 3 8 5 3
C13 160 3 8 5 3
C14 160 3 8 5 3
C15 170 3 8 5 3
C16 110 3 8 5 3
C17 120 3 8 5 3
C18 130 3 8 5 3
C19 140 3 8 5 3
C20 150 3 8 5 3

Table 4.3: Set Configurations by City Case

4.3.1 Baseline Scenarios (Cities 1-5: No Charging Incen-
tive)

For these first cases, the cities {1,2,3,4,5} demonstrated the low charging activities
for most of the cases. Except for the generated city C4, this contains one case
of a huge use of charging battery, possibly explained by the random data, as is
graphic in the Figure 4.2 of the Distribution of source in cities 1 to 5. In the case
of city C1, the level of use of electric vehicles, visualized in the Figure 4.1 with
Charging decisions for cities 1 to 5, is considered due to the higher battery capacity
in comparison to other cases. In the same way, the Figure ensures a lower use of
electric vehicles, with a higher use of traditional vehicles for the city C2, which
is related to the lower battery capacity of the fleet and longer distances of trips.
For the following cases, C3 and C4, the use of both numbers of vehicles of each
type with different capacities a higher use of electric vehicles in comparative to
traditional vehicles. The cases present different capacities and numbers of trips.
For the city C5, the presence of charger use is incremented, their fleet is equal to
C4, but with less trip numbers is resulting in a similar use of both vehicle type
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sources.

Figure 4.1: Distribution Percentage of Electric Vehicles and Traditional Vehicles,
Cases 1 to 5

Figure 4.2: Charging Kilometers for Cases 1 to 5
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4.3.2 Charging Incentive Scenarios (Cities 6-10)

For the segment of cities generated {6,7,8,9,10}, cases are aggregated with an
incentive for charging use. This consists of a discount rate related to the energy
charger during the total period with value γ = 0.5. The move is inspired by the
charging use when the vehicles are not in service of passengers and cases of higher
convenience of charging during the service period. The fixed discount doesn’t
represent a real-case value, selected for measure the behavior of the model. An
example of this case is a transport system with solar energy, with a period-day
which may result the less of costs to buy energy with contracts of own consumption.
For formulate this concepts es added to the objective function the discount for
operational recharge, shown in Equation 4.1. Also, the number of trips defined for
this set of cities is higher than the initial ones, in the section4.3.1, and represents a
variety of fleet composition.

Z =
X
u∈U

X
ku∈Ku

 X
i,j∈S,i /=j

Xrku
ij culi +

X
q∈Q

X
i∈S

Xrku
qi culqi

+
X
q∈Q

X
i∈S

Xrku
iq culiq − wrk · γ)

(4.1)

In the Equation 4.1, wrk represents the amount of charge, with distance measure,
consumed by a vehicle k on a cycle r.

Indicators of distribution between electric vehicles and traditional vehicles,
displayed in the Figure 4.3 show two more clearly defined zones. For the city C6,
the use of each type of vehicle source gives a certain type of equity, with, in most
cases, higher use of electric vehicles. For the continuous four-city tests, the use of
electric vehicles is stronger and near to a unique use of them. This leaves that even
with a strong fleet of electric vehicles, the cases consider some uses of traditional
vehicles.

About the charging management visible in the Figure 4.4, the incentive follows
their limit generated for these cases by the charger use. The model behavior aims
to use the electric vehicles in higher number of trips for charging after. These
results coincide with the expected search of the model for the minimization of costs.

4.3.3 High Trip Volume Scenarios (Cities 11-15: No Charg-
ing Incentive)

Given the results of the Section 4.3.2, it is considered to evaluate whether with
a higher number of trips and without incentives, as in the 4.3.1, to measure the
charging decisions. The segment of cities {11,12,13,14,15} is also considered a new
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Figure 4.3: Distribution Percentage of Electric Vehicles and Traditional Vehicles,
Cases 6 to 10

Figure 4.4: Charging Kilometers for Cases 6 to 10
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depot available. The cases have similarity in most of the fleet compositions but
with different large of trips, without considering C14.

The Figure 4.5 considers a considerably higher use of the electric vehicles given
the capacity of the electric vehicles. Additionally, for the last city, C15, the use
decrease shows the limit of the use and the necessity of incorporating traditional
vehicles due to the number of trips generated.

For the charging actions, the Figure 4.6 incorporates an important use of the
charger in the case C13 and C14, before the case C15 that uses the diesel vehicles.
This signal demonstrated the point of change between the motivation of use the
batteries vs the use of traditional vehicles for complete the define timetable.

Figure 4.5: Distribution Percentage of Electric Vehicles and Traditional Vehicles,
Cases 11 to 15

4.3.4 High Trip Volume with Incentive Scenarios (Cities
16-20)

For the last segment of cities, {16,17,18,19,20}, the program is stressed with a
higher number of trips and the use of the incentive introduced in the Section 4.3.2.
This generation utilized a homogeneous number of vehicles of each type and the
same number of depots as the final Section 4.3.3. Despite the high number of trips,
the use of electric vehicles is totally. For this level, the dependency of electric
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Figure 4.6: Charging Kilometers for Cases 11 to 15

vehicles is high, and the selection of charging doesn’t follow changes. The limitation
of charging during the period is presented by the incentive application.

Figure 4.7: Distribution Percentage of Electric Vehicles and Traditional Vehicles,
Cases 16 to 20

35



Model Implementation and Experimental Setup

Figure 4.8: Charging Kilometers for Cases 16 to 20

4.3.5 Cross-referenced results

In light of certain cities are generated with the same amount of lines but under
different scenarios, this section offers a comparative analysis between them. Table
4.4, introduce the average values of each city case in time and objective function
value.

Comparison of C8, C9, and C10:
Cities C8 and C9 share the same number of trips. Their primary difference lies

in the fleet’s composition and size, specifically regarding the number of electric
and traditional vehicles. The results show better performance in C9, which also
features an additional electric vehicle. Both cities use the same range for the
random generation of distances, although C8 exhibits a higher average solution
time and deadhead kilometers. The average objective function value is lower in C9.
These results demonstrate an increased benefit from using electric vehicles in the
fleet, albeit with higher computational effort in scenarios like C8. Meanwhile, C10
has a similar number of trips but with a more diverse range of distances, which
explains the higher objective function value in its evaluations.

Comparison of C11 and C18:
For the cases of C11 and C18, which have 130 lines and similar distance

generation ranges, a marked difference in their results is observed. The evaluations
show a higher average solution time in the case without incentive (presumably C11),
and the expected decrease in the average objective function value for C18 (with
incentive). For C11, charging levels do not exceed the equivalent of 20 kilometers
for each vehicle; this is the minimum amount expected to reference the incentive’s
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City Time[seg] OF[EUR]
C1 60.629,3 45.178,9
C2 20.230,0 64.040,6
C3 5.553,5 63.703,3
C4 1.552,8 314.401,8
C5 2.499,4 234.465,0
C6 3.448,7 97.230,6
C7 1.887,6 118.242,1
C8 20.551,7 82.376,3
C9 4.605,2 43.273,6
C10 5.787,9 320.744,9
C11 28.763,0 479.782,7
C12 51.187,5 331.302,7
C13 260.12 251.326,7
C14 269.827,0 251.271,0
C15 291.097,5 459.818,1
C16 45.85 275.17
C17 13.08 282.62
C18 12.51 251.29
C19 16.775,3 336.493,6
C20 19.810,6 362.107

Table 4.4: Results of Objective Function and Computation Time

use, bringing levels to the maximum possible in some cycles. The distributions of
deadhead by energy source demonstrate how the incentive aims to maximize the
utilization of the electric vehicle to adhere to the timetable. However, the amount
of deadhead kilometers does not significantly increase for C18.

Comparison of C13 and C14:

Cities C13 and C14 present very similar results. Their difference is found in the
range of distances for trips. These results demonstrate that, with a similar scenario
and this being the only constant difference, the optimal solution for both cities
does not show significant changes in the decision variables. The solution time is
slightly higher for C14, with an objective function value similar to that of C13.

Comparison of C12 and C19:

C12 and C19, generated with a similar distance range, present contrasting results
under the difference in incentive scenarios. City C12, with a single charging case,
relates its deadhead kilometers to electric vehicles. Charging decisions in C19
include high charging levels with a similar pattern. Like C12, C19’s deadhead is
generated by electric vehicles but with a low value. This point is interpreted as a
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prioritization of charging time at the depot compared to driving deadhead if it is
not necessary to decrease the objective function value. The solution time is higher
in C12, but the objective function value is higher in C19.
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Application and Data: Modeling

Turin’s Heterogeneous Bus Fleet

The multi-fleet consideration for the model is inspired by cities like Turin, Italy.
The public transport company, Gruppo Torinese Trasporti (GTT), operates as
a monopoly and its assets consist of vehicles powered by diesel, electricity, and
natural gas. In 2022, the bus fleet composition was approximately 14% electric,
65% diesel, and 22% CNG, based on public information [31]. GTT announced
plans to integrate 225 additional electric buses by 2023, increasing the proportion of
electric vehicles to 63%. To evaluate the model’s function, these proposed changes
are considered by utilizing two types of fleets with representative proportions.

Given the city’s size and the available resources for model evaluation, specific
lines were selected to measure the model’s behavior. These lines exhibit variable
durations, frequencies, and minimal characteristics for the vehicles. Public informa-
tion from GTT does not specify vehicle types for each trip. For the computational
applications, routes from a general weekday were selected. The speed considered
for driving is 15 km/hour with passengers and 20 km/hour without passengers.
The maximum computational time for the program results is 600 seconds. Figure
5.1 illustrates the distribution of depots around the city. Table A.24 presents
general characteristics of the city’s depots. For test considerations, two depots with
electric vehicle charging and storage infrastructure, Tortona and Gerbido, were
utilized. More details from the lines and vehicles are in the Appendix A.4 and
public information from GTT.

To evaluate both scenarios, the following concepts are considered:

Objective Function Value: The value obtained from the minimization of
deadhead kilometers, considering the cost per kilometer based on the energy source
used. This concept is introduced to measure the responses of both cases in achieving
the objective.
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Figure 5.1: GTT Installations [31]

Depot Energy Source Capacity
Gerbido CNG, Diesel and Electricity 300
Novara CNG and Diesel 70
San Paolo Diesel 74
Tortona CNG, Diesel and Electricity 220
Nizza Diesel 63
Venaria Diesel 240
Collegno Only Tram -
Autostazione
Dora

Temporary use -

Fiochetto Temporary use -

Table 5.1: GTT Depots in Turin, 2022 [31]

Total Deadhead: Measured in kilometers driven by both electric and traditional
vehicles. This metric is crucial for understanding the decisions made by the solver
from the model.

Charge: The amount of energy charged by a vehicle at the start of a cycle. This
measure allows us to ascertain if charging was required and to track the quantity
in each case.

SoC: The State of Charge of electric vehicles for each cycle. From this point, it
is possible to track battery levels throughout the period.

Kilometers by EVs: Deadhead kilometers completed by electric vehicles during
the period. As a component of the Total Deadhead, this allows for consideration of
the portion with lower cost and its relation to the electric energy source.

Kilometers by TVs: Deadhead kilometers completed by traditional vehicles
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during the period. As a component of the Total Deadhead, this reports the amount
of distance with higher cost and its relation to traditional vehicles.

Time: The computational time spent by the solver to find a solution. As
the cases vary by the density of electric vehicles, this provides an opportunity to
understand the impact of constraints associated with this energy source.

Costs Depot-to-Trip: Percentage of cost related to the ’put-in’ actions (i.e.,
movements from the depot to the first trip start point).

Costs Trip-to-Trip: Percentage of costs related to distances traveled by
vehicles from the endpoint of one trip to the start of the subsequent trip.

Costs Trip-to-Depot: Percentage of costs related to ’put-out’ actions (i.e.,
deadhead costs from a trip’s end point to the assigned depot).

5.1 Single Line Analysis

As the model operates with trip-by-trip detail, four specific lines were selected
to establish real-world test cases. All lines considered are two-directional, which
simplifies the calculation of distances (e.g., by considering direct trip distances
or zero distances for return legs where applicable). For each line, two cases
are presented, distinguished by their respective electric and traditional vehicle
compositions. The inspiration for these compositions is derived from proposed
changes announced by GTT; however, the percentages are not exactly equal,
primarily due to the larger fleet sizes that such exact replication would necessitate
(e.g., a minimum of five vehicles for short lines). For simplification, traditional
vehicles are considered to have unlimited availability. As will be seen in the results,
this assumption does not significantly affect the outcomes due to the considerable
price difference between energy source types. For the single-line cases and depots
with available electric charging, it is assumed that all vehicles are assigned to a
unique depot.

5.1.1 Line 73

This line, operated by GTT, is currently assigned to electric buses. It is characterized
by its short distance and low trip frequency. During a weekday, it has a total of 42
trips, each with a distance of 5.5 kilometers. Consequently, the vehicle selected
from the GTT fleet is the Cacciamali Elfo, which has an available range of 104
kilometers (representing 60% of its full autonomy). The assigned depot is Tortona,
which aligns with the actual use of this vehicle type. Figure 5.2 presents the route of
this line. For this case, the fleet comprises three vehicles. The first scenario utilizes
two traditional vehicles and one electric vehicle, while the second scenario includes
two electric vehicles and one traditional vehicle. These distinct fleet compositions
enable a comparative analysis of the cases.
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Figure 5.2: Route Line 73

Given the lower cost per kilometer for electric vehicles, a decrease in deadhead
costs is an expected outcome. Table 5.2 presents the objective function values.
For the same set of trips, the fleet with more electric vehicles achieves a lower
operational cost. The results demonstrate that, for this case, the use of electric
vehicles allows for the selection of routes with lower associated costs, and efficiently
reduces the total kilometers traveled across the fleet. The distribution of deadhead
costs represent an increment in the depot-trip and trip-depot, explain by the
availability of electric vehicles for accomplish routes longer but with a less cost
associated and with the possibility of increase the kilometers feasible by these
vehciles.

Figure 5.3 illustrates the distribution of trips and deadhead kilometers per vehicle.
The charging decision successfully representation coincides with the schedule, this
model doesn’t generate schedule charging. Regarding cost distribution, movements
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between trip points represent the largest proportion of deadhead costs. This is
particularly relevant when electric vehicles visit the depot for charging. Figure 5.4
represents the SoC values reported at the start of each cycle for the vehicle. Based
on this information, it is understood that the charging decision is made for cycle 2.
This coincides with Figure 5.5, which represents the amount of charge executed.

In the second case, the expenses associated with ’put-in’ and ’put-out’ decisions
increase. This is explained by the charging decision and the increased cost for the
traditional vehicle to complete its cycle, as demonstrated in Figure 5.6. The State
of Charge (SoC) of both vehicles in Figure 5.7 indicates the charging decision for
cycle 2. To balance the available range for cycle 2, the vehicle is required to charge
prior to commencing trips. As the energy level at cycle 1 is low, the amount of
charge, as shown in Figure 5.8, increases to the required level. The SoC in both
cases remains below or equal to the imposed maximum.

Fleet 1st 2nd
Objective function
value

68.85 44.99

Total Deadhead 150.34 100.40
Charging [99.0] [66.00, 82.5]
SoC [104.0, 5.0,

87.49]
[104.0, 37.99,
104.0, 104.0,
21.5, 104.0]

Kilometers by EVs 100.71 74.12
Kilometers by TVs 49.63 26.27
Time[seconds] 0.1087 0.1090
Costs
Depot-to-trip 19.5% 21.2%
Trip-to-trip 61.1% 47.6%
Trip-to-Depot 19.5% 31.1%

Table 5.2: Results of Line 73

5.1.2 Line 78

Similar to Line 73, this line is part of GTT’s electric routes. During a weekday,
this route is operated 48 times. It has a relatively low duration, and each trip
is characterized by a distance of 3.25 kilometers. Figure 5.9 illustrates the route,
including its related stops. Figure 5.9 defines the route with the stops related to
this line. The assumed depot is Gerbido, based on its proximity. Given the trip
distance, the fleet for testing is the same as that used for Line 73, as described in
Section 5.1.1.
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Figure 5.3: Gantt Line 73, Case 1

Figure 5.4: SoC of Line 73, Case 1

The results in Table 5.3 demonstrate a consistent decrease in the objective
function value when using a fleet composed of a higher number of electric vehicles.
Both cases do not require charging actions, and vehicles operate through their full
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Figure 5.5: Charger Line 73, Case 1

Figure 5.6: Gantt Line 73, Case 2

available range, concluding with their last cycle. The expenditure in deadhead
kilometers increases, particularly for movements between trip points, as the model
prioritizes the use of the lower-cost electric vehicles, even if it entails longer deadhead
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Figure 5.7: SoC of Line 73, Case 2

Figure 5.8: Charge of Line 73, Case 2

distances. Given the characteristics of

Figure 5.10 presents the preference for using electric vehicles, relegating tra-
ditional vehicles to an auxiliary role. For the second case, Figure 5.11 shows a
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Figure 5.9: Route Line 78

broader distribution of trips across the vehicles. Even for this relatively simple
case, it is possible to appreciate the realistic decisions represented in the model’s
solution with real data. Exist a decrease in kilometers deadhead Depot-to-trip and
Trip-to-Depot, explain for decrease of cost by follow distances Trip-to-trip and the
search of assign the maximum amount of trips to electric vehicles.

5.1.3 Line 58

For testing the model on longer and more frequent routes, Line 58 is considered.
On a weekday, this route has a frequency of 190 trips. Each trip has a distance of
29 kilometers, as presented in Figure 5.12. Currently, the assigned depot for this
line is Gerbido. Considering the characteristics of the trip, the electric vehicles in
the fleet are represented by the BYD K7 model. This vehicle has an available range
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Fleet 1st 2nd
Objective function
value

49.23 43.61

Total Deadhead 37.54 60.22
Charging [] []
SoC [104.0, 104.0,

104.0]
[104.0, 104.0,
104.0, 104.0,
104.0, 18.24]]

Kilometers by EVs 27.70 49.72
Kilometers by TVs 9.84 10.50
Time[seconds] 0.8804 0.5973
Costs
Depot-to-trip 14.3% 10.6%
Trip-to-trip 71.4% 78.8%
Trip-to-Depot 14.3% 10.6%

Table 5.3: Results of Line 78

Figure 5.10: Gantt Line 78, Case 1

of 229 kilometers (considering 60% of its full autonomy). The depot’s assignment
coincides with the vehicle model’s current deployment. This description is provided
due to the lack of solutions found when using fleets with less battery range.
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Figure 5.11: Gantt Line 78, Case 2

In both cases, the fleet consists of six vehicles. The first case includes two electric
vehicles and four traditional vehicles, while the second case comprises five electric
vehicles and one traditional vehicle. It is important to note that a fleet composition
of four electric vehicles and one traditional vehicle resulted in no feasible solutions
within the available time limit.

Table 5.4 presents the model’s results for both cases. As expected, the use of
electric vehicles decreases the objective function values due to their lower operational
costs. The charging requirements are zero for both cases. While the total deadhead
kilometers do not significantly decrease, their composition changes considerably,
with a higher proportion covered by electric vehicles (as shown in Kilometers by
EVs/TVs). The computational time limit was exceeded for both cases, indicating
that the presented solutions are the best found within the allocated time, rather
than necessarily optimal. The distribution of costs for deadhead movements remains
similar, with a slight increase in costs for movements between trips.

The distribution of trips and deadhead actions during the period is shown in
Figure 5.13. Electric vehicles exhibit a strong preference for performing trips,
although the routes allotted to conventional vehicles also exhibit comparable
operational patterns. In the second scenario, Figure 5.14 demonstrates the increased
preference for electric vehicles, with traditional vehicles utilized in an auxiliary
capacity.
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Figure 5.12: Route Line 58

5.1.4 Line 2

As one of the longer routes with higher frequency, line 2 represents one of the more
complex routes to apply to the model. The distance characterizing this route is
15 kilometers. On a weekday, the frequency of this line is 149 trips. According
to information from GTT, some electric vehicles are currently used on this line.
Considering the features of this line, the electric vehicle used is the model BYD
K9. This vehicle has an available distance of 229 kilometers (considering the 60%
of autonomy). The depot assigned for this line is Gerbido.

The results in Table 5.5 demonstrate how the model responded to the increased
demands imposed by the line’s characteristics. The objective function values show
a decrease in cost related to deadhead kilometers. This is achieved through a higher
utilization of electric vehicles and strategic charging actions, which lead to a slight
increase in costs associated with trip-to-depot movements.
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Fleet 1st 2nd
Objective function
value

1030.82 410.45

Total Deadhead 231.325 229.23
Charging [] []
SoC [229.0, 229.0,

229.0, 229.0,
229.0, 229.0]

[229.0, 229.0,
229.0, 229.0,
229.0, 229.0,
229.0, 229.0,
1.82, 229.0,
229.0, 229.00,
229.0, 229.0,
229.0]

Kilometers by EVs 118.48 155.13
Kilometers by TVs 112.83 74.10
Time[seconds] 600 600
Costs
Depot-to-trip 6.1% 5.2%
Trip-to-trip 87.8% 89.4%
Trip-to-Depot 6.1% 5.4%

Table 5.4: Results of Line 58

Figure 5.17 demonstrates high utilization of the electric vehicle, potentially
indicating that certain operational constraints (such as minimum time between
trips or charging windows at the depot) are not fully met. The charging period is
not directly integrated with deadhead actions. Furthermore, the significant distance
and duration of each trip present a high operational challenge, making it difficult to
find a feasible solution with the current fleet size. During testing, even introducing
more vehicles resulted in unfeasible solutions. Considering these challenges, the
solver adopts a simplified approach to identify a solution, even if it does not fully
meet all the desired characteristics or optimal conditions.

The solutions generated by the solver for this case are presented in the following
figures. Figure 5.17 shows the State of Charge information at the beginning of
each cycle, demonstrating the utilization of both electric vehicles across multiple
cycles. This aligns with the charging actions displayed in Figure 5.18, specifically
for Vehicle 0 in Cycle 2.

To understand the behavior with a higher number of electric vehicles, Case 2 is
examined. Figure 5.19 illustrates a high density of trips assigned to the vehicles.
However, the charging periods do not fully coincide with available idle times or the
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Figure 5.13: Gantt Line 58, Case 1

Figure 5.14: Gantt Line 58, Case 2

physical limitations of the charging infrastructure. The State of Charge information
in Figure 5.20 reveals the varied utilization of each cycle by the vehicles. For vehicles
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Figure 5.15: Route Line 2

0 and 1, no charging instance is required, indicating their ability to complete cycles
1 and 2, respectively, without intermediate charging. Conversely, vehicles 2 and 3
require charging, as depicted in Figure 5.21, to complete their two assigned cycles,
both starting from Cycle 0.

5.2 Double Lines Analysis

Building upon the results from the single-line analysis, two scenarios involving
two lines are now explored. The increase in complexity for each additional line,
particularly concerning the detailed distances between depots (related to a key
decision variable), is noteworthy. Furthermore, adding more lines necessitates a
more precise definition of distances between depots and both trip start and end
points. Both of these considerations are directly linked to decision variables. This
simplification aims to streamline the pre-processing information for the model in
future work. This type of approach is commonly suggested in the literature for
finding solutions to large-scale problems, such as column generation. The following
test considers two lines operating on a regular day. The depot is simplified by the
same assignment for both lines.

For this section, the test involved more than one line. As this process considers
a detailed timetable rather than the use of reduced routes, the addition of each line
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Fleet 1st 2nd
Objective function
value

819.13 755.94

Total Deadhead 847.73 738.15
Charging [191.10] [220.35, 181.36]
SoC [229.0, 37.89, 229.0,

229.0, 229.0, 4.74]
[229.0, 229.0,
5.78, 229.0,
229.0, 229.0,
229.0, 8.64,
229.0, 229.0,
47.63, 19.74]

Kilometers by EVs 254.81 264.22
Kilometers by TVs 592.91 473.92
Time[seconds] 600 600
Costs
Depot-to-trip 11.4% 10.1%
Trip-to-trip 76.6% 76.9%
Trip-to-Depot 12% 13%

Table 5.5: Results of Line 2

Figure 5.16: Gantt Line 2, Case 1
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Figure 5.17: SoC Line 2, Case 1

Figure 5.18: Charge Line 2, Case 1

or the presence of numerous trips significantly impacts the model’s computational
time and results.
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Figure 5.19: Gantt Line 2, Case 2

Figure 5.20: SoC Line 2, Case 2
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Figure 5.21: Charge Line 2, Case 2

5.2.1 Lines 73 and 78

The combination of these compatible lines, which share a common depot, creates a
timetable with a total of 70 trips per day. However, these trips do not share similar
characteristics (e.g., origin-destination, duration). The distance between the start
and end points of the lines varies from 3.23 to 9.94 kilometers. The assigned depot
is Tortona, with distances ranging from 1.87 to 10.90 kilometers. The routes of lines
73 and 78 are given in Figure 5.2 and Figure 5.9, respectively. The selected fleet
composition uses the BYD 9 model, which has an available range of 229 kilometers
(considering 60% of its total autonomy). For the first case, the fleet consists of
only one electric vehicle and two traditional vehicles. For the second case, the
composition includes one traditional vehicle and two electric vehicles.

The results in Table 5.6 show a decrease in the total deadhead cost attributed to
the increased availability of electric vehicles for the line. The value in electric vehicle
deadhead cost is allows to cover more kilometers with a lower operational cost.
While the total objective function value decreases, the proportional contribution
of depot-to-trip and trip-to-depot distances shows a slight increment, which is
offset by other cost efficiencies in accomplishing certain routes. The spent time
is significantly higher in the first case, this can be explain for the maximum use
search for the one electric vehicle. The State of Charge(SoC), demonstrate a use of
one cycle for both cases, but with the difference of a charging action for the second
case.
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Figures 5.22 and 5.23 illustrate the distribution of trips by vehicle. They present
a second case with auxiliary use of traditional vehicles. Nevertheless, for the first
case, their use is crucial to cover the required trips/demands. The charging profile
is representative, as this model doesn’t generate a charging schedule. However,
given the reported charge values, it’s evident that charging isn’t utilized during
the operational period, suggesting that actual charging might occur at the end of
the day. This behavior indicates that the charger is only used when necessary or
feasible.

Fleet 1st 2nd
Objective function value 90.56 63.94
Total Deadhead 120.1 241.55
Charging [] [5.67]
SoC [229.0, 0.83,

0.83]
[229.0, 32.24,
0.0, 229.0, 15.28,
15.28]

Kilometers by EVs 60.86 212.02
Kilometers by TVs 59.33 29.52
Time[seconds] 13.4001 1.1705
Costs
Depot-to-trip 10.7% 12.1%
Trip-to-trip 78.8% 71.8%
Trip-to-Depot 10.6% 16.1%

Table 5.6: Results of Lines 73 and 78

5.2.2 Lines 70 and 73

The integration of these two lines results in a timetable of 58 trips during a weekday
scenario. Line 70 is characterized by a driving distance of 12.5 kilometers; its
route is presented in Figure 5.24. The details of Line 73 are defined in Section
5.2. Their assigned depot is Tortona, with distances ranging from 1.47 to 10.90
kilometers. A distance exists between the initial and final points of trips, ranging
from 2.62 to 15.94 kilometers. Given the longer distance of Line 70, the selected
model to represent the electric buses is the BYD K9, with an available range of
229 kilometers (considering 60% of its total autonomy). For the first case, the fleet
consists of only one electric vehicle and two traditional vehicles. For the second
case, the composition includes one traditional vehicle and two electric vehicles.

As shown by the results in Table 5.7, it is evident that with the long-range
battery buses, no charging is required. The deadhead kilometers between trips
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Figure 5.22: Gantt Lines 73 and 78, Case 1

Figure 5.23: Gantt Lines 73 and 78, Case 2

increase due to the higher flexibility of this fleet, which enables the model to
achieve the timetable using lower-cost kilometers (e.g., maximizing EV use where
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Figure 5.24: Route Line 70

cost-effective), considering the overall cost distribution. This point explain the
decrease in the objective function value for the second case. The time spent for the
first case is minor than the second case, given the complexity of selection values
for the amount of variables related to the electric vehicles. The State of Charge
(SoC), inform for an only one cycle use, without charging actions in both cases.

Figures 5.25 and 5.26 provide a visual representation of trip distribution by
vehicle. For this combination of lines, the traditional vehicle serves as an auxiliary
component. The presence of traditional vehicles allows for the completion of
timetable requirements in scenarios with a partial electric vehicle fleet, while
maintaining a comparable level of deadhead kilometers from traditional vehicles.

60



Application and Data: Modeling Turin’s Heterogeneous Bus Fleet

Fleet 1st 2nd

Objective function value 146.28 106.28
Total Deadhead 161.73 177.32
Charging [] []
SoC [229.0, 1.695, 1.695] [229.0, 0.19, 0.19,

229.0, 0.30, 0.30]
Kilometers by EVs 110.07 119.21
Kilometers by TVs 51.66 58.10
Time[seconds] 2.3496 600

Costs

Depot-to-trip 17.8% 12.5%
Trip-to-trip 49.2% 74.2%
Trip-to-Depot 33% 13.4%

Table 5.7: Results of Line 70 and 73

Figure 5.25: Gantt Lines 70 and 73, Case 1
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Figure 5.26: Gantt Lines 70 and 73, Case 2
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Chapter 6

Conclusion

Effectively addresses the high complexity of detailed temporal tracking for batteries,
the model Mixed-Fleet Electric Vehicle Scheduling Problem (MF-(E)VSP by Cycle
model aims to generated a segment of the solution successfully. The model’s
approach enables to track the battery levels, consumption and charging within the
design periods, creating simple generations.

The application of the MF-(E)VSP by Cycle in the generated scenarios with
small-medium sized cities results into a trackable performance and operational
decisions upon the selection of electric vehicles and traditional vehicles for complete
the timetable design. An analysis about the results is that even if the costs per
kilometer for electric vehicles is lower in comparative with traditional vehicles, not
in all the cases is selected the only use of electric vehicles considering large distance
between the trips points and the depots. This relation highlight the dependence of
the city features for decide between charging or use expensive vehicles. Considering
the both type of vehicles is possible to generated solutions more affordable for cities.
The diversification of energy sources strategy for reduce the emissions without the
absolute transition to one energy source technology; partial conversions are shown
to be a viable and effective strategy for cities for reach sustainability program. The
incentives observed demonstrated scenarios where in-period charging was highly
advantageous.

The results for a real mixed city, Torino, demonstrate the complementarity
achieved by utilizing both vehicle source types. Furthermore, they highlight the
importance of considering line characteristics and distances to determine the most
convenient distribution of trips and the minimal requirements for their completion.
Given the operational costs per kilometer in 2024, the current lines support the
possibility of reduced operational costs, even with a non-fully electric fleet. There
is a tendency for electric vehicles to utilize all available energy, even if this increases
deadhead kilometers. This phenomenon indicates that the price difference between
energy sources incentivizes the maximization of electric vehicle use, specifically by
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assigning them paths that allow them to complete a higher number of trips.
Furthermore, this research identify crucial points to be worked in the future, as

the integration of parallel charging capabilities. The current model only stipulates
a limit of charging in the general period, the strong detail of a two or more vehicles
using an specific charger at an determinate point of time is not integrated. The
development in this point is crucial for generate solutions given the capacities of
charging for each depot. For the present cases, is considered the minimum use
through the cases that don’t considerate an incentive for charging the vehicles and
a extreme point for a reduction of cost for charge activities during a period. This
definitions considered extreme cases about charging decisions without higher detail
information about the time of use of each technology. Nerveless, is considered for
the trips sequence for the vehicles the time used for charge. A possible solution for
incorporate the MF-(E)VSP is the utilization of a second phase that check and
guarantees through constraints aggregation to the model the double use of chargers
at the same time.

The tests are delimitated for small-medium cities. For applications larger cities
sizes the use of a pre phase or heuristic that simplified the information considerate
for the model is a potentially propose, considering that some trip contains similar
initial and end points, is possible for determinate some facilities for introduce the
MF-(E)VSP into large cities sizes, making the model scalable.

Finally, the results demonstrated that the solutions for the programming imple-
mentation of the MF-(E)VSP find feasible and optimized solutions. The Mixed-fleet
model considerate effectually cases of difference features of vehicles, including bat-
tery characteristics and energy sources. Due the analysis of results the model
perceives a relation to cities prices energy contracts definitions and operational
requirements.
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Appendix

A.1 Python Program

1. Libraries and Creation of the Model

1 import pyomo.environ as pyo

2 from pyomo.opt import SolverStatus , TerminationCondition

3 import random

4 import time

5

6 # Creating the model

7 model = pyo.ConcreteModel ()

Listing A.1: Imports and Model Initialization

2. Sets of the Model

1 # Sets of the model

2 rlarge = [0,1,2]

3 model.r = pyo.Set(initialize=rlarge)

4 lens = 160

5 listas = []

6 for i in range(lens):

7 listas.append(i)

8 model.s = pyo.Set(initialize=listas)

9

10 model.u = pyo.Set(initialize =[0,1 ,2]) #Set of type of

vehicles

11

12 lenq = 3

13 listaq = []
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14 for i in range(lenq):

15 listaq.append(i)

16

17 model.q = pyo.Set(initialize=listaq) #Set of depots

18

19 plarge = [0,1,2,3,4,5,6]

20 model.p = pyo.Set(initialize=plarge) #Set of chargers

in the depot

21

22 # EV and Traditional Vehicle (TV) types

23 type1 = [0,1,2]

24 type2 = [3,4]

25 type3 = [5,6,7]

26

27 theta = []

28 for i in type1:

29 theta.append (165/80/104)

30 for i in type2:

31 theta.append (165/80/104)

32

33 model.k =

pyo.Param(model.u,initialize ={0: type1 ,1:type2 ,2: type3})

34 listke = []

35 for i in type1:

36 listke.append(i)

37 for i in type2:

38 listke.append(i)

39

40 model.ke = pyo.Set(initialize=listke) # Vehiculos

electricos

41 model.kt = pyo.Set(initialize=type3) # Vehiculos

tradicionales

42 model.typee = pyo.Set(initialize= [0 ,1])

43

44 list = []

45 for aux in model.u:

46 for i in range (len(model.k[aux])):

47 auxi = model.k[aux]

48 list.append(auxi[i])

49

50 model.ku = pyo.Set(initialize=list)

Listing A.2: Sets of the Model

3. Parameters of the Model
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1 # Params of the model

2 Du = [42 ,104 ,298]

3 Dreal = []

4 for i in type1:

5 Dreal.append(Du[1])

6 for i in type2:

7 Dreal.append(Du[2])

8

9 listD = {key: Dreal[key] for key in model.ke}

10 model.D = pyo.Param(model.ke, initialize=listD) #

Kilometers

11

12 listcq =

{(0,0):2,(0,1):2,(0,2):0,(1,0):0,(1,1):2,(1,2):1,\\

13 (2,0):2,(2,1):1,(2,2):4}

14 model.cq = pyo.Param(model.q,model.u,

initialize=listcq) # Number of vehicles admited at the

depot

15

16 endtimelist = {key: int(random.uniform (332 ,1012)) for

key in listas}

17 startimelist = {key: key+int(random.uniform (10 ,30)) for

key in endtimelist}

18 model.endtime = pyo.Param(model.s,

initialize=endtimelist)

19 model.startime = pyo.Param(model.s,

initialize=startimelist)

20

21 dijmum = {(key ,cey): int(random.uniform (0,3)) for key

in listas for cey in listas}

22 model.dij = pyo.Param(model.s,model.s,

initialize=dijmum)

23 dhtijmum = {(key ,cey): (20/60)*dijmum[key ,cey] for key

in listas for cey in listas}

24 model.dhtij = pyo.Param(model.s,model.s,

initialize=dhtijmum)

25

26 dhiqmum = {(key ,cey): int(random.uniform(2, 5)) for key

in listas for cey in listaq}

27 model.dhiq = pyo.Param(model.s,model.q,

initialize=dhiqmum)

28 dhqimum = {(key ,cey): int(random.uniform(2, 5)) for key

in listaq for cey in listas}
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29 model.dhqi = pyo.Param(model.q,model.s,

initialize=dhqimum)

30

31 listprice = []

32 for ke in type1:

33 listprice.append (0.2072) # EUR/km; 0.216 EUR/kWh

34 for ke in type2:

35 listprice.append (0.2246) # EUR/km; 0.216 EUR/kWh

36 for kt in model.kt:

37 listprice.append (0.69) # EUR/km; 1.232 EUR/l

38

39 cu = {key: listprice[key] for key in model.ku}

40 model.cu = pyo.Param(model.ku, initialize=cu)

41

42 listli = {key: int(random.uniform (10 ,60)) for key in

model.s}

43 model.li = pyo.Param(model.s, initialize=listli)

Listing A.3: Parameters of the Model

4. Variables of the Model

1 model.x = pyo.Var(model.r,model.s,model.s,model.ku,

2 within=pyo.Binary) # Travel between i and j

3 model.xa = pyo.Var(model.r,model.q, model.s, model.ku,

within=pyo.Binary) # Travel from depot to trip start

4 model.xb = pyo.Var(model.r,model.s, model.q, model.ku,

within=pyo.Binary) # Travel from trip end to depot

5 model.xc = pyo.Var(model.r,model.q, model.p, model.ku,

within=pyo.Binary) # Charging path

6 model.Start = pyo.Var(model.q, model.ku,

within=pyo.Binary) # Vehicle start from depot

7 model.End = pyo.Var(model.q, model.ku,

within=pyo.Binary) # Vehicle end at depot

8

9 listSoC_init = {}

10 for k_val in model.ke:

11 listSoC_init [(0, k_val)] = model.D[k_val] # Initial

SoC at the start of period 0

12

13 model.SoC = pyo.Var(model.r, model.ke,

initialize=listSoC_init , bounds =(0.0 , None))

14 listCh = {(key ,cey): 0 for key in model.r for cey in

model.ke}
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15 model.Ch = pyo.Var(model.r, model.ke,

initialize=listCh , bounds =(0.0 , None)) # Charge realized

at the end of period r

Listing A.4: Variables of the Model

5. Objective Function

1 model.obj =

pyo.Objective(expr=sum(sum(sum(model.x[r,i,j,ku]\\

2 *model.cu[ku]*model.li[i] for i in model.s for j in

model.s if i\neq j)for ku in model.ku) for r in

model.r)+sum(sum(sum(sum(model.xa[r,q,i,ku]*model.cu[ku]\\

3 *model.dhqi[q,i] for q in model.q)for i in model.s)for

ku in model.ku)for r in

model.r)+sum(sum(sum(sum(model.xb[r,i,q,ku]*model.cu[ku]\\

4 *model.dhiq[i,q] for i in model.s)for q in model.q)for

ku in model.ku) for r in model.r), sense=pyo.minimize)

Listing A.5: Objective Function

6. Constraints

1 # 2. Constraint: Each Trip is run by just one vehicle ,

flow.6in

2 def flow_in(model ,j):

3 return sum(sum(sum(model.x[r,i,j,ku] for i in

model.s if i\neq j) + sum(model.xa[r,q,j,ku] for q in

model.q) for ku in model.ku) for r in model.r) = 1

4 model.cons1 = pyo.Constraint(model.s,rule=flow_in)

5

6 # 3. Constraint: Each Trip is run by just one vehicle ,

flow.6out

7 def flow_out(model , i):

8 return sum(sum(sum(model.x[r,i,j,ku] for j in model.s

if j \neq i) + sum(model.xb[r,i,q,ku] for q in model.q)

for ku in model.ku) for r in model.r) .6==1

9 model.cons2 = pyo.Constraint(model.s,rule=flow_out)

10

11 # 4. Constraint: Connection between trips

12 def conn(model ,r,i,j,ku):

13 if (model.endtime[i] < model.startime[j]) and (i \neq

j):

14 return model.endtime[i] +

model.dhtij[i,j]* model.x[r,i,j,ku] \leq model.startime[j]
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15 else:

16 return model.x[r,i,j,ku] = 0

17 model.cons3 =

pyo.Constraint(model.r,model.s,model.s,model.ku ,

rule=conn)

18

19 # 5. Constraint: Depot assignation

20 def assign(model ,q,ku):

21 return model.Start[q,ku] = model.End[q,ku]

22 model.cons4 =

pyo.Constraint(model.q,model.ku ,rule=assign)

23

24 def starter(model ,r,q,k,i):

25 return model.xa[r,q,i,k] \leq model.Start[q,k]

26 model.cons5 =

pyo.Constraint(model.r,model.q,model.ku ,model.s,

rule=starter)

27

28 def ending(model ,q,k):

29 return model.End[q,k]\leq sum(sum(model.xb[r,i,q,k]

for i in model.s)for r in model.r)

30 model.cons13 = pyo.Constraint(model.q,model.ku,

rule=ending)

31

32 def unique(model ,k):

33 return sum(model.Start[q,k] for q in model.q) \leq 1

34 model.cons21 = pyo.Constraint(model.ku, rule=unique)

35

36 def flow(model ,q,k,r):

37 return sum(model.xa[r,q,i,k] for i in model.s) =

sum(model.xb[r,i,q,k] for i in model.s)

38 model.cons14 =

pyo.Constraint(model.q,model.ku ,model.r,rule=flow)

39

40 # 6. Depot Capacity

41 def cap(model ,q):

42 return sum(model.Start[q,k] for k in model.ku) =

sum(model.End[q,k] for k in model.ku)

43 model.cons6 = pyo.Constraint(model.q, rule=cap)

44

45 # 7. Depot Capacity electric vehicles

46 def capev(model ,q):

47 return sum(model.Start[q,k] for k in model.ke) \leq

model.cq[q,0]

48 model.cons22 = pyo.Constraint(model.q, rule=capev)
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49

50 def captv(model ,q):

51 return sum(model.Start[q,k] for k in model.kt) \leq

model.cq[q,1]

52 model.cons23 = pyo.Constraint(model.q, rule=captv)

53

54 def capa(model ,q):

55 return sum(model.End[q,k] for k in model.ku) \leq

sum(model.cq[q,typee] for typee in model.typee)

56 model.cons7 = pyo.Constraint(model.q, rule=capa)

57

58 # 9. Constraint: Battery Energy

59 def SoCcon(model , r,k):

60 if 1\leq r\leqlen(rlarge):

61 return model.SoC[r,k] = model.SoC[r.61,k] +

model.Ch[r,k] .6 sum(sum(model.x[r.61,i,j,k]*model.li[i]

for i in model.s) for j in model.s).6

sum(sum(model.xa[r.61,q,i,k]* model.dhqi[q,i] for q in

model.q) for i in model.s).6

sum(sum(model.xb[r.61,i,q,k]* model.dhiq[i,q] for i in

model.s) for q in model.q)

62 else:

63 return model.SoC[r,k] = model.D[k]

64 model.cons8 = pyo.Constraint(model.r,model.ke,

rule=SoCcon)

65

66 def chargech(model ,r,k):

67 return model.D[k]*sum(model.xc[r,q,p,k] for q in

model.q for p in model.p)\geq model.Ch[r,k]

68 model.cons25 = pyo.Constraint(model.r,model.ke,

rule=chargech)

69

70 # 10. Constraint: Available energy for charge

71 def Avcharge(model ,r,k):

72 if 1\leq r \leqlen(rlarge):

73 return sum(sum(model.Ch[r,k] for q in model.q)

for p in model.p) \leq model.D[k] .6 model.SoC[r.61,k]

74 else:

75 return 0 \leq model.Ch[r,k]

76 model.cons10 =

pyo.Constraint(model.r,model.ke ,rule=Avcharge)

77

78 # 11. Constraint: Minimum level of battery

79 def minSoC(model ,r,k):

80 return 0 \leq model.SoC[r,k]
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81 model.cons11 =

pyo.Constraint(model.r,model.ke ,rule=minSoC)

82

83 # 12. Constraint: One charge at time

84 def nondue(model ,r,ku):

85 return sum(sum(model.xc[r,q,p,ku] for p in model.p)

for q in model.q) \leq 1

86 model.cons19 = pyo.Constraint(model.r,model.ke,

rule=nondue)

87

88 # Flow in point function

89 def neo(model , r, i, ku):

90 return sum(model.x[r,j,i,ku] for j in model.s) +

sum(model.xa[r,q,i,ku] for q in model.q) =

sum(model.x[r,i,j,ku] for j in model.s) +

sum(model.xb[r,i,q,ku] for q in model.q)

91 model.cons20 = pyo.Constraint(model.r,model.s,model.ku,

rule=neo)

92

93 # Time stroke

94 def stroke(model , r, ku):

95 return sum(sum(model.xa[r,q,i,ku]* model.startime[i]

for i in model.s) for q in model.q) \leq

sum(sum(model.x[r,i,j,ku]*(( model.li[i]*60/20)+

96 (model.dhtij[i,j])) for i in model.s) +

sum(model.xa[r,q,j,ku]*(( model.dhqi[q,j]*60/20)+

97 model.startime[j]) for q in model.q) for j in

model.s)

98 model.cons15 = pyo.Constraint(model.r,model.ku,

rule=stroke)

99

100 def rock(model , r, ku):

101 return

sum(sum(model.x[r,i,j,ku]*(( model.li[i]*60/20)+

102 (model.dhtij[i,j])) for i in model.s) +

sum(model.xa[r,q,j,ku]*(( model.dhqi[q,i]*60/20)

103 +model.startime[j]) for q in model.q) for j in

model.s) \leq

sum(sum(model.xb[r,i,q,ku]* model.endtime[i] for i in

model.s) for q in model.q)

104 model.cons16 = pyo.Constraint(model.r,model.ku,

rule=rock)

105

106 def tradition(model ,ku):
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107 return sum(sum(sum(model.x[r,i,j,ku]*( model.li[i] +

model.dij[i,j]) for i in model.s )for j in model.s) +

sum(sum(model.xa[r,q,i,ku]*( model.dhqi[q,i]) for q in

model.q) for i in model.s)+

sum(sum(model.xb[r,i,q,ku]*( model.li[i]+ model.dhiq[i,q])

for i in model.s) for q in model.q) for r in model.r)

\leq 242

108 model.cons24 = pyo.Constraint(model.kt, rule=tradition)

109

110 def after(model ,r,l,q,ku):

111 if r>l:

112 if (r\neq 0):

113 if ku in model.ke:

114 return

10000000000*(1.6sum(model.xa[r,q,i,ku] for i in model.s))

+ sum(model.xa[r,q,i,ku]*model.startime[i] for i in

model.s) \gec sum(model.xb[l,i,q,ku]*model.endtime[i]

for i in model.s) + sum(model.Ch[l,ku ]*60*( theta[ku])

for p in model.p)

115 else:

116 return

10000000000*(1.6sum(model.xa[r,q,i,ku] for i in model.s))

+ sum(model.xa[r,q,i,ku]*model.startime[i] for i in

model.s) \geq sum(model.xb[l,i,q,ku]*model.endtime[i]

for i in model.s)

117 else:

118 return 0 \gec sum(model.xa[r,q,i,ku] for i in

model.s)

119 else:

120 return 0 \geq sum(model.xa[r,q,i,ku] for i in

model.s)

121 model.cons18 =

pyo.Constraint(model.r,model.r,model.q,model.ku ,

rule=after)

122

123 def coli(model ,k,r):

124 return

sum(model.xa[r,q,i,k]*( model.li[i]+ model.dhqi[q,i]) for

q in model.q for i in model.s) +

sum(model.x[r,i,j,k]*( model.dij[i,j] + model.li[j]) for

i in model.s for j in model.s)+

sum(model.xb[r,i,q,k]*( model.dhiq[i,q]) for i in model.s

for q in model.q) \leq model.D[k]

125 cons34 = pyo.Constraint(model.ke ,model.r, rule=coli)
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Listing A.6: Constraints

7. Solver Configuration and Execution

1 # Solver

2 solver = pyo.SolverFactory('gurobi ')
3

4 start_time = time.time()

5

6 # Results

7 result = solver.solve(model , tee=True)

8

9 end_time = time.time()

10 total_solve_duration = end_time .6 start_time

Listing A.7: Solver Configuration and Execution

A.2 Generation of cases

For the generation of cases, the references for each city domain values are define in
the Table A.1.

A.3 Results of Tests

The values results of the programming application are characterized for the following
points.

Objective Function Value: The value of the objective function observe
by each test realized, the measure EUR and considerate the kilometers with-out
passenger during the period.

DH (Deadhead Kilometers): Kilometers of driving without passengers, this
item considerate the sum of all the vehicles used.

Ch (Charge Actions), SoC (State of Charge): The list of changes of
battery are measure in two areas, the level of energy of each electric vehicle and also
the decision of charger the vehicle. The both are counted in kilometers available
for the vehicle for simplified the writing.

Km EV (Electric Vehicle Kilometers): For track the decision of the model
to use a electric vehicle, and given the objective function description is used the
number of kilometers related to this type of vehicles.
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Symbol C1 C2, C3, C5 C4
si random[332,1012] random[332,1012] random[332,1012]
ei si+ ran-

dom[10,60]
si+ ran-
dom[10,60]

si+ ran-
dom[10,60]

li random[2,20] random[4,25] random[5,20]
lqi random[2,10] random[2,10] random[2,10]
liq random[2,10] random[2,10] random[2,10]
tij (20/60) ∗ lij (20/60) ∗ lij (20/60) ∗ lij
Symbol C6 C7, C8, C9 C10, C11, C12,

C14, C15, C16,
C17, C18, C19,
C20

si random[332,1012] random[332,1012] random[332,1012]
ei si+ ran-

dom[10,60]
si+ ran-
dom[10,30]

si+ ran-
dom[10,30]

li random[4,19] random[6,18] random[10,30]
lqi random[2,10] random[2,10] random[2,5]
liq random[2,10] random[2,10] random[2,5]
lij [2,3] [2,3] random[0,5]
tij (20/60) ∗ lij (20/60) ∗ lij (20/60) ∗ lij
Symbol C13
si random[332,1012]
ei si+ ran-

dom[10,30]
li random[10,60]
lqi random[2,5]
liq random[2,5]
lij random[0,3]
tij (20/60) ∗ lij

Table A.1: Random values per Case

Km TV (Traditional Vehicle Kilometers): The number of kilometers
deadhead selected for the model decisions allow understand the inclusion of this
vehicles into the city for complete the timetable.

Total Solve Duration (s): For considerate how much time is necessary for
find a solution is considered the time searching using by the solver.
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Table A.2: Optimization Results for C1 Scenarios

Metric C1T1 C1T2 C1T3 C1T4 C1T5 C1T6 C1T7 C1T8 C1T9 C1T10

Objective Function Value 81.6368 44.3408 46.8272 34.2718 40.7124 37.5870 45.5840 38.2260 37.4241 36.9828

DH (Km) 754.0000 765.0000 792.0000 772.0000 809.0000 792.0000 789.0000 784.0000 813.0000 814.0000

Ch [] [] [] [19.0, 19.0] [18.0, 18.0] [19.0, 19.0] [] [4.0, 18.0, 18.0] [21.0] [18.0, 18.0]

SoC [104.0, 0.0, 0.0,
104.0, 104.0, 104.0,
104.0, 0.0, 0.0,
298.0, 0.0, 0.0]

[104.0, 0.0, 0.0,
104.0, 104.0, 104.0,
104.0, 104.0, 104.0,
298.0, 0.0, 0.0,
298.0, 0.0, 0.0]

[104.0, 0.0, 0.0,
104.0, 104.0, 104.0,
104.0, 104.0, 104.0,
298.0, 0.0, 0.0,
298.0, 0.0, 0.0]

[104.0, 0.0, 0.0,
104.0, 104.0, 104.0,
104.0, 104.0, 104.0,
298.0, -0.0, 19.0,
298.0, 0.0, 19.0]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 104.0, 0.0,
0.0, 298.0, -0.0,
18.0, 298.0, -0.0,
18.0]

[104.0, 0.0, 0.0,
104.0, 104.0, 104.0,
104.0, 104.0, 104.0,
298.0, 0.0, 19.0,
298.0, 0.0, 19.0]

[104.0, 104.0,
104.0, 104.0, -0.0,
0.0, 104.0, 104.0,
104.0, 298.0, -0.0,
0.0, 298.0, -0.0,
0.0]

[104.0, 0.0, 4.0,
104.0, 104.0, 104.0,
104.0, 104.0, 104.0,
298.0, -0.0, 18.0,
298.0, -0.0, 18.0]

[104.0, 0.0, 0.0,
104.0, 104.0, 104.0,
104.0, 104.0, 104.0,
298.0, 0.0, 21.0,
298.0, 0.0, 0.0]

[104.0, -0.0, 0.0,
104.0, 104.0, 104.0,
104.0, 104.0, 104.0,
298.0, -0.0, 18.0,
298.0, -0.0, 18.0]

Km EV 506.0000 700.0000 700.0000 700.0000 700.0000 700.0000 700.0000 700.0000 700.0000 700.0000

Km TV 248.0000 65.0000 92.0000 72.0000 109.0000 92.0000 89.0000 84.0000 113.0000 114.0000

Total Solve Duration (s) 62.9405 54.7563 62.8950 58.6481 71.0907 48.3442 72.0691 62.4084 52.5114 50.0767

Table A.3: Optimization Results for C2 Scenarios

Metric C2T1 C2T2 C2T3 C2T4 C2T5 C2T6 C2T7 C2T8 C2T9 C2T10

Objective Function Value 62.4291 68.8500 62.7044 61.5655 65.4343 62.2900 62.4988 65.9880 64.6056 63.3972

DH (Km) 605.0000 608.0000 588.0000 609.0000 540.0000 619.0000 624.0000 624.0000 637.0000 582.0000

Ch [] [] [] [] [] [] [] [] [] []

SoC [42.0, 42.0, 42.0,
42.0, 0.0, 0.0,
104.0, 0.0, 0.0,
104.0, 0.0, 0.0]

[42.0, 42.0, 42.0,
42.0, 0.0, 0.0,
104.0, 0.0, 0.0,
104.0, 0.0, 0.0]

[42.0, 0.0, 0.0, 42.0,
42.0, 42.0, 104.0,
0.0, 0.0, 104.0, 0.0,
0.0]

[42.0, 0.0, 0.0, 42.0,
42.0, 42.0, 104.0,
0.0, 0.0, 104.0, 0.0,
0.0]

[42.0, 0.0, 0.0, 42.0,
42.0, 42.0, 104.0,
0.0, 0.0, 104.0, 0.0,
0.0]

[42.0, 42.0, 42.0,
42.0, 0.0, 0.0,
104.0, 0.0, 0.0,
104.0, 0.0, 0.0]

[42.0, 42.0, 42.0,
42.0, 0.0, 0.0,
104.0, 0.0, 0.0,
104.0, 0.0, 0.0]

[42.0, 42.0, 42.0,
42.0, 0.0, 0.0,
104.0, 0.0, 0.0,
104.0, 0.0, 0.0]

[42.0, 0.0, 0.0,
104.0, 0.0, 0.0]

[42.0, 42.0, 42.0,
42.0, 0.0, 0.0,
104.0, 0.0, 0.0,
104.0, 0.0, 0.0]

Km EV 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000

Km TV 355.0000 358.0000 338.0000 359.0000 290.0000 369.0000 374.0000 374.0000 387.0000 332.0000

Total Solve Duration (s) 21.9832 23.6784 20.8242 18.8844 17.7856 19.1430 21.5824 18.9530 19.2360 20.3217

Table A.4: Optimization Results for C3 Scenarios

Metric C3T1 C3T2 C3T3 C3T4 C3T5 C3T6 C3T7 C3T8 C3T9 C3T10

Objective Function Value 62.9131 61.8407 63.2927 62.7392 59.9427 65.9184 63.6028 65.3996 67.6804 63.2231

DH (Km) 355.0000 438.0000 346.0000 349.0000 335.0000 360.0000 381.0000 394.0000 368.0000 363.0000

Ch [] [] [] [] [] [] [] [] [] []

SoC [42.0, -0.0, 0.0, 0.0,
0.0, 104.0, 0.0, 0.0,
0.0, 0.0, 104.0, -0.0,
0.0, 0.0, 0.0]

[42.0, 42.0, 42.0,
42.0, -0.0, 0.0,
104.0, 0.0, 0.0,
104.0, 0.0, 0.0]

[42.0, 42.0, 42.0,
42.0, 0.0, 0.0,
104.0, 0.0, 0.0,
104.0, 0.0, 0.0]

[42.0, 42.0, 42.0,
42.0, 0.0, 0.0,
104.0, -0.0, 0.0,
104.0, -0.0, 0.0]

[42.0, 0.0, 0.0, 42.0,
42.0, 42.0, 104.0,
0.0, 0.0, 104.0, -0.0,
0.0]

[42.0, 0.0, 0.0, 42.0,
42.0, 42.0, 104.0,
0.0, 0.0, 104.0, 0.0,
0.0]

[42.0, -0.0, 0.0,
42.0, 42.0, 42.0,
104.0, 0.0, 0.0,
104.0, -0.0, 0.0]

[42.0, 42.0, 42.0,
42.0, 0.0, 0.0,
104.0, 0.0, 0.0,
104.0, 0.0, 0.0]

[42.0, -0.0, 0.0,
42.0, 42.0, 42.0,
104.0, -0.0, 0.0,
104.0, 0.0, 0.0]

[42.0, 42.0, 42.0,
42.0, 0.0, 0.0,
104.0, 0.0, 0.0,
104.0, 0.0, 0.0]

Km EV 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000

Km TV 105.0000 105.0000 96.0000 99.0000 85.0000 110.0000 131.0000 144.0000 118.0000 113.0000

Total Solve Duration (s) 5.6464 4.7789 5.3134 5.2059 5.3730 6.3578 6.1606 5.0146 6.1306 5.3264

Table A.5: Optimization Results for C4 Scenarios

Metric C4T1 C4T2 C4T3 C4T4 C4T5 C4T6 C4T7 C4T8 C4T9 C4T10

Objective Function Value 318.0688 324.5103 307.3339 292.3563 320.9255 332.4915 317.8743 322.4913 293.5643 305.1991

DH (Km) 500.0000 527.0000 492.0000 482.0000 517.0000 507.0000 496.0000 514.0000 501.0000 499.0000

Ch [] [] [] [] [298.0] [] [] [] [] []

SoC [104.0, 0.0, 0.0,
298.0, -0.0, 0.0]

[104.0, -0.0, 0.0,
298.0, 0.0, 0.0]

[104.0, -0.0, 0.0,
298.0, -0.0, 0.0]

[104.0, -0.0, 0.0,
298.0, -0.0, 0.0]

[104.0, -0.0, 0.0,
298.0, 0.0, 298.0]

[104.0, -0.0, 0.0,
298.0, 0.0, 0.0]

[104.0, 0.0, 0.0,
298.0, -0.0, 0.0]

[104.0, 0.0, 0.0,
298.0, 1.0, 1.0]

[104.0, -0.0, 0.0,
298.0, -0.0, 0.0]

[104.0, -0.0, 0.0,
298.0, -0.0, 0.0]

Km EV 402.0000 402.0000 402.0000 402.0000 402.0000 402.0000 402.0000 401.0000 402.0000 402.0000

Km TV 98.0000 125.0000 90.0000 80.0000 115.0000 105.0000 94.0000 113.0000 99.0000 97.0000

Total Solve Duration (s) 1.2880 1.7455 1.4036 1.4073 1.4889 1.4455 1.7180 1.6434 1.8354 1.6901

Table A.6: Optimization Results for C5 Scenarios

Metric C5T1 C5T2 C5T3 C5T4 C5T5 C5T6 C5T7 C5T8 C5T9 C5T10

Objective Function Value 225.5099 219.3323 219.3367 233.0720 214.4047 216.8871 203.9159 279.3281 298.3987 163.7827

DH (Km) 265.0000 262.0000 259.0000 263.0000 258.0000 258.0000 250.0000 430.0000 252.0000 256.0000

Ch [104.0] [42.0] N/A N/A N/A N/A N/A N/A [42.0] N/A

SoC [42.0, -0.0, 0.0,
104.0, -0.0, 104.0]

[42.0, 0.0, 42.0,
104.0, -0.0, 0.0]

[42.0, -0.0, 0.0,
104.0, -0.0, 0.0]

[42.0, -0.0, 0.0,
104.0, -0.0, 0.0]

[42.0, 0.0, 0.0,
104.0, 0.0, 0.0]

[42.0, -0.0, 0.0,
104.0, -0.0, 0.0]

[42.0, -0.0, 0.0,
104.0, -0.0, 0.0]

[42.0, 0.0, 0.0,
104.0, 0.0, 0.0]

[42.0, -0.0, 42.0,
104.0, -0.0, 0.0]

[42.0, -0.0, 0.0,
104.0, -0.0, 0.0]

Km EV 146.0000 146.0000 146.0000 146.0000 146.0000 146.0000 146.0000 146.0000 146.0000 146.0000

Km TV 119.0000 116.0000 113.0000 117.0000 112.0000 112.0000 104.0000 284.0000 106.0000 110.0000

Total Solve Duration (s) 1.3145 1.2027 1.1867 1.3757 1.2278 1.5468 1.8998 11.3825 1.3582 1.2818

Table A.7: Optimization Results for C6 Scenarios

Metric C6T1 C6T2 C6T3 C6T4 C6T5 C6T6 C6T7 C6T8 C6T9 C6T10

Objective Function Value 117.7396 119.7950 117.7820 118.7850 119.8464 118.7850 116.9854 22.2143 23.1429 163.7827

DH (Km) 417.0000 422.0000 405.0000 406.0000 409.0000 406.0000 414.0000 418.0000 404.0000 409.0000

Ch [104.0, 104.0, 7.43,
298.0, 21.21]

[104.0, 104.0, 7.43,
298.0, 21.21]

[104.0, 104.0, 7.43,
298.0, 20.93]

[104.0, 104.0, 7.43,
298.0, 21.29]

[104.0, 7.43, 104.0,
298.0, 21.21]

[104.0, 104.0, 7.43,
298.0, 21.29]

[104.0, 7.43, 104.0,
298.0, 21.0]

[104.0, 104.0, 7.43,
298.0, 21.21]

[104.0, 104.0, 7.43,
298.0, 21.14]

[104.0, 104.0, 7.43,
298.0, 21.21]

SoC [104.0, 104.0,
104.0, 104.0, 0.0,
7.43, 298.0, 1.0,
22.21]

[104.0, 104.0,
104.0, 104.0, -0.0,
7.43, 298.0, 1.0,
22.21]

[104.0, 104.0,
104.0, 104.0, 0.0,
7.43, 298.0, 5.0,
25.93]

[104.0, 104.0,
104.0, 104.0, 0.0,
7.43, 298.0, 0.0,
21.29]

[104.0, -0.0, 7.43,
104.0, 104.0, 104.0,
298.0, 1.0, 22.21]

[104.0, 104.0,
104.0, 104.0, 0.0,
7.43, 298.0, 0.0,
21.29]

[104.0, 0.0, 7.43,
104.0, 104.0, 104.0,
298.0, 4.0, 25.0]

[104.0, 104.0,
104.0, 104.0, -0.0,
7.43, 298.0, 1.0,
22.21]

[104.0, 104.0,
104.0, 104.0, -0.0,
7.43, 298.0, 2.0,
23.14]

[104.0, 104.0,
104.0, 104.0, 0.0,
7.43, 298.0, 1.0,
22.21]

Km EV 401.0000 401.0000 397.0000 402.0000 401.0000 402.0000 398.0000 401.0000 400.0000 401.0000

Km TV 16.0000 21.0000 8.0000 4.0000 8.0000 4.0000 16.0000 17.0000 4.0000 8.0000

Total Solve Duration (s) 4.0319 4.1305 3.0923 2.8564 3.4355 2.8564 3.4235 3.9182 3.2934 3.2480
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Table A.8: Optimization Results for C7 Scenarios

Metric C7T1 C7T2 C7T3 C7T4 C7T5 C7T6 C7T7 C7T8 C7T9 C7T10

Objective Function Value 116.0711 117.1325 118.3917 121.8930 117.2208 118.1192 116.8412 122.1524 116.3572 117.2556

DH (Km) 417.0000 420.0000 409.0000 421.0000 424.0000 418.0000 422.0000 420.0000 423.0000 417.0000

Ch [104.0, 7.43, 104.0,
298.0, 21.14]

[104.0, 7.43, 104.0,
298.0, 21.07]

[104.0, 7.43, 104.0,
298.0, 20.93]

[104.0, 104.0, 7.43,
298.0, 21.29]

[104.0, 7.43, 104.0,
298.0, 21.21]

[104.0, 7.43, 104.0,
298.0, 21.21]

[104.0, 104.0, 7.43,
298.0, 21.21]

[104.0, 104.0, 7.43,
298.0, 21.29]

[104.0, 104.0, 7.43,
298.0, 21.21]

[104.0, 104.0, 7.43,
298.0, 21.21]

SoC [104.0, 0.0, 7.43,
104.0, 104.0, 104.0,
298.0, 2.0, 23.14]

[104.0, 0.0, 7.43,
104.0, 104.0, 104.0,
298.0, 3.0, 24.07]

[104.0, -0.0, 7.43,
104.0, 104.0, 104.0,
298.0, 5.0, 25.93]

[104.0, 104.0,
104.0, 104.0, -0.0,
0.43, 298.0, -0.0,
21.29]

[104.0, -0.0, 7.43,
104.0, 104.0, 104.0,
298.0, 1.0, 22.21]

[104.0, 0.0, 7.43,
104.0, 104.0, 104.0,
298.0, 1.0, 22.21]

[104.0, 104.0,
104.0, 104.0, -0.0,
7.43, 298.0, 1.0,
22.21]

[104.0, 104.0,
104.0, 104.0, -0.0,
0.43, 298.0, -0.0,
14.29]

[104.0, 104.0,
104.0, 104.0, 0.0,
7.43, 298.0, 1.0,
22.21]

[104.0, 104.0,
104.0, 104.0, -0.0,
7.43, 298.0, 1.0,
22.21]

Km EV 400.0000 399.0000 397.0000 409.0000 401.0000 401.0000 401.0000 416.0000 401.0000 401.0000

Km TV 17.0000 21.0000 12.0000 12.0000 23.0000 17.0000 21.0000 4.0000 22.0000 16.0000

Total Solve Duration (s) 2.1743 1.9021 1.7646 1.9454 2.1920 1.7581 1.8705 1.7314 1.6504 1.4862

Table A.9: Optimization Results for C8 Scenarios

Metric C8T1 C8T2 C8T3 C8T4 C8T5 C8T6 C8T7 C8T8 C8T9 C8T10

Objective Function Value 84.4160 82.2396 77.5040 80.7528 87.1776 87.8008 76.1912 86.2444 79.0604 83.6536

DH (Km) 749.0000 776.0000 779.0000 798.0000 753.0000 767.0000 819.0000 771.0000 782.0000 759.0000

Ch [104.0, 7.43, 104.0,
298.0, 21.29, 298.0,
21.29]

[104.0, 104.0, 7.43,
298.0, 21.29, 298.0,
21.29]

[104.0, 7.43, 104.0,
298.0, 21.29, 298.0,
21.29]

[104.0, 7.43, 104.0,
298.0, 21.29, 298.0,
21.29]

[104.0, 7.43, 104.0,
298.0, 21.29, 298.0,
21.29]

[104.0, 7.43, 104.0,
298.0, 21.29, 298.0,
21.29]

[104.0, 104.0, 7.43,
298.0, 21.29, 298.0,
21.29]

[104.0, 7.43, 104.0,
298.0, 21.29, 298.0,
21.29]

[104.0, 7.43, 104.0,
298.0, 21.29, 298.0,
21.29]

[104.0, 104.0, 7.43,
298.0, 21.29, 298.0,
21.29]

SoC [104.0, -0.0, 7.43,
104.0, 104.0, 104.0,
298.0, -0.0, 21.29,
298.0, -0.0, 21.29]

[104.0, 104.0,
104.0, 104.0, -0.0,
7.43, 298.0, -0.0,
21.29, 298.0, -0.0,
21.29]

[104.0, -0.0, 7.43,
104.0, 104.0, 104.0,
298.0, -0.0, 21.29,
298.0, -0.0, 21.29]

[104.0, -0.0, 7.43,
104.0, 104.0, 104.0,
298.0, -0.0, 21.29,
298.0, -0.0, 21.29]

[104.0, -0.0, 7.43,
104.0, 104.0, 104.0,
298.0, -0.0, 21.29,
298.0, -0.0, 21.29]

[104.0, -0.0, 7.43,
104.0, 104.0, 104.0,
298.0, -0.0, 21.29,
298.0, -0.0, 21.29]

[104.0, 104.0,
104.0, 104.0, -0.0,
7.43, 298.0, -0.0,
21.29, 298.0, -0.0,
21.29]

[104.0, -0.0, 7.43,
104.0, 104.0, 104.0,
298.0, -0.0, 21.29,
298.0, -0.0, 21.29]

[104.0, 0.0, 7.43,
104.0, 104.0, 104.0,
298.0, -0.0, 21.29,
298.0, -0.0, 21.29]

[104.0, 104.0,
104.0, 104.0, 0.0,
7.43, 298.0, 0.0,
21.29, 298.0, -0.0,
21.29]

Km EV 700.0000 700.0000 700.0000 700.0000 700.0000 700.0000 700.0000 700.0000 700.0000 700.0000

Km TV 49.0000 76.0000 79.0000 98.0000 53.0000 67.0000 119.0000 71.0000 82.0000 59.0000

Total Solve Duration (s) 17.3586 24.1892 15.3682 20.6293 14.5847 18.2538 37.4414 17.0484 20.0919 18.0073

Table A.10: Optimization Results for C9 Scenarios

Metric C9T1 C9T2 C9T3 C9T4 C9T5 C9T6 C9T7 C9T8 C9T9 C9T10

Objective Function Value 41.0504 43.2964 42.3980 39.9354 44.6440 44.6440 43.2964 44.1948 44.6440 42.6306

DH (Km) 632.0000 635.0000 627.0000 639.0000 651.0000 661.0000 642.0000 657.0000 649.0000 621.0000

Ch [104.0, 104.0,
298.0, 21.29, 298.0,
21.29]

[104.0, 104.0,
298.0, 21.29, 298.0,
21.29]

[104.0, 104.0,
298.0, 21.29, 298.0,
21.29]

[104.0, 104.0,
298.0, 21.21, 298.0,
21.29]

[104.0, 104.0,
298.0, 21.29, 298.0,
21.29]

[104.0, 104.0,
298.0, 21.29, 298.0,
21.29]

[104.0, 104.0,
298.0, 21.29, 298.0,
21.29]

[104.0, 104.0,
298.0, 21.29, 298.0,
21.29]

[104.0, 104.0,
298.0, 21.29, 298.0,
21.29]

[104.0, 104.0,
298.0, 21.21, 298.0,
21.29]

SoC [104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, -0.0,
21.29, 298.0, -0.0,
21.29]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, -0.0,
13.29, 298.0, -0.0,
13.29]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, 0.0,
21.29, 298.0, 0.0,
21.29]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, 1.0,
22.21, 298.0, -0.0,
21.29]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, -0.0,
13.29, 298.0, -0.0,
13.29]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, -0.0,
13.29, 298.0, -0.0,
13.29]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, -0.0,
13.29, 298.0, -0.0,
13.29]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, -0.0,
13.29, 298.0, -0.0,
13.29]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, -0.0,
13.29, 298.0, -0.0,
13.29]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, 1.0,
22.21, 298.0, -0.0,
21.29]

Km EV 596.0000 612.0000 596.0000 595.0000 612.0000 612.0000 612.0000 612.0000 612.0000 595.0000

Km TV 36.0000 23.0000 31.0000 44.0000 39.0000 49.0000 30.0000 45.0000 37.0000 26.0000

Total Solve Duration (s) 5.0291 4.4233 4.3485 5.3629 4.3101 4.4459 4.1216 4.8562 4.7728 4.5816

Table A.11: Optimization Results for C10 Scenarios

Metric C10T1 C10T2 C10T3 C10T4 C10T5 C10T6 C10T7 C10T8 C10T9 C10T10

Objective Function Value 306.1548 309.0120 321.6404 325.6346 333.9632 302.3690 345.0032 327.0956 315.8310 321.1264

DH (Km) 625.0000 629.0000 638.0000 636.0000 644.0000 624.0000 652.0000 640.0000 631.0000 634.0000

Ch [104.0, 104.0,
298.0, 21.29, 298.0,
21.29]

[104.0, 104.0,
298.0, 21.29, 298.0,
21.29]

[104.0, 104.0,
298.0, 21.29, 298.0,
21.29]

[104.0, 104.0,
298.0, 21.21, 298.0,
21.29]

[104.0, 104.0,
298.0, 21.29, 298.0,
21.29]

[104.0, 104.0,
298.0, 21.29, 298.0,
21.21]

[104.0, 104.0,
298.0, 21.29, 298.0,
21.14]

[104.0, 104.0,
298.0, 21.29, 298.0,
21.29]

[104.0, 104.0,
298.0, 21.29, 298.0,
21.21]

[104.0, 104.0,
298.0, 21.29, 298.0,
21.29]

SoC [104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, -0.0,
21.29, 298.0, -0.0,
21.29]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, -0.0,
21.29, 298.0, -0.0,
21.29]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, 0.0,
21.29, 298.0, 0.0,
21.29]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, 1.0,
22.21, 298.0, 0.0,
21.29]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, 0.0,
21.29, 298.0, 0.0,
21.29]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, 0.0,
21.29, 298.0, 1.0,
22.21]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, -0.0,
21.29, 298.0, 2.0,
23.14]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, 0.0,
21.29, 298.0, 0.0,
21.29]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, 0.0,
21.29, 298.0, 1.0,
22.21]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, 0.0,
21.29, 298.0, -0.0,
21.29]

Km EV 596.0000 596.0000 596.0000 595.0000 596.0000 595.0000 594.0000 596.0000 595.0000 596.0000

Km TV 29.0000 33.0000 42.0000 41.0000 48.0000 29.0000 58.0000 44.0000 36.0000 38.0000

Total Solve Duration (s) 5.6368 5.6833 6.4827 5.4067 5.1466 6.5065 5.7330 5.9667 5.5286 6.0243

Table A.12: Optimization Results for C11 Scenarios

Metric C11T1 C11T2 C11T3 C11T4 C11T5 C11T6 C11T7 C11T8 C11T9 C11T10

Objective Function Value 504.0552 479.9052 492.9040 488.0092 458.8208 474.8668 444.8448 481.5260 493.1124 471.4816

DH (Km) 766.0000 749.0000 761.0000 752.0000 733.0000 741.0000 728.0000 750.0000 760.0000 738.0000

Ch [20.0, 20.0] [] [20.0, 20.0] [18.0, 16.0] [19.0, 19.0] [] [19.0, 19.0] [] [17.0]

SoC [104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, -0.0,
20.0, 298.0, -0.0,
20.0]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, 0.0,
0.0, 298.0, 0.0, 0.0]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, 0.0,
20.0, 298.0, 0.0,
20.0]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, -0.0,
18.0, 298.0, -0.0,
16.0]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, -0.0,
19.0, 298.0, -0.0,
19.0]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, 0.0,
0.0, 298.0, 0.0, 0.0]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, -0.0,
19.0, 298.0, -0.0,
19.0]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, 0.0,
0.0, 298.0, 0.0, 0.0]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, 0.0,
0.0, 298.0, 0.0, 0.0]

[104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 104.0, 104.0,
104.0, 298.0, -0.0,
0.0, 298.0, -0.0,
17.0]

Km EV 596.0000 596.0000 596.0000 596.0000 596.0000 596.0000 596.0000 596.0000 596.0000 596.0000

Km TV 169.9999 153.0000 165.0000 156.0000 137.0000 145.0000 132.0000 154.0000 164.0000 142.0000

Total Solve Duration (s) 20.8050 34.2634 13.3109 14.8340 26.4210 30.8403 27.9018 36.4626 54.0277 24.8250
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Table A.13: Optimization Results for C12 Scenarios

Metric C12T1 C12T2 C12T3 C12T4 C12T5 C12T6 C12T7 C12T8 C12T9 C12T10

Objective Function Value 336.2256 340.6480 331.6482 327.8806 334.0492 327.5042 327.2954 320.0386 336.4344 338.5064

DH (Km) 760.0000 778.0000 757.0000 749.0000 750.0000 753.0000 753.0000 735.0000 762.0000 762.0000

Ch [] [] [] [] [4.0] [] [] [4.0] [] []

SoC [104.0, 0.0, 0.0,
104.0, 104.0, 104.0,
104.0, 0.0, 0.0,
298.0, 22.0, 22.0,
298.0, 22.0, 22.0]

[104.0, 0.0, 0.0,
104.0, 104.0, 104.0,
104.0, 0.0, 0.0,
298.0, 17.0, 17.0,
298.0, 9.0, 9.0]

[104.0, 0.0, 0.0,
104.0, 0.0, 0.0,
104.0, 104.0, 104.0,
298.0, 36.0, 36.0,
298.0, 11.0, 11.0]

[104.0, 0.0, 0.0,
104.0, 104.0, 104.0,
104.0, -0.0, 0.0,
298.0, 2.0, 2.0,
298.0, 53.0, 53.0]

[104.0, 0.0, 0.0,
104.0, 104.0, 104.0,
104.0, -0.0, 4.0,
298.0, 37.0, 37.0,
298.0, 17.0, 17.0]

[104.0, 104.0,
104.0, 104.0, 0.0,
0.0, 104.0, 0.0,
0.0, 298.0, 3.0, 3.0,
298.0, 48.0, 48.0]

[104.0, 104.0,
104.0, 104.0, 0.0,
0.0, 104.0, 0.0,
0.0, 298.0, 5.0, 5.0,
298.0, 46.0, 46.0]

[104.0, 104.0,
104.0, 104.0, -0.0,
4.0, 104.0, 0.0, 0.0,
298.0, 52.0, 52.0,
298.0, 17.0, 17.0]

[104.0, 0.0, 0.0,
104.0, 0.0, 0.0,
104.0, 104.0, 104.0,
298.0, 41.0, 41.0,
298.0, 1.0, 1.0]

[104.0, 104.0,
104.0, 104.0, 0.0,
0.0, 104.0, 0.0, 0.0,
298.0, 14.0, 14.0,
298.0, 28.0, 28.0]

Km EV 760.0000 778.0000 757.0000 749.0000 750.0000 753.0000 753.0000 735.0000 762.0000 762.0000

Km TV 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Total Solve Duration (s) 54.2408 52.0867 54.9952 48.5027 61.2326 44.7003 47.3372 49.0802 48.5117 53.9231

Table A.14: Optimization Results for C13

Metric C13T1 C13T2 C13T3 C13T4 C13T5 C13T6 C13T7 C13T8 C13T9 C13T10

Objective Function Value 251.35 250.32 251.62 251.27 251.27 251.78 250.77 251.78 251.78 250.77
DH 569 574 572 570 570 572 571 572 572 571
Ch [104.0, 4.95, 104.0,

104.0, 4.95, 298.0,
15.05, 298.0, 13.14]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
12.10, 298.0, 13.05]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
12.14, 298.0, 13.0]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
13.24, 298.0, 12.43]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
13.24, 298.0, 12.43]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
12.05, 298.0, 13.14]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
12.05, 298.0, 13.05]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
12.05, 298.0, 13.14]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
12.05, 298.0, 13.14]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
12.05, 298.0, 13.05]

SoC [104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, -0.0, 4.95,
298.0, 15.0, 28.33,
298.0, 31.0, 43.14]

[104.0, -0.0, 4.95,
104.0, 104.0, 104.0,
104.0, -0.0, 4.95,
298.0, 44.0, 56.10,
298.0, 12.0, 25.14]

[104.0, -0.0, 4.95,
104.0, 104.0, 104.0,
104.0, -0.0, 4.95,
298.0, 43.0, 55.14,
298.0, 13.0, 26.0]

[104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, 0.0, 4.95,
298.0, 29.0, 42.24,
298.0, 37.0, 49.43]

[104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, 0.0, 4.95,
298.0, 29.0, 42.24,
298.0, 37.0, 49.43]

[104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, 0.0, 4.95,
298.0, 45.0, 57.05,
298.0, 31.0, 44.14]

[104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, -0.0, 4.95,
298.0, 45.0, 57.05,
298.0, 32.0, 45.05]

[104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, 0.0, 4.95,
298.0, 45.0, 57.05,
298.0, 31.0, 44.14]

[104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, 0.0, 4.95,
298.0, 45.0, 57.05,
298.0, 31.0, 44.14]

[104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, -0.0, 4.95,
298.0, 45.0, 57.05,
298.0, 32.0, 45.05]

Km EV 569 574 572 570 570 572 571 572 572 571
Km TV 0 0 0 0 0 0 0 0 0 0
Total Solve Duration (s) 259.343 261.42 257.26 257.96 259.12 260.11 257.72 264.08 264.12 266.11

Table A.15: Optimization Results for C14

Metric C14T1 C14T2 C14T3 C14T4 C14T5 C14T6 C14T7 C14T8 C14T9 C14T10

Objective Function Value 251.35 250.32 251.62 251.27 251.27 251.78 250.77 251.78 251.78 250.77
DH 569 574 572 570 570 572 571 572 572 571
Ch [104.0, 4.95, 104.0,

104.0, 4.95, 298.0,
15.05, 298.0, 13.14]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
12.10, 298.0, 13.05]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
12.14, 298.0, 13.0]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
13.24, 298.0, 12.43]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
13.24, 298.0, 12.43]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
12.05, 298.0, 13.14]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
12.05, 298.0, 13.05]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
12.05, 298.0, 13.14]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
12.05, 298.0, 13.14]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
12.05, 298.0, 13.05]

SoC [104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, -0.0, 4.95,
298.0, 15.0, 28.33,
298.0, 31.0, 43.14]

[104.0, -0.0, 4.95,
104.0, 104.0, 104.0,
104.0, -0.0, 4.95,
298.0, 44.0, 56.10,
298.0, 12.0, 25.14]

[104.0, -0.0, 4.95,
104.0, 104.0, 104.0,
104.0, -0.0, 4.95,
298.0, 43.0, 55.14,
298.0, 13.0, 26.0]

[104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, 0.0, 4.95,
298.0, 29.0, 42.24,
298.0, 37.0, 49.43]

[104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, 0.0, 4.95,
298.0, 29.0, 42.24,
298.0, 37.0, 49.43]

[104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, 0.0, 4.95,
298.0, 45.0, 57.05,
298.0, 31.0, 44.14]

[104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, -0.0, 4.95,
298.0, 45.0, 57.05,
298.0, 32.0, 45.05]

[104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, 0.0, 4.95,
298.0, 45.0, 57.05,
298.0, 31.0, 44.14]

[104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, 0.0, 4.95,
298.0, 45.0, 57.05,
298.0, 31.0, 44.14]

[104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, -0.0, 4.95,
298.0, 45.0, 57.05,
298.0, 32.0, 45.05]

Km EV 569 574 572 570 570 572 571 572 572 571
Km TV 0 0 0 0 0 0 0 0 0 0
Total Solve Duration (s) 299.05 287.41 273.66 228.64 293.38 276.59 228.39 263.58 302.97 244.60

Table A.16: Optimization Results for C15

Metric C15T1 C15T2 C15T3 C15T4 C15T5 C15T6 C15T7 C15T8 C15T9 C15T10

Objective Function Value 462.0400 461.3920 468.4054 452.9380 458.8727 470.3778 458.4924 448.1282 469.4676 448.0664

DH (Km) 882.0000 879.0000 887.0000 873.0000 878.0000 885.0000 878.0000 866.0000 884.0000 873.0000

Ch [2.0, 13.0, 13.0] [4.0] [4.0, 14.0] [11.0, 11.0] [10.0, 10.0] [4.0, 10.0, 10.0] [4.0, 4.0, 10.0,
10.0]

[10.0, 10.0] [4.0, 11.0, 11.0]

SoC [104.0, -0.0, 0.0,
104.0, 104.0, 104.0,
104.0, -0.0, 4.0,
298.0, -0.0, 12.0,
298.0, -0.0, 12.0]

[104.0, 0.0, 0.0,
104.0, 104.0, 104.0,
104.0, 0.0, 4.0,
298.0, 0.0, 0.0,
298.0, 0.0, 0.0]

[104.0, 104.0,
104.0, 104.0, -0.0,
4.0, 104.0, 0.0, 0.0,
298.0, -0.0, 14.0,
298.0, 0.99, 0.99]

[104.0, 0.0, 0.0,
104.0, 0.0, 0.0,
104.0, 104.0, 104.0,
298.0, 0.0, 0.0,
298.0, 0.0, 0.0]

[104.0, 104.0,
104.0, 104.0, 0.0,
0.0, 104.0, 0.0, 0.0,
298.0, -0.0, 11.0,
298.0, -0.0, 11.0]

[104.0, -0.0, 0.0,
104.0, -0.0, 0.0,
104.0, 104.0, 104.0,
298.0, -0.0, 10.0,
298.0, 0.99, 10.99]

[104.0, -0.0, 0.0,
104.0, 104.0, 104.0,
104.0, -0.0, 4.0,
298.0, -0.0, 10.0,
298.0, -0.0, 10.0]

[104.0, 0.0, 4.0,
104.0, 0.0, 4.0,
104.0, 104.0, 104.0,
298.0, -0.0, 10.0,
298.0, 0.99, 10.99]

[104.0, 0.0, 0.0,
104.0, 104.0, 104.0,
104.0, 0.0, 0.0,
298.0, -0.0, 10.0,
298.0, -0.0, 10.0]

[104.0, 0.0, 3.99,
104.0, 0.0, 0.0,
104.0, 104.0, 104.0,
298.0, -0.0, 11.0,
298.0, -0.0, 11.0]

Km EV 804 804 803 804 804 803 804 803 804 804

Km TV 78 75 84 69 74 82 74 63 80 69

Total Solve Duration (s) 331.2884 98.9936 319.4433 181.4591 274.3588 346.8913 395.4441 318.3735 320.3208 324.4024

Table A.17: Optimization Results for C16

Metric C16T1 C16T2 C16T3 C16T4 C16T5 C16T6 C16T7 C16T8 C16T9 C16T10

Objective Function Value 457.35 257.37 246.84 251.82 258.35 255.24 251.82 257.94 259.51 255.46
DH 878 593 586 585 593 584 585 594 602 583
Ch [4.0, 12.0, 12.0] [104.0, 4.95, 104.0,

4.95, 104.0, 4.95,
298.0, 13.38, 298.0]

[104.0, 4.95, 104.0,
4.95, 104.0, 4.95,
298.0, 13.05, 298.0]

[104.0, 4.90, 104.0,
4.95, 104.0, 4.86,
298.0, 13.14, 298.0]

[104.0, 4.95, 104.0,
4.81, 104.0, 4.95,
298.0, 298.0, 13.52]

[104.0, 4.95, 104.0,
4.95, 104.0, 4.95,
298.0, 298.0, 12.95]

[104.0, 4.95, 104.0,
4.95, 104.0, 4.90,
298.0, 13.05, 298.0]

[104.0, 4.95, 104.0,
4.95, 104.0, 4.95,
298.0, 13.43, 298.0]

[104.0, 4.95, 104.0,
4.90, 104.0, 4.95,
298.0, 298.0, 13.86]

[104.0, 4.95, 104.0,
4.95, 104.0, 4.95,
298.0, 12.90, 298.0]

SoC [104.0, -0.0, 0.0,
104.0, 104.0, 104.0,
104.0, -0.0, 4.0,
298.0, -0.0, 12.0,
298.0, -0.0, 12.0]

[104.0, -0.0, 4.95,
104.0, -0.0, 4.95,
104.0, -0.0, 4.95,
298.0, 17.0, 30.38,
298.0, 298.0, 298.0]

[104.0, 0.0, 4.95,
104.0, 0.0, 4.95,
104.0, 0.0, 4.95,
298.0, 24.0, 37.05,
298.0, 298.0, 298.0]

[104.0, 1.0, 5.90,
104.0, 0.0, 4.95,
104.0, 2.0, 6.86,
298.0, 22.0, 35.14,
298.0, 298.0, 298.0]

[104.0, -0.0, 4.95,
104.0, 3.0, 7.81,
104.0, -0.0, 4.95,
298.0, 298.0, 298.0,
298.0, 14.0, 27.52]

[104.0, -0.0, 4.95,
104.0, 0.0, 4.95,
104.0, 0.0, 4.95,
298.0, 298.0, 298.0,
298.0, 26.0, 38.95]

[104.0, 0.0, 4.95,
104.0, -0.0, 4.95,
104.0, 1.0, 5.90,
298.0, 24.0, 37.05,
298.0, 298.0, 298.0]

[104.0, -0.0, 4.95,
104.0, -0.0, 4.95,
104.0, -0.0, 4.95,
298.0, 16.0, 29.43,
298.0, 298.0, 298.0]

[104.0, -0.0, 4.95,
104.0, 1.0, 5.90,
104.0, -0.0, 4.95,
298.0, 298.0, 298.0,
298.0, 7.0, 20.86]

[104.0, -0.0, 4.95,
104.0, 0.0, 4.95,
104.0, -0.0, 4.95,
298.0, 27.0, 39.90,
298.0, 298.0, 298.0]

Km EV 804 593 586 585 593 584 585 594 602 583
Km TV 74 0 0 0 0 0 0 0 0 0
Total Solve Duration (s) 322.33 12.41 15.92 14.59 13.61 14.65 14.43 14.12 15.24 13.23
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Table A.18: Optimization Results for C17

Metric C17T1 C17T2 C17T3 C17T4 C17T5 C17T6 C17T7 C17T8 C17T9 C17T10

Objective Function Value 282.19 281.23 281.11 286.36 284.26 286.23 279.37 279.89 281.51 284.02
DH 650 637 638 646 646 656 647 643 651 650
Ch [104.0, 4.95, 104.0,

104.0, 4.95, 298.0,
8.90, 298.0, 12.14]

[104.0, 104.0, 4.95,
104.0, 4.95, 298.0,
6.95, 298.0, 13.48]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
10.10, 298.0, 10.38]

[104.0, 4.95, 104.0,
4.95, 104.0, 298.0,
9.14, 298.0, 11.71]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
11.90, 298.0, 8.95]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
9.24, 298.0, 12.10]

[104.0, 4.95, 104.0,
4.95, 104.0, 298.0,
11.10, 298.0, 9.81]

[104.0, 104.0, 4.95,
104.0, 4.95, 298.0,
11.71, 298.0, 9.0]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
10.62, 298.0, 10.48]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
9.62, 298.0, 11.43]

SoC [104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, 0.0, 4.95,
298.0, 111.0,
119.90, 298.0, 43.0,
55.14]

[104.0, 104.0,
104.0, 104.0, 0.0,
4.95, 104.0, -0.0,
4.95, 298.0, 152.0,
158.95, 298.0, 15.0,
28.48]

[104.0, -0.0, 4.95,
104.0, 104.0, 104.0,
104.0, -0.0, 4.95,
298.0, 86.0, 96.10,
298.0, 80.0, 90.38]

[104.0, -0.0, 4.95,
104.0, -0.0, 4.95,
104.0, 104.0, 104.0,
298.0, 106.0,
115.14, 298.0, 52.0,
63.71]

[104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, -0.0, 4.95,
298.0, 48.0, 59.90,
298.0, 110.0,
118.95]

[104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, 0.0, 4.95,
298.0, 104.0,
113.24, 298.0, 44.0,
56.10]

[104.0, 0.0, 4.95,
104.0, -0.0, 4.95,
104.0, 104.0, 104.0,
298.0, 65.0, 76.10,
298.0, 92.0, 101.81]

[104.0, 104.0,
104.0, 104.0, -0.0,
4.95, 104.0, -0.0,
4.95, 298.0, 52.0,
63.71, 298.0, 109.0,
118.0]

[104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, -0.0, 4.95,
298.0, 75.0, 85.62,
298.0, 78.0, 88.48]

[104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, 0.0, 4.95,
298.0, 96.0, 105.62,
298.0, 58.0, 69.43]

Km EV 650 637 638 646 646 656 647 643 651 650
Km TV 0 0 0 0 0 0 0 0 0 0
Total Solve Duration (s) 12.36 13.74 15.08 12.81 11.88 13.54 12.46 12.21 14.64 12.05

Table A.19: Optimization Results for C18

Metric C18T1 C18T2 C18T3 C18T4 C18T5 C18T6 C18T7 C18T8 C18T9 C18T10

Objective Function Value 251.35 250.32 251.62 251.27 251.27 251.78 250.77 251.78 251.78 250.77
DH 569 574 572 570 570 572 571 572 572 571
Ch [104.0, 4.95, 104.0,

104.0, 4.95, 298.0,
15.05, 298.0, 13.14]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
12.10, 298.0, 13.05]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
12.14, 298.0, 13.0]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
13.24, 298.0, 12.43]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
13.24, 298.0, 12.43]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
12.05, 298.0, 13.14]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
12.05, 298.0, 13.05]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
12.05, 298.0, 13.14]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
12.05, 298.0, 13.14]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
12.05, 298.0, 13.05]

SoC [104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, -0.0, 4.95,
298.0, 15.0, 28.33,
298.0, 31.0, 43.14]

[104.0, -0.0, 4.95,
104.0, 104.0, 104.0,
104.0, -0.0, 4.95,
298.0, 44.0, 56.10,
298.0, 12.0, 25.14]

[104.0, -0.0, 4.95,
104.0, 104.0, 104.0,
104.0, -0.0, 4.95,
298.0, 43.0, 55.14,
298.0, 13.0, 26.0]

[104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, 0.0, 4.95,
298.0, 29.0, 42.24,
298.0, 37.0, 49.43]

[104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, 0.0, 4.95,
298.0, 29.0, 42.24,
298.0, 37.0, 49.43]

[104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, 0.0, 4.95,
298.0, 45.0, 57.05,
298.0, 31.0, 44.14]

[104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, -0.0, 4.95,
298.0, 45.0, 57.05,
298.0, 32.0, 45.05]

[104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, 0.0, 4.95,
298.0, 45.0, 57.05,
298.0, 31.0, 44.14]

[104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, 0.0, 4.95,
298.0, 45.0, 57.05,
298.0, 31.0, 44.14]

[104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
104.0, -0.0, 4.95,
298.0, 45.0, 57.05,
298.0, 32.0, 45.05]

Km EV 569 574 572 570 570 572 571 572 572 571
Km TV 0 0 0 0 0 0 0 0 0 0
Total Solve Duration (s) 12.02 12.44 12.55 12.43 13.12 12.29 12.59 12.64 12.61 12.42

Table A.20: Optimization Results for C19

Metric C19T1 C19T2 C19T3 C19T4 C19T5 C19T6 C19T7 C19T8 C19T9 C19T10

Objective Function Value 332.3916 339.4744 334.4130 344.1404 336.1054 331.9266 337.4562 330.3038 339.1644 339.5598

DH (Km) 752.0000 770.0000 761.0000 796.0000 759.0000 761.0000 769.0000 765.0000 778.0000 765.0000

Ch [104.0, 4.95, 104.0,
4.95, 104.0, 298.0,
13.81, 298.0, 12.10]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
14.05, 298.0, 12.71]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
12.14, 298.0, 14.19]

[104.0, 4.95, 104.0,
4.95, 104.0, 298.0,
14.05, 298.0, 13.95]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
14.19, 298.0, 12.05]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
13.76, 298.0, 12.57]

[104.0, 104.0, 4.95,
104.0, 4.95, 298.0,
14.19, 298.0, 12.52]

[104.0, 4.95, 104.0,
4.95, 104.0, 298.0,
12.57, 298.0, 13.95]

[104.0, 104.0, 4.95,
104.0, 4.95, 298.0,
12.95, 298.0, 14.19]

[104.0, 104.0, 4.95,
104.0, 4.95, 298.0,
12.62, 298.0, 13.90]

SoC [104.0, -0.0, 4.95,
104.0, -0.0, 4.95,
104.0, 104.0, 104.0,
298.0, 8.0, 21.81,
298.0, 44.0, 56.10]

[104.0, -0.0, 4.95,
104.0, 104.0, 104.0,
104.0, -0.0, 4.95,
298.0, 3.0, 17.05,
298.0, 31.0, 43.71]

[104.0, -0.0, 4.95,
104.0, 104.0, 104.0,
104.0, -0.0, 4.95,
298.0, 43.0, 55.14,
298.0, -0.0, 14.19]

[104.0, -0.0, 4.95,
104.0, -0.0, 4.95,
104.0, 104.0, 104.0,
298.0, 3.0, 17.05,
298.0, 5.0, 18.95]

[104.0, -0.0, 4.95,
104.0, 104.0, 104.0,
104.0, -0.0, 4.95,
298.0, 0.0, 14.19,
298.0, 45.0, 57.05]

[104.0, -0.0, 4.95,
104.0, 104.0, 104.0,
104.0, 0.0, 4.95,
298.0, 9.0, 22.76,
298.0, 34.0, 46.57]

[104.0, 104.0,
104.0, 104.0, 0.0,
4.95, 104.0, -0.0,
4.95, 298.0, 0.0,
14.19, 298.0, 35.0,
47.52]

[104.0, -0.0, 4.95,
104.0, -0.0, 4.95,
104.0, 104.0, 104.0,
298.0, 34.0, 46.57,
298.0, 5.0, 18.95]

[104.0, 104.0,
104.0, 104.0, 0.0,
4.95, 104.0, 0.0,
4.95, 298.0, 26.0,
38.95, 298.0, -0.0,
14.19]

[104.0, 104.0,
104.0, 104.0, -0.0,
4.95, 104.0, -0.0,
4.95, 298.0, 33.0,
45.62, 298.0, 6.0,
19.90]

Km EV 752.0000 770.0000 761.0000 796.0000 759.0000 761.0000 769.0000 765.0000 778.0000 765.0000

Km TV 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Total Solve Duration (s) 18.8936 17.0315 18.2619 15.3235 15.8543 16.2720 16.0199 17.1109 15.3057 17.6801

Table A.21: Optimization Results for C20

Metric C20T1 C20T2 C20T3 C20T4 C20T5 C20T6 C20T7 C20T8 C20T9 C20T10

Objective Function Value 364.7274 349.9800 371.4876 375.1696 360.1628 351.3276 363.7310 373.7240 359.9572 350.8088

DH (Km) 815.0000 804.0000 812.0000 820.0000 806.0000 804.0000 809.0000 814.0000 804.0000 804.0000

Ch [104.0, 104.0, 4.95,
104.0, 4.95, 298.0,
14.19, 298.0, 14.14]

[104.0, 104.0, 4.95,
104.0, 4.95, 298.0,
14.19, 298.0, 14.19]

[104.0, 4.95, 104.0,
4.95, 104.0, 298.0,
14.19, 298.0, 14.19]

[104.0, 104.0, 4.95,
104.0, 4.95, 298.0,
14.19, 298.0, 14.19]

[104.0, 4.95, 104.0,
4.95, 104.0, 298.0,
14.14, 298.0, 14.14]

[104.0, 4.95, 104.0,
4.95, 104.0, 298.0,
14.19, 298.0, 14.19]

[104.0, 4.95, 104.0,
4.95, 104.0, 298.0,
14.10, 298.0, 14.14]

[104.0, 4.95, 104.0,
4.95, 104.0, 298.0,
14.19, 298.0, 14.10]

[104.0, 104.0, 4.95,
104.0, 4.95, 298.0,
14.10, 298.0, 14.10]

[104.0, 4.95, 104.0,
104.0, 4.95, 298.0,
14.19, 298.0, 14.19]

SoC [104.0, 104.0,
104.0, 104.0, -0.0,
4.95, 104.0, -0.0,
4.95, 298.0, 0.0,
14.19, 298.0, 1.0,
15.14]

[104.0, 104.0,
104.0, 104.0, -0.0,
4.95, 104.0, -0.0,
4.95, 298.0, 0.0,
14.19, 298.0, 0.0,
14.19]

[104.0, -0.0, 4.95,
104.0, -0.0, 4.95,
104.0, 104.0, 104.0,
298.0, -0.0, 14.19,
298.0, -0.0, 14.19]

[104.0, 104.0,
104.0, 104.0, -0.0,
4.95, 104.0, -0.0,
4.95, 298.0, -0.0,
14.19, 298.0, -0.0,
14.19]

[104.0, 0.0, 4.95,
104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
298.0, 1.0, 15.14,
298.0, 1.0, 15.14]

[104.0, -0.0, 4.95,
104.0, -0.0, 4.95,
104.0, 104.0, 104.0,
298.0, -0.0, 14.19,
298.0, -0.0, 14.19]

[104.0, -0.0, 4.95,
104.0, 0.0, 4.95,
104.0, 104.0, 104.0,
298.0, 2.0, 16.10,
298.0, 1.0, 15.14]

[104.0, 0.0, 4.95,
104.0, -0.0, 4.95,
104.0, 104.0, 104.0,
298.0, -0.0, 14.19,
298.0, 2.0, 16.10]

[104.0, 104.0,
104.0, 104.0, -0.0,
4.95, 104.0, 0.0,
4.95, 298.0, 2.0,
16.10, 298.0, 2.0,
16.10]

[104.0, -0.0, 4.95,
104.0, 104.0, 104.0,
104.0, -0.0, 4.95,
298.0, 0.0, 14.19,
298.0, -0.0, 14.19]

Km EV 803.0000 804.0000 804.0000 804.0000 802.0000 804.0000 801.0000 802.0000 800.0000 804.0000

Km TV 12.0000 0.0000 8.0000 16.0000 4.0000 0.0000 8.0000 12.0000 4.0000 0.0000

Total Solve Duration (s) 18.6506 19.6074 20.5631 22.7144 18.4425 19.4207 18.7223 18.6412 22.3217 19.0222
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A.4 Torino Information

Table A.22: Distance between Lines and Depots (Meters)

Line 2 18 58 70 73 78 Tortona dis. Gerbido

2 0 1529 11537 12845 3823 4630 2062 27591
18 1723 0 12815 14123 5101 4028 3014 27189
58 11924 12876 0 5420 8106 11523 3406 10588
70 12917 13869 5378 0 9098 12516 10900 19930
73 3981 4933 7995 9303 0 3580 1877 11761
78 5573 4425 11956 13264 4242 0 6344 34250
2 10129 10634 3913 2720 6989 8773 2062 27591
18 11382 32016 5097 3904 7941 7625 3014 27189
58 11924 12876 7037 8633 5207 14640 3406 10588
70 12917 13869 11016 10434 6239 15948 10900 19930
73 3981 4933 2622 2622 3231 6926 1877 11761
78 5573 4425 5611 3578 6588 4005 6344 34250
2 10129 11382 1645 3927 6612 10029 9044 7173
18 10634 32016 1491 6560 9246 12663 9836 4667
58 3913 5097 7037 11016 2622 5611 10537 6341
70 2720 3904 8633 10434 2622 3578 1470 21645
73 6989 7941 5207 6239 3231 6588 5603 11157
78 8773 7625 14640 15948 6926 4005 3502 33006
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Table A.23: Line Characteristics and Timetables

Line Frequency Start time End time Duration Kmts

2 75 [272, 290, 30...] [332, 350, 36...] 60 15
18 92 [295, 318, 34...] [349, 372, 39...] 54 13,5
58 95 [290, 302, 31...] [319, 331, 34...] 29 7,25
70 18 [360, 400, 42...] [410, 450, 47...] 50 12,5
73 11 [361, 410, 47...] [383, 432, 49...] 22 5,5
78 24 [375, 410, 44...] [388, 423, 45...] 13 3,25
2 74 [276, 294, 31...] [336, 354, 37...] 60 15
18 92 [281, 304, 32...] [335, 358, 38...] 54 13,5
58 95 [300, 312, 32...] [329, 341, 35...] 29 7,25
70 18 [350, 370, 42...] [400, 420, 47...] 50 12,5
73 10 [435, 500, 57...] [445, 510, 58...] 22 5,5
78 24 [388, 423, 45...] [401, 436, 47] 13 3,25

Model Battery
[kWh]

Consumption
[Wh/100km]

Time of
Charging
6.6 kWh[h]

Time of
charging
80 kWh [h]

# Vehicles

Cacciamali
Elfo

67 95 10.15 - 17

BYD K7 165 95 - 2.07 8
BYD
K9(1)

324 104 49 4.05 50

BYD
K9(2)

348 91 52,7 4.35 20

Table A.24: Electric Vehicles of GTT [31] before 2025
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