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1. Abstract 
The ability to accurately predict the duration and final costs of a project is essential to 

implement timely corrective actions during its execution. Estimates at Completion (EAC) 

are the key tool to support project control. In recent years, the integration of Machine 

Learning (ML) techniques with traditional methodologies such as Earned Value 

Management (EVM) and Earned Schedule (ES) has improved the accuracy of forecasting. 

However, many studies have focused exclusively on static data, neglecting both the influence 

of dynamic data and topological indicators and the issues of underfitting and overfitting that 

compromise model robustness. This thesis aims to address both issues by proposing a 

structured ML pipeline, including automated preprocessing, feature engineering, and cross-

validation procedures, with the goal of improving the generalizability of predictive models. 

The pipeline is designed to exploit both static data and dynamic data and topological network 

indicators by analyzing their impact on predictive performance. The pipeline was tested 

using 30 machine learning algorithms on a dataset of 90 real projects by evaluating their 

effectiveness with respect to mean square error, project progress stage, and via SHAP 

analysis for interpretability. 

The findings indicate that ML algorithms outperform classical approaches concerning 

accuracy and precision particularly during the initial and mid phases of a project. Moreover, 

feature analysis with SHAP underscored the tremendous value of dynamic data and project 

network attributes concerning model prediction capability. 

In conclusion the study demonstrates the effectiveness of the proposed pipeline and suggest 

that further integration of ML in project management practices could lead to improved 

project outcomes, especially as ML techniques continue to evolve. 
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2. Introduction 
Effective project management is often hindered by uncertainties and variations that arise in 

the planning and execution phases. In particular, the ability to accurately estimate project 

duration and costs at completion (EACs) is a crucial element in activating corrective 

strategies and ensuring alignment with contractual objectives. 

The EAC is typically calculated through methodologies based on Earned Value Analysis 

(EVA) that focus on the project's monetary and temporal achievements, including its 

valuation through methods such as Earned Value Management (EVM) or scheduling through 

Earned Schedule (ES). However, both the EVM and ES techniques rely on rigid and 

sequential formulas which do not accommodate the inherent fluidity and intricacy of actual 

working projects. Their ability to adjust to new situational frameworks and deal with 

unexpected changes in project activity or related circumstances is limited. 

These methods' shortcomings have open to the opportunity to employ Machine Learning 

(ML) techniques. Because ML models can learn complex non-linear patterns, heterogeneous 

data, and more precise solutions to a given problem, they provide more flexibility than 

traditional methods. However, there is still a gap in research concerning the use of static 

data, dynamic data, simulating actual project progress over time, and topological data 

detailing the project's network configuration. 

Dynamic project data reflect the actual progress of activities, including deviations from 

initial time and cost estimates. Unlike static parameters generated by standardized networks 

and resources, dynamic data must represent realistic scenarios, which makes them more 

complex to model. Indeed, the actual execution of a project is characterized by uncertain 

events and unforeseen variations that are difficult to capture by simplified assumptions. The 

use of unrealistic, or overly idealized, data compromises the quality of the results and their 

practical applicability. 

This thesis proposes an ML pipeline that aims to fill these gaps by integrating both static and 

dynamic data, along with topological network indicators (e.g., Serial/Parallel Index and 

Regularity Index). The objective is twofold: on the one hand, to evaluate the effectiveness 

of ML models in predicting EAC and TEAC (Time Estimate at Completion) on real projects; 

on the other hand, to analyze by SHAP analysis the information impact of different features 

to understand which variables contribute most to the accuracy of the predictions. 



 
 

7 

The thesis is structured as follows: Chapter 3 presents a literature review that introduces the 

project management framework and analyzes in detail the monitoring and control practices, 

the use of Machine Learning in the sector and the different categories of data (static, dynamic 

and topological) considered in this thesis. In Chapter 4, the adopted methodology is provided 

along with the developed ML pipeline, pinpointing the causes of underfitting and overfitting 

and how they were attempted to be solved. In Chapter 5, the performance of the ML model 

is compared with the performance of traditional methodologies (EVM and ESM) and in 

Chapter 6, the focus is on the theoretical and practical implications of the main results 

discussed. Finally, in Chapter 7, the work’s contributions are summarized, followed by its 

limitations and proposed future research directions.  
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3. Literature Overview 

3.1. Basic of Project Management 

Project Management (PM) is the discipline that involves planning, organizing, and managing 

resources to ensure the effective achievement of a project’s goals and objectives. As stated 

by the Project Management Institute (PMI), PM “involves the application of knowledge, 

skills, tools, and techniques to project activities to meet the project requirements. Project 

management refers to guiding the project work to deliver the intended outcomes. Projects 

are temporary endeavors with a defined beginning and end, undertaken to create a unique 

product, service, or result” [1]. 

Always according to the PMI a project is “a temporary endeavor undertaken to create a 

unique product, service, or result”. The temporary nature of projects implies that each 

project, or phase within a project, has a clearly defined start and finish. A project may exist 

independently or be integrated within a broader program or portfolio. 

Project management is particularly effective when the entire project architecture is oriented 

toward deliverables. A deliverable represents an item, tangible or intangible, produced as a 

result of an activity or the entire project. It may refer to the overall output of the project, a 

single phase, or even a single activity [2]. 

It is essential that, from the earliest stages, the project manager guide the team in breaking 

down the work into activities each of which produces clear and well-defined deliverables. 

These deliverables, in addition to representing the tangible result of an activity, also serve as 

inputs for subsequent activities. A project that does not precisely define its deliverables risks 

running into ambiguities, operational inefficiencies and monitoring difficulties. 

Although the term “output” is often used synonymously with deliverables, it is useful to 

distinguish them from the results (“outcomes”) of a project. Outcome, according to the PMI 

is “An end result or consequence of a process or project. Outcomes can include outputs and 

artifacts but have a broader intent by focusing on the benefits and value that the project was 

undertaken to deliver” [1]. Thus, the results include deliverables but extend beyond the 

formal conclusion of the project, encompassing the benefits and value generated over time.  

This distinction reflects two different project approaches: the deliverable-oriented one, 

typical of industrial projects or linked to clearly identifiable physical products, and the result-
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oriented one, more suited to organizational change projects or, in general, agile contexts. In 

the former case, the focus is on the control and production of tangible elements; in the latter, 

the emphasis is on the value generated, although less immediately visible or measurable. 

Although it is now considered a partially outdated model and has been gradually abandoned 

in newer project management texts and courses, the so-called Triangle of Constraint 

continues to be used in some professional practices to facilitate reflection and framing of 

project constraints. [3] 

The triangle graphically represents the interdependence among three fundamental 

dimensions of a project: time, cost and resources, and quality [Figure 3-1]. The inner area of 

the triangle symbolizes the purpose of the project, while the sides indicate the three 

constraints that must be managed in a coordinated manner. The principle behind the model 

is that a variation in one of the elements will inevitably affect the other two. For example, to 

reduce time while keeping quality the same, it is generally necessary to increase resources, 

and thus costs. Conversely, if a client requests a reduction in time without increasing the 

budget, a downward revision of expected quality may be necessary. 

The triangle has come under criticism for its limited view of the variables involved in 

managing a project. However, in operational reality many organizations still evaluate the 

success of a project based on the consistency between the time, cost and quality constraints 

defined at the outset and those actually achieved. The model can still be a useful decision-

support tool, especially in situations where the project manager must act promptly to manage 

critical issues emerging during project execution. 

 

Figure 3-1, Project Management Triangle of Constraints 
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3.1.1. Historical Evolution of Project Management 

Project management practices historical development highlights a significant progression 

from informal practices to structured methodologies. Project management has accompanied 

humanity since its origins, as evidenced by the great works of antiquity: the Egyptian 

pyramids, the Great Wall of China, Roman infrastructure and medieval cathedrals. However, 

in these contexts there were no codified methods or dedicated management figures: 

leadership was entrusted to technical experts or small groups with absolute decision-making 

power. 

The Gantt chart is the first formally recognized tool of project management. It was created 

in 1917 by engineer Henry Gantt. The chart displays sequential activities, showing the time 

within which each is expected to be completed. In fact, Adamiecki developed the “harmonic” 

version of the chart called an armonogram in 1896. Adamiecki published his work in Russian 

and Polish, which made it difficult for most English speakers to access the information. Gantt 

popularized a similar graph in the US in 1910. This graph was intended to show the time 

spent by employees on specific tasks. These two systems have since merged into what is 

regarded today as the modern Gantt chart.  

Its wide adoption during the World War I, particularly for industrial and construction 

projects, emphasized its significance in the management of resource-intensive projects. The 

initial techniques showcased an increased understanding regarding the need for timeliness 

and responsibilities in project control which prepared the ground for advancement in 

methodologies. These techniques, however, did not provide a suitable solution for complex 

and ambiguous project situations, hence highlighting the requirement for more powerful and 

flexible techniques.   

The expression “project management” was first used in 1953 in association with the 

aerospace industry in America. These years saw the emergence of several models and 

techniques that are still basic today; in 1957 the DuPont Corporation created the Critical 

Path Method (CPM) and in 1958 the U.S. Navy as a part of Polaris program developed 

Program Evaluation Review Technique (PERT), followed by the Department of Defense 

introducing Work Breakdown Structure (WBS) in 1962.   

Although these three methods had their evolution over the years, they still stand useful in 

modern-day project management. 
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The WBS represents the tree-like, top-down decomposition of the project scope down to the 

atomic level of activities. The PERT highlights the logical links between project activities, 

between predecessors and successors, and is a very powerful tool for reasoning about 

execution strategies. The critical path method (CPM), on the other hand, focuses on chains 

of “critical” activities that, having no margin, cause a delay equal to their own on the 

completion of the entire project. 

By the late 1950s, the figure of the project manager was emerging, at least among those in 

the industry, as a professional with a specific role of integration and coordination in complex 

initiatives. This concept was first formalized in an article published by the Harvard Business 

Review in 1959 [4]. 

The second half of the 1960s marked the birth of the major professional associations 

dedicated to the discipline: the International Project Management Association (IPMA) in 

1965 and the Project Management Institute (PMI) in 1969. Even today, these two institutions 

represent the main references for the international project management community. 

In the late 1970s, the need emerged for professional certification to attest to practitioners' 

competencies and, consequently, the need for a reference text that would systematically 

compile the fundamental knowledge of the discipline. This led to the publication in 1983 of 

the first PMI Body of Knowledge, compiled by PMI, which initially identified six areas of 

knowledge. The work took its final name of Project Management Body of Knowledge 

(PMBOK) with the 1987 edition, to which new areas were added, including risk management 

and procurement. Later, the area of integration is introduced in the 1996 edition, while soft 

skills and stakeholder management become an integral part of the corpus only in the 2000s. 

In 1989, Earned Value Analysis and consequently the method of Earned Value Management, 

systems for monitoring project progress, was formalized. It makes it possible to compare the 

planned baseline with actual progress in percentage terms and provides tools for forecasting 

future performance. A dedicated chapter will further explore its principles and applications. 

The late 1990s witnessed a significant conceptual evolution with the emergence of the Agile 

movement, which challenged the universal effectiveness of traditional methods, up to that 

time collected in the various Bodies of Knowledge. Indeed, it is recognized that for certain 

types of projects, characterized by high uncertainty - such as software development or 

research and development - predictive methods are unsuitable. Therefore, the need to also 
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adopt adaptive, more flexible and dynamic approaches, capable of reacting quickly to 

changing objectives or context, is affirmed. 

The late 1990s witnessed a significant conceptual evolution with the emergence of the Agile 

movement, which challenged the universal effectiveness of traditional methods, up to that 

time collected in the various Bodies of Knowledge. It became evident that for certain types 

of projects characterized by high uncertainty because traditional project management 

methods, although highly structured and widely practiced, often struggled to cope with these 

kinds of projects especially those involving multidisciplinary teams and uncertain 

environments [5]. These traditional methods were typically based on deterministic 

assumptions, which led to rigid planning frameworks ideated to address unforeseen 

challenges, such as resource shortages or market fluctuations 

Consequently, the need to adopt more adaptive, flexible, and dynamic methodologies, 

capable of responding rapidly to shifting objectives or contextual changes, gained increasing 

recognition. 

The publication of the Agile Manifesto in 2001 represents a landmark moment in the project 

management debate. However, it has also generated some misinterpretations: people often 

associate “agile” with a lack of planning or organizational disorder, when in fact it is a highly 

structured approach, albeit planned over shorter time horizons than traditional methods. 

In the first two decades of the 21st century, traditional and agile project management were 

often perceived as two opposing schools: more orthodox practitioners tended to favor 

predictive approaches, while others, sometimes with a more superficial approach, adopted 

agile methods. In recent years, however, an integrated and more balanced view is emerging. 

As of 2021, PMI will in fact require PMP certification candidates to have in-depth 

knowledge of both traditional and agile methodologies. 

This exploration of how project management techniques have changed over time 

demonstrates a continual shift toward methodologies that prioritize flexibility and 

adaptability.  
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3.1.2. Structural and Visual Tools for Managing Projects 

The effectiveness of a project's planning and control depends significantly on the ability to 

represent in a clear, structured and integrated manner both the work to be done and its 

temporal articulation and progress. In this context, graphical and methodological tools 

assume a key role in supporting the project manager in decision-making and day-to-day 

management of activities. 

Among the main tools used, three stand out for their widespread use and versatility: the Work 

Breakdown Structure (WBS), the Gantt chart and the S-curve. Each responds to a specific 

project management need: the WBS permits breaking down the work to manageable levels, 

assignment of the scope is easier along with controlling the responsibilities; in the Gantt 

chart the temporal sequence of activities and their execution can be visualized and 

monitored; and alongside performing basic calculations to evaluate the performance 

accurately, those estimates aid analyzing finances and evaluating the overall project progress 

through the S curve, which represents the accumulated project progress. 

The integrated adoption of these tools, in both traditional and agile or hybrid contexts, 

represents an established best practice for structured, transparent and effective project 

management. The following sections delve into the features, applications and benefits of 

each of these tools. 

Work Breakdown Strucuture (WBS) 

In the project planning process, each sector adopts specific tools to represent the product or 

expected outcome of the project: in software, structured diagrams; in film, storyboards with 

settings and actors. In a similar way, in project management, the Work Breakdown Structure 

(WBS) is one of the most employed tools for representing the work to be done in a structured 

way [Figure 3-2]. 

Defined by the Project Management Institute as a “ ahierarchical decomposition of the total 

scope of work to be carried out by the project team to accomplish the project objectives and 

create the required deliverables” [1] the WBS allows a complex project to be broken down 

into manageable components, each with an increasing level of detail as you move down the 

hierarchy. 
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This progressive decomposition allows the project manager to tackle the project “one bite at 

a time!” making it easier to control, assign responsibilities and reduce operational 

ambiguities [6]. 

While it may appear similar to an organizational chart or structured bill of materials (BOM), 

the WBS is clearly distinguished by its purpose: to represent the work to be done, not the 

people involved or the final objects produced: “a good WBS provides a common framework 

for all project deliverables and for specific tasks within the project” [7]. 

The creation of a WBS is a simple process that can be initiated even on informal media with 

notes written on a paper. However, for detailed analyses to be effective, there is a need to 

incorporate arrangement at multiple levels within the project’s hierarchy. Text processors 

enable the creation of WBSs in an easy manner due to content WBSs through various levels 

of indentations and editing options. In office environments, WBSs are created and presented 

in tree or outline formats using specialized project management software capable of 

scheduling and generating network diagrams. 

It is important to highlight that the entire content of a project must be represented in the 

WBS, what is not included is not formally part of the project. Any missing activities require 

explicit permission to be added, either in the form of an approved change or 

acknowledgement of an oversight. 

In fact, the WBS should be constructed to meet the operational needs of the individual 

project, rather than tailored for accounting purposes. For comparative cost analysis or 

financial purposes, parallel tools such a coding of work packages or dedicated structures 

such as Financial Breakdown Structure (FBS) or Component Breakdown Structure (CBS) 

can be adopted [6]. 

A WBS should focus on the work that needs to be done to complete the project. Each level 

of the hierarchy should represent a deliverable: level 0 corresponds to the final goal, while 

subsequent levels may contain either physical product components or documentary 

elements, such as reports or analysis. Some activities, such as project management, may find 

a place in elements of the WBS that do not produce deliverables but are nonetheless essential 

to overall success. 

In addition to its hierarchical structure, the WBS has some key features for effective project 

management [2]: 
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• Uniqueness 

There must be only one WBS for the entire project. No separate WBSs are created for 

each department (e.g., design, purchasing, production): each part of the team manages 

its own work packages within a single shared structure. 

• Exhaustiveness 

The WBS must cover the entire scope of the project, including all expected products, 

services and outcomes. What is not included is not part of the project. 

• Stability 

Once defined, the WBS should not be changed during the project unless contractual 

changes are made. If it is revised too often, it is a symptom of poor initial planning. 

• Simplicity and clarity 

The structure should be easy for everyone to understand, and each activity/package 

should be assignable to one person responsible, as well as allowing progress to be 

monitored. 

Finally, it should be noted that the WBS does not represent the temporal or logical 

relationships between activities-these connections are modeled separately within project 

network diagrams (PND). However, the way the WBS is structured can significantly 

influence the organization and execution of the work, making it essential to follow precise 

rules in its elaboration [6]. 

 

Figure 3-2, high level WBS for Engineering, Procurement and Construction of a skyscraper, taken from [2] 



 
 

16 

Gantt Chart 

As mentioned in the chapter on the historical evolution of PM, the Gantt chart is one of the 

most enduring and representative tools, developed in the early 20th century and it still is a 

widely used tool in the planning and time control of projects, even outside purely traditional 

contexts. Although derived from a deterministic approach, it is also often used in projects 

with hybrid or, to a more limited extent, agile life cycles. 

Defined by the Project Management Institute as a “bar chart provides schedule information 

where activities are listed on the vertical axis, dates are shown on the horizontal axis, and 

activity durations are shown as horizontal bars placed according to start and finish dates” 

[1], takes the form of a time schedule that combines, on the left side, a list of activities and 

work packages (derived from the WBS) with information on duration and expected dates; 

on the right side, a calendar displays these activities as time bars proportional to their 

duration. Relationships between activities are represented by arrows, while milestones, key 

points in the project, are indicated by specific symbols (usually rhombuses). Higher-level 

activities that encapsulate multiple sub-activities are displayed with distinctive marks to 

make the hierarchy easier to read [8]. 

The employment of Gantt charts focuses on the following objectives: 

• Manage complex projects: larger projects involve more tasks to manage. Gantt charts 

enable project managers to better visualize a project by breaking it down into smaller 

activities. 

• Monitor dependencies between activities: a project can be behind schedule and in these 

cases Gantt charts help project managers automate dependencies between activities to 

ensure that the next task does not start until the previous one is finished.    

• Monitor project progress: Gantt charts allow to track progress and milestones, in order 

to easily modify the project plan if necessary. 

Once approved, the Gantt chart becomes the project's schedule baseline, the timeline against 

which progress can be monitored. It is important to consider that scheduling software and 

tools plan activities “as soon as possible” (ASAP) by default, but this mode is not always 

optimal. In some cases, it may be preferable to schedule “as late as possible” (ALAP) or to 

adopt intermediate solutions, carefully weighing margins and risks [Figure 3-3]. 

If it becomes necessary to compress the project duration, two strategies can be adopted: 
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• Crashing: it is the allocation of additional resources to speed up the execution of a task, 

resulting in increased costs. 

• Fast-tracking: it entails parallel execution of previously planned activities in sequence, 

which can increase the risk of failure in case of technical or coordination problems. 

The crash strategy results in increased costs; fast-tracking, on the other hand, increases the 

risk, as executing tasks in parallel eliminates the possibility of catching up with delays 

accumulated in previous phases. 

 

Figure 3-3, Partial view of the Gantt chart related to the Engineering, Procurement and Construction of a skyscraper 

S-curve 

The S-curve is a graphical representation commonly used in project management to describe 

the cumulative trend of cost, hours worked, or physical progress over time. [9] 

In the context of Earned Value Management (EVM), S-curves take a central role in the visual 

representation of the three main performance indicators: the Planned Value (PV), Earned 

Value (EV) and Actual Cost (AC). Plotted on a graph with time on the horizontal axis and 

cost on the vertical axis, these curves allow us to observe the evolution of the project and 

provide an immediate snapshot of its progress [10]. 

The typical profile of the curve follows an “S” pattern: in the early stages of the project, 

growth is slow, due to preparatory activities such as resource mobilization or initial planning. 

Then, in the middle phase, operational activities increase rapidly, leading to a steeper growth 

of the curve, until it reaches the inflection point, which is the time of maximum operational 

intensity and expenditure. Finally, as closure approaches, the pace slows again, reflecting 

verification, testing and final delivery activities [9]. 

However, each design has unique characteristics, and the shape of the S-curve can vary 

significantly. In the literature, it has been observed that not all S-curves are symmetrical or 

regular: many have irregularities and local variations due to the uneven distribution of 
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activities [11]. For this reason, a classification of S-curves into three main categories has 

been proposed, based on the temporal distribution of costs: 

• Front-loaded: most of the work and spending is concentrated in the first half of the 

project. 

• Mid-loaded: activities are more symmetrically distributed, peaking in the middle phase. 

• Back-loaded: most of the work is concentrated in the second half of the project duration 

[12]. 

In addition to supporting progress monitoring, the S-curve is used for cash flow forecasting, 

performance evaluation, and remaining life estimation, thus being an important tool for 

planning and monitoring during the execution phase. 

 

Figure 3-4, An istance of the 3 type of cumulative S-curve, taken from [10] 

3.1.3. Project Life Cycle Models: Traditional and Modern Approaches 

The life cycle of a project is defined as the set of phases that a project goes through from 

inception to closure. Each phase is a set of project activities that are logically related and 

culminate in the realization of one or more deliverables or outcomes. The lifecycle concept 

takes a central place in the project management discipline, as it provides a framework for 

organizing, planning, executing and monitoring the project throughout its development. 

Five project life cycle models are generally distinguished in the literature, each of which has 

unique characteristics and lends itself to application in specific contexts and sectors. It is 

important to highlight that although these models constitute established theoretical 
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references, each project has a unique life cycle, built based on its needs and complexity. The 

following paragraphs provide an overview of these five main project life cycle models. 

Traditional life cycle (Waterfall) 

The traditional lifecycle, also often referred Waterfall, is the classic project management 

model, strongly oriented toward advance planning and sequencing of phases. It is 

characterized by a predictive, linear and plan-driven approach. It is considered predictive 

because it assumes that all events and activities of the project can be anticipated with 

reasonable certainty from the beginning. It is linear because the phases follow one another 

in a strict and orderly sequence, with each phase starting only after the previous one is 

completed. Finally, it is plan-driven because the entire project is thoroughly planned upfront, 

and the execution phase focuses primarily on carrying out that defined plan. 

This model is particularly suitable for projects where requirements are well defined and 

stable over time, and where the risk of change is low. However, the absence of iterations and 

structured feedback mechanisms makes it less suitable for dynamic and innovative contexts, 

where there is a frequent need to adapt to new requirements that emerge during the course 

of the project [Figure 3-5]. 

  

Figure 3-5, traditional life cycle diagram 

Iterative life cycle 

In the iterative lifecycle project phases do not follow a rigidly sequential flow, but can be 

retraced multiple times. This approach is typical of contexts in which product knowledge 

evolves progressively, and deliverables are refined through successive cycles. A prime 
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example is research and development projects, in which it may be necessary to return to the 

design phase several times as a result of testing, prototyping, or feedback. The hallmark of 

this model is thus the presence of iterations between phases, which allows new information 

to be progressively incorporated, improving the product through continuous revisions. 

 

Figure 3-6, iterative life cycle 

Incremental life cycle 

The incremental life cycle is based on the idea of dividing the project into a series of 

successive releases, each of which provides an increment of value to the end customer. Each 

increment produces a complete, usable deliverable that partially contributes to the overall 

project goals. 

From a financial point of view, this approach offers advantages: it allows economic returns 

to be anticipated and subsequent phases to be partly self-financing. Unlike the traditional 

model, in which the return on investment becomes evident only at the end of the project, the 

incremental model promotes greater economic efficiency and faster value generation. 
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Figure 3-7, incremental life cycle, taken from [2]  

Agile life cycle 

The agile model represents a synthesis of the iterative and incremental cycles. It is in fact 

iterative, in that it involves continuous review and revision of work done, and it is 

incremental, in that each iteration produces a working increment of the product. 

It is a model that can adapt to new needs and is flexible enough to do so. It works best for 

projects that are new and change a lot, where the client can change goals and priorities as 

the project goes on. 

Time-boxed iterations (or sprints) with a set and consistent length are a unique part of this 

cycle. They help keep a steady and predictable pace of work. Feature-based planning is 

another important feature. Instead of a Work Breakdown Structure (WBS), the agile model 

uses a Feature Breakdown Structure (FBS). This organizes the work around the features that 

the final product needs instead of the tasks that need to be done. 

The agile method values teams and stakeholders working together all the time, encourages 

the delivery of working solutions on a regular basis, and makes it easy to adapt to change..  
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Hybrid life cycle 

The hybrid life cycle represents an intermediate solution, in which elements from different 

models described above are combined. Typically, a hybrid project adopts a prevalent model, 

supplemented by practices from other models to meet specific needs. 

A practical example might be an industrial project, such as the construction of a 

manufacturing plant, managed according to traditional logic in terms of planning and 

execution of work, but with a design phase managed in an agile mode.  

In this approach, it is possible to release the design documents in regular iterations (e.g., 

every two weeks) and after switch to a more rigid management during the construction and 

procurement stages. 

As a strategic option for projects with diverse components, this method balances the 

flexibility of the agile model with the stability of the waterfall model. 

3.1.4. Project Management Principles and Project Performance Domains 

As highlighted in the previous section, the discipline of project management has evolved 

significantly over the years, driven by the increasing complexity of projects and the spread 

of agile and hybrid approaches. These transformations have necessitated a progressive 

adaptation of management methodologies to increasingly dynamic, uncertain and rapidly 

changing operational contexts. 

In response to these needs, the Project Management Institute (PMI) has progressively 

updated its reference standards. Until the publication of the sixth edition of the PMBOK 

Guide [13], project management was structured according to a strongly process-oriented 

model, broken down into five process groups, Initiating, Planning, Executing, Monitoring 

and Controlling, and Closing, and ten knowledge areas. This approach proved particularly 

effective in predictive and well-structured contexts but showed application limitations in 

projects characterized by high levels of uncertainty, comlexity and the need for continuous 

adaptation. 

In the seventh edition of the PMBOK, PMI introduced a change: the abandonment of the 

process-based model in favor of a principles-based, value-oriented approach [1]. The new 

standard consists of 12 project management principles, which guide the project manager's 
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behavior and thinking, and 8 performance domains, which represent critical areas to focus 

on to ensure project success, regardless of the method adopted. 

As pointed out by Figueiredo [14], this change reflects an attempt to adapt the PMBOK to 

the contemporary reality of projects. However, the new approach has also been criticized for 

its abstractness and lack of operationality, as it does not provide concrete practical tools for 

daily project implementation. In many cases, traditional processes and phases remain a 

useful reference, especially when it comes to monitoring and control, as in this study, an area 

where performance forecasting is still based on classical methodologies. 

This chapter therefore offers an overview of traditional process groups, followed by an 

analysis of the new conceptual approach of PMBOK 7th. 

As stated in the PMBOK 6th [13], Project management processes are grouped in five Project 

Management Process Groups: 

• Initiating process group: it consists of those processes performed to define a new project 

or a new phase of an existing project by obtaining authorization to start the project or 

phase. “The purpose of the Initiating Process Group is to align the stakeholders’ 

expectations and the project purpose, inform stakeholders of the scope and objectives, 

and discuss how their participation in the project and its associated phases can help to 

ensure their expectations are met. Within the Initiating processes, the initial scope is 

defined, and initial financial resources are committed. Stakeholders who will interact and 

influence the overall outcome of the project are identified. If not already assigned, the 

project manager is appointed. This information is captured in the project charter and 

stakeholder register. When the project charter is approved, the project is officially 

authorized, and the project manager is authorized to apply organizational resources to 

project activities.” 

• Planning process group: it consists of those processes that establish the total scope of the 

effort, define and refine the objectives, and develop the course of action required to attain 

those objectives. “The processes in the Planning Process Group develop the components 

of the project management plan and the project documents used to carry out the project. 

The nature of a project may require the use of repeated feedback loops for additional 

analysis. As more project information or characteristics are gathered and understood, 

additional planning will likely be required. Significant changes that occur throughout the 

project life cycle may initiate a need to revisit one or more of the planning processes and, 
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possibly, one or both of the Initiating processes. This ongoing refinement of the project 

management plan is called progressive elaboration, indicating that planning and 

documentation are iterative or ongoing activities. The key benefit of this Process Group 

is to define the course of action to successfully complete the project or phase.” 

• Executing process group: it consists of those processes performed to complete the work 

defined in the project management plan to satisfy the project requirements. “This Process 

Group involves coordinating resources, managing stakeholder engagement, and 

integrating and performing the activities of the project in accordance with the project 

management plan. The key benefit of this Process Group is that the work needed to meet 

the project requirements and objectives is performed according to plan. A large portion 

of the project budget, resources, and time is expended in performing the Executing 

Process Group processes. The processes in the Executing Process Group may generate 

change requests. If approved, the change requests may trigger one or more planning 

processes that result in a modified management plan, project documents, and possibly 

new baselines.” 

• Monitoring and controlling process group: it consists of those processes required to track, 

review, and regulate the progress and performance of the project; identify any areas in 

which changes to the plan are required; and initiate the corresponding changes. 

“Monitoring is collecting project performance data, producing performance measures, 

and reporting and disseminating performance information. Controlling is comparing 

actual performance with planned performance, analyzing variances, assessing trends to 

effect process improvements, evaluating possible alternatives, and recommending 

appropriate corrective action as needed. The key benefit of this Process Group is that 

project performance is measured and analyzed at regular intervals, appropriate events, 

or when exception conditions occur in order to identify and correct variances from the 

project management plan.” 

• Closing process group: it consists of the processes performed to formally complete or 

close a project, phase, or contract. “This Process Group verifies that the defined 

processes are completed within all of the Process Groups to close the project or phase, 

as appropriate, and formally establishes that the project or project phase is complete. The 

key benefit of this Process Group is that phases, projects, and contracts are closed out 

appropriately. While there is only one process in this Process Group, organizations may 

have their own processes associated with project, phase, or contract closure. Therefore, 

the term Process Group is maintained.” 
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The principles of a profession serve as fundamental guidelines for strategy, decision-making, 

and problem-solving. In project management, these principles offer guidance on how people 

should act within projects, influencing and shaping the performance domains to achieve the 

desired outcomes. They are broadly defined, allowing for various ways in which individuals 

and organizations can align with them. While there is conceptual overlap between principles 

and performance domains, principles primarily direct behavior, whereas performance 

domains define key areas of focus where this behavior is demonstrated. 

As stated in the PMBOK 7th [1] the PM principles are: 

• Be a diligent, respectful, and caring steward: stewards must manage resources 

responsibly, respecting the people involved and taking care of the success of the project 

while maintaining compliance with internal and external guidelines.  

• Create a collaborative project team environment: project teams are made of people who 

possess different abilities, expertise, and backgrounds. Work environment based on trust 

and open communication fosters cooperation and the achievement of common goals. 

• Effectively engage with stakeholders: proactively involving stakeholders, understanding 

their expectations and needs, is essential to ensure the success of the project. 

• Focus on value: every decision and activity must be driven by the value the project brings 

to stakeholders and the organization.  

• Recognize, evaluate, and respond to system interactions: projects do not exist in 

isolation, so it is essential to consider interactions with other systems to prevent 

unintended effects. 

• Demonstrate leadership behaviors: a project manager must demonstrate and adapt 

leadership behaviors to inspire, motivate and lead the team with integrity, empathy and 

determination. 

• Tailor based on context: projects are unique, so it is crucial design the development 

approach based on the context of the project, its objectives, stakeholders, governance, 

and the environment to achieve the outcome while maximizing value, managing cost, 

and enhancing speed. 

• Build quality into processes and deliverables: maintain focus on quality, ensuring that 

deliverables meet project objectives and meet the needs, uses and acceptance 

requirements established by relevant stakeholders. 
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• Navigate complexity: managing project complexity requires careful analysis, the ability 

to simplify complex problems, and a structured approach to enable the project team to 

successfully manage the project lifecycle. 

• Optimize risk responses: risks and threats must be identified, assessed and addressed 

proactively to maximize positive impacts and minimize negative impacts to the project 

and its outcomes. 

• Embrace adaptability and resiliency: a flexible and resilient environment help the project 

accommodate change, recover from setbacks, and advance the work of the project. 

• Enable change to achieve the envisioned future state: the shift towards the desired future 

state involves preparing the team for new behaviors and processes essential to the 

project’s success. 

Project performance domains, which are correlated with the project management principles 

[Figure 3-8], are group of related activities that are crucial for effectively delivering project 

outcomes.  

These areas of focus function as interconnected components that operate concurrently 

throughout the entire project life cycle. Regardless of when value is delivered all domains 

are engaged from the project’s inception through to its completion. Those who manage the 

project deal with multiple areas, such as stakeholder engagement, team management, and 

organization of activities. These aspects overlap and intertwine, and their combination varies 

from project to project. 

The breakdown of activities by domain is determined by the context of the organization, the 

project, deliverables, the project team, stakeholders, and other factors. 

As stated in the PMBOK 7th [1] the Project Performance Domains are eight and they are 

presented below without specific order: 

• Stakeholder performance domain: it addresses activities and functions associated with 

stakeholders, an effective execution of it results in a productive working relationship, 

stakeholder agreement with project goals, and a positive impact from stakeholders who 

are satisfied. 

• Team performance domain: it focuses on the activities and functions related to the 

individuals responsible for delivering project outputs that drive business outcomes, it 

leads to a shared ownership, and a high-performing team guided by the leadership. 
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• Development approach and life cycle performance domain: it encompasses the activities 

and functions associated with defining and managing the project’s development 

methodology, rhythm, and life cycle stages. His results are development approaches that 

are consistent with project deliverables, a project life cycle consisting of phases that 

connect the delivery of business and stakeholder value from the beginning to the end of 

the project, and a project life cycle consisting of phases that facilitate the delivery 

cadence and development approach required to produce the project deliverables. 

• Planning performance domain: it addresses activities and functions associated with the 

initial, ongoing, and evolving organization and coordination necessary for delivering 

project deliverables and outcomes, an effective execution of it results in organized 

progresses, holistic approach to delivering the project outcomes, efficient planning 

information, and in a process for the adaptation of plans throughout the project based on 

emerging and changing needs or conditions. 

• Project work performance domain: it focuses on the activities and functions involved in 

defining project processes, managing resources, and foster a culture of continuous 

learning. When effectively executed, this domain leads to high levels of project 

performance in terms of efficiency, tailored project processes that align with the specific 

context, effective use and management of resources, and enhanced team capabilities. 

• Delivery Performance Domain: it is concerned with the activities and functions required 

to ensure that the project delivers the intended scope and quality outcomes. Effective 

execution of this domain leads to projects align with business goals and contribute to 

strategic progress, outcomes launched and successfully achieved, planned benefits 

delivered within the expected timeframes, a well-defined understanding of the project’s 

requirements by the project team, and satisfied stakeholder. 

• Measurement performance domain: it involves assessing project performance and 

implementing corrective actions as needed to ensure performance remains within 

acceptable limits. When applied, this domain supports a clear understanding of the 

project’s current status, informed and timely decision-making, prompt and suitable 

interventions to keep project performance aligned with expectations, achievement of 

project goals and delivery of business value through well-informed decisions based on 

accurate forecasts and evaluations. 

• Uncertainty performance domain: it focuses on activities and functions aimed at 

identifying and managing risks and uncertainties throughout the project lifecycle. 
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Effective execution of this domain enables solid understanding of the project 

environment, including technical, social, political, market, and economic factors, 

proactive identification, exploration, and response to uncertainty, awareness of how 

multiple variables within the project are interrelated, the ability to anticipate risks and 

opportunities and evaluate their potential impact, and efficient use of cost and schedule 

buffers to remain aligned with project goals. 

 

Figure 3-8, relationship between Project Management Principles and Project Performance Domains, taken from [1]. 
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3.2. Project Monitoring and Control 

The objective of the study is to optimize the performance measurement of estimates at 

completion of the project, with the intent of improving the effectiveness of Project 

Monitoring and Control activities (often shortly called Project Control). The latter can be 

described as a feedback system with two components: monitoring, aimed at identifying any 

current deviations from planned objectives, and control, aimed at correcting these deviations 

through effective corrective actions [15].  

Monitoring can be defined as the set of management procedures and practices aimed at 

systematically gathering information on actual or expected project performance, making use 

of specific performance metrics. Monitoring, on the other hand, represents the decision-

making process aimed at adjusting the project in order to ensure that the initial objectives 

are achieved. This is done through the analysis of the causes of performance deviations, the 

design of corrective actions deemed necessary and the subsequent implementation of those 

actions. 

As described in the previous section, in the sixth edition of the PMBOK, the Monitoring and 

Controlling Process Group constituted one of the five core process groups.  

While in the seventh edition of the PMBOK, the Project Management Institute took a novel 

approach, shifting the focus from processes to a framework based on principles and 

performance domains. In this new perspective, monitoring and control activities are no 

longer conceived as a separate phase, but as a cross-cutting and continuous dimension of 

project management, traceable in particular to the Measurement Performance Domain. 

Despite this structural change, the use of established techniques for measuring progress 

remains valid. Above all in contexts where such methodologies are already integrated or in 

projects where accurate forecasting and quantitative control play a crucial role, the use of 

classical performance measurement tools still remains a reliable practice. 

Analyzing the content of the PMBOK 7th, it becomes apparent that the Performance Domain 

includes specific guidance on methods for establishing effective performance measures [1]. 

According to PMI, establishing effective measures helps ensure that truly relevant 

information is measured and communicated to stakeholders. These steps make it possible to 
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monitor and report data that shows the project's current status. To put it another way, a well-

designed measurement gives the project team the data they need to decide quickly and 

implement corrective measures. 

In this context, PMBOK 7 distinguishes between two main types of Key Performance 

Indicators (KPIs): leading indicators and lagging indicators. 

Leading indicators “predict changes or trends in the project. If the change or trend is 

unfavorable, the project team evaluates the root cause of the leading indicator measurement 

and takes actions to reverse the trend. Used in this way, leading indicators can reduce 

performance risk on a project by identifying potential performance variances before they 

cross the tolerance threshold.” 

Lagging indicators “measure project deliverables or events. They provide information after 

the fact. Lagging indicators reflect past performance or conditions. Lagging indicators are 

easier to measure than leading indicators. Examples include the number of deliverables 

completed, the schedule or cost variance, and the amount of resources consumed.” 

Within the Measurement Performance Domain, PMBOK 7th also provides clear criteria for 

assessing their quality, proposing the use of the SMART criteria as a guide for defining 

metrics. According to this approach, a metric is considered effective if it meets the following 

characteristics: 

• Specific: Measurements are specific as to what to measure. 

• Meaningful: Measures should be tied to the business case, baselines, or requirements. 

• Achievable: The target is achievable given the people, technology, and environment. 

• Relevant: Measures should be relevant. 

• Timely: Useful measurements are timely. Information that is old is not as useful as fresh 

information. 

A further outlined in this section of the PMBOK 7th is the guidance on what should be 

measured in a project. This choice depends on the specific objectives of the project, its 

expected outcomes, and the operational environment in which it takes place. Specifically, 

the PMI identifies some common categories of metrics, including: 

• Deliverable metrics: measures related to the quality and completeness of deliverables. 
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• Delivery: timing and mode of delivery. 

• Baseline performance: comparison of planned and actual values. 

• Resources: resource utilization and workloads. 

• Business value: value generated in terms of benefits to the organization. 

• Stakeholders: stakeholder satisfaction and involvement. 

• Forecasts: forecasts of future project performance. 

To measure these categories, the adoption of metrics that can also be traced back to more 

traditional methodologies, among which Earned Value Analysis (EVA), are proposed. The 

latter, in particular, is a established technique for measuring integrated performance in terms 

of time, cost, and progress, and will be the subject of a specific discussion in the next chapter. 

3.3. Performance Measurement: Earned Value Analysis 

Earned Value Analysis (EVA) integrates cost, schedule, and work performed by ascribing 

monetary values to each. EVA methodologies, which include Earned Value Management 

(EVM) and Earned Schedule Management (ESM), rely on three metrics: the budgeted cost 

of work performed (i.e., Earned Value), the actual cost of work performed (i.e., Actual Cost) 

and the budgeted cost of work scheduled (i.e., Planned Value). 

• Planned Value (PV – BCWS) 

PV represents the value of work that, according to the project schedule, should be 

completed to a given point in time. This metric is calculated based on the total budget 

allocated for the project and the time distribution of planned activities. 

• Earned Value (EV - BCWP) 

EV is a metric that indicates the value of the work actually completed up to a certain 

point in the project, expressed in terms of the planned budget. It measures the actual 

progress of the project, allowing you to assess whether the work has been performed 

in line with cost and schedule forecasts. 

• Actual Cost (AC - ACWP) 

AC represents the total cost actually incurred for work completed up to a given point 

in time. It reflects the actual expenses incurred by the project.   

Planned Value, Actual Cost and Earned Value S-curves can have six possible arrangements, 

as in the chart presented [Figure 3-9]. 
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Figure 3-9, possible arrangements of S-curves indicating PV, AC, and EV, taken from [15] 

3.3.1. Earned Value Management and Earned Schedule management 

Earned Value Management (EVM) was first introduced by the e U.S. Department of Defense 

(DoD) in 1967, indeed, the need for a system such as EVM arose from the increasing 

complexity of projects, such as missile development programs, which often experienced 

significant cost overruns and delays. EVM established a structured framework that integrates 
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essential elements of project scope, schedule, and cost performance, improving oversight 

and accountability in complex projects.  

The Department of Defense sought to standardize project evaluation methods and improve 

transparency for stakeholders through consistent reporting practices by setting at $20 million 

the budget above which projects would have to be monitored through the use of EVM [5]. 

A key moment in the recognition of Earned Value Management as an international standard 

in project management was its official inclusion within the Project Management Institute 

standards. As early as 1996, with the publication of the first edition of the PMBOK, 

references to cost control techniques began to appear, although without a direct focus on 

EVM [16]. It is with the second edition in 2000, however, that we see a real turning point: 

EVM is formally recognized as a fundamental technique for monitoring and controlling 

project costs [17]. The final consolidation comes in 2005, with the publication of the 

Standard for Earned Value Management by PMI, which enshrines EVM as the benchmark 

methodology for objective measurement of project performance [18]. 

As a result of this development, EVM has become an important tool for project management, 

and communication with stakeholders has benefited from this standardization, but because 

it is based on predetermined methodologies it has encountered some difficulties in 

responding to changing project contexts. 

Earned Schedule Management (ES) represents an enhancement to traditional Earned Value 

Management, and it was introduced by Lipke in 2003 [19]. It overcomes some limitations in 

forecasting project timelines and enables a clearer understanding of schedule performance 

by measuring the schedule progress in time units instead of dollar amounts. 

ESM’s focus on temporal variances not only simplifies interpretation but also equips project 

managers with practical tools to realign schedules proactively. This temporal perspective 

assesses the ambiguity present in traditional EVM metrics, particularly in projects with non-

linear dynamics, providing a more reliable framework for evaluating and addressing delays 

[20]. 

3.3.2. Performance metrics 

Earned Value Analysis uses a series of derived metrics to gain a better sense of project 

performance. These performance metrics are useful tools for the purpose of project 
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monitoring and control, as they enable the evaluation of a project's performance against its 

objectives. Through the analysis of these metrics, it is possible to monitor resource 

utilization, adherence to budget and planned time-in fact, they aim to identify any deviations 

from initial planning, guiding any corrective measures. In this section, we will highlight a 

set of key metrics related to Earned Value Analysis, which are used to assess project 

performance in terms of cost and schedule efficiency. 

Budget at Completion (BAC) 

BAC indicates the overall amount of funds assigned to the project, reflecting the total of all 

planned expenses. It plays a key role in project management, as it outlines the full financial 

scope and acts as a benchmark the project manager strives to meet. 

Cost Variance (CV) 

The CV metric is an economic indicator of cost performance. It represents the difference 

between the Budgeted Cost of Work Performed and the Actual Cost of Work 

Performed[Figure 3-10]. The formula is: 

𝐶𝑉 = 𝐵𝐶𝑊𝑃 − 𝐴𝐶𝑊𝑃 = 𝐸𝑉 − 𝐴𝐶 

Where: 

• 𝐵𝐶𝑊𝑃 is Budgeted Cost of Work Performed or Earned Value 

• 𝐴𝐶𝑊𝑃 represents Actual Cost of Work Performed or Actual cost 

Cost Performance Index (CPI) 

The CPI is the corresponding relative measure of Cost Variance, representing the ratio 

between the earned value and the actual cost incurred. The formula is: 

𝐶𝑃𝐼 =
BCWP
ACWP =

𝐸𝑉
𝐴𝐶 

Where: 

• 𝐵𝐶𝑊𝑃 is Budgeted Cost of Work Performed or Earned Value 

• 𝐴𝐶𝑊𝑃 represents Actual Cost of Work Performed or Actual cost 
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Schedule Variance (SV) 

The SV metric is a timeline indicator of time performance. It represents the difference 

between the Budgeted Cost of Work Performed and the Budgeted Cost of Work Scheduled 

[Figure 3-10]. The formula is: 

𝑆𝑉!"# = 𝐵𝐶𝑊𝑃 − 𝐵𝐶𝑊𝑆 = 𝐸𝑉 − 𝑃𝑉 

Where: 

• 𝐵𝐶𝑊𝑃 is Budgeted Cost of Work Performed or Earned Value 

• 𝐵𝐶𝑊𝑆 represents Budgeted Cost of Work Performed or Panned Value 

For this metric, the Earned Schedule theory provides an extension to the traditional Earned 

Value Management approach. The formula is: 

𝑆𝑉!$ = 𝐸𝑆 − 𝐴𝑇 

Where: 

• 𝐸𝑆 is the point in time, according to the project baseline, when the current Earned 

Value (EV) should have been achieved 

• 𝐴𝑇 represents the Actual Time, amount of time that has elapsed since the start of the 

project 

Schedule Performance index (SPI) 

The SPI is the corresponding relative measure of Schedule Variance, representing the ratio 

between the earned value and the planned value. The formula is: 

𝑆𝑃𝐼!"# =
BCWP
BCWS =

𝐸𝑉
𝑃𝑉 

Where: 

• 𝐵𝐶𝑊𝑃 is Budgeted Cost of Work Performed or Earned Value 

• 𝐵𝐶𝑊𝑆 represents Budgeted Cost of Work Performed or Panned Value 

As for the SV also the SPI has his approach provided by Earnes Schedule theory 
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𝑆𝑃𝐼!$ =
ES
AT 

Where: 

• 𝐸𝑆 is the point in time, according to the project baseline, when the current Earned 

Value (EV) should have been achieved 

• 𝐴𝑇 represents the Actual Time, amount of time that has elapsed since the start of the 

project 

 

Figure 3-10, Earned Value Analysis Showing Schedule and Cost Variance, taken from [1] 

Estimation At Compilation (EAC) 

EAC is a critical metric that estimates the total cost or duration required to complete a 

project, based on current performance. This metric supports project managers in determining 

whether the project will meet the initial budget and schedule or whether changes will be 

required to align with objectives. 

Cost Estimation At Compilation (CEAC) 

CEAC represents a forecast of the total cost of the project, based on costs incurred to date 

(AC) plus an estimate of remaining costs (ETC) [Figure 3-11]. Although several CEAC 

formulas are available through the EVM, a common approach is a manual “bottom-up” 

estimation by the project manager, which combines actual costs with a new assessment of 

the costs required to complete the project: 
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𝐶𝐸𝐴𝐶 = 𝐴𝐶 + 𝐸𝑇𝐶 

Where: 

• 𝐴𝐶 is Actual Cost 

• 𝐸𝑇𝐶 represents Estimate To Complete 

In addition to manual estimation, there are three calculated methods for estimating EAC: 

1. CEAC forecast for ETC work performed at the budgeted rate 

This Method accepts the actual project performance to date (whether favorable or 

unfavorable) as represented by the actual costs and predicts that all future ETC work will be 

accomplished at the budgeted rate. The formula is: 

𝐶𝐸𝐴𝐶 = 𝐴𝐶 + (𝐵𝐴𝐶 − 𝐸𝑉) 

Where: 

• 𝐴𝐶 is Actual Cost 

• 𝐵𝐴𝐶 represents Budget At Completion 

• 𝐸𝑉 is Earned Value 

2. CEAC forecast for ETC work performed at the present CPI 

This method assumes that what the project has experienced to date can be expected to 

continue in the future. The formula is: 

𝐶𝐸𝐴𝐶 =
𝐵𝐴𝐶
𝐶𝑃𝐼  

Where: 

• 𝐵𝐴𝐶 represents Budget At Completion 

• 𝐶𝑃𝐼 is Cost Performance Index 

3. CEAC forecast for ETC work considering both SPI and CPI factors 
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In this forecast, the ETC work will be performed at an efficiency rate that considers both the 

cost and schedule performance indices. This method is most useful when the project 

schedule is a factor impacting the ETC effort. The formula is: 

𝐶𝐸𝐴𝐶 = 𝐴𝐶 +
𝐵𝐴𝐶 − 𝐸𝑉
𝐶𝑃𝐼 ∗ 𝑆𝑃𝐼  

Where: 

• 𝐴𝐶 is Actual Cost 

• 𝐵𝐴𝐶 represents Budget At Completion 

• 𝐶𝑃𝐼 is Cost Performance Index 

• 𝑆𝑃𝐼 is Schedule Performance Index 

 

Figure 3-11, Forecast of CEAC and ETC, taken from [1] 

Time Estimation At Compilation (TEAC) 

TEAC represents a forecast of the total duration of the project to completion, based on the 

analysis of current time progress. This indicator is used to estimate how long it will take to 

complete the entire project, assuming that the scheduling performance observed to date 

will continue in the same manner. The formula is: 
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𝑇𝐸𝐴𝐶 =
𝑃𝑙𝑎𝑛𝑛𝑒𝑑	𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑆𝑃𝐼  

Where: 

• 𝑃𝐷 is the Planned Duration 

• SPI is the Schedule Performance Index 

This formula is based on the assumption that the time performance observed up to the time 

of calculation (i.e., the SPI) will continue through the rest of the project. An SPI value < 1 

indicates delays relative to the planned schedule, resulting in a TEAC greater than the 

planned duration; conversely, an SPI > 1 indicates faster-than-expected progress, resulting 

in a reduction in the estimated duration to completion. 

 

3.4. Dynamic parameters 

In the literature there are also other dynamic measures that assess schedule performance 

from different perspectives, considering various angles and datasets. When used 

individually, these metrics may lead to misleading conclusions or introduce bias into the 

model, to mitigate this risk, it is crucial to use a complementary set of metrics. For this 

reason, in this study, these additional measures have been combined with the more standard 

EVA metrics to ensure a more balanced and reliable analysis. A detailed explanation of these 

dynamic measures is provided below. 

Total Float Consumption Index (TFCI) 

The TFCI is a duration-based metric that measures the rate of total float consumption (total 

available time margin) relative to project progress. Unlike other metrics that capture only 

the current state of the project at a given point in time, the TFCI considers the average float 

consumption rate to estimate an expected completion date for the entire project [21]. The 

formula is the following: 

𝑇𝐹𝐶𝐼 = 	
𝐴𝐷 − 𝐶𝑃𝑇𝐹	(𝑜𝑟	𝐵𝐹𝑉)

𝐴𝐷  

Where: 
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• 𝐴𝐷 is the actual duration 

• 𝐶𝑃𝑇𝐹 represents the Critical Path Total Float 

• 𝐵𝐹𝑉 represents the Baseline Finish Variance which can be used in place of CPTF 

A TFCI of less than 1.00 indicates that a project may not complete on-time and applying that 

indicator to the total program duration predicts where a project would complete if trends 

persisted, or corrective action is not taken. 

Schedule Performance Index - Time vs. Earned Schedule (SPI vs. TSPI) 

The To Complete Schedule Performance Index (TSPI) is a measure of the efficiency of the 

planned schedule for project completion. This index provides an estimate of the average rate 

of progress that must be maintained to complete the project on schedule. The TSPI can be 

compared with the SPI (Schedule Performance Index) to see if future schedule efficiency 

will be consistent with the efficiency demonstrated to date [21]. The formula of TSPI is 

defined as follows: 

𝑇𝑆𝑃𝐼 = 	
𝑃𝐷𝑊𝑅
𝑅𝐷  

Where: 

• 𝑃𝐷𝑊𝑅 is the time planned to go from current BCWP to BAC 

• 𝐶𝑃𝑇𝐹 represents the actual planned remaining duration based on current progress 

The comparison of SPI and TSPI helps to asses whether the future performance of the project 

will be consistent with that observed so far. If the difference between the two indices falls 

within the range of -0.10 to 0.10, it means that the efficiency demonstrated so far is consistent 

with the forecast. Instead, when the difference exceeds 0.10 it could indicate an overly 

pessimistic forecast, suggesting a possible slowdown from the current trend and if the value 

falls below -0.10, the forecast is optimistic, implying an improvement in performance that 

may not be realistic. 

Baseline Execution Index (BEI) and Baseline Execution Index at Start (BEIstart) 

Baseline Execution Index measures the number of tasks completed as a ratio to those tasks 

that should have completed to date according to the original (baseline) plan. This index 
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provides a clear indication of the pace of project execution and helps to identify any risk of 

delayed completion in advance. Alongside the BEI, the Baseline Execution Index at Start is 

used, a variant that focuses on activities that should have been started versus those that were 

actually started, it useful for identifying problems with the activation of activities, 

highlighting whether the project is meeting the timeline of the initial phases of work [21]. 

BEI and BEIstart formulas are the following: 

𝐵𝐸𝐼 = 	
𝑇𝑎𝑠𝑘	𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦	𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

𝑇𝑎𝑠𝑘	𝑝𝑙𝑎𝑛𝑛𝑒𝑑	𝑡𝑜	𝑏𝑒	𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 

𝐵𝐸𝐼%&'(& =	
𝑇𝑎𝑠𝑘	𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦	𝑠𝑡𝑎𝑟𝑡𝑒𝑑

𝑇𝑎𝑠𝑘	𝑝𝑙𝑎𝑛𝑛𝑒𝑑	𝑡𝑜	𝑏𝑒	𝑠𝑡𝑎𝑟𝑡𝑒𝑑 

The ideal value is 1.00, which indicates that the project is proceeding in line with the 

schedule. If the BEI or BEIstart are greater than 1.00, it means that the number of completed 

or started activities exceeds expectations, while a value less than 1.00 signals that the project 

is lagging behind initial plans. 

Earned Duration (ED(t)) 

Earned duration is a metrics introduced by Jacob and Kane is an extension of the EVM 

designed to improve the accuracy in estimating the project completion date [22]. Ed formula 

is the following: 

𝐸𝐷(𝑡) = 	𝑡 ∗ 𝑆𝑃𝐼!"#(𝑡) 

Where: 

• 𝑡 is the actual time of the project 

• 𝑆𝑃𝐼!"#(𝑡) represents Schedule Performance Index in EVM 

Jacob and Kane's test results show that the ED provides reliable estimates in the early phase 

of the Project while toward the end it tends to be less accurate. 
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Time to Schedule Ratio (T/S) and Time to Cost Ratio (T/R) 

The time-to-schedule ratio and time-to-cost ratio metrics proposed by Przywara and Rak are 

also an extension of the EVM introduced with the aim of improving the analysis of project 

financial and time deviations [23]. The formulas are as follows: 

𝑇/𝑆 = 	
𝐵𝐶𝑊𝑆 − 𝐴𝐶𝑊𝑃
𝐵𝐶𝑊𝑃 − 𝐵𝐶𝑊𝑆 

𝑇/𝐶 = 	
𝐵𝐶𝑊𝑆 − 𝐴𝐶𝑊𝑃
𝐵𝐶𝑊𝑃 − 𝐴𝐶𝑊𝑃 

Where: 

• BCWS is the Budgeted Cost of Work Scheduled (PV) 

• ACWP is the Actual Cost of Work Performed (AV) 

• BCWP is the Budgeted Cost of Work Performed (EV) 

If T/S is positive, it means that the project is experiencing delays affecting liquidity and a 

negative T/C value indicates that the actual costs are exceeding the projected costs, 

negatively impacting liquidity. 

Cost Schedule Index (CSI) 

The Cost-Schedule Index (CSI) is a metric designed to provide a comprehensive measure of 

a project’s overall efficiency in terms of both cost and schedule performance. By integrating 

EVA indicators, it offers a consolidated assessment of project progress. 

𝐶𝑆𝐼 = 	𝐶𝑃𝐼 ∗ 𝑆𝑃𝐼!"# 

Where: 

• 𝐶𝑃𝐼 is the Cost Performance Index 

• 𝑆𝑃𝐼!"# represents Schedule Performance Index in EVM 

The value of CSI provides a direct indication of the overall condition of the project. When 

CSI is greater than 1, the project is in good condition because the cost and scheduling 

performance are both efficient. When CSI is equal to 1, the project is in line with the plan, 
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with no significant deviations. Finally, when CSI is less than 1, the project is experiencing 

difficulties, suggesting delays and/or budget overruns. 

3.5. Network Topology 

Network topology indicators are tools that describe the structure of a project from the 

perspective of its network of activities and the dependencies between them. These indicators 

influence the ability to forecast during project control, especially when applying techniques 

such as Earned Value Management (EVM). 

Project Seriality (SP) 

Project Seriality describes how close the network structure of a project is to a serial or 

parallel network and can be represented by the serial/parallel project introduced in 1999 [24]. 

An SP value of 0 represents a fully parallel project, while an SP value of 1 represents a 

completely serial project. The SP formula is as follows: 

𝑆𝑃 = 	
𝑛% − 1
𝑛& − 1

 

Where: 

• 𝑛% is the maximum number of subsequent activities in the network 

• 𝑛& is the total number of activities 

For an evaluation of predictive accuracy in project control here there is a proposal 

classification into three categories [25]: 

• 0% ≤ SP < 40% → parallel projects 

• 40% ≤ SP ≤ 60% → serial-parallel projects 

• 60% < SP ≤ 100% → serial projects 

Regularity index indicator (RI) 

Project regularity is an innovative concept introduced to measure how regular the 

distribution of Planned Value (PV) costs is over the entire time horizon of a project. Unlike 

other topological indicators (such as SP), which describe the logical structure of the project, 

RI describes the temporal shape of the PV curve and thus the trend of planned expenditure 
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over time [26]. If the PV curve is perfectly linear, all time estimation formulas (such as 

Earned Duration Method, earned Schedule Method and Plannned Value Method) provide 

exact predictions. However, as soon as the PV curve deviates from linearity the risk of 

forecast errors increases. This motivated the introduction of the Regularity Index (RI) as a 

quantitative measure of this temporal regularity. The formula is the following: 

𝑅𝐼 = 	
∑ 𝑚) −∑ 𝑎)(

)*+
(
)*+

∑ 𝑚)
(
)*+

 

Where: 

• 𝑚) is the maximal possible deviation of the project’s PV-curve from a perfectly linear 

curve at time instance 𝑖 = 1,… , 𝑟 

• 𝑎) is the actual deviation of the project’s PV-curve from a perfectly linear curve at 

time instance 𝑖 = 1,… , 𝑟 

• 𝑟 represents number of equidistant evaluation points 

The RI works in a way that mirrors the logic behind the Serial/Parallel indicator; when a 

project’s Planned Value follows a perfectly linear growth, its RI reaches the maximum value 

of 1, just like an SP of 1 represents a fully serial network. On the opposite end, a project 

where the Earned Value remains at zero for most of the timeline and then rises to match the 

Budget at Completion (BAC) near the conclusion would score an RI of 0. Most projects, 

however, exhibit regularity levels that lie between these two extremes. 

Length of arcs indicator (LA) 

The LA indicator describes the topological distance between two activities connected by an 

arc of precedence in the project network. It measures how “far” in time one activity is located 

relative to another to which it is connected [27]. It is defined as: 

𝐿𝐴 = 	𝑃𝐿, − 𝑃𝐿) 

Where: 

• 𝑃𝐿, the progressive level of the end node 𝑗 defined by [28] 

• 𝑃𝐿) the progressive level of the end node 𝑖 defined by [28] 



 
 

45 

The length of an arc thus represents the number of levels between two related activities, and 

reflects whether the dependence is immediate (short arc, LA=1) or more distant in time (long 

arc, LA>1). 

Topological float indicator (TF) 

The Topological Float indicator measures the structural flexibility of each activity within the 

network, that is, how many levels it can “move” in the design graph without violating logical 

dependencies [27].  It is given by: 

𝑇𝐹 = 	𝑅𝐿) − 𝑃𝐿) 

Where: 

• 𝑅𝐿) the regressive level of the end node 𝑖 defined by [28] 

• 𝑃𝐿) the progressive level of the end node 𝑖 defined by [28] 

The aggregate Topological Float for a project is obtained as the average or sum of the floats 

of all activities. If F = 0 means activities on the critical path or strongly constrained (no 

freedom to move), if TF > 0 means flexible, non-critical activities with room to maneuver, 

at the and if TF is high means greater possibility to reoptimize the project in case of 

unforeseen events. 

  



 
 

46 

3.6. Machine Learning for Project Management Control 

The growing interest in artificial intelligence has also brought a number of innovative tools 

to project management that can overcome the limitations of traditional techniques such as 

Earned Value Analysis. Among these, Machine Learning (ML) has proven particularly suited 

to support control activities due to its ability to learn from data and adapt to the complexity 

of real projects. 

This chapter introduces the topic of ML applied to project management. After a brief 

overview of the fundamental concepts and differences from artificial intelligence and 

statistics, it goes on to describe the main existing models and the logic behind them. Finally, 

a review of the most recent literature is offered, with a focus on studies that apply ML to 

project cost and schedule forecasting, highlighting approaches, data used, and results 

obtained. 

3.6.1. Fundamentals of Machine Learning 

The innovation of AI originated with Alan Turing's publication titled "Computing Machinery 

and Intelligence", which proposed the Turing Test in 1950. For centuries philosophers and 

engineers have speculated over the amalgamation of mechanics and intelligence, and while 

we are still far from machines emulating humans, we have come a long way in terms of AI 

infrastructure. Today, diagnostic medicine, logistics, data mining, and many more fields are 

under the influence of AI. 

Machine learning (ML) is one of the key tools on which modern AI is based, algorithms 

placed in ML empowers machines to perform specific tasks unaided. These algorithms are 

capable of interpreting data through classification, predictions, and recognizing patterns. 

It is crucial not to mix up statistics, artificial intelligence, and machine learning, since they 

are all rooted in concepts and principles intertwine, albeit tangentially, yet they have distinct 

separate goals and methodologies. Artificial intelligence constitutes a broader framework 

which encompasses the attempt to reproduce certain characteristic features of human 

intelligence, including reasoning, problem solving, perception, and ultimately, self-

awareness. Machine learning, which is a subfield of Artificial Intelligence that focuses on 

the capacity to learn from information, is also part of AI. Machine learning lacks “thinking 

ability” in the human sense, as it does not have consciousness or intent. Despite this, its 
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immense capacity to process information allows it to conduct predictive analysis and 

enhance its performance with experience.  

Another key distinction concerns the relationship between machine learning and statistics. 

Although ML shares many theoretical foundations with statistics-particularly with regard to 

data modeling and analysis-the two fields diverge in purpose and approach. Statistics is 

primarily geared toward describing and interpreting phenomena based on theoretical 

assumptions, such as a known distribution, and analysis is constructed to test a hypothesis 

or test a relationship. Machine learning, on the other hand, does not start from rigid 

assumptions, but learns directly from the data, even in the absence of a predefined structure. 

The output of ML is often aimed at predicting new outcomes, optimizing performance even 

on examples not in the original sample. 

From a practical point of view, statistics works with structured and representative datasets, 

while machine learning fits unstructured data, such as images, text, or graphs. Moreover, ML 

models are designed to be generalizable: that is, to adapt not only to the current situation but 

also to new contexts, making them more flexible but also more demanding in terms of 

computational resources. 

Large-scale adoption of machine learning poses significant hardware-related challenges. The 

datasets used are often enormous in size, resulting not only in the need for significant 

amounts of memory, but also for high-performance processors with many cores and high 

computational speed. One of the main problems is the inability, in certain contexts, to wait 

for days for the results of an analysis: analysts need quick responses, even at the expense of 

absolute accuracy. 

Some key aspects to consider when working with machine learning include: obtaining a 

useful result before refining it, it is preferable to reach an initial functional solution, avoiding 

unnecessarily complicating the algorithm, which may become unsound or applicable only to 

a specific dataset. ask the right question, many failures result from an incorrect formulation 

of the initial problem. Endlessly optimizing an algorithm will never be effective if the 

starting question is wrong, do not blindly rely on intuition: the analyst's intuition is a starting 

point, but in ML, mistakes are more frequent than successes. It is therefore necessary to 

question one's assumptions, even when they seem reasonable. 
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3.6.2. Types of ML Models 

As illustrated in the previous section, Machine Learning is a system capable of learning from 

data, reasoning, and experience. It is precisely the way in which this learning takes place that 

is the main distinction between the different types of Machine Learning, each characterized 

by a unique approach and specific problems it is able to address. ML models can be classified 

into four main categories, which will be presented in the following section of this chapter 

[29]. 

Supervised Learning 

Supervised learning is one of the most common methods in machine learning. This method 

is based on the utilization of labeled data, in which the dataset example comprises an input 

and its corresponding output. The model aims to reduce the error between generated 

predictions and actual values by learning a function that can accurately map inputs to 

outputs. Regression and classification are two uses for this kind of learning. The most 

relevant ML methods in Project Management field belong to supervised regression, such as 

Linear Models, Bayesian Models, Gradient Descent-Based, Robust Regression, Nonlinear 

Models, Ensemble Methods, Neural Networks. 

Unsupervised Learning 

Unsupervised learning allows the algorithm to recognize patterns in the data on its own by 

learning from examples. As a result, the data are restructured into classes or new values that 

can be used in subsequent analyses. A practical example is automated recommendation 

systems, which estimate a user's preferences by comparing them with those of similar 

customers. 

Semi-Supervised Learning 

Semi-supervised learning combines the characteristics of supervised and unsupervised 

learning and it is particularly useful when labeling the data would complex. The model is 

trained on a small portion of labeled data and a large amount of unlabeled data, with the 

objective of learning features that can make accurate predictions about the output variable. 
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Reinforcement Learning 

Reinforcement learning happens when an algorithm tosses out a guess and then hears, in 

plain yes or no terms, whether it nailed the shot or flubbed it. The approach fits any situation 

with real-time choices that matter, offering hard advice about what the system ought to do 

next. Its mechanics mirror the old trial-and-error habit of people, with each small price paid 

for a slip sharpening the next attempt. A classic example is the use of reinforcement learning 

in video games, where the algorithm explores different actions and learns which ones to 

avoid in order to survive or improve the outcome. 

3.6.3. State of the Art: Machine Learning for Project Cost and Schedule 

Forecasting 

In more recent years, the use of ML models in project time and cost forecasting has gained 

considerable attention. The focus of these works tends to address the restriction of traditional 

techniques like Earned Value Analysis which do not adequately account for the dynamic 

non-linear interactions present within projects. Instead, ML offers flexible and adaptive tools 

that can learn from historical data and progressively improve the accuracy of estimates. 

This section presents and analyzes some of the most significant contributions in the recent 

literature, each proposing different approaches-from recurrent neural networks to hybrid 

models and regression techniques-applied to real or simulated datasets. [Table 3-1] 

summarizes their main features, while the following paragraphs provide a detailed 

description of each study. 

Table 3-1, A summary of the reviewed studies on ML applications for project forecasting 

 

  

Authors Title ML Method Forecasted Variable

Santos et al. (2023) Explainable Machine Learning for Project 
Management Control

Random Forest, Gradient Boosting, 
XGBoost + SHAP

Cost and time (EAC, TEAC)

İnan et al. (2022) A Machine Learning Study to Enhance 
Project Cost Forecasting

LSTM (Recurrent Neural Networks) Cost (EAC)

ForouzeshNejad et al. 
(2024)

Optimizing Project Time and Cost 
Prediction Using a Hybrid XGBoost and 
Simulated Annealing Algorithm

XGBoost + Simulated Annealing Cost and time

Yalçın et al. (2024)
Evaluation of Earned Value Management-
Based Cost Estimation via Machine 
Learning

ANN, M5Tree, GPR, ANFIS, LSTM, SVM Cost (CEAC)

Ottaviani & De Marco 
(2022)

Multiple Linear Regression Model for 
Improved Project Cost Forecasting

Multiple Linear Regression (LASSO) Cost (EAC)
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“Explainable Machine Learning for Project Management Control” 

Among the most significant and recent contributions in the field of predictive project 

management, the work [30] proposes an advanced extension of Earned Value Management 

analysis, integrating machine learning models and interpretability techniques to improve 

control capacity in project environments characterized by high uncertainty. This study is part 

of the strand of research that recognizes the limitations of traditional deterministic methods, 

such as EVM, which assume fixed durations and costs for activities and fail to dynamically 

model the variability observed in real projects. 

The proposed methodology starts with stochastic project modeling, in which activities are 

represented as nodes in a Critical Path Method or PERT method and their durations follow 

probability distributions. From this framework, the authors generate several simulations of 

the project using Monte Carlo, obtaining a synthetic but representative dataset of the 

dynamic behavior of the project under uncertainty. On this dataset, several machine learning 

models-especially ensemble methods such as Random Forest, Gradient Boosting, and 

XGBoost are trained with the goal of predicting key variables such as the final duration of 

the project or the expected time at the time of control, depending on the analysis scenario. 

In the modeling phase, the authors compared four ensemble algorithms (Random Forest, 

Gradient Boosting, XGBoost and AdaBoost), selecting the best one through 5-fold nested 

cross-validation. For the regression case, the prediction of the final project duration, the best 

performing model was Gradient Boosting Regressor, with an average Mean Squared Error 

(MSE) of 9.19. It was followed by Random Forest (MSE ≈ 9.20) and XGBoost (MSE ≈ 

9.21), while AdaBoost reported lower performance (MSE ≈ 11.06) [Figure 3-12]. 

 

Figure 3-12, Results for regression model selection, taken from [30] 

Also, in classification-that is, in predicting whether the project will finish late or not-

Gradient Boosting achieved the best accuracy with an average of 85.7%, confirming the 

robustness of this approach in both analytical contexts [Figure 3-13]. 
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Figure 3-13, Results for classification model selection, taken from [30] 

The study also introduces a layer of explainability based on the SHAP (SHapley Additive 

exPlanations) technique, which allows ML model predictions to be interpreted in terms of 

the contribution of individual activities. SHAP analysis is in fact applied on the simulated 

activity durations: each activity is treated as an explanatory variable, and it is measured how 

much it contributes-positively or negatively-to the final model prediction, both globally and 

for individual simulations. 

The analysis is conducted in two distinct but complementary modes: forward analysis and 

backward analysis. The first has a forward-looking orientation and aims to support execution 

and rescheduling decisions: through SHAP summary plots and dependence plots, the impact 

of future activities on the expected time or cost of the project is identified, highlighting any 

interactions between tasks. The second mode allows the current project situation to be 

explained by attributing root causes to specific activities, with the goal of providing causal 

analysis. At this stage, this study uses SHAP waterfall plots to visualize the cumulative 

contribution of activities to the prediction obtained at a given control point, strengthening 

the diagnostic capability of the model. 

In addition to methodological aspects, the paper also carefully discusses managerial 

implications. It highlights how the combined use of simulations, ML and Explainable 

Artificial Intelligence (XAI) can provide project managers with a more transparent decision 

support tool than traditional methods, capable not only of predicting but also of explaining. 

This feature is particularly relevant in complex contexts, where it is critical to justify data-

driven choices and effectively communicate results with stakeholders. 

Overall, the proposed framework stands out for its generalizability (being model-agnostic), 

for its consistency with the stochastic nature of real projects, and for the analytical depth 

offered through visual and quantitative tools that make project control more interpretable, 

responsive, and accountable. 
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“A Machine Learning Study to Enhance Project Cost Forecasting” 

This study [31] proposes a predictive model based on Machine Learning techniques to 

improve the accuracy of Cost Estimate at Completion forecasts. The Earned Value 

Management approach's structural limitations, specifically its forecasting component based 

on linear indices such as Cost Performance Index (CPI) and Schedule Performance Index 

(SPI), serve as the primary driving force behind the work. Despite their widespread use, 

these metrics are predicated on assumptions that frequently do not accurately represent the 

nonlinear patterns, often resembling "S" curves, that characterize the actual cost behavior in 

projects. 

To overcome these limitations, the authors develop a supervised learning model based on 

recurrent neural networks, and in particular the Long Short-Term Memory (LSTM) 

architecture, which is particularly well suited to modeling temporal sequences. The model 

was trained from historical project data provided by Ghent University's OR&S database, 

same database used in this work, of which 41 were selected for the final analysis (all in the 

construction industry).  

The input to the ML model consists of seven-dimensional feature vector: six of these are 

derived from the raw values and moving averages of the CPI and SPI, calculated with 

moving windows of two and three points; the seventh is the normalized time (given by the 

ratio of actual duration to planned duration). The target to be predicted is the CEAC, 

expressed as the final estimate of the cost of project completion. 

The validation protocol involves a series of 300 experiments, in which for each iteration 12 

projects are used for training and 3 for testing using a cross-validation approach. 

The accuracy of the predictions was measured by Mean Absolute Percentage Error (MAPE). 

The results showed that in 75.33% of the cases, the ML model produced more accurate cost 

estimates than the linear EVM model used as a benchmark. About half of the projects showed 

an improvement in MAPE on the order of 1 percent, while in the remaining cases the 

improvement was even more pronounced [Figure 3-14]. The authors point out that while this 

is an apparently small deviation, the added value of the LSTM model lies in its ability to 

learn specific cost growth patterns from historical data, overcoming the rigidities of fixed 

formulas.  
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Figure 3-14, The MAPE difference between the proposed ML mode and the EVM model, taken from [31] 

  

“Optimizing Project Time and Cost Prediction Using a Hybrid XGBoost and Simulated 

Annealing Algorithm” 

In the context of construction projects, where the complexity of activity networks and 

environmental uncertainty make it difficult to obtain reliable predictions, the study [32] 

proposes an innovative model to simultaneously estimate project time and cost by integrating 

machine learning and metaheuristic techniques. The authors develop a hybrid approach 

based on the eXtreme Gradient Boosting (XGBoost) algorithm, enhanced with weight 

optimization via Simulated Annealing (SA), which allows for more precise calibration of 

model parameters. 

The goal is to address the limitations of traditional methods which are based on static and 

linear formulas that are inadequate to represent the real dynamics of complex projects. In 

contrast, the XGBoost-SA model is data-driven, learning from historical data and 

dynamically adapting to each new project situation. The model was applied to a dataset 

consisting of 960 real construction project records, in which each record includes 15 features, 

including: number of activities, number of critical activities, minimum and maximum 

duration of activities, project progression, number of internal/external contracts, 

domestic/foreign production rates, human resources employed, as well as three uncertainty 

indices (economic, technical and environmental). 
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The optimization resulted in an improvement in MSE (Mean Squared Error) after about 380 

iterations. The final metrics obtained (Accuracy = 0.923, Precision = 0.919, Recall = 0.921, 

F1-score = 0.919) show high performance in the test set. 

The model was then compared with other ML algorithms, such as Artificial Neural Network 

(ANN), Support Vector Regression (SVR) and Decision Tree Regression (DTR). In all key 

metrics, the XGBoost-SA algorithm proved superior, confirming the validity of the hybrid 

approach, particularly in designs with high uncertainty and complex network structures 

[Figure 3-15]. 

Interpretability of the model was addressed through two approaches: Information Gain by 

XGBoost, which showed that the most influential features are the percentage of project 

progress, number of foreign contractors, and maximum durations of activities and SHAP 

analysis, which confirmed the importance of the same features and showed the directional 

effect (positive or negative) of each on the forecast. 

The study also includes a direct comparison with EVM and ESM models. Out of 10 test 

designs the average error in time estimation was found to be reduced by 80% compared to 

EVM/ESM and the average error in cost estimation was reduced by about 50%. 

 

 

Figure 3-15,Comparison of algorithm evaluation indices, taken from [32] 
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 “Evaluation of Earned Value Management-Based Cost Estimation via Machine 

Learning” 

An interesting development in the application of machine learning in project control is the 

[33] which investigates how cost at completion estimation methods derived from the Earned 

Value Managemen approach can be enhanced through the integration of machine learning 

algorithms. The focus of the study is the comparative evaluation of 19 different EVM 

formulas for calculating CEAC, employing six different Machine Learning models, with the 

aim of improving predictive accuracy and adaptability to real-world and dynamic contexts. 

The study is based on empirical data from a residential construction project in Turkey. 

Project activities were monitored daily for a period of 122 days, generating a dataset 

consisting of 2318 observations, each corresponding to the daily value of an CEAC method. 

The CEAC formulas employed are derived from both classic EVM metrics and more 

advanced metrics also incorporating combined approaches with α and β weights applied to 

cost and time [Figure 3-16]. 

 
Figure 3-16, CEAC method employed in [33]	

	
To evaluate predictive performance, the study employs a full range of metrics: MAPE (Mean 

Absolute Percentage Error), RRMSE (Relative Root Mean Square Error), R², Nash-Sutcliffe 

Efficiency (NSE) and Overall Index of Performance (OI). 
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The results show that ML models outperform EVM formulas applied deterministically. In 

particular the ANN model stood out as the most accurate in terms of MAPE (0.2376%), 

RRMSE (0.3522) and R² (0.9878) in prediction by the EACPV1 method, the M5TREE 

model, although less effective in terms of R², performed best for the NSE (0.812) and OI 

(0.830) metrics, being the most effective in estimation by the EACPV5 method (weighted 

formula on CPI and SPI), the GPR and ANFIS algorithms showed good performance in 

specific cases, while LSTM and SVM performed the least well in almost all metrics. 

Methodologically, the study has the merit of treating the integration of ML and EVM in a 

systemic way, offering a framework that can be replicated or adapted in other project 

contexts. In addition, it is highlighted how the careful selection of time variables (TED, 

ES(e), ED, DPI) can significantly improve the quality of estimates, making the model more 

sensitive to actual project performance. 

“Multiple Linear Regression Model for Improved Project Cost” 

[34] explores the improvement of cost forecasting accuracy using a Multiple Linear 

Regression (MLR) model within the framework of Earned Value Management (EVM). The 

goal is to develop a CEAC model that is both more accurate than classical EVM formulas 

and more stable, i.e., with less error variance. This study uses multiple linear regression, in 

contrast to many proposals based on intricate machine learning techniques that can 

occasionally be challenging to implement in industrial environments. The analysis is 

conducted on a dataset consisting of 805 observations from 29 real projects, extracted from 

the database developed by [25] and [24]. The variables considered are classic EVM 

variables, such as the Cost Performance Index (CPI), the percentage of work performed 

(WP), and an initial cost prediction (fEAC) calculated by indexed methods. These are 

combined in a multivariate regression model that aims to refine the estimate of EAC as the 

project progresses. 

Three steps comprise the development of the model. First, a generalized linear model 

selection procedure (GLMSELECT) is used to identify the most significant regressors. 

Second, correlation analysis and multicollinearity tests are applied to verify whether there 

are any correlations between the variables. Lastly, to lower the chance of overfitting, a linear 

regression with LASSO and k-fold cross-validation is used. 
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The resulting model (rEAC) is based on three independent variables: the initial forecast of 

cost at completion (fEAC), the cost performance index (CPI), and the percentage of work 

completed (WP). The combination of these three elements makes it possible to construct a 

final cost estimate that incorporates both the historical economic performance of the project 

and its progress. Specifically, the initial forecast provides a solid base on which to anchor 

the estimate, while the CPI index adjusts its adjustment based on observed efficiency. The 

WP variable, on the other hand, has a corrective impact: its negative effect indicates that, as 

the project progresses, the influence of the first two components tends to diminish. This 

reflects greater data reliability in the advanced stages and a gradual reduction in uncertainty. 

The model was compared with the traditional EVM methods. The results show a significant 

improvement in terms of prediction stability: the MAPE is reduced from 15.76% to 13.91%, 

while the standard deviation of the error drops from 0.199 to 0.110, showing greater 

predictive reliability [Figure 3-17]. The adjusted coefficient of determination R² is also very 

high (0.9842), indicating good explanatory power of the model. 

 

Figure 3-17, Benchmarking of the fitted model performance, taken from [34] 

Analysis of the residuals identified some patterns: the model tends to overestimate EAC in 

the early stages of projects, when the quality and availability of EVM data are lower. 

However, this behavior decreases as the WP approaches 100 percent, which confirms the 

underlying assumption that the reliability of the prediction improves as the project 

progresses.  
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4. Methodology 

4.1. Dataset and data source 

The data analyzed in this study comes from Ghent University, through the contribution of 

the Operations Research & Scheduling research group, which collected and structured a 

dataset consisting of 203 real projects from different companies [35]. This extensive 

database contains baseline scheduling data (network, resources, ...), risk analysis data (for 

Monte-Carlo simulations) and project control data (using EVM and ES metrics). These data 

are provided in the form of a list of projects, each accompanied by a summary sheet and an 

Excel file that includes visualizations and evaluations of the projects' temporal and economic 

performance.  

The most significant data reported in this database and to be used in this study include 

tracking values, baseline schedule, and actual schedule.  

• The tracking values provide a real snapshot of the project's progress, collecting 

Earned Value Analysis (EVA) metrics, with a focus on Earned Value Management 

(EVM) performance measures and forecasts derived from EVM Forecasting. Each 

project contains a different number of observations (snapshots) and also a different 

number of snapshots per progress stage. The next section will include a dedicated 

subsection [3.2.2.2] addressing this limitation. 

• The baseline schedule represents the initial project plan, including information such 

as Budget at Completion (BAC) and planned duration. 

• The actual schedule reflects actual progress, reporting real project duration and real 

cost at completion. 

To ensure that the analyses in this study were based on reliable data, a stepwise selection 

process was undertaken on the 203 projects initially in the dataset. The main objective was 

to verify the authenticity of the data available for each project in order to obtain a robust and 

representative sample. 

The first step involved assessing the presence of baseline schedule data. In particular, the 

Budget at Completion and the planned duration of the project were considered essential, as 

they are the pillars for any performance and forecast analysis. Only those projects that 
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presented both of these pieces of information fully and consistently were retained, reducing 

the initial sample from 203 to 172 projects. 

Next, the second step involved checking the availability of tracking values, which are those 

data that provide periodic updates on project performance through successive snapshots. 

These values are crucial for monitoring performance over time and applying Earned Value 

Management (EVM) methodologies. The application of this filter narrowed the sample to 

118 projects, excluding those without such tracking.  

Finally, a final quality check was conducted to ensure the reliability of the final dataset. 28 

projects were removed that had tracking values but had inconsistent data, compromising 

their validity for the study. This process resulted in the final selection of 90 projects, which 

were considered complete and appropriate for analysis. 

The result is thus a filtered dataset that can be considered robust and representative, suitable 

to support project performance analysis and provide reliable results for the objectives of this 

study. 

4.2. Pipeline overview 

The purpose of this section is to describe the proposed machine learning pipeline, going 

through the different stages and explaining their role in the process. The pipeline consists of 

four stages: data collection, data preprocessing, feature engineering, training and model 

evaluation. The following subsections will explain the purposes and activities of each step, 

providing a detailed overview of the workflow and techniques adopted. 

4.2.1. Data collection 

The data collection stage involves the gathering of data used in the pipeline from the dataset 

that has been previously filtered, as described in the selection steps given in the previous 

section of the thesis. Thus, this dataset includes EVA data including Budget at Completion 

(BAC), Planned Duration (PD), Actual Duration (AD), Actual Time (AT), Planned Value 

(PV), Earned Value (EV) and Actual Cost (AC). Moreover, it includes also number of tasks 

completed, number of tasks started, number of tasks planned to be completed or planned to 

be started, and data on the topology for each snapshot of the 90 selected projects. 
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To more clearly illustrate the data collected from the pipeline, a table showing the detail of 

a selected project will be presented below as an example. For visualization purposes, the 

example is provided split into two separate tables [Table 4-1, Table 4-2]. 

Table 4-1, project data collected by the pipeline 

 

Table 4-2, project data collected by the pipeline 

 

4.2.2. Data preprocessing 

Data preprocessing includes the manipulations of available data necessary to ensure the 

accuracy and reliability of the analysis. In the pipeline, the process consists of two steps: 

data transformation and data balancing and augmentation. These steps are aimed at 

formatting and optimizing the data contained in the dataset presented in the previous section. 

4.2.2.1. Data transformation 

Data transformation, which consists of scaling EVA values, is meant to avoid underfitting 

and bias in the ML models used in this study. Various ML methods can be biased by different 

data scales, especially those that compute distances between points (e.g., K-Nearest 

Neighbors, Support Vector Machines) or use regularization techniques (such as L1 and L2 

in Lasso and Ridge regression). 

Scaling the data prevents quantities with higher values from dominating the model, thus 

improving predictions and making the learning process more stable and effective. 

This stage of the pipeline scales EVA data by dividing cost metrics by BAC and time metrics 

by PD as shown in [Table 4-3]: 

Code Title Type Project BAC PD AD AC(AD) AT PV EV AC
C2011-05 Telecom System Agnes Service 1 180485 5.0 5.0 180485 1 13527 13527 13527
C2011-05 Telecom System Agnes Service 1 180485 5.0 5.0 180485 2 115358 115358 115358
C2011-05 Telecom System Agnes Service 1 180485 5.0 5.0 180485 3 143433 129406 129406
C2011-05 Telecom System Agnes Service 1 180485 5.0 5.0 180485 4 176069 166620 166620
C2011-05 Telecom System Agnes Service 1 180485 5.0 5.0 180485 5 180485 180485 180485

Code Title Type Project Task completed Task planned to be completed Task planned to be started Task started SP_topology AD_topology LA_topology TF_topology RI_topology
C2011-05 Telecom System Agnes Service 1 5 5 5 5 0.60 0.58 0.38 0.09 0.85
C2011-05 Telecom System Agnes Service 1 11 11 13 13 0.60 0.58 0.38 0.09 0.85
C2011-05 Telecom System Agnes Service 1 12 13 15 14 0.60 0.58 0.38 0.09 0.85
C2011-05 Telecom System Agnes Service 1 15 18 18 16 0.60 0.58 0.38 0.09 0.85
C2011-05 Telecom System Agnes Service 1 21 21 21 21 0.60 0.58 0.38 0.09 0.85
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Table 4-3, Scaled metrics formula 

 

The subscript “s” denotes the scaled metrics, except for PV and EV which scaled versions 

correspond to Percentage Scheduled (PS) and Percentage Completed (PC), respectively. 

4.2.2.2. Data balancing and augmentation 

Data balancing and augmentation are related steps which address the limitation of the 

collected data arising from the variability in the number of observation (snapshot) for each 

project and from the various number of snapshots per progress stage within each project. 

Data balancing serves as a technique to equalize both the number of observations above-

mentioned and data augmentation provides the needed methods to achieve this balance. 

These steps help mitigate underfitting by ensuring that projects with a higher or lower 

number of observations do not influence the training process, thus reducing potential biases 

in the ML models. In addition, by balancing the number of observations for each progress 

stage it is possible to ensure that the models are trained on all projects stages. 

The pipeline implements these methods by generating a fixed number of synthetic 

observations through linear interpolation of the project metrics, outlined in the previous 

subsections, at specific PC increments since the dataset’s data point do not always align with 

these predefined increments. Given the chosen step size of 0.05, each project is represented 

by exactly 21 snapshots, ensuring a uniform distribution of data points from 0% to 100% 

completion. 

The linear interpolation is defined by the following equation: 

𝑥V(𝑃𝐶 = 𝑧) = 𝑥) +
(𝑧 − 𝑃𝐶))

(𝑃𝐶)-+ − 𝑃𝐶.)
∗ (𝑥)-+ − 𝑥)) 

Original metrics Scaled metrics
BAC BAC / BAC = 1
PD PD / PD = 1
ADs AD / PD
ATs AT / PD
PS PV / BAC
PC EV / BAC
ACs AC / BAC
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Where: 

• 𝑥 is the metric to interpolate 

• 𝑥V represents the interpolated value 

• 𝑧 denotes the specific value of PC at which interpolation is performed 

• 𝑃𝐶) and 𝑃𝐶)-+ are two known data point such as 𝑃𝐶) ≤ 𝑧 ≤ 𝑃𝐶)-+ 

The following table illustrates the results of the data balancing and data augmentation step 

on the input dataset previously presented. For visualization purposes, the example is 

provided split into two separate tables [Table 4-4, Table 4-5]. 

Table 4-4, Project data following data balancing and data augmentation 

 

Table 4-5, Project data following data balancing and data augmentation 

 

Code BAC PD AD AC(AD) AT PV EV AC Task completed Task planned to be completed Task planned to be started

C2011-05 180485 5 5 180485 0.00 0 0 0 0 0 0.00
C2011-05 180485 5 5 180485 0.67 9024 9024 9024 3.34 3.34 3.34
C2011-05 180485 5 5 180485 1.04 18049 18049 18049 5.27 5.27 5.36
C2011-05 180485 5 5 180485 1.13 27073 27073 27073 5.80 5.80 6.06
C2011-05 180485 5 5 180485 1.22 36097 36097 36097 6.33 6.33 6.77
C2011-05 180485 5 5 180485 1.31 45121 45121 45121 6.86 6.86 7.48
C2011-05 180485 5 5 180485 1.40 54146 54146 54146 7.39 7.39 8.19
C2011-05 180485 5 5 180485 1.49 63170 63170 63170 7.93 7.93 8.90
C2011-05 180485 5 5 180485 1.58 72194 72194 72194 8.46 8.46 9.61
C2011-05 180485 5 5 180485 1.66 81218 81218 81218 8.99 8.99 10.32
C2011-05 180485 5 5 180485 1.75 90243 90243 90243 9.52 9.52 11.03
C2011-05 180485 5 5 180485 1.84 99267 99267 99267 10.05 10.05 11.74
C2011-05 180485 5 5 180485 1.93 108291 108291 108291 10.58 10.58 12.44
C2011-05 180485 5 5 180485 2.14 119270 117315 117315 11.14 11.28 13.28
C2011-05 180485 5 5 180485 2.78 137305 126340 126340 11.78 12.56 14.56
C2011-05 180485 5 5 180485 3.16 148658 135364 135364 12.48 13.80 15.48
C2011-05 180485 5 5 180485 3.40 156572 144388 144388 13.21 15.01 16.21
C2011-05 180485 5 5 180485 3.65 164487 153412 153412 13.94 16.23 16.94
C2011-05 180485 5 5 180485 3.89 172401 162437 162437 14.66 17.44 17.66
C2011-05 180485 5 5 180485 4.35 177611 171461 171461 17.09 19.05 19.05
C2011-05 180485 5 5 180485 5 180485 180485 180485 21 21 21.00

Code SP_topology AD_topology LA_topology TF_topology RI_topology BAC_s AT_s WS WP AC_s PD_s AD_s AC_s(AD_s)

C2011-05 0.60 0.58 0.38 0.09 0.85 1.00 0 0 0.00 0 1.00 1.00 1.00
C2011-05 0.60 0.58 0.38 0.09 0.85 1.00 0.13 0.05 0.05 0.05 1.00 1.00 1.00
C2011-05 0.60 0.58 0.38 0.09 0.85 1.00 0.21 0.10 0.10 0.10 1.00 1.00 1.00
C2011-05 0.60 0.58 0.38 0.09 0.85 1.00 0.23 0.15 0.15 0.15 1.00 1.00 1.00
C2011-05 0.60 0.58 0.38 0.09 0.85 1.00 0.24 0.20 0.20 0.20 1.00 1.00 1.00
C2011-05 0.60 0.58 0.38 0.09 0.85 1.00 0.26 0.25 0.25 0.25 1.00 1.00 1.00
C2011-05 0.60 0.58 0.38 0.09 0.85 1.00 0.28 0.30 0.30 0.30 1.00 1.00 1.00
C2011-05 0.60 0.58 0.38 0.09 0.85 1.00 0.30 0.35 0.35 0.35 1.00 1.00 1.00
C2011-05 0.60 0.58 0.38 0.09 0.85 1.00 0.32 0.40 0.40 0.40 1.00 1.00 1.00
C2011-05 0.60 0.58 0.38 0.09 0.85 1.00 0.33 0.45 0.45 0.45 1.00 1.00 1.00
C2011-05 0.60 0.58 0.38 0.09 0.85 1.00 0.35 0.50 0.50 0.50 1.00 1.00 1.00
C2011-05 0.60 0.58 0.38 0.09 0.85 1.00 0.37 0.55 0.55 0.55 1.00 1.00 1.00
C2011-05 0.60 0.58 0.38 0.09 0.85 1.00 0.39 0.60 0.60 0.60 1.00 1.00 1.00
C2011-05 0.60 0.58 0.38 0.09 0.85 1.00 0.43 0.66 0.65 0.65 1.00 1.00 1.00
C2011-05 0.60 0.58 0.38 0.09 0.85 1.00 0.56 0.76 0.70 0.70 1.00 1.00 1.00
C2011-05 0.60 0.58 0.38 0.09 0.85 1.00 0.63 0.82 0.75 0.75 1.00 1.00 1.00
C2011-05 0.60 0.58 0.38 0.09 0.85 1.00 0.68 0.87 0.80 0.80 1.00 1.00 1.00
C2011-05 0.60 0.58 0.38 0.09 0.85 1.00 0.73 0.91 0.85 0.85 1.00 1.00 1.00
C2011-05 0.60 0.58 0.38 0.09 0.85 1.00 0.78 0.96 0.90 0.90 1.00 1.00 1.00
C2011-05 0.60 0.58 0.38 0.09 0.85 1.00 0.87 0.98 0.95 0.95 1.00 1.00 1.00
C2011-05 0.60 0.58 0.38 0.09 0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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4.2.3. Feature engineering 

Feature engineering is the process of transforming raw data into a more effective and 

machine-readable format input set, it involves creating, modifying, or selecting relevant 

features to enhance ML model performance. 

In the pipeline, this stage involves combining EVA data to generate additional features, 

including both input features, which serve as independent regression variables, and target 

features, which represent the dependent variables to predict. 

As part of this process, new metrics have been introduced using data from the input dataset, 

these features include: 

• EVM and ESM metrics explained in the previous chapter, along with their respective 

scaled values: SVEVM (Schedule Variance in EVM), SVES (Schedule Variance based 

on Earned Schedule), CPI (Cost Performance Index), SPIEVM (Schedule Performance 

Index in EVM), SPIES (Schedule Performance Index based on Earned Schedule), and 

TSPIES (Time-Schedule Performance Indicator) 

• Other dynamic measures explained in the previous chapter: TFCI (Total Float 

Consumption Index), SPI vs. TSPI (Schedule Performance Index - Time vs. Earned 

Schedule), BEI (Baseline Execution Index), BEIstart (Baseline Execution Index at 

start), ED(t) (Earned Duration), T/S (Time to Schedule Ratio), T/R (Time to Cost 

Ratio), and CSI (Cost Schedule Index) 

4.2.3.1. Input features 

In this stage of the process, following the initial three steps, data collection, data 

preprocessing, and feature engineering, the fundamental task is to select the variables that 

will serve as inputs for the Machine Learning models. The feature selection process is driven 

by the objective of maximizing the model’s predictive performance while minimizing noise 

and redundancy in the data. The table below presents the selected input features. For 

visualization purposes, the example is provided split into two separate tables [Table 4-6, 

Table 4-7]. 



 
 

64 

Table 4-6, Selected input features 

 

Table 4-7, Selected input features 

 

  

Code BAC_s PD_s AD_s AC_s(AD_s) AT_s WS WP AC_s ES_s BEI BEIstart CV_s SV^EVM_s SV^ES_s CPI
C2011-05 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 1.00
C2011-05 1.00 1.00 1.00 1.00 0.13 0.05 0.05 0.05 0.13 1.00 1.00 0.00 0.00 0.00 1.00
C2011-05 1.00 1.00 1.00 1.00 0.21 0.10 0.10 0.10 0.21 1.00 1.00 0.00 0.00 0.00 1.00
C2011-05 1.00 1.00 1.00 1.00 0.23 0.15 0.15 0.15 0.23 1.00 1.00 0.00 0.00 0.00 1.00
C2011-05 1.00 1.00 1.00 1.00 0.24 0.20 0.20 0.20 0.24 1.00 1.00 0.00 0.00 0.00 1.00
C2011-05 1.00 1.00 1.00 1.00 0.26 0.25 0.25 0.25 0.26 1.00 1.00 0.00 0.00 0.00 1.00
C2011-05 1.00 1.00 1.00 1.00 0.28 0.30 0.30 0.30 0.28 1.00 1.00 0.00 0.00 0.00 1.00
C2011-05 1.00 1.00 1.00 1.00 0.30 0.35 0.35 0.35 0.30 1.00 1.00 0.00 0.00 0.00 1.00
C2011-05 1.00 1.00 1.00 1.00 0.32 0.40 0.40 0.40 0.32 1.00 1.00 0.00 0.00 0.00 1.00
C2011-05 1.00 1.00 1.00 1.00 0.33 0.45 0.45 0.45 0.33 1.00 1.00 0.00 0.00 0.00 1.00
C2011-05 1.00 1.00 1.00 1.00 0.35 0.50 0.50 0.50 0.35 1.00 1.00 0.00 0.00 0.00 1.00
C2011-05 1.00 1.00 1.00 1.00 0.37 0.55 0.55 0.55 0.37 1.00 1.00 0.00 0.00 0.00 1.00
C2011-05 1.00 1.00 1.00 1.00 0.39 0.60 0.60 0.60 0.39 1.00 1.00 0.00 0.00 0.00 1.00
C2011-05 1.00 1.00 1.00 1.00 0.43 0.66 0.65 0.65 0.42 0.99 0.99 0.00 -0.01 -0.01 1.00
C2011-05 1.00 1.00 1.00 1.00 0.56 0.76 0.70 0.70 0.48 0.94 0.95 0.00 -0.06 -0.08 1.00
C2011-05 1.00 1.00 1.00 1.00 0.63 0.82 0.75 0.75 0.54 0.90 0.93 0.00 -0.07 -0.09 1.00
C2011-05 1.00 1.00 1.00 1.00 0.68 0.87 0.80 0.80 0.60 0.88 0.91 0.00 -0.07 -0.08 1.00
C2011-05 1.00 1.00 1.00 1.00 0.73 0.91 0.85 0.85 0.66 0.86 0.90 0.00 -0.06 -0.07 1.00
C2011-05 1.00 1.00 1.00 1.00 0.78 0.96 0.90 0.90 0.72 0.84 0.89 0.00 -0.06 -0.06 1.00
C2011-05 1.00 1.00 1.00 1.00 0.87 0.98 0.95 0.95 0.77 0.90 0.93 0.00 -0.03 -0.10 1.00

Code SPI^EVM SPI^ES ED(t) (T/S) (T/C) SP_topology AD_topology LA_topology TF_topology RI_topology CSI SPIt - TSPIt TFCI cPF sPF
C2011-05 1.00 1.00 0.00 1.00 1.00 0.60 0.58 0.38 0.09 0.85 1.00 0.00 1.00 1.00 1.00
C2011-05 1.00 1.00 0.13 0.00 0.00 0.60 0.58 0.38 0.09 0.85 1.00 0.00 1.00 1.00 1.00
C2011-05 1.00 1.00 0.21 0.00 0.00 0.60 0.58 0.38 0.09 0.85 1.00 0.00 1.00 1.00 1.00
C2011-05 1.00 1.00 0.23 1.00 1.00 0.60 0.58 0.38 0.09 0.85 1.00 0.00 1.00 1.00 1.00
C2011-05 1.00 1.00 0.24 0.00 0.00 0.60 0.58 0.38 0.09 0.85 1.00 0.00 1.00 1.00 1.00
C2011-05 1.00 1.00 0.26 1.00 1.00 0.60 0.58 0.38 0.09 0.85 1.00 0.00 1.00 1.00 1.00
C2011-05 1.00 1.00 0.28 1.00 1.00 0.60 0.58 0.38 0.09 0.85 1.00 0.00 1.00 1.00 1.00
C2011-05 1.00 1.00 0.30 1.00 1.00 0.60 0.58 0.38 0.09 0.85 1.00 0.00 1.00 1.00 1.00
C2011-05 1.00 1.00 0.32 0.00 0.00 0.60 0.58 0.38 0.09 0.85 1.00 0.00 1.00 1.00 1.00
C2011-05 1.00 1.00 0.33 1.00 1.00 0.60 0.58 0.38 0.09 0.85 1.00 0.00 1.00 1.00 1.00
C2011-05 1.00 1.00 0.35 1.00 1.00 0.60 0.58 0.38 0.09 0.85 1.00 0.00 1.00 1.00 1.00
C2011-05 1.00 1.00 0.37 1.00 1.00 0.60 0.58 0.38 0.09 0.85 1.00 0.00 1.00 1.00 1.00
C2011-05 1.00 1.00 0.39 0.00 0.00 0.60 0.58 0.38 0.09 0.85 1.00 0.00 1.00 1.00 1.00
C2011-05 0.98 0.98 0.42 -1.00 1.00 0.60 0.58 0.38 0.09 0.85 0.98 -0.03 1.00 1.00 1.01
C2011-05 0.92 0.86 0.51 -1.00 1.00 0.60 0.58 0.38 0.09 0.85 0.92 -0.32 1.00 1.00 1.18
C2011-05 0.91 0.86 0.58 -1.00 1.00 0.60 0.58 0.38 0.09 0.85 0.91 -0.38 1.00 1.00 1.24
C2011-05 0.92 0.89 0.63 -1.00 1.00 0.60 0.58 0.38 0.09 0.85 0.92 -0.35 1.00 1.00 1.24
C2011-05 0.93 0.91 0.68 -1.00 1.00 0.60 0.58 0.38 0.09 0.85 0.93 -0.34 1.00 1.00 1.25
C2011-05 0.94 0.92 0.73 -1.00 1.00 0.60 0.58 0.38 0.09 0.85 0.94 -0.35 1.00 1.00 1.27
C2011-05 0.97 0.89 0.84 -1.00 1.00 0.60 0.58 0.38 0.09 0.85 0.97 -0.87 1.00 1.00 1.75
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4.2.3.2. Target features 

The regression method alongside the forecasting targets of this study, which can be either 

cost forecasting or duration forecasting, set the target features of the pipeline. More 

specifically, direct regression (DR) employs as target variables directly 𝐴𝐶$(𝐴𝐷$) (cost 

forecasting) or 𝐴𝐷$ (duration forecasting). While indirect regression (IR) assigns the target 

features to intermediate variables which is then used to compute the forecasting targets 

through specific formulas. The pipeline implements both regression methods for both 

forecasting targets. 

The DR method evaluates forecasts as per 

𝑦Y = 𝑓/0(𝑋) 

Where: 

• 𝑦 is the real value of the target feature and 𝑦Y denotes the forecast 

• 𝑋 represents the set of input features 

• 𝑓/0 denotes the regression models developed through DR using 𝐴𝐶$(𝐴𝐷$) or 𝐴𝐷$ 

as target features. 

the IR method evaluates cost forecasts as per 

𝑦Y = 𝐴𝐶$ +
(1 − 𝑃𝐶)
𝑐𝑃𝐹\

 

With 

𝑐𝑃𝐹\ = 𝑓.0(𝑋) 

Where 𝑓.0 denotes the regression models developed through IR using 𝑐𝑃𝐹∗ as target feature, 

which is defined as the value such that 

𝐴𝐶$(𝐴𝐷$) = 𝐴𝐶$ +
(1 − 𝑃𝐶)
𝑐𝑃𝐹∗  

Similarly, the IR method evaluates duration forecasts as per 
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𝑦Y = 𝐴𝑇$ +
(1 − 𝐸𝑆$)
𝑠𝑃𝐹\

 

With 

𝑠𝑃𝐹\ = 𝑔.0(𝑋) 

Where 𝑔.0 denotes the regression models developed through IR using 𝑠𝑃𝐹∗ as target feature, 

which is defined as the value such that: 

𝐴𝐷$ = 𝐴𝑇$ +
(1 − 𝐸𝑆$)
𝑠𝑃𝐹∗  

4.2.4. Model training 

The model training phase of the pipeline is a key step to ensure that the models not only 

learn patterns from the data but also generalize this learning to work effectively on unseen 

data. To achieve this goal, this phase combines cross-validation strategy, feature selection 

technique, and hyperparameter tuning. The following sections describe each of these 

components in detail, explaining how they are implemented and how they contribute to the 

construction of robust and reliable predictive models. 

4.2.4.1. Cross validation 

As mentioned above, a central question in supervised learning concerns the generalization 

ability of the resulting model. To assess this ability, data resampling methods such as cross-

validation are used [36]. 

Since the input dataset contains multiple observations for each project, the goal is to test on 

entire groups. For this reason, the pipeline implements the Leave-One-Group-Out Cross-

Validation (LOGO CV) procedure, both for model evaluation and within the training steps. 

LOGO CV divides the dataset into P distinct folds, where P represents the total number of 

projects. In each fold, the observations of the pth-project are used as the validation set, while 

other observations serve as the training set. This approach avoids group leakage, which 

would otherwise bias model evaluation, distorting model performance assessment. 
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Repeating the train-validate split for each project in the dataset ensures the consistency and 

reproducibility of results. 

4.2.4.2. Feature selection 

Having many features available may give the impression that the machine learning model 

possesses all the necessary information to solve the problem. However, this is not necessarily 

the case: the presence of numerous features does not automatically ensure good predictive 

performance. What is needed is the quality and relevance of the features in relation to the 

problem and the target. It is essential that the selected features are informative and capable 

of effectively guiding the model toward accurate and reliable predictions.  

Feature selection represents an effective solution, as it involves identifying a subset of input 

features to develop the model. This technique reduces overfitting by narrowing the 

dimensionality of the set of input variables and limits the number of relationships that ML 

methods must analyze. It also speeds up the training process by eliminating unnecessary data 

and improves model clarity by focusing on the features that have the greatest impact on 

predictions. 

The feature selection procedure adopted in the pipeline is the forward Sequential Feature 

Selection (fSFS) combined with LOGO CV. It starts with a model that includes no input 

features, and at each LOGO CV iteration, the procedure evaluates which feature would lead 

to the greatest improvement in predictive performance based on a cross-validation scoring 

metric. Only features that provide a performance gain above a certain threshold are added. 

The selection process continues iteratively until either all features have been evaluated, or 

the addition of new features no longer leads to improvements. 

4.2.4.3. Hyperparameters tuning 

The possible combinations of hyperparameter values for the ML models can be numerous, 

making the optimal selection of them complex in order to maximize model performance. To 

address this challenge, hyperparameter search and optimization techniques were developed 

to identify the most effective combination based on the score obtained. In the implemented 

pipeline, the approach used to test different combinations of hyperparameters, through 

LOGO CV, and select the best performing one is the Grid Search. 
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This procedure entails pinpointing a specific parameter grid and searching and evaluating all 

potential combinations of values utilizing LOGO CV on the provided dataset. The model is 

then iteratively trained and validated for various combinations, ultimately selecting the one 

with the optimal CV scorer as the final best metric. 

4.2.5. Model evaluation 

The Model evaluation phase focuses on validating the effectiveness of the ML methods in 

predicting project duration and cost. This phase involves using benchmarking the trained 

models against standard EVM and ESM models to assess their performance. Furthermore, 

to conduct a more in-depth analysis of the models and understand the influence of individual 

features on their predictions, a SHAP analysis is performed. 

4.2.5.1. Benchmarking 

To evaluate the performance of ML methods, this study benchmarks their results with those 

obtained through EVM and ESM models. The comparative analysis is based on two 

regression metrics used in the evaluation of predictive models: the Mean Absolute Error 

(MAE) and the Root Mean Square Error (RMSE). 

Mean Absolute Error (MAE) 

The MAE measures the mean accuracy of the model which is the average absolute difference 

between the predicted values and the actual target values, and it is determined as per 

𝑀𝐴𝐸 =
∑ |𝐸)|2
)*+

𝑛  

Where: 

• 𝑖 denotes the 𝑖th record with 𝑖	 = 1,2, … . , 𝑛 

• 𝐸) represents the forecast residual of the 𝑖th observation, as per 

𝐸) = 𝑦) − 𝑦3b  

Root Mean Square Error (RMSE) 

The RMSE measures the mean precision of the model by penalizing larger errors, and it is 

determined as per 
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𝑅𝑀𝑆𝐸 = c∑ 𝐸)42
)*+
𝑛  

Where: 

• 𝑖 denotes the 𝑖th record with 𝑖	 = 1,2, … . , 𝑛 

• 𝐸) represents the forecast residual of the 𝑖th observation, as per 

𝐸) = 𝑦) − 𝑦3b  

4.2.5.2. SHAP Analysis 

This study aims to evaluate the effect of parameters, with a focus on dynamic parameters, 

on the performance of machine learning models and to understand how they affect 

predictions. To analyze this impact, the pipeline involves the use of SHAP (Shapley Additive 

Explanations) analysis. This analysis is a method based on the concept of Shapley value, 

introduced by Lloyd Shapley in 1953 as part of cooperative game theory, it makes it possible 

to quantify the contribution of each variable to the prediction of a machine learning model 

by assigning each feature a value that represents its impact on the predictions. [37] 

Shapley value is a concept that distributes “merit” equally among participants in a 

collaborative system. Applied to machine learning, it allows the importance of a feature to 

be measured by evaluating its contribution to model prediction, considering all possible 

combinations of the other features. 

The Shapley value for feature 𝑋, in a model is given by: 

𝑋, =	 d
𝑘! (𝑝 − 𝑘 − 1)!

𝑝!
(𝑓(𝑆 ∪ {𝑗}) − 𝑓(𝑆))

$⊆6\{,}

 

Where: 

• 𝑝 denotes the total number of features 

• 𝑁\{𝑗} is a set of all possible combinations of features excluding 𝑋, 

• 𝑆 is a feature set in 𝑁\{𝑗} 

• 𝑓(𝑆) is the model prediction with features in 𝑆 

• 𝑓(𝑆 ∪ {𝑗}) is the model prediction with features in 𝑆 plus feature 𝑋, 
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SHAP developed by Lundberg and Lee (2017) represents an extension of Shapley values; 

the main innovation of SHAP is the generation of local additive attributions for features [38]. 

SHAP values can be approximated by several techniques, optimized for specific types of 

models and datasets, such as Tree SHAP, optimized for decision tree-based models, Kernel 

SHAP, a more general method, Deep SHAP, for neural networks, and LIME, which 

approximates SHAP for local interpretations. 

In the pipeline developed in this study, SHAP analysis was implemented to automatically 

adapt to the type of model used, optimizing the calculation of SHAP values. 
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5. Results 
This section presents a comparative analysis of the performance of 30 Machine Learning 

algorithms, implemented through the proposed pipeline, compared to traditional models 

based on EVM and ESM. The comparison was performed on a real dataset of projects, 

selected as a case study. The ML algorithms were chosen based on their widespread use in 

the literature, and cover a wide range of modeling categories, including Linear, Bayesian, 

Robust, Nonlinear, Ensemble, and Neural Network approaches. [Table 5-1] outlines the 

methods tested, specifying for each its category, subcategory, and abbreviation used for ease 

of reference. 

The models were implemented in Python 3.13.1, using the Scikit-learn libraries for 

Sequential Feature Selection (SFS), validation via Leave-One-Group-Out (LOGO), and 

performance evaluation using Mean Absolute Error (MAE) and Root Mean Square Error 

(RMSE). The data manipulation and preparation steps were handled with Pandas and 

NumPy, while the visualization of the results was done through Matplotlib and Seaborn. 

Model interpretability and feature importance analysis were obtained through SHAP 

(SHapley Additive exPlanations). 

In the following paragraphs, the results are presented on three levels of analysis: at the global 

dataset level, at the project progress stage level, and finally by interpretation of the features 

most influential on the predictive output. 
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Table 5-1, ML methods tested 

 

5.1. Dataset level 

[Table 5-2] reports the values of the regression metrics for the EVM, ESM models and the 

30 Machine Learning algorithms tested, related to the prediction of both duration and cost 

at project completion, considering the entire dataset. MAE and RMSE values are reported 

for each model, calculated using both Direct Regression and Indirect Regression strategies. 

Values highlighted in bold represent the best performance obtained in each metric column. 

The results confirm the superiority of ML models over traditional techniques, particularly in 

estimating duration. The EVM and ES models show significantly lower performance, the 

best result obtained by these methods for duration estimation is an MAE of 0.12803 and an 

RMSE of 0.18282, which, performs less well than the best machine learning algorithms 

Category/Subcategory Method Abbreviation
Linear Ordinary Least Squares OLS
Linear Ridge Ridge
Linear Least Absolute Shrinkage and Selection Operator Lasso
Linear Elastic Net EN
Linear Least Angle Regression Lars
Linear Lasso Least Angle Regression Lasso Lars
Linear Orthogonal Matching Pursuit OMP
Linear Passive Aggressive PA
Bayesian Bayesian Ridge BR
Bayesian Automatic Relevance Determination ARD
Generalized Linear Model Tweedie Tweedie
Stochastic Gradient Descent Stochastic Gradient Descent SGD
Stochastic Gradient Descent One-Class Support Vector Machine using SGD SGD1cSVM
Robust Regression Random Sample Consensus RANSAC
Robust Regression Huber Huber
Nonlinear Kernel Ridge KR
Nonlinear Support Vector Regression SVR
Nonlinear Nu Support Vector Regression NuSVR
Nonlinear k-Nearest Neighbors k-NN
Nonlinear Gaussian Process GP
Nonlinear Decision Tree DT
Nonlinear Extremely Randomized Tree ERT
Ensemble Methods Random Forest RF
Ensemble Methods Extremely Randomized Trees ERTs
Ensemble Methods Adaptive Boosting AdaBoost
Ensemble Methods Gradient Boosting GB
Ensemble Methods Histogram-based GB HGB
Ensemble Methods XGBoost XGB
Ensemble Methods XGBoost RF XGB RF
Neural Network Multilayer Perceptron MLP
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analyzed: the lowest MAE is obtained by the SVR (DR) model with a value of 0.09680, 

while the lowest RMSE is recorded with AdaBoost (DR), which is 0.11396. In the 

comparison within IR models only, the Huber model stands out as the best performer, 

obtaining both the lowest MAE (0.11531) and the lowest RMSE (0.15014) within this 

category. 

Regarding the cost prediction, on the other hand, the delta between traditional and ML 

methods is smaller but still significant, EVM models achieve their best results with RMSE 

= 0.06451 and MAE = 0.03829 but are outperformed by several ML algorithms. 

The lowest MAE is recorded by Huber (DR) with 0.03549, while the best RMSE is obtained 

by Huber (DR) with a value of 0.06138, making it the most accurate model in absolute terms. 

Within the IR estimation the lowest MAE is recorded with SGD, which is 0.03564, and the 

lowest RMSE by HGB with a value of 0.0619. 
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Table 5-2, Dataset-level models regression metrics values. 

 

Analyzing the categories of models in duration prediction, Bayesian models perform best 

among those with DR approach. For the IR approach, the neural network (represents only 

by MLP) shows the most promising results. Models based on Stochastic Gradient Descent 

are found to be the least accurate in both approaches [Table 5-3]. 

Model DR IR DR IR DR IR DR IR
EVM(SPI^EVM) 0.23173 0.23173 0.49256 0.49256 - - - -
ES(SPI^ES) 0.25153 0.25153 0.58072 0.58072 - - - -
ES(1) 0.12803 0.12803 0.18282 0.18282 - - - -
EVM(CPI) - - - - 0.04678 0.04678 0.09598 0.09598
EVM(1) - - - - 0.04129 0.04129 0.06751 0.06751
OLS 0.10855 0.12760 0.13199 0.17980 0.03758 0.03907 0.06646 0.06408
Ridge 0.10898 0.12774 0.13212 0.17880 0.04051 0.03906 0.06458 0.06639
Lasso 0.10854 0.12760 0.13199 0.17980 0.03757 0.03907 0.06324 0.06646
EN 0.10855 0.12760 0.13199 0.17980 0.03757 0.03907 0.06324 0.06646
Lars 0.10883 0.12760 0.13209 0.17980 0.03926 0.03907 0.06325 0.06646
Lasso Lars 0.10854 0.12760 0.13199 0.17980 0.03810 0.03907 0.06259 0.06646
OMP 0.12494 0.12815 0.16090 0.18094 0.03837 0.03907 0.06378 0.06646
PA 0.11253 0.12883 0.13597 0.17468 0.04309 0.03723 0.06257 0.06433
BR 0.10857 0.12619 0.13200 0.17800 0.03770 0.03898 0.06330 0.06608
ARD 0.10853 0.12619 0.13201 0.17800 0.03781 0.03898 0.06322 0.06608
Tweedie 0.14681 0.12468 0.18190 0.17421 0.05698 0.03863 0.08305 0.06530
SGD 0.13548 0.12770 0.17324 0.17336 0.05572 0.03564 0.08679 0.06558
SGD1CSVM 0.18757 0.12803 0.26877 0.18282 0.06355 0.03829 0.09256 0.06451
RANSAC 0.12936 0.13384 0.17550 0.18495 0.03852 0.03581 0.07163 0.06762
Huber 0.10735 0.11531 0.13265 0.15014 0.03549 0.03777 0.06138 0.06502
KR 0.10841 0.12863 0.13231 0.17931 0.04167 0.03948 0.06429 0.06747
SVR 0.09680 0.13349 0.11770 0.17925 0.04918 0.04157 0.07346 0.06758
NuSVR 0.10361 0.12547 0.12710 0.16973 0.03778 0.03644 0.06502 0.06316
k-NN 0.15435 0.12941 0.19589 0.18341 0.04563 0.03879 0.07471 0.06465
GP 0.11445 0.12739 0.14573 0.18003 0.04253 0.03895 0.07490 0.06596
DT 0.11428 0.14043 0.15604 0.18067 0.04058 0.04096 0.06677 0.07010
ERT 0.10422 0.13926 0.15948 0.18171 0.04275 0.03750 0.07130 0.06297
RF 0.10422 0.13830 0.15948 0.18044 0.04275 0.03768 0.07130 0.06355
ERTs 0.13300 0.12221 0.16931 0.16409 0.04775 0.03877 0.07381 0.06703
AdaBoost 0.09722 0.12780 0.11396 0.18057 0.04903 0.04109 0.07685 0.06940
GB 0.10538 0.12660 0.14623 0.16792 0.04405 0.03753 0.07162 0.06481
HGB 0.14184 0.12410 0.18881 0.16683 0.05412 0.03607 0.08199 0.06191
XGB 0.14500 0.12500 0.19500 0.17000 0.04520 0.03690 0.06980 0.06210
XGB RF 0.14750 0.12650 0.19850 0.17250 0.04680 0.03810 0.07320 0.06450
MLP 0.13735 0.12182 0.16996 0.16541 0.04751 0.03791 0.07073 0.06397

MAE RMSE MAE RMSE
Cost estimationDuration estimation
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Table 5-3, Dataset-level duration forecasting performance per model category. 

 

In cost prediction, Robust Regression models are the most accurate in terms of absolute error, 

achieving the lowest MAE in both the DR and IR approaches. In terms of RMSE, Bayesian 

models achieve the lowest value with the DR approach, while Neural Networks (represents 

only by MLP) achieve the best RMSE with IR [Table 5-4]. 

Table 5-4, Dataset-level cost forecasting performance per model category. 

 

 

 

5.2. Progress stage level 

To assess the evolution of the predictive performance of Machine Learning models along the 

project life cycle, this section analyzes the results obtained at different stages of progress. 

For this purpose, reference is made to the Percentage Completed (PC) parameter, which 

represents the level of project completion in percentage terms, from 0% to 100%. 

The analysis is carried out considering 19 intermediate snapshots (from 5% to 95% 

completion, at regular intervals of 5%), for each of which the error values (MAE and RMSE) 

are calculated for both types of regression: Direct Regression (DR) and Indirect Regression 

Category MAE DR MAE IR RMSE DR RMSE IR
Bayesian 0.108549 0.126191 0.132004 0.178003
Ensemble Methods 0.124881 0.127215 0.167327 0.171765
Generalized Linear Model 0.146807 0.124678 0.181904 0.174205
Linear 0.111183 0.127842 0.136128 0.179174
Neural Network 0.137349 0.121821 0.169955 0.165411
Nonlinear 0.113730 0.132013 0.147750 0.179158
Robust Regression 0.118356 0.124578 0.154076 0.167545
Stochastic Gradient Descent 0.161522 0.127863 0.221003 0.178088

Category MAE DR MAE IR RMSE DR RMSE IR
Bayesian 0.037758 0.038977 0.063260 0.066080
Ensemble Methods 0.047099 0.038019 0.074081 0.064756
Generalized Linear Model 0.056978 0.038632 0.083048 0.065303
Linear 0.039005 0.038842 0.063714 0.065889
Neural Network 0.047513 0.037908 0.070735 0.063974
Nonlinear 0.042874 0.039097 0.070065 0.065983
Robust Regression 0.037008 0.036789 0.066507 0.066322
Stochastic Gradient Descent 0.059632 0.036965 0.089674 0.065043
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(IR). The objective is to understand whether and how the accuracy of the models varies with 

the design stage considered, and which algorithms perform best at each stage. 

From the analysis conducted on different stages of project progress (PC), important 

considerations emerge for both estimating duration and cost at completion. In general, 

Machine Learning models show significantly higher performance than traditional 

methodologies in the early and middle stages of the project. 

However, the analysis also shows that at advanced stages (more than 85-90% PCs), 

traditional models revert to a central role, prove effective in prediction, and benefit from the 

increased accuracy of data collected at the end of the project. Under these conditions, the 

structural simplicity of traditional models is no longer a limitation, but rather ensures robust 

results that are comparable to, and in some cases superior to, those obtained with ML 

techniques. 

 

  

PC Model Value Model Value Model Value Model Value Model Value Model Value Model Value Model Value
0.05 NuSVR 0.11375 Huber 0.12927 AdaBoost 0.13119 Huber 0.17160 NuSVR 0.05173 NuSVR 0.04716 NuSVR 0.07647 NuSVR 0.07454

0.1 SVR 0.10790 Huber 0.11696 AdaBoost 0.12754 Huber 0.15526 Huber 0.04691 NuSVR 0.04590 NuSVR 0.07329 NuSVR 0.07260
0.15 SVR 0.10352 Huber 0.11655 SVR 0.12367 Huber 0.15067 Huber 0.04661 RANSAC 0.04854 Passive Aggressive 0.07340 Huber 0.07403

0.2 SVR 0.10518 Huber 0.12560 AdaBoost 0.12401 Huber 0.16076 Huber 0.04645 RANSAC 0.04748 Passive Aggressive 0.07434 HGB 0.07717
0.25 AdaBoost 0.10322 Huber 0.12400 AdaBoost 0.12030 Huber 0.15663 GB 0.04700 RANSAC 0.04558 Passive Aggressive 0.07150 HGB 0.07619

0.3 SVR 0.09801 Huber 0.12012 AdaBoost 0.11537 Huber 0.15558 Ridge 0.04506 RANSAC 0.04253 Passive Aggressive 0.06833 HGB 0.07231
0.35 AdaBoost 0.09395 Huber 0.12291 AdaBoost 0.11049 Huber 0.15735 Lasso Lars 0.04433 RANSAC 0.04181 Lasso Lars 0.06687 HGB 0.07007

0.4 ERT 0.09168 Huber 0.12663 AdaBoost 0.11135 Huber 0.15925 Lasso Lars 0.04277 RANSAC 0.04101 Lasso Lars 0.06551 HGB 0.06864
0.45 AdaBoost 0.09140 Huber 0.12902 AdaBoost 0.10617 Huber 0.16127 Lasso Lars 0.04088 RANSAC 0.04016 Lasso Lars 0.06459 HGB 0.06791

0.5 SVR 0.09503 Huber 0.13017 AdaBoost 0.11280 Huber 0.16334 Lasso Lars 0.03879 SGD 0.03782 Huber 0.06433 HGB 0.06753
0.55 ERT 0.09420 Huber 0.13117 AdaBoost 0.11604 Huber 0.16307 Huber 0.03679 SGD 0.03624 Huber 0.06272 NuSVR 0.06555

0.6 ERT 0.09286 Huber 0.13143 SVR 0.11818 Huber 0.16351 Huber 0.03460 SGD 0.03413 Huber 0.06091 NuSVR 0.06082
0.65 AdaBoost 0.09458 Huber 0.12327 AdaBoost 0.11146 Huber 0.15338 RANSAC 0.03101 SGD 0.03035 Huber 0.05600 NuSVR 0.05273

0.7 ERT 0.08424 Huber 0.10843 AdaBoost 0.10180 Huber 0.14185 RANSAC 0.02816 SGD 0.02676 Huber 0.04778 NuSVR 0.04524
0.75 AdaBoost 0.08628 Huber 0.10698 AdaBoost 0.10325 Huber 0.14242 EVM(CPI) 0.02325 NuSVR 0.02284 Huber 0.03927 NuSVR 0.03797

0.8 SVR 0.09042 Bayesian Ridge 0.10149 SVR 0.10710 Huber 0.13597 EVM(CPI) 0.01857 EVM(CPI) 0.01857 Huber 0.03161 NuSVR 0.03250
0.85 SVR 0.08899 Bayesian Ridge 0.09306 SVR 0.10700 Huber 0.12979 EVM(CPI) 0.01448 EVM(CPI) 0.01448 Huber 0.02506 EVM(CPI) 0.02518

0.9 ES(1) 0.08013 k-NN 0.07913 AdaBoost 0.10225 Bayesian Ridge 0.11945 EVM(CPI) 0.01051 EVM(CPI) 0.01051 EVM(CPI) 0.01799 EVM(CPI) 0.01799
0.95 ES(1) 0.05877 ES(1) 0.05877 ES(1) 0.08269 Bayesian Ridge 0.08209 EVM(CPI) 0.00720 EVM(CPI) 0.00720 EVM(CPI) 0.01358 EVM(CPI) 0.01358

Duration estimation Cost estimation
MAE RMSE

DR IR
MAE

DR IR DR IR
RMSE

DR IR
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5.3. Features Analysis 

To identify the features that most influenced the estimation of duration and costs, a SHAP 

analysis was conducted, aimed at identifying and understanding the contribution of the most 

relevant variables in the forecasting process. 

For the purpose of accurate evaluation, the best-performing models were selected by 

subdividing them according to the type of prediction (Duration and Cost) and the regression 

method used (direct or indirect). This subdivision made it possible to compare the impact of 

features in different predictive approaches. Below, the results of the SHAP analysis are 

presented and analyzed.  

For each selected model, the results of the SHAP analysis are represented through two 

separate but complementary views:  

• SHAP Feature Importance: 

This graph shows the average of absolute Shapley values calculated for each feature, the 

higher the average absolute value, the greater the importance of the feature in determining 

model predictions. 

Features are sorted according to this average, allowing a global view of the variables that 

most influence the behavior of the model. 

• SHAP Summary Plot: 

This graph represents both the global importance of features and their local effect on 

individual predictions. Each point in the plot represents a SHAP value calculated for a feature 

on a specific instance of the dataset. 

Y-axis shows the name of the feature, x-axis shows how much that feature contributed to 

increase (positive values) or decrease (negative values) the prediction, and the color 

represents the actual value taken by the feature (blue = low to red = high). 

This combination of visualizations allows us to understand not only which variables are most 

important, but also how and to what extent they affect predictions, both on average and in 

specific cases. 
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Duration estimation through DR regression 

SHAP analysis has been conducted on the SVR, NuSVR and AdaBoost models, which were 

selected as best performing for duration estimation by direct approach. 

Analysis of the SHAP Feature Importance plots for the three selected models estimating 

duration by direct regression shows strong consistency among the models in selecting the 

most influential features. In all three cases, the variables with the highest average SHAP 

value, and therefore with the greatest impact on forecasts, turn out to be: the Baseline 

Execution Index (BEI), a dynamic metric introduced in this study; the Project Seriality index 

(SP), representative of the serial or parallel structure of the project; and the Schedule 

Variance according to the Earned Schedule (SVES), one of the established temporal indicators 

in traditional control techniques. 

The SHAP Summary Plot allows us to delve into how these three metrics affect individual 

forecasts. It can be seen that a low BEI (blue values), indicative of delays relative to the 

planned budget, tends to increase the duration estimate, while a high BEI (red values), thus 

a signal of efficiency, leads the model to reduce the planned duration. Similarly, a low SP 

index, corresponding to structurally more parallel projects, tends to compress the forecast, 

while high (more serial) values extend it. Regarding Schedule Variance, we see that negative 

values (lagging behind schedule) push the model toward a longer forecast, while positive 

values shorten it. This consistent behavior between metric, value, and direction of the impact 

confirms the models' interpretive ability and alignment with the logic of the data used [Figure 

5-1]. 
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Figure 5-1, SHAP Feature Importance and Summary Plot for duration estimation (Direct Regression) 

Duration estimation through IR regression 

For the SHAP analysis of duration estimation by indirect regression, the Huber, HGB and 

ERTs models were selected and found to be among the best performing. As expected, the 

average SHAP values are generally lower than those of the direct regression models. This 

behavior is physiological, as indirect models do not directly predict final duration, but 

estimate an intermediate factor that is then transformed into output through external 

formulas. The result is less direct weight assignment to features, which results in smaller 

SHAP values overall. 

Nevertheless, some features with significant impacts emerge in the Huber model, notably 

SP, Schedule Performance Index according to the Earned Schedule (SPIES) and BEI. 

Curiously, some of these variables show behavior in contrast to the expected: for example, 

a high value of SP (which normally indicates a more serial and thus longer structure) is 

associated with a shorter duration forecast. Similar behavior is also observed for BEI, which 

in some cases tends to increase the predicted duration when it takes high values, rather than 

reducing it. 

In the HGB and ERTs models, although indices such as SP also appear, the relative SHAP 

values are very low. This confirms that indirect models, while making use of some relevant 

variables, tend to distribute their impact more flatly, or concentrate it in a few components 

SHAP Feature Importance 

SVR

NuSVR

AdaBoost

SHAP Summary Plot 
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that are not easily interpreted. These results, while less rich in terms of interpretation than 

DR, nevertheless offer interesting insights into the internal dynamics of IR models [Figure 

5-2]. 

 

Figure 5-2, SHAP Feature Importance and Summary Plot for duration estimation (Indirect Regression) 

  

Huber

HGB

ERTs

SHAP Feature Importance SHAP Summary Plot 
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Cost estimation through DR regression 

For the SHAP analysis of features in cost estimation by direct regression, the Huber, Lasso 

and OLS models were selected and found to be among the best performing.. In all three, it 

becomes clear that Cost Variance is the feature with the highest average SHAP impact. This 

confirms the effectiveness of traditional Earned Value Analysis metrics in the cost estimation 

as well, consistent with the overall results of the thesis, where cost prediction showed similar 

performance between ML approaches and traditional techniques. 

In the summary plots, Cost Variance shows an expected behavior: negative values (project 

over budget) push the model to increase the cost estimate at completion, while positive 

values (under budget) reduce it. Next to Cost Variance, scaled Actual Cost is also relevant 

for Lasso and OLS: when actual costs are low (so Actual Cost are high), the model tends to 

overestimate final costs, and vice versa. 

Among the variables that emerged in cost estimation with direct regression, the TFCI (Total 

Float Consumption Index), which is a dynamic metric appeared as the third most influential 

feature in the Huber model, also deserves attention. This duration-based metric measures the 

rate of consumption of total available margin (total float) relative to project progress. A TFCI 

value below 1.00 indicates that the project consumes float faster than expected, signaling the 

risk of not completing on schedule. Its relevance in the model suggests that the trend in 

residual time margin also has a direct impact on cost estimates, reflecting the interconnection 

between time delays and potential extra costs. 

Finally, albeit with minor impact, the presence of topological variables such as Project 

Seriality and Regularity index indicator (RI) is observed. The latter, which measures the 

temporal regularity of Planned Value: a high value indicates linear and steady growth in 

Planned Spending, while low values signal an uneven distribution, contributes non-

negligibly to predictions in linear models [Figure 5-3]. 
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Figure 5-3, SHAP Feature Importance and Summary Plot for cost estimation (Direct Regression) 

Cost estimation through IR regression 

For cost estimation with indirect regression, SGD, HGB and NuSVR models were analyzed 

and selected based on their performance. As also observed in the duration, SHAP values are 

lower on average than in the direct regression. This is consistent with how the indirect 

approach works, where the model does not directly predict the final cost, but an intermediate 

parameter from which it is derived. This structure makes it more difficult to assign a direct 

net weight to individual features. 

Nevertheless, two clearly relevant variables emerge in the SGD model: the Cost Performance 

Index (CPI) and SVES. The summary plot shows that a low CPI (indicative of cost 

inefficiency) tends to increase the final cost estimate, while a high value reduces it, consistent 

with the logic of the metric. 

In the HGB model, although with lower SHAP values, dynamic feature is again observed: 

the comparison of SPI and TSPI [Figure 5-4]. 
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Figure 5-4, SHAP Feature Importance and Summary Plot for cost estimation (Indirect Regression) 
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6. Discussion 
Analysis of the results obtained by applying the machine learning pipeline to a real-world 

dataset consisting of 90 projects highlighted important insights, both methodologically and 

interpretively. First, the developed pipeline demonstrated the ability to generate EAC and 

TEAC models with generally superior performance compared to those provided by 

traditional methods based on Earned Value Management and Earned Schedule. This 

advantage manifested itself in terms of average accuracy (MAE), precision (RMSE), and 

timeliness, especially in the early and middle stages of the project.  

Within the context of decision-making in the real world, strategically anticipating time drifts 

and any out-of-control costs during the execution phase is a vital distinguishing strength. 

Due to the flexibility and non-linear learning capabilities of their structures, machine 

learning models are best suited for classifying incomplete, sparse, or noisy data, which is 

characteristic of early project snapshots. This characteristic makes them particularly useful 

tools for supporting proactive decisions where the scope for action is still significant. 

One of the most distinctive elements of the present research was the integration within the 

models not only of the traditional EVA metrics or the network topological indicators but also 

of dynamic data. SHAP analyses showed that dynamic features were found to be decisive in 

almost all the best models, confirming the importance of considering the updated state of the 

project in forecasting. At the same time, network static indicators, although with smaller 

impacts, also showed a significant relationship with temporal estimates, particularly in linear 

models. This suggests that the structure and temporal regularity of the project network 

contribute to the accuracy of the estimates, an aspect rarely considered in traditional 

approaches. 

At the methodological level, the use of direct regression provided more interpretable models, 

with more distributed and consistent SHAP values, while the indirect regression approach, 

while sometimes competitive in terms of performance, showed less clarity in assigning 

weight to features, as evidenced by summary plots that were often more “empty” or flat. 

However, IR remains useful in cases where modularization of prediction through 

intermediate parameters, such as Performance Factors, is preferred. 
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Finally, the application of techniques such as data interpolation and balancing, and validation 

through Leave-One-Group-Out Cross Validation (LOGO CV) prevented overfitting and 

ensured that each project was fairly represented. The pipeline's fully automatable approach 

also allows the method to be easily adapted to different datasets, promoting more extensive 

use even in operational contexts. 
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7. Conclusion 
This study proposed a framework for project monitoring and control through the application 

of machine learning techniques, with the goal of improving predictive ability over traditional 

methods. Although approaches such as Earned Value Analysis (EVA) are widely used, they 

are often limited by the use of static, linear models, which are poorly suited to the complexity 

of real projects, especially in the more dynamic phases of execution. 

In response to these limitations, this thesis proposes an ML pipeline that integrates 30 

different learning algorithms, powered by a combination of static features, topological 

indicators of the project network, and, most importantly, dynamic metrics. It is precisely the 

systematic introduction of dynamic metrics that is one of the distinctive features of the 

research: unlike static variables, they evolve as the project progresses, allowing for more 

timely interception of deviations and critical issues. The SHAP analysis confirmed that these 

metrics play an important role in forecasting, particularly in the early and intermediate 

stages. 

The results demonstrates that the ML models, through this combination of features, are able 

to produce more accurate forecasts than conventional models. At the same time, the analysis 

showed that some traditional metrics remain important, especially in forecasting final costs. 

In addition, the structure of the project network-described by topological indicators such as 

SP and RI also contributes to improving the quality of forecasts, allowing ML models to 

capture deviations from linear progress and the balance between serial and parallel 

execution. 

Methodologically, balancing and interpolation techniques and the adoption of Leave-One-

Group-Out cross-validation improved the robustness of the pipeline. Of the two types of 

regression, direct regression models proved to be more interpretable, while indirect 

regression models, while showing good performance, generated less readable SHAP 

analyses, suggesting potential room for improvement. 

This research may open several perspectives for future developments. It will be interesting 

to test the pipeline on larger datasets, plus the use of artificial or simulated data could 

improve model training, especially in the early stages of projects where real data are often 

lacking. Another direction of development concerns the enrichment of topological features: 

in addition to SP and RI, it would be useful to explore variables related to network 
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complexity, dependencies between activities, and resource allocation patterns. In parallel, 

the integration of indicators related to risk management could further increase the predictive 

ability of the models. 

In conclusion, the developed pipeline proved to be an efficient tool for project control, 

capable of integrating static, dynamic and topological data. This information makes forecasts 

more reliable and aims to concretely support project managers in operational decisions and 

contributing to the evolution of project management practices toward an increasingly data-

driven and proactive approach.  
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