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Abstract

Understanding and responding to driver behavior is significant for improving
road traffic safety, optimizing energy efficiency, and enhancing ride comfort, espe-
cially in electric vehicles. This thesis proposes a Human-Machine Interface (HMI)
system framework that recognizes multiple types of abnormal driving behaviors in
real time and provides personalized and immediate feedback to drivers through an

intuitive interface.

First, typical roads and traffic scenes are selected using the SCANeR™ Studio
virtual driving simulation platform, allowing realistic driving simulation and data
acquisition. Dynamic parameters such as vehicle speed, longitudinal and lateral
acceleration, steering angle, pedal position, and motor efficiency are collected. The
K-means algorithm is applied for preliminary data segmentation, and then the It-
erative Density-Based Spatial Clustering of Applications with Noise (I-DBSCAN)
algorithm is used for unsupervised clustering to identify potential aggressive driving
behaviors. These clustering results are further subdivided based on the thresholds
of comfort and energy efficiency indicators (e.g., jerk, motor efficiency), resulting in
a multi-category label set. A Long Short-Term Memory Network (LSTM) is used
to train time series driving data using this label. Bayesian optimization is used
to tune hyperparameters such as learning rate and the number of hidden layers.
The final model classifies four behavior types in real time: aggressive, uncomfort-
able, low energy efficiency, and normal, achieving F1 scores of 0.95, 0.99, and 0.99,

respectively.

Based on this classification model, an HMI is designed and implemented. In
addition to presenting real-time dynamic vehicle data, it communicates driving be-
havior classification results to the driver through visual and auditory alerts. A
unified “sensitivity threshold” is introduced, allowing drivers to adjust this thresh-
old through the interface. During operation, the LSTM model continuously outputs
probabilities for each behavior type. The system compares each probability with
the user-defined threshold in order of priority (aggressive > low energy efficiency >
uncomfortable > normal). Once any behavior’s probability exceeds the threshold,
it is regarded as the current driving state, and the corresponding prompt is trig-
gered. This single-threshold, priority-based scheme enhances interaction efficiency

and reduces distraction caused by overlapping alerts.

The framework is deployed on a real-time, hardware-in-the-loop platform com-

posed of a driving simulator, the Speedgoat, and the Raspberry Pi. The User



Datagram Protocol (UDP) is used to enable low-latency communication between
modules, ensuring real-time, closed-loop control of the data flow from acquisition,

identification, and feedback.
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Chapter 1

Introduction

1.1 Background

Although there has been some progress in global road traffic safety in recent
years, the number of road traffic deaths remains unacceptably high, and the overall
improvement trend has shown signs of stagnation. According to the 2023 Global
Status Report on Road Safety, road traffic accidents caused approximately 1.19
million deaths worldwide in 2021. Furthermore, the report revealed that approxi-
mately 181,453 children aged 0-19 die in road traffic accidents annually. This figure
highlights the serious threat that road traffic poses to the lives and health of young
people.[1]

One of the reasons for these injuries is the improper driving behavior of drivers.
Aggressive driving behavior is an important factor that easily leads to dangerous
driving. According to statistics from the National Highway Traffic Safety Adminis-
tration (NHTSA) in 2020, 66% of traffic fatalities in the United States were related
to aggressive driving. More than 78% of American drivers said they had engaged
in aggressive driving at least once in the past year [2]. NHTSA defines aggressive
driving as "operating a motor vehicle in a manner that could endanger other people
or property”, typically involving multiple traffic violations during a single drive or
segment [3]. It is important to note that aggressive driving and road rage are not
the same thing. The former is a traffic violation, while the latter refers to behavior
intended to cause harm and may constitute a criminal offense. Aggressive driving
includes failure to yield to other drivers and pedestrians, failure to use turn signals;
making extra, unnecessary lane changes; tailgating other drivers; making sudden
stops, accelerations, or turns; and ignoring traffic controls [4]. Therefore, it is of
great significance to improve road traffic safety by identifying and intervening in

aggressive driving behavior.
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In addition to driving safety, the impact of driving behavior on ride comfort and
vehicle energy consumption is also receiving increasing attention. Some seemingly
non-dangerous and non-illegal actions, such as frequent acceleration and deceler-
ation, can make passengers feel uncomfortable, especially those who are elderly,
children, or have sensitive bodies. While this type of driving is not radical, it still
negatively affects the riding experience and can even cause physiological reactions
such as motion sickness. However, as electric vehicles become more popular, these
unstable driving styles will consume more electricity. [5] found that the frequency
and intensity of acceleration, deceleration, and stopping directly affect the energy
consumption of electric vehicles through real tests and modeling. The R? model
achieved a goodness of fit of over 0.9, indicating that dynamic behavior significantly
affects energy consumption. In addition, [6] also shows that frequent starting and
stopping under traffic flow conditions will significantly increase energy consumption,

especially in urban congestion environments.

Improper driving behavior poses significant challenges in terms of safety, com-
fort, and energy, so HMI has become an essential component of modern driver
assistance systems. HMIs are no longer just passive information displays; they are
increasingly designed to provide real-time feedback to help drivers recognize and
correct undesirable or unsafe behaviors before they become more serious risks. For
example, Innovative HMI designs (such as LED ambient lighting) can effectively
enhance the driver’s visual behavior and situational awareness, thereby improving
driving safety [7]. In addition, HMI is also a key link in building driver trust in the
autonomous driving system. Its information transparency and interactive design
will significantly affect the user’s understanding and acceptance of vehicle behav-
ior [8]. Some studies also apply HMI to fuel efficiency guidance, and through the
combination with vehicle performance data, realize the learning and optimization
of driving behavior [9]. These studies suggest that further research is needed into
the design and effectiveness of HMIs as behavioral intervention tools, particularly

in addressing driving patterns related to safety, comfort, or efficiency.

1.2 Related work

1.2.1 Aggressive Driving Behavior Classification Techniques

Monitoring and effectively identifying aggressive driving behavior is the corner-

stone of improving driving safety.
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Early methods for judging drivers’ driving behavior are generally based on rules,
thresholds, or feature engineering. [10] derived an accident risk index based on a
large data set of accelerometer readings that could only be collected by the drivers.
[11] proposed a threshold-based decision tree system based on CAN-Bus signals (such
as speed and steering wheel angle), which can automatically identify driving actions
(such as steering and acceleration) and achieve a classification accuracy of 54-73% on
real vehicle data. The vehicle acceleration change rate (jerk) has been shown to be an
effective feature for identifying aggressive behavior. Through natural driving data,
it was found that the frequency of large negative jerk (acceleration mutation at the
moment of emergency braking) is highly correlated with aggressive behavior, with
a detection rate of 77% and an AUC of up to 0.77 [12]. [13] proposed a method to
describe the relationship between lateral and longitudinal acceleration and velocity,
based on which the driver’s behavior can be classified as safe or unsafe. These
methods are based on basic driving signals and complete classification by setting
thresholds or decision rules. They have the advantages of simple implementation

and low computational complexity.

In recent years, supervised learning algorithms have been widely used in driving
behavior classification tasks to predict the driver’s operating behavior by training
models. Such methods usually rely on labeled data for training. [14] proposed a
novel system that uses a Dynamic Time Warping (DTW) algorithm and smartphone-
based sensor fusion (accelerometer, gyroscope, magnetometer, GPS, video) to ac-
tively detect, identify, and record aggressive behavior without external processing,
thereby increasing awareness of potential aggressive behavior and further ensuring
driver safety. [15] used a method that fused visual and sensor features, modeled
driving sessions using road images and vehicle dynamics (such as vehicle speed,
speed), extracted feature vectors through Gaussian distribution, and classified them
using a Support Vector Machine (SVM) classifier to determine aggressive driving
behavior, with a detection rate of 93.1% on real traffic data. Based on the ba-
sic safety information data of connected vehicles, [16] proposes a real-world scenario
lane crossing time (TLC) analysis method based on the Random Forest (RF) model,
which successfully identifies aggressive driving behaviors on horizontal curves with
an accuracy of up to 95.34%. In addition, more advanced deep learning structures
have also been introduced into aggressive driving behavior recognition. In [17], the
authors determined whether the driving style is safe or aggressive by detecting traffic
direction signs, speed, and maneuver estimation. They used the Convolution Neural
Network (CNN) algorithm for detection with an accuracy of 88.02%. The paper [18]
proposed a system for classifying normal and aggressive driving behaviors based on a
combination of a Fully Convolutional Network (FCN) and a LSTM algorithm. The

14



system formulates the problem of whether aggressive driving behavior is involved as
a time series classification. Using the UAH-DriveSet dataset, the system achieved
an F-1 score of 95.88% at a window length of 5 minutes. In [19], a hyperparame-
ter optimization method based on the LSTM model was proposed, and a Bayesian
optimization model was established to optimize the hyperparameters. The optimal
hyperparameters (including window size, learning rate, number of hidden layers,
and number of hidden units) were determined to accurately predict driver behavior.
The model accuracy reached 97.02%. This study [20] collected real data from vehicle
accelerometers and gyroscopes, used statistical regression, time series analysis, and
the following machine learning algorithms to identify aggressive driving behavior:
GMM, Partial Least Squares Regression (PLSR), wavelet transform, and SVR. The
results showed that when using a multi-source dataset, PLSR performed best with
an F1 score of 0.77.

Manually labeling a large amount of driving data is very time-consuming due
to the uncertainty of driver behavior and the differences between data analysts. To
address this problem, the researchers proposed a semi-/unsupervised method for
scenarios with few labels and high labeling costs. [21] used a Semi-supervised Sup-
port Vector Machine (S3VM) to distinguish between aggressive and normal driving
styles based on a small amount of labeled data. Experiments show that S3VM only
requires a small amount of labeled data, combined with a large amount of unlabeled

data, to significantly improve the classification accuracy by about 10%.

1.2.2 Human Machine Interface

With the development of driving behavior recognition technology, its practical
application in driving safety and driving behavior intervention has gradually become
more important. Among them, the HMI, as a bridge connecting the driver and
the vehicle, is widely used to deliver behavior recognition results, provide timely
feedback, and guide driving behavior improvement. A well-designed HMI can not
only improve driving safety and comfort but also enhance the driver’s trust and
acceptance of the assistance system. Therefore, research around HMI mainly focuses
on the presentation of its feedback content (such as vision, hearing, touch, etc.), the
information triggering mechanism, and the impact of the system on driving behavior,

forming a number of representative research directions.

[22] combined real car and simulator experiments to explore the integration of
future HMI and Driver Assistance Systems (DAS). They introduced sidestick con-

trol and virtual instruments in the prototype car to reduce the physical burden of

15



driving, and collected driver status data through the EEG interface of the driving
simulator to improve the system’s ability to understand the driving context, provid-
ing a feasible path and verification platform for the integrated design of HMI and
DAS. [23] designed the concept car Carai to quickly develop and test the integration
of Advanced Driver Assistance System (ADAS) and HMI. By integrating multiple
environmental perception sensors and a modular computer framework, an LED dis-
play interface covering the entire front field of view was designed to provide real-time
prompts for key driving information such as lane changes and pedestrians in blind
spots, achieving a closed-loop design from perception to interaction, allowing HMI
to not only display information, but also become an interactive outlet for ADAS.
This shows the key role of HMI in improving the understandability and operability
of ADAS. [24] evaluated an in-vehicle HMI system for guiding energy-saving and
safe driving through a driving simulation experiment, and compared the effects of
three information prompts on driving behavior: suggestions, feedback, and a combi-
nation of the two. The results showed that the interface that combined suggestions
and feedback was the most effective in reducing fuel consumption, speeding, and
improving driving stability, and was also accepted by most drivers. Studies have
shown that if HMI can work closely with driving assistance functions, it can not
only provide information but also effectively guide changes in driving behavior, and
is an important means to achieve safety and energy-saving goals. [25] constructed
a mathematical model to analyze how HMI design affects the driver’s perception
and reaction time to vehicle information in autonomous driving and connected en-
vironments. The study used HMI as a key link connecting drivers, sensors, and
communication systems to quantify its impact on driving usability and safety. The
results show that the shorter the reaction time and the more efficient the informa-
tion transmission, the higher the system usability, emphasizing the importance of
HMI design in reducing latency and improving the reliability of driving behavior.
[26] proposed a HMI framework for autonomous driving, systematically sorting out
various HMI types inside and outside the vehicle (such as autonomous driving sta-
tus HMI, vehicle information HMI, entertainment HMI, dynamic HMI, and external
HMI), and explored the relationship and influencing factors between these interfaces.
The framework emphasizes that HMI design should be coordinated according to dy-
namic factors such as automation level, passenger status, and traffic environment
to form a consistent and synchronized multi-channel interaction strategy to support
efficient communication between people and systems, and between people and the

traffic environment in autonomous driving.

[27] proposed a method that combines driving behavior recognition with an

HMI feedback mechanism to improve the interactive safety of semi-automatic driving
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systems. The system monitors the driver’s status (such as distraction or abnormal
behavior) and adjusts the presentation of warning and prompt information in the
HMI in real time to guide safer driving reactions. The study emphasized that
the integration of HMI and a behavior recognition system can effectively support
human-vehicle collaboration and reduce accident risks. [28] proposed an HMI design
that supports driver-supervised learning to help ADAS systems identify and learn
individualized driving preferences. The HMI enables drivers to monitor system
behavior in real time, intervene in decision conflicts, and provide feedback on the
learning process, thereby improving the adaptability and transparency of the system.
The experiment verified the required parameters and interaction requirements of the
HMI through semantic analysis and behavioral observation, laying the foundation

for the realization of personalized assistance systems.

Different types of HMI show significant differences in delivering driving-related
information, guiding driving behavior, and influencing driving decisions. Their de-
sign methods, whether the content, form, or interaction of information presentation,
will directly affect the driver’s understanding efficiency, response behavior, and trust
and acceptance of the system. Therefore, existing studies have widely explored the
application effects of various HMI designs in different driving scenarios to evaluate

their potential value in optimizing driving behavior.

[29] compared three HMI designs through simulation experiments to explore
their effectiveness in supporting cooperative driving. The results showed that the
interface that highlights cooperative vehicles and gaps can best enhance drivers’ un-
derstanding and trust, and suggestive information is particularly useful, providing
empirical reference for cooperative driving HMI design. Similarly, [30] designed and
compared three HMI information display methods (distance information, sugges-
tion information, and guidance information) to support safe overtaking behavior in
a connected vehicle environment. The results showed that suggestion information
was the most effective, which could improve driving performance and reduce visual
burden; while guidance information increased the success rate, but had lower com-
pliance. [31] compared three HMI: Baseline, which only displays basic information,
Sensor HMI based on onboard sensors, and Car-to-Everything (C2X) HMI that
integrates C2X communication to support cooperative driving when merging and
turning left. The results show that C2X HMI performs best in improving user trust,
acceptance, and interactive experience without increasing driving burden, indicat-
ing that clear and perceptible cooperative information is the key to efficient HMI
design. [32] designed and integrated an HMI system based on shared control and
role switching, combining a tactile steering wheel controller with a visual interface

to achieve dynamic collaboration between the driver and the autonomous driving
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system. The HMI clearly distinguishes between manual, shared, and autonomous
driving modes through colors, icons, and animations, dynamically prompts the cur-
rent control rights and reasons for intervention, improves the driver’s understanding
and trust in the system status, and supports a smoother takeover and interactive
experience. [33] designed and tested three augmented reality-based HMI interfaces
to guide drivers to achieve more efficient driving behavior in hybrid vehicles. Dif-
ferent interfaces provide optimal vehicle speed and operation suggestions in the
form of numerical values, images, or text to help drivers adjust their behavior to
reduce fuel consumption. The experimental results show that these HMIs can sig-
nificantly improve fuel efficiency, among which the "text-based interface” performs
best in terms of cognitive burden and acceptance. [34] designed and field-tested
an in-vehicle omnidirectional collision warning HMI, comparing the effects of visual
cues and combined audio-visual warnings on driving behavior under different colli-
sion types (front, rear, and side). The results showed that combined audio-visual
warnings can shorten reaction time, reduce vehicle deviation, and improve safety,
and that users with different driving experience have significant differences in their

responses to warning forms.

1.3 Purpose & Contribution

This study aims to design and implement a HMI system based on driving
behavior recognition, which can identify the driver’s abnormal driving behavior in
real time during vehicle operation and provide timely feedback through a friendly
interface, thereby improving road safety, riding comfort, and energy efficiency of

electric vehicles.

The main contributions of this thesis include:

1. A High-Accuracy, Real-Time Driver Behavior Recognition Model:
Different dynamic driving data were collected through the SCANeR™ Studio

virtual simulation platform using typical roads and traffic scenarios. K-means
and improved DBSCAN clustering methods were then used to identify aggres-
sive behavior. Then, a multi-category label set was obtained, and an LSTM
network was used to train for time series modeling. Bayesian optimization
was then used to adjust the hyperparameters, enabling the model to accu-
rately identify four types of behaviors: aggressive, uncomfortable, low enerqgy
efficiency,normal. The highest F1 score was 0.98, which met the requirements

for high real-time accuracy.

18



2. An Efficient, Prioritized Feedback Mechanism:

The system is designed with a unified sensitivity threshold that allows the
driver to adjust the model’s response. The LSTM outputs four types of be-
havior probabilities. The system compares the threshold to check if it has
been exceeded in order of priority (aggressive > low energy efficiency > un-
comfortable > normal) and triggers the corresponding feedback prompt. This
mechanism improves interaction efficiency, avoids redundant alarms and in-
formation interference, and implements a behavior intervention method that

aligns more closely with human-machine cognitive characteristics.

3. An Intuitive and Interactive HMI:

It provides a quick interface that combines visual and auditory. It displays
real-time behavior classification results and vehicle dynamic data. It allows
users to adjust behavior judgment thresholds in real time. It establishes a
closed-loop control path between the driver and the system. It enhances the

initiative and personalization of driving behavior intervention.

4. A real-Time Hardware-in-the-Loop Implementation:

The system is based on a hardware-in-the-loop architecture using the Speed-
goat real-time control platform and the Raspberry Pi terminal. It uses the
UDP protocol to enable high-speed communication between modules. In the
simulated driving scenario, key indicators such as reaction time, acceleration
fluctuation, and changes in energy consumption are evaluated to determine

the effect of different prompt modes on behavior guidance.

1.4 Outline

This thesis is composed of six chapters, each of which gradually builds upon
the implementation and evaluation of a real-time driver behavior monitoring and

feedback framework. The rest of the thesis is organized as follows:

Chapter 2 presents the overall structure of the proposed framework, describes
the physical setup of the driving simulator and its integration with the simulation
software, and explains in detail the interactions between the different hardware

components.

Chapter 3 describes the development process of the behavior recognition model,
covering the construction of typical driving scenarios, data collection and preprocess-

ing, and labeling behavior patterns using clustering techniques. This chapter also
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discusses the implementation and training of a LSTM model for real-time behavior

classification and evaluates its performance.

Chapter 4 focuses on the design and implementation of an HMI system that
provides real-time feedback to the driver. This chapter covers interface layout,
feedback logic, and visualization of different driving modes. A key feature, user-
defined sensitivity settings, is explained, which allows users to adjust how the system
interprets and responds to driving behavior. This chapter also introduces different

types of feedback mechanisms, including visual and auditory warnings.

Chapter 5 focuses on the overall integration and verification of the system.
First, the integrated structure and communication process of each module after
the deployment of software and hardware are introduced, focusing on the overall
operating status of the system in terms of real time performance, stability and
feedback mechanism. On this basis, through multiple rounds of free driving tests, the
end-to-end response speed of the system, the stability of model output, the reliability
of UDP communication, and the integrity and consistency of HMI feedback are
evaluated. Finally, a control experiment with/without HMI feedback is set up to
further verify whether the HMI mechanism has a positive guidance effect under

different driving behaviors.

Chapter 6 presents some conclusions of this thesis. Potential improvements and
directions for the work are summarized, especially in terms of applying the system

to real vehicles.
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Chapter 2

System Architecture

2.1 Software Introduction

2.1.1 SCANeR™ Studio

SCANeR™ Studio, developed by AVSimulation, is an integrated virtual sim-
ulation and real vehicle fusion platform, designed to provide highly customizable
modular solutions for all stages of automotive R&D. It integrates high-presicion
vehicle dynamics models (such as multi-body dynamics, tyre modeling and suspen-
sion modeling), a comprehensive multi-sensor simulation library (covering cameras,
radars, lidars and ultrasonic waves) and a powerful scenario editor. This allows users
to build complex traffic environments, like multi-line roads, intersections, pedestri-
ans, vehicle flows, traffic lights, dynamic weather, and day/night conditions. The

primary function of the software is to offer users five distinct modes [35]:

1. Vehicle mode: Used to develop mathematical models of vehicles such as cars
and trucks. These models are based on various vehicle components, including

suspension systems, braking mechanisms, lighting systems, tires, and wheels.

2. Terrain mode: Used to build realistic road networks with logical features
such as traffic signs, signal lights, and speed limit indicators. This mode
also contains a 3D visualization environment to enhance the realism of the

simulation.

3. Scenario mode: This mode creates training scenarios by integrating vehicles
and terrain to improve driver skills, evaluate infrastructure, and test cock-
pit interfaces. It can also customize scenarios, monitor nearby autonomous

vehicles, enforce specific rules, and collect accurate simulation data.
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4. Simulation mode: This mode is responsible for launching and managing sim-
ulation sessions, coordinating all related hardware and software systems (such
as audio, video, and motion components) to ensure a consistent simulation

experience.

5. Analysis mode: Designed for reviewing and evaluating training outcomes.
It presents results in various formats, including charts, 3D animations, and

data tables, to facilitate effective performance analysis.
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Figure 2.1: Ethernet modules communication.

SCANeR™ Studio has a distributed architecture, where the communication
between the different modules is realized through Ethernet(shown as Figure 2.1).
This architecture allows the modules to be implemented on multiple machines and

to be scaled.

For communication between some specific modules, such as ACQUISITION
(DriverHandle), MODELHANDER (dynamic model), MOTION, and the SCANeR
API, uses SHM for fast and efficient communication with low latency (shown as
Figure 2.2).

In terms of system interaction, SCANeR™ Studio provides a variety of open
interfaces and supports the seamless integration of simulation and control platforms,
such as MATLAB/Simulink and Python. It also enables real-time communication
with vehicle controllers, sensor simulators, and actuators via standard protocols,
including Controller Area Network (CAN), EtherCAT, UDP, and Transmission
Control Protocol (TCP)/Internet Protocol (IP). This highly flexible interface de-
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sign makes it widely used in Software-in-Loop (SiL), Hardware-in-Loop (HiL), and

Driver-in-Loop (Dil.) testing processes.

SCANeR™ Studio can not only drive the rapid prototyping and verification of
ADAS and autonomous driving algorithms, but it can also support research into
driving behavior modeling, driver reaction analysis, HMI design, traffic flow model-
ing, and policy formulation. The platform also offers automated test management,
data recording and playback, and the ability to compare virtual and real vehicle test
results. These features greatly improve the repeatability of experiments, develop-

ment efficiency, and rigor of system verification.
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Figure 2.3: User interface and main windows of Qt Designer.

PyQt5 is a development toolkit that encapsulates the functions of the Qt5
framework in Python, developed by Riverbank Computing. Qt5 is a cross-platform
Graphical User Interface (GUI) development framework written in C++. PyQt5
provides a Python interface for Qt5, allowing developers to use all of Qt’s functions

and create GUI applications by Python.
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PyQt5 is easier to learn and use than the traditional C++ development method,
while still having the powerful functions of the Qt framework. PyQt5 supports
various commonly used interface components, such as buttons, labels, text boxes,
and tables. It also realizes interactive responses between controls through the "signal
and slot” mechanism. This mechanism makes the interface logic clearer and the

structure more flexible.

In this project, PyQt5 is used for implementing the functional logic behind the
interface, including button click responses, input data processing, and result display
of driving behavior. Because the Python language has concise syntax and convenient

debugging, using PyQt5 greatly improves development efficiency.

Qt Designer, a GUI tool provided by Qt, supports the visual creation and edit-
ing of user interfaces (shown in Figure 2.3). Unlike traditional code-based interface
development, Qt Designer uses a "drag-and-drop” method to quickly build a user
interface that meets the requirements by directly adding controls and setting layouts

and properties on the canvas.

After finishing the design, Qt Designer saves it as a .ui file in XML format.
It can then be converted into a Python source code file by using the pyuicb tool
provided by PyQt, or dynamically loaded at runtime through the uic module. This
design method effectively separates the interface layer from the logic layer, improving

the readability and maintainability of the code.

In this project, Qt Designer is widely used for designing the layout of the main
window interface, including the window structure, button arrangement, and text
display area. Most parameters, such as layout, size, font, and margin, of interface
elements can be directly set in the Qt Designer, reducing the workload of manual

code adjustments and ensuring interface consistency and aesthetics.

2.2 Hardware introduction

The experimental system has a layered architecture and is divided into four
logical layers: data acquisition, data processing, interactive control, and the user
interface. This modular structure improves the system’s scalability, functional sep-
aration, and maintainability. Standardized interfaces guarantee real-time commu-
nication and data flow between layers, facilitating the flexible expansion and reliable

integration of software and hardware components.
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2.2.1 Data Acquisition Layer

Figure 2.4: Driving simulator paired with SCANeR™ Studio. 1: force feedback
steering wheel, 2: pedals, 3: manual gearbox, 4: bucket seat, 5: high resolution
screens.

The data acquisition layer captures real-time driving input signals and repro-
duces the real driving environment (shown as Figure 2.4). The system uses a Log-
itech G290 force feedback steering wheel to simulate the tactile feel of real vehicle
dynamics by providing physical feedback through steering resistance and vibration.
This device includes a three-pedal system: clutch, accelerator, and brake, as well
as a manual gear lever, which simulates a manual transmission and enhances driver

engagement.

The cockpit is equipped with a racing bucket seat designed to provide ergonomic
support and immersive feedback, further enhancing the driving experience. All
driver operations, steering, acceleration, braking, and gear changes are continuously
captured and input into the SCANeR™ Studio simulation environment, which is
the central source of real-time driving data, road conditions, and scene interactions.
This combination ensures that drivers experience a high-fidelity simulation that

closely resembles real-world conditions.
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2.2.2 Data Processing Layer

The data processing layer focuses on the real-time interpretation and calcula-
tion of vehicle dynamics, behavior classification, and control signal analysis. This
functionality is provided by the Speedgoat real-time target machine (shown as Fig-
ure 2.5): a high-performance embedded computing system designed for HiL testing
and rapid control prototyping.
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Figure 2.5: Speedgoat Baseline Education system (Baseline S).

The system is built around an Intel Celeron quad-core processor operating at
2.0 GHz with 4 GB DDR3 memory and a 256 GB SSD for storage. This configura-
tion provides sufficient computational power for real-time simulations in MATLAB
and Simulink Real-Time environments. The hardware architecture supports up to
four 1/O modules through mPCle slots, enabling integration of various signal types,
including analog, digital, and FPGA-based modules. Communication capabilities
include an 10691 dual-channel CAN module with M12 connectors for automotive
and industrial protocols, four Intel 1210 Gigabit Ethernet controllers (three exter-
nal RJ45 ports plus one host link), and two RS232 serial ports supporting transfer
rates up to 115.2 kBaud. Additional interfaces comprise USB 3.0/2.0 ports and Dis-
playPort video output supporting resolutions up to 2560x 1600 pixels. The system
operates from an 8-36 VDC power input with a maximum consumption of 70W,
making it suitable for both laboratory and mobile applications. Environmental
specifications include an operating temperature range of 0°C to 60°C and humid-
ity tolerance of 10-90% non-condensing. The fanless design with passive cooling
through an integrated aluminum heatsink ensures silent operation while maintain-
ing thermal stability. Physical dimensions of 210x190x80 mm and a weight of 2.6

kg contribute to its portability for educational use.
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The Speedgoat is equipped with a built-in real-time operating system (RTOS)
that can execute control algorithms with microsecond-level precision. Control logic
developed in Simulink is automatically converted into deployable C code using
Simulink Coder, which is then executed deterministically on the Speedgoat plat-
form without the need for external compilers or other development environments.
This allows the system to carry out low-latency, closed-loop calculations, such as
the real-time evaluation of vehicle dynamics, processing of driver inputs, and clas-
sification of driving behavior. The generated data is then seamlessly transferred to

the interactive control layer.

2.2.3 Interactive control Layer

This interactive control layer acts as a bridge between system intelligence and
human-machine feedback. Built on the Raspberry Pi 4 Model B (shown as Figure
2.6): a versatile, credit-card-sized single-board computer featuring a powerful quad-
core ARM Cortex-A72 processor operating at 1.5 GHz, coupled with up to 8 GB of
high-speed LPDDR4-3200 SDRAM for enhanced multitasking capabilities.

Figure 2.6: Raspberry Pi 4 Model B.

The platform incorporates comprehensive connectivity options, including dual-
band 802.11ac Wi-Fi, Bluetooth 5.0, Gigabit Ethernet, and multiple USB ports (2x
USB 3.0, 2x USB 2.0) for seamless peripheral integration. Additionally, it fea-
tures dual micro-HDMI outputs supporting 4K resolution at 60Hz, enabling high-
definition multimedia applications. The Raspberry Pi runs a customized Linux-

based operating system (typically Raspberry Pi OS) that provides a stable, lightweight
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environment for executing real-time Python scripts with minimal latency.

The system leverages extensive open-source libraries and frameworks for di-
verse functionalities, including TCP/IP and serial data communication protocols,
sophisticated HMI logic implementation, GPIO-based sensor interfacing, and mul-
timedia processing for audio/video output. The platform’s 40-pin GPIO header
enables direct hardware interfacing for custom sensor integration and control appli-
cations, while the CSI camera interface and DSI display interface provide additional

expansion capabilities for computer vision and custom display solutions.

2.2.4 User Interface Layer

The user interface layer provides visual and auditory channels to provide real-
time feedback to the driver. It contains display components that provide an im-
mersive, information-rich experience, replicating real-world driving feedback and

communicating system warnings.

Figure 2.7: LCD Display of HMI.

Primary visual immersion is achieved through three LG high-definition displays,

which are configured to provide a panoramic view of the simulated environment.

Additionally, a 6.49-inch auxiliary LCD screen (shown as Figure 2.7) mounted
within the driver’s field of vision displays different real-time visual feedback related

to different driving behaviors.
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Meanwhile, audio output devices (speakers) play audible warning prompts when
behavior thresholds are exceeded, providing multi-modal feedback to ensure driver

awareness and responsiveness.

2.3 Communication Protocol & Physical

Connection

Driving Simulator Display

4

SCANeR API HDMI

A Y

UDP Protocol UDP Protocol
Host Speedgoat Rasperry PI
Ethernet Network Ethernet Network

Figure 2.8: Communication protocol (red) and physical connection (Teal) between
hardware.

To achieve real-time simulation, deterministic control, and feedback, we design
an integrated and low-latency communication network among the host computer,

Speedgoat real-time target, and Raspberry Pi 4 Model B.

As shown in the Figure 2.8, the host (which contains simulation platforms like
SCANeR™ Studio, MATLAB/Simulink, etc.) connects to the Speedgoat target
through a dedicated Gigabit Ethernet link. High-frequency data, like simulation
commands, sensor outputs, and control signals, are sent from the host through

Speedgoat in the form of IP and UDP with almost no overhead and latency.

Speedgoat real-time target and Raspberry Pi 4 connect to each other through
Ethernet, and operate in the same Local Area Network (LAN) environment through
fixed TP addressing or the Dynamic Host Configuration Protocol (DHCP) assign-
ment method. Both Speedgoat and Raspberry Pi use UDP in the communication
process. Speedgoat sends real-time driving behavior classification results and vehicle
states data to the Raspberry Pi through UDP. Raspberry Pi executes user-defined
HMI Logic (including driver sensitivity threshold) and returns control instructions
or acknowledgement through UDP based on logic analysis and condition judgment.
This control structure not only improves computational efficiency but also makes

the system more modular and extensible. The HMI system design in this scenario
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can evolve in parallel with the core simulation platform without dependency.

Raspberry Piis also connected to a 6.49-inch high-resolution LCD panel through
an HDMI connection as the main feedback interface for the driver. It displays dif-
ferent types of context-related warnings, driving behavior summary, and real-time
simulation indication etc. Raspberry Pi uses its onboard GPU and Linux-based
graphics driver to achieve smooth rendering performance with low latency and tem-

poral conformity to vehicle simulation and control loop.

UDP protocol chosen as the communication protocol for all above mentioned
links intentionally. As a basic and fast communication protocol, UDP does not have
any connection setup through a three-way handshake process, which significantly
reduces communication latency. The protocol design also has a very basic 8-byte
header and does not have any reliability mechanism; it is a perfect choice for a
real-time system where timeliness is more important than reliable delivery. The
protocol is also natively supported in different environments like Simulink, Python,
or C/C++, etc., and can achieve seamless integration through different platforms
without any protocol wrapper or middleware layer. Even if packet loss happens
in any link, it will not cause a significant impact on system performance, as it
is running on a high refresh rate and redundant transmission of high-definition
image data. From end-to-end, this multi-layer integrated architecture (From host
command to hardware control and final display to driver) forms a complete control
pipeline. Every link in this pipeline is connected and communicates with each other
in an efficient way to achieve a reliable and extendable real-time simulation and

control system.

2.4 Data Flow Paths

Driving
Simulator

Signal collected
from the vehicle
during driving

Display

Sensitivity value
11 physical features chosen by the driver

Sensitivity value chosen by the driver

Speedgoat Rasperry PI

1. The result of the driving behavior classification model
2. Some specific dynamic signal collected from the vehicle

Figure 2.9: Data flow path between hardware.
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During the simulation process, MATLAB connects to the SCANER™ Studio
via the SCANeR API in order to access the real-time vehicle signals that have been
collected by the driving simulator. These raw signals include key driving data,
such as steering wheel angle, vehicle speed, and acceleration (will be discussed in
Section 3.2.1). Simulink then processes these inputs and transforms them into eleven

standardized physical features that consistently describe driving behavior.

These features are then transmitted via a high-speed UDP link to the Speedgoat
real-time target, which acts as the system’s core computing platform. Operating
under a deterministic real-time kernel, the Speedgoat target processes the incoming
data using a fixed monitoring window size and statistical feature extraction logic
(e.g., moving averages, standard deviations). The processed time-series data is then
fed into a pre-trained LSTM model, which has been optimized for real-time inference
of driving behavior states. Based on learned temporal patterns, the LSTM model

provides a predicted classification of the driver’s behavior.

In parallel, Speedgoat transmits the resulting behavior signal, alongside se-
lected real-time vehicle dynamics data, to the Raspberry Pi 4 over a UDP-based
synchronous communication channel. This low-latency connection ensures that both
control signals and behavioral insights are delivered without delay. Upon reception,
the Raspberry Pi parses the incoming data and triggers the relevant HMI actions.
These include providing visual feedback on the 6.49-inch LCD screen and generating

auditory alerts to help the driver be aware of and respond to their driving behavior.

At the same time, the Raspberry Pi also serves as a node for user interac-
tion. Through the HMI, the driver can select their preferred sensitivity value, which
determines how tolerant the system is to deviations in driving behavior. This user-
defined setting is sent back to Speedgoat via the same UDP channel. Speedgoat
then uses this sensitivity input to dynamically adjust the threshold values or weight
coefficients in the LSTM output interpretation. This two-way data exchange creates
a closed-loop control system that delivers intelligent behavior feedback and tailors

the response based on the driver’s real-time preferences.

The entire data flow (shown as Figure 2.9), ranging from raw signal acquisi-
tion to feature extraction, behavior prediction, HMI generation, and user feedback

integration, ensures synchronized, modular, and adaptable system operation.
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Chapter 3

Driving Behavior
Classification Model

3.1 Scenario Construction

Scenario construction defines the simulation environment in which driving data
is generated and collected. This includes designing road networks, placing dynamic
and static elements, configuring initial and boundary conditions, and organizing
event sequences through SCANER™ Studio’s scenario editor. Well-constructed sce-
narios help ensure the quality, diversity, and relevance of the driving behavior data

collected for analysis and model training.

3.1.1 Terrain Construction

The foundation of the simulation environment is the terrain. SCANER™ Stu-
dio provides both predefined and user-defined terrains with integrated logic and
3D representations. These terrains simulate real-world driving environments with

adjustable complexity and realism. Key components include [35]:

e Environment types: built-in layouts include urban roads, highways, rural

paths, and complex intersections.

o Infrastructure: traffic signals, speed limit signs, road signs, crosswalks, and

roundabouts can be added to define vehicle interaction rules.

e 3D assets: trees, buildings, road barriers, and lighting objects are included

to enhance immersion and spatial perception.
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In this study, the default terrain: Riviera was used (shown as Figure 3.1).
Riviera is a nice terrain (Right Hand Traffic (RHT) and Left Hand Traffic (LHT))
with sea, seaside, tunnel, country, village (pedestrian crossing), mountains, and
forest. The characteristics of the Riviera Environment are shown in the Table 3.1.
This scenario was chosen because it is representative and can cover a variety of
driving environments. For example, seaside and tunnel roads are usually narrow,
with limited vision and a large turning radius. Drivers are prone to aggressive
behaviors such as sharp turns and sudden acceleration when driving at high speeds.
Rural roads have complex road conditions and are prone to frequent acceleration
and deceleration, causing discomfort to passengers. In addition, inefficient behaviors

may be enhanced.

Figure 3.1: Top view of Riviera.
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Characteristics Quantity
Road length [km] 5.6
Driving side RHT / RHT
Traffic lights 0
Barriers 0
Intersections 12
PHYSICS compliant Yes

Table 3.1: Characteristics of the Riviera Environment.

3.1.2 Resources Selection

As mentioned at the beginning of this chapter, to ensure the simulation en-
vironment is realistic and complex, the scene should include terrain as well as 3D
objects such as vehicles and pedestrians. In this section, we will provide a brief

description of the driving and other vehicles in the scene.

In SCANeR™ Studio, vehicle models are divided into several categories, in-

cluding simple models, Callas models, and CarSim models.

The simple vehicle’s tire, suspension, and steering models are not sufficiently
detailed to have an appropriate response to subtle things such as the rumble strips.
This simple dynamics model implements basic functions: it uses a dual-axle (two
wheels per axle) structure, calculates the vehicle position and achieves terrain fol-
lowing by collecting road information at a single point (usually at the center of
the rear axle), and includes basic simulation of the engine, transmission, brakes and
steering. However, this model has significant limitations: it does not have a detailed
physical component model (such as engine, suspension, etc.), ignores roll motion,
the initial state of the vehicle is "engine start” ready, and only relies on single-point
road surface collection, which may cause problems in positioning on slopes, super
elevations curves or obstacles. Most importantly, it assumes ”infinite” grip, which

means that the vehicle will not slide and its lateral velocity is basically always zero
[35].

Autonomous vehicles primarily rely on the traffic module to follow pre-planned
routes. In such cases, simple models are typically sufficient. In this study, all
autonomous vehicles in the environment are composed of simple models from the
default library, including cars, buses, bicycles, motorbikes, trucks, and trailers. Their
distribution is shown in the table 3.2. The driving behavior of autonomous vehicles

is categorized into three types (normal, cautious, and aggressive), as shown in Table

3.3.
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Vehicle type | Vehicle distribution (%)
Cars 65
Buses 5)
Bicycles 10
Motorbikes 10
Trucks 5
Trailer assemblies 5

Table 3.2: Distribution of simple vehicles.

Driving behavior | Vehicle distribution (%)
Normal 90
Cautious 5
Aggressive )

Table 3.3: Driving behavior distribution of simple vehicles.

On the other hand, vehicles that are used for real-time human interaction (via
driving simulators, keyboards, or other interfaces) need more accurate dynamics.
Simple models don’t show how people actually drive in the real world in these
situations. For these types of situations, the Callas model is used to provide more

realistic vehicle responses that are suitable for experimental needs.

Figure 3.2: Callas Model.

Callas (shown in Figure 3.2) is the name of dynamic model vehicle, such as
trucks, buses, cars and midgets, motorsport, machineries, tractors, and military
vehicles (such as tracked vehicles) [35]. Unlike the simple model, it includes suspen-
sion and powertrain components. Suspension types can adopt all existing geome-
tries, such as stiff axles, independent wheels, tracks (caterpillars), and hybrid drive
trains. And the powertrain can be electric or combustion, with a full range of trans-
mission schemes. The specific vehicle model chosen was SmallFamilyCarElectric

(shown in Figure 3.3), a compact electric car suitable for urban driving simulations.
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The specific information is shown in Table 3.4

Figure 3.3: SmallFamilyCarFElectric.

Engine
Aspiration Electric
Max Power (kW) 80
Electric Motor RPM (rpm) 10390
Max Torque (daN*m) 28

Transmission

Transmission Type

Front Wheel Drive

Gearbox Technology Type

Auto

Front Gear Ratio Number

1

Rear Gear Ratio Number

/

Dimensions

Length (mm) 4440

Width (mm) 1770

Height (mm) 1545

Weight (kg) 1523

Front Overhang (mm) 952

Rear Overhang (mm) 788

Wheelbase (mm) 2700

CoG Height from ground (mm) 520
Front Track / Rear Track (mm) 1540 / 1535

Ground Clearance 155

36




Driver Side Left
Frame
Steering wheel turn lock-to-lock 3
Steering diameter between sidewalks (m) 11
Steering diameter between walls (m) 11.8
Tires dimensions 195/65 15
Anti-Block Brake system yes
Active yaw control yes
Traction control yes
Front suspension Independent McPherson
Rear suspension Twist Beam
Performances
Max speed (km/h) 145
0-100 km/h (s) 25.6
Standing 400 m (s) 22.2
Standing 1000 m (s) 42.5
Specific suspension roll (°/G) 3.7
Specific suspension pitch (°/G) 3.97
Max Slope (%) 22
Max Banking (%) 36

Table 3.4: SmallFamilyCarElectric’s Technical Document

Additionally, the vehicle is equipped with a Long Range Radar Sensor (see
Figure 3.4) in order to detect the distance to collision and is capable of detecting
mobile obstacles (for example, cars, pedestrians, bicycles, motorbikes). The sensor
is positioned in the car front at a distance from the ground of 0.5 m (see Figure
3.5). Its technical specifications include a maximum detection range of 250 meters,
a horizontal field of view (FOV) of —30° to 30°, and a vertical FOV of —30° to 30°.
In this study, the sampling frequency of all sensor data is set to 100 Hz.

The entire scenario setup, including road logic, dynamic agents, and data log-
ging configurations, ensures that each test run is consistent and repeatable, while

also allowing flexibility to modify conditions for specific experimental needs.
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Figure 3.4: Long range radar sensor with maximum beam range of 250m.

Figure 3.5: Zoomed view of radar sensor placement.

3.2 Methodology

The present study proposes a four-stage driving behavior analysis framework.
This framework is based on the SCANER™ studio simulation platform, MATLAB,

and Simulink. The technical process of the framework is as follows:

1. Data Acquisition & Preprocessing: Raw simulation data is first trans-
formed into a set of interpretable physical features. These features are then
processed using a sliding window strategy to compute statistical summaries
representing behavior over time. These statistical outputs are then used as

both labels and sequence inputs to train a sequential model.

2. Data Segmentation: The data is segmented into basic driving behavior
units (Elementary Driving Behaviors (EDBs)) based on dynamic metrics such

as vehicle speed and steering wheel angle.

3. Behavioral Characteristics Labeling: The I-DBSCAN algorithm is em-

ployed in the EDBs cluster analysis to identify normal and abnormal driving

38



behaviors. Then, continue to classify according to the predefined threshold.

4. Model Training: A LSTM neural network is used to train the dataset with

labels to finally obtain an intelligent recognition system for driving behavior.

The technical details of each stage are described in the following section.

3.2.1 Data Acquisition & Preprocessing

In the simulation, the traffic driver (autonomous) is used to control an inter-
active vehicle, designated as a “small family electric car”, which has already been

described in the last section, to simulate realistic driving behavior in the scenario.

Signals Unit
Longitudinal Speed m/s
Longitudinal Acceleration | m/s?
Lateral Acceleration m/s?
Steering wheel angle rad

Steering wheel speed rad/s
Accelerator pedal ]

Brake force N

Motor Efficiency %

Distance to collision m
Relative speed m/s

Table 3.5: Raw signals collected from the vehicle.

Signals Unit
Longitudinal Speed m/s
Longitudinal Acceleration | m/s?
Lateral Acceleration m/s?
Steering wheel angle rad

Steering wheel speed rad/s
Accelerator pedal ]

Brake force N
Jerk m/s?
Distance to collision m
Efficiency %
Time to collision S

Table 3.6: Physical features.

The SCANeR API enables Simulink to receive real-time vehicle dynamics data
from SCANER™ Studio at a sampling rate of 100 Hz. These raw signals include key

variables such as vehicle speed, longitudinal acceleration, and steering angle (shown
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in Table 3.5). Some derived features, such as jerk (computed from longitudinal
acceleration) and time-to-collision (TTC, calculated from relative speed and distance
to collision), are also computed during this stage. A total of 11 physical driving

features are extracted to form the basis for behavior analysis (see Table 3.6).

The time-series data is analyzed using a sliding time window strategy to un-
derstand instantaneous and short-term behavior. Specifically, the continuous data
is segmented into Monitoring Period (MP)—each with a fixed window size of 0.3
seconds (i.e., 30 data points) and a sliding interval of 0.1 seconds (i.e., 20-point

overlap) [36].

Statistical Function | Description
Mean Mean of a signal
Min Minimum value of a signal
Max Maximum value of a signal
Variance Square of the standard deviation of a signal
STD Standard deviation of a signal
RMS Root mean square
Q1 25 percentile
Q2 50" percentile
Q3 75" percentile
Peak amplitude Difference between the maximum and mini-
mum value of the signal

Table 3.7: Statistical functions for feature engineering.

At each sampling point, two parallel datasets are generated (as shown in Figure
3.6):

[ 11 physical features ]

Y

y Moving statistical functions
[ Statistical functions ] in the sliding window

4

[ 110x1 label set ] [ 110x30 time sequence dataset ]

Figure 3.6: Parallel datasets generated after data preprocessing.

« Label dataset (110 x 1):
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For each 0.3-second window, ten time-domain statistical functions (e.g., mean,
standard deviation, minimum and maximum... see Table 3.7) are applied to
each of the 11 physical features. This results in a 110-dimensional vector,
which is then labeled using I-DBSCAN to summarize the behavioral character-
istics during that short time period. These vectors are used as a ground-truth

reference in model training.

« Sequential dataset (110 x 30):

Rather than compressing each monitoring window into a single statistical
value, this dataset preserves the dynamic changes of each statistic in the full
0.3-second window and 30 consecutive time steps. In this way, the data in each
window forms a 110 (feature dimension) x 30 (time step) matrix, maintaining
both the diversity of features and the fine temporal structure. This matrix
structure is sent as the input sample to the LSTM network, enabling the
model to learn and identify the temporal dynamic features and their changing

patterns contained in driving behavior.

3.2.2 Data Segmentation

In order to provide a more detailed description of driving behavior, we divide
the label dataset into 15 subsets of behaviors (EDBs), including straight driving,
turning when the degree is slight or sharp under low, medium, and high velocity
conditions. Each EDB corresponds to a data profile. Even if the data profiles are
similar, aggressive behaviors will stand out from the average behavior pattern [37]
[38].

To achieve the subdivision of these behavior subsets, we combine the K-means
clustering algorithm and threshold segmentation to process the data. The k-means
clustering algorithm (shown as Alg. 1) is a widely used unsupervised learning
method, whose purpose is to divide n samples into k clusters so that each sample
belongs to the cluster center closest to it, thereby minimizing the variance within
the cluster [39].

The specific content of this k-means algorithm is as follows:

k
_ : 2
E=argminy [z — (1)

i=1 nes;

In this context k£ is the number of clusters, S; represents the i¢th cluster, u; is the
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center of the cluster, and the calculation formula is:

1
Hi = |SJZ$ (2)

The overall process is to continuously adjust the division of clusters so that the points
in each cluster are as close to the cluster centroids as possible, thereby achieving

effective clustering.

Algorithm 1 K-means clustering pseudocode

1: Initialise Cluster Centers
2: for each iteration [ do
3:  Compute 7,:

4:  for each data point x,, do

5: Assign each data point to a cluster:
6: for each cluster k£ do

7: if k == argmin ||z, — pt ' then
8: T'nk = 1

9: else

10: ok = 0

11: end if

12: end for

13:  end for
14:  for each cluster £ do

15: Update cluster centers as the mean of each cluster:
/Ll _ Z Tnkn
F Z Tnk

16:  end for
17: end for

3.2.3 Behavioral characteristics Labeling

After successfully identifying the subset of EDBs, this thesis uses the DBSCAN
algorithm to identify and differentiate the aggressive driving behaviors within each
EDB.

Before the specific analysis, the DBSCAN algorithm is introduced, and its
pseudo-code structure is presented (Alg.2).

DBSCAN is a density-based clustering algorithm. Its basic idea is to identify

clustering structures by evaluating the density around data points. The algorithm
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Algorithm 2 DBSCAN Clustering Algorithm

Require: Dataset D = {p1,ps,...,pn}, neighborhood radius £, minimum points
MinPts
Ensure: Clusters C' = {C},Cs,...,Ck} and noise points N
1: Initialize all points in D as UNVISITED
2: C 0, N+ 0, cluster_id + 0
3: for each point p € D do

4:  if p is UNVISITED then
5: Mark p as VISITED
6: Neighbor Pts < all points within distance € of p
7: if |Neighbor Pts| < MinPts then
8: Mark p as NOISE and add to N
9: else
10: cluster id < cluster id + 1
11: Create new cluster Ceyster g and add p
12: Seeds < NeighborPts \ {p}
13: while Seeds # () do
14: q < select point from Seeds and remove from Seeds
15: if ¢ is UNVISITED then
16: Mark g as VISITED
17: Neighbor Pts' < all points within distance € of ¢
18: if |Neighbor Pts'| > MinPts then
19: Seeds < Seeds U Neighbor Pts’
20: end if
21: end if
22: if ¢ does not belong to any cluster then
23: Add q to cluster Copster id
24: end if
25: end while
26: C«+CU {Cclusteriid}
27: end if
28: end if
29: end for

30: return C, N
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mainly relies on two parameters: € (neighborhood radius) and minPts (minimum
number of points in the neighborhood). When the € neighborhood of a sample point
contains at least minPts samples, the point is considered a core point. DBSCAN
divides different clusters according to density accessibility and identifies points in

sparse areas as noise points.

In the dataset, DBSCAN classifies samples into three categories:

e Core Point: If the number of points contained in the ¢ neighborhood of a
point p is not less than minPts, then p is a core point. Its mathematical

expression is:

Ne(p) > MinPts, Nc(p) = {q € D [ dist(p,q) < €}

o Border Point: A sample h that does not meet the core point condition is

called a border point if it is located in the € neighborhood of a core point p.

h € N.(p)

« Noise Point: If a sample is neither a core point nor in the ¢ neighborhood of

any core point, the point is marked as a noise point.
n ¢ Ne(p)

Generally, the value of minPts is recommended to be twice the number of
features after Principal Component Analysis (PCA) dimensionality reduction [40].
High-dimensional data can lead to a problem known as the ”curse of dimensionality”.
PCA helps to improve the performance of the clustering algorithm. The selection
of € adopts the Elbow Method: calculate the distance between each point and
its K-th nearest neighbor (where K = minPts), sort these distances in descending

order, and draw the sorted k-distance graph to find the best € value [41].

In this study, to further identify abnormal driving behaviors, the -IDBSCAN
algorithm (the pseudo-code is as follows 3) is introduced [36]. The specific steps are
as follows [36][37]:

1. Determine the basic parameters required by DBSCAN: minPts and ¢;

2. Set a threshold normPercent for the proportion of normal driving behavior,

and check whether this requirement is met after executing DBSCAN;
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3. Based on the clustering results, divide the samples into three categories: nor-

mal behavior, abnormal behavior, and noise;

4. If the proportion of normal driving samples reaches or exceeds normPer-

cent, terminate the algorithm; otherwise, re-cluster only the samples currently

judged as normal behavior, and continue to iterate until the condition is met.

Algorithm 3 I-DBSCAN Algorithm

e e e e e e e T

20:

Input: data, normPercent, stopThresh
Output: abnormal

abnormal < ()
stopCounter < 0

minPts < dimensions(data) x 2

while stopCounter < stopThresh do

¢ < identifyEps(data, minPts)

results <— DBSCAN(data, minPts, ¢)

if cluster exists that is normPercent of data then
normal < that cluster

else
throw error (change parameters)

end if

abnormal < abnormal U (data \ normal)

if only one cluster found then
stopCounter < stopCounter + 1

end if

data < normal

21: end while

22:

23: return abnormal

To further complete the classification of driving behaviors, samples with motor

efficiency below the 25th percentile are labeled as low-efficiency driving behaviors.

And behaviors with RMS values of jerk exceeding 1.67m/s> are identified as

comfort-affecting driving behaviors [42]. These behaviors, typically characterized by

frequent acceleration or deceleration, may lead to passenger discomfort or motion

sickness.

The complete labeling steps are shown in the Figure 3.7.
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Figure 3.7: Generally data labeling steps.

3.2.4 Model Training

Once a labeled dataset is obtained, a LSTM neural network based on Bayesian

optimization is utilized to learn to classify driving behaviors.

LSTM is an enhanced recurrent neural network architecture designed to model
temporal dependencies through specialized gating mechanisms. Its core components
include three adaptive gates: the forget gate (f;), input gate (i;), and output gate
(o). These gates collaboratively regulate information flow to mitigate gradient-
related challenges (e.g., vanishing/exploding gradients) in long-sequence training,

thereby improving long-term dependency learning.

The network states are governed by the hidden state z; and cell state ¢;, updated

as follows:
2 = 0; © tanh(¢;),

¢ = fi ® ¢_1 + 1y © tanh (We[zi_1, 2] + be) ,

where ® denotes the Hadamard product. The gates employ sigmoid activation (o)

to dynamically modulate information:

ft =0 (Wf[zt—lawhytv 5] + bf) )
Z‘t =0 (I/Vi[zt—bxtayta 8] + bz) )
O =0 (Wo[ztfhxtayta 8] + bo) :

Here, W(,) and b, represent scalable weight matrices and biases, respectively. The
notation z;_; denotes the prior hidden state, x; the current input, ¥y, the target

variable, and s static metadata [43]. By selectively retaining, updating, and expos-
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ing state information, LSTM autonomously captures complex temporal patterns,

achieving robust performance in sequential data tasks.

When building an LSTM neural network, it is important to choose the correct
initial parameters. The optimized parameters provide a good starting point for the
LSTM model, allowing the model to converge faster and achieve higher prediction
accuracy. Traditional methods, such as network search and random search, require a
large number of blind tests of many parameter combinations, which is computation-
ally expensive. Therefore, we use the Bayesian optimization method to determine
the key initial parameters of the LSTM model, including the dropout rate, initial
learning rate, and L2 regularization coefficient. Bayesian optimization can sample
smartly in the parameter region where the optimal solution is more likely to be found
based on the existing evaluation results. This targeted method greatly reduces the

amount of calculation and the time required to find the nearest parameters.

3.3 Performance evaluation

A total of 10 hours of data were collected, with a total of 354,768 samples. We
used k-means clustering (k=3) to group driving data into three speed categories:
low, medium, and high (the result is shown in Figure 3.8). Each speed group
was then further divided based on steering angle: straight (< 10°), slight turn
(10 — 45°), and sharp turn (> 45°). Positive and negative angles represent right
and left turns, respectively. This resulted in a final dataset with 15 different speed-

steering combinations. The specific process is shown in the Figure 3.9.

Before applying - DBSCAN, we used PCA to reduce the dimensionality of our
data. PCA identified 15 principal components explaining 90% of the data variance
(Figure 3.10). For - DBSCAN, we set minPts to 30 (twice the number of principal
components) and determined the optimal epsilon for each of the 15 datasets using
elbow diagrams (Figure 3.11). I-DBSCAN was run multiple times per dataset,
stopping when clusters encompassing at least 80% of the data were found. This
process identified 286,641 samples of normal driving (labeled 0) and 68,127 samples
of aggressive driving (labeled 1).

We compared some key features (average, mean maximum, and mean mini-
mum values) of normal and aggressive driving behaviors (Table 3.8). Significant
differences were found in the mean maximum and mean minimum longitudinal ac-
celeration, showing the effectiveness of the algorithm. Aggressive driving showed

greater variability (higher standard deviation) than normal driving, which exhib-
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Figure 3.9: The clustering steps of EDB.
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ited more consistent behavior. Figure 3.12 illustrates some overlap between normal

and aggressive driving clusters based on longitudinal acceleration; however, other

kinematic features likely contribute to the separation of these clusters.

Features Units Normal Aggressive
Average Speed (m/s) | 16.46 (6.17) 15.43 (8.56)
Average Longitudinal Acceleration | (m/s*) | 0.04 (1.04) -0.2 (1.35)
Average Lateral Acceleration (m/s?) | -0.11 (1.55) 0.12 (1.47)
Average Jerk (m/s?) | -0.01 (1.99) 0.05 (3.24)
Max Speed (m/s) | 16.58 (6.16) 15.6 (8.56)
Max Longitudinal Acceleration | (m/s?) | 0.43 (0.77) 0.28 (1.16)
Max Lateral Acceleration (m/s?) | 0.007 (1.54) 0.33 (1.56)
Max Jerk (m/s%) | 10.95 (17.4) | 12.86 (18.37)
Min Speed (m/s) | 16.33 (6.17) 15.26 (8.56)
Min Longitudinal Acceleration | (m/s?) | -0.39 (1.47) -0.74 (1.71)
Min Lateral Acceleration (m/s?) | -0.23 (1.57) -0.09 (1.47)
Min Jerk (m/s?) | -10.85 (17.03) | -12.54 (17.68)

Table 3.8: Statistical feature of two labels. Values in round bracket are standard
deviation.

After categorizing driving behaviors as aggressive and normal, we tried to find
uncomfortable driving behaviors using a jerk RMS threshold of 1.67m/s* and low
energy efficiency using the 25th percentile of average efficiency. Three models were

trained:

e Model 1: Classifies driving behaviors as normal, aggressive, and uncomfort-
able.

o Model 2: Categorizes driving behaviors as normal, aggressive, and low energy

efficient.

e Model 3: Integrates all four labels (normal, aggressive, uncomfortable, and

inefficient)

3.3.1 Model 1 (normal, aggressive, uncomfortable)

The specific labeling flowchart is shown in Figure 3.13. Based on this clas-
sification method, we successfully divided the data into three categories: 43,761
samples representing normal driving behavior (labeled as 0); 1,062 samples repre-
senting general aggressive driving behavior (labeled as 1); 351 samples representing

driving behaviors that affect comfort (labeled as 2).
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Figure 3.12: Max longitudinal acceleration vs Min longitudinal acceleration. Red
dots: aggressive behavior, blue dots: normal behavior.

After completing the labeling of the three types of driving behaviors, we input
the labeling results, the serialized data set with a time step of 30, and the final initial
parameters determined by Bayesian optimization (see Table 3.9) into the LSTM
neural network for training. This setting helps the model learn different behavior

patterns more effectively and improves recognition accuracy and convergence speed.

Hyperparameters Value
LSTM number of layers 2
Number of hidden units 128

Maximum epochs 75
Batch size 128
Dropout rate 0.3
Initial learn rate 4.3595e-4
L2 Regularization 1.0736e-5
Loss function Cross-Entropy

Table 3.9: Hyperparameters of LSTM network for uncomfortable recognition.

The confusion matrix can be used to evaluate the performance of the classi-
fication model. It can intuitively show the correspondence between the model’s
prediction results and the true labels in each category. Especially in multi-category
tasks, it can not only reflect the model’s ability to identify each category accurately,
but also show the confusion that may exist between different categories. Each row

of the matrix represents the true label, and each column represents the model’s pre-
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Figure 3.13: Specific labeling step of normal, aggressive, and uncomfortable.

diction result. Ideally, in an ideal condition most samples should be distributed in

the diagonal position, that is, the prediction and the truth are consistent.

In this model 1, the confusion matrix is used to evaluate the performance of the
LSTM model in three types of driving behaviors: aggressive driving, uncomfortable
driving, and normal driving. As can be seen from Figure 3.14, the model performs
best at identifying normal behavior. There are 34,050 samples in total, 33,570 of
which are accurately identified, with an accuracy rate of 98.6%. The recognition
effect of the discomfort category is also relatively stable, with 20,399 of 21,072 sam-
ples correctly classified, with an accuracy rate of 96.8%. The aggressive category is
relatively difficult to identify, with 11,217 of 12,392 samples correctly classified, with
an accuracy rate of 90.5%. It can be seen that aggressive driving and uncomfort-
able driving have high similarities in driving characteristics, so aggressive behavior

is more likely to be confused with discomfort driving behavior.

The F1 score should also be analyzed. The F1 score is a balanced indicator
that takes into account both precision and recall. In simple terms, it tells us how
well the model performs in avoiding false positives and false negatives. An F1 score
close to 1.0 indicates that the model is very reliable in identifying correct behaviors
and has a low error rate. The F'1 values of the three types of driving behaviors are
shown in Table 3.10. The results show that the overall performance of the model is
balanced in the three categories, especially in the normal and discomfort categories
with larger sample sizes. Performance is more stable, and the F1 score for the

aggressive category is slightly lower, which means that the model still has room for
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improvement in identifying this category.

AGGRESSIVE 9.5%

DISCOMFORT 3.2%

NORMAL 1.4%

True Class

94.9%

4.5% 5.1% 2.0%

AGGRESSIVE DISCOMFORT  NORMAL
Predicted Class

Figure 3.14: Confusion matrix for uncomfortable recognition. Below the matrix:
precision for each label, right side of the matrix: recall for each label.

F1 score

Aggressive 0.93

Discomfort 0.96
Normal 0.98

Table 3.10: Performance of LSTM model 1.

Figure 3.15 shows how the model identifies driving behavior based on feature
input. The LSTM model outputs three values: 0 for normal driving, 1 for aggressive
driving, and 2 for uncomfortable driving. By observing the jerk RMS value, it is
obvious that in the time intervals of 1.5 seconds to 2.1 seconds and 2.5 to 3.2
seconds, the value is too large, which will lead to extremely poor ride comfort, and
the classification value of the neural network has also become label 2. At the same
time, by observing the longitudinal acceleration, we noticed a significant mutation
around 3 s. From -2 m/s? to nearly -8 m/s?, it is an intense braking behavior. Since
aggressive driving has a higher priority than uncomfortable driving, the output value

of the neural network changes from 2 to 1 in the time interval from 3 to 3.2 seconds.

3.3.2 Model 2 (normal, aggressive, low energy efficiency)

As depicted in the classification flow chart (Figure 3.16), the data were catego-
rized into three groups: 43,761 samples of normal driving (labeled 0), 1,062 samples
of aggressive driving (labeled 1), and 351 samples of low-energy driving (labeled 2).
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Figure 3.15: Neural network input and output. The first row: longitudinal velocity
signal, the second row: longitudinal acceleration signal, the third row: lateral ac-
celeration signal, the fourth row: jerk RMS value, the fifth row: driving behavior
classification (0:normal; 1:aggressive; 2:discomfort). The orange box highlights the
aggressive driving, and the yellow box highlights the discomfort driving.

Hyperparameters Value
LSTM number of layers 2
Number of hidden units 128

Maximum epochs 75
Batch size 128
Dropout rate 0.4
Initial learn rate 3.6362e-4
L2 Regularization 1.0047e-6
Loss function Cross-Entropy

Table 3.11: Hyperparameters of LSTM network for efficiency recognition.
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Figure 3.16: Specific labeling steps of normal, aggressive, and low efficiency.

This subsection will not repeat the definition of the confusion matrix and related

indicators. For details, please refer to the previous subsection.

Model 2 showed excellent classification ability in the recognition task of three
types of driving behaviors. As can be seen from the confusion matrix in Figure 3.17,
the model is extremely accurate in identifying the normal and low efficiency cate-
gories. It correctly classified 99.2% of the 40,805 normal samples and 99.2% of the
samples in the low efficiency category, and almost no cross-category misjudgments
occurred; the corresponding F'1 scores reached 0.99 (shown in Table 3.12), indicating
that the precision and recall of the model in these two categories are maintained at

a very high level.

The aggressive category is slightly difficult to identify. Although 94.1% of the
samples are still correctly classified, about 5.9% are misclassified as other categories,
mainly confused with the normal category. This result is also reflected in the F1
score of 0.95, which is slightly lower than the other two categories, but still within

an acceptable range, indicating that the model has a strong recognition ability.

Compared to Model 1, Model 2 performs better in identifying abnormal driving
behaviors and is more stable overall. This may be because the classification bound-
ary between low efficiency and aggressive driving behaviors is more obvious than
that of discomfort driving behaviors, so it has higher sensitivity and accuracy when

facing aggressive driving behaviors.

Figure 3.18 shows that from 25 to 28 seconds, it can be seen from the longitu-

dinal acceleration that the driver suddenly braked and then suddenly accelerated.
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Confusion Matrix for Driving Behavior

AGGRESSIVE 11664 256 472 5.9%

LOW EFFICIENCY 86 13855 31 0.8%

NORMAL 305 40 40805 0.8%

True Class

3.2% 2.1% 1.2%

AGGRESSIVE  LOW EFFICIENCY NORMAL
Predicted Class

Figure 3.17: Confusion matrix for efficiency recognition. Below the matrix: precision
for each label, right side of the matrix: recall for each label.

F1 score

Aggressive 0.95

Discomfort 0.99
Normal 0.99

Table 3.12: Performance of LSTM model 2.

The longitudinal acceleration shows that the driver performed these two operations
when turning, which is a typical aggressive acceleration behavior. The driving clas-
sification results also correctly classify these two behaviors as aggressive driving
behaviors. From 32 to 38 seconds, the motor efficiency is low. Although driving is
smooth, motor efficiency will gradually decrease due to increased load during the
continuous acceleration phase until deceleration or gliding to return to the high-
efficiency zone. The model also successfully identified the inefficient stage, and the
output value became 2. By observing the driving data, there is no abnormality at

other times, and the LSTM model classification result is also 0.

3.3.3 Model 3 (normal, aggressive, uncomfortable, low en-

ergy efficiency)

Following the classification scheme illustrated in Figure 3.19, the data set was

partitioned into four categories: 43,761 samples of normal driving (labeled 0), 1,062
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Figure 3.18: Neural network input and output. The first row: longitudinal veloc-
ity signal, the second row: longitudinal acceleration signal, the third row: lateral
acceleration signal, the fourth row: average motor efficiency, the fifth row: driving
behavior classification (0:normal; 1:aggressive; 2:inefficiency). The orange box high-
lights the aggressive driving, and the cyan box highlights the low-efficiency driving.

samples of aggressive driving (labeled 1), 351 samples that affect passenger comfort

(labeled 2), and 351 samples characterized by low energy driving (labeled 3).

The hyperparameters chosen by the Bayesian optimization method are shown
in Table 3.13.

Hyperparameters Value
LSTM number of layers 2
Number of hidden units 128

Maximum epochs 75
Batch size 128
Dropout rate 0.3
Initial learn rate 4.6663e-4
L2 Regularization 1.0343e-4
Loss function Cross-Entropy

Table 3.13: Hyperparameters of LSTM network for uncomfortable & efficiency
recognition.

The overall accuracy of this four-class model exceeded 96%. The confusion
matrix is shown in Figure 3.20. This model identified the inefficient driving category
best in these four classes, with high accuracy (98.3%) and recall (98.8%). The
model correctly identified 13,800 inefficient driving samples, and only 123 samples

were misclassified as aggressive driving. This shows that the behavioral patterns or
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Figure 3.19: Specific labeling steps of normal, aggressive, uncomfortable, and low
efficiency.

quantitative indicators of inefficient driving are highly specific, forming a very clear
classification boundary in the multidimensional feature space on which the model is
based.

The performance of the uncomfortable driving category is at a moderate level
(accuracy 97.4%, recall 97.7%), and the model correctly classified 18,704 samples.
However, its misclassification is bidirectional: 243 discomfort driving samples are
misclassified as aggressive driving, while 178 samples are misclassified as normal
driving. This result reflects the complexity of the characterization of uncomfortable
driving, and its features overlap to a certain extent with both aggressive driving
and normal driving, indicating that it may be located in the transition area of the

feature space.

In contrast, the performance of the aggressive driving category is relatively poor
(96.1% precision and 94.8% recall), with 11,750 correctly classified samples. There
is a clear confusion between this category and the discomfort driving category, espe-
cially 352 aggressive driving samples were misclassified as discomfort driving. This
asymmetric misclassification result shows that there may be an intrinsic connection
or feature similarity between the aggressive driving behaviors and discomfort driv-
ing behaviors. The normal driving class performs well overall, but a small number
of bidirectional misclassifications with all other classes (inefficient, uncomfortable,

aggressive) still exist.
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AGGRESSIVE 5.2%

DISCOMFORT 2.3%

LOW EFFICIENCY 1.2%

True Class

NORMAL 1.2%

AGGRESSIVE DISCOMFORT LOW EFFICIENCY  NORMAL
Predicted Class

Figure 3.20: Confusion matrix for 4-label recognition. Below the matrix: precision
for each label, right side of the matrix: recall for each label.

F1 score
Aggressive 0.95
Discomfort 0.99
Low efficiency 0.99
Normal 0.99

Table 3.14: Performance of LSTM model 3.

The Figure 3.21 shows how the LSTM model that outputs four labels identi-
fies different driving behaviors based on the input features. According to the jerk
value, it can be found that the driver’s start is very unstable, which affects the ride
comfort. In addition, the driver frequently changes the longitudinal acceleration be-
tween 30 seconds and 40 seconds and between 75 seconds and 78 seconds. However,
the longitudinal acceleration changes are within an acceptable range, so it only af-
fects the ride comfort. The LSTM model also classifies it as uncomfortable driving
behavior. From 51 seconds to 54 seconds, the motor efficiency is obviously low, and
the model also classifies it correctly. From 91 seconds to 93 seconds, by observing
the longitudinal acceleration, it can be seen that the longitudinal acceleration drops
rapidly, which is an emergency braking behavior. The model classification results
show that the first discomfort and then aggressive driving behavior is because the

jerk value first changes suddenly, affecting the comfort.
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Figure 3.21: Neural network input and output. The first row: longitudinal velocity
signal, the second row: longitudinal acceleration signal, the third row: jerk value,
the fourth row: average motor efficiency, the fifth row: driving behavior classification
(0:normal; 1:aggressive; 2:inefficiency; 3:discomfort). The orange box highlights the
aggressive driving, the cyan box highlights the low-efficiency driving, and the yellow
box highlights the discomfort driving.
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Chapter 4

Human Machine Interface

4.1 HMI Design Objectives & Principles

In the development of electric vehicles, the HMI system is the core medium
for information transmission and feedback between the driver and the vehicle. The
scientificity and effectiveness of its interaction design directly affect driving safety,
comfort, and user acceptance. In order to improve the practicality and user expe-
rience of the system, its core design principles need to balance safety, efficiency,

comfort, and technical adaptability.

o Safety
In electric vehicle HMI systems, safety refers to the system accurately and
promptly conveying important driving safety information while keeping the
driver focused. The system should be able to identify potential risks and com-
municate essential information to the driver without disrupting normal driving
operations, such as abnormal vehicle status or deviations in driving behavior.
At the same time, information should be communicated in a way that avoids
misleading, distracting, or delayed responses. For instance, complex interfaces
should not appear when driving at high speeds, and confusing prompts should
be avoided. By managing information priorities reasonably and using concise,
effective prompt methods, potential safety hazards caused by omissions or
misjudgments can be reduced, and the active safety capabilities of the entire

vehicle can be improved.

o Intuitiveness
Apart from the requirement of timely information transmission, we also need to

consider whether the content of the prompt is easy to understand and respond
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to quickly. By using uniform and clear graphic symbols, color coding, and soft
sound prompts, the driver can understand the intention of the system without
deep thinking. Especially in the case of sudden or high-pressure situations,
intuitive design can further reduce the cognitive load of the driver and let
them focus on the driving task, and then improving the response efficiency

and system effectiveness.

Graded Feedback

Different driving behaviors will bring different risk levels, so HMI should be
able to adjust the method and intensity of the prompt dynamically according
to risk level. For example, when the vehicle speed is slightly higher than the
threshold, only a soft visual prompt is needed. If behavior of driver is in the
case of a possible collision, HMI will output a stronger visual and auditory joint
alarm. Graded prompt method not only can help to improve the awareness of
drivers for risk, but also can reduce the phenomenon of “alarm fatigue” caused
by many unnecessary or frequent alarms, and further improve the reliability

and effectiveness of the system.

Customizability

Due to the differences in driving style, risk perception, and the tolerance of
warning information, driver can adjust the parameters of prompt range in a
certain interval according to their habit. For example, feedback sensitivity,
alarm volume, obviousness of visual prompt, etc. If providing flexible config-
uration options, not only can it improve user experience, but also make the

system more applicable in different driving conditions.

In summary, the interactive design of electric vehicle HMI should not only

focus on the efficiency of information transmission, but also consider the individual

differences of drivers during use, while always taking driving safety as the premise.

The above design principles provide direction and basis for the functional realization

and system development of subsequent HMI modules, and also lay the foundation

for creating a smarter assisted driving environment that is closer to the driver’s

usage habits. The following subsections will further introduce the specific design

scheme of the HMI system in this study, including interface layout, feedback form,

and system response logic.

62



4.2 HMI system Design

The HMI of this system aims to provide intuitive and real-time interaction
between the driver and the vehicle, trying to ensure timely feedback on driving

behavior and vehicle status.

In this part, the Python language is used, and the graphical interface is built
with the PyQt5 framework. By establishing a communication connection with the
vehicle simulation system, the HMI system receives vehicle dynamic data in real-
time, such as speed, acceleration, and driving mode, and graphically presents this
information in the interface. A multimodal feedback mechanism is used to enhance
the driver’s perception of potential abnormal behavior. When the system receives
the driving behavior classification results (i.e., "driving mode”) identified by the
external model, it will combine the internal preset feedback logic to prompt the
driver through visual pop-up windows, icon color changes, and prompt sound effects.
At the same time, it also provides a visual parameter adjustment function to allow
drivers to adjust the thresholds for judging different driving behaviors according to
their habits and preferences. It is also equipped with a logging mechanism to track

key events.

The HMI adopts a hierarchical and modular structure. It mainly includes four
core functional modules: interface display module, communication processing mod-
ule, driving behavior feedback module, and user interaction module. The modules
work together through clear interfaces to form a complete closed-loop feedback sys-
tem. The implementation details and design ideas of these modules will be expanded

one by one.

4.2.1 Interface display module

The interface display module is the most user-facing component of the HMI
system It is mainly responsible for presenting the received vehicle dynamic data on
the screen in a graphical form, so that the driver can monitor driving-related infor-
mation in real time. This module is not only responsible for the display and update
of numerical data, but also enhances information transmission through graphic an-

imation. It is the core of the system’s interactive experience.

As shown in the Figure 4.1, the system adopts a dark background color scheme

with high-contrast black large fonts to reduce visual fatigue when users observe the
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TextLabel

Figure 4.1: Main window interface of HMI system.

interface. In terms of interface layout, a horizontal distribution design approach
is adopted, with three core pieces of information—vehicle speed, driving efficiency,
and electric vehicle energy consumption—arranged side by side in the central area.
The three form a visually symmetrical layout, helping drivers quickly obtain key

information.

Among these, vehicle speed and energy consumption values are directly dis-
played in text format, clearly labeled with units, centered in position, emphasizing
their importance in driving monitoring; while the motor efficiency metric uses a
dynamic visualization component—the efficiency ring. The design of the efficiency
ring is similar to the display of liquid level height, and the efficiency change is sim-
ulated through dynamic wave animation. Different efficiency levels correspond to
different colors: high efficiency is green, low efficiency is orange, and both color and
waveform height automatically adjust based on real-time data. This design provides

a more intuitive visual representation of the current energy consumption status.

In addition to core data, the interface also integrates a time display and a
small status indicator light (top-left corner). The status light’s color changes based
on driving mode, e.g., green indicates normal driving, orange indicates aggressive
driving, and yellow indicates uncomfortable driving. The driver can perceive the
current status without reading text prompts, which further improves the intuitive-

ness of information transmission.

The implementation of this module is mainly based on the layout manager and
custom drawing functions in the PyQt5 framework. The interface uses automatic
adaptation, with all components scaled proportionally during initialization based

on the current screen resolution to ensure consistent display across different devices.
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The text information area uses QHBoxLayout for alignment and elastic distribution to
ensure that the main window interface remains orderly under different window sizes.
The efficiency ring component is implemented using a custom class that inherits
from QWidget and rewrites the paintEvent function to complete the drawing logic.
Combined with a timer to update the animation, this achieves a continuous and

smooth visual effect.

Overall, the interface display module meets the real-time display requirements
for vehicle operational status while optimizing visual style and interaction design,
ensuring the system has good readability and user experience. This provides a
clear and intuitive foundation for the subsequent operation of the driving behavior

feedback mechanism.

4.2.2 Communication processing module

The communication processing module serves as the core bridge for real-time
data updates in the system, primarily responsible for data exchange with external
models. This module enables bidirectional communication via the UDP protocol:
on one hand, it receives driving state data sent by the simulation platform, and on
the other hand, it supports feeding back parameters set by users in the interface to

the driving behavior classification model.

In terms of data reception, the system runs the UDP receiver (UDPReceiver)
in an independent thread to avoid network latency or data blocking affecting inter-
face responsiveness. The receiver monitors the data stream on the specified port
and parses the data upon arrival. The data packet received contains many driving
parameters, like the current vehicle speed, acceleration, braking, clutch position,
and the "driving mode”, which is determined by the driving behavior classifica-
tion model. The system verifies the data length and format before triggering the

subsequent data update process.

The received data is unpacked according to the predefined structure. For exam-
ple, each data packet contains 10 floating-point numbers corresponding to different
driving status indicators. To maintain system stability, the communication module
includes a receiving frequency recording function to monitor the data refresh rate

and detect problems in time when the data is interrupted or fluctuates abnormally.

On the other hand, in terms of parameter transmission, the system has a built-in

UDP sender (UDPSender) to package the user-set values (driving sensitivity set via
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sliders) into UDP data and send them to the IP and port specified by the simulation
platform. The transmission operation is usually triggered by interface interaction

and accompanied by log recording for easy retrospection.

The entire communication module is designed to be lightweight and stable. By
using the PyQt threading mechanism to separate communication tasks from the
main interface thread, user interface lag issues are effectively avoided. In addition,
common problems such as network anomalies, port occupation, and data format

errors are also handled within the module, enhancing the robustness of the system.

In summary, the communication processing module is the key to connecting the
HMI system with the external simulation platform, ensuring the real-time nature of
data input and the timeliness of parameter output. It provides the data foundation
for the entire interaction process and creates the conditions for the operation of

functional modules such as driving behavior feedback.

4.2.3 Driving behavior feedback module

The behavior feedback module is a functional unit in the HMI system that
responds to changes in driving status and provides prompts. This module does not
undertake the task of identifying driving behavior, but triggers the preset feedback
logic in the system based on the driving mode number (driving mode) input from
the external driving behavior classification model. It guides and alerts the driver

about their current status to ensure the safety and stability of driving behavior.

Feedback Trigger Logic The system uses a floating-point number to represent
the driving behavior classification results, with each number corresponding to a
driving state. For instance, 0 indicates normal driving, 1 indicates aggressive driving,
2 indicates inefficient driving, and 3 indicates uncomfortable driving. Whenever the
system receives a new driving mode number, it checks to see if it is different from
the previous one. If it changes, the corresponding feedback logic will be triggered

immediately.

Like the "aggressive driving” mode (label 1), as shown in the Figure. When the
system detects this mode number, a warning window pops up immediately on the
interface. The window title is displayed as ”"Aggressive Driving Detected,” and the
subtitle will display the current acceleration value, such as "The current acceleration

is 2.5 m/s?, please slow down.” Additionally, the color of the status light in the lower
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left corner of the interface will change from green to orange to provide a more

intuitive visual warning.

The system decides when to trigger the prompt based on the received driving
mode number. Original parameters, such as acceleration value, are supplementary
information that enriches the prompt content and makes it easier for drivers to

understand why the prompt was triggered.

To avoid repeated prompts when driving status fluctuates frequently, the feed-
back module has a state locking mechanism: the system only updates the prompt
content when the received mode number differs from the previous one. This effec-
tively avoids frequent interface refreshes and improves user acceptance and opera-

tional stability.

Multimodal Feedback Design To improve the effectiveness and perceptibility
of alerts, the system incorporates a multimodal feedback mechanism that combines
both visual and auditory channels. This approach helps drivers notice warnings even

when their attention is not focused on the screen.

Visual Feedback: The visual component includes pop-up windows, icon color
changes, and a dynamic efficiency ring. When an abnormal driving mode is received,

a warning window appears with a mode-specific icon, title, and description:

» Aggressive Driving (Mode 1): Orange window with acceleration value and

“Please slow down” message. Status lamp changes to orange. (See Figure 4.2)

Aggressive Driving Detected 1!

90.00 kWh

Figure 4.2: Visual prompt of aggressive driving behavior.

+ Discomfort Driving (Mode 2): Yellow window indicating frequent accel-

eration changes. The icon resembles dizziness. The status lamp turns yellow.
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(See Figure 4.3)

Discomfort Driving Detected !

Acceleration changes frequently
Please drive smoothly

90.00 kWh

Figure 4.3: Visual prompt of discomfort driving behavior.

« Low-Efficiency Driving (Mode 3): Cyan-colored title with message “High
energy consumption.” The efficiency ring color changes from green to orange.
(See Figure 4.4)

Low Efficiency Driving!

90.00 kWh

Figure 4.4: Visual prompt of low-efficiency driving behavior.

Auditory Feedback: Each driving mode also triggers a different sound pat-
tern:
o Aggressive: Fast, high-frequency beeps (e.g., alternating 1000Hz and 1200Hz)
 Discomfort: Wavy tone pattern (e.g., 400Hz and 550Hz loop)
o Low-efficiency: Short single-beep alert (e.g., 600Hz)
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These sounds are played through a dedicated audio thread to avoid blocking
the main interface. Visual and auditory cues are triggered simultaneously to ensure

a consistent user experience.

Coordination Strategy: The system ensures that multimodal feedback is
synchronized and not overly repetitive. Warnings are shown only once per mode
change. Sound alerts are not played again unless the driving mode changes, pre-

venting unnecessary disturbance.

This combined feedback design helps drivers quickly recognize and respond to
unsafe or inefficient behavior through multiple sensory channels, thus improving

overall driving awareness and response time.

4.2.4 User interaction module

The user interaction module provides a direct interface between the driver and
the system. While most of the HMI system functions are automated and data-
driven, this module enables users to manually configure key parameters and view
supplementary information, allowing for personalized control and enhanced system
flexibility.

Sensitivity Value Configuration

The core function of this module is the setting of the sensitivity value, which
can be adjusted by the user through a graphical slider interface. The sensitivity value
directly affects the judgment result of the driving behavior classification model, and

therefore plays a key role in the system’s operation logic.

The driving behavior classification model is a structure based on the LSTM. Its
output result is not a fixed label, but a probability distribution of a set of behavior
categories, which respectively indicate the possibility that the current state belongs
to "aggressive driving”, "inefficient driving”, or "uncomfortable driving”. Since the
model output is a continuous probability value, in order to convert it into a specific
driving mode, a threshold needs to be set - this is the sensitivity value set by the
user through the interactive interface. This value is sent via UDP from the HMI
interface to the classification model module, where it serves as a decision boundary

for interpreting the probability scores.
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Decision Priority Logic: Once the model receives the user-defined threshold,

it applies a priority-based decision logic:

1. If the probability of aggressive driving exceeds the sensitivity value, the system

classifies the current mode as aggressive.

2. If not, but the probability of low-efficiency driving exceeds the threshold, the

mode is set to low-efficiency.

3. If neither of the above applies, but discomfort driving exceeds the threshold,

the mode becomes discomfort.

4. If none of the probabilities exceeds the sensitivity value, the system defaults

to normal driving.

5. If the driver does not adjust this value and the driving classification model
does not receive any updates about the sensitivity value, it will automatically
set this value to 0.8.

This priority logic ensures that when the probability of multiple behaviors is
close or exists at the same time, the system gives priority to the most serious driving

behavior, improving the accuracy and pertinence of feedback.

By adjusting the sensitivity value, driver can control the "strictness” of be-
havior recognition according to actual needs: the lower the sensitivity value, the
easier it is for the system to determine that the driving behavior is abnormal; con-
versely, the higher the value, the more "tolerant” the system is, and prompts will
only be triggered in very obvious abnormal situations. This setting is particularly
important in experimental environments. This can be particularly useful in exper-
imental settings, where different test conditions may call for different classification

sensitivities.

Interaction Interface Design

From a user interface perspective, the interaction module includes:
« A slider dialog for sensitivity adjustment, with real-time display of the cur-
rent value;

e A control button to open the configuration dialog at any time during system

operation;
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2025-02-04 16:58:22

Adjust Sensitivity

Current Value: 0.62

Figure 4.5: Slider dialog for sensitivity adjustment.

e A secondary window to display extended driving information, including de-
tailed values for steering angle, brake pressure, clutch usage, throttle position,
and handbrake status.

2025-02-04 16:51:01

Figure 4.6: The secondary window about driving information.

All settings made by the user are logged and can be modified in real time
without interrupting the main data stream or visual output. Once the sensitivity
value is confirmed, it is immediately sent to the external classifier using the system’s
UDP sender thread.
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Design Considerations

The sensitivity configuration feature is particularly important in experimental
settings. It allows researchers to dynamically adjust the classification strictness
without modifying the model itself. This enables controlled experiments to compare
driver behavior under different feedback conditions, or to evaluate driver reactions

to different levels of system tolerance.

Furthermore, by placing this control in the user’s hands, the system gains an
additional layer of flexibility. Instead of relying on hard-coded thresholds, the HMI
provides a way to adjust classification behavior based on the driving scenario, driver
type, or research goal. This design supports both autonomous deployment and

experimental control use cases.
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Chapter 5

System Integration and

Performance Evaluation

5.1 System Integration Overview

After the system design was complete and each module had been tested individ-
ually, the software and hardware components of the system were fully deployed and
integrated to create a real-time driving behavior recognition and feedback platform
with closed-loop control capabilities. Unlike the modular description of the system
architecture in Chapter 2, this section focuses on the coordination and stability of

each component within the operating environment.

The system consists of a driving simulator, SCANeR Studio, Simulink, a Speed-
goat real-time control platform, a Raspberry Pi, and a human-computer interaction
interface. These devices are connected via Ethernet and distributed within the same
local area network. They use fixed IP addresses to ensure interoperability. While
the system is running, SCANeR™ Studio collects driving data continuously at a
sampling frequency of 100 Hz and transmits the data to Simulink. Extracted fea-
tures are transmitted to Speedgoat via UDP for real-time processing and LSTM
behavior recognition model execution. The recognition results and driving data are
transmitted to the Raspberry Pi in real time via UDP to complete the final inter-
face display and sound feedback. At the same time, the Raspberry Pi transmits the
model sensitivity values selected by the user to Speedgoat via UDP.

Note that although the system’s overall sampling frequency is 100 Hz and
Speedgoat’s real-time step size is 1 ms, the classification result’s actual output cy-

cle is approximately once every 0.3 seconds. This is because the driving behavior
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recognition model uses a 0.3-second sliding window structure for feature modeling

and reasoning.

The system’s overall integration is visualized in Figure 5.1, which illustrates
the physical and data connections between modules. Key data flows, including
feature extraction, behavior classification, dynamic signal transfer, and feedback
response, are clearly represented, showing the bidirectional communication between
Raspberry Pi and Speedgoat, and the HDMI-based display output. For more details,

see Section 2.3 and Section 2.4

+SCANeR 11 physical features ‘m«
Studio 1 miisheg.,
+ Simulink CL L TPy

Ethernet + UDP
Driving Simulator Speedgoat

v

Ethernet + UDP Ethernet + UDP

* Classification results
* Dynamic signals Sensitivity value

- Display

LCD Display Raspberry Pl

A

Figure 5.1: System overall architecture: green texts represent the types of data being
transmitted between modules, while blue text indicates the physical connections and
communication protocols.

During the integrated joint debugging process, we tested the stability of the
system communication link and module response in combination with real-time data

display, log recording, and multiple rounds of simulation. The test results show that:

e The SCANeR Studio end can stably output complete vehicle dynamic signals.

« Data transmission between Simulink and Speedgoat is correct, and the behav-

ior mode can be output at the set frequency.

e The UDP communication between Speedgoat and Raspberry Pi is stable and

reliable with minimal packet loss.

e The HMI can promptly receive the behavior status and trigger the correspond-
ing feedback. The visual and auditory prompts are triggered synchronously

without jamming or delay accumulation.

Overall, the system demonstrates good stability and coordination under var-

ious driving conditions, including normal, intense, uncomfortable, and inefficient.
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Data transmission between modules is continuous, timing is synchronized, and feed-
back triggering is timely. These features meet the basic requirements of end-to-end
closed-loop control. The next section will conduct a quantitative evaluation of the
system’s real-time performance from multiple aspects, including key indicators such
as communication delay, inference delay, and feedback response, based on this inte-

gration result.

5.2 System Real-Time Performance Eval-

uation

5.2.1 Evaluation metrics and methodology

In order to verify whether the system has stable and efficient response capabil-
ities in actual operation, this subsection evaluates the performance of Model 3 from

the following aspects:

* Real-time performance: whether the system can complete recognition and

trigger feedback in time after the driving behavior occurs.

e Processing stability: whether the recognition model outputs classification

results at a stable frequency.

o« Communication reliability: whether the data transmission between mod-
ules is continuous and stable, and whether there is packet loss or delay muta-

tion.

« Feedback integrity and synchronization: whether the HMI can accu-
rately and timely output visual or sound prompts after receiving the recogni-

tion results, and whether different feedback methods are synchronized.

Around the above goals, the system designs three types of evaluation indica-
tors: response delay, communication and feedback stability, and behavior recogni-
tion coverage. Combined with system log records and video recording analysis, the

verification method of each indicator is explained as follows.

(1) Response Delay Metrics
This part focuses on the time cost of each stage from the occurrence of behavior

to the feedback output of the system, including the following three categories:
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Model output frequency: In theory, the driving behavior recognition model
outputs a classification result every 0.3 seconds. The model output frequency
is indirectly calculated by recording the data reception time interval on the
Raspberry Pi side, which is used to determine whether the system is running
stably.

Interface processing time: After each behavior result is received by the
HMI, the graphical interface needs to be updated, and the sound is played.
The system records the total processing time from the receipt of data to the
completion of rendering of all feedback elements, as well as the processing time
of each submodule. This can reflect the response speed of the system at the

human-machine feedback end.

Overall response time estimation: Due to the inconsistency of the system
time of each device, it is impossible to directly measure the actual delay from
recognition output to feedback presentation. Therefore, the test uses video
recording to record driving operations and interface feedback, and estimates
the time difference from the occurrence of driving behavior to visual/auditory
feedback through frame-to-frame comparison, thereby indirectly evaluating

the overall response capability of the system.

Communication and Feedback Reliability Metrics
The following indicators are chosen to verify the stability and reliability of the

system during operation:

UDP receiving frequency fluctuation: The data receiving frequency is
continuously recorded to observe whether there are similar unstable situations,
such as reception interruption, sudden increase in delay. If so, it may indicate

packet loss or unstable communication.

Feedback consistency and integrity: By comparing classification results
with actual feedback behavior, verify that each behavior recognition triggers
the corresponding visual or auditory prompt. If recognition is successful, but
no feedback is provided, the feedback is considered invalid. The log records the
current recognition mode number, and the video helps observe if the feedback

is timely and accurate.

Behavior Recognition Coverage Metrics

This indicator mainly evaluates whether the system can identify all driving
behavior types in the design target during actual driving. The model defines a
variety of driving modes, including normal, intense, uncomfortable, inefficient,

etc. The following should be observed during the test:

o Whether each type of behavior is triggered at least once.
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o Whether each type of mode can be accurately fed back after being iden-
tified.

o Whether the system can continue to respond to frequent or repeated

behaviors without omissions or freezes.

In general, each indicator is based on the log records in the system and cross-
validated with external video observation. This method can quantitatively evaluate
the processing time of each stage, and can also evaluate the overall response effect
of the system through intuitive feedback, ensuring the integrity and persuasiveness

of the verification results.

5.2.2 Experimental results and analysis

In order to verify the performance of the system in actual operation, free driving
was selected as the test scenario. The behavior recognition frequency and interface
processing time were recorded through the Raspberry Pi log. At the same time, the
driving operation and human-machine interface response were recorded by video to
assist in analyzing the overall response delay of the system from the occurrence of

behavior to the presentation of feedback.

(1) Model output and data receiving frequency
The system identification model is designed to output the classification result
once every 0.3 seconds, and the theoretical receiving frequency should be 3.3
Hz. The time interval of each data reception is recorded by the Raspberry
Pi log, and the frequency is calculated to obtain the actual output of the
system during free driving. As shown in the Figure 5.2, the data receiving
frequency is generally stable, with an average of 3.333 Hz, a maximum of
3.410 Hz, and a minimum of 3.260 Hz. There is no obvious interruption or
abnormal fluctuation, indicating that the model output is stable and the UDP

communication link is reliable.

(2) Interface feedback processing time
Whenever the recognition result reaches the Raspberry Pi, the system needs to
complete feedback operations such as interface information update and sound
effect playback. The log records the total processing time from data reception
to feedback completion. As shown in the Figure 5.3, the average Ul processing
time is 1.21 ms, the minimum is 0.58 ms, and the maximum is 6.65 ms, which is

a one-time burst peak. Except for a few abnormal frames, the processing time
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Figure 5.2: Receiving frequency during free driving.

of most frames remains stable with a small fluctuation range, indicating that
the HMI module responds quickly from the behavior recognition result to the

feedback trigger, without obvious delay accumulation or processing jamming.

Feedback consistency and completeness

By comparing the driving mode change records in the log and the interface
feedback in the video, it was found that the system accurately triggered the
visual pop-up window and sound prompt each time it recognized the mode
change, and there was no situation of no response or wrong feedback after
recognition. In most cases, the visual and auditory feedback can be presented
synchronously without obvious lag or delay accumulation, indicating that the

system feedback link is complete and reliable.

Behavior recognition coverage

The system defines four types of driving behavior patterns: normal, aggressive,
uncomfortable, and inefficient. During free driving, the four types of behaviors
were naturally triggered at least once and recorded in the system log. Asshown
in the Figure 5.4, the number of recognitions corresponding to each type of
behavior is 54, 31, 18, 30, and all successfully triggered feedback, indicating
that the model has good behavior coverage and the system can stably identify
different types of driving behaviors.

Overall response capability estimation

Since the system time of each device in the system is not synchronized, it is
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Figure 5.3: Total Ul processing time per frame.
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Figure 5.4: Behavior recognition coverage.
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impossible to calculate the exact delay from recognition to feedback directly.
Therefore, the end-to-end response time of the system is roughly estimated
by comparing the time when the driving behavior occurs and the time when
the feedback is triggered through video playback. The test sample indicates
that the average response time from the occurrence of the behavior to the
interface prompt is approximately 160 ms, which falls within the near real-time
range and meets the feedback requirements in the human-machine interaction

scenario.

In summary, the system exhibits good model stability, communication reliabil-
ity, and feedback consistency in a free driving environment, can achieve continuous
monitoring and timely feedback of driving behavior, and meets the basic perfor-

mance requirements of an interactive closed-loop control system.

5.3 HMI Feedback Effectiveness Experi-

ment

This subsection aims to verify whether the HMI system can actually guide the
driver’s behavior after the behavior recognition is completed and the prompt is trig-
gered, so as to promote driving operation to be stable or energy-saving. Different
from the system response and stability verification in the previous part, this ex-
periment focuses more on observing whether the driver responds positively to the

feedback and performing trend analysis through quantitative indicators.

5.3.1 Experimental design and triggering events

The experiment was designed with two control structures:

o Experimental group (HMI ON): After the system identified abnormal
behavior, it immediately gave prompts and feedback through the interface

and sound.
« Baseline (HMI OFF): The system also ran the behavior recognition model,

but did not provide any feedback to the driver.

To ensure the fairness of the comparison and the repeatability of the experiment,

the experimental scene, route, and traffic environment were kept consistent, and
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both groups performed driving tasks on the same road network. By setting trigger

events at key locations, three types of driving behaviors were naturally triggered:

o Aggressive driving (mode 1): Inducing high acceleration behavior by en-

couraging rapid overtaking and lane changes;

o Inefficient driving (mode 2): Inducing deep accelerator pedaling on smooth

roads, causing motor efficiency to decrease.

+ Uncomfortable driving (mode 3): Inducing frequent jerks by setting the

front vehicle to accelerate and decelerate intermittently;

5.3.2 Data collection and analysis

The system records the driving mode number in each recognition result through
logs and aligns the vehicle dynamic data with the timestamp. After each target
behavior is recognized, a fixed-length analysis window is selected to count the key

driving indicators after the behavior occurs.

The analysis window and Key Performance Indicator (KPI) settings for each

behavior type are as follows (Table 5.1):

Driving behavior Window KPI

Aggressive (mode 1) 3s Average longitudinal acceleration
Low-efficiency (mode 2) 4s Average motor efficiency

Discomfort (mode 2) 2s Jerk exceedance count

Table 5.1: Analysis window and evaluation index for abnormal driving behavior.

5.3.3 Results and conclusion

As can be seen from Table 5.2, among the three types of driving behaviors, the
HMI prompt group showed more positive changes in key driving indicators compared

with the no prompt group.

In the scenario of intense driving (mode 1), after the driver received the HMI
prompt, the average longitudinal acceleration dropped from +0.62 m/s? to —0.18
m/s?, indicating that after identifying the intense driving, the driver tended to

actively slow down and adjust the driving operation in time.
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In the case of uncomfortable driving (mode 3), the number of jerk value ex-
ceeding the threshold dropped from 7 times in the HMI OFF group to 2 times in
the baseline group, the driving process was smoother, the sudden changes of vehicle

acceleration and deceleration were reduced, and the ride comfort was improved.

For inefficient driving (mode 2), HMI prompts also showed a guiding role. The
average motor efficiency increased from 89.6% to 95.3%, indicating that the driver
may actively reduce unnecessary throttle operations after the prompt, thereby im-

proving energy efficiency.

Driving behaviors group KPI

Aggressive(mode 1) HMI OFF | 40.62 m/s*(Average longitudinal acceleration)
HMI ON | —0.18 m/s?*(Average longitudinal acceleration)

Discomfort (mode 3) | HMI OFF 7 times (Jerk exceedance count)
HMI ON 2 times (Jerk exceedance count)

Low-efficiency (mode 2) | HMI OFF 89.6% (Average motor efficiency)
HMI ON 95.3%(Average motor efficiency)

Table 5.2: The KPI results under different feedback conditions (ON/OFF HMI).

Overall, this experiment preliminarily verified the positive guiding effect of the
HMI prompt system based on behavior recognition on driving behavior. Without
interfering with driving control, the system can guide the driver to adjust the oper-
ation in time when aggressive, uncomfortable, or inefficient driving occurs through
simple and intuitive prompt information. Although the prompt itself is not manda-
tory, the experimental results show that drivers generally respond according to the
prompt and show smoother or more energy-efficient driving behavior. This provides
support for the subsequent promotion and application of the system in actual traffic

environments.
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Chapter 6

Conclusion

This thesis proposes a real-time driver behavior monitoring and feedback frame-
work to improve driving safety, comfort, and energy efficiency, especially in the field
of electric vehicles. The system combines data-driven behavior recognition with a
responsive human-machine interface (HMI) to form a closed-loop control solution

that can support drivers in real time.

The main contributions include the development of a high-performance LSTM-
based classification model that can accurately identify four driving behaviors: nor-
mal, aggressive, uncomfortable, and inefficient, with an F1 score of more than 0.95.
The iterative clustering and labeling method based on [-DBSCAN significantly re-
duces the reliance on manual annotations, enabling effective behavior recognition
from unlabeled simulated data. The behavior classification results are effectively
integrated into an intuitive HMI, which uses multimodal feedback (visual and audi-
tory) to timely alert the driver, while introducing a unified "sensitivity threshold”
mechanism to support users to adjust the sensitivity of system feedback according

to their personal habits.

The framework is deployed in a hardware-in-the-loop test architecture consist-
ing of a driving simulator, Speedgoat real-time platform, and Raspberry Pi. Low-
latency communication between modules is achieved through the UDP protocol,
ensuring the real-time and stability of the system’s closed-loop response. In addi-
tion, free driving tests and simple control experiments with and without feedback
were used to further verify the basic real-time closed-loop operation capability of
the framework and the positive guidance role of the designed HMI mechanism under

different driving behaviors.

Subsequent work may consider applying the system to actual road tests to

further verify its performance and adaptability in real scenarios.
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