
POLITECNICO DI TORINO
Master Degree course in Master Degree course in Engineering and Management

Master Degree Thesis

LLM-based Generation and Evaluation
of UML Class Diagrams

Supervisors
Prof. Riccardo Coppola
Prof. Giacomo Garaccione

Candidate
Roberta Soldati

Academic Year 2024-2025

Abstract

In the digital era, information systems play an essential role in supporting the operational
processes of modern organizations. Among the critical phases of software development,
conceptual modeling remains one of the most decisive, especially during the early stages,
when system requirements are still being explored and formalized. The heart of con-
ceptual modeling lies in the use of diagrammatic notation, with the Unified Modeling
Language (UML) class diagrams emerging as one of the most widely adopted standards
for representing the static structure of object-oriented systems. These diagrams enable
designers to abstractly represent classes, their attributes, and interrelations such as asso-
ciations, generalizations, and aggregations, providing a visual formalism that facilitates
analysis, communication, and software specification. However, despite their expressive
power and standardization, UML class diagrams pose considerable cognitive challenges
for learners and inconsistencies for evaluators. In educational contexts, instructors fre-
quently compare the difficulty of manually assessing diagrammatic solutions submitted
by students, where equally valid structural variations can lead to subjectivity in grading.
From an industrial standpoint, early-stage software modeling is often constrained by time
and the cost of human effort especially when modeling from informal requirement speci-
fications. This thesis tries to answer the question of to what extent artificial intelligence
can assist or even automate the generation and evaluation of UML class diagrams from
textual requirements. In recent years, the rise of Large Language Models (LLMs), based
on transformer architectures, allowed us to generate syntactically correct and semanti-
cally plausible outputs in a variety of formats, from natural language to domain-specific
representations like JSON one. However, their capabilities are deeply influenced by the
formulation of the input, commonly known as the prompt, which defines the task context,
constraints, and expected structure. This has led to the emergence of prompt engineering
as a critical practice for aligning LLM outputs with specific domain goals, especially when
precision and interpretability are critic. Hence, this thesis investigates the feasibility and
effectiveness of employing LLMs for the automatic generation and evaluation of UML
class diagrams. Specifically, it explores whether and how prompt-engineered LLMs can
generate class diagrams that comply with syntactic, semantic, and pragmatic standards
of quality, and whether these outputs can be assessed through replicable and objective
evaluation mechanisms. The research is structured around a twofold objective: designing
and optimizing a prompting strategy that enables LLMs to generate UML diagrams in
JSON format, fully compatible with the Apollon and UML-Modeler tools and developing
an evaluation pipeline that can assess the correctness and similarity of such diagrams,
with respect to the reference ones, through rubric-based scoring. The findings confirm
the potential of LLMs in educational modeling tasks, although limitations remain. Dia-
gram generation is sensitive to prompt formulation, and rubric-based evaluations, while
practical, introduce subjectivity. Future work could involve extending to other modeling
languages, incorporating visual assessment, and averaging multiple human evaluations to
reduce bias and enhance reliability.

Contents

1 Introduction 5

2 Background 7
2.1 UML class diagrams . 7

2.1.1 Difficulties and Ambiguities in UML Modeling 9
2.1.2 Evaluation and quality measures of UML class diagrams 10

2.2 Large Language Models . 11
2.2.1 Transformer Architecture of Large Language Models 12

2.3 Prompt Engineering . 13
2.3.1 Prompting Techniques . 14

2.4 Current solutions for the generation of UML class diagrams 15
2.5 Gen-AI . 18

3 Methodology 21
3.1 Dataset construction . 21

3.1.1 Number of Classes . 21
3.1.2 Number of Relationships . 22
3.1.3 Variety of Relationship Types . 22
3.1.4 Cardinalities Constraints . 23
3.1.5 Average Number of Attributes per Class 23
3.1.6 Inheritance Structures . 23
3.1.7 Clarity of the Exercise Text . 24
3.1.8 Difficulty Classification . 24

3.2 Dataset Presentation . 25
3.3 Introduction to the Prompt-Based Generation 26

3.3.1 Iterative Prompt Refinement . 29
3.3.2 Reference Exercise for Output Calibration 35
3.3.3 Quality Assessment of Produced ChatGPT Diagrams 42

3.4 Rubric-based Evaluation of Diagram Correctness 43
3.4.1 Human Error . 47

3.5 Rubric-based Evaluation of Diagrams Similitude 48
3.6 Final Refinement of the strategy . 51

3.6.1 Correctness Analysis after First and Second Refinement of the Prompt 55
3.6.2 Mitigating Human Evaluation Bias 65

2

3.6.3 Similarity Analysis after First and Second Refinement of the Prompt 67

4 Conclusion 73
4.1 Summary of Contributions . 73
4.2 Evaluation Insights and Key Findings . 74
4.3 Limitations and Future Work . 74

Bibliography 77

3

4

Chapter 1

Introduction

In the information age we live, information systems provide core mechanisms for support-
ing operational business processes of organizations through the collection, managing and
distribution of information (data) within different system processes. The design or model-
ing phase of a software process is one of the most crucial to ensure the quality of the final
product since it focuses on constructing abstract representations of a system to define its
structure, behavior, and interactions. Indeed, software process modeling languages are an
important support for describing and managing software processes in software-intensive
organizations as they rely on different levels of abstraction, allowing stakeholders to un-
derstand and possibly redefine system behavior before its implementation. Modeling
languages can be classified into different categories based on their purpose and level of
abstraction. The design of a software process at the highest level of abstraction initiates
through the conceptual modeling languages, such as Unified Modeling Language (UML)
or Business Process Model and Notation (BPMN), which focus on the main entities and
their relationships, not entering into details. They are the base for the following log-
ical modeling languages, including Data Flow Diagrams (DFD), which provide a more
structured view of system behavior and interactions, highlighting data flows and func-
tionalities. Lastly, physical modeling languages, such as hardware description languages
(HDLs) and database schema models, define system implementation details, ensuring
that the designs translate into practical applications.

In particular, UML has been proposed by the OMG standard in the early nineties as
the general-purpose software modeling language that adopts the object-oriented software
engineering paradigm. An object-oriented system unifies the data structure and behav-
ioral features into a single object structure. The UML captures information about the
static structure and dynamic behavior of a system. A system is modeled as a collection
of discrete objects that interact to perform work that ultimately benefits an outside user.
The static structure defines the kinds of objects important to a system and its imple-
mentation, as well as the relationships among the objects. Dynamic behavior defines
the history of objects over time and the communications among objects to accomplish
goals. Modeling a system from several separate but related viewpoints permits it to be
understood for different purposes.

5

6

Chapter 2

Background

2.1 UML class diagrams
Today, UML is considered the preferred software modeling language by professionals who
work in various industries. Indeed, several recent survey studies ([6, 11, 16]) which
compared UML with other formal and informal software modeling languages pointed
out that most of the practitioners from diverse industries use UML for their software
modeling activities, since it offers a visual notation set that consists of various diagrams
for the specifications of software systems from different viewpoints (e.g., logical, physical,
deployment, and behavior).

Regarding the static view, the main elements are classes and their relationships, which
the main are association, generalization, and various kinds of dependency.

• Classes: classes are a description of a concept in the application domain or in the
application solution. In fact, they are the center around which the class view is
organized; other elements are owned by or attached to classes. The static view is
displayed in class diagrams, so-called because their main focus is the description
of classes. They are drawn as rectangles, but lists of attributes and operations are
shown in separate compartments.

• Attributes: attributes are the properties or variables of a class, They define the
characteristics or state of an object. They capture fundamental data about an
object, in this way, the system can store, retrieve, and manipulate this data when
it is needed.

• Relationships: relationships represent the connections between classes. By provid-
ing a structure to the system, they ensure that objects interact in a coherent and
meaningful manner. Common relationships include: association, which is a bidirec-
tional relationship between two classes, aggregation, which represents a ’whole-part’
relationship, where one class is a component of another, and generalization: repre-
sents a is-a relationship between a base class (parent) and a derived class (child).

• Multiplicity: it denotes a possible range of instances that can participate in an
association between two classes, by defining the minimum and maximum number

7

Background

of instances of one class that may be associated with a single instance of another
class. The cardinality constraints allowed are zero or one, exactly one, zero or more,
one or more, exactly n and from m to n inclusive.

An illustrative example of a UML class diagram is proven in Figure 2.1. It models a
telecommunications billing system and highlights several superior functions of UML di-
agrams. In this diagram, the PhoneBill class is composed of one or more PhoneCall
instances, represented through an aggregation relationship. The multiplicity 1..1 at the
PhoneBill facet and 1..* at the PhoneCall side expresses that each bill references at least
one phone name, and every telephone call belongs to precisely one bill. The PhoneCall
class is further specialized via the subclass MobileCall, following an inheritance relation-
ship, which allows the model to distinguish between daily calls and those originating from
cell gadgets. A PhoneCall is related to an Origin through a specification, which records
the region attribute. This is likewise prolonged with the aid of the MobileOrigin, allowing
similarly specification in the context of mobile communications.

Each PhoneCall is made from exactly one Phone, and a cellphone may additionally
have participated in 0 or more calls. The Phone istance itself is an abstract class, with two
disjoint and complete specializations: CellPhone and FixedPhone. This generalization
is classified with complete, disjoint, that means that each example of Phone need to be
both a CellPhone or a FixedPhone, and no example may be each.

Figure 2.1. UML class diagram example [2]

The construction of a class diagram evolves through various steps:
• Gathering of requirements: It is necessary to understand the requirements of the

stakeholders before starting with the design of the system. Consequently, they can
be associated with classes and their attributes.

• Identifying Relationships: determine how the classes will interact with each other
by understanding the type of relationships. This phase also include the definition
of the multiplicity of the relationships and their hierarchy.

• Drawing the diagram: start with classes, then add attributes, and finally represent
the relationships.

• Review and Refine: once the initial diagram is ready, review it for accuracy and
completeness. Make necessary refinements.

8

2.1 – UML class diagrams

2.1.1 Difficulties and Ambiguities in UML Modeling

Despite its standardization and widespread adoption in both academic and industrial
contexts, building correct and meaningful UML diagrams is still a challenging task, par-
ticularly when translating natural language descriptions into conceptual models. One of
the main challenges lies in interpreting unstructured natural language and translating it
into representations that adheres with the UML’s formal constraints. Since textual de-
scriptions are often incomplete or ambiguous, this process requires extrapolating structure
and semantics that are not explicitly stated, while maintaining both syntactic correctness
and conceptual clarity.

• One of the primary issues encountered is the semantic vagueness inherent in textual
requirements. Descriptions often lack explicit information about cardinalities, the
directionality of relationships, or the distinction between aggregation and compo-
sition. This leads to ambiguous interpretations even among experienced modelers.
As highlighted by [5], such ambiguities contribute significantly to inconsistent and
erroneous student diagrams, which are difficult to evaluate systematically.

• Another frequent source of error is the difficulty in distinguishing between attributes
and associations. Elements such as “address”, “contract type”, or “responsible per-
son” can be validly represented either as class attributes or as linked entities, de-
pending on the intended semantic granularity and normalization level. This duality
often results in divergent solutions across students and represents a critical chal-
lenge for LLMs, which struggle to apply consistent thresholds for class abstraction,
especially in the absence of domain-specific constraints [1].

• Ambiguities also arise in handling specializations. Without explicit cues, modelers
may overlook generalizable concepts or, conversely, introduce unnecessary hierar-
chies. The decision to model a concept as an abstract class, a subclass, or an
enumeration is often subjective and significantly affects the logical structure of the
diagram. These modeling choices, while formally correct, may result in semanti-
cally divergent interpretations — a phenomenon noted in comparative studies of
student-submitted diagrams [14].

• Lastly, naming conventions themselves are a potential source of ambiguity. Generic
or inconsistent naming (e.g., “Data”, “Entity”, “Info”) reduces readability and hin-
ders the interpretation of the model, especially when diagrams are generated or
compared automatically. Misaligned terminology between class names and attribute
names further contributes to semantic confusion, and often correlates with lower
comprehensibility scores in manual assessments [11].

These challenges not only hinder the educational process in conceptual modeling but
also serve as critical indicators of the current limitations and future opportunities for
generative AI systems applied to UML diagram construction.

9

Background

2.1.2 Evaluation and quality measures of UML class diagrams

One of the most time-consuming task for teachers and students is creating, correcting and
evaluating exercises. Traditional assessment methods are limited by several factors, such
as subjectivity, especially considering that conceptual modeling permits many equally
valid variants of the same domain. In response to these challenges, it is essential to provide
a quantitative and objective approach for evaluating the quality of exercises. According
to Narasimha Bolloju and Felix S.K. Leung conceptual model quality framework, [3]
the quality of UML artifacts can be measured from syntactic, semantic and pragmatic
perspectives.

Table 2.1. Common UML Modeling Errors Categorized by Quality Dimension [3]

Model Type Syntactic Quality Semantic Quality Pragmatic Quality
Use Case Models Invalid notation;

improper naming (e.g.,
missing action verbs)

Incorrect use of in-
clude, extend or
generalization relation-
ships

UI details in descrip-
tions; incomplete sce-
narios; poor layout

Domain Models Inappropriate
naming of classes or as-
sociations

Missing or incorrect
cardinalities;
use of aggregation in-
stead of association

Redundant attributes
or associations; weak
subclass distinction

Dynamic Models Improper placement
of objects in sequence
diagrams

Incomplete specifi-
cation of message
parameters

Inappropriate
delegation of responsi-
bilities

Hence, the syntactic correctness of a model implies that all statements in it depend
on the syntax of the language, capturing how a given model adheres to the language rules
or to the syntax. Therefore, fewer errors and deviations from the rules indicate better
syntactic quality. Semantic quality is described in terms of validity and completeness
goals. The validity goal specifies that all statements in the model are correct and relevant
to the problem domain. The completeness goal specifies that the model contain all
statements about the problem domain that are correct and relevant. However, it may
be that these two goals cannot be achieved, unlike syntactic correctness, which can be
achieved. Pragmatic quality captures how the model has selected from among the many
ways to express a single meaning and essentially deals with making the model easy to
understand. The comprehension goal specifies that all interpreters completely understand
the statements in the model that are relevant to them.

Considering these perspectives of quality, Narasimha Bolloju and Felix S.K. Leung
analyzed the quality of many UML artifacts in 15 team-project reports submitted by
undergraduate students taking a course in object-oriented analysis and design in the
Department of Information Systems at the City University of Hong Kong and noticed
that errors related to relationships, such as association and specification were frequent,
especially the cardinality details. Most of the pragmatic errors observed were related to
derived or redundant attributes, the use of keys and the insufficient distinction among
subclasses.

10

2.2 – Large Language Models

Another main contribution in this route is the method proposed by means of Niki-
forova et al. [10], which proposes a new approach for the summative assessment of UML
class diagrams based totally on graph similarities. This method addresses the challenge
of objectively evaluating a diagram made by a student to a reference solution by remod-
eling both into categorized graphs, in which nodes constitute classes and edges denote
relationships, including associations and generalizations.

To compare the two graphs, the method computes multiple layers of similarity:

• Node similarity is evaluated by comparing class names and their associated at-
tributes and methods. This involves both lexical comparison techniques (such
as string matching or edit distance) and semantic similarity measures (e.g., using
WordNet to recognize that “Client” and “Customer” are semantically related).

• Edge similarity is determined by analyzing the types of relationships between classes,
including their directionality, roles, and cardinalities. The system checks whether
two edges connect semantically or structurally equivalent nodes and whether they
serve the same conceptual role.

All similarity scores are stored in a similarity matrix, where each cell S(i, j) repre-
sents the similarity between a node i in the student graph and a node j in the reference
graph. An optimal node-to-node mapping is then computed using a graph alignment
algorithm, which maximizes the total similarity score while avoiding redundant or con-
flicting matches. This step is conceptually similar to solving a weighted bipartite matching
problem (e.g., via the Hungarian algorithm).

Finally, the method combines the results into an overall similarity score, computed as
a weighted sum of node similarity, edge similarity, and attribute similarity:

Sim(Gs, Gr) = α · Simnodes + β · Simedges + γ · Simattributes

where Gs and Gr are the student and reference graphs, respectively, and α, β, γ are
configurable weights that reflect the relative importance of each component.

This quantitative evaluation process enables the system to assess diagrams accu-
rately, even when they differ syntactically but are semantically equivalent. The method
was validated through experiments on real student submissions, demonstrating a strong
correlation between automatic similarity scores and the grades assigned by expert human
evaluators. Furthermore, it lays the groundwork for integrating computerized evaluation
gear into instructional systems, thus helping each instructor and freshmen in the teaching
and gaining knowledge of conceptual modeling.

However, providing an assistant tool based on Gen-AI that automates such tasks
would optimize teachers performances both in a time cost perspective and in error ten-
dency.

2.2 Large Language Models
"Large Language Models (LLMs) are neural architectures that leverage transformer-based
training over extensive textual corpora to model linguistic patterns and perform genera-
tive tasks" [4]. These models are trained on very large datasets and have been shown to

11

Background

perform quite well at language processing tasks. They generate new text by predicting
word sequences, based on the input they receive.

2.2.1 Transformer Architecture of Large Language Models

Most of the Large Language Model (LLM) are based on a ’Transformer Architecture’
which, unlike earlier architecture that processed tokens sequentially (word by word),
employs a mechanism called self-attention that enables it to consider all positions in a se-
quence simultaneously. The Transformer architecture was originally proposed by Vaswani
et al. in the influential paper introducing the Transformer model [15] and it is expected
that each word or token in the input is converted to a continuous vector representation
initially and added to positional encodings for retaining token order information since
the architecture itself does not incorporate any sequence bias.

Self-attention allows each token to selectively attend to other tokens in the sequence,
learning patterns of relationship that depend on the context. This is done by projecting
three vectors for each token: a query, a key, and a value. The attention weights are
computed by taking the dot product of the query and key vectors, normalizing them,
and using them to weight the value vectors. The weighted values are combined to form
a context-aware representation of each token. To enhance the capacity of the model to
represent diverse aspects of relationships, the Transformer utilizes multi-head attention,
which applies the self-attention mechanism in parallel across multiple heads and concate-
nates the results. Following the attention mechanism, each token is passed through a
feed-forward neural network, applied identically but independently to each position.

Both the feed-forward and attention blocks are wrapped in layer normalization and
residual connections, which help stabilize training and improve convergence. A standard
Transformer consists of stacks of these attention and feed-forward layers. The original
Transformer consists of an encoder and a decoder. The encoder reads an input sequence
and produces a sequence of representations, and the decoder generates a sequence by
attending to the encoder output and the tokens generated so far. In the case of text
generation models like GPT, however, only the decoder component is used in a unidi-
rectional, autoregressive fashion, where each token is generated based on only preceding
tokens.

Generally, LLMs are part of Neural Language Models (NLMs) category, which in-
cludes any language model based on neural networks, a mathematical model made up of
layers of interconnected nodes, and of Pretrained Language Models (PLMs), which are
NLMs that have been trained in advance on general text and can be fine-tuned. Fine-
tuning refers to the process of taking a pretrained language model and adapting it to
a specific task or domain by continuing the training process on a smaller, task-specific
dataset. While the initial pretraining phase allows the model to learn general linguis-
tic patterns and structures, fine-tuning enables it to specialize in particular tasks such
as text classification, question answering, named entity recognition, or domain-specific
language understanding. However, while LLMs exhibit impressive capabilities in gener-
ating coherent and contextually relevant text. In addition to general-purpose language
tasks, LLMs are increasingly applied to structured output generation, such as generating
code snippets, business process models, tabular data or spreadsheets formulas . These

12

2.3 – Prompt Engineering

tasks require the model to adhere not only to linguistic fluency but also to structural and
syntactic constraints defined by domain-specific languages or formal notations. Ensuring
output validity in such contexts remains a significant challenge, as minor formatting or
structural deviations can render the output unusable by downstream tools. However, they
may also produce inaccuracies, ambiguities, or biased outputs, posing risks to the reliabil-
ity and quality of software requirements. These models are also prone to phenomena such
as hallucination, where outputs appear fluent and plausible yet are factually incorrect,
and overconfidence, where the model expresses incorrect information with unjustified cer-
tainty. These issues are particularly problematic when outputs are interpreted without
human oversight or applied in critical decision-making scenarios. Moreover, ethical con-
siderations such as data privacy, model bias, and transparency justify careful examination
when employing LLMs in sensitive domains like software development.

Alternatively, LLMs can perform tasks through in-context learning (ICL), where they
are prompted with a few examples or instructions at inference time, without requiring
any additional training. This approach is especially relevant in academic and industrial
contexts where fine-tuning is not feasible due to resource constraints or lack of labeled
data. Prompt engineering strategies—discussed in the next section—are designed to
exploit the full potential of ICL.

Thus, the main critical aspects of using LLMs are:

• Semantic interpretability: using LLMs effectively means formulating appropriate
prompts, the input text or queries provided to these models to generate desired
outputs. To have real world semantics, referential mapping is required.

• Domain specialization: poor performance in specialized domains without domain
adaptation. This would involve simplifying complex phenomena into more under-
standable concepts.

• Poor quality data: if data contains biases, the model can lead to incorrect and
inconsistent predictions and can internalize and replicate those patterns in its out-
puts.

• Dependence on training data: if a topic was not covered in the training data, the
model’s responses may be inaccurate, shallow or entirely wrong.

2.3 Prompt Engineering
Prompt engineering plays a particularly critical role in structured output generation tasks,
such as the creation of UML class diagrams, where the correctness of the output depends
not only on the semantic understanding of the input but also on strict adherence to
predefined syntactic formats (e.g., valid JSON or PlantUML). Unlike open-ended text
generation, these tasks demand outputs that are machine-interpretable and structurally
validated, making prompt design a key factor in determining whether the model suc-
ceeds or fails. LLMs are uncertain processes, so the quality of formulating prompts
significantly contributes to the content’s semantic fidelity and syntactic clarity. In the
educational setting, for instance, prompt design is at the core for automated software

13

Background

modeling assignment generation and feedback on UML diagrams. As a simple example,
the content of a prompt can have a huge impact on the output quality if you mention
constraints, domain language even in response format. Furthermore, via methods such as
few-shot prompting and chain-of-thought prompting on the LLMs further enhance their
capability of managing complex reasoning or structured generation. Therefore, prompt
engineering sits between what a model is capable of and the user’s goal by translating that
to actionable work done by a generative tool whilst meeting domain-specific expectations.

2.3.1 Prompting Techniques

Prompt engineering is more effective when the task is clear and the model has been
pretrained on it in a given domain. That’s why there are known techniques to improve
quality. Many of them are shown in the article by Zhu et al. [17] taken as reference:

• Zero-shot prompting: employs an instruction with the minimal use of examples.
More effective in most general-purpose tasks or clarity and conciseness is an impor-
tant drive. For example, if the model is already transferred to UML-related content,
’Generate a UML class diagram from the following requirements’ is doable.

• Few-shot prompting: few examples that represent input-output pairs in the prompt
are usually good enough. This technique it is useful when the model has to deduce
the structure or style of the response it is targeting, by for example translating a
requirement into software pattern class diagram, and when helps with prompts that
have some constraints such as associations, repetitions or multiplicities.

• Chain-of-Thought prompting (CoT): triggers the model to take intermediate steps
while generating answers. For instance, two-way reasoning tasks (e.g. if you have
to decide whether a class diagram complies with both syntactic as well semantic
quality standards for its semantics). Typically, it firstly identifies the entities, then
relationships and assigns attributes with multiplicities properly.

• Common prompting techniques: methods like providing structured prompts in tem-
plates such as bullet points or specific sections or delimiters, can train the model
towards more deterministic outputs. This is more useful for things you want to be
able to iterate on and serve users again, e.g., quizzes or UML feedback forms.

• Role-based prompting: the model can recive a persona (e.g., ’You are a software
modeling tutor’) to steer it towards answering in a way that is pedagogical and/or
didactic.

Sometimes, these prompt engineering techniques can also be used simultaneously, for
instance, two or more at the same time, to optimize and refine the initial setup. This
approach is aligned with recent advances showing that large language models can perform
step-by-step reasoning even in zero-shot settings [7]. It also aligns with promptware
engineering principles, where prompts are not considered as isolated, ad-hoc instructions,
but rather as reusable, modular, and testable components of a broader software system.
This implies that the process of engineering prompts is comparable to the ones typical

14

2.4 – Current solutions for the generation of UML class diagrams

of traditional software development. They’re indeed versioned, documented, evaluated,
and often embedded in pipelines or tools to ensure reliability and reproducibility of the
outputs.

2.4 Current solutions for the generation of UML class dia-
grams

All of the current available solutions for creating and evaluating students exercises are
based on DSL. A DSL (Domain Specific Language) is a programming language built for a
specific scope in a specific domain. The main differences between generic languages, such
as Python or Java, is that a DSL is specialized in a domain, it is easy to use and very
expressive. A LLM (Large Language Model) is an AI system trained on vast text data to
understand and generate human language. DSLs are rule-based and deterministic, while
LLMs are probabilistic and learn patterns from data. An LLM can generate or assist
with writing DSL code, but it is not a DSL itself.

Three of the many existing approaches are:

• Java-based tool for the automated evaluation and grading of student UML diagrams
through structural and syntactic matching, which is promising to solve the feedback
and grades themes, but it is still not using any machine learning or any generative
models and it works only with Modelio Diagrams.

• Wodel-Edu, a DSL extension of Wodel, which is able to automatically generate
modeling exercises (such UML Diagrams). Even if it is promising well, there are
some limits in using Wodel-Edu:

– Evaluation of students answers is not possible. It needs to have an additional
tool to generate a tailored feedback.

– Simplistic Mutation: since they are based on rules manually inserted, they
may not be pedagogically efficient (not calibrated on student knowledge) and
they may result in too easy or ambiguous.

– Teachers need to have competencies in writing DSL rules.

• Rule-based approaches for automated assessment of UML class diagrams. In par-
ticular, we cite a metamodel born as an extension of TouchCORE [13], which is a
tool designed for model-driven software development, and AutoER, a web-serving
application to help in the automated generation and automatic marking of UML
database design diagrams. Neither of the two is AI-based, as they compare student-
submitted UML class diagrams with an instructor’s reference solution. In particu-
lar, they use a set of structured comparison algorithms and metamodel to evaluate
the syntactic, semantic, and structural similarity between models:

– Syntactic similarity refers to the textual closeness between element names, such
as class or attribute identifiers. This type of comparison handles minor spelling
errors, pluralization, typos, or variations in naming conventions. It is typically

15

Background

measured using the Levenshtein distance, which calculates the number of edits
needed to convert one string into another.

– Semantic similarity, on the other hand, focuses on the meaning of the names,
allowing the tool to recognize conceptually related terms that are not necessar-
ily textually similar. This is achieved through lexical databases like WordNet,
which assess how closely two terms are related in a linguistic or conceptual
sense. This is especially useful when students use synonyms or domain-relevant
alternatives, such as "Teacher" instead of "Instructor."

– Structural similarity examines the relationships, positions, and contents of
model elements, such as whether a class contains the correct attributes or
methods, whether associations are correctly defined between relevant classes,
or if inheritance hierarchies are maintained. This type of matching ensures that
the overall model structure aligns with the intended design, even if individual
names differ or elements are misplaced within the hierarchy. Together, these
three dimensions allow the tool to provide a robust and flexible assessment of
student models, accommodating variations while maintaining the accuracy of
the rating.

Again, while the proposed systems offer a robust and flexible method for evaluating
UML class diagrams and immediate and detailed feedback that enhance formative
learning, they also come with several limitations that affect their applicability and
accuracy in certain contexts.

– The tools are not AI-driven, meaning they rely entirely or partially on pre-
defined algorithms. They do not learn from past data nor they adapt their
grading logic based on student behavior and feedback.

– Word-net is a general-purpose lexical database, and it may not be sufficient
when dealing with domain-specific vocabulary.

– The tools do not assess diagram layout or visual quality. Issues such as over-
lapping elements, disorganized layouts, or missing labels are ignored in the
grading process, even though they are often important in real-world modeling
tasks.

– Limited flexibility, since they require instructors to prepare mark-up, reference
solutions and structured questions manually.

• Template-based generation: Sadigh et al. [12] proposed a framework based on the
three main aspects of the exercise life cycle, that is, problem generation, solution
analysis and auto grading. In this context, existing exercises are abstracted into
parameterized templates and new exercises are generated by instantiating these
templates or applying bounded mutations to existing models. While solutions, stu-
dent feedback and evaluation are made through model checking, simulation and
SMT solving. Model checking is a technique used to automatically verify if a sys-
tem model satisfies certain formal properties by exploring all possible states and
behaviors. Simulation refers to running a model with specific inputs to observe

16

2.4 – Current solutions for the generation of UML class diagrams

how it behaves under particular conditions, often to provide examples or detect
design issues. Satisfiability Modulo Theories solving (SMT solving) is an extension
of Boolean feasibility that allows for checking and solving problems involving more
complex data types and constraints by encoding them into logical formulas. This
system enables scalable and systematic generation of exercises, which is critic in on-
line course environments, such as MOOCs, where thousands of students may need
unique but equivalent practice problems. The use of formal methods guarantees a
high degree of precision and correctness in both problem generation and evaluation,
minimizing the possibility of human error. Additionally, the use of mutation-based
problem generation allows instructors to control the difficulty of the exercises and to
create a wide range of problem variations from a common template, which enhances
both student learning and assessment quality. However, there exist similar limits in
using template-based systems for generating exercises of the ones presented before:

– Lack of adaptability: the system is not AI-driven and does not adapt or per-
sonalize feedback based on student performance.

– High instructor workload: it requires full formalization of models, properties,
and traces, which can increase the time and effort needed from instructors.

– Inconsistent pedagogical value: mutated models may not always be pedagogi-
cally meaningful, sometimes resulting in trivial or overly complex problems.

– Domain specificity: the system is limited to domains that can be fully ex-
pressed and verified using formal methods, reducing its applicability to more
open-ended or creative modeling tasks.

Therefore, despite the promising results of current DSL-based, rule-based, and
template-based approaches, several limitations persist. The critic is the lack of
adaptability, as none of the systems is AI-driven or capable of customizing feed-
back. They also require significant manual preparation by instructors and often do
not handle domain-specific terminology. In addition, they do not assess the visual
quality of diagrams and may generate exercises of inconsistent pedagogical value.

However, there exist other techniques for comparison and evaluation of UML Class Dia-
grams but based on simpler approaches. UML Class Diagrams can be compared through
semantic features of their elements, such as classes, attributes, methods, and relations.
These techniques pair elements based on semantic similarity requiring human involve-
ment to ensure that equivalent elements are correctly identified, even if they have differ-
ent names and calculate distances to quantify differences. The calculated distances are
aggregated into a difference vector, which quantitatively represents the discrepancies be-
tween the diagrams. The length of this vector provides a final numerical value indicating
the degree of difference between the compared diagrams.

Another promising solution for UML generation and evaluation is through Gamifica-
tion, which is the use of game-design elements and principles in non-game environments
to increase user engagement/motivation. UMLegend is an example of gamified tool devel-
oped to enhance the teaching and learning of UML Class Diagrams in academic settings.
Although it is not based on AI technologies, it introduces an interactive environment

17

Background

designed to increase student engagement and support formative assessment, composed
of drag-and-drop modeling canvas based on the Apollon open-source library, real-time
feedback through visual indicators, categorized error lists, and direct diagram annota-
tions, etc. Its internal evaluation engine compares student-submitted diagrams with a
predefined reference solution created by instructors.

2.5 Gen-AI
Gen-AI is a term used to describe computational techniques capable of generating seem-
ingly new, meaningful content such as text, images, or audio from training data. (Feuer-
riegel et al., 2024). Unlike traditional AI systems, which are based on and follow pre-
defined rules, Gen-AI can generate new content by leveraging advanced models such as
Generative Adversarial Networks (GANs), Generative Pretrained Transformers (GPT)
and Generative Diffusion Models.

• Generative Adversarial Networks (GANs): frameworks composed of two neural
networks, a generator and a discriminator, which are collectively trained to provide
practical output.

• Generative Pretrained Transformers (GPTs): massive-scale transformer-based lan-
guage models skilled in huge text corpora, capable of generating coherent and con-
textually applicable language.

• Diffusion Models: generative models that learn how to denoise random facts through
the years to produce sensible photographs and different media content material.

Thanks to their probabilistic nature, Gen-AI systems can manage a wide spectrum
of inputs and adapt responses based on different knowledge. Gen-AI models are not
constrained by fixed tools or output formats, which promotes interoperability across
educational platforms. Furthermore, they can simulate complex real-world scenarios that
are difficult to design manually, offering richer learning environments.

Tools such as ChatGPT, which rely on large language models (LLMs) and advanced
machine learning algorithms, have played a pivotal role in popularizing generative artifi-
cial intelligence (Gen-AI) among both experts and the general public. Since its launch,
ChatGPT has reached an unprecedented scale of adoption, surpassing 100 million users
by January 2023 and becoming a mainstream interface for interacting with AI.

While these systems hold the promise of democratizing access to information, sup-
porting creativity, and enhancing productivity across various domains, their widespread
deployment has also raised significant concerns. One of the most pressing issues is the
potential for the unintentional spread of misinformation. Given that LLMs generate text
based on statistical patterns in training data, rather than verified facts, they may pro-
duce outputs that are factually incorrect, misleading, or outdated — particularly when
operating without explicit sources or mechanisms of accountability.

Moreover, the lack of transparency on these models trainings and the proprietary
nature of many foundational architectures makes external auditing more difficult. As a
result, users often cannot fully understand how a given response was generated or assess

18

2.5 – Gen-AI

its reliability. The presence of biases in the training datasets can further compound the
problem, leading to biased or even harmful outputs in certain contexts.

These limitations highlight the need for clear governance, ethical design, and technical
safeguards like alignment and human oversight. LLMs such as ChatGPT offer great po-
tential but require responsible and risk-aware development. In contrast to rule-based and
DSL driven systems traditionally used for generating and evaluating modeling exercises,
Gen-AI models offer several significant advantages:

1. First, large-language models (LLMs) are capable of generating diverse and realistic
problem variants at scale without requiring predefined templates or manual rule
definition, greatly reducing the workload for instructors.

2. Second, their probabilistic and data-driven nature allows them to adapt to a wide
range of student inputs, providing more flexible and personalized feedback that can
help students at different levels of understanding.

3. Third, Gen-AI can better handle domain-specific or unexpected terminology, as it
draws from vast and varied training data, minimizing issues related to rigid syntax
matching or limited semantic interpretation.

4. In conclusion, Gen-AI can produce plausible but factually incorrect or entirely fab-
ricated outputs, a phenomenon known as hallucination. This can be especially
problematic in educational contexts.

Additionally, these models are not constrained by specific formats or tools, which
enhances interoperability between different educational platforms and modeling environ-
ments. Finally, Gen-AI systems can also simulate realistic and complex scenarios that
would be difficult to design manually, offering richer and more engaging learning experi-
ences for students.

19

20

Chapter 3

Methodology

3.1 Dataset construction

In order to proceed with the research study of the effectiveness in using Gen-AI tools for
the evaluation and the generation of UML diagram variants, the data set applied must
first be provided. By using academic search tools such as Google Scholar and extending
the search including previous years material, it was possible to identify exercises with so-
lutions that included prompts in either Italian or English. For consistency reasons, only
Italian-written exercises were analysed. Moreover, given that UML modeling language
is continually evolving and may adopt different conventions depending on the country
or time period (e.g., different symbolisms), exercises that significantly deviated from the
standard adopted in the remainder of the dataset were excluded from consideration. How-
ever, many of these exercises were sourced from the websites of other Italian universities
and authored by different instructors. Hence, they all pertain to the field of computer
engineering and are relevant to the context of this research, especially in an academic
perspective. As mentioned before, the main limit of evaluating modeling exercises lies
in their inherent subjectivity. Therefore, an approach was adopted to ensure maximum
objectivity, which, through the application of multiple criteria and scoring methods, al-
lowed the classification of a total of 32 exercises into five difficulty levels, namely very
easy, easy, medium, difficult and very difficult. Each criterion represents the difficulty
level of an exercise with respect to a specific aspect. Furthermore, each criterion follows
specific rules that allow for the assignment of a score ranging from 1 to 5, corresponding
to increasing levels of difficulty in each category analyzed. The sum of the scores obtained
for each criterion is compared with the final table, which definitively assigns the total
difficulty classification of the exercise.

3.1.1 Number of Classes

The number of classes present in the UML diagram serves as an indicator of the size and
conceptual scope of the modeled system. Larger diagrams typically require a more com-
plex understanding of entities and their interrelations. All classes are counted, including
superclasses and subclasses involved in generalization and specialization hierarchies.

21

Methodology

Number of Classes Score
1–4 1
5–8 2
9–12 3
13–16 4

More than 16 5

Table 3.1. Score based on number of classes

3.1.2 Number of Relationships

This criterion captures the number of relationships and the diversity of relationship types
used in the diagram.

Total Relationships Score
0–4 1
5–8 2
9–12 3
13–16 4

More than 16 5

Table 3.2. Score based on number of relationships

3.1.3 Variety of Relationship Types

This criterion evaluates the diversity of relationship types represented in the UML dia-
gram, regardless of their quantity, such as association, aggregation, generalization, spe-
cialization, and different forms of hierarchy. Each distinct UML relationship type, as
defined by standard UML semantics, is counted once, regardless of how many instances
of that type appear in the diagram. Both structural and dependency-based relationships
are considered valid. Abstracted or indirect relationships are only considered if they are
explicitly modeled.

Types of Relationships Used Score
1 type (e.g., only association) 1

2 types 2
3 types 3
4 types 4

5 or more types 5

Table 3.3. Score based on variety of relationship types

22

3.1 – Dataset construction

3.1.4 Cardinalities Constraints

This criterion considers the presence of cardinalities, role names, and other annotations in
the relationships. All explicitly stated multiplicities are taken into account and the pres-
ence of role names and annotations adds semantic clarity, increasing the score. Notational
completeness (e.g., both ends of an association labeled and constrained) is valued.

Constraints Present Score
No constraints or only fixed values (e.g., 1) 1
Basic cardinalities (e.g., 0..1, 1..*) without roles 2
Cardinalities with 1–2 role names 3
Cardinalities with roles and custom labels 4
Complex intervals (e.g., n..m), named roles, notes or
constraints

5

Table 3.4. Score based on structural constraints

3.1.5 Average Number of Attributes per Class

This score is computed by dividing the total number of attributes by the number of
classes, rounded up. Operations, or behavioral elements are counted as attributes only in
few cases depending on the meaning. Repeated attributes, such as same name and type,
across different classes are counted individually.

Average Attributes per Class Score
1 1
2 2
3 3

3–4 4
More than 4 5

Table 3.5. Score based on attribute density

3.1.6 Inheritance Structures

Generalization or specialization hierarchies increase complexity based on depth, anno-
tations, and combinations. Generalization allows one class, named ’child’ to inherit at-
tributes and behaviors from another, named ’parent’, and its use contributes significantly
to the conceptual complexity of the model. At the most basic level, if the diagram does
not include any inheritance relationships, it is considered structurally simple in this re-
gard and receives the lowest score. This would typically involve entirely independent
classes with no superclass-subclass connections.

23

Methodology

Inheritance Complexity Score
No inheritance 1
One simple generalization 2
Two or more generalizations with abstract/intermedi-
ate classes

3

Use of disjoint/complete constraints 4
Multiple inheritance or multi-level specializations 5

Table 3.6. Score based on inheritance complexity

3.1.7 Clarity of the Exercise Text

This criterion reflects how easy or difficult it is to interpret the task based on the formu-
lation of the exercise.For clarity, the presence of structured formatting (e.g., numbered
tasks) lowers the score, while open-ended questions or business case style prompts in-
crease complexity. This criterion has a crucial role in the evaluation of s UML class
diagram difficulty evaluation, as indeed it represent the most human-like behaviour the
LLM has to replicate, extrapolating implicit information hidden in the text.

Textual Clarity Score
Fully guided and structured instructions 1
Simple language with bullet points 2
Descriptive but clear text 3
Partially implicit or open-ended statements 4
Vague or not specified scenarios requiring interpreta-
tion

5

Table 3.7. Score based on clarity of exercise description

3.1.8 Difficulty Classification

The total score is the sum of the six criterion scores. The final classification is based on
the following scale:

Total Score Difficulty Level
6–10 Very Easy
11–14 Easy
15–18 Medium
19–22 Difficult
23–30 Very Difficult

Table 3.8. Difficulty levels based on total score

24

3.2 – Dataset Presentation

3.2 Dataset Presentation

Once all the exercises had been collected, they were systematically organized into a
dedicated folder. For each exercise, a Word file containing the exercise number and text
was included, along with an image file representing the corresponding UML class diagram
solution. For the sake of consistency, it was decided that all exercises would be presented
in Italian, regardless of whether the human-made solution included class and attribute
names in English. The worksheet was then shared on Drive

Using the criteria and rules mentioned above, it was possible to categorize all 32
exercises in the dataset. The assignment of points to each criterion was done manually by
comparing the solutions of the UML diagrams linked with the tables previously presented,
while the clustering process was carried out using excel and some elementary formulas
for calculating the sum of the scores. Each row of the excel sheet has been filled with the
ID number of the exercise and each point associated with a criterion.

For example:

Cls Rel Types Constr Attr Inh Txt Score Diff
1 2 2 3 2 1 3 2 15 Medium

Table 3.9. Example of a UML exercise evaluation row (compact format)

Figure 3.4 presents a pie chart that shows the distribution of difficulty levels across
the 32 UML exercise data set.

Figure 3.1. Distribution of UML Exercises by Difficulty Level

The largest portion of the pie chart is occupied by the "Easy" category, which repre-
sents 34% of the exercises. This indicates that more than one third of the UML exercises
in the dataset are considered relatively straightforward in terms of structural complexity
and conceptual modeling. These exercises typically involve a limited number of classes
and relationships and may feature basic or moderate use of UML features.

25

Methodology

The second most frequent difficulty level is "Medium", representing 22% of the exer-
cises. These exercises tend to strike a balance between simplicity and complexity, often
introducing a wider variety of relationships and perhaps some limited use of inheritance
or structural constraints.

The "Very Easy" category constitutes 19% of the dataset. The exercises in this group
are minimal in complexity, typically including very few classes and relationships, little to
no inheritance, and basic cardinalities.

The "Difficult" level includes the 16% of the exercises. These are more intricate tasks,
often involving multiple inheritance structures, disjoint constraints, or greater attribute
density. Interpreting these exercises may require a deeper understanding of UML seman-
tics and modeling strategies.

Finally, the "Very Difficult" category makes up the smallest portion of the dataset,
with 9% of exercises falling under this classification. These tasks usually feature a com-
bination of high-class count, diverse and nested relationships, advanced cardinality con-
straints, multiple inheritance, and textual complexity. They challenge not only technical
UML knowledge, but also interpretation and abstraction skills.

Overall, the chart provides a clear overview of the range and distribution of UML
modeling complexity across the dataset, with a notable skew toward the simpler (Easy
and Very Easy) categories. Hence, the result obtained from clustering is sufficiently
homogeneous: it might reflect a Gaussian distribution, with particular emphasis on easy
and medium cases, which are the most common categories, and with few cases of very
difficult and very easy categories, which are borderline cases.

3.3 Introduction to the Prompt-Based Generation

In this work, a prompt-driven approach was adopted to generate UML class diagrams from
textual descriptions, with the goal of analyzing the correctness of the results obtained
from the Gen-Ai tools and comparing them with the human-made ones. The prompt
simulates a realistic instructional setting by positioning the model as a university-level
software engineering professor engaged in the creation of class diagram exercises (role-
based prompting). Specifically, the prompt instructs the model to interpret a natural
language description of a system and return a JSON-formatted representation of a UML
reference solution, which is a "easy to read and write" text format. This includes classes,
attributes, and associations to maintain focus on the structural components of object-
oriented design.

The complete prompt provided to the model is as follows:

You are a software engineering professor who is designing a UML class
diagram modeling exercise for your students . Starting from a textual
description of a system , you must create a reference solution in JSON
format that is fully compatible with the Apollon UML tool (https ://
apollon .ase.in.tum.de).

The JSON output must accurately represent :

26

3.3 – Introduction to the Prompt-Based Generation

- Classes and their attributes (no methods)
- Associations (bidirectional , aggregations , compositions)
- Generalizations (inheritance hierarchies)

Follow these strict modeling guidelines :

1. Attribute rules:
- Only simple types are allowed : string , int , float , date
- A class cannot have another class as an attribute
- No collections : avoid lists , sets , maps
- Use associations instead of composite types

2. Relationships :
- If the text suggests specializations (e.g., types of users or

entities), model them using generalizations :
- Use "type ": " ClassBidirectional "
- Set "name ": "is -a" and leave multiplicities empty

- If the text implies ownership or whole -part structure , use
composition :

- Model it as "type ": " ClassAggregation "
- Set " multiplicity ": "1" on the composite (whole) side

- If the relationship is an aggregation (e.g., "X has many Ys"), use:
- "type ": " ClassAggregation "
- The diamond must be on the aggregating class side

- For ordinary associations (peer -to -peer), use " ClassBidirectional "

3. The output JSON must always start with the following exact structure :

{
" version ": "3.0.0" ,
"type ": " ClassDiagram ",
"size ": { "width ": 1600 , " height ": 780 },
" interactive ": {

" elements ": {},
" relationships ": {}

},
" assessments ": {},

This header must be present exactly as shown above.

Important : After this header , you must continue the JSON with a complete
declaration of:

- " elements ": { ... }
- " relationships ": { ... }

These must be written outside and separately from the " interactive " block.

Do not insert any class , attribute , or relationship inside " interactive ".
That block must remain empty as required by Apollon format for
compatibility .

4. Class formatting (elements dictionary):
- Each class must be represented as an object with a UUIDv4 key and

include :

27

Methodology

- id , name , "type ": "Class", owner , bounds , attributes , and an empty
methods list

5. Each attribute must:
- Appear immediately after its owning class
- Have: id , name = "+ attributeName : Type", "type ": " ClassAttribute ",

owner , bounds

6. Relationship formatting (relationships dictionary):
- Each relationship must include : id , type , name , bounds , path , source ,

target , and isManuallyLayouted = false
- Source and target must specify :

- element , direction , multiplicity
- Optional role for disambiguation

7. Guidelines for semantic clarity :
- If multiple associations exist between the same pair of classes ,

label them clearly with name and use role in source / target when
necessary

- When a single class plays multiple roles , model each relationship
separately and specify their roles

- Always include intermediate classes if they improve semantic clarity
- Use associative classes for relationships that have their own

attributes
- Always assign realistic multiplicities : use 1, 0..1 , 0..n, or 1..n as

implied by the domain

8. Handling ambiguous or underspecified text:
- If the description is vague or incomplete , assume a complete

pedagogical model
- Include abstract / general classes , useful associations , and

appropriate multiplicities to enrich the diagram
- Do not omit any class or relationship that is logically or

semantically inferable

9. Naming conventions :
- Use meaningful , consistent , and grammatically correct names for

classes , attributes , and relationships as they are specified in the
text

- Avoid generic or ambiguous labels like "thing", "info", or " writes "
- For clarity , use phrases like "is supervised by" instead of active

voice (" supervises ")

10. Minimum Modeling Completeness :
In every exercise , treat the goal as pedagogical . Even if the textual

description is minimal , you must model a semantically rich and
educationally useful class diagram . Always include :

At least one generalization if there are subtypes (e.g., types of policies
)

At least one composition or aggregation if whole -part relations are
implied

At least three realistic attributes for each main class
item Clarify ambiguous terms with appropriate modeling constructs (

enumerations , abstract classes , or associative classes)

28

3.3 – Introduction to the Prompt-Based Generation

\end{ itemize }

Return only the complete JSON object . Do not include any explanation ,
comment , or markdown formatting

The prompt enforces a number of modeling constraints to ensure consistency and
adherence to UML best practices. For example, it avoids class nesting or collection
types within attributes and disallows the inclusion of empty classes unless they can be
reinterpreted as attributes or roles.
Furthermore, when generating UML class diagrams compatible with the Apollon JSON
schema, several modeling conventions differ from standard UML practices:

• Instead of using the standard UML generalization arrow (a line with an unfilled
triangular head), inheritance relationships are modeled as ClassBidirectional asso-
ciations labeled with the name "is-a". The semantic meaning is encoded in the
relationship name rather than through a dedicated UML construct.

• The prompt distinguishes only between ClassAggregation and ClassBidirectional
relationships. Both composition and aggregation are expressed using ClassAggrega-
tion. The intended semantics are conveyed through the direction of the aggregation
diamond and multiplicities, rather than using a separate ClassComposition type.

• Attributes are restricted to primitive types only (string, int, float, date). A class
cannot include an attribute whose type is another class. Instead, all structural
connections between classes must be modeled as explicit associations.

• Unlike XMI or other UML export formats, which organize model elements in a
hierarchical structure (e.g., attributes nested within classes), the Apollon format
stores all elements in a flat dictionary under "elements" and all relationships un-
der "relationships". Attributes are defined as separate ClassAttribute objects and
methods are entirely excluded.

• When multiple associations exist between the same classes, or when a class partic-
ipates in multiple roles, the prompt requires the use of explicit names and roles for
relationships to ensure semantic clarity and prevent ambiguity.

These modeling constraints are specifically designed to maximize compatibility with the
Apollon UML editor, facilitate automated parsing, and support the generation of peda-
gogically meaningful class diagrams in educational settings.

3.3.1 Iterative Prompt Refinement

To reach the final version of the prompt, an iterative trial-and-error approach was adopted.
Starting from a basic prompt, multiple refinements were performed, each time comparing
the generated JSON output with the reference training example, which had been exported
from the UML modeler after manually creating the diagram. This evolution was driven
by the need to improve the precision, structural validity, and semantic alignment of the

29

Methodology

model output. Each version addressed limitations encountered in the previous one, cul-
minating in a final prompt capable of producing consistent and pedagogically meaningful
class diagrams.

1. First versions of the prompt were loosely defined instructions that asked the model
to generate a UML class diagram in JSON format, based on a textual description
of a system. They lacked a formal structure and provided no details on the format
expected by Apollon or the rules of UML modeling. While it could produce a
basic diagram, it did not define how to represent class attributes or associations.
It offered no guidance on generalizations, compositions, or multiplicities and it was
unclear whether the model should include only classes, or also relationships and
structure. The following prompt is the first attempt:
You are a software engineering professor who is designing a UML class

diagram modeling exercise for your students . Starting from a
textual description of a system , you must create a reference
solution in JSON format that is fully compatible with the Apollon
UML tool (https :// apollon .ase.in.tum.de).

The JSON output must accurately represent :
- Classes and their attributes (no methods)
- Associations (bidirectional , aggregations , compositions)
- Generalizations (inheritance hierarchies)

Follow these strict modeling guidelines :

1. Attribute rules:
- Only simple types are allowed : string , int , float , date
- A class cannot have another class as an attribute
- No collections : avoid lists , sets , maps
- Use associations instead of composite types

2. Relationships :
- If the text suggests specializations (e.g., types of users or

entities), model them using generalizations :
o Use "type ": " ClassBidirectional "
o Set "name ": "is -a" and leave multiplicities empty
- If the text implies ownership or whole -part structure , use

composition :
o Model it as "type ": " ClassAggregation "
o Set " multiplicity ": "1" on the composite (whole) side
- If the relationship is an aggregation (e.g., "X has many Ys")

, use:
o "type ": " ClassAggregation "
o The diamond must be on the aggregating class side
- For ordinary associations (peer -to -peer), use "

ClassBidirectional "

3. Output JSON structure must be ALWAYS :
- " version ": "3.0.0"
- "type ": " ClassDiagram "
- "size ": { "width ": 1600 , " height ": 780 }
- " interactive " must be " interactive ": {

30

3.3 – Introduction to the Prompt-Based Generation

" elements ": {},
" relationships ": {}
}
- " assessments "‘ must be an empty object : ‘" assessments ": {}‘

Once you presented point 3 as it is written , you can proceed with:
4. Class formatting (elements dictionary):

- Each class must be represented as an object with a UUIDv4 key
and include :

- ‘id ‘, ‘name ‘, ‘"type ": "Class"‘, ‘owner ‘, ‘bounds ‘, ‘
attributes ‘, and empty ‘methods ‘ list

5. Each attribute must:
- Appear immediately after its owning class
- Have: ‘id ‘, ‘name = "+ attributeName : Type"‘, ‘"type ": "

ClassAttribute "‘, ‘owner ‘, ‘bounds ‘

6. Relationship formatting (relationships dictionary):
- Each relationship must include : ‘id ‘, ‘type ‘, ‘name ‘, ‘bounds ‘,

‘path ‘, ‘source ‘, ‘target ‘, ‘ isManuallyLayouted = f a l s e ‘
- Source and target must specify :

- ‘element ‘, ‘direction ‘, ‘multiplicity ‘
- Optional ‘role ‘ for disambiguation

7. Guidelines for semantic clarity :
- If multiple associations exist between the same pair of classes

(e.g., ‘Thesis ‘ and ‘File ‘), label them clearly with ‘"name"‘
and use ‘"role"‘ in source / target when necessary

- When a single class plays multiple roles (e.g., ‘Professor ‘ as ‘
supervisor ‘ and ‘co -supervisor ‘), model each relationship
separately and specify their roles

- Always include intermediate classes (e.g., ‘StaffMember ‘, ‘
AssociationRecord ‘) if they improve semantic clarity

- Use associative classes for relationships that have their own
attributes (e.g., ‘Enrollment ‘, ‘Period ‘, ‘Assignment ‘)

- Always assign realistic multiplicities : use ‘1‘, ‘0..1‘, ‘0..n‘,
or ‘1..n‘ as implied by the domain

8. Handling ambiguous or underspecified text:
- If the description is vague or incomplete , assume a complete

pedagogical model
- Include abstract / general classes , useful associations , and

appropriate multiplicities to enrich the diagram
- Do not omit any class or relationship that is logically or

semantically inferable

9. Naming conventions :
- Use meaningful , consistent , and grammatically correct names for

classes , attributes , and relationships
- Avoid generic or ambiguous labels like ‘"thing"‘, ‘"info"‘ or ‘"

writes "‘
- For clarity , use phrases like ‘"is supervised by"‘ instead of

active voice (‘" supervises "‘)

31

Methodology

Return only the complete JSON object . Do not include any explanation ,
comment , or markdown formatting .

As a result, the outputs created only some parts of the entire diagram as shown in
the figure below.

Figure 3.2. UML Modeler output based on Prompt first version

2. From the previous prompt attributes were mistakenly expected to be defined as
separate objects of type "ClassAttribute" and placed externally in the "elements"
dictionary, independent of their owning class. Even when classes were correctly
recognized, their attributes were not rendered in the expected way, causing the
diagram to appear incomplete or empty in the Apollon interface.

The corrected and final prompt explicitly addresses this issue by enforcing that
attributes be embedded directly within each class under the "attributes" key, using
the following textual instruction:

"Each class must be declared as an object with [...] ’attributes’: a list of strings in
the format ’+ attributeName: Type’" This change aligns perfectly with the Apollon
specification and ensures that class definitions are self-contained and rendered prop-
erly. By internalizing the attributes within their respective class declarations, the
prompt avoids fragmentation and enables consistent output that can be visualized
and validated within the Apollon environment.

However, the diagrams created based on the outut generated from this prompt were
basically the same of the previous ones.

3. After providing the correct JSON output of the training exercise as a reference, the
prompt was refined to ensure that its usage could produce different outputs while
still strictly adhering to the rules applied in the training example. The prompt
produced was the following:

32

3.3 – Introduction to the Prompt-Based Generation

You are a software engineering professor designing a UML class
diagram modeling exercise for your students . Based on a textual
description of a system , you must generate a complete JSON
representation that is fully and strictly compatible with the
Apollon UML tool (https :// apollon .ase.in.tum.de), matching the
structure of the reference file provided .

The JSON output must:

1. Start with this exact header :
{

" version ": "3.0.0" ,
"type ": " ClassDiagram ",
"size ": { "width ": 1180 , " height ": 880 },
" interactive ": {

" elements ": {},
" relationships ": {}

},

2. Then define all class elements under the ‘" elements "‘ dictionary .
Each class must be declared as a separate object with:

- "id": unique UUIDv4
- "name ": the name of the class
- "type ": "Class"
- " owner ": null
- " bounds ": with x, y, width and height (e.g., width: 160, height :

130)
- " attributes ": a list of UUID references to attribute objects
- " methods ": an empty list

3. Every attribute must be declared as a separate object in ‘"
elements "‘:

- "id": unique UUIDv4
- "name ": formatted as "+ attributeName : Type" (e.g., "+ title:

string ")
- "type ": " ClassAttribute "
- " owner ": UUID of the class it belongs to
- " bounds ": x, y, width , height

4. Define all relationships in the ‘" relationships "‘ dictionary . Each
relationship must include :

- "id": unique UUIDv4
- "name ": the label of the association (e.g., "is supervised by")
- "type ": one of: " ClassBidirectional ", " ClassAggregation ", "

ClassComposition "
- " bounds " and "path ": use at least two points , values can be

placeholders
- " source " and " target ": include :

- " element ": class UUID
- " direction ": one of "Left", "Right", "Up", "Down", "

Bottomleft "
- " multiplicity ": e.g., "1", "*", "0..n", or "" if omitted
- "role ": optional but useful for disambiguation

- " isManuallyLayouted ": false

33

Methodology

5. Conclude the JSON with:
" assessments ": {}

}

Additional modeling rules:

- Include at least three meaningful classes and realistic
relationships derived from the exercise .

- Each class must have at least from 2 to 3 attributes (as separate
objects).

- Use generalization (ClassBidirectional with name "is -a") if the
domain includes subtypes .

- Use aggregation or composition if whole -part structures are implied
.

- Always specify multiplicities and meaningful names for associations
.

- Ensure UUIDs are unique and consistent for each entity .

Only output a complete and valid JSON object , strictly following the
format described above. Do not include comments , formatting , or
explanations .

Begin generation from the following exercise description :

The result obtained from this new version allowed for the correct visualization of
the classes and their corresponding attributes, as shown in the figure below, but
not of the respective associations.

4. Finally, the last refinement focused specifically on the handling of relationships,
placing particular emphasis on the ’bounds’, which define the classes involved, and
the ’path’, which represents the trajectory of the association arrow. This final
adjustment led to the development of the latest version of the prompt previously
presented.

Prompt Engineering Techniques

The final version of the prompt, the result of a progressive refinement strategy, sys-
tematically incorporated several advanced prompt engineering techniques, each of which
contributed to guiding the LLM toward structurally valid, semantically coherent, and
Apollon or UML Modeler compatible outputs.

• Role prompting: The prompt explicitly assigns the role of a “software engineering
professor specialized in UML modeling” to the LLM. This technique encourages
disciplined and domain-aware generation behavior, aligning the model’s style with
academic expectations.

• Few Shots Technique: The prompt includes complete input–output examples
(text + JSON), fully compatible with Apollon. These serve as implicit demonstra-
tions of the expected behavior, reinforcing the correct structure and helping the
model align textual descriptions with diagrammatic outputs.

34

3.3 – Introduction to the Prompt-Based Generation

Figure 3.3. UML Modeler output based on Prompt third version

• Binding instructions: Each structural and syntactic constraint (e.g., the place-
ment of “elements” and “relationships”, the presence of “owner”, “bounds”, and
“path”) is expressed through repetitive and unambiguous directives. This repeti-
tion increases the likelihood that the model retains these patterns even in longer
prompts.

• Semantic specificity: The prompt provides precise modeling guidelines for ad-
vanced UML constructs such as compositions, aggregations, generalizations, and as-
sociative classes. It explicitly dictates the use of specific relationship types (“Class-
Composition”, “ClassAggregation”, “ClassBidirectional”) and instructs the model
to label inheritance relations as “is-a”.

• Linguistic constraints: Clear recommendations are given to avoid ambiguous or
generic labels (e.g., “thing”, “info”), and to prefer passive and descriptive naming for
relationships (e.g., “is supervised by”), in order to enhance the semantic readability
and clarity of the diagram.

3.3.2 Reference Exercise for Output Calibration

In addition to the prompt, it was also necessary to leverage a training input-output pair
to further refine the behavior of the model.

Hence, both the text and the JSON output of the training exercise were used not only
to guide the model generate the final correct prompt, but also to establish the proper

35

Methodology

setting for the model in order to generate correct output for the following exercises.
Specifically, the reference solution to the exercise description, or input, as explained

before, had to be manually recreated in Apollon as a UML class diagram, allowing the
corresponding .json file, or output, to be downloaded.

This automated technique falls under the few-shot and role-based prompting paradigms
discussed earlier. In the few-shot setting, the LLM is not trained or fine-tuned on the
task in a traditional supervised learning sense, but rather guided through a small number
of illustrative examples that define the desired input-output behavior. These examples
serve as implicit instructions, enabling the model to infer the task structure and general-
ize to new, unseen instances with minimal supervision. In addition to this, the role-based
aspect of the prompt involves assigning the model a specific identity or persona, such as
’You are a UML parser assistant’ or ’You are a conceptual modeling expert’, which helps
condition its responses within a well-defined context and set of expectations. This com-
bination of minimal examples and contextualized instruction allows the LLM to simulate
task understanding and align its generation with domain-specific requirements, without
the need for additional architectural changes or fine-tuning. This approach has proven
particularly effective for structured output generation, where maintaining consistency,
terminology, and formal constraints is essential. Furthermore, the iterative refinement of
the prompt using a set of training exercises analyzing model errors, adjusting the prompt
accordingly, and re-evaluating the output reflects a methodology aligned with emerging
promptware engineering practices. By leveraging test cases, the prompt was progres-
sively adapted to better handle ambiguity and semantic coverage, but also comply with
the syntactic structure required by the Apollon format. This engineering-oriented ap-
proach ensured that the prompt not only guided the model effectively, but also remained
robust and reusable across a diverse set of modeling tasks.

The following figure shows the original ’human-made’ diagram, which was manually
replicated in Apollon.

Figure 3.4. Human made solution of the training exercise

The manual replication of the figure above on Apollon, enabled us to download the
respcctive JSON file.

36

3.3 – Introduction to the Prompt-Based Generation

{
" version ": "3.0.0" ,
"type ": " ClassDiagram ",
"size ": {

"width ": 1180 ,
" height ": 880

},
" interactive ": {

" elements ": {},
" relationships ": {}

},
" elements ": {

"be41f224 -93b5 -410e -94a7 -1
c5884e99866 ": {
"id": "be41f224 -93b5 -410

e -94a7 -1 c5884e99866
",

"name ": "File",
"type ": "Class",
"owner ": null ,
" bounds ": {

"x": -570,
"y": 200,
"width ": 160,
" height ": 100 },

" attributes ": [
"4 eb437ff -2433 -444c

-80f9 -665
a4d5f1c37 ",

"7 d43b52d -c07e -4e14 -
a557 -9
a5748ba9d9d "

],
" methods ": []

},
"4 eb437ff -2433 -444c -80f9 -665

a4d5f1c37 ": {
"id": "4 eb437ff -2433 -444

c -80f9 -665 a4d5f1c37
",

"name ": "+ id: string ",
"type ": " ClassAttribute

",
"owner ": "be41f224 -93b5

-410e -94a7 -1
c5884e99866 ",

" bounds ": {
"x": -569.5 ,
"y": 240.5 ,
"width ": 159,
" height ": 30 }

},

"7 d43b52d -c07e -4e14 -a557 -9
a5748ba9d9d ": {
"id": "7 d43b52d -c07e -4

e14 -a557 -9
a5748ba9d9d ",

"name ": "+ path: string
",

"type ": " ClassAttribute
",

"owner ": "be41f224 -93b5
-410e -94a7 -1
c5884e99866 ",

" bounds ": {
"x": -569.5 ,
"y": 270.5 ,
"width ": 159,
" height ": 30 }

},
"15 c4d455 -ad8c -4e83 -ade5 -

fc8db4af22db ": {
"id": "15 c4d455 -ad8c -4

e83 -ade5 -
fc8db4af22db ",

"name ": " Student ",
"type ": "Class",
"owner ": null ,
" bounds ": {

"x": 30,
"y": 20,
"width ": 160,
" height ": 130 },

" attributes ": [
"472916 a3 -e32e -4c04

-8235 -
b13d00197ee5 ",

"c50cdb0a -00b6 -4f15 -
b888 -
a5a4ca761d2f ",

"76164 a21 -8600 -47dc
-905b-
e741894f12ad "

],
" methods ": []

},
"472916 a3 -e32e -4c04 -8235 -

b13d00197ee5 ": {
"id": "472916 a3 -e32e -4

c04 -8235 -
b13d00197ee5 ",

"name ": "+ id: String ",
"type ": " ClassAttribute

",
"owner ": "15 c4d455 -ad8c

-4e83 -ade5 -
fc8db4af22db ",

37

Methodology

" bounds ": {
"x": 30.5 ,
"y": 60.5 ,
"width ": 159,
" height ": 30 }

},
"c50cdb0a -00b6 -4f15 -b888 -

a5a4ca761d2f ": {
"id": "c50cdb0a -00b6 -4

f15 -b888 -
a5a4ca761d2f ",

"name ": "+ surname :
String ",

"type ": " ClassAttribute
",

"owner ": "15 c4d455 -ad8c
-4e83 -ade5 -
fc8db4af22db ",

" bounds ": {
"x": 30.5 ,
"y": 90.5 ,
"width ": 159,
" height ": 30 }

},
"76164 a21 -8600 -47dc -905b-

e741894f12ad ": {
"id": "76164 a21 -8600 -47

dc -905b- e741894f12ad
",

"name ": "+ name: String
",

"type ": " ClassAttribute
",

"owner ": "15 c4d455 -ad8c
-4e83 -ade5 -
fc8db4af22db ",

" bounds ": {
"x": 30.5 ,
"y": 120.5 ,
"width ": 159,
" height ": 30 }

},
"8 ed19bb7 -4815 -4230 -9020 -74

df970fbd6b ": {
"id": "8 ed19bb7

-4815 -4230 -9020 -74
df970fbd6b ",

"name ": " Professor ",
"type ": "Class",
"owner ": null ,
" bounds ": {

"x": 110,
"y": 290,
"width ": 160,
" height ": 130

},
" attributes ": [

"fa24fdb6 -7a6a -4cca -
b3e7 -
d8bf2090b05f ",

"ad1339f1 -81aa -4ddf -
aaf8 -
d1c66d811619 ",

"c0e15e73 -6cf2 -4990 -
bd75 -4
d5358b28433 "

],
" methods ": []

},
"fa24fdb6 -7a6a -4cca -b3e7 -

d8bf2090b05f ": {
"id": "fa24fdb6 -7a6a -4

cca -b3e7 -
d8bf2090b05f ",

"name ": "+ id: String ",
"type ": " ClassAttribute

",
"owner ": "8 ed19bb7

-4815 -4230 -9020 -74
df970fbd6b ",

" bounds ": {
"x": 110.5 ,
"y": 330.5 ,
"width ": 159,
" height ": 30 }

},
"ad1339f1 -81aa -4ddf -aaf8 -

d1c66d811619 ": {
"id": "ad1339f1 -81aa -4

ddf -aaf8 -
d1c66d811619 ",

"name ": "+ surname :
String ",

"type ": " ClassAttribute
",

"owner ": "8 ed19bb7
-4815 -4230 -9020 -74
df970fbd6b ",

" bounds ": {
"x": 110.5 ,
"y": 360.5 ,
"width ": 159,
" height ": 30 }

},
"c0e15e73 -6cf2 -4990 - bd75 -4

d5358b28433 ": {
"id": "c0e15e73 -6cf2

-4990 - bd75 -4
d5358b28433 ",

38

3.3 – Introduction to the Prompt-Based Generation

"name ": "+ name: String
",

"type ": " ClassAttribute
",

"owner ": "8 ed19bb7
-4815 -4230 -9020 -74
df970fbd6b ",

" bounds ": {
"x": 110.5 ,
"y": 390.5 ,
"width ": 159,
" height ": 30 }

},
"f653690d -6622 -41cb -b798 -4

f0be27a5a30 ": {
"id": "f653690d -6622 -41

cb -b798 -4 f0be27a5a30
",

"name ": "Master ’s Thesis
",

"type ": "Class",
"owner ": null ,
" bounds ": {

"x": -280,
"y": 160,
"width ": 160,
" height ": 130

},
" attributes ": [

"8 cffe93f -c617 -41e7 -
b734 -730
ca9c80563 ",

"c71a98db -a336 -4460 -
b9c4 -73
a46ee9eef5 ",

"19 bb6890 -2b13 -4eb2
-9066 -72
fddffb23f9 "

],
" methods ": []

},
"8 cffe93f -c617 -41e7 -b734 -730

ca9c80563 ": {
"id": "8 cffe93f -c617 -41

e7 -b734 -730 ca9c80563
",

"name ": "+ id: string ",
"type ": " ClassAttribute

",
"owner ": "f653690d

-6622 -41cb -b798 -4
f0be27a5a30 ",

" bounds ": {
"x": -279.5 ,
"y": 200.5 ,

"width ": 159,
" height ": 30 }

},
"c71a98db -a336 -4460 - b9c4 -73

a46ee9eef5 ": {
"id": "c71a98db -a336

-4460 - b9c4 -73
a46ee9eef5 ",

"name ": "+ title: string
",

"type ": " ClassAttribute
",

"owner ": "f653690d
-6622 -41cb -b798 -4
f0be27a5a30 ",

" bounds ": {
"x": -279.5 ,
"y": 230.5 ,
"width ": 159,
" height ": 30

}
},
"19 bb6890 -2b13 -4eb2 -9066 -72

fddffb23f9 ": {
"id": "19 bb6890 -2b13 -4

eb2 -9066 -72
fddffb23f9 ",

"name ": "+ subtitle :
string ",

"type ": " ClassAttribute
",

"owner ": "f653690d
-6622 -41cb -b798 -4
f0be27a5a30 ",

" bounds ": {
"x": -279.5 ,
"y": 260.5 ,
"width ": 159,
" height ": 30 }

}
},
" relationships ": {

"ded41504 -d840 -43c6 -bd29
-603621176 c86 ": {
"id": "ded41504 -d840 -43

c6 -bd29 -603621176 c86
",

"name ": " writes ",
"type ": "

ClassBidirectional ",
"owner ": null ,
" bounds ": {

"x": -213.90625 ,
"y": 75,
"width ": 243.90625 ,

39

Methodology

" height ": 95.65625
},
"path ": [

{
"x": 243.90625 ,
"y": 10

},
{

"x": 13.90625 ,
"y": 10

},
{

"x": 13.90625 ,
"y": 85

}
],
" source ": {

" direction ": "Left",
" element ": "15 c4d455

-ad8c -4e83 -ade5 -
fc8db4af22db ",

" multiplicity ": "1",
"role ": ""

},
" target ": {

" direction ": "Up",
" element ": "f653690d

-6622 -41cb -b798
-4 f0be27a5a30 ",

" multiplicity ": "",
"role ": "1"

},
" isManuallyLayouted ":

false
},
"7656 c7a2 -ee37 -473b-b20b -

a567a43a4380 ": {
"id": "7656 c7a2 -ee37 -473

b-b20b - a567a43a4380
",

"name ": "is co -
supervised by",

"type ": "
ClassBidirectional ",

"owner ": null ,
" bounds ": {

"x": -120,
"y": 215,
"width ": 320.640625 ,
" height ": 85.65625

},
"path ": [

{
"x": 0,
"y": 10

},
{

"x": 310,
"y": 10

},
{

"x": 310,
"y": 75

}
],
" source ": {

" direction ": "Right
",

" element ": "f653690d
-6622 -41cb -b798
-4 f0be27a5a30 ",

" multiplicity ": "*",
"role ": ""

},
" target ": {

" direction ": "Up",
" element ": "8 ed19bb7

-4815 -4230 -
9020 -74 df970fbd6b ",
" multiplicity ": "*",
"role ": ""

},
" isManuallyLayouted ":

false
},
"10 adda4a -07d2 -464e-8df6 -

c9251ccb2e59 ": {
"id": "10 adda4a -07d2 -464

e-8df6 - c9251ccb2e59
",

"name ": "is supervised
by",

"type ": "
ClassBidirectional ",

"owner ": null ,
" bounds ": {

"x": -205,
"y": 290,
"width ": 315,
" height ": 104.65625

},
"path ": [

{
"x": 5,
"y": 0

},
{

"x": 5,
"y": 65

},

40

3.3 – Introduction to the Prompt-Based Generation

{
"x": 315,
"y": 65

}
],
" source ": {

" direction ": "Down",
" element ": "f653690d

-6622 -41cb -b798
-4 f0be27a5a30 ",

" multiplicity ": "*",
"role ": ""

},
" target ": {

" direction ": "Left",
" element ": "8 ed19bb7

-4815 -4230 -9020
-74 df970fbd6b ",
" multiplicity ": "1",
"role ": ""

},
" isManuallyLayouted ":

false
},
"7903 b4af -b394 -415c-b042 -

cb933e51ed00 ": {
"id": "7903 b4af -b394 -415

c-b042 - cb933e51ed00
",

"name ": "has abrastract
",

"type ": "
ClassBidirectional ",

"owner ": null ,
" bounds ": {

"x": -495,
"y": 140,
"width ": 215,
" height ": 124.65625

},
"path ": [

{
"x": 215,
"y": 85

},
{

"x": 175,
"y": 85

},
{

"x": 175,
"y": 0

},
{

"x": 5,

"y": 0
},
{

"x": 5,
"y": 60

}
],
" source ": {

" direction ": "Left",
" element ": "f653690d

-6622 -41cb -b798
-4 f0be27a5a30 ",

" multiplicity ": "1",
"role ": ""

},
" target ": {

" direction ": "Up",
" element ": "be41f224

-93b5 -410e -94a7
-1 c5884e99866 ",

" multiplicity ": "1",
"role ": ""

},
" isManuallyLayouted ":

false
},
"6 a3dabfe -db4d -4e2b -b366 -9

ad223d24f8c ": {
"id": "6 a3dabfe -db4d -4

e2b -b366 -9
ad223d24f8c ",

"name ": "is the content
of",

"type ": "
ClassBidirectional ",

"owner ": null ,
" bounds ": {

"x": -495,
"y": 290,
"width ": 268.90625 ,
" height ": 50

},
"path ": [

{
"x": 5,
"y": 10

},
{

"x": 5,
"y": 50

},
{

"x": 255,
"y": 50

},

41

Methodology

{
"x": 255,
"y": 0

}
],
" source ": {

" direction ": "Down",
" element ": "be41f224

-93b5 -410e -94a7
-1 c5884e99866 ",

" multiplicity ": "1",
"role ": ""

},
" target ": {

" direction ": "
Bottomleft ",

" element ": "f653690d
-6622 -41cb -b798
-4 f0be27a5a30 ",

" multiplicity ": "1",
"role ": ""

},
" isManuallyLayouted ":

false
}

},
" assessments ": {}

}

Below is the Italian-language text used to train the LLM for the prompt setting:

Un’università sta riprogrammando il suo sistema informativo affinché possa gestire
anche le tesi magistrali. Ciascuna tesi si distingue dall’altra grazie ad un ID, ad un titolo
e ad un sottotitolo. Ogni tesi è associata a due file: il primo contiene l’abstract e il
secondo contiene l’intero contenuto della tesi. Ogni tesi è scritta da un singolo studente,
ha un relatore e può avere uno o più correlatori. Per semplicità si assume che sia il
relatore che i correlatori siano membri dell’università.

3.3.3 Quality Assessment of Produced ChatGPT Diagrams

To assess the quality and correctness of the diagrams obtained importing the file output
in JSON format by ChatGPT on UML Modeler, many approaches had been taken into
consideration. The correctness of the diagrams was evaluated avoiding any comparison
between the human-made diagrams since the analogy was properly researched after this
section. Evaluating correctness based on a reference diagram would have introduced
circularity into the experimental design. Hence, alternative strategies were investigated:

• The first method relied on a parsing-based comparison between two sets of struc-
tured representations: one extracted from the original textual prompt and the other
derived from the Apollon-generated JSON output. However, this approach was not
successful due to a recurring issue of structural mismatch between the textual in-
put and the generated JSON file. Specifically, the original Italian descriptions often
omitted many attributes that were either implied or left entirely unspecified. In
contrast, the JSON output generated by ChatGPT typically included additional
attributes, since the prompting strategy explicitly instructed the model to enrich
the diagrams with semantically meaningful attributes, even when these were not ex-
plicitly mentioned in the text. As a result, sentence-level parsing of the two sources
(text and JSON) produced outputs of significantly different lengths and granular-
ity. This imbalance introduced inconsistencies in the comparative analysis, making
the parsing approach unsuitable for systematic or objective correctness evaluation.

42

3.4 – Rubric-based Evaluation of Diagram Correctness

Similar difficulties have been reported in recent research questioning the reliability
of parsing-based comparisons for LLM-generated content [8].

• Another method we tried was using sentence-BERT to compare the meaning of
short sentences. The idea was to take statements written from the original exer-
cise text and compare them to similar statements created by analyzing the gener-
ated UML diagram. Using sentence-BERT, we turned each sentence into a vector
(a type of number-based representation) and then measured how similar the two
sets of sentences were. Although this method gave us some useful insights, it did
not work very well in practice because it was very sensitive to how the sentences
were written: if two sentences meant the same thing but used different words,
the model sometimes failed to recognize them as similar. Due to these problems,
we decided that this method was not reliable enough for a consistent evaluation.
Rubric-based evaluation was adopted as a more efficient and transparent method
to assess the correctness of the diagram. Inspired by recent literature in the field
(e.g., Toward Automated UML Diagram Assessment: Comparing LLM-Generated
Scores with Teaching Assistants), this rubric allowed for structured, criterion-based
scoring without relying on a fixed reference model, ensuring a more objective and
scalable evaluation process.

3.4 Rubric-based Evaluation of Diagram Correctness
As a result, a rubric-based evaluation was adopted as a more efficient and transparent
method to assess the correctness of the diagram. Inspired by recent literature in the
field [9], this rubric allowed structured criterion-based scoring without relying on a fixed
reference model, ensuring a more objective and scalable evaluation process.

The rubric was composed of seven carefully defined criteria, each capturing a fun-
damental dimension of structural model quality. These ranged from the presence and
completeness of classes and relationships, to semantic accuracy, naming conventions, and
overall consistency. A penalty mechanism was also included to address major conceptual
omissions or semantic contradictions.

The explicit weighting of each dimension (20/20/20/20/10/10/-10) allowed for fine-
grained differentiation between diagram quality levels, while the normalization procedure
ensured comparability across exercises.

The choice of criteria was grounded in conceptual modeling literature and teaching
practice. For example, "Completeness of Classes" and "Attributes" reflect the capacity
of the model to faithfully translate domain knowledge into structural entities. "Semantic
Correctness of Relationships" was introduced as a distinct criterion to emphasize not only
the presence of associations but their correct directionality, multiplicity, and UML type
(e.g., association vs. generalization). Naming clarity, while less critical structurally, was
included for its relevance in pedagogical and collaborative modeling contexts.

Each diagram’s raw score was normalized to a [0, 1] range and mapped to a categorical
tier:

• Under 80%: Under Expectation

43

Methodology

• 81–85%: Minimum Standard

• 86–90%: Acceptable

• 91–95%: Proficient

• 96–100%: Above Expectation

This mapping was used not only for interpretability but also to identify broader trends
in model quality. For instance, it allowed recognition of common mistakes among mid-tier
models, as well as structural patterns that distinguish excellent diagrams.

Case Example Exercise 1

To illustrate the application of the rubric, Exercise number 1 has been taken as a de-
scriptive example. Hence, the Italian text of the exercise and the Diagram generated by
LLM are below provided.

Figure 3.5. Italian Text of Exercise 1

Esercizio 1 Testo:

Descriviamo una compagnia di assicurazione.
Siamo interessati a descrivere il dominio del problema,
con particolare riferimento agli aspetti di modellazione statica.
Produciamo un diagramma delle classi.
La compagnia di assicurazioni stipula diversi tipi di
polizze (RC auto, vita, rischi diversi).
La compagnia ha diversi clienti,
ciascuno dei quali può sottoscrivere più contratti.

While, the UML Class Diagram used for the analysis is the following one:
Finally, Table 3.10 reports the scores obtained by the AI-generated diagram for Ex-

ercise 1. The results indicate a high-quality overall product, with some minor omissions
penalized accordingly.

This example was labeled as "Proficient" thanks to its total point of 92 over 100 and
exhibited strength in all areas except for a minor structural omission, possibly an implicit
class or intermediary relationship.

The general distribution of the scores for the 32 exercises is shown in Figure 3.7 and
in Figure 3.11.

The histogram reveals the presence of a few lower-scoring diagrams, which were typ-
ically penalized for either missing core entities or misinterpreting relationship types and
directions. The prevalence of exercises falls under the higher scores. This emphasizes the
tendency of the AI-tool to properly create UML diagrams, given an input exercise.

44

3.4 – Rubric-based Evaluation of Diagram Correctness

Figure 3.6. LLM generated Diagram of Exercise 1

Table 3.10. Rubric-based Evaluation for Exercise 1

Evaluation Criterion Score Max Points
Completeness of Classes 17 20
Completeness of Attributes 20 20
Completeness of Relationships 17 20
Semantic Correctness of Relationships 20 20
Clarity and Consistency of Naming 10 10
Overall Consistency 10 10
Penalties for Major Omissions or Ambiguities -2 -10
Total Correctness 92 100

In addition to the first analysis, a bar chart, shown below in Figure 3.8 was made:
it plots the average performance across the six main evaluation dimensions and it allows
us to note that the best performance of the tool was regarding the "Completeness of
Attributes". Note that the criteria "Clarity and Consistency of Naming" and "Overall
Consistency" had a maximum score of 10 points, while all others had a maximum of 20.

Furthermore, it appears that:
Completeness of relationships and Classes showed slightly more variation with respect

to Completeness of Attributes and a moderately lower mean, likely reflecting the model’s
occasional tendency to omit or oversimplify structural connections. Naming and overall

45

Methodology

Figure 3.7. Score Distribution of Total Correctness of Exercises

Table 3.11. Performance Evaluation per Score Range

Performance Category Score Total Exercise
Under Expectation Performance under 80% included 3
Minimum Standard Performance from 81% to 85% included 7
Acceptable Performance from 86% to 90% included 6
Proficient Performance from 91% to 95% included 7
Above Expectation Performance from 96% to 100% included 9

consistency, while lower in absolute value, remain proportionally strong when normalized
by their respective weights. This suggests a general clarity in language use and structural
cohesion.

Moreover, penalty reductions are typically associated with major omissions, such as
missing core entities, or structural ambiguities, such as contradictory multiplicities or
incorrect generalizations. Errors in applying the proper multiplicity were the most fre-
quent. Only a subset of the exercises was affected, reinforcing the observation that the
model generally performs reliably under the adopted prompting approach.

Both graphs confirm that the generative model consistently meets fundamental struc-
tural expectations. Its most common weaknesses relate to omissions in relationship mod-
eling or oversimplified class structures. The rubric appears balanced in its ability to
reward strong diagrams while penalizing serious conceptual flaws. Finally, the rubric
ensured that the comparison was not biased by stylistic differences, focusing instead on
structural adequacy. It proved especially effective in mitigating linguistic mismatches
(e.g., between Italian and English class names), as the evaluation emphasized presence
and correctness over surface form.

46

3.4 – Rubric-based Evaluation of Diagram Correctness

Figure 3.8. Average Score per Criterion Bar Chart

3.4.1 Human Error

The rubric-based evaluation demonstrated a high degree of reliability and interpretability
in assessing UML diagram correctness. It provided a replicable framework that could
be extended in future research to include human-AI comparisons, prompt refinement
analysis, or integration with automated validators. Most importantly, it enabled a level
of semantic scrutiny that purely syntactic approaches often fail to capture.

However, it is important to emphasize that the analysis just presented arises from the
inability to employ fully automated and systematic tools to verify and evaluate the cor-
rectness of the diagrams due to the critic limits presented before. Consequently, although
the rubric adopts a numerical scoring system, a certain degree of subjectivity is inevitably
introduced in the evaluation process. To clarify, since each rubric category defines a score
range rather than a fixed value, the actual score assigned within that range ultimately
depends on personal judgment. Therefore, the analysis can be regarded, in essence, as
qualitative. Moreover, human evaluation is inherently susceptible to various cognitive and
contextual biases that may affect the consistency and reliability of the assessment. For
instance, evaluators may unconsciously anchor their judgment to the complexity or visual
appeal of a diagram, rather than strictly adhering to the predefined criteria. Confirma-
tion bias may also arise, especially when assessors expect a certain quality level based
on previous performance or prior expectations. Additionally, fatigue and time pressure
can lead to variability in scoring, particularly in large-scale assessments. These factors
highlight the challenges of maintaining objectivity in manual evaluation and reinforce the
need for more standardized and replicable approaches to UML diagram assessment.

47

Methodology

3.5 Rubric-based Evaluation of Diagrams Similitude
In order to quantitatively assess the degree of similarity of LLM based class diagrams
and their human-made counterparts, a structured evaluation rubric was implemented and
applied to the set of exercises used in the previous analysis. The comparison focused on
analyzing each pair of diagrams, one created manually by a domain expert and the other
generated by a Large Language Model thanks to the last version of the prompt presented,
along with with a set of different categories that covers all the possible dimensions of UML
modeling language.

The analysis was conducted through an excel sheet in which rows were filled by
each exercise and the columns presented each dimenion evaluated. Specifically, the table
records the total number of classes, attributes, and relationships found in each diagram,
along with any observed syntactic or semantic errors. In particular, syntactic errors in-
clude, for instance, incomplete or malformed elements such as classes with no attributes,
missing multiplicities, or inconsistently named associations, while semantic errors involve
more subtle inconsistencies such as misrepresenting a relationship as an attribute, omit-
ting generalizations, or introducing redundant or irrelevant elements not implied by the
original specification.

The rubric considers five components:

1. Completeness of Classes: calculated as the ratio of correctly matched classes over
the total number of classes in the reference diagram, with a 50% weight over the
final result.

2. Completeness of Attributes: reflects the proportion of expected attributes captured
in the generated diagram, with a 30% weight over the final result.

3. Completeness of Relationships: measures how many of the reference associations,
aggregations, or generalizations are successfully represented, with a 20% weight over
the final result.

4. Syntactic Error Penalty: negative adjustment based on the number of syntax-level
modeling mistakes, with a maximum of -20%, found multiplying each error per 0,01.

5. Semantic Error Penalty: more severe penalty reflecting conceptual modeling issues,
with a maximum of -50%, found multiplying each error per 0,1.

The decision to assign different weights to the various dimensions of the similar-
ity rubric, prioritizing the correctness of class identification over that of attributes and
relationships, was directly influenced by the design of the prompt itself. Specifically,
the prompt imposed strict modeling constraints on attributes and associations, such as
requiring a minimum of three attributes per class and the inclusion of at least one com-
position or aggregation when logically implied. As a result, these dimensions were more
guided and less informative to assess the autonomous reasoning capabilities of the model.
Therefore, their weight in the final similarity score was intentionally reduced, whereas
class-level modeling, which remained less constrained, was considered more significant
and received greater emphasis in the evaluation.

48

3.5 – Rubric-based Evaluation of Diagrams Similitude

Cls Attr Rel Syn.Err Sem.Err Score (%) Diff
1 6/7 10/8 5/7 0 1 84.6 High

Table 3.12. Example of a UML diagram similarity evaluation row based on real data

Here presented one row example of the table:
In addition, it is important to note that association classes were excluded from the

similarity computation. This decision was motivated by the fact that their modeling is
often implicit and highly variable, making them difficult to evaluate consistently. Simi-
larly, methods were not taken into account, as the prompt explicitly instructed the model
to omit them. The scoring framework was thus aligned with the modeling scope defined
by the prompt to ensure coherence between generation and evaluation.

Furthermore, in cases where the LLM-generated diagrams exceeded the size of the
corresponding human-made reference solutions, whether in terms of number of classes,
attributes, or relationships, a normalization constraint was applied to ensure mathe-
matical coherence within the evaluation framework. Specifically, the count of generated
elements was set equal to the total number of elements in the reference diagram. This
decision was necessary to preserve the internal consistency of the formulas, which were
based on ratios and therefore could not exceed 1. Any such surplus was not ignored, but
rather treated as a semantic modeling error. Each excess element (a class, an attribute,
or a relationship) was interpreted as a divergence from the intended conceptual model.
The total number of such mismatches was recorded in the semantic error penalty defined
in the rubric. In this way, the evaluation procedure remained aligned with the principle
that correct modeling is not only about inclusion, but also about relevance and adherence
to specification.

The total number of such events is reported in the table below.
Notably, they occurred frequently and manifested in several different forms.

Table 3.13. Overgeneration of Elements in LLM-based Diagrams (Pre-Refinement)

Problem Explanation Number of Exercise % over TOT Exercise
LLM-based diagram presents more at-
tributes than the human-made diagram

28 88%

LLM-based diagram presents more
classes than the human-made diagram

8 25%

LLM-based diagram presents more re-
lationships than the human-made dia-
gram

6 19%

The similarity scores were grouped into four categories to support a qualitative inter-
pretation of the results and highlight differences in model performance. The thresholds
were defined to reflect meaningful changes in the structural and semantic alignment be-
tween the LLM-generated diagrams and the human-made references. In particular, the

49

Methodology

lower bound of 59% was selected as the upper limit of the Low Similarity range, as values
below this threshold typically indicate the presence of major structural mismatches, miss-
ing or misclassified entities, or completely incoherent diagram topology. The distinction
between 59% and 60% is therefore not arbitrary, but reflects a turning point between
fundamentally flawed diagrams and those that begin to show partial correctness.

• Low Similarity: score between 0% and 59% included which reflects critical differ-
ences and incoherent structures.

• Moderate Similarity: score between 60% and 74% included which remarks that
some elements are correct, but others are not present.

• High Similarity: score between 75% and 89% included which remarks similar dia-
grams with no critical differences.

• Very High Similarity: score between 90% and 100% included which remarks that
diagrams are almost identical, wit minor difference.

Results reveal a heterogeneous distribution of similarity levels, as can be seen in the
table below:

Table 3.14. Similarity Categories in LLM-Generated Diagrams (Baseline Prompt)

Category Interval (included) Results
Low Similarity 0–59% 22
Moderate Similarity 60–74% 4
High Similarity 75–89% 5
Very High Similarity 90–100% 0

The distribution of similarity scores across the four defined categories reveals a clear
divergence of the LLM-generated diagrams compared to the human-made reference ones.
As shown in the table, 22 out of 32 exercises (68.75%) fall within the Low Similarity
range (0–59%), indicating a substantial deviation from the expected structure. Only 4
exercises fall into the Moderate Similarity band (60–74%), while 5 exercises reach the
High Similarity range (75–89%). In particular, no diagram achieved a score in the Very
High Similarity range (90–100%), underscoring the consistent difficulty encountered by
the model in generating near-structural matches.

Consequently, common differences have been analyzed: one of the recurring diver-
gence patterns involved the modeling strategy, that is, the LLM would often represent
a domain concept as a class instead of an attribute or the reverse. While such mod-
eling choices are not incorrect, they do affect structural similarity and can
lead to penalization under the rubric. Indeed, this raises the broader ques-
tion of how to differentiate between genuine modeling errors and plausible
modeling variants, an issue that becomes particularly relevant when multiple
representations are logically valid.

50

3.6 – Final Refinement of the strategy

Beyond individual cases, the general analysis supports several general findings:

• No syntactic errors were identified in any of the 32 evaluated exercises. This out-
come demonstrates the LLM’s consistent ability to respect the fundamental struc-
tural rules of UML class diagrams. According to the adopted evaluation framework,
syntactic correctness covers a range of conditions, including the presence of valid
and unique class and attribute names, the specification of appropriate types for all
attributes, and the use of valid multiplicities in associations. LLM is particularly
effective at adhering to the formal syntax of the UML notation when guided by
a well-structured prompt. From this perspective, the syntactic reliability of the
generated diagrams can be considered high and stable.

• Semantic errors were frequent and impactful, accounting for most of the penalty
weight in lower scoring diagrams. In most cases, these errors were not due to sub-
tle semantic mismatches, but rather to over-generation, that is, the presence of
additional classes or attributes not included in the reference diagram. Only in a
smaller subset of exercises were the semantic penalties associated with more specific
mismatches, such as attributes with incorrect types, missing associations between
classes that were expected to be connected, or discrepancies in the naming, multi-
plicity, or type of the associations themselves. In several cases, missing associations
were simply a consequence of missing classes that should have been linked.

• Generalizations included in human-made reference diagrams were often replaced by
a string attribute named "type" in the superclass. This behavior can be explained
by the absence of explicit instructions for modeling enumerations in the prompt,
leading the LLM to simulate subtype distinctions through attributes rather than
inheritance structures.

Although the rubric-based approach provides a practical and repeatable method to
assess similarity, it does come with certain limitations. The scoring process, despite
being numerically grounded, still requires human judgment to identify what constitutes
a matching class or relationship, introducing a degree of subjectivity. Moreover, the
weighting scheme, although empirically reasonable, reflects implicit assumptions about
the relative importance of different modeling dimensions.

3.6 Final Refinement of the strategy
The previous analysis highlights a key limitation in the model’s generative capabilities
under the initial prompt: although some outputs partially reflect the intended structure,
the vast majority lack sufficient alignment in classes, relationships, and attributes to be
considered similar diagrams with respect to the reference ones. Moreover, a recurrent
issue was the inclusion of redundant or unnecessary attributes, often added solely to
fulfill the prompt’s minimum count requirement. These superfluous attributes not only
affected the semantic clarity of the diagrams, but also introduced inefficiencies by increas-
ing the memory footprint of the JSON representation without contributing meaningful
information. This observation reinforces the need for refining the prompting strategies

51

Methodology

to produce more concise and computationally efficient UML models. Hence, the next
phase was related to the study of changes to be adopted, which ended with the choice
of two modifications. The first attempt dealt exclusively with the prompt. Since, as
can be seen from the results of similarity analysis, the number of some elements of the
LLM-based diagrams often exceeded the number of the reference ones, it was necessary
to adopt a prompt modification technique that allowed more attachment to the model,
thus omitting the various impositions of minimum number of attributes or aggregations
and compositions, although these were not evaluated in either the correct or similarity
analysis. Crucially, the new prompt removed the fixed rule on the number of attributes
per class and instead introduced a qualitative guideline: each main class should contain at
least two realistic attributes, as implied by the domain. This change allowed the models
to avoid redundant or invented data, leading to more realistic outputs. For example, in
the same Library case, new prompt-based outputs tended to include only attributes such
as "+ name: string" and "+ address: string", omitting speculative or extraneous fields.
Beyond attribute handling, the new prompt also encouraged a deeper understanding of
domain logic by requiring explicit representation of inheritance, composition, or role-
based relationships when inferred from the text. It formalized the distinction between
different types of associations, such as Class Bidirectional, Class Aggregation and Class
Composition and specified how generalizations should be structured, ensuring that the
specialized class appears as the source and the generalized one as the target, with empty
multiplicities. Here below the new updated prompt.
You are a software engineering professor who is designing a UML class

diagram modeling exercise for your students . Starting from a textual
description of a system , you must create a reference solution in JSON
format that is fully compatible with the Apollon UML tool (https ://
apollon .ase.in.tum.de).

Follow these strict modeling guidelines :

1. The output JSON must always start with the following exact structure :

{
" version ": "3.0.0" ,
"type ": " ClassDiagram ",
"size ": { "width ": 1600 , " height ": 780 },
" interactive ": {

" elements ": {},
" relationships ": {}

},
" assessments ": {},

This header must be present exactly as shown above.

Important : After this header , you must continue the JSON with a complete
declaration of:

- " elements ": { ... }
- " relationships ": { ... }

52

3.6 – Final Refinement of the strategy

These must be written outside and separately from the " interactive " block.

Do not insert any class , attribute , or relationship inside " interactive ".
That block must remain empty as required by Apollon format for
compatibility .

2. Class formatting (elements dictionary):
- Each class must be represented as an object with a UUIDv4 key and

include :
- id , name , "type ": "Class", owner , bounds , attributes , and a methods

list (which may be empty if no methods are required)

3. Each attribute and method must:
- Appear immediately after its owning class as an independent object

within the " elements " block !!!
- Have: unique id , name = "+ attributeName : Type", "type ": either "

ClassAttribute " or " ClassMethod " , owner = ID of the class to which
it belongs , bounds .

- Only simple types are allowed : string , int , float , date
- A class cannot have another class as an attribute
- No collections : avoid lists , sets , maps
- Use associations instead of composite types

4. Relationship formatting (relationships dictionary):
- Each relationship must include : id (UUIDv4 format), type , name ,

bounds , path , source , target , and isManuallyLayouted = false
- Source and target must specify :

- element , direction (use "Left", "Right", "Up", or "Down" based on
the relative positions), multiplicity

- Optional role for disambiguation

5. General rules:
- If the text suggests specializations (e.g., types of users or

entities), model them using generalization :
use: "type ": " ClassBidirectional " , "name ": "is -a".

The specialized class must be the " source ", the generalized one the "
target "

Leave multiplicities empty on both sides

Each class MUST BE CONNECTED with a relationship to at least one other
class.

- If a general class has subtypes with distinct behaviors , model them
using UML generalization .

- If the text includes exceptions or differentiated cases (e.g., all
except X , only s o m e), explicitly model those differences
using subclasses , roles , or structural distinctions .

- Do not encode semantic rules as implicit assumptions or comments : they
must be clearly represented in the m o d e l s structure (e.g., through
dedicated classes , specializations , or constraints).

- If the text implies ownership or whole -part structure model it as "
type ": " ClassAggregation " or "type ": " ClassComposition "

- Set " multiplicity ": "1" on the composite (whole) side

53

Methodology

In aggregations , the container class must be the one with the diamond
symbol (i.e., the source if appropriate).

- For ordinary associations (peer -to -peer), use " ClassBidirectional "

- If multiple associations exist between the same pair of classes ,
label them clearly with name and use role in source / target when
necessary

- When a single class plays multiple roles , model each relationship
separately and specify their roles

- Always include intermediate classes if they improve semantic clarity
- If a relationship implies its own attributes (e.g., date , quantity),

model it as an associative class with its corresponding attributes .
- Always assign realistic multiplicities : use 1, 0..1 , 0..n, or 1..n as

implied by the domain

If the description is vague or incomplete , assume a complete pedagogical
model

Include abstract / general classes , useful associations , and appropriate
multiplicities to enrich the diagram

Use meaningful , consistent , and grammatically correct names for classes ,
attributes , and relationships as they are specified in the text

Avoid generic or ambiguous labels like "thing", "info", or " writes "
For clarity , use phrases like "is supervised by" instead of active voice

(" supervises ")

Each attribute and method must appear immediately after its owning class
as an independent object within the " elements " block !!!

10. Minimum Modeling Completeness :
In every exercise , treat the goal as pedagogical . Even if the textual

description is minimal , you must model a semantically rich and
educationally useful class diagram . Always include :

At least one generalization if subtypes are implied in the text (e.g.,
types of policies)

At least one composition or aggregation if whole -part relationships are
implied

At least 2 realistic attributes for each main class

Return only the complete JSON object . Do not include any explanation ,
comment , or markdown formatting .

All required fields in the example files must be present . In particular :
- "owner" in attributes / methods
- correct "type"
- " bounds " in all elements
- "path" in all relationships

The output must be a valid , complete , and working JSON file for Apollon ,
with no comments or additional text.

here attached you found the textual description of the system and the file
json as an example of what I expect .

54

3.6 – Final Refinement of the strategy

The text of the next exercise to do is:

After the just described modification made to the prompt, it was necessary to run
both analyses, correctness and similarity, again to check for any respective changes in
the results. The analysis was conducted with the same approach used with the results
obtained from the use of the first prompt, through thus a rubric that took into consid-
eration both semantic and syntactic correctness and the ability of the model to correctly
represent classes, attributes and relationships declared in the text.

3.6.1 Correctness Analysis after First and Second Refinement of the
Prompt

As can be seen in Table 3.15, the results obtained are satisfactory, but more importantly,
they have improved over the previous results.

Table 3.15. Updated Performance Evaluation per Score Range

Performance Category Updated Score Total Exercise
Under Expectation Performance under 80% included 1
Minimum Standard Performance from 81% to 85% included 3
Acceptable Performance from 86% to 90% included 6
Proficient Performance from 91% to 95% included 10
Above Expectation Performance from 96% to 100% included 12

Comparative analysis of performance distributions before and after the adoption of
the revised prompt reveals a substantial improvement in the quality of the UML diagrams
generated by the model.

Table 3.16. Performance comparison before and after prompt refinement

Performance Category Before (n) After (n) Abs. Change % Change
Under Expectation (<80%) 3 1 –2 –66.7%
Minimum Standard (81–
85%)

7 3 –4 –57.1%

Acceptable (86–90%) 6 6 0 0.0%
Proficient (91–95%) 7 10 +3 +42.9%
Above Expectation (96–
100%)

9 12 +3 +33.3%

Total 32 32

It is noticeable from the Table 3.16 that:

• the number of exercises classified as Under Expectation Performance dropped from
3 to 1, indicating a 66% reduction in critical failures.

55

Methodology

• Similarly, exercises that fell below the minimum standard threshold (from 81% to
85% accuracy) decreased from 10 to just 4, reflecting a 60% reduction in outputs
that did not meet acceptable quality levels. This shift is significant, as it suggests
that the updated prompt not only increased the average accuracy but also reduced
the occurrence of unstable or low-quality generations.

• The proportion of high-quality outputs, such as those rated as Proficient or Above
Expectation, increased from 16 to 22 exercises, which corresponds to a gain of
18.8% points (from 50% to 68.8%). This upward shift in performance concentration
indicates greater robustness and consistency in the generative process. In particular,
the number of Proficient exercises alone increased by 43%, while the top-tier Above
Expectation category rose from 9 to 12 instances. Importantly, this improvement
was achieved not through overfitting or redundant modeling, but through enhanced
semantic alignment and structural adherence to UML conventions, as enforced by
the revised prompt.

In conclusion, the updated prompt strategy not only reduced the generation of in-
adequate models but also significantly raised the proportion of outputs that reached or
exceeded expected standards. This demonstrates its effectiveness in guiding the model
toward producing diagrams that are both valid and structurally correct.

Following the first changes to the prompt, the second attempt involved the use of not
one but two training exercises. Specifically, the first remained unchanged and a second
exercise was added, which has following text 3.6.1 and json solutions.

Esercizio Training 2
Prestiti bancari
Sviluppare un’applicazione orientata agli oggetti per gestire i prestiti che una banca
concede ai propri clienti.
La banca è caratterizzata da un nome e da un insieme di clienti. I clienti sono caratter-
izzati da nome, cognome, codice fiscale, stipendio.
Il prestito concesso al cliente, considerato intestatario del prestito, è caratterizzato da
un ammontare, una rata, una data inizio, una data fine.
Per i clienti e per i prestiti si vuole stampare un prospetto riassuntivo con tutti i dati
che li caratterizzano in un formato di tipo stringa a piacere.
Per la banca deve essere possibile aggiungere, modificare, eliminare e ricercare un cliente.
Inoltre, la banca deve poter aggiungere un prestito.
La banca deve poter eseguire delle ricerche sui prestiti concessi ad un cliente dato il
codice fiscale.
La banca vuole anche sapere, dato il codice fiscale di un cliente, l’ammontare totale dei
prestiti concessi.

Table 3.17. Italian Text of Exercise 2

The json file could be exported once the reference graph (Figure) was reproduced on
UML Modeler.

56

3.6 – Final Refinement of the strategy

Figure 3.9. UML Diagram of Training Exercise 2

\ textbf {Json Esercizio Training 2}
\\[0.5 em]

{
" version ": "3.0.0" ,
"type ": " ClassDiagram ",
"size ": {

"width ": 1360 ,
" height ": 740

},
" interactive ": {

" elements ": {},
" relationships ": {}

},
" elements ": {

"79 cd04af -371c -463c-a0c7 -4
b1c2158e8d6 ": {
"id": "79 cd04af -371c -463

c-a0c7 -4 b1c2158e8d6
",

"name ": "Banca",

"type ": "Class",
"owner ": null ,
" bounds ": {

"x": -660,
"y": -210,
"width ": 410,
" height ": 280

},
" attributes ": [

"645 d472e -06c3 -47f8
-8647 -3
c41c80d41c1 "

],
" methods ": [

"3 bd89617 -cb6a -4c80 -
a0f7 -
cd1aa22f851c ",

"f9e70230 -d514 -4c92
-8d26 -
b04801ba4479 ",

57

Methodology

"14 f67049 -9bef -485a-
bcb6 -
b33fe62d843f ",

"be7a5e8a -eead -4a71
-9bcb -9648213
af1f5",

"95 d49f3d -df72 -4c5f
-9a2e -097
a19113c4f ",

"ff11c279 -4c40 -4bb5 -
bcc5 -7519
bd8af6b5 ",

"d0fb0ae6 -2772 -4 f40 -
ab86 -7480
da79338b "

]
},
"645 d472e -06c3 -47f8 -8647 -3

c41c80d41c1 ": {
"id": "645 d472e -06c3 -47

f8 -8647 -3 c41c80d41c1
",

"name ": "+ Nome: String
",

"type ": " ClassAttribute
",

"owner ": "79 cd04af -371c
-463c-a0c7 -4
b1c2158e8d6 ",

" bounds ": {
"x": -659.5 ,
"y": -169.5 ,
"width ": 409,
" height ": 30

}
},
"3 bd89617 -cb6a -4c80 -a0f7 -

cd1aa22f851c ": {
"id": "3 bd89617 -cb6a -4

c80 -a0f7 -
cd1aa22f851c ",

"name ": "+ AddPrestito (
prestito : Prestito):
void)",

"type ": " ClassMethod ",
"owner ": "79 cd04af -371c

-463c-a0c7 -4
b1c2158e8d6 ",

" bounds ": {
"x": -659.5 ,
"y": -139.5 ,
"width ": 409,
" height ": 30

}
},

"f9e70230 -d514 -4c92 -8d26 -
b04801ba4479 ": {
"id": "f9e70230 -d514 -4

c92 -8d26 -
b04801ba4479 ",

"name ": "+
TotalePrestiti (
CodiceFiscale :
string): double ",

"type ": " ClassMethod ",
"owner ": "79 cd04af -371c

-463c-a0c7 -4
b1c2158e8d6 ",

" bounds ": {
"x": -659.5 ,
"y": -109.5 ,
"width ": 409,
" height ": 30

}
},
"14 f67049 -9bef -485a-bcb6 -

b33fe62d843f ": {
"id": "14 f67049 -9bef -485

a-bcb6 - b33fe62d843f
",

"name ": "+ SearchPrestiti
(CodiceFiscale :
string):List <
Prestito >",

"type ": " ClassMethod ",
"owner ": "79 cd04af -371c

-463c-a0c7 -4
b1c2158e8d6 ",

" bounds ": {
"x": -659.5 ,
"y": -79.5,
"width ": 409,
" height ": 30

}
},
"be7a5e8a -eead -4a71 -9bcb

-9648213 af1f5 ": {
"id": "be7a5e8a -eead -4

a71 -9bcb -9648213
af1f5",

"name ": "+ AddCliente (
Cliente : Cliente):
void",

"type ": " ClassMethod ",
"owner ": "79 cd04af -371c

-463c-a0c7 -4
b1c2158e8d6 ",

" bounds ": {
"x": -659.5 ,
"y": -49.5,

58

3.6 – Final Refinement of the strategy

"width ": 409,
" height ": 30

}
},
"95 d49f3d -df72 -4c5f -9a2e -097

a19113c4f ": {
"id": "95 d49f3d -df72 -4

c5f -9a2e -097
a19113c4f ",

"name ": "+ RemoveCliente (
CodiceFiscale : string
):void",

"type ": " ClassMethod ",
"owner ": "79 cd04af -371c

-463c-a0c7 -4
b1c2158e8d6 ",

" bounds ": {
"x": -659.5 ,
"y": -19.5,
"width ": 409,
" height ": 30

}
},
"ff11c279 -4c40 -4bb5 -bcc5

-7519 bd8af6b5 ": {
"id": "ff11c279 -4c40 -4

bb5 -bcc5 -7519
bd8af6b5 ",

"name ": "+ SearchCliente (
CodiceFiscale : string
): Cliente ",

"type ": " ClassMethod ",
"owner ": "79 cd04af -371c

-463c-a0c7 -4
b1c2158e8d6 ",

" bounds ": {
"x": -659.5 ,
"y": 10.5 ,
"width ": 409,
" height ": 30

}
},
"d0fb0ae6 -2772 -4 f40 -ab86

-7480 da79338b ": {
"id": "d0fb0ae6 -2772 -4

f40 -ab86 -7480
da79338b ",

"name ": "+
GetPrestitiCliente (
CodiceFiscale : string
):List <Prestito >",

"type ": " ClassMethod ",
"owner ": "79 cd04af -371c

-463c-a0c7 -4
b1c2158e8d6 ",

" bounds ": {
"x": -659.5 ,
"y": 40.5 ,
"width ": 409,
" height ": 30

}
},
"1 e7637f9 -f2f4 -4a75 -a994 -

a15537dbe815 ": {
"id": "1 e7637f9 -f2f4 -4

a75 -a994 -
a15537dbe815 ",

"name ": " Cliente ",
"type ": "Class",
"owner ": null ,
" bounds ": {

"x": -150,
"y": -350,
"width ": 180,
" height ": 190

},
" attributes ": [

"7 af59ce3 -4ab4 -451e
-8562 -
e3a7b637343a ",

"f5de780c -0adc -4c76 -
b0cb -430
a1c41ca99 ",

"b420a1c1 -eb5d -412b
-8ebe -04
fef7151c02 ",

"392 f66b3 -a15b -4c27
-8160 -70
e8acb65c45 "

],
" methods ": [

"d896f6cd -4bd2 -4a78 -
b397 -
a59f7e315b22 "

]
},
"7 af59ce3 -4ab4 -451e -8562 -

e3a7b637343a ": {
"id": "7 af59ce3 -4ab4 -451

e -8562 - e3a7b637343a
",

"name ": "+ Nome: String
",

"type ": " ClassAttribute
",

"owner ": "1 e7637f9 -f2f4
-4a75 -a994 -
a15537dbe815 ",

" bounds ": {
"x": -149.5 ,

59

Methodology

"y": -309.5 ,
"width ": 179,
" height ": 30

}
},
"f5de780c -0adc -4c76 -b0cb -430

a1c41ca99 ": {
"id": "f5de780c -0adc -4

c76 -b0cb -430
a1c41ca99 ",

"name ": "+ Cognome : String
",

"type ": " ClassAttribute
",

"owner ": "1 e7637f9 -f2f4
-4a75 -a994 -
a15537dbe815 ",

" bounds ": {
"x": -149.5 ,
"y": -279.5 ,
"width ": 179,
" height ": 30

}
},
"b420a1c1 -eb5d -412b-8ebe -04

fef7151c02 ": {
"id": "b420a1c1 -eb5d -412

b-8ebe -04 fef7151c02
",

"name ": "+ CodiceFiscale :
String ",

"type ": " ClassAttribute
",

"owner ": "1 e7637f9 -f2f4
-4a75 -a994 -
a15537dbe815 ",

" bounds ": {
"x": -149.5 ,
"y": -249.5 ,
"width ": 179,
" height ": 30

}
},
"392 f66b3 -a15b -4c27 -8160 -70

e8acb65c45 ": {
"id": "392 f66b3 -a15b -4

c27 -8160 -70
e8acb65c45 ",

"name ": "+ Stipendio :
double ",

"type ": " ClassAttribute
",

"owner ": "1 e7637f9 -f2f4
-4a75 -a994 -
a15537dbe815 ",

" bounds ": {
"x": -149.5 ,
"y": -219.5 ,
"width ": 179,
" height ": 30

}
},
"d896f6cd -4bd2 -4a78 -b397 -

a59f7e315b22 ": {
"id": "d896f6cd -4bd2 -4

a78 -b397 -
a59f7e315b22 ",

"name ": "+ toString ():
String ",

"type ": " ClassMethod ",
"owner ": "1 e7637f9 -f2f4

-4a75 -a994 -
a15537dbe815 ",

" bounds ": {
"x": -149.5 ,
"y": -189.5 ,
"width ": 179,
" height ": 30

}
},
"46 c1a08f -ac9a -4519 -8 ad0 -

adc1094ddb8f ": {
"id": "46 c1a08f -ac9a

-4519 -8 ad0 -
adc1094ddb8f ",

"name ": " Prestito ",
"type ": "Class",
"owner ": null ,
" bounds ": {

"x": -160,
"y": 60,
"width ": 180,
" height ": 190

},
" attributes ": [

"6943 aa30 -2fb7 -4a7d -
aaf5 -17753
fee4491 ",

"f965a80f -1497 -4 c17 -
bddd -2621
d0f5e54d ",

"af2c7958 -7362 -4 dde -
b245 -19
e3efa75aee ",

"03 cbf26b -02a0 -4d45
-876a-
d7fc7ebb2433 "

],
" methods ": [

60

3.6 – Final Refinement of the strategy

"44 aaa0ef -df2e -42af -
b7d6 -38
a0af15caa0 "

]
},
"6943 aa30 -2fb7 -4a7d -aaf5

-17753 fee4491 ": {
"id": "6943 aa30 -2fb7 -4

a7d -aaf5 -17753
fee4491 ",

"name ": "+ Ammontare :
Double ",

"type ": " ClassAttribute
",

"owner ": "46 c1a08f -ac9a
-4519 -8 ad0 -
adc1094ddb8f ",

" bounds ": {
"x": -159.5 ,
"y": 100.5 ,
"width ": 179,
" height ": 30

}
},
"f965a80f -1497 -4 c17 -bddd

-2621 d0f5e54d ": {
"id": "f965a80f -1497 -4

c17 -bddd -2621
d0f5e54d ",

"name ": "+ Rata: double
",

"type ": " ClassAttribute
",

"owner ": "46 c1a08f -ac9a
-4519 -8 ad0 -
adc1094ddb8f ",

" bounds ": {
"x": -159.5 ,
"y": 130.5 ,
"width ": 179,
" height ": 30

}
},
"af2c7958 -7362 -4 dde -b245 -19

e3efa75aee ": {
"id": "af2c7958 -7362 -4

dde -b245 -19
e3efa75aee ",

"name ": "+ DataInizio :
DateTime ",

"type ": " ClassAttribute
",

"owner ": "46 c1a08f -ac9a
-4519 -8 ad0 -
adc1094ddb8f ",

" bounds ": {
"x": -159.5 ,
"y": 160.5 ,
"width ": 179,
" height ": 30

}
},
"03 cbf26b -02a0 -4d45 -876a-

d7fc7ebb2433 ": {
"id": "03 cbf26b -02a0 -4

d45 -876a-
d7fc7ebb2433 ",

"name ": "+ DataFine :
DateTime ",

"type ": " ClassAttribute
",

"owner ": "46 c1a08f -ac9a
-4519 -8 ad0 -
adc1094ddb8f ",

" bounds ": {
"x": -159.5 ,
"y": 190.5 ,
"width ": 179,
" height ": 30

}
},
"44 aaa0ef -df2e -42af -b7d6 -38

a0af15caa0 ": {
"id": "44 aaa0ef -df2e -42

af -b7d6 -38 a0af15caa0
",

"name ": "+ toString ():
string ",

"type ": " ClassMethod ",
"owner ": "46 c1a08f -ac9a

-4519 -8 ad0 -
adc1094ddb8f ",

" bounds ": {
"x": -159.5 ,
"y": 220.5 ,
"width ": 179,
" height ": 30

}
}

},
" relationships ": {

"94 ad86ab -9b70 -4eb5 -8856 -79
a4ab20eb17 ": {
"id": "94 ad86ab -9b70 -4

eb5 -8856 -79
a4ab20eb17 ",

"name ": "",
"type ": "

ClassBidirectional ",
"owner ": null ,

61

Methodology

" bounds ": {
"x": -70,
"y": -160,
"width ":

21.552734375 ,
" height ": 230.125

},
"path ": [

{
"x": 5,
"y": 220

},
{

"x": 5,
"y": 0

}
],
" source ": {

" direction ": "Up",
" element ": "46 c1a08f

-ac9a -4519 -8 ad0 -
adc1094ddb8f ",

" multiplicity ": "N",
"role ": ""

},
" target ": {

" direction ": "Down",
" element ": "1 e7637f9

-f2f4 -4a75 -a994 -
a15537dbe815 ",

" multiplicity ": "1",
"role ": ""

},
" isManuallyLayouted ":

false
},
"34 dca8ac -f297 -49bc -ac31 -29

fc7dd17dbc ": {
"id": "34 dca8ac -f297 -49

bc -ac31 -29 fc7dd17dbc
",

"name ": "",
"type ": "

ClassBidirectional ",
"owner ": null ,
" bounds ": {

"x": -460,
"y": 70,
"width ": 300,
" height ": 124.125

},
"path ": [

{
"x": 300,
"y": 85

},
{

"x": 5,
"y": 85

},
{

"x": 5,
"y": 0

}
],
" source ": {

" direction ": "Left",
" element ": "46 c1a08f

-ac9a -4519 -8 ad0 -
adc1094ddb8f ",

" multiplicity ": "N",
"role ": ""

},
" target ": {

" direction ": "Down",
" element ": "79 cd04af

-371c -463c-a0c7
-4 b1c2158e8d6 ",

" multiplicity ": "1",
"role ": ""

},
" isManuallyLayouted ":

false
},
"363 b62a1 -312b-4be2

-8036 -8926656 b3017 ": {
"id": "363 b62a1 -312b-4

be2 -8036 -8926656
b3017",

"name ": "",
"type ": "

ClassBidirectional ",
"owner ": null ,
" bounds ": {

"x": -460,
"y": -265,
"width ": 310,
" height ": 65.125

},
"path ": [

{
"x": 5,
"y": 55

},
{

"x": 5,
"y": 10

},
{

"x": 310,

62

3.6 – Final Refinement of the strategy

"y": 10
}

],
" source ": {

" direction ": "Up",
" element ": "79 cd04af

-371c -463c-a0c7
-4 b1c2158e8d6 ",

" multiplicity ": "1",
"role ": ""

},
" target ": {

" direction ": "Left",

" element ": "1 e7637f9
-f2f4 -4a75 -a994 -
a15537dbe815 ",

" multiplicity ": "N",
"role ": ""

},
" isManuallyLayouted ":

false
}

},
" assessments ": {}

}

Similarly to what was done before, following the decision to use a second training
exercise given to the model, it was necessary to perform the evaluations on the entire data
set of 32 exercises, using the same evaluation rubric criteria, in order to verify potential
improvements with respect to the strategies adopted before. Here below, in Table3.18
the final results of the analysis of the Correctness of the UML Diagrams generated by
the LLM model.

Table 3.18. Updated Performance Evaluation – After Final Prompt Refinement

Performance Category Updated Score Total Exercise
Under Expectation Performance under 80% included 0
Minimum Standard Performance from 81% to 85% included 4
Acceptable Performance from 86% to 90% included 6
Proficient Performance from 91% to 95% included 9
Above Expectation Performance from 96% to 100% included 13

By comparing these results with the previous obtained from the second refinement of
the prompt

some improvements can be noticed:

• the most significant outcome of the second prompt refinement is the complete re-
moval of Under Expectation cases. This confirms an improved baseline robustness,
as all diagrams now meet at least the minimum quality threshold of 80%.

• The number of Acceptable (86–90%) outputs remained unchanged at six, indicating
that the core modeling capabilities of the LLM remained stable in the mid-quality
range.

• A minor rise in the Minimum Standard category (from 3 to 4) suggests that while
some outputs improved to the top tier, a few others may have regressed slightly,
perhaps due to variation in prompt interpretation or edge-case ambiguity in the
exercises.

63

Methodology

Table 3.19. Performance comparison after second prompt refinement

Performance Category Before (n) After (n) Abs. Change % Change
Under Expectation (<80%) 1 0 –1 –100.0%
Minimum Standard (81–
85%)

3 4 +1 +33.3%

Acceptable (86–90%) 6 6 0 0.0%
Proficient (91–95%) 10 9 –1 –10.0%
Above Expectation (96–
100%)

12 13 +1 +8.3%

Total 32 32

• The number of Proficient outputs decreased marginally (–1), while Above Expecta-
tion increased by the same amount (+1), indicating that more diagrams achieving
near-perfect alignment with the reference model.

• A main part of 13 exercises over the total 32 (40.6%) reached the top category
Above Expectation.

Despite minimal numerical changes, the overall trend illustrated in Figure 3.10 con-
firms the overall effectiveness of the progressive prompt refinements.

Figure 3.10. Refinement Prompt Iter Trend Results

64

3.6 – Final Refinement of the strategy

The most striking result is the complete elimination of Under Expectation cases by
the second refinement, which signals a substantial improvement in the general quality of
generated UML diagrams. Additionally, there is a visible and consistent upward shift in
the number of outputs classified as Above Expectation, growing from 9 with the initial
prompt to 12 with the first refinement, and ultimately to 13 with the second refinement.

The Proficient category increased during the first refinement, suggesting that the
initial improvements were particularly effective at providing outputs in the 91–95% range.
Although there was a slight decrease in this category in the second refinement (from 10
to 9), this drop was absorbed by the growth in the Above Expectation range, indicating
that some outputs were further improved rather than regressed.

The number of Acceptable results remained stable throughout the experiment, sug-
gesting that the prompt modifications did not negatively impact mid-level performance.
Meanwhile, the slight rise in Minimum Standard cases during the final iteration (from 3
to 4) appears marginal and statistically negligible when compared to the overall gain in
higher tiers.

In summary, the trend demonstrates a clear and steady consolidation of performance
in the upper bands, confirming that each prompt revision contributed to enhanced clarity,
consistency, and modeling accuracy. The results can therefore be interpreted as a strong
validation of the prompt engineering strategy adopted in this study.

3.6.2 Mitigating Human Evaluation Bias

Given that, as said in section 3.4.1., there is an intrinsic subjectivity involved in the human
evaluation of UML class diagrams, especially when assessments rely on the evaluator’s
interpretation of quality dimensions, the possibility of human error cannot be overlooked.
Although a detailed scoring rubric was adopted, defining each criterion with a maximum
of 20 or 10 points, the final attribution of points involves some degree of discretion. This is
particularly evident in semantically ambiguous cases or in borderline classifications where
a few points can determine a shift in performance category. Factors such as the prior
experience of evaluator, familiarity with UML conventions, or interpretation of textual
cues can subtly influence judgment and lead to inconsistencies.

To mitigate these risks and better understand the robustness of the evaluation process,
a second round of assessments was conducted. A different evaluator, specifically a student
in the Management Engineering program, was asked to independently evaluate the
entire set of UML diagrams. The second evaluator was provided with the same scoring
legend and criteria but was explicitly prevented from viewing the original scores. This
blind setup was essential to avoid anchoring bias, since prior evaluations could influence
the second grader’s judgment. By keeping the evaluators independent, the goal was to
simulate a realistic peer-assessment setting and to measure the extent to which subjective
variance might affect the overall results.

This second round served two primary purposes. First, it allowed for a cross-validation
of the original scores by observing how consistently the criteria were applied by different
individuals. Second, it enabled the study of inter-rater variability as a potential source of
noise in the experimental data. While full convergence between two human evaluations is
rarely achievable, comparing the two sets of scores provides a valuable indication of the

65

Methodology

stability and reproducibility of the assessment framework.
Fortunately, the results of the correctness assessment conducted by the second eval-

uator were not too far compared to those obtained by the first evaluator, as shown in
Table 3.20.

Table 3.20. Updated Performance Evaluation – Intermediate Prompt Refinement

Performance Category Updated Score Total Exercise
Under Expectation Perfor-
mance

under 80% included 3

Minimum Standard Perfor-
mance

from 81% to 85% included 4

Acceptable Performance from 86% to 90% included 7
Proficient Performance from 91% to 95% included 5
Above Expectation Perfor-
mance

from 96% to 100% included 13

However, the goal of getting another independent assessment was related to the fact
that we could then calculate the variance between the two sets of results and the average
between the two to try to normalize the result as much as possible.

Table 3.21. Comparison between first and second evaluation per performance category

Performance Category I Eval. II Eval. Abs. ∆ % vs I
Under Expectation (<80%) 0 3 +3 —
Minimum Standard (81–85%) 4 4 0 0.0%
Acceptable (86–90%) 6 7 +1 +16.7%
Proficient (91–95%) 9 5 –4 –44.4%
Above Expectation (96–100%) 13 13 0 0.0%
Total 32 32

The comparison between the two independent evaluations shown in Table 3.22 reveals
differences in the distribution of scores across performance categories, though these dif-
ferences remain moderate given the total of 32 exercises. Notably, the second evaluation
introduced three Under Expectation cases (below 80%), which were absent in the first.
However, this shift represents less than 10% of the total sample and does not indicate
a dramatic divergence in judgment. Similarly, the decrease in the number of Proficient
diagrams (91–95%) from 9 to 5 was partially offset by the consistent count of Above
Expectation diagrams (96–100%), which remained stable at 13 in both evaluations. Mi-
nor changes were also observed in the Acceptable category, which increased from 6 to 7
outputs.

Overall, the results show that while subjective interpretation plays a role in borderline
cases, general trends were preserved between evaluators.

66

3.6 – Final Refinement of the strategy

Furthermore, in order to adequately account for these small variations and enhance
the objectivity of the evaluation process, the final analysis was based on the average
score between the two assessments. This averaging strategy allows for a more balanced
and normalized representation of model performance. This decision was grounded in the
observation that neither evaluator consistently deviated in a systematic or exaggerated
way and that both followed the same assessment criteria. Averaging serves to reduce the
impact of evaluator-specific interpretation or strictness, providing a more balanced and
stable representation of the actual quality of each diagram.

In this context, the mean score captures the shared perception of correctness across
both evaluations while smoothing out minor individual differences. This ensures that
no single evaluator disproportionately influences the final results and supports a more
objective comparison across exercises and experimental conditions.

Table 3.22. Updated Performance Evaluation Mean Score (Two Examples)

Performance Category Updated Score Total Exercise
Under Expectation Perfor-
mance

under 80% included 0

Minimum Standard Perfor-
mance

from 81% to 85% included 4

Acceptable Performance from 86% to 90% included 7
Proficient Performance from 91% to 95% included 8
Above Expectation Perfor-
mance

from 96% to 100% included 13

3.6.3 Similarity Analysis after First and Second Refinement of the
Prompt

While the previous section provided a quantitative correctness evaluation of the generated
UML diagrams based on predefined scoring criteria after first and second refinement of
the prompt, this part of the analysis focuses on the similarity between the diagrams
produced by LLMs and the official reference models. The objective is to examine how
closely the generated diagrams replicate the expected structural patterns, relationships,
and conceptual modeling choices.

This analysis considers both structural alignment (e.g., class composition, hierarchy,
association types) and semantic adherence (e.g., appropriate naming, role consistency,
use of generalizations or enumerations). Rather than relying on numeric scores alone,
this section offers a comparative discussion of modeling decisions made by the LLMs and
evaluates whether they converge toward expert-level UML modeling practices.

The comparison highlights recurring deviations, common patterns of approximation,
and cases where the generated models exhibit high or low fidelity to the reference so-
lutions. This approach enables a deeper understanding of the models’ capabilities and
limitations when tasked with structured conceptual modeling.

67

Methodology

Hence, following the first refinement of the prompting strategy, the similarity analysis
was conducted employing the same evaluation rubric and classification criteria adopted
in the initial phase, ensuring consistency in the comparison. The results were grouped as
before into four categories based on similarity percentage ranges: Low (0–59%), Moderate
(60–74%), High (75–89%), and Very High (90–100%).

As shown in Table 3.23, the majority of the generated diagrams (18 out of 32) still fall
into the Low Similarity range, given that the previous result in the same band was 22,
indicating that despite the improved prompting instructions, many outputs continue to
diverge significantly from the reference models in terms of structure, semantics, or both.
However, a noticeable shift is observed in the upper categories: 7 diagrams exhibit Mod-
erate Similarity rather than only 4 in the previous analysis, 3 achieved High Similarity,
decreased than before, and mostly, 4 diagrams were classified as Very High Similarity,
reflecting an overall improvement in the generation quality, since in the previous analysis
the result in this band was equal to zero.

These findings suggest that the refinement contributed to a slightly more accurate
interpretation of the modeling task in a subset of cases, particularly where the conceptual
structure was simpler or more canonical. Nonetheless, the high number of low-similarity
outputs indicates that the LLM still has some difficulties in representing complex or
ambiguous modeling scenarios.

Table 3.23. Similarity Categories – After First Prompt Refinement

Category Interval (included) Results
Low Similarity 0–59% 18
Moderate Similarity 60–74% 7
High Similarity 75–89% 3
Very High Similarity 90–100% 4

A specific phase of the similarity analysis focused on the phenomenon of overgener-
ation, as analyzed before the prompt refinement and defined as the tendency of LLM-
generated diagrams to include more elements, such as classes, attributes, or relationships,
than the corresponding human-made reference diagrams. This behavior may indicate ei-
ther an attempt by the model to overcompensate for ambiguity in the textual description,
or an imprecise mapping between linguistic cues and modeling constructs.

Table represented in Table 3.24 reports the frequency of overgeneration after the first
refinement of the prompt.

Since the primary objective of this section is to assess whether the refined prompt led
to measurable improvements or regression in the LLM’s modeling performance, it is use-
ful to reintroduce the corresponding results obtained using the original (pre-refinement)
version of the prompt. This enables a direct comparison between the first and the second
prompt refinements:

Before the refinement:
• In 88% of the exercises (28 out of 32), the LLM produced more attributes than

expected.

68

3.6 – Final Refinement of the strategy

Table 3.24. Overgeneration Issues in LLM-Based Diagrams – First Prompt Refinement

Problem Explanation Number of Exercise % over TOT Exercise
LLM-based diagram presents more at-
tributes than the human-made diagram

28 88%

LLM-based diagram presents more
classes than the human-made diagram

8 25%

LLM-based diagram presents more rela-
tionships than the human-made diagram

6 19%

• In 25% of cases (8 exercises), the LLM included more classes.

• In 19% of the diagrams (6 exercises), there were additional relationships compared
to the human reference.

After the refinement:

• The overgeneration of attributes decreased significantly, affecting 66% of the exer-
cises (21 out of 32).

• The number of diagrams with extra classes increased to 34% (11 exercises).

• Similarly, relationships were overgenerated in 31% of the cases (10 exercises).

These results suggest that the refined prompt successfully reduced unnecessary at-
tribute proliferation, likely due to more explicit constraints and guidance in the prompt
formulation. However, the increase in the number of classes and relationships may indi-
cate that the LLM, now better understanding the structural decomposition of the system,
attempts to introduce additional modeling elements in an effort to improve completeness
or align with implicit patterns in the training data.

This trade-off highlights the challenge of balancing precision and completeness in
automated modeling and suggests that further prompt tuning should focus on improving
semantic grounding, particularly in relation to class granularity and the abstraction level
of associations.

Evaluation after the Second Prompt Refinement (Few-Shot Prompting)

To further enhance the reliability of the generated UML diagrams, a second refinement of
the prompt was performed. This version adopted a few-shot prompting strategy, in which
two example exercises (word format) with their corresponding expected solutions (JSON
format) were provided as input. The intention was to offer the LLM a clearer modeling
pattern to emulate, to test whether the model could better replicate the expected UML
diagrams.

The introduction of a second prompt refinement, based on a few-shot approach includ-
ing two solved exercises as input, produced a notable shift in the similarity distribution
of the generated UML diagrams. As shown in Table 3.25, the number of diagrams falling

69

Methodology

into the “Low Similarity” category dropped significantly from 18 to 11, indicating a sub-
stantial reduction in poor-emulating outputs.

Table 3.25. Similarity Categories – After Second Prompt Refinement

Category Interval (included) Results
Low Similarity 0–59% 11
Moderate Similarity 60–74% 10
High Similarity 75–89% 5
Very High Similarity 90–100% 4

At the same time, there was a clear increase in diagrams achieving Moderate Similarity
(from 7 to 10) and High Similarity (from 3 to 5). The number of diagrams with Very
High Similarity remained stable (4 in both cases), suggesting that the few-shot prompting
helped bring more diagrams closer to the reference level, but may not have been sufficient
to further increase the highest-quality matches.

Overall, these results indicate that the second refinement improved the model’s con-
sistency and alignment with the expected modeling patterns, particularly by reducing
the generation of structurally divergent diagrams. The moderate-to-high similarity range
now encompasses nearly 60% of the total outputs, compared to only 43% in the previ-
ous configuration, demonstrating a measurable improvement in the LLM’s capacity to
generalize from provided examples.

In addition to evaluating similarity scores, we re-analyzed the persistence of over-
generation errors after applying the second prompt refinement. The objective was to
understand whether the introduction of few-shot prompting would reduce the frequency
of diagrams including excessive elements compared to the human-designed references.

As shown in Table 3.26, the results indicate a slight improvement in this regard. The
proportion of diagrams with excessive attributes decreased marginally, from 66% to 63%,
suggesting a limited but consistent impact of the new examples in guiding the model
toward more concise class definitions.

More notable is the reduction in the number of diagrams that overgenerated relation-
ships (from 31% to 25%) and classes (from 34% to 31%). This suggests that the few-shot
strategy helped the model better grasp the level of abstraction expected in the modeling
task, leading to more selective inclusion of entities and associations.

However, the persistence of overgeneration, even if slightly reduced—highlights the
difficulty LLMs face in mapping vague or implicit information in natural lan-
guage to precise modeling constructs. It also confirms that prompt refinement alone,
while beneficial, may not fully eliminate systematic tendencies such as attribute inflation
or redundant class creation.

70

3.6 – Final Refinement of the strategy

Table 3.26. Overgeneration Issues in LLM-Based Diagrams – After Second Prompt Refinement

Problem Explanation Number of Exercise % over TOT Exercise
LLM-based diagram presents more at-
tributes than the human-made diagram

20 63%

LLM-based diagram presents more classes
than the human-made diagram

10 31%

LLM-based diagram presents more rela-
tionships than the human-made diagram

8 25%

71

72

Chapter 4

Conclusion

This thesis investigated the potential of Large Language Models (LLMs) to generate and
evaluate UML class diagrams starting from textual requirements. The research was fo-
cused on the dual objective of assessing both the correctness and the structural similarity
of LLM-generated Assessing correctness ensures that the diagrams adhere to the formal
syntactic and semantic rules of UML, reflecting valid modeling constructs such as well-
formed classes, attributes, and relationships, while evaluating structural similarity allows
for the measurement of how faithfully the LLM has interpreted and replicated the model-
ing intent expressed in the reference solutions reflecting alignment with human reasoning
and abstraction choices, especiaally in terms of implicit instructions.

The experimental setup incorporated a manually curated dataset of UML modeling
exercises, an iterative prompt refinement process, and a rubric-based evaluation protocol.
Over the course of the experimentation, three successive prompt versions were designed,
culminating in a final few-shot configuration aimed at optimizing the fidelity, consistency,
and semantic alignment of the generated models.

4.1 Summary of Contributions

The main contributions of this thesis are threefold:

1. First, it demonstrates the feasibility of leveraging LLMs as generative tools for con-
ceptual modeling in UML, bridging the gap between natural language requirements
and formal design artifacts.

2. Second, it introduces a robust prompt engineering strategy that incrementally
evolves from basic role-based instructions to a structured, few-shot approach, achiev-
ing measurable improvements in output quality.

3. Third, it presents an integrated rubric-based framework for evaluating both syn-
tactic and semantic correctness, as well as structural similarity, enabling a com-
prehensive assessment of LLM performance in the context of software modeling
tasks.

73

Conclusion

The experimental results confirmed the effectiveness of the prompt engineering strat-
egy. The refined prompts led to significant increases in the proportion of diagrams rated
as Proficient or Above Expectation, and a notable reduction in critical modeling errors,
particularly syntactic violations. The transition from single-shot to few-shot prompt-
ing further improved model alignment with expected structural patterns, reducing over-
generation in attributes and relationships and raising the proportion of high-similarity
diagrams.

4.2 Evaluation Insights and Key Findings

The findings underscore several key insights about the behavior and limitations of LLMs
in UML modeling tasks. Notably, the correctness analysis revealed that LLMs are highly
competent at adhering to syntactic constraints, consistently producing JSON files com-
patible with the Apollon UML editor. However, challenges remained in accurately mod-
eling complex relationships, especially when the textual descriptions lacked explicit cues.

In terms of similarity, the progression from the initial prompt to the final two-shot
configuration revealed a consistent improvement. Despite these gains, only a minority
of diagrams achieved Very High Similarity, suggesting that fully faithful replication of
human conceptual models remains a difficult goal.

The phenomenon of overgeneration was also systematically evaluated. The initial
prompts often led to inflated attribute counts, a side effect of rigidly imposed completeness
rules. Later refinements introduced softer constraints, which helped balance richness with
precision.

These results reinforce the critical role of prompt engineering in steering LLM be-
havior. Carefully crafted prompts, with clear structure, explicit constraints, and meaning-
ful examples, can significantly enhance the reliability and semantic depth of the outputs.

Second, the results highlight the promise of LLMs in educational modeling sce-
narios. LLMs are capable of generating well-structured class diagrams with minimal
supervision, which could support students in early-stage learning activities. However,
persistent issues with overgeneration underscore the importance of human oversight.

Third, the research exposes the tension between correctness and similarity. While a
diagram may be structurally valid, it may still diverge from a reference solution due to
differences in abstraction or modeling choices. This raises questions about what it means
for a model to be “correct enough” in pedagogical contexts and what can be defined
as variants of the same diagrams.

4.3 Limitations and Future Work

While this thesis provides a structured and replicable framework for evaluating LLM-
generated UML class diagrams, several avenues remain open for future research.

• Extension to other UML diagram types: The current study focused exclu-
sively on class diagrams. Future work could extend the methodology to cover ad-
ditional UML diagram types such as sequence diagrams, activity diagrams, or state

74

4.3 – Limitations and Future Work

machines, which introduce dynamic behavior and temporal interactions, thus offer-
ing a more complete testbed for evaluating LLM-based modeling capabilities.

• Integration of automated similarity metrics: The rubric-based approach
adopted in this study proved effective but required manual interpretation. Fu-
ture evaluations could benefit from automatic graph comparison techniques, such
as graph matching algorithms or embedding-based similarity metrics. This could
help reduce evaluation time and increase objectivity. However, it is important to
address current limitations: many available tools are not equipped to handle mul-
tilingual scenarios where textual descriptions are in Italian and generated solutions
are in English, as was the case in this study. This language mismatch introduces
semantic ambiguity and makes it difficult for tools to accurately match concepts
and roles across diagrams.

• Use of different LLMs and fine-tuned models: This thesis primarily evalu-
ated the performance of a single general-purpose LLM. Future experiments could
broaden the scope by including multiple LLMs, such as open-source models (e.g.,
LLaMA, Mistral) or domain, adapted fine-tuned variants. This would allow for a
comparative analysis of architectural and training differences and their effects on
diagram generation quality. It would also provide a stronger basis for generalizing
the findings beyond the model used in this work.

• Expansion of human evaluation base: Given the inherent subjectivity in hu-
man scoring, another possible enhancement would be to increase the number of in-
dependent evaluators involved in the rubric-based assessment. Aggregating multiple
evaluations could improve the robustness of the analysis and minimize individual
bias, especially in borderline or ambiguous cases. A consensus-based or averaged
scoring approach may also help better normalize differences in interpretation.

In summary, future work should aim to increase both the breadth (by diversifying
LLMs and UML types) and the depth (by improving evaluation methodology and tool-
ing) of the experimental setup. This would contribute to a more comprehensive and
generalizable understanding of how generative models can be effectively used in concep-
tual modeling contexts.

Final Remarks
This thesis demonstrated that LLMs, when properly guided, can generate UML diagrams
that are syntactically valid and pedagogically meaningful. While not a replacement for
human expertise, they can support modeling tasks, automate generation, and provide
formative feedback in academic contexts.

The findings contribute a practical methodology for evaluating UML diagrams and
a theoretical framework for understanding the role of generative models in structured
domains. As AI tools continue to evolve, their integration into software design workflows
should be guided by robust prompt engineering, rigorous evaluation, and responsible
human oversight.

75

76

Bibliography

[1] Ali Almusawi, M. Rizwan Qureshi, and Mamdouh Alenezi. Conceptual modeling
education: A systematic literature review. Computer Applications in Engineering
Education, 29(1):34–56, 2021.

[2] Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. Reasoning on uml
class diagrams. Artificial Intelligence, 168(1–2):70–118, 2005.

[3] Narasimha Bolloju and Felix S.K. Leung. Assisting novice analysts in developing
quality conceptual models with uml. COMMUNICATIONS OF THE ACM, pages
108–112, 2006.

[4] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. Advances in neural information pro-
cessing systems, 33:1877–1901, 2020.

[5] Mohammad Fauzan, Abdul Wahid, and Evi Suryani. Grading uml class diagrams
automatically using graph matching. Procedia Computer Science, 179:399–407, 2021.

[6] Fahad Hussain, Sufyan Zafar, Noreen Ikram, and Atta Ur Rehman Wahab. Model-
ing practices in software development: a survey. Journal of Systems and Software,
172:110736, 2021.

[7] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Ishii.
Large language models are zero-shot reasoners. arXiv preprint arXiv:2205.11916,
2022.

[8] Xinyu Li, Chenguang Zhao, Jie Wang, and Tao Zhang. On the limitations of struc-
tural parsing for llm-generated artifacts. arXiv preprint arXiv:2310.04675, 2023.

[9] Tosif Ul Rehman Nacir Bouali, Marcus Gerhold and Faizan Ahmed. Toward au-
tomated uml diagram assessment: Comparing llm-generated scores with teaching
assistants. CSEDU 2025 - 17th International Conference on Computer Supported
Education, 2025.

[10] Oksana Nikiforova, Konstantins Gusarovs, Ludmila Kozacenko, Dace Ahilcenoka,
and Dainis Ungurs. An approach to compare uml class diagrams based on seman-
tical features of their elements. The Tenth International Conference on Software
Engineering Advances, pages 40–41, 11 2015.

[11] Marian Petre. Uml in practice. Proceedings of the 2013 International Conference on
Software Engineering, pages 722–731, 2013.

[12] Dorsa Sadigh, Sanjit A. Seshia, and Mona Gupta. Automating exercise generation:
a step towards meeting the mooc challenge for embedded systems. In Proceedings of
the Workshop on Embedded and Cyber-Physical Systems Education, WESE ’12, New

77

Bibliography

York, NY, USA, 2012. Association for Computing Machinery.
[13] Matthias Schöttle, Nishanth Thimmegowda, Omar Alam, Jörg Kienzle, and Gunter

Mussbacher. Feature modelling and traceability for concern-driven software devel-
opment with touchcore. In Companion Proceedings of the 14th International Con-
ference on Modularity, MODULARITY Companion 2015, page 11–14, New York,
NY, USA, 2015. Association for Computing Machinery.

[14] Anthony Tang, Jorge Mejia, and David Lowe. Assessing students’ understanding of
object-oriented modeling and design. In Proceedings of the 2010 ICSE Workshop on
Modeling in Software Engineering, pages 33–38, 2010.

[15] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[16] Jon Whittle, John Hutchinson, and Mark Rouncefield. The state of practice in
model-driven engineering. IEEE Software, 31(3):79–85, 2014.

[17] Chengyu Zhu, Yixin Wang, Yutai Guo, Zhengbao Zhang,
and Jiliang Tang. A systematic survey of prompt engineer-
ing in large language models. Rotman Digital Working Papers,
2024. https://rotmandigital.ca/wp-content/uploads/2024/09/
A-Systematic-Survey-of-Prompt-Engineering-in-Large-Language-Models.
pdf.

78

https://rotmandigital.ca/wp-content/uploads/2024/09/A-Systematic-Survey-of-Prompt-Engineering-in-Large-Language-Models.pdf
https://rotmandigital.ca/wp-content/uploads/2024/09/A-Systematic-Survey-of-Prompt-Engineering-in-Large-Language-Models.pdf
https://rotmandigital.ca/wp-content/uploads/2024/09/A-Systematic-Survey-of-Prompt-Engineering-in-Large-Language-Models.pdf

	Introduction
	Background
	UML class diagrams
	Difficulties and Ambiguities in UML Modeling
	Evaluation and quality measures of UML class diagrams

	Large Language Models
	Transformer Architecture of Large Language Models

	Prompt Engineering
	Prompting Techniques

	Current solutions for the generation of UML class diagrams
	Gen-AI

	Methodology
	Dataset construction
	Number of Classes
	 Number of Relationships
	Variety of Relationship Types
	Cardinalities Constraints
	 Average Number of Attributes per Class
	 Inheritance Structures
	 Clarity of the Exercise Text
	Difficulty Classification

	Dataset Presentation
	Introduction to the Prompt-Based Generation
	Iterative Prompt Refinement
	Reference Exercise for Output Calibration
	Quality Assessment of Produced ChatGPT Diagrams

	Rubric-based Evaluation of Diagram Correctness
	Human Error

	Rubric-based Evaluation of Diagrams Similitude
	Final Refinement of the strategy
	Correctness Analysis after First and Second Refinement of the Prompt
	Mitigating Human Evaluation Bias
	Similarity Analysis after First and Second Refinement of the Prompt

	Conclusion
	Summary of Contributions
	Evaluation Insights and Key Findings
	Limitations and Future Work

	Bibliography

