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Abstract 

In this thesis, a telemetry-informed race simulator for Formula One is developed to investigate the 

impact of strategic decisions and performance variability across full race distances. Lap time evolution 

is modelled as the sum of deterministic and stochastic components, calibrated using historical data and 

telemetry-derived parameters for fuel consumption, tire wear, driver lap time consistency and pit stop 

losses. Monte Carlo methods are employed to simulate multiple race iterations, reflecting the 

randomness inherent in motorsport events such as FCY phase, mechanical failures and overtaking 

maneuvers. This probabilistic modelling enables the study of not just expected results but also the 

confidence intervals and failure risks associated with different strategies. Through this approach, the 

simulator provides a framework for evaluating the robustness of race strategies and the performance 

envelope of each driver under varying conditions. The system lays the groundwork for data-driven 

predictive tools capable of supporting engineering and strategic decision-making in high variability 

racing environments. 
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Introduction 

Over the past two decades, Formula 1 has undergone a substantial evolution, characterized by an 

increasing dependence on data acquisition, simulation and telemetry, largely due to a response to the 

sport’s tightening regulatory framework. In an effort to reduce costs and promote fairness, the Fédération 

Internationale de l’Automobile (FIA) has progressively curtailed on-track development opportunities. 

A pivotal moment came in 2009, when in-season testing was banned entirely, forcing teams to shift 

much of their car development and performance validation into the virtual testing platforms. In 2018 

teams were restricted to just three power units per season, despite an expanding calendar of over 20 

races, placing even greater emphasis on predictive modelling and reliability analysis. The 2022 season 

marked a further turning point, since a substantial technical overhaul reintroduced ground effect 

aerodynamics, modified wheel dimensions and limited aerodynamic upgrades during the year [1]. These 

changes, designed to enhance competition and reduce development costs, have further elevated the role 

of simulation tools.  

These regulatory changes have accelerated the shift towards data-driven development and simulation-

based strategy planning. Modern Formula 1 teams now rely heavily on telemetry systems and 

computational modelling, both in the design phase and during race operations. Cars are equipped with 

hundreds of sensors that provide live data on vehicle dynamics, tire and brake behavior, power unit 

usage and energy recovery. This telemetry allows engineers to monitor performance in real time, 

optimize vehicle setup and respond dynamically to evolving race conditions. Beyond real-time analysis, 

data plays a predictive role: modelling tire degradation, estimating race pace evolution or forecasting 

the impact of Virtual Safety Car (VSC) and Safety Car (SC) deployments has become essential to 

success [2].  

Within this data-centric framework, two major categories of simulators are employed: Lap Time 

Simulators (LTS) and Race Simulators. Lap Time Simulators replicate an individual lap under ideal 

conditions and are based on physics-based steady-state or quasi steady-state models. These are useful 

for evaluating setup changes and baseline vehicle performance, but do not incorporate traffic, 

degradation or multi-driver dynamics [3]. Race Simulators, by contrast, aim to replicate an entire Grand 

Prix through lap-wise simulations for each driver. These simulators account for tire wear, fuel mass 

reduction, pit stop losses, grid start randomness, overtaking interactions and the influence of Full Course 

Yellow (FCY) phases, such as VSC or SC. By employing Monte Carlo methods, they simulate many 

randomized race iterations, thereby allowing engineers to assess the robustness of a given strategy 

against a wide range of plausible scenarios [4, 5]. Several important research efforts have laid the 

foundation for modern race simulation. From early discrete-event models of pit stops and failures to 

more recent probabilistic simulations including SC dynamics and overtaking maneuvers, the field has 

progressively integrated both realism and stochastic modeling. These contributions will be analyzed in 

detail. 

Building upon these developments, this thesis aims to contribute a further step towards comprehensive 

race simulation and to develop a modular and realistic Race Simulator tailored to Formula 1 applications. 

The simulator integrates telemetry-derived parameters and stochastic events driven by accordingly 

modelled logic. Each simulation is run on a per-lap, per-driver basis for a selected Grand Prix. The 

model incorporates random components where relevant, using statistical distributions fitted from real 

telemetry and timing data. The implementation is developed in MATLAB environment, while data 

processing and collection are performed using the FastF1 Python library. 

The simulator is validated by applying it to real races from the 2023 season, while gathered data refers 

to previous seasons. Results, such as total race times, positional evolution, overtaking events and pit 

stop timings are compared against official race outcomes. Through this, the simulator’s predictive 

accuracy, robustness and sensitivity to strategic parameters are evaluated. The final aim is to produce a 
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race modelling environment that is both realistic and flexible, capable of evaluating the effectiveness 

and repeatability of different strategic decisions under uncertainty.  
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1 Formula One Regulatory Framework 

Formula One is the pinnacle of single-seater motorsport, founded in 1950 with the first official World 

Championship race held at Silverstone. Since then, the sport has undergone continuous evolution, 

marked by major regulatory and technical shifts. The most recent overhaul came in 2022, 

reintroducing ground effect and implementing cost caps and development restrictions to close the 

performance gap between teams. Today, Formula One is a global championship contested across more 

than 20 Grand Prix annually, featuring 10 teams and 20 drivers competing for both drivers’ and 

constructors' titles [6]. 

A standard Formula One race weekend spans three consecutive days (Friday, Saturday and Sunday) 

and it is divided into several key sessions: 

• Friday: Two free practice sessions (FP1 and FP2), each 60 minutes long, are held. These are 

primarily used for setup testing, data gathering and tire evaluation, 

• Saturday: A final practice session (FP3) precedes a three-phase qualifying session (Q1, Q2 

and Q3), which determines the starting grid based on lap times. The top 10 drivers in Q3 

compete for pole position, 

• Sunday: The Grand Prix itself is run over a distance of approximately 305 kilometers or two 

hours, whichever comes first. 

In recent years, the format has been supplemented by Sprint weekends (which will not be treated in 

this thesis). On these occasions, Sprint qualifying is held on Friday ahead of a single FP session, 

followed by a short Sprint race on Saturday. Then the main qualifying session, which sets the grid for 

the main race on Sunday, is held ahead of the Sprint race [6].  

Fuel in Formula One is subjected to stringent regulatory controls. Cars are powered by high-octane, 

unleaded petrol that must comply with a specific chemical composition defined by the FIA. Since 

2022, the fuel must include at least 10% of ethanol to support environmental targets. Refueling during 

races has been banned since 2010, which means each car must start the race with its full fuel load. The 

maximum allowable fuel per race is 110 kg. Teams must also provide a 1 kg sample after the race for 

compliance checks, making fuel efficiency modelling a critical component for race preparation and 

simulation [7]. 

Pirelli is the exclusive tire supplier for Formula One. For each Grand Prix, three dry-weather 

compounds are selected from a broader range (nomenclature ranges from C0 to C5, from the hardest 

to the softest) and are designed as SOFT, MEDIUM and HARD for that weekend. 

Each driver is allocated [1]: 

• 13 sets of slick tires, 

• 4 sets of intermediate tires: 

o Used on a wet track with no standing water as well as drying surface, 

o This tire can evacuate 30 liters of water per second per tire at 300 kph [8], 

• 3 sets of full wet tires: 

o Used for heavy rain conditions, 

o This tire can evacuate 85 liters of water per second per tire at 300 kph [8]. 

Tire rules are governed by both sporting and strategic imperatives. In a dry race, drivers are required 

to use at least two different dry compounds, mandating at least one pit stop. During qualifying, 

specific compounds may be restricted to certain sessions and one set of soft tires is often reserved for 

use in Q3. It is not mandatory anymore to start the race with the same tire that was used during one of 
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the qualifying sessions. Tire degradation and compound performance differentials are among the most 

influential factors in determining race pace and strategy. 

From the start of qualifying until the race, cars are placed under parc fermé conditions, which limit 

changes to the vehicle’s setup. These rules are designed to ensure that cars compete in the same 

specification as they qualified. Teams are only permitted to make minor adjustments, such as front 

wing angle tweaks or brake component replacements. Key setup parameters (suspension geometry, 

ride height and gear ratios), must remain fixed. This regulation increases the importance of setup 

decisions made during the final practice session (FP3), as those configurations will carry over to both 

qualifying and race [9]. 

The outcome of an F1 race is influenced by a complex interplay of deterministic planning and 

stochastic elements. These include: 

• Tire degradation and compound management, 

• SC and VSC deployments, 

• Overtaking maneuvers, 

• Weather variations, 

• Fuel and energy management. 

Given the limited ability to adapt during a race and the cost of sub-optimal decisions, predictive 

modelling has become a cornerstone of competitive performance. Monte Carlo simulations, game 

theory [10] and machine learning can be used by the teams to forecast race evolution and evaluate 

strategic robustness. Race Simulator models are built upon telemetry, historical performance data and 

scenario analysis to determine the optimal pit window, overtaking opportunities and SC reactions.   
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2 State of the Art 

In modern F1, the ability to simulate race weekend dynamics with accuracy is a fundamental tool for 

both technical and strategic success. Simulation environments allow teams to explore the behavior of 

the car under different configurations, test setup changes without physical limitations and evaluate 

alternative race strategies in advance. Moreover, predictive simulations enable the anticipation of 

unpredictable events, such as tire degradation, pit stop timing under FCY condition or evolving 

weather, supporting robust, data-driven decision-making. 

The literature generally distinguishes between two principal classes of simulation tools: Lap Time 

Simulator and Race Simulator. These approaches are conceptually distinct but complementary in 

application. 

Figure 2.1 clearly highlights this conceptual separation between the two simulation types, 

summarizing their modelling focus, scale and intended use case. 

 

Figure 2.1: Comparison between lap time simulation and race simulation from Heilmeier’s work [3] 

Lap time simulations focus on the microscopic modelling of a single car over a single lap. These 

models are typically based on physically motivated formulations (e.g. multi-body dynamics, engine 

maps) and are used to compute the best possible lap time given a specific vehicle configuration. They 

neglect long-term effects and interactions with other vehicles. However, as Timings [11] notes, 

traditional lap time simulations assume a perfect driver and neglect real-world disturbances such as 

sensorimotor noise and cognitive limitations. As a result, vehicle behaviors predicted under these 

assumptions may be theoretically optimal but practically unmanageable. To address this, Timings 

introduces robustness and drivability metrics aimed at evaluating vehicle performance within a more 

realistic operating envelope that accounts for driver variability and external perturbations. 

Race simulations take a macroscopic view, modelling the full race distance for all participating cars 

and incorporating long-term dynamics, such as tire degradation, fuel usage, pit stop strategies and 

probabilistic race events. These models usually heavily rely on empirical relation to remain 

computationally efficient, enabling scenario testing across thousands of conditions [3]. Vehicle 

dynamics is generally not taken into consideration, however they capture strategic interactions and 

variability essential to race planning. 

Despite their different orientations, these simulators are often used in tandem. Lap time models 

typically generate baseline performance parameters that are fed directly into race simulation 

environments. Together, they create a hierarchical simulation framework that allows teams to analyze 

vehicle performance and strategic decision-making in a coherent and integrated manner. 
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The following sections will explore briefly both simulators, analyzing the main characteristics of each 

one of them.  
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2.1 Lap Time Simulator (LTS) 
 

Lap Time Simulators (LTS) are essential tools in motorsport for estimating the minimum lap time 

achievable by a vehicle under a specific setup. These simulators allow engineers to predict 

performance outcomes and guide setup decisions long before the car hits the track. Their utility spans 

both the design phase, where various configurations can be tested virtually, and the development 

phase, where correlation with on-track telemetry can be assessed [12]. 

Based on Reinero’s findings [12], LTS models are typically classified by their level of complexity into 

three main categories: 

• Steady-state simulations, 

• Quasi steady-state simulations, 

• Transient simulations. 

 

2.1.1 Steady-state Simulations 

 

Steady-state LTSs are the most basic form, in which the track is divided into straights and corners and 

each section is analyzed assuming constant acceleration and isolated behavior (e.g. no coupling of 

longitudinal and lateral forces). Corners are modelled as arcs and the maximum allowable cornering 

speed, as shown in Equation 2.1 [12], is derived from the local radius of curvature and the vehicle’s 

lateral acceleration limit.  

𝑉(𝑖) = √𝑎𝑦,𝑚𝑎𝑥 ⋅ 𝑅(𝑖) 

Equation 2.1 

This method is computationally efficient but oversimplified and thus not recommended for high-

performance applications where aerodynamic and grip changes are critical.  

 

2.1.2 Quasi Steady-state Simulations 

 

Quasi steady-state simulations represent a refinement over simple steady-state models by introducing 

additional realism while avoiding the computational cost of full transient vehicle dynamics. As 

described by Reinero [12], this modelling technique aims to balance simplicity and fidelity, enabling a 

more accurate reconstruction of lap time evolution while remaining suitable for implementation in 

computationally efficient lap time simulators. 

In this approach, the simulation is distance-based and operates along a predefined racing trajectory. 

The track is discretized into fine segments, typically ranging from 0.5 to 5 meters in length, each 

associated with a local curvature radius. This segmentation allows for segment-specific velocity 

calculations and enables the use of GGV diagrams, which model the feasible combinations of 

longitudinal and lateral accelerations. An example of GGV diagram for a race car can be seen in 

Figure 2.2.  
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Figure 2.2: Example of a racecar GGV [12] 

The procedure begins with the identification of corner apexes, defined as the local minima in the 

curvature profile. At these apexes, the maximum cornering speed is computed based on the lateral 

limits defined by the GGV diagram. Subsequently, an acceleration profile, computed by propagating 

forward from each apex, is constructed using the increasing radius along the corner exit and the 

available longitudinal acceleration to regain speed. Finally, a braking profile, computed in reverse 

from the next apex, is constructed by modelling the deceleration phase during corner entry under the 

same combined acceleration envelope. 

These three profiles (cornering, acceleration and braking) are merged by selecting the minimum 

feasible velocity at each track segment, as shown in Figure 2.3. This ensures the vehicle remains 

within its physical limits throughout the lap.  

 

Figure 2.3: Intersection of the three speed profiles [12] 
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The result is a full-lap simulated velocity profile, illustrated in Figure 2.4. 

 

Figure 2.4: Simulated velocity profile [12] 

As Reinero [12] notes, the level of vehicle modelling can vary depending on the intended application. 

A point-mass model is typically sufficient for use cases such as target setting or fuel and energy 

consumption estimation, while more advanced models, such as bicycle or four-wheel vehicle model, 

allow for simulation of load transfer dynamics and more accurate representation of tire behavior. 

Overall, quasi steady-state simulation achieves a valuable compromise: it improves correlation with 

real-world data without incurring the computational burden of transient modelling. Reinero [12] 

highlights this as a key advantage for motorsport contexts, where flexibility, speed and model 

transparency are prioritized over black-box commercial solutions. 

 

2.1.3 Transient Simulations  

 

Transient simulations provide the highest level of fidelity by fully resolving the time-varying 

dynamics of the vehicle. Unlike steady-state methods, they do not assume instantaneous equilibrium. 

Instead, they solve the vehicle’s motion through differential equations that account for unbalanced 

forces and moments. Full six-degree-of-freedom models, including pitch, roll and yaw, are often 

implemented, along with suspension, tire and aerodynamic subsystems modelled as functions of 

dynamic state. Driver behavior is typically incorporated using control loops for steering, throttle and 

braking inputs, aimed at following an optimal trajectory.  

While more complex, transient models enable the integration of control strategies, component 

feedback and driver in-the-loop testing. However, their computational cost and data requirements limit 

their use to specific applications where such precision is justified.  
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2.2 Race Simulator 
 

Race simulators are designed to reproduce the entire race duration by capturing long-term effects, such 

as tire degradation, pit stops, fuel mass loss and interaction between drivers. Unlike LTS, which 

operates on a single-lap, physics-heavy basis, race simulators adopt a macroscopic, empirical 

approach, enabling the evaluation of strategy choices across multiple laps and participants [3]. 

 

2.2.1 Brief Simulator Description 

 

As Figure 2.5 can highlight, race strategy aspects can be divided into three categories: 

• Pit stops: This category includes all decisions related to the timing and number of pit stops, as 

well as the tire compound choice. These factors directly influence race time due to time loss 

during pit entry, service and rejoining the track, 

• Driving strategy: It refers to how aggressively or conservatively a driver is instructed to 

manage the car during the race. This affects both energy consumption and tire wear. An 

aggressive strategy may yield faster lap times but accelerate degradation, while a conservative 

approach preserves resources for later race phases or strategic flexibility, 

• Response to race events: This includes the team’s and driver’s ability to react to unpredictable 

events, such as overtakes and FCY phases, where the latter can compress the field and alter 

the strategic landscape, opening or closing optimal pit windows and changing the value of 

track position. 

 

Figure 2.5: Aspects of race strategy [3] 

The race is discretized lap-by-lap, allowing efficient simulation while maintaining sufficient detail for 

strategic assessment. Each lap includes some core phases, as depicted in Figure 2.6: 

• Occurrence of probabilistic effects, 

• Computation of drivers’ lap times using aggregated models, 

• Position update following race dynamics, including FCY, pit stops and overtakes. 

The following main inputs are fed into the race simulator: 

• Starting compound choice, 

• Predicted pit stop strategy. 

The main output is race duration, but also other useful information can be obtained, such as position, 

gap from driver in front and strategy modification due to FCY phases. 
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Figure 2.6: Race simulation workflow [3] 

The use of simplified empirical models enables fast computation and easy integration of stochastic 

effects. Overtaking, pit strategy and driver-specific behavior can be layered through modular 

components, as demonstrated in recent works such those of Heilmeier [4], Bekker [13] and Sulsters 

[5]. 

 

2.2.2 Overview of Existing Race Simulation Approaches 

 

Race simulators found in literature differ significantly in how they model race dynamics, especially 

under uncertainty. While most share a common lap-wise simulation structure and use empirical 

models for efficiency, their treatment of stochastic and event-driven effects is not uniform. 

As evaluated by Heilmeier [4] and summarized in Table 2.1, six key race phenomena are often 

modelled with varying levels of completeness: starting performance, lap time variability, pit stop 

duration variability, accidents and failures, damaged car dynamics and FCY phases. 

Among the reviewed simulators: 

• Bekker [13] introduces a foundational time-based simulator incorporating basic modelling of 

starting variability, pit stop duration and failures, but does not address other race dynamics 

such as yellow flags and vehicle damage, 

• Phillips [14] extends Bekker’s model to a Formula One context, achieving excellent modelling 

of lap time and pit stop variability with partial implementation of failures and yellow flags, 

• Salminem [15] offers a balanced approach, modelling lap time variability in detail, partially 

modelling accidents and failures, damaged cars and yellow flag phases, but incorrectly 

simulating pit stops, 

• Sulsters [5] provides a strong coverage of lap time variability and overtaking models, but 

yellow flag phases and pit stop duration are only partially addressed. 

Heilmeier proposes a simulation framework that integrates and improves all these aspects, forming a 

more complete modelling environment. By combining empirical sub-models with Monte Carlo 

methods, his implementation handles: 

• Stochastic variability in driver performance and lap evolution, 

• Pit stop timing and duration uncertainty, 

• Failure rates and accidents scenarios, 
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• Dynamic responses to SC and VSC phases 

This level of integration allows for a more robust assessment of strategy outcomes across a broad set 

of race scenarios, representing a step forward in simulation fidelity compared to earlier models. 

Table 2.1: Overview of race phenomena modelling in literature [3] 

Modelled Effect Bekker [13] Phillips [14] Salminem [15] Sulsters [5] 

Starting performance ◔ ◑ ◑ ◔ 

Variability of lap time ○ ● ● ● 
Variability of pit stop 

duration 
◔ ● ◔ ○ 

Accidents and failures ◔ ◑ ◑ ◔ 

Damaged car ○ ○ ◑ ○ 

Full Course Yellow 

phases ○ ◑ ◑ ◔ 
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3 Methodology 

This thesis project presents the development of an updated and modular race simulation model tailored 

to the current context of F1 racing. The simulator is specifically designed to reflect the characteristics 

of the 2023 season and it aims to provide a more accurate and flexible framework for evaluating race 

strategies under contemporary conditions. 

The motivation for this update lies in the substantial regulatory changes introduced in 2022, which 

have significantly impacted vehicle behavior and strategic planning. The return of ground-effect 

aerodynamics, the switch to 18-inch wheels and the implementation of cost caps and development 

restrictions have redefined how teams approach performance optimization. These changes have altered 

how races unfold and are managed strategically, especially in terms of driver performance variability, 

pit stop timing and race-event handling.  

To support this objective, the first step in this thesis involves a comprehensive data acquisition phase. 

Data is extracted using the Python-based FastF library, which provides access to historical telemetry, 

timing data, pit stop logs, tire usage and session metadata. In addition to retrieving raw lap times, 

telemetry is used to derive compound-specific stints and pit lane travel durations. These data are pre-

processed and structured to serve as direct inputs to the simulator. 

Once the data is organized, a modular race simulator is constructed using MATLAB. The simulation 

operates on a lap-by-lap basis, with each driver’s race time accumulated incrementally. The simulator 

integrates several empirical sub-models that influence lap time evolution: tire degradation, fuel mass 

reduction, pit stop time loss and driver specific variability. All these components interact to produce a 

realistic approximation of race progression and timing. Strategic inputs such as pit stop laps and tire 

compound selection are provided manually and each lap update dynamically adjusts the race state 

based on evolving conditions. 

In order to reflect the inherent variability of real-world races, probabilistic effects are incorporated into 

the simulation. These include random pit delays, mechanical failures, inconsistent starting 

performance and the possibility of FCY intervention. Each of these components is modelled using 

empirically grounded probability distributions derived from historical event frequency or variance in 

telemetry data. This probabilistic layer enhances the model’s realism and its ability to simulate a wide 

range of plausible race outcomes. 

The developed simulator is first validated through a single-event simulation, selecting arbitrary the 

Grand Prix to simulate. The simulation output includes the total race durations, final classifications 

and a trace of in-race events such as overtakes, pit stops and FCY phases. 

Finally, to evaluate the robustness of the model, Monte Carlo method is applied to the simulator, to 

repeat it over a large number of iterations. The resulting distribution of race outcomes is then analyzed 

to assess the simulator’s stability and predictive power. These results are compared with real race data 

from the 2023 Formula One season to determine how closely the simulation output replicates the 

actual race dynamics and classifications. 

This methodology provides a foundation for developing a race strategy optimization simulator that is 

not only aligned with modern Formula One regulations and data but also robust in other possible 

motorsport scenarios. The subsequent chapters will detail the data handling procedures, modelling 

assumptions and validation outcomes that support the use of this simulation tool for performance and 

strategy evaluation.  
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4 Data Acquisition 

The development of a race simulation model relies on a robust and coherent dataset that accurately 

captures both the structural attributes of race events and the performance behavior of drivers and 

teams across a championship season. Since one of the objectives of this thesis is to construct a 

simulator reflective of the modern Formula One environment, the 2023 season has been selected as the 

reference framework. This choice ensures alignment with the current technical regulations, team 

configurations and tire allocation schemes. 

To support this endeavor, extensive data acquisition and preprocessing are required. A wide array of 

variables must be considered, ranging from circuit information, lap time distributions, tire usage and 

driver classification results. These parameters form the foundation upon which key simulation models, 

such as lap time calculation, tire degradation estimation and stochastic event handling are built. 

The primary tool used for gathering time-series, session and telemetry data is the Python-based FastF1 

library [16], which provide access to publicly available Formula One data though an interface with the 

official F1 timing service. Additional performance metrics, such as team and driver retirement rates, 

have been integrated using external sources including StatsF1.com and selected academic literature [4, 

5, 14, 17]. 

This chapter outlines the structure of the datasets collected, the rationale for their inclusion and how 

each dataset contributes to the modelling and calibration of the simulation work. 

For each Grand Prix in the 2023 season, circuit data were gathered on round number inside the season, 

circuit name, circuit classification (whether it is street or permanent), number of race laps and lap 

distance in kilometers. 

An estimate of pit lane trave time was also computed for each venue. This was done by analyzing 

telemetry data from race sessions to identify sections where the car was under pitlane speed limit 

conditions (depending on the circuit, it can be either 80 kph or 60 kph). By calculating the distance 

covered while the speed limiter was active and dividing it by the constant pit lane speed, an 

approximation of pit lane trave time was obtained. A reference to the content inside the telemetry file 

obtained using the FastF1 library can be shown in Table 4.1. 

Table 4.1: Example content inside the data file relative to circuit-specific telemetry laps 

Session Time Time Speed [kph] Distance [m] 

0 days 01:23:54.316 0 days 00:01:41.295 302 3384.901 

 

In addition to physical track characteristics, qualitative weather conditions during both qualifying and 

race sessions were recorded (categorized as dry or wet). This parameter relies his importance on the 

successive data utilization of the simulator for the training set, since one of the limitation of this kind 

of simulator is to be suitable for dry weather conditions only, struggling to model wet weather 

conditions due to high variability in track surface grip level and quantity of standing water.  

Tire allocation was also tracked for each race using the C-nomenclature (C0, C1, C2, C3, C4, C5) 

provided by the official tire supplier, Pirelli. The compounds used at each event were mapped under 

three standard categories, SOFT, MEDIUM, HARD. A reference of the content inside the circuit data 

file obtained using the FastF1 library is shown in Table 4.2. 
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Table 4.2: Example content inside the data file relative to circuit information 

Round 
Circuit 

Name 
Type Laps 

Lap 

Distance [km]  

Pit Lane 

Travel [s] 

01 
Bahrain 

Gran Prix 
Permanent 57 5.412 20.057 

 

Qualifying 

Weather 

Race 

Weather 
SOFT MEDIUM HARD 

Dry Dry C3 C2 C1 

 

To establish baseline driver performance, the fastest non-deleted lap time for each driver was extracted 

from the qualifying session of each Grand Prix. For every entry, the dataset includes the round 

number, driver name, lap time, circuit name, qualifying weather and race weather conditions. These 

lap times are later used to derive performance differentials between drivers and to support the 

initialization of base lap times within the simulator. A reference to the content inside the driver-

specific qualifying data file obtained using the FastF1 library can be shown in Table 4.3. 

Table 4.3: Example content inside the data file relative to driver-specific qualifying information 

Round Driver Lap Time 
Circuit 

Name 

Qualifying 

Weather 

Race 

Weather 

01 ALB 
0 days 

00:01:31.461 

Bahrain 

Grand Prix 
Dry Dry 

 

Historical driver performance was analyzed over the 2022 and 2023 seasons to identify patterns of 

race completion and retirement. For each driver and each event, the starting grid position, final 

classification status (finished or not), round number, circuit, year and race weather were recorder. This 

dataset enables the modelling of driver-specific retirement probabilities, including accident-driven 

DNFs, as part of the simulator’s probabilistic layer. A reference to the content inside the driver-

specific results data file obtained using the FastF1 library can be shown in Table 4.4. 

Table 4.4: Example content inside the data file relative to driver-specific race results information 

Round Driver 
Starting 

Position 
Finished 

Circuit 

Name 
Year 

Race 

Weather 

01 ALB 14 Yes 
Bahrain 

Grand Prix 
2022 Dry 

 

Race time data were collected for all drivers across the 2023 season, recorded by lap-by-lap timings. 

Two different collections were performed, one including all laps of the race (considering also eventual 

SC and VSC laps and in-laps and out-laps relative to pit stops) and the other one excluding them by 

creating a filtered dataset following the 107% rule [18]. According to this regulation, only laps withing 

the 107% of the session’s best lap time are retained for analysis, unless explicitly excluded by race 

control. This filtering allows for a cleaner estimation of actual race pace by reducing the influence of 

abnormal laps. A reference of the content inside the circuit-specific and driver-specific clean laps data 

file obtained using the FastF1 library can be shown in Table 4.5. 
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Table 4.5: Example content inside the data file relative to circuit-specific and driver-specific clean laps information 

Driver Lap Time  Lap Number 

ALB 0 days 00:01:40.430 2 

 

Tire usage data were compiled for each driver across the 2023 calendar, separated by compound type. 

For each tire compound (SOFT, MEDIUM, HARD) the collected data include driver name, lap time, 

stint number, compound name and the lap number relative to when the compound was first mounted. 

These data were subsequently reclassified inside MATLAB environment to align with the 

standardized C-nomenclature, based on compound allocations defined per circuit. It is important to 

note that the initial wear state of the tires at the time of fitting is not known and, due to the absence of 

such information, all stints are assumed to begin with new tires. While this simplification may 

introduce minor inaccuracies, it is a necessary assumption given current data limitations. A reference 

of the content inside the compound-specific, circuit-specific and driver-specific stint lap time data file 

obtained using the FastF1 library can be shown in Table 4.6. 

Table 4.6: Example content inside the data file relative to compound-specific, circuit-specific and driver specific stint lap 

times information 

Driver Lap Time Stint Compound Lap Number 

ALB 0 days 00:01:37.503 3 HARD 28 

 

Finally, supplementary failure and retirement data are retrieved. Two categories are used: 

• Driver-specific accident data from the StatsF1.com website, including the number of Grand 

Prix starts, retirements and relative retirement percentage, 

• Team-level failure data, used to model mechanical breakdowns and reliability, which are 

actually derived from statistics referenced in Heilmeier’s work [4]. 

With the data infrastructure now established, the next step involves the construction of the simulator 

itself. The following chapter will present the simulation architecture, explain how the collected data 

are integrated into the modelling logic and describe the key components that govern driver behavior, 

race timing and strategic dynamics within the simulation environment.  
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5 Simulator Structure and Modelling 

After gathering the necessary data and information to prepare the simulator building, the actual 

structure of the simulator itself can be modelled. This thesis presents the development of a race 

simulator tailored to predict driver-specific outcomes under well-defined GP conditions and, although 

the simulator is developed for application within Formula One, the modelling principles adopted here 

are broadly extensible to any closed-circuit, multi-participant motorsport discipline. What has to be 

accounted for is the correct setup data to be retrieved in order to correctly perform the simulation and 

model the needed parameters. 

The goal of the simulator is to forecast race results prior to the event by integrating strategic, empirical 

and probabilistic modelling layers. The outputs of each simulation include: 

• Final classification and position changes across the race, 

• Total race time for each driver, 

• Number of successful overtaking maneuvers, 

• Strategy executed by each driver in terms of pit stops and tire usage. 

To achieve this, the simulator models each driver’s race performance as the cumulative sum of lap-by-

lap results, integrating multiple influences that contribute to lap time variability. These influences 

include physical parameters (such as fuel mass or tire age), stochastic elements (such as DNFs and 

FCY phases) and strategic inputs (such as pit stop timings). The simulator is structured to follow a lap-

based discretization, which simplifies modelling while retaining sufficient resolution for strategic 

analysis. 

The used approach follows the architecture proposed by Bekker and Lotz [13], who modelled Formula 

One races as discrete-event systems by summing timed events across race segments. However, while 

their model used pre-2010 regulations, the simulator here developed builds upon their structure using 

updated parameters and race logic consistent with the 2023 season. Similarly, the framework 

incorporates methodological insights from Heilmeier’s Monte Carlo-based design, which emphasizes 

robustness over determinism by including key probabilistic effects such as lap time variability, DNFs 

and FCY conditions [4]. Sulsters’ implementation also informs this work by highlighting practical 

challenges in empirical modelling, such as starting grid mixing, overtaking and pit stop simulation. 

The simulator operates on several assumptions [5]: 

• Each driver begins with a predefined strategy regarding tire compounds and pit stop laps, 

• Cars do not experience the slipstream effect, as it is not possible to model this phenomenon as 

input parameter of this simulation model due to the lack of available data, 

• Fuel consumption of each car remains constant for the duration of the race, 

• Driver performance is highly affected by the qualifying time, 

• Simulation model can only acquire data from races in dry weather conditions and it does not 

change for the entire duration of the race, 

• Each driver can overtake only one car per lap, except for the first lap (affected by mixture of 

cars at the end of the first lap due to the start of the race) and for the pit stop laps (in which 

drivers can lose and gain different positions due to the long wait at the pits), 

The structure of the lap time calculation follows the decomposition proposed by Bekker [13] and 

adopted in subsequent studies, such as Sulsters’ one [5]. Each lap time is expressed as the sum of 

several contributing terms: 
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𝑡𝑙𝑎𝑝(𝑙) = 𝑡𝑏𝑎𝑠𝑒 + 𝑡𝑓𝑢𝑒𝑙(𝑙) + 𝑡𝑡𝑖𝑟𝑒(𝑎𝑡𝑖𝑟𝑒 , 𝑐𝑡𝑖𝑟𝑒) + 𝑡𝑐𝑎𝑟 + 𝑡𝑑𝑟𝑖𝑣𝑒𝑟 + 𝑡𝑔𝑟𝑖𝑑(𝑙, 𝑝𝑔) + 𝑡𝑝𝑖𝑡,𝑖𝑛/𝑜𝑢𝑡(𝑙) 

Equation 5.1 

Where: 

• 𝑡𝑏𝑎𝑠𝑒 is the base lap time, representing the minimum achievable time for the driver under ideal 

conditions: fresh tires, low fuel and no external disturbances. This value is driver-specific and 

circuit-specific and is typically extracted using qualifying data, 

• 𝑡𝑓𝑢𝑒𝑙(𝑙) captures the effect of fuel mass reduction. As fuel burns off during the race, the car 

becomes lighter, typically resulting in a reducing lap time loss over the course of the race 

duration. This term is modelled as a monotonic function of lap number 𝑙, decreasing in 

magnitude as the race progresses, 

• 𝑡𝑡𝑖𝑟𝑒(𝑎𝑡𝑖𝑟𝑒 , 𝑐𝑡𝑖𝑟𝑒) accounts for the performance degradation due to tire wear. It depends on the 

compound age 𝑎𝑡𝑖𝑟𝑒 and type 𝑐𝑡𝑖𝑟𝑒, reflecting its stiffness and degradation profile. The 

function to obtain it is calibrated using empirical stint data from race telemetry, 

• 𝑡𝑐𝑎𝑟 and 𝑡𝑑𝑟𝑖𝑣𝑒𝑟 reflect the vehicle-specific performance deltas and the driver’s intrinsic 

variability and consistency, accounting for their tendency to oscillate around the expected 

pace. Drivers with higher variability or lower skill may accumulate lap time losses even under 

optimal conditions. This component may be modelled deterministically or stochastically, 

based on observed lap time distributions, 

• 𝑡𝑔𝑟𝑖𝑑(𝑙, 𝑝𝑔) describes the impact of starting position. During the first lap, the simulator 

accounts for the distance between the driver’s grid position and the start/finish line through a 

deterministic offset. It also considers the phenomenon of start phase mixing, which captures 

the random gain or loss of positions caused by interactions among cars at the race start. This 

effect is represented probabilistically, using statistical distributions derived for historical data 

on race starts [5], 

• 𝑡𝑝𝑖𝑡,𝑖𝑛/𝑜𝑢𝑡(𝑙) represents time losses associated with in-lap and out-lap phases during pit stops. 

It includes the time required to enter the pit lane, perform the pit stop (including potential 

random delay due to pit crew efficiency) and rejoin the track. These time deltas are applied 

only to laps affected by pit activity and change based on the pit lane length. 

In addition to these structured parameters, several probabilistic race dynamics are incorporated to 

improve realism: 

• FCY events (SC or VSC) are simulated based on probability distributions on occurrence and 

duration of each phase and lead to a temporary and global increase in driver-specific lap time 

computation, 

• Accidents and mechanical failures are modelled using historical DNF rates at both driver and 

team levels. When triggered, they cause the driver’s simulation to terminate at the respective 

retirement lap, 

• Overtaking logic is handled outside the lap time equation but affects driver positions between 

laps. Circuit specific thresholds and probabilities are used to evaluate whether an overtake 

attempt is made and whether it succeeds. 

Equation 5.1 defines the core of the race simulator. Its modularity allows each term to be 

independently calibrated and updated, ensuring the flexibility to adapt to different datasets, seasons or 

categories. The next sections will detail each of these modelling components.  
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5.1 Base Lap Time Model 
 

The base lap time serves as the core reference for modelling race lap times during the race event. It 

represents the theoretical lap time a driver could achieve under ideal race conditions: clean air, no 

degradation, minimal fuel load and no interactions or disturbances. This value provides the foundation 

of all other time-related modifications, such as tire degradation, pit stop penalties or fuel burn benefits. 

As proposed by Bekker [13] and further formalized by Heilmeier [3], the base lap time is commonly 

derived from the qualifying session, where conditions are most controlled and performance is 

maximized. During qualifying, drivers run on low fuel, fresh tires and are fully committed to 

extracting peak performance, making qualifying laps a strong proxy for a car’s intrinsic speed 

potential. However, race laps are inherently slower due to factors such as fuel management, engine 

preservation, race traffic and strategic constraints. Therefore, a correction term must be applied to 

bridge the gap between qualifying and race conditions. 

In this thesis, the formulation presented in Equation 5.2 follows the original approach introduced by 

Heilmeier [3], which explicitly model the time gap between race pace and qualifying pace: 

𝑡𝑏𝑎𝑠𝑒 = 𝑡𝑞𝑢𝑎𝑙𝑖𝑓𝑦𝑖𝑛𝑔 + 𝑡𝑔𝑎𝑝,𝑟𝑎𝑐𝑒𝑝𝑎𝑐𝑒 

Equation 5.2 

Where: 

• 𝑡𝑞𝑢𝑎𝑙𝑖𝑓𝑦𝑖𝑛𝑔 is the fastest recorded qualifying lap for a given driver and circuit during the 2023 

season. 

• 𝑡𝑔𝑎𝑝,𝑟𝑎𝑐𝑒𝑝𝑎𝑐𝑒 is a deterministic correction term that accounts for the average time loss from 

qualifying conditions to actual performance. 

To quantify this correction term, a statistical analysis was performed comparing each driver’s 

qualifying lap with their fastest lap during the final phase of the race, when the car carries its lowest 

fuel load, resulting in reduced weight and therefore faster lap times. In this phase, drivers who have 

established a comfortable gap to the car behind may elect to make an additional pit stop to fit a fresh 

set of softer compound tires. This strategy aims to maximize grip and exploit the full performance 

potential of the tires over a single flying lap. The motivation for this tactic is the additional 

championship point awarded for achieving the fastest lap during the race. Consequently, teams and 

drivers often weigh the strategic advantage of securing this point against the minimal time loss from 

an extra pit stop, particularly if their track position is secure. Such late-race attempts at the fastest lap 

combine the advantages of lower fuel mass and optimal tire performance to achieve the quickest 

possible time. 

The statistical analysis approach avoids the variability of mid-race conditions, such as traffic or race 

management strategies and provides a cleaner estimation of race pace potential. The lap time gaps 

(defined as the difference between the fastest race lap times and the qualifying lap regarding the same 

driver) were collected across a wide range of drivers and races, then aggregated into a distribution for 

analysis. 

Figure 5.1 presents the resulting distribution of time gaps between qualifying laps and fastest race 

laps. The histogram displays the normalized frequency of these gaps across all sampled events. A 

smooth red line denotes the fitted probability density curve, while the vertical blue dashed line 

highlights the mean value, which in this case is approximately equal to 𝑡𝑔𝑎𝑝̅̅ ̅̅ ̅̅ = 3.413 𝑠. This indicates 

that, on average, the fastest lap a driver achieves during the race is roughly 3.4 seconds slower than 

their qualifying best. This delta primarily captures differences in car mode and engine settings 
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between qualifying and race sessions, such as reduced engine mapping, conservative driving programs 

and less aggressive deployment of energy recovery systems, implemented to preserve reliability over 

race distance. 

 

Figure 5.1: Distribution of time gaps between qualifying and fastest race laps. The mean value (dashed blue line) is used as a 

deterministic race pace correction 

The choice to use the mean value from this distribution is based on its ability to represent the expected 

value across varying circuits and driver styles. While using the median or a percentile could limit the 

influence of outliers, the shape of the distribution in Figure 5.1 is approximately symmetric and 

centered, justifying the use of the arithmetic mean as a reliable and interpretable statistic for this 

purpose. 

Thus, for each driver and circuit combination, Equation 5.3 allows to express the final base lap time, 

computed as: 

𝑡𝑏𝑎𝑠𝑒 = 𝑡𝑞𝑢𝑎𝑙𝑖𝑓𝑦𝑖𝑛𝑔 + 𝑡𝑔𝑎𝑝 ≈  𝑡𝑞𝑢𝑎𝑙𝑖𝑓𝑦𝑖𝑛𝑔 + 3.413 𝑠 

Equation 5.3 

This formulation ensures a consistent and realistic foundation for modelling race performance while 

preserving driver-specific and circuit-specific variation.  
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5.2 Fuel Consumption Model 
 

An essential contributor to lap time variation over the course of a race is the evolving fuel mass carried 

by the car. At the start of a Grand Prix, cars are filled with enough fuel to complete the entire race 

distance, often close to the regulatory limit of 110 kg [19]. As the race progresses, this mass is 

gradually reduced, resulting in a measurable performance gain due to lower inertia and reduced tire 

load. To account for this effect, a dedicated fuel model is implemented in the simulator, which 

modifies the lap time of each drier based on the amount of fuel consumed at any given lap. 

This modelling approach follows the structure proposed by Heilmeier [3], who defines the lap time 

benefit from fuel consumption as a linear function of the remaining fuel mass. The formulation 

considers the fuel consumed per lap, the total fuel mass at the start of the race and the sensitivity of lap 

time to vehicle mass. Equation 5.4 [3] expresses the fuel lap time model contribution as: 

𝑡𝑓𝑢𝑒𝑙(𝑙) = (𝑚𝑓𝑢𝑒𝑙,𝑡𝑜𝑡 −𝑚𝑓𝑢𝑒𝑙,𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑(𝑙)) ⋅ 𝑠𝑙𝑎𝑝,𝑚𝑎𝑠𝑠 

Equation 5.4 

Where: 

• 𝑡𝑓𝑢𝑒𝑙(𝑙) is the lap time effect from fuel consumption at lap 𝑙, 

• 𝑚𝑓𝑢𝑒𝑙,𝑡𝑜𝑡 is the total fuel mass at the race start (assumed to be 110 kg), 

• 𝑚𝑓𝑢𝑒𝑙,𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑(𝑙) = 𝐵𝑓𝑢𝑒𝑙,𝑝𝑒𝑟𝐿𝑎𝑝 ⋅ 𝑙 is the cumulative fuel consumed up to lap 𝑙 (the fuel 

consumption rate term 𝐵𝑓𝑢𝑒𝑙,𝑝𝑒𝑟𝐿𝑎𝑝 is defined in Equation 5.5 [3]), 

• 𝑠𝑙𝑎𝑝,𝑚𝑎𝑠𝑠 is the mass sensitivity coefficient, which quantifies how much lap time decreases per 

kilogram of fuel mass lost. 

This formulation is computationally efficient and physically interpretable. It captures the monotonic 

trend of performance improvement over the race and can be generalized to include refueling logic in 

other racing formats. In Formula One, where refueling is banned, this results in a strictly decreasing 

lap time contribution across the race duration. 

For implementation purposes, a constant fuel consumption rate is assumed for each race, computed as: 

𝐵𝑓𝑢𝑒𝑙,𝑝𝑒𝑟𝐿𝑎𝑝 =
𝑚𝑓𝑢𝑒𝑙,𝑡𝑜𝑡

𝑁𝑙𝑎𝑝𝑠
 

Equation 5.5 

Where 𝑁𝑙𝑎𝑝𝑠 is the number of scheduled race laps for a given circuit. This assumption, while 

idealized, provides a reasonable approximation due to the limited lap-to-lap variation in fuel burn in 

dry and uninterrupted conditions, although, as it will be better explained in the following chapters, this 

value will be adjusted according to the eventuality of a FCY phase. 

The mass sensitivity coefficient 𝑠𝑙𝑎𝑝,𝑚𝑎𝑠𝑠 is drawn from literature estimates and engineering judgment 

[20]. In the current implementation, as McLaren’s paper states [20], it is set to 0.03 s/kg, meaning that 

each kilogram of fuel lost results in a 0.03 second lap time improvement. This value may be adjusted 

for future calibration using telemetry or regression analysis. 

While Sulsters [5] proposes a data-driven regression approach that relates lap time directly to the 

remaining fuel percentage, the current version of the simulator opts for a physically grounded model 

that assumes known fuel usage and a predefined sensitivity coefficient. Sulsters’ method requires a 

large volume of clean race lap data and per-driver regression fitting, which, though precise, is 
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computationally intensive and introduces additional uncertainty in estimating parameters like race start 

fuel mass or lap-specific disturbances. 

Figure 5.2 illustrates a sample output of the fuel model, showing the lap-by-lap fuel time contribution 

for a full-length race (i.e. 57 laps). The time loss decreases linearly as the fuel mass decreases, 

resulting in a difference of approximately 3 seconds from the first to the last lap purely due to fuel 

effect. 

 

Figure 5.2: Fuel mass time effect over the race distance 

In the simulator structure, this fuel effect is added to the base lap time as described by Equation 5.1 

and accumulated lap-by-lap for each driver. Secondary effects such as fuel-induced changes to tire 

degradation or cornering dynamics are neglected in the current implementation for simplicity and 

because their impact is relatively minor compared to the primary linear mass effect.   
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5.3 Tire Degradation Model 
 

Tire degradation is a crucial element in modelling race performance, as it reflects the gradual 

reduction in grip and overall performance that tires undergo during a stint. As tires wear, they provide 

less traction and stability, leading to slower lap times and diminished handling capabilities for the car. 

As a tire’s age increases, its ability to maintain optimal contact with the asphalt deteriorates, resulting 

in incremental lap time losses. Capturing this phenomenon accurately is essential to simulate race 

dynamics, particularly in the context of pit stop planning, compound selection and stint length 

optimization. 

Multiple modelling approaches exist in literature to approximate this degradation trend, differing in 

both mathematical formulation and empirical assumptions. A widely adopted strategy is to define tire 

degradation as a function of the fitted compound type and the number of laps completed on that 

compound, referred as tire age. 

Heilmeier [3] proposes two primary formulations: 

• Logarithmic model, expressed in Equation 5.6 [3], which better represents the early non-linear 

performance drop of softer compounds, preferred for high degradation scenarios, 

• Linear model, expressed in Equation 5.7 [3], reserved for contexts with sparse data or low 

degradation sensitivity. 

These models are defined as follows: 

𝑡𝑡𝑖𝑟𝑒,𝑙𝑜𝑔(𝑎𝑡𝑖𝑟𝑒 , 𝑐𝑡𝑖𝑟𝑒) = 𝑙𝑜𝑔(𝑎𝑡𝑖𝑟𝑒 ⋅ 𝑘1,𝑙𝑜𝑔(𝑐𝑡𝑖𝑟𝑒) + 1) ⋅ 𝑘2,𝑙𝑜𝑔(𝑐𝑡𝑖𝑟𝑒) + 𝑘3(𝑐𝑡𝑖𝑟𝑒) 

Equation 5.6 

𝑡𝑡𝑖𝑟𝑒,𝑙𝑖𝑛(𝑎𝑡𝑖𝑟𝑒 , 𝑐𝑡𝑖𝑟𝑒) = 𝑎𝑡𝑖𝑟𝑒 ⋅ 𝑘2,𝑙𝑖𝑛(𝑐𝑡𝑖𝑟𝑒) + 𝑘3(𝑐𝑡𝑖𝑟𝑒) 

Equation 5.7 

Where: 

• 𝑐𝑡𝑖𝑟𝑒 represents the fitted compound, 

• 𝑎𝑡𝑖𝑟𝑒 represents the tire age, expressed as laps, 

• 𝑘1, 𝑘2, 𝑘3 are compound-dependent coefficients determined empirically. 

F1Metrics [14] analysis similarly models degradation with a quadratic function, assuming a 

degradation rate that accelerates over time as the tires wear out. A key highlight from this study is the 

concept of the compound crossover point, highlighted in Figure 5.3. This point marks the stage in a 

stint when a heavily worn softer tire can become slower than a newer, harder compound. Recognizing 

this moment is crucial for race strategy, as it enables a driver who switches early to fresh harder tires 

to gain an advantage. By pitting sooner, this driver may achieve faster lap times and potentially 

overtake a competitor who remains on the deteriorating softer tires, a strategy known as undercut. 

It should be noted that the labeling used in Figure 5.3 reflects the older conventional terminology from 

a period when regulations permitted only two tire compounds to be used during the race [21]. In this 

context, the “option” tire refers to the softer compound, while the “prime” tire indicates the harder 

compound. Consequently, the figure illustrates the comparison limited to two consecutive tire types, 

highlighting how performance evolves between a softer and a harder compound over the course of a 

stint. 
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Figure 5.3: Crossover point: used softer (option) tires start to be slower than fresh harder tires (prime) [14] 

The model adopted in this thesis builds upon both the formulations of F1Metrics [14] and Sulsters [5], 

where tire degradation is captured through a quadratic non-negative regression model. This approach 

enables a flexible representation of lap time increases due to tire wear, with the only model constraint 

being that the second-order coefficient remains non-negative, ensuring that the time loss profile is 

either linear or increases with tire age, reflecting realistic tire performance trends over a stint. 

The resulting degradation function expressed in Equation 5.8 [5] is defined in as: 

𝑡𝑡𝑖𝑟𝑒,𝑞𝑢𝑎𝑑(𝑎𝑡𝑖𝑟𝑒 , 𝑐𝑡𝑖𝑟𝑒) = 𝑎𝑡𝑖𝑟𝑒
2 ⋅ 𝑘1,𝑞𝑢𝑎𝑑 + 𝑎𝑡𝑖𝑟𝑒 ⋅ 𝑘2,𝑞𝑢𝑎𝑑(𝑐𝑡𝑖𝑟𝑒) + 𝑘3(𝑐𝑡𝑖𝑟𝑒) 

Equation 5.8 

A notable distinction of this work lies in the treatment of tire compound classification. Unlike prior 

studies that refer to compounds using generic nomenclature of SOFT, MEDIUM and HARD, this 

thesis adopts the official C-Pirelli nomenclature (from C0 to C5). These labels represent the actual 

compound spectrum provided by Pirelli over the Formula One season, with C0 being the hardest and 

C5 the softest. For each Grand Prix, three of these six available dry compounds are selected and 

designated as SOFT, MEDIUM and HARD for public communication and broadcasting purposes. By 

referencing the C-compound directly in the degradation model (i.e. using 𝑐𝑡𝑖𝑟𝑒 {C0, C1, C2, C3, C4, 

C5}), the simulation retains fidelity to the true physical properties of the tires, rather than relying on 

the race-specific labelling conventions. 

In addition, this formulation allows the model to adapt to various degradation patterns based on the 

observed data for each compound and circuit. Rather than estimating coefficients on a driver-specific 

basis, an approach used in Heilmeier [3] and Sulsters [5] studies, this thesis generalizes the 

degradation model at the circuit-compound level. This decision is motivated by the intent to isolate the 

structural impact of the circuit and compound while neutralizing driver-related variability. As a result, 

all drivers at a given event are modelled with the same degradation profile, ensuring consistency and 

comparability across simulation runs. 
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5.3.1 Implementation Strategy 

 

To estimate tire-related performance losses during a race stint, a systematic methodology has been 

implemented in MATLAB. This procedure transforms raw lap data into corrected, circuit-specific 

degradation profiles through a series of structured preprocessing and fitting steps. The objective is to 

generate compound-specific degradation parameters for each circuit, applicable across all drivers, 

thereby decoupling tire performance modelling from driver variability. 

The procedure begins by standardizing the lap time format. Raw data, initially stored as string-

formatted durations, is converted into numeric values expressed in seconds. This conversion is 

executed individually for each driver and for every compound used during the race. Such 

normalization of data allows for consistent and reliable processing in all subsequent computational 

steps. 

To isolate tire degradation from other overlapping race effects, the influence of decreasing fuel mass is 

explicitly removed. This is achieved by subtracting, from each lap time, the precomputed time loss 

associated with fuel consumption, based on the previously modelled fuel mass time effect. The 

outcome of this subtraction is a corrected lap time that reflects only tire-related performance loss while 

excluding the decreasing time loss derived by fuel burn. This ensures a clean baseline for studying 

degradation dynamics.  

Corrected lap times are then grouped into valid stints. A valid stint is defined as a sequence of at least 

six consecutive laps that share the same tire compound and belong to the same race file (i.e. 

uninterrupted by pit stops). Each stint is characterized by the progression of lap times, lap numbers 

and a unique stint identifier. These data are aggregated in a hierarchical structure sorted by circuit and 

compound, enabling later statistical analysis and visualization.  

Figure 5.4 and Figure 5.5 show an example of this data structure. For a set of selected drivers, every 

recorded stint at the Italian Grand Prix is plotted, visually highlighting the degradation behavior for 

each compound and confirming the validity of stint segmentation. 

 

Figure 5.4: MEDIUM (C4) compound lap time data for the 2023 Italian Grand Prix 
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Figure 5.5: HARD (C3) compound lap time data for the 2023 Italian Grand Prix 

For each recorded stint, a non-negative quadratic fitting model of the form expressed in Equation 5.8 

is applied. The fitting is constrained to ensure that the second-order term is always non-negative, 

avoiding the modelling of unrealistic concave behaviors. Each stint is fit independently and the 

resulting quadratic term 𝑘1,𝑞𝑢𝑎𝑑 and the linear term 𝑘2,𝑞𝑢𝑎𝑑 are stored alongside stint length metadata. 

This approach allows to capture either linear or upward-bending trends, depending on the compound 

and circuit characteristics, providing a flexible and physically consistent model of tire performance. 

Figure 5.6 and Figure 5.7 visually compare the original and fitted lap times for each stint across 

selected drivers. This comparison confirms that the chosen fitting model captures the underlying 

degradation pattern while adhering to the physical constraint of non-negative quadratic term. 

Furthermore, it is particularly evident in Figure 5.6 that the first lap time is significantly higher than 

subsequent laps. This phenomenon reflects several contributing factors unique to the opening lap, such 

as the initial acceleration phase from a standstill position in the drivers’ respective grid slot, 

heightened risk of incidents due to tightly packed cars and limited space and increased overtaking 

activity as drivers attempt to gain positions while running in close proximity and in turbulent air. 

These factors collectively result in the first lap standing apart in its duration, emphasizing why it is 

often treated separately in both analysis and simulation modelling.  
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Figure 5.6: Non-negative quadratic fitting operation compared with original lap times 

regarding MEDIUM (C4) compound for the 2023 Italian Grand Prix 

 

Figure 5.7: Non-negative quadratic fitting operation compared with original lap times 

regarding HARD (C4) compound for the 2023 Italian Grand Prix 

After individual stint fitting, the most representative stint for each driver and compound at a specific 

circuit is identified. This selection is based on two prioritization criteria: 

• The magnitude of the quadratic coefficient, indicative of stronger degradation patterns, 

• The length of the stint, for which longer stints provide more robust fits. 

Once these criteria are satisfied for all drivers, the corresponding quadratic and linear coefficients are 

averaged across drivers to yield the final degradation parameters for that circuit-compound pair. This 

ensures that tire degradation behavior is circuit-specific rather than driver-specific, improving 

generalizability and simulation robustness. Table 10.1 reports each quadratic and linear parameter for 

each circuit of the 2023 season and each used compound. 



30 

 

In the final stage of the modelling procedure, a visualization step is introduced to assess the 

distribution of degradation parameters across different drivers for a selected circuit. This process aims 

to verify the variability and consistency of the non-negative quadratic fitting outputs and to facilitate 

validation of the average parameter values derived in the previous step. Both quadratic and linear 

parameters are visualized using normalized histograms overlaid with kernel density estimates (KDEs), 

one plot per parameter type: 

• Quadratic Parameter Distribution: Reflects the intensity of non-linear degradation across 

stints. A higher value indicates a more pronounced acceleration in lap time loss over the stint 

duration, 

• Linear Parameter Distribution: Captures the constant rate of degradation independent of non-

linear effects. 

For each compound, the mean of the parameter is also displayed, offering a reference point for 

interpreting the KDE envelope and histogram spread. These visualizations serve both as diagnostic 

tools and as validation for the selection of average values to be used in the race simulation model. 

Figure 5.8 illustrates the distribution of quadratic and linear degradation parameters across drivers for 

the HARD (C3) and MEDIUM (C4) compounds at the Italian Grand Prix. The left subplot shows that 

the C4 compound exhibits a noticeably higher mean quadratic parameter than C3, suggesting a more 

pronounced late-stint performance drop due to non-linear tire wear. Conversely, the right subplot 

reveals that the C3 compound has a higher linear degradation parameter, implying a more uniform and 

steady degradation pattern throughout the stint. These observations support the use of compound-

specific degradation models and justify the use of the average values as representative parameters in 

the simulator.  

 

Figure 5.8: Quadratic and linear parameters distributions regarding MEDIUM (C4) and HARD (C3) compounds for the 

2023 Italian Grand Prix 
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5.4 Lap Time Variability Model 
 

As part of the broader effort to construct a comprehensive and data-driven race simulation framework, 

this section introduces the modelling of lap time variability. While previous chapters have addressed 

deterministic contributors such as fuel mass reduction (Chapter 5.2) and tire degradation (Chapter 5.3), 

these alone cannot fully account for the irregularities observed in real-world lap time data. In reality, 

even under stable conditions free from pit stops, traffic or SC interventions, drivers seldom replicate 

the exact same lap time twice. These subtle fluctuations stem from a combination of factors, including 

steering precision, throttle modulation, local grip variability, external disturbances like wind and 

psychological pressure. 

Capturing such random but bounded effects is crucial to simulate racing behavior with authenticity. 

Ignoring them would lead to overly deterministic and unrealistic race outputs, where lap times evolve 

too predictably. Converse, incorporating a well-calibrated measure of lap time variability allows the 

simulator to better represent overtaking chances, pit stop strategy windows and intra-driver 

performance stability. 

The method adopted in this thesis builds directly upon the framework proposed by Heilmeier [4] in his 

study of probabilistic race simulations using Monte Carlo methods. There, lap time variability is 

extracted subtracting a fitted trend line from real lap time sequences, isolating the random component 

from structured race dynamics. This idea is portrayed in a similar way in the statistical modeling 

proposed by Sulsters [5], who embeds a normally distributed residual term within his full lap time 

formulation, accounting for the same unpredictability after removing systematic effects like tire wear 

and fuel consumption. 

In this thesis, the core of the method involves segmenting race data into clean, uninterrupted lap 

sequences and fitting a quadratic polynomial to each. This polynomial approximates the expected la 

time trend within a series of consecutive laps using the lap number as the independent variable. The 

fitting curve is expressed in Equation 5.9 [4] as: 

𝑡𝑙𝑎𝑝,𝑝𝑜𝑙𝑦(𝑝) = 𝑘2 ⋅ 𝑝
2 + 𝑘1 ⋅ 𝑝 + 𝑘0 

Equation 5.9 

Where: 

• 𝑝 is the continuous sequence of laps recorded without any interruption or anomalies, 

respecting the 107% rule [18], 

• 𝑡𝑙𝑎𝑝,𝑝𝑜𝑙𝑦(𝑝) represents the quadratic fitted lap time and the expected lap time evolution, 

• 𝑘2, 𝑘1, 𝑘0 are the coefficients derived from the polynomial fitting. 

Each real time 𝑡𝑙𝑎𝑝(𝑝) subjected to the fitting procedure is then compared to the corresponding fitted 

value and the deviation is calculated as described in Equation 5.10 [4]: 

𝑡𝑙𝑎𝑝,𝑑𝑒𝑣(𝑝) = 𝑡𝑙𝑎𝑝(𝑝) − 𝑡𝑙𝑎𝑝,𝑝𝑜𝑙𝑦(𝑝) 

Equation 5.10 

The resulting deviation 𝑡𝑙𝑎𝑝,𝑑𝑒𝑣(𝑝) quantifies the random, non-repeatable portion of the lap time. By 

design, it excludes effects which were already addressed in previous chapters through deterministic 

models and captures only the noise component intrinsic to race performance. 
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5.4.1 Implementation Strategy 

 

The implementation of this model begins by selecting only clean laps recorded under dry-weather 

conditions. These laps are extracted using the FastF1 telemetry toolkit, previously introduced in 

Chapter 4, and filtered to comply with the 107% rule [18]. Applying the rule, laps influenced by 

traffic, pit stops or neutralization periods such as yellow flags or SC phases are excluded to isolate 

pure race pace. 

Once the data is curated, the lap sequences are segmented based on lap number continuity. Each race 

stint is scanned for consecutively numbered laps and whenever a discontinuity is detected the current 

segment is closed and a new one is initiated. This segmentation ensures that the fitting process is 

applied only to uninterrupted race segments where a continuous performance trend can be reasonably 

assumed. 

For each valid segment, a second-order polynomial, described by Equation 5.9, is fitted to the lap time 

data, modelling the typical pace evolution over the stint. Subtracting the fitted curve from the actual 

lap times, as described by Equation 5.10, yields lap-specific deviations, which represent the stochastic 

component of driver performance. 

This process is applied across every dry circuit of the 2023 Formula 1 season and for every driver in 

the dataset. Once the deviations are calculated, their average values are computed to derive a single 

driver-specific variability index. This index quantifies the typical amplitude of a driver’s lap time 

oscillations around the expected trend: small values suggest consistent performance, while large 

values indicate more pronounced variability. A complete summary of these driver-specific mean 

variability values is provided in Table 10.2. 

To operate this variability within the race simulation, a final step involves the construction of a 

normally distributed random component for each driver. During the simulation, this is implemented by 

drawing random samples from a zero-mean Gaussian distribution [5] whose standard deviation 

matches the driver-specific variability index. Mathematically, this is expressed in Equation 5.11 [5] as: 

𝜀𝑙𝑎𝑝 ∼ 𝒩(0, 𝜎𝑑𝑟𝑖𝑣𝑒𝑟
2 ) 

Equation 5.11 

Where: 

• 𝜎𝑑𝑟𝑖𝑣𝑒𝑟 is the computed variability for that driver, 

• 𝜀𝑙𝑎𝑝 is the random term to be added to each driver-specific lap time. 

This generated sequence provides the stochastic noise to be incorporated into each lap of the 

simulation, allowing the model to reflect real-world unpredictability. This ensures that the same driver 

and strategy might yield slightly different outcomes across multiple simulation runs, an essential 

feature when adopting a Monte Carlo approach to race prediction and strategy evaluation. 

To illustrate this methodology, Figure 5.9 presents a representative case for driver Carlos Sainz at the 

2023 Italian Grand Prix. The upper subplot shows the consecutive raw lap times fitted with a second-

order polynomial, the lower subplot displays the calculated deviations between the actual and the 

fitted lap times. These deviations are symmetrically distributed around zero, with no systematic drift, 

indicating a balanced fluctuation pattern, consistent with the assumption of normally distributed noise. 

It is important to clarify a potential source of confusion that may arise when comparing the fitted lap 

time trends from the variability analysis with the deterministic model of tire degradation and fuel 

consumption presented earlier in this thesis. The tire degradation model is constructed to impose a 

non-negative penalty on lap times, reflecting the physical principle that tire wear reduces grip and 
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progressively slows the car. Thus, it produces a monotonically increasing or, in the limit, constant lap 

time penalty across a stint. However, in the polynomial fits derived for lap time variability (as 

illustrated in Figure 5.9), it is sometimes observed that lap times initially decrease before rising again 

later in the stint. This initial decrease is not contradictory to the degradation model because it can be 

explained by the simultaneous effect of fuel mass reduction and maximum initial exploitation of the 

new fitted tire. As race progresses, the car becomes lighter, leading to faster lap times which can 

temporarily outweigh the negative impact of tire wear. Therefore, the fitted polynomial captures the 

combined effect of these overlapping phenomena. 

Nevertheless, the purpose of the variability fitting in this thesis is not to replace or contradict the 

deterministic components already modelled for fuel and tire effect. Instead, it serves solely to isolate 

the stochastics, lap-to-lap fluctuations around the expected pace once the broader trends have been 

accounted for. While the deterministic models explain systematic effects like fuel mass decrease and 

tire degradation, the polynomial fit in the variability model provides a local approximation of the net 

trend in each stint, accommodating any transient balance between fuel savings and tire penalties. The 

residuals extracted from this fit represent purely random deviations, which are crucial for simulating 

realistic racing scenarios. Thus, introducing a polynomial fitting step in the variability modelling does 

not imply the creation of a new deterministic model, but rather a methodological tool for quantifying 

and isolating stochastic behavior. 

 

Figure 5.9: Polynomial fit and lap time deviations for Carlos Sainz at the Italian Grand Prix 
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5.5 Starting Performance Model 
 

In a complete and realistic race simulation framework, the treatment of the race start plays a critical 

role in determining the evolution of the early race order. While previous modules of the simulator 

focus on fuel, tire degradation and lap time variability, starting performance represents a sudden and 

discrete effect that occurs exclusively at the onset of the race, influencing the outcome of the first lap 

alone. However, from the driver’s perspective, the outcome of the start is crucial for the development 

of the most suitable race strategy. 

The model adopted in this thesis follows the deterministic-probabilistic dual framework proposed by 

Heilmeier [4], which provides a physically grounded and statistically nuanced method for modelling 

the start phase. This model is preferred over discrete or empirical sampling approaches, like the one 

proposed by Sulsters [5], as it ensures interpretability and continuity across the grid, avoiding the 

sparsity and volatility associated with raw positional gain distributions. 

The deterministic portion of the model, called “average starter” by Heilmeier [4], captures the baseline 

time a driver needs to travel from their grid slot to the start/finish line, assuming uniform conditions 

and average driver skill. This is modelled using Equation 5.12 [4], a square root formulation derived 

from constant-acceleration kinematics: 

𝑡𝑠𝑡𝑎𝑟𝑡,𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 = √
2(𝑝𝑔 − 𝑝𝑠) ⋅ 𝑠𝑔𝑟𝑖𝑑

𝑎𝑎𝑣𝑔
+ 𝑡𝑟 

Equation 5.12 

Where: 

• 𝑝𝑔 is the driver’s starting grid position, 

• 𝑝𝑠 is the fractional offset of the pole position from the start line (typically set to 0.8 [4]), 

• 𝑠𝑔𝑟𝑖𝑑 is the standard spacing between grid slots (set to 8 m), 

• 𝑎𝑎𝑣𝑔 is the average longitudinal acceleration during launch, estimated by least-square fitting 

to historical Formula One start data (set to 11.2 m/s2 [4]), 

• 𝑡𝑟 is a fixed human reaction time (assumed to be 0.2 s [4]). 

This deterministic time, visually represented in Figure 5.10, effectively quantifies the physical 

component of launch performance, assuming each car launches cleanly from its starting position with 

uniform grip and optimal execution. It thus forms the baseline over which driver-specific deviations 

can be layered. 
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Figure 5.10: Average starter deterministic model taking into account ideal starting grid slot-specific launch conditions [4] 

Real-world observations, however, show that even under similar conditions, some drivers consistently 

outperform or underperform the deterministic baseline. To reflect this, a stochastic performance 

modifier is introduced, as shown in Equation 5.13 [4]: 

𝑡𝑠𝑡𝑎𝑟𝑡,𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 ∼ 𝒩(𝜇𝑠𝑡𝑎𝑟𝑡,𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 , 𝜎𝑠𝑡𝑎𝑟𝑡,𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒
2 ) 

Equation 5.13 

Each driver is assigned a unique normal distribution centered at a mean value 𝜇𝑠𝑡𝑎𝑟𝑡,𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 with 

a standard deviation 𝜎𝑠𝑡𝑎𝑟𝑡,𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒, both empirically derived from video analysis and telemetry 

evaluations conducted by Heilmeier [4]. These parameters capture how each driver deviates from the 

“average starter” profile and account for skill, reaction consistency and car-clutch interaction quality at 

launch. Driver-specific distribution values are reported in Table 10.2, as they are taken from 

Heilmeier’s work and adjusted to the 2023 drivers. 

The overall time cost from the race start until crossing the start/finish line is therefore modelled as the 

sum of the deterministic and probabilistic components, highlighted in Equation 5.14 [4]: 

𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡,𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 + 𝑡𝑠𝑡𝑎𝑟𝑡,𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 

Equation 5.14 

The total start time is only applied once, on the first lap of the race, and directly influences the 

cumulative race time from which all subsequent lap positions are derived. Drivers with consistently 

negative values of 𝑡𝑠𝑡𝑎𝑟𝑡,𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 are more likely to gain positions off the line, while those with 

positive deviations will tend to fall back. 

Compared to position-based models such as the smoothed empirical distribution proposed by Sulsters 

[5], which draw from discrete histograms of positional gain/loss at the start and finally creates a 

discrete shift in position, this time-based approach offers several key advantages: 

• It integrates seamlessly into a race-time simulation framework without requiring direct 

manipulation of positions, 

• It allows fine-tuned probabilistic variation within a continuous domain, avoiding the rigidity 

of categorical jumps, 
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• It maintains physical realism by anchoring every performance deviation to a measurable 

outcome: time to cross the start/finish line, 

• It provides a fairer representation for drivers who frequently start from pole position [4], as 

these drivers have limited opportunity to gain positions at the start. Unlike categorical models, 

which can introduce bias by underestimating variability for front-runners, the adopted time-

based modelling approach captures subtle differences in start performance even for those 

starting at the front of the grid. 

Ultimately, the incorporation of this start model enhances the simulator’s fidelity during the critical 

early moment of the race, ensuring that launch dynamics are neither oversimplified nor excessively 

randomized.  
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5.6 Pit Stop Performance Model 
 

 In the context of a comprehensive race simulation framework, accurately modelling pit stop 

performance is essential for capturing the strategic and stochastic elements that influence race 

outcomes. Pit stops introduce discrete time losses that can significantly affect a driver’s position and 

overall race time. This section delineates the components of pit stop time and presents a modelling 

approach that integrates both deterministic and probabilistic elements, drawing upon established 

methodologies in the literature. 

 

5.6.1 Components of Pit Stop Time 

 

As it can be stated by referencing Heilmeier’s work [4], the total time loss associated with a pit stop 

can be decomposed into two primary components, noted in Equation 5.15: 

𝑡𝑝𝑖𝑡 = 𝑡𝑖𝑛𝑙𝑎𝑝 + 𝑡𝑜𝑢𝑡𝑙𝑎𝑝 

Equation 5.15 

 Where: 

• 𝑡𝑝𝑖𝑡 is the time loss associated with a pit stop, 

• 𝑡𝑖𝑛𝑙𝑎𝑝 is the time lost during the entry into the pit lane, which qualitatively captures the 

additional time required for the driver to maneuver towards the pit entry line, decelerate from 

racing speed and activate the pit limiter system (it is typically modelled as a small time loss 

between 1.5 s – 2 s), 

• 𝑡𝑜𝑢𝑡𝑙𝑎𝑝 is the time lost starting from the moment in which the pit limiter is engaged and 

encompasses several sub-components, highlighted in Equation 5.16 [4]: 

𝑡𝑜𝑢𝑡𝑙𝑎𝑝 = 𝑡𝑝𝑖𝑡𝑑𝑟𝑖𝑣𝑒 + 𝑡𝑐𝑟𝑒𝑤 + 𝑡𝑝𝑒𝑛𝑎𝑙𝑡𝑦 

Equation 5.16 

Where: 

o  𝑡𝑝𝑖𝑡𝑑𝑟𝑖𝑣𝑒 is the time required to traverse the pit lane at the speed limit imposed by 

circuit-specific race regulations, 

o 𝑡𝑐𝑟𝑒𝑤 is the duration of the stationary period during which the pit crew performs 

operations on the car, such as tire changes and wing adjustments, 

o 𝑡𝑝𝑒𝑛𝑎𝑙𝑡𝑦 is the additional time incurred due to penalties, such as stop-and-go or time 

penalties imposed by race stewards. 

The 𝑡𝑝𝑖𝑡𝑑𝑟𝑖𝑣𝑒 value has been determined by analyzing driver telemetry during pit stop sequences, as it 

was described in Chapter 4. Specifically, the entry and exit points of the pit limiter were identified by 

detecting when the car’s speed first dropped (and later rose) around the prescribed pit lane limit, 

accounting for a tolerance margin of ±2%. From these time stamps, the duration of pit lane traversal 

was calculated. The resulting  𝑡𝑝𝑖𝑡𝑑𝑟𝑖𝑣𝑒 values, alongside the corresponding pit lane speed limits for 

each circuit, are listed in Chapter 6, Table 10.5. 

The 𝑡𝑝𝑒𝑛𝑎𝑙𝑡𝑦 component is event-driven and incorporated based on race incidents and steward 

decisions. For the sake of simplicity and given the complexity of accurately modelling such event-

driven occurrences, this factor is excluded from all current simulation scenarios. 
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The 𝑡𝑐𝑟𝑒𝑤 component exhibits variability influence by team efficiency and operational precision 

necessitating a probabilistic modelling approach. 

 

5.6.2 Pit Crew Efficiency Modelling 

 

The variability in pit crew performance, encapsulated in the 𝑡𝑐𝑟𝑒𝑤 component, is modelled using the 

Fisk distribution also referred to as the log-logistic distribution due to its demonstrated effectiveness in 

representing the empirical distribution of pit stop durations observed in Formula One. Unlike 

symmetric distributions such as the Gaussian, which fail to capture the distinct asymmetry of pit stop 

times, the Fisk distribution offers a flexible, right-skewed shape that mirrors real-world behavior, 

where the majority of pit stops are tightly grouped around a minimal mode, but occasional operational 

inefficiencies result in a long tail of delayed stops. This modelling choice is directly inspired by the 

methodology proposed by Philips [14] and Heilmeier [4] who, after evaluating pit stop data from 

multiple Formula One seasons, noted that top-performing teams exhibited pit stop durations 

consistently close to the race minimum, while others showed more dispersed outcomes with a higher 

incidence of longer stops. In Heilmeier’s work [4], the Fisk distribution was identified as the best-

fitting statistical model to account for this asymmetric dispersion and its parameters were fitted 

individually for each team using race data from 2014-2019 seasons, adjusted to be representative of 

the 2023 team list.  

The Fisk distribution, often referred to as the log-logistic distribution, is a continuous probability 

distribution suitable for modelling non-negative, right skewed data. It is particularly effective when 

values cluster near a central tendency but exhibit a heavy right tail, a common characteristic in real-

world phenomena such as income distribution [22] and, in this context, Formula One pit stops 

duration.  

Given three positive parameters (shape, scale and location), the Probability Density Function (PDF) of 

the Fisk distribution is given by Equation 5.17 [22]: 

𝐹𝑖𝑠𝑘(𝑥; 𝑠ℎ𝑎𝑝𝑒, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒) =

𝑠ℎ𝑎𝑝𝑒
𝑠𝑐𝑎𝑙𝑒

⋅ (
𝑥 − 𝑙𝑜𝑐

𝑠
)
𝑠𝑐𝑎𝑙𝑒−1

[1 + (
𝑥 − 𝑙𝑜𝑐
𝑠𝑐𝑎𝑙𝑒

)
𝑠ℎ𝑎𝑝𝑒

]

2 ,          𝑥 > 𝑙𝑜𝑐 

Equation 5.17 

Where: 

• 𝑥 is the Fisk value used for generating random samples (defined in detail by Equation 5.18), 

• 𝑠ℎ𝑎𝑝𝑒 value controls the tail behavior, in particular a lower shape value increases the 

probability of very large values (long tail), 

• 𝑠𝑐𝑎𝑙𝑒 value stretches or compresses the distribution horizontally, 

• 𝑙𝑜𝑐 value, which is null in this thesis work to simplify the modelling, shifts the distribution 

along the x-axis.  

The Fisk value, 𝑥, is defined in Equation 5.18 [22] as: 

𝑥 = 𝑙𝑜𝑐 + 𝑠𝑐𝑎𝑙𝑒 ⋅ (
𝑢

1 − 𝑢
)
(1/𝑠ℎ𝑎𝑝𝑒)

,          𝑢 ∼ 𝒰(0,1) 

Equation 5.18 
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The resulting random variable 𝑥 exploits the heavy right tail typical of pit stop distributions, where 

most values concentrate around a centrale mode, but rare, longer delays due to inconveniences during 

the pit stop remain probabilistically possible.  

To ensure consistency with historical performance, the generated random values from the Fisk 

distribution are aligned with the team’s observed average pit stop time  𝑡𝑐𝑟𝑒𝑤 [23]. This is achieved by 

shifting the distribution accordingly: the average time is added directly to the sampled variable, 

producing a distribution centered around each team’s typical execution level. Equation 5.19 shows the 

adjusted pit stop crew efficiency time loss re-centered on the team-specific target mean: 

𝑡𝑐𝑟𝑒𝑤 = 𝑡𝑐𝑟𝑒𝑤 + 𝑥 

Equation 5.19 

Moreover, since no pit stop can realistically occur below a physical feasible threshold, which has been 

established at 1.80 s [23] during the 2023 Formula One season, values are generated to remain strictly 

above this minimum. This approach ensures statistical representativeness while maintaining physical 

plausibility and aligns with simulation methodologies described by Sulsters [5] and Heilmeier [4]. 

Detailed information on each team’s fitted parameters and their statistical justification can be found in 

Chapter 10, Table 10.6, which adapts the data found by Heilmeier [4] to the 2023 Formula One grid.  

To visualize the impact of pit crew efficiency on pit stop durations, Figure 5.11 considers the 

following comparative analysis: 

• Top team (Ferrari), whose distribution of  𝑡𝑐𝑟𝑒𝑤 is sharply peaked, indicating high consistency 

with minimal variability. Most pit stops are completed near the mode, with few instances of 

extended durations, 

• Midfield team (Haas), whose distribution is flatter and more spread out, reflecting greater 

inconsistency. This results in increased probability of both quicker and significantly longer pit 

stops than the mode. 

 

Figure 5.11: Comparative analysis of the pit crew efficiency on pit stop durations 

This comparison underscores the importance of pit crew performance in race strategy and outcomes. 

Efficient and consistent pit stops can contribute to maintaining or improving track position, while 

variability can introduce risks that may compromise race performance.  
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5.7 Did Not Finish (DNF) Probability Model 
 

In the stochastic modelling of Formula One races, one of the most impactful sources of 

unpredictability is the occurrence of race-ending events, commonly referred to as Did Not Finishes 

(DNFs). DNFs arise due to either accidents or mechanical failures and their influence is twofold: they 

directly remove competitors from the classification and they indirectly shape race dynamics by 

triggering FCY phases such as SCs and VSCs. This chapter presents the modelling approach adopted 

to simulate such stochastic events, combining statistical inference with domain-specific assumptions. 

This marks the first truly probabilistic event in the simulator pipeline, laying the foundation for 

dynamic and reactive race simulations. 

The methodology for computing DNF probabilities follows the Bayesian framework introduced in 

Sulsters’ thesis [5] and in Heilmeier’s work [4]. This method enables the integration of prior 

knowledge with observed racing data, addressing the challenge of limited observations for certain 

drivers while ensuring a consistent probabilistic foundation. 

Race retirements are not rare outliers: analysis of race data collected from StatsF1.com over the 2019-

2023 seasons reveals that in dry conditions, on average, between two and four drivers per Grand Prix 

fail to reach the checkered flag [17]. This corresponds to approximately 10% to 20% of the starting 

grid per race. These events significantly distort predicted finishing positions, invalidate strategy 

assumptions and frequently alter the final classification by enabling opportunistic gains for trailing 

drivers. As noted by Catapult Sports [2], predictive analytics in Formula One must incorporate 

reliability and failure modelling to anticipate race-altering scenarios. Therefore, excluding DNFs from 

simulation would compromise the realism and predictive value of the model. 

 

5.7.1 Accidents and Failures Modelling 

 

To accurately simulate DNFs in Formula One races. Retirements are divided into two main categories: 

• Accidents, which are primarily driver-dependent and often occur due to collisions or 

misjudged maneuvers, 

• Mechanical failures, which are largely team-dependent, stemming from technical 

malfunctions, engine reliability issues or system failures. 

This categorization enables a hybrid estimation strategy. 

Accident probability 𝑃𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 is estimated through Bayesian inference applied to individual race 

histories from 2019 to 2023. This method addresses the challenge of limited observations per driver by 

incorporating prior knowledge and ensuring stable probability estimates. The dataset manually curated 

from StatsF1 [17] contains statistics including the number of started races and DNFs recorded for each 

driver, enabling the posterior estimation of DNF likelihoods through Beta-distributed priors. 

Mechanical failure probability  𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 is derived from historical team-specific failure frequencies 

documented in Heilmeier’s study covering the seasons from 2015 to 2019 [4]. Since team reliability 

evolves over time, these rates are re-mapped to reflect the most recent team composition in the 2023 

grid. This ensures that failure probabilities remain aligned with contemporary technical performance. 

A key refinement in this model is the necessary adjustment applied to accident probabilities during the 

opening lap. Empirical data and academic studies [4, 5] indicate a heightened risk of incidents at the 

start of the race due to dense driver formations and aggressive position changes. To reflect this, an 

enhanced probability multiplier is applied, as shown in Equation 5.20 [4, 5]: 
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𝑃𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡,𝑙𝑎𝑝1 = 10 ⋅ 𝑃𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 

Equation 5.20 

This adjustment captures the increased likelihood of first lap accidents. 

 

5.7.2 Bayesian Inference Framework for DNF Estimation 

 

Retirements are modelled by estimating the DNF probability for each driver based on the finishing 

status recorded in historical race data. A naive method would assign each driver a DNF probability 

equal to the fraction of races they failed to finish. However, such estimates are unreliable for small 

sample sizes and result in unrealistic zero probabilities for drivers with no retirements [5]. To 

overcome this, a Bayesian inference approach is employed, as detailed in Sulsters [5] and Heilmeier 

[4]. 

Bayesian inference is a statistical method that updates the probability of a hypothesis as more evidence 

or information becomes available. It combines prior belief about a parameter with new data to yield a 

posterior belief, thereby systematically refining uncertainty estimates. This approach is particularly 

useful in scenarios with limited or noisy data, where it enables the incorporation of reasonable prior 

assumptions. It typically involves conjugate priors to simplify computations, such as the Beta 

distribution when dealing with Bernoulli or Binomial processes [24]. 

As is portrayed in Sulsters’ thesis [5], each race start is modelled as an independent Bernoulli trial 

with a binary outcome: finish or DNF. Let 𝑦𝑗 represent the number of non-finishes for driver 𝑗 out of 

𝑛𝑗 races. The likelihood model follows a binomial distribution, reported in Equation 5.21 [5]: 

𝑦𝑗 ∼ 𝐵in(𝑛𝑗, 𝜃𝑗) 

Equation 5.21 

Where 𝜃𝑗 denotes the undelying DNF probability of the driver. 

Since the parameter must lie in the interval [0, 1] and it is believable that it is more likely that a driver 

finishes than retires, it is possible to adopt a right-skewed Beta distribution as a prior, shown in 

Equation 5.22 [5]: 

𝜃𝑗 ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛽) 

Equation 5.22 

This distribution is flexible and defined on [0, 1] and serves as a conjugate prior to the 

Bernoulli/Binomial likelihood, as Equation 5.23 [5] is showing. The conjugacy allows the posterior 

distribution to also be Beta-distributed: 

𝜃𝑗 ↔ 𝑦𝑗 ∼ 𝐵𝑒𝑡𝑎(𝛼 + 𝑦𝑗, 𝛽 + 𝑛𝑗 − 𝑦𝑗) 

Equation 5.23 

This posterior distribution reflects both the prior beliefs and the empirical data, leading to more stable 

and realistic estimates. Even drivers with no DNFs obtain non-zero DNF probabilities, reflecting the 

inherent uncertainty. 

The estimated shape parameters 𝛼̂, 𝛽̂ are derived in Equation 5.24 from the empirical mean and 

variance of the DNF rates across the population using the method of moments [5]:  
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𝛼̂ = (
1 − 𝜇̂

𝜎̂2
−
1

𝜇̂
) 𝜇̂2,   𝛽̂ = 𝛼̂ (

1

𝜇̂
− 1) 

Equation 5.24 

Where: 

• 𝜇̂ is the average DNF rate, 

• 𝜎̂2 is its variance across all drivers. 

The Bayesian estimation approach ensures a principled, data-informed probabilistic robust treatment 

of driver-specific retirement probabilities. 

As previously mentioned, to compute accident probability 𝑃𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡, a Beta distribution is fitted using 

empirical retirement rates from 2019 to 2023. This process leverages prior knowledge and observed 

race data, preventing unreliable zero-probability estimates for drivers without recorded DNFs. Table 

10.3 in Chapter 10 lists the posterior Beta distribution parameters, 𝛼 and 𝛽, alongside the retirement 

percentage upon which they are computed. Retirement percentage is used instead of the number of 

retirements to normalize the retirements across the disputed races by every driver, since not every 

driver has competed along all the seasons between 2019 and 2023. This tabulated representation 

highlights the interplay between sample size and inferred accident probability. 

In parallel, driver-specific probabilities are further detailed in Chapter 10, Table 10.4, where 

𝑃𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡, 𝑃𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡,𝑙𝑎𝑝1 and 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 are explicitly listed. This structured breakdown enables targeted 

assessments of both driver-induced and mechanical related DNFs. 

To enhance visual intuition, comparative graphical representations in Figure 5.12 illustrate the PDF 

envelopes of selected driver distributions. These distributions contrast a driver with low retirement 

percentage, characterized by a sharp, right-skewed Beta distribution (higher value of 𝛽, leading to a 

sharp probability peak near 0), and a driver with a high retirement percentage, whose posterior 

distribution exhibits a broader, left-skewed profile reflecting greater uncertainty (higher value of 𝛼).  

The envelope diagrams highlight how the Bayesian approach refines individual probability estimates 

while maintaining realistic bounds. 

 

Figure 5.12: Posterior Beta distributions of two drivers with respectively low retirement percentage (Piastri) and high 

retirement percentage (Magnussen) 
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5.8 Full Course Yellow (FCY) Phases Model 
 

One of the most critical elements in accurately reproducing the unpredictable nature of a Formula One 

race is the integration of FCY phases. These interruptions, which manifest as either SC or VSC 

deployments, are vital safety procedures triggered by on-track incidents or hazardous conditions. 

While introduced for safety reasons, they have considerable strategic consequences. Their effects 

permeate not only lap times and time gaps between competitors but also alter pit stop timing and 

overall race flow. 

The present chapter is structured to first introduce and explain the nature, classification and race 

influence of FCY phases in a comprehensive manner. Subsequently, the implementation strategy used 

in the simulator is described in full detail, including the methods used to define deployment frequency, 

timing and lap-time impact. 

 

5.8.1 Understanding FCY Phases 

 

In Formula One, FCY phases are officially declared when conditions on the track require the 

temporary neutralization of racing speeds across the circuit. These conditions typically arise from 

accidents, debris or vehicle breakdowns that pose risks to drivers or marshals. The deployment of FCY 

phases ensures that safety procedures can be conducted without interference from competitive on-track 

activity. Unlike local yellow flags, which only influence specific sectors of the track, FCY phases 

apply uniformly to the entire circuit. 

There are two main variants of FCY phases, each with their own characteristics and effects: 

• VSC is a virtual speed control system. When deployed, it requires all drivers to reduce speed 

and comply with a minimum lap time constraint, set to around 140% of the lap recorded under 

green flag conditions on the basis of Heilmeier’s work [4]. This regulation ensures that all cars 

slow down uniformly. Crucially, under VSC, overtaking is prohibited and the time intervals 

between cars are mostly preserved. 

• SC introduces a physical car onto the circuit. This car, dispatched from the pit lane, positions 

itself in front of the race leader and sets a significantly reduced pace. Drivers form a queue 

behind it and must refrain from overtaking. As the field bunches up, any pre-existing time 

gaps between drivers effectively vanishes. SC lap times are generally set around 160 % of the 

unaffected lap time on the basis of Heilmeier’s work [4]. 

Moreover, both FCY types share a common strategic implication: they reduce the relative time lost 

when performing a pit stop. This is because the in-lap and out-lap, which are typically slower than 

normal race pace, become proportionally less costly when the entire field is circulating at reduced 

speed. AS a result, FCY phases present prime opportunities for teams to perform pit stops with 

minimal penalty. 

Figure 5.13 illustrates the evolution of lap times during the 2018 French Grand Prix, showing SC and 

VSC periods and their respective slow-sown levels relative to the green flag condition lap time. 

Horizontal markers at 140% and 160% of lap time are used to delineate the expected boundaries. 
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Figure 5.13: Driver lap times relative to the French Grand Prix. Crosses mark the average lap times chosen to identify the 

lap time increase during SC and VSC phases. Horizontal lines indicated the identified lap time increase in both SC and VSC 

phases with respect to the baseline lap time [4] 

 

5.8.2 Empirical Insights and Statistical Behavior 

 

The characterization of FCY phases in the simulator is grounded in the empirical analysis of Formula 

One data from the 2014 to 2019 seasons, as discussed in Heilmeier’s study [4]. The implementation of 

these phases follows a carefully defined sequence that guarantees both statistical realism and race 

fidelity. 

The first operation in the modelling of FCY events occurrence during a race simulation involves the 

determination of SC phases and their relation to on-track accidents. The number of SC phases 

expected in a race is sampled from empirical distributions and, for each selected phases, a specific 

start interval is chosen across the race distance. These intervals are refined using uniformly distributed 

random perturbations to simulate the fact that SC do not necessarily align with exact lap boundaries. 

Durations are also drawn from real-world data. Every SC event is considered to be the consequence of 

an accident, but for simplicity, only one driver per SC event retires, selected according to the 

individual crash probabilities reported in Table 10.4. 

The second step concerns the occurrence of mechanical failures. These are randomly assigned to 

drivers based on the individual failure probabilities reported in Table 10.4. Notably not every failure 

result in a VSC as damaged cars may be able to get back to the pits or to stop at a safe location. A 

conditional rule reported in Equation 5.27 is applied to determine whether a failure should trigger a 

VSC event or not. 

The third key aspect is converting the timing of FCY events from race progress, which is lap-based, to 

absolute race time. This ensures that all drivers experience the phase at the exact same race moment, 

regardless of their position or whether they are lapped. Without this conversion, inconsistencies would 

emerge, such as lapped drivers being affected a full lap earlier than race leaders. Aligning FCY 

activations to race time guarantees synchronized behavior across the grid. 

To preserve realism, the ending of an FCY phase should not overlap with the beginning of another 

FCY phase during the race. To ensure realism, FCY phases are spaced to avoid overlap by imposing a 

temporal separation condition, expressed in Equation 5.25 and Equation 5.26 [4]: 

𝑟𝑓𝑐𝑦,𝑠𝑡𝑎𝑟𝑡,𝑛𝑒𝑤 ≤ 𝑟𝑓𝑐𝑦,𝑒𝑛𝑑,𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 + 𝑟𝑓𝑐𝑦.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

Equation 5.25 
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𝑟𝑓𝑐𝑦,𝑠𝑡𝑎𝑟𝑡,𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 − 𝑟𝑓𝑐𝑦,𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 𝑟𝑓𝑐𝑦,𝑒𝑛𝑑,𝑛𝑒𝑤 

Equation 5.26 

 

Where: 

• 𝑟𝑓𝑐𝑦,𝑠𝑡𝑎𝑟𝑡,𝑛𝑒𝑤 is the start of the new FCY phase, 

• 𝑟𝑓𝑐𝑦,𝑒𝑛𝑑, 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 is the end of the existing FCY phase, 

• 𝑟𝑓𝑐𝑦,𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is the minimum required gap between FCY phases (set to one lap in the 

simulation), 

• 𝑟𝑓𝑐𝑦,𝑠𝑡𝑎𝑟𝑡,𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 is the start of the existing FCY phase, 

• 𝑟𝑓𝑐𝑦,𝑒𝑛𝑑,𝑛𝑒𝑤 is the end of the new FCY phase. 

The two inequalities ensure that a new FCY begins only after the previous one has ended, maintaining 

a minimum required gap of at least one lap between consecutive FCY events and that it concludes 

without overlapping any earlier FCY start. This avoids any unrealistic stacking of FCY events [4]. 

 

5.8.3 FCY Simulation Implementation 

 

To translate the statistical behavior and functional impact of FCY phases into the simulation 

environment, a structured and pre-defined approach is required. Based on the framework introduced 

earlier, the simulator reproduces SC and VSC events by determining their number, timing and 

characteristics before the race begins. This ensures that their influence on race dynamics is applied 

consistently across all drivers.  

 

5.8.3.1 SC Phase Generation 

 

The probability distribution of SC deployments across races shows that approximately 45% of races 

experience no SC, around 41% have one SC and the residual percentage includes two or more events. 

This frequency 𝑃𝑠𝑐,𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 is graphically represented in the bar chart of Figure 5.14 and summarized 

in Table 5.1 [4]. 
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Figure 5.14: Number of SC deployments [4] 

Table 5.1: Probabilities relative to the historical quantities of SC deployment during a single race [4] 

Probability 0 SC 1 SC 2 SC ≥ 3 SC 

𝑃𝑆𝐶, 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 0.455 0.413 0.099 0.033 

 

SC phases occur more frequently at the beginning of the race, especially in the first lap where over 

36% of SCs are triggered, mainly due to large unpredictability of position changes following the race 

start. The race is divided into six intervals based on the progress (in particular first lap, ≤20%, ≤40%, 

≤60%, ≤80%, ≤100%) and each bin has a specific deployment probability 𝑃𝑠𝑐,𝑠𝑡𝑎𝑟𝑡, as modelled by 

Heilmeier in Figure 5.15 and summarized in Table 5.2 [4].  

 

Figure 5.15: Cumulative probability distribution of the start of SC phases during the course of a race [4] 
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Table 5.2: Probabilities relative to the start of the SC during one of the six race distance groups [4] 

Probability 1st Lap 
2nd Lap to 

20% 

20% to 

40% 

40% to 

60% 

60% to 

80% 

80% to 

100% 

𝑃𝑆𝐶, 𝑠𝑡𝑎𝑟𝑡 0.364 0.136 0.136 0.08 0.193 0.091 

 

From Heilmeier’s study [4], Table 5.3 summarizes the empirical duration probabilities of SC phases 

𝑃𝑠𝑐,𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛. It can span from 2 to 8 laps, with 3-lap and 4-lap durations being the most common. This 

variability reflects real-world dynamics where track clearance and incident severity vary greatly. The 

start of the SC phase is further modified by introducing a uniform distribution 𝒰(0,1) to take into 

account the fact that the SC phase could start at a random point within a lap. 

Table 5.3: Probabilities relative to the lap-based duration of the SC [4] 

Probability 2 Lap 3 Laps 4 Laps 5 Laps 6 Laps 7 Laps 8 Laps 

𝑃𝑆𝐶, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 0.182 0.250 0.227 0.193 0.057 0.068 0.023 

 

Every SC phase is assumed to be caused by an accident. Although real races may involve multiple 

cars, the simulator simplifies this by retiring only one driver per SC event [4]. This driver is selected 

based on their individual accident probability 𝑃𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡, derived through Bayesian inference model 

introduced in Chapter 5.7 and explicitly listed in Table 10.4. 

 

5.8.3.2 VSC Phase Generation 

 

VSC phases are generated independently and are associated with mechanical failures rather than 

accidents. Each driver is assigned a probability of experiencing a failure, 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒, based on historical 

trends or team-specific reliability metrics, listed in Table 10.4. When a failure occurs, the simulator 

decides, based on a predefined probability threshold reported in Equation 5.27, whether it escalates 

into a VSC phase.  

𝑃(𝑉𝑆𝐶|𝑓𝑎𝑖𝑙𝑢𝑟𝑒) =
𝑛𝑉𝑆𝐶

𝑛𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠
= 0.227 

Equation 5.27 

Where: 

• 𝑛𝑣𝑠𝑐 is the number of VSC phases, 

• 𝑛𝑓𝑎𝑖𝑙𝑢𝑟𝑒 is the number of failures. 

This formulation is based on data recorded by Heilmeier [4] from the 2015 to the 2019 seasons, since 

the VSC was first introduced in 2015 as part of the regulation after the fatal incident involving the 

Marussia Racing Team driver Jules Bianchi during the 2014 Japanese Grand Prix. 

Based on Equation 5.27, most failures result in no race neutralization at all, reflecting real-world 

situations where drivers are able to retire in a safe location. If the failure is deemed disruptive enough, 

a VSC phase is triggered.  



48 

 

Once triggered, the VSC is assigned a start point randomly across the remaining race time and it is 

constrained to not overlap with existing FCY events. The duration of a VSC is generally shorter than 

that of SC phases and it is drawn from a narrower empirical range, reported in Table 5.4, reflecting the 

typically faster recovery time of minor stoppages. To reflect the fact that a SC phase can begin at any 

moment within a lap, the model uses a uniform random distribution between 0 and 1, 𝒰(0,1), to 

randomly place the start of the SC period inside the lap. For VSC phases, this same approach applies 

both to the start and the end of the VSC period, allowing these events to occur at any point within a lap 

rather than strictly at lap boundaries. 

Table 5.4: Probabilities relative to the lap-based duration of the VSC [4] 

Probability 1 Lap 2 Laps 3 Laps 4 Laps 

𝑃𝑉𝑆𝐶, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 0.479 0.396 0.021 0.104 

 

 

5.8.3.3 Conversion to Race Time 

 

A critical step in the FCY implementation is the conversion of all event triggers from race progress 

(lap number) to absolute race time. This ensures that each driver, regardless of their current position or 

lapped status, experiences the effect of the SC or VSC at the exact same moment in the simulation 

timeline. 

As explained by Heilmeier [4], if this step were omitted and triggers remained tied to lap-based 

progress, it would result in inconsistencies: lapped drivers would encounter the FCY earlier than race 

leaders, which contradicts actual Formula One behavior. For instance, a SC deployed at the moment 

the leader crosses the line to start lap 30 should simultaneously impact a lapped driver still on lap 29. 

To prevent such discrepancies, the simulator uses cumulative race time (in seconds) as the universal 

reference. Before the main simulation is run, a pre-simulation with a single driver is executed to 

estimate when each stage of race progress occurs in real time. This enables the translation of lap-based 

FCY triggers into consistent race-time markers. Although minor deviations may exist between the pre-

simulation and actual race [4], these shifts affect all drivers equally, ensuring that every FCY phase 

remains synchronized across the field. 

All the drivers selected to be involved in accidents and failures are simply not taken into consideration 

during the simulation of the laps following their retirement. 

 

5.8.4 VSC Modelling and Implementation 

 

The VSC provide an alternative method to neutralize the race with respect to the physical SC by 

reducing speeds across the entire track without requiring cars to bunch up. It allows marshals to safely 

intervene during minor incidents while minimally disrupting the flow of the race. This section details 

the modelling rationale and the computational strategy used in the simulator, drawing directly from 

Heilmeier’s methodology [4]. 

According to Heilmeier, the VSC is modelled by artificially increasing the lap time of any driver 

affected by the phase. When a VSC phase is active, each affected driver’s lap time is artificially 

extended. The base lap time during such conditions is set to 140% of the base lap time, as mentioned 

in Equation 5.28, simulated the reduced pace mandated by race control: 
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𝑡𝑏𝑎𝑠𝑒,𝑉𝑆𝐶 = 1.4 ⋅ 𝑡𝑏𝑎𝑠𝑒 

Equation 5.28 

In addition to slower lap times, the VSC phase significantly lowers mechanical strain. The simulator 

captures this by adjusting fuel consumption and tire degradation. Fuel usage is reduced to 50% of the 

usual per-lap rate, reflecting the reduced throttle input and engine load, as mentioned in Equation 5.29: 

𝐵𝑓𝑢𝑒𝑙,𝑉𝑆𝐶 = 0.5 ⋅ 𝐵𝑓𝑢𝑒𝑙,𝑛𝑜𝑟𝑚𝑎𝑙 

Equation 5.29 

Adjusting the fuel mass consumed during VSC conditions as:  

𝑚𝑓𝑢𝑒𝑙,𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑,𝑉𝑆𝐶(𝑙) = 𝐵𝑓𝑢𝑒𝑙,𝑉𝑆𝐶 ⋅ 𝑙 = 0.5 ⋅ 𝑚𝑓𝑢𝑒𝑙,𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑,𝑛𝑜𝑟𝑚𝑎𝑙(𝑙)  

Equation 5.30 

This represents the lower engine load associated with SC conditions. The remaining 50% of the 

expected fuel is not discarded, rather it is virtually stored as a fuel saving buffer. After the VSC phase 

ends, this stored fuel is automatically redistributed across the remaining race distance. At each 

subsequent lap, the simulator recalculates the per-lap fuel consumption as: 

𝐵𝑓𝑢𝑒𝑙,𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =
𝑚𝑓𝑢𝑒𝑙,𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔

𝑛𝑙𝑎𝑝𝑠,𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔
 

Equation 5.31 

Where: 

• 𝑚𝑓𝑢𝑒𝑙,𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 is the driver’s fuel level at the end of the SC phase, 

• 𝑛𝑙𝑎𝑝𝑠,𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 is the number of laps left. 

This 

Equation 5.8 as follows in Equation 5.32: 

𝑡𝑡𝑖𝑟𝑒(𝑎𝑡𝑖𝑟𝑒 , 𝑐𝑡𝑖𝑟𝑒) = (0.5 ⋅  𝑎𝑡𝑖𝑟𝑒)
2 ⋅ 𝑘1,𝑞𝑢𝑎𝑑(𝑐𝑡𝑖𝑟𝑒) + (0.5 ⋅ 𝑎𝑡𝑖𝑟𝑒) ⋅ 𝑘2,𝑞𝑢𝑎𝑑(𝑐𝑡𝑖𝑟𝑒) + 𝑘3(𝑐𝑡𝑖𝑟𝑒) 

Equation 5.32 

However, since VSC phases can begin or end at any moment within a lap, the simulation must account 

for partial-lap effects. In such cases, the lap is segmented into two fractions: 

𝑓𝑛𝑜𝑟𝑚𝑎𝑙 =
𝑡𝑠𝑡𝑎𝑟𝑡
𝑉𝑆𝐶 − 𝑡𝑒𝑛𝑑

𝑙𝑎𝑝−1

𝑡𝑙𝑎𝑝,𝑛𝑜𝑟𝑚𝑎𝑙
 

Equation 5.33 

𝑓𝑉𝑆𝐶 = 1 − 𝑓𝑛𝑜𝑟𝑚𝑎𝑙 

Equation 5.34 

Equation 5.33 and Equation 5.34 apply when a VSC phase begins during the current lap but was not 

active in the previous one, resulting in the lap time being defined as in Equation 5.35:  

𝑡𝑙𝑎𝑝 = 𝑓𝑛𝑜𝑟𝑚𝑎𝑙 ⋅ 𝑡𝑙𝑎𝑝,𝑛𝑜𝑟𝑚𝑎𝑙 + 𝑓𝑉𝑆𝐶 ⋅ 𝑡𝑙𝑎𝑝,𝑉𝑆𝐶 

Equation 5.35 
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If the VSC covers the entire lap, then 𝑓𝑛𝑜𝑟𝑚𝑎𝑙 = 0 and 𝑓𝑉𝑆𝐶 = 1, resulting in the lap time being fully 

defined by 𝑡𝑙𝑎𝑝,𝑉𝑆𝐶. 

In these expressions: 

• 𝑡𝑠𝑡𝑎𝑟𝑡
𝑉𝑆𝐶  denotes the race time at which the VSC phase begins, 

• 𝑡𝑒𝑛𝑑
𝑙𝑎𝑝−1

 refers to the race time of the driver at the end of the previous lap, 

• 𝑡𝑙𝑎𝑝,𝑛𝑜𝑟𝑚𝑎𝑙 is the driver’s normal lap time under green flag conditions, 

• 𝑡𝑙𝑎𝑝,𝑉𝑆𝐶 is the lap time computed with the VSC correction. 

These parameters are then used in the simulator to dynamically adjust lap times for each driver 

depending on when the VSC phase begins relative to their current position on track.  

This formulation allows the simulation to replicate the partial and dynamic effects of a VSC phase 

with high fidelity, reinforcing the stochastic realism of the race environment without compromising 

computational efficiency. 

 

5.8.5 SC Modelling and Implementation 

 

SC phase is one of the most impactful and strategically significant events in a Formula One Grand 

Prix. When deployed, the SC physically enters the race track to neutralize the event, requiring all 

drivers to slow down and form a queue. This results in the compression of gaps between competitors 

and the suspension of on-track battles, leading to a reset of race dynamics. In order to capture this 

phenomenon within a simulation environment, a model known as the SC Ghost (SCG) has been 

adopted, following the methodology introduced by Heilmeier [4]. 

Unlike a real-world SC that influences all drivers at once, the SCG model created a fictitious version 

of the SC for each individual driver. This is needed because the simulator processes the race in 

discrete laps. In a real race, a driver’s location on the track at the moment the SC is deployed 

determines when they are affected. If a single SC model is applied to all the drivers simultaneously, 

those who were lapped or in different parts of the track would not experience the SC phase accurately, 

which is the case of a lapped driver who might end up being slowed down one full lap too early. The 

SCG approach, together with the conversion in race time of the SC start though a pre-simulation as 

mentioned in Chapter 5.8.3.3, ensure that the SC phase starts at the correct absolute moment for 

everyone, no matter their track position. 

The SCG becomes active for a driver once their cumulative race time exceeds the predefined SC start 

time. From this moment, the simulation enters a two-stage process, as it is better illustrated: 

• Run-up stage: The driver slows down to a lap time equivalent to FCY conditions. This is 

meant to simulate the reduced pace needed to approach and eventually reach the SCG, which 

drives at a slower pace than the drivers to bunch them up, 

• Following stage: After a few laps, the driver catches up to the SCG, which drives at a lap time 

set to 160% of the base lap time, defined in Equation 5.36 [4]. During this stage, the driver 

must remain behind the SCG and cannot overtake it. Their progress becomes synchronized 

with the ghost, reproducing the real-world situation where drivers follow the SC in formation. 

𝑡𝑙𝑎𝑝,𝑆𝐶𝐺 = 1.6 ⋅ 𝑡𝑏𝑎𝑠𝑒 

Equation 5.36 
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Figure 5.16: Illustration of the SCG concept, highlighting the normal, run-up and following stages [4] 

During the SC phase, several important race dynamics are altered. First, normal fuel consumption is 

applied until the SC phase begins. From that point on, fuel usage is reduced to 25% of its nominal 

value [4], as it is shown in Equation 5.29:  

𝐵𝑓𝑢𝑒𝑙,𝑆𝐶 = 0.25 ⋅ 𝐵𝑓𝑢𝑒𝑙,𝑛𝑜𝑟𝑚𝑎𝑙 

Equation 5.37 

Adjusting the fuel mass consumed during SC conditions as:  

𝑚𝑓𝑢𝑒𝑙,𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑,𝑆𝐶(𝑙) = 𝐵𝑓𝑢𝑒𝑙,𝑆𝐶 ⋅ 𝑙 = 0.25 ⋅ 𝑚𝑓𝑢𝑒𝑙,𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑,𝑛𝑜𝑟𝑚𝑎𝑙(𝑙)  

Equation 5.38 

This represents the lower engine load associated with SC conditions. The remaining 75% of the 

expected fuel is not discarded, rather it is virtually stored as a fuel saving buffer. After the SC phase 

ends, this stored fuel is automatically redistributed across the remaining race distance. At each 

subsequent lap, the simulator recalculates the per-lap fuel consumption in the same way as previously 

mentioned in Equation 5.31. 

This ensures a smooth consumption of the entire tank by the end of the race, keeping energy balance 

consistent. 

A similar approach is used to model tire degradation reduction. During SC conditions, the simulator scales the rate to only 

25% of a lap, according to Heilmeier’s research [4]. This is achieved by increasing the lap counter used to identify the tire 

age inside the degradation function by 0.25 rather than 1.0 per lap, modifying 𝑡𝑡𝑖𝑟𝑒,𝑞𝑢𝑎𝑑(𝑎𝑡𝑖𝑟𝑒 , 𝑐𝑡𝑖𝑟𝑒) = 𝑎𝑡𝑖𝑟𝑒
2 ⋅

𝑘1,𝑞𝑢𝑎𝑑 + 𝑎𝑡𝑖𝑟𝑒 ⋅ 𝑘2,𝑞𝑢𝑎𝑑(𝑐𝑡𝑖𝑟𝑒) + 𝑘3(𝑐𝑡𝑖𝑟𝑒) 

Equation 5.8 as it is shown in Equation 5.39: 

𝑡𝑡𝑖𝑟𝑒(𝑎𝑡𝑖𝑟𝑒 , 𝑐𝑡𝑖𝑟𝑒) = (0.25 ⋅  𝑎𝑡𝑖𝑟𝑒)
2 ⋅ 𝑘1,𝑞𝑢𝑎𝑑(𝑐𝑡𝑖𝑟𝑒) + (0.25 ⋅ 𝑎𝑡𝑖𝑟𝑒) ⋅ 𝑘2,𝑞𝑢𝑎𝑑(𝑐𝑡𝑖𝑟𝑒) + 𝑘3(𝑐𝑡𝑖𝑟𝑒) 

Equation 5.39 

Because the tire model is quadratic with respect to the lap counter, this modelling approach results in a 

realistic mitigation of performance loss. 

In scenarios where the SC phase begins within a lap (i.e. not precisely at the lap boundary), partial-lap 

handling is necessary. This approach, identical to what has been defined for the VSC in Chapter 5.8.4, 

involves computing two fractions: 

• 𝑓𝑛𝑜𝑟𝑚𝑎𝑙 is the portion of the lap completed before the SC starts, 
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• 𝑓𝑆𝐶 = 1 − 𝑓𝑛𝑜𝑟𝑚𝑎𝑙 is the portion affected by the SC phase. 

The resulting mixed lap time 𝑡𝑙𝑎𝑝 is then computed by weighting the normal and SC-affected 

durations, as show in Chapter 5.8.4, Equation 5.35 (recalling that if the SC phase involves the entire 

lap, 𝑓𝑛𝑜𝑟𝑚𝑎𝑙 = 0 and 𝑓𝑆𝐶 = 1).  

As the race proceeds, each driver continues catching their respective SCG. Once the driver’s 

cumulative race time becomes less than or equal to that of the ghost, the simulator enforces a lock on 

their position, preventing any virtual overtaking. The driver is now considered to be in the following 

stage, not in the run-up stage anymore. 

To reproduce the characteristic bunching effect observed during SC phases, the simulator applies a 

minimum temporal gap between drivers based on their on-track position. This ensures that the field 

compresses but does not overlap, maintaining a realistic restart formation. The time gap per driver is 

defined as in Equation 5.40: 

𝑡𝑔𝑎𝑝,𝑖 = 𝑝𝑖 ⋅ 𝑡𝑔𝑎𝑝,𝑆𝐶 

Equation 5.40 

Where: 

• 𝑝𝑖 is the driver’s position in the current race order, 

• 𝑡𝑔𝑎𝑝,𝑆𝐶 is the spacing unit. 

The minimum spacing unit is defined in Equation 5.41 as: 

𝑡𝑔𝑎𝑝,𝑆𝐶 =
10 ⋅ 𝐿𝑐𝑎𝑟
𝐿𝑙𝑎𝑝

⋅ 𝑡𝑙𝑎𝑝,𝑆𝐶𝐺 

Equation 5.41 

This formulation reflects a core requirement from the FIA Formula One Sporting Regulations, which 

state that during a SC period, drivers must not fall more than 10 car lengths behind the car ahead while 

following the SC [25]. Given that a typical Formula One car length 𝐿𝑐𝑎𝑟 is approximately 5.65 meters 

[26], this leads to a spacing of 56.5 meters. To adapt this rule to any circuit, the model divides this 

length by the lap length 𝐿𝑙𝑎𝑝 deriving the proportion of a full lap that this gap represents. This fraction 

is then scaled by the SCG lap time 𝑡𝑙𝑎𝑝,𝑆𝐶𝐺 (defined in Equation 5.36) to yield consistent time-based 

gap. This ensures that the spacing remains physically and strategically accurate across tracks of 

varying lengths. 

At the conclusion of the SC phase, the SCG is deactivated for each driver at the end of that lap. The 

entire procedure captures the strategic implication of the SC, including compressed fields, neutralized 

gaps and reduced fuel consumption and tire wear, in a manner that is both computationally robust and 

more realistic. 

 

 

 

5.8.6 Pit Stop Time Loss Adjustments 

 

Pit stops represent a critical tactical moment in any Formula One race and their associated time loss 

plays a major role in shaping race outcomes. Under normal green flag conditions, the in-lap and out-

lap of a pit stop contribute significantly to the total time loss. However, during FCY conditions, this 
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time loss is substantially reduced. The simulation therefore incorporates a refined model that 

dynamically adjusts the pit entry and exit penalties whenever a stop occurs under FCY conditions. 

According to Heilmeier’s analysis [4], cockpit camera footage from the 2018 and 2019 Formula One 

seasons (sourced from F1TV [14]) was used to empirically determine the reduction in pit stop time 

loss under neutralized conditions. The findings revealed that the in-lap and out-lap time losses under 

SC and VSC phases were considerably lower than during green flag laps. For instance, during the 

2019 Spanish Grand Prix, the time lost entering and exiting the pit lane dropped from 19.04 seconds in 

normal conditions to 10.03 seconds under VSC and just 7.88 seconds under SC conditions. 

In reality, these values are track-dependent and not always available, therefore the simulator 

generalizes these effects using practical multipliers: 

𝑡𝑝𝑖𝑡,𝑖𝑛/𝑜𝑢𝑡,𝑉𝑆𝐶 = 0.5 ÷ 0.7 ⋅  𝑡𝑝𝑖𝑡,𝑖𝑛/𝑜𝑢𝑡 

Equation 5.42 

𝑡𝑝𝑖𝑡,𝑖𝑛/𝑜𝑢𝑡,𝑆𝐶 = 0.4÷ 0.6 ⋅ 𝑡𝑝𝑖𝑡,𝑖𝑛/𝑜𝑢𝑡 

Equation 5.43 

This reduction is justified by the fact that while the field is slowed on track, the pit lane speed limit 

remains constant. As a result, drivers pitting during a neutralization phase gain an effective advantage, 

losing less time relative to their competitors. 

In addition to dynamically scaling pit time losses, the simulator features a proactive pit strategy 

adaptation mechanism. This approach goes beyond Heilmeier’s original model by allowing pit stops to 

be anticipated if a VSC or SC period begins within a short window before the originally planned stop. 

Specifically, if the difference between the lap at which a FCY phase begins and the driver’s originally 

planned pit stop is within a range of approximately two to five laps [27], a window which is consistent 

with real-world strategic planning for potential SC interventions, the simulator anticipates the stop and 

executes it in the current lap. This adjustment reflects real-world strategic practices where teams 

exploit neutralized conditions to minimize time loss during pit stops. In practical racing operations, 

strategy teams continuously evaluate scenarios in which a SC might be deployed in the subsequent 

laps. They proactively determine whether a stop under these conditions would offer a competitive 

advantage. When the team judges that pitting under a SC would be beneficial, the driver is informed 

that they are in the SC window. This communication ensures that the driver can pit immediately 

without requiring further confirmation, while the pit crew stands by ready to perform the stop as soon 

as the SC is deployed. Once the stop is moved forward, the tire compound and stint number are 

updated accordingly. For multi-stop strategies, subsequent scheduled stops are adjusted in parallel to 

maintain consistent stint distribution across the race. 

This approach captures the dynamic nature of Formula One race strategy, where teams often 

reconsider their scheduled pit stops to take advantage of the reduced pit lane time loss during FCY 

phases.  
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5.9 Overtaking Model 
 

Among the most dynamic and impactful aspects of Formula One race, overtaking maneuvers represent 

a vital feature in shaping race outcomes. Unlike deterministic lap time simulations that evolve in 

isolation, a realistic race simulator must also consider the interactions between competitors sharing the 

track. For this reason, a dedicated overtaking model is introduced within the simulator to reflect both 

strategic and stochastic influences behind positional changes during the race. 

The core purpose of including an overtaking model is to simulate how trailing drivers may attempt to 

pass a leading competitor, under defined conditions that regulate both the feasibility and the 

probability of success. These interactions are not only central to the realism of a race simulation but 

also serve to influence cumulative lap times and final classifications. 

The overtaking logic implemented in this simulator is based on the model proposed by Sulsters [5] and 

integrates additional design insights taken from Heilmeier [3] and Bekker [13]. 

 

5.9.1 Main Overtaking Parameters 

 

A successful overtaking maneuver is governed by a structured set of conditions and parameters, as 

explained by Sulsters’ work [5]: 

• Minimum time difference 𝛿𝑚𝑖𝑛 is the closest permissible distance between two cars and it 

ensures that no driver may be unrealistically close to each other in cumulative race time 

(𝛿𝑚𝑖𝑛 = 0.2𝑠), 

• Overtaking threshold 𝛼𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒 combines both the strategic complexity of a specific track and 

the necessary performance gap between competitors. First, it acts as a strict requirement: a 

driver behind must be fast enough relative to the car in front to justify an overtaking attempt. 

Second, it reflects how difficult overtaking is at a particular circuit. For example, narrow and 

twisty tracks will typically have much smaller 𝛼𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒 (its value must always be negative), 

making overtakes rare, while circuits with long straights will allow a more permissive value. 

Mathematically, an overtaking attempt can only happen if the race time gap 

𝛿𝑡𝑟𝑎𝑖𝑙𝑖𝑛𝑔/𝑙𝑒𝑎𝑑𝑖𝑛𝑔 between the trailing and leading driver is more negative than the following 

threshold: 

𝛿𝑡𝑟𝑎𝑖𝑙𝑖𝑛𝑔/𝑙𝑒𝑎𝑑𝑖𝑛𝑔 = 𝑡𝑡𝑟𝑎𝑖𝑙𝑖𝑛𝑔 − 𝑡𝑙𝑒𝑎𝑑𝑖𝑛𝑔 < 𝛼𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒 ,                        𝛼𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒 < 0 

Equation 5.44 

𝛼𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒 is track-dependent and it is derived using a linear interpolation based on the number 

of overtakes recorded at each track during the 2022 season [28]. The formulation is defined as: 

𝛼𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒 = −0.6 + 0.4 ⋅
𝑁𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒𝑠 −𝑁𝑚𝑖𝑛

𝑁𝑚𝑎𝑥 −𝑁𝑚𝑖𝑛
 

Equation 5.45 

 Where: 

o 𝑁𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒𝑠 denotes the number of on-track overtakes observed at a given circuit, 

o 𝑁𝑚𝑖𝑛 and 𝑁𝑚𝑎𝑥 represent the minimum and maximum number of on-track overtakes 

across all circuits considered, 
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o 𝐶 ⋅
𝑁𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒𝑠−𝑁𝑚𝑖𝑛

𝑁𝑚𝑎𝑥−𝑁𝑚𝑖𝑛
 represents the normalization of the number of overtakes into a [0,1] 

range, equal to 0 when 𝑁𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒𝑠 = 𝑁𝑚𝑖𝑛 and equal to 1 when 𝑁𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒𝑠 = 𝑁𝑚𝑎𝑥. 

The resulting value is constrained within the arbitrary range [-0.6, -0.2], with more negative 

values assigned to circuits where overtaking is rare (i.e. Monaco Grand Prix) and less negative 

values where overtaking is more frequent (i.e. Brazilian Grand Prix). All circuits are 

interpolated linearly between these two extremes.  

This approach ensures that 𝛼𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒 becomes more permissive (closer to zero) as the 

overtaking tendency of a circuit increases, requiring less lap time gap between trailing and 

leading drivers. Conversely, circuits that historically exhibit fewer passing opportunities 

impose stricter conditions, requiring the trailing driver to demonstrate a more significant pace 

advantage to initiate an overtaking maneuver. This continuous scaling guarantees consistency 

between real-world overtaking patterns and simulated race dynamics. 

• Overtaking probability 𝑃𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒 determines, once an overtaking window is validated by 

𝛼𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒, whether the attempt is successful. Also, the probability 𝑃𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒 is track-

dependent. 

0 ≤ 𝑃𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒 ≤ 1 

Equation 5.46 

Similarly to 𝛼𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒, the probability of successful overtaking maneuver 𝑃𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒 is 

computed using a linear scaling based on the same overtaking reference dataset. Its 

formulation is given by: 

𝑃𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒 = 0.2 + 0.4 ⋅
𝑁𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒 −𝑁𝑚𝑖𝑛

𝑁𝑚𝑎𝑥 −𝑁𝑚𝑖𝑛
 

Equation 5.47 

The resulting probability is constrained within the arbitrary interval [0.2, 0.6], where higher 

values correspond to circuits that historically allow easier and more frequent overtakes (like 

Austria and Bahrain), while lower values reflect more layout-constrained venues (like Monaco 

and Singapore). All circuits are interpolated linearly between these two extremes. 

This scaling captures the intrinsic likelihood that a valid overtaking attempt, once permitted by 

the 𝛼𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒 threshold, will actually succeed.  

• Overtaking time penalties 𝑡𝑤𝑖𝑛 and 𝑡𝑙𝑜𝑠𝑒 are assigned to respectively the overtaking and 

overtaken drivers due to sub-optimal racing lines performed due to the overtake. In particular, 

they are defined as: 

𝑡𝑤𝑖𝑛 < 𝑡𝑙𝑜𝑠𝑒 ,                                 𝑡𝑤𝑖𝑛/𝑙𝑜𝑠𝑒 > 0 

Equation 5.48 

• Drag Reduction System (DRS) activation window 𝑡𝐷𝑅𝑆,𝑤𝑖𝑛𝑑𝑜𝑤 identifies the time gap between 

the leading and the trailing car to allow the trailing car to activate the DRS (by FIA 

regulations, 𝑡𝐷𝑅𝑆,𝑤𝑖𝑛𝑑𝑜𝑤 = 1 𝑠). If the trailing driver is able to stay below the 𝑡𝐷𝑅𝑆,𝑤𝑖𝑛𝑑𝑜𝑤, 

then he can activate the DRS to facilitate the overtaking maneuver. The DRS is a mechanical 

system controlled by the driver in pre-determined zones of the circuit, which allows the upper 

flap of the rear wing to be opened in order to reduce drag, thus increasing speed along the 

straights [29]. DRS effect 𝑡𝐷𝑅𝑆,𝑒𝑓𝑓𝑒𝑐𝑡 exploits the gain in lap time due to an activated DRS, 

modelled as a negative contribution. If the trailing car is not fast enough to trigger an 
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overtaking attempt but it is within the DRS activation window, it receives the DRS effect 

bonus in the following lap, in order to give a more distinct advantage to attempt the overtake. 

Therefore, considering all the boundary conditions to allow the overtake being performed, the overall 

time loss generated by an overtaking maneuver is modelled in Equation 5.49 as the sum of the DRS 

effect, if present, and the imposed overtaking penalties: 

𝑡𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒 = 𝑡𝐷𝑅𝑆,𝑒𝑓𝑓𝑒𝑐𝑡 + 𝑡𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒,𝑤𝑖𝑛/𝑙𝑜𝑠𝑒 

Equation 5.49 

The circuit-specific values of 𝛼𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒 and 𝑃𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒, computed using the formulations detailed in 

Equation 5.45 and Equation 5.47 respectively, are reported in Chapter 10, Table 10.5. These values are 

derived directly from historical overtaking data and serve as calibrated input parameters for each race 

circuit modelled in the simulation. 

It is important to highlight that overtaking attempts are explicitly forbidden during FCY phases. This 

aligns with real-world FIA regulations, where such periods are meant to neutralize the race and ensure 

on-track safety. When such conditions are active, the simulation freezes all positional dynamics and 

maintains the race order as inherited from the previous lap. 

 

5.9.2 Simulation Flow and Execution Logic 

 

Once the individual lap times are computed for each driver, the overtaking logic is executed following 

a stepwise flow that captures both structural and probabilistic racing dynamics. 

The first check evaluates whether a FCY phase is active during the current lap. In such cases, 

overtaking is entirely disabled and the order of drivers is preserved exactly as it was at the end of the 

previous lap. This condition ensures compliance with race-neutralization protocols, as seen in actual 

FIA regulations. 

If no FCY is active, the simulation proceeds to evaluate potential overtaking situations. For each pair 

of consecutive drivers in the race order, the model first computes the relative time gap. It then verifies 

whether the trailing driver meets the circuit-specific overtaking threshold, 𝛼𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒. This step ensures 

that the following car is not only behind in track position, but also sufficiently faster in pace to justify 

a pass attempt. 

When the threshold condition is satisfied, the model introduces a probabilistic element by performing 

a random draw governed by the probability parameter 𝑃𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒. This models the uncertainty and 

competitive nature of real overtaking attempts, where success is not guaranteed even with a 

performance advantage. 

If the overtake is successful, the positions of the two drivers are swapped. In addition, overtaking time 

penalties are applied: the overtaking driver receives a smaller time increment 𝑡𝑤𝑖𝑛, while the overtaken 

driver incurs a slightly larger penalty 𝑡𝑙𝑜𝑠𝑒. These penalties reflect the time cost of deviating from the 

optimal racing line during a positional battle. The updated lap times are then added to each driver’s 

cumulative race time. 

In the case of a failed overtake, the trailing driver is flagged as DRS-eligible for the next lap, assuming 

the current time gap lies within the DRS activation window 𝑡𝐷𝑅𝑆,𝑤𝑖𝑛𝑑𝑜𝑤. This models the advantage a 

car can gain in subsequent attempts due to reduced aerodynamic assistance. 

This simulation structure ensures overtaking is only processed when a driver is demonstrably faster, 

positioned close enough and statistically fortunate to convert the move. Each overtaking event, 
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whether successful or failed, is logged within a summary structure that tracks total attempts and 

completed maneuvers, to be used in post-race analysis. 

To further clarify the interaction between overtaking conditions, Figure 5.17 [5] illustrates the logic of 

the overtaking model through a visual representation. In the figure, driver 𝑑𝑗 denotes the leading care, 

while driver 𝑑𝑘 represents the trailing car attempting an overtake. 

The vertical arrows show the difference in cumulative race time between two drivers at the end of a 

given lap. For an overtaking attempt to be considered, the trailing driver must be faster than the 

leading one by an amount exceeding the overtaking threshold 𝛼𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒, indicated on the left of the 

picture. This situation is shown in the left portion of the diagram, where the time delta between the 

leading and trailing drivers is 𝛿𝑗,𝑘 < 𝛼𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒, allowing a probabilistic check for overtaking to occur. 

If this probabilistic check is passed, the positions are switched, as shown in the center part of Figure 

5.17, where the red car is overtaken by the blue car. However, if the time gap is insufficient or the 

overtake attempt fails the probabilistic condition, the drivers retain their original order, as shown in the 

right-hand side of the picture. In both scenarios, the model ensures that a minimum time gap 𝛿𝑚𝑖𝑛 is 

respected to maintain physical plausibility. 

 

Figure 5.17: Visual representation of the overtaking model between a leading driver 𝑑𝑗  and a trailing driver 𝑑𝑘 [5]  
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6 Simulation Results 

After the complete definition of all necessary parameters, the simulator is now ready to be employed 

in a real-case scenario. This chapter presents the results obtained from a single simulation instance. 

Rather than focusing on statistical ensembles or Monte Carlo simulations at this stage, performing 

multiple instances of the main simulation, the objective here is to provide a clear and through 

walkthrough of what the simulator performs, how it processes input data and what kind of information 

is extracted after the race is completed. The complete race simulation process is driven by a sequence 

of coordinated actions executed in a modular and scalable framework. This section details, in a 

comprehensive and discursive manner, the entire simulation pipeline: from global initialization to the 

lap-by-lap progression and final result computation. Each step mirrors the real-world dynamics and 

uncertainties of Formula One racing, relying on functions described in the previous chapters. 

MATLAB has been chosen as the reference environment on which the simulator will run.  
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6.1 Pre-Requisite Actions Before Simulation Start 
 

The simulation begins by associating each driver with the corresponding team. This association is one 

of the core inputs required by the simulator, since this linkage is not only essential for preserving the 

structure of the actual race grid, but it also enables the simulator to correctly retrieve all team-

dependent and driver-dependent parameters throughout the simulation and combine them when useful. 

For instance, pit stop behavior is inherently tied to team affiliation, as each team exhibits its own 

performance distribution during pit operations. Consequently, accurate team-driver mapping ensures 

the simulator assigns realistic pit stop outcomes and strategic dynamics to the right driver and team at 

the same time, faithfully replicating the operational differences observed across the Formula One field. 

Subsequently, the circuit where the simulation will be executed is selected. This input is used to 

retrieve several circuit-specific parameters: lap length, total number of laps, pit lane travel time and 

Pirelli C-compound selection for the race weekend. These compound mappings are particularly 

important, as they allow the simulator to switch between the local compound nomenclature (SOFT, 

MEDIUM, HARD) to the C0-C5 classification issued by Pirelli for each venue. These parameters are 

critical to accurately reflect the unique characteristics of each Grand Prix venue and are used 

throughout the simulation to define the time evolution of a driver’s performance. Among the most 

important are the tire degradation coefficients, which include both quadratic and linear terms obtained 

from race data analysis associated to each compound of the 2023 Formula One season, varying from 

circuit to circuit. In parallel, the fuel consumption model is also tailored to each circuit based on its lap 

length and number of laps, governing the lap time impact of decreasing car weight across the race 

distance. It is crucial to emphasize that the simulator is limited to dry weather conditions only and any 

circuits marked as wet in the database are automatically excluded from valid simulation runs. This 

constraint reflects a limitation of the modelling approach, which does not account for variation of the 

previously computed parameters under wet conditions. 

In order to maintain realism and accuracy, the simulator incorporates logic to account for mid-season 

driver swaps, as occurred in the Formula One championship regarding drivers such as Nyck de Vries, 

Daniel Ricciardo and Liam Lawson who all replaced each other during some of the races of the 2023 

season. The simulator ensures that only drivers who actually participated in the chosen circuit’s Grand 

Prix are included in the simulation, by filtering out invalid pairings based on historical race data. This 

allows the use of circuit-specific performance data, such as qualifying lap times and tire degradation 

profiles, which are otherwise unavailable for non-participating drivers. 

One of the most critical aspects in configuring the simulation is the initial race strategy definition for 

each driver. The simulator assumes that the strategy is known before the race begins and that it will 

not change unless specific race conditions arise (such as the deployment of a FCY phase). The strategy 

includes a series of structured inputs: the number of planned pit stops, the starting compound and the 

compound fitted during the pit stops. The compound inputs are defined by using the local circuit 

nomenclature SOFT, MEDIUM, HARD and automatically adjusted to C-compound nomenclature to 

fit the specifications for the selected circuit. In addition to the compound choices, the timing of each 

pit stop is also defined as a fraction of the total race distance. According to inferred strategy ranges, 

SOFT tires are assumed to last between 17% and 23% of the race, MEDIUM tires between 29% and 

37% and HARD tires between 41% and 64%. These figures are not officially published by the FIA or 

Pirelli but are derived from strategic analyses of past races and race engineering practices [2]. 

In order to enhance realism, the simulator also includes logic to handle teammate pit stop overlaps. In 

Formula One, teammates share the same physical pit box during the race and double stacking (pitting 

both cars on the same lap) is generally avoided unless under exceptional circumstances (like FCY 

deployment). The simulator checks whether both drivers from the same team are scheduled to stop at 

the same lap. If so, the system prioritizes the driver ahead on track, allowing him to pit on the intended 
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lap, while delaying the second driver’s stop by one lap. The strategy plan is automatically updated to 

reflect this change, ensuring that pit stop congestion is avoided without introducing performance 

penalties that would be unrealistic under normal race operations. 

At the end of this initialization phase, the simulator provides a summary table for each driver, showing 

their assigned strategy. The table includes the driver abbreviation, the associated team, the number of 

planned stops and the compounds mounted at each race phase. A simplified example is shown in 

Table 6.1: 

Table 6.1: Example of a summary table related to driver-specific expected race strategy input 

Circuit Italian Grand Prix 

Driver Charles Leclerc 

Team Ferrari 

Expected Number of Pit Stops 2 

Starting Compound MEDIUM (C4) 

Expected First Stop Lap 14 

First Stop Compound HARD (C3) 

Expected Second Stop Lap 34 

Second Stop Compound HARD (C3) 

 

This table serves not only as a confirmation of the input parameters but also as a reference to verify 

the consistency and correctness before launching the actual race simulation. Once all preconditions are 

satisfied, the simulation can proceed to compute lap-by-lap race performance, incorporating all 

physical models and stochastic elements described in the previous chapters.  
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6.2 Main Simulation Workflow 
 

After the initialization of the circuit-specific parameters, driver-teams association and the driver-

specific race strategy inputs, the main simulation workflow can be exploited. The successive steps 

following the pre-requisite inputs are: 

1. FCY deployment check, 

2. Pre-simulation for FCY time estimation start, 

3. Driver-specific initialization, 

4. Lap-by-lap simulation core loop. 

In this section each step will be treated and explained separately. 

 

6.2.1 FCY Deployment Check 

 

Before the actual simulation begins, the system probabilistically determines whether a SC or a VSC 

phase will be deployed during the race. These stochastic events are modelled using probability 

distributions drawn from historical data [4, 5]. The SC deployment is directly linked to the occurrence 

of an accident and the simulator uses a predefined probability distribution to determine which driver is 

likely to be involved based on lap-specific accident likelihood. In contrast, VSC phases are only 

considered if a driver suffers a mechanical failure. However, not all failure events trigger a VSC: the 

simulator evaluates the failure against an independent probability threshold to decide whether it 

warrants a race neutralization. Once triggered, the SC or VSC start lap and duration are selected from 

empirical distributions and a driver is designated as the source of the incident. Overlap between SC 

and VSC phases is actively avoided by designated control logic. 

 

6.2.2 Pre-Simulation for FCY Time Estimation Start 

 

To accurately map race progress into temporal values, a pre-simulation is performed for a reference 

driver. This step estimates the clean lap time and the cumulative race time vector, allowing SC and 

VSC triggers to be converted from fractional laps to seconds, in order to allow every driver, 

independently from their race location and position, to be affected by the FCY phase at the same time 

as everyone else. 

 

6.2.3 Driver-Specific Initialization 

 

Each valid driver in the simulation is initialized individually. This involves: 

• Assigning the race strategy and tire plan, 

• Retrieving the base lap time for the selected circuit, 

• Loading tire degradation coefficients relative to the selected circuit (both quadratic and linear), 

• Computing launch delays from the grid based on grid slots obtained by qualifying results and 

individual performance randomness, 

• Retrieving team-based pit stop timing parameters. 

All these values are stored by the simulator in order to track each state evolution for each driver across 

laps. 
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6.2.4 Lap-by-Lap Simulation Core Loop 

 

 

Figure 6.1: Race simulation workflow [4] 

The race progresses lap by lap. At each lap, the following processes occur sequentially: 

1. Driver-specific Lap Time Simulation 

Each driver completes one simulated lap through the internal routine responsible for lap time 

computation. This step combines circuit-specific pace, tire degradation effects, remaining fuel 

load, pit stop windows and random performance variability. Lap time simulation is adapted in 

case of first lap actions (it adds the starting performance contribution), in case of FCY phases 

(it slows down the pace of the remaining drivers and, eventually, adjusts the pit stop timings) 

and in case of pit stops (adds the in-lap and out-lap components). 

  

2. DNF Handling 

If a driver is designated as retired due to a failure or accident, they are removed from the 

active race pool. Retirement time and reason are stored for post-processing purposes and FCY 

typology trigger respectively. Their last entry in the lap table is marked as “RETIRED”. 

 

3. Provisional Order 

Active drivers are not yet ranked by cumulative race time, since the overtaking logic has not 

been used yet. The only applied modification concerns pitting drivers, since they are inserted 

into the order based on their expected pit loss. This ensures realistic reshuffling during pit 

phases and does not consider them into the overtaking logic. 

 

4. Overtaking Logic 

The validated order is passed to the overtaking model, which applies probabilistic overtaking 

decisions over the non-pitting drivers. This model evaluates several factors, including the 

relative tire compounds between drivers, the time gap separating them and circuit-specific 

overtaking coefficient. A probabilistic function determines whether an overtaking attempt is 

initiated and, if successful, it adjusts the relative time performances accordingly. Furthermore, 

minimum enforced gaps are imposed in the case of failed overtakes to simulate the 

aerodynamic and strategic penalties associated with close racing without position change. This 

logic ensures that overtakes occur only through these authorized simulation steps. The 

overtaking logic also freezes the pecking order in case of SC and VSC phases, since 

overtaking is forbidden during such conditions. 
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5. Position Updates 

The final classification for the lap is recorder. Position changes are logged, the leader is 

identified and each driver’s lap result is stored in a cumulative table, recording cumulative and 

lap-specific times, tire compound, tire age, fuel level, pit status and race position. A 

consistency check ensures that no driver is erroneously classified ahead of a competitor with a 

faster total time. 

This process results in a complete race timeline, compound usage trace and performance breakdown 

per driver, ready for post-simulation visualization and statistical analysis. In Figure 6.1 is shown the 

simulation workflow regarding a single simulation, highlighting the input parameters to be fed into the 

simulation, the main simulation loop and the output parameters. 
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6.3 Visual Representation of a Single Simulation Without FCY Phases 
 

Following the execution of a single race simulation, performed under dry conditions and without any 

FCY phases, a variety of tables and graphs are generated to illustrate the results in a clear and 

complete way. These outputs are designed to help understand how the race developed over time, what 

strategies were used and how each driver performed. 

The first important output in analyzing the race simulation is the lap-by-lap table for each driver. 

While the full simulation naturally includes data for every lap completed by every driver, only a 

selection of representative laps is presented in the final report for clarity and readability. Table 6.2 

offers a snapshot of this information and includes key race parameters such as the lap time, the 

cumulative race time up to that point, the driver’s position at the end of the lap, the fitted tire 

compound, the current tire age, the remaining fuel level and flag that indicate whether a given lap is an 

in-lap or an out-lap. 

This table plays a crucial role in helping the reader reconstruct the driver’s race in detail. By following 

the sequence of laps, it is possible to track the progression of time and race events for a specific driver 

across the entire race distance. The lap number clearly indicates the current stage of race, while the 

individual lap time shows the duration required to complete that specific lap. Importantly, the 

cumulative race time aggregates all completed lap times up to that point, providing a real-time 

indication of how the driver’s total performance is building up over the course of the event. 

Several aspects stand out when analyzing the timing data. For example, the first lap is typically 

affected by the initial mixing at the start, where drivers accelerate from standstill and are subjected to 

more interactions between each other. This leads to a longer lap time compared to the following laps, 

as it includes the time spent launching from the grid, finding position and reaching race speed. This 

initial time loss is consistent with real-world race behavior and is accurately reflected in the 

simulation. 

Further into the race, other timing variations become evident through pit stop operations. When a 

driver is about to enter the pit lane, he/she is no longer driving at full racing speed for part of the lap, 

leading to a moderate increase in lap time due to deceleration and pit entry maneuvers. On the 

subsequent lap, the driver exits the pit lane after the crew performs the pit stop. This lap typically 

exhibits a significantly longer lap time, as it includes the time lost in the pit lane, comprising pit lane 

travel, service duration and the return to racing speed. The in-lap and the out-lap together capture the 

time penalty associated with a pit stop. 

Another key aspect visible in the table is the management of tire wear, as reflected by the tire age 

parameter. Tire age increases by one with every completed lap on the same set of tires. However, 

when a pit stop is performed and a new set is mounted, regardless of whether the compound is 

different or the same, the tire age counter resets to 1 on the out-lap. This reflects the beginning of a 

new stint on fresh tires. For example, considering Lecler as the reference driver in Table 6.2, lap 13 is 

marked as his in-lap, showing that he enters the pit lane during that lap. Then, on lap 14, his out-lap is 

registered, indicating the actual pit stop and the start of his next stint. From that point onward, the 

table shows that he continues on the HARD compound, transitioning from his earlier MEDIUM stint. 

The tire age restarts accordingly and his lap times begin to evolve based on the new compound 

characteristics and reduced fuel load. 
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Table 6.2: Driver-specific (Leclerc) lap-by-lap table capturing key race metrics 

Driver Circuit Lap 
Lap  

Time [s] 

Race 

Time [s] 
Position Compound Tire Age 

Fuel  

Level [%] 

In-

Lap 

Out-

Lap 

Leclerc Italian GP 1 88.140 88.140 2 MEDIUM 1 98.08 No No 

Leclerc Italian GP 2 87.162 175.30 2 MEDIUM 2 96.15 No No 

Leclerc Italian GP 3 86.571 261.87 2 MEDIUM 3 94.23 No No 

… … … … … … … … … … … 

Leclerc Italian GP 13 87.978 1133.4 3 MEDIUM 14 73.08 Yes No 

Leclerc Italian GP 14 109.20 1242.6 11 HARD 1 71.15 No Yes 

Leclerc Italian GP 15 85.513 1328.1 9 HARD 2 69.23 No No 

… … … … … … … … … … … 

Leclerc Italian GP 52 85.21 4515.8 2 HARD 14 0 No No 

 

Another useful table is represented by the overview of the final race results for all the drivers. For each 

participant, it lists the final position, total race time, time gap to the leader, time gap to the driver in 

front, pit stop strategy and the compound used across the race (S stands for SOFT, M stands for 

MEDIUM, H stands for HARD). Table 6.3 is useful for comparing overall performance and 

understanding each driver’s strategic decisions. 

Table 6.3: Final race results for all the drivers, including several key metrics 

Circuit Driver Position 
Race 

Time [s] 

Gap To 

Leader [s] 

Gap To 

Driver 

Ahead [s]  

Pit Stop 

Strategy 

Used 

Compounds 

Italian GP Sainz 1 4511.1 [-] [-] 2 Stops M → H → H 

Italian GP Leclerc 2 4515.8 +4.7 +4.7 2 Stops M → H → H 

Italian GP Verstappen 3 4519.9 +8.8 +4.1 2 Stops M → H → H 

Italian GP Russell 4 4529.0 +17.9 +9.2 2 Stops M → H → H 

Italian GP Perez 5 4530.0 +18.9 +1.0 2 Stops M → H → H 

Italian GP Albon 6 4536.7 +25.6 +6.7 2 Stops M → H → H 

Italian GP Hamilton 7 4537.3 +26.2 +0.6 2 Stops M → H → H 

Italian GP Norris 8 4553.0 +41.9 +15.7 2 Stops M → H → H 

Italian GP Piastri 9 4554.7 +43.6 +1.7 2 Stops M → H → H 

Italian GP Alonso 10 4572.1 +61.0 +17.4 2 Stops M → H → H 

Italian GP Lawson 11 4592.6 +81.5 +20.5 2 Stops M → H → H 

Italian GP Tsunoda 12 4593.1 +82.0 +0.5 2 Stops M → H → H 

Italian GP Hulkenberg 13 4602.6 +1 Lap +9.5 2 Stops M → H → H 

Italian GP Sargeant 14 4605.2 +1 Lap +2.6 2 Stops H → M → H 
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Italian GP Bottas 15 4607.4 +1 Lap +2.3 2 Stops M → H → H 

Italian GP Zhou 16 4628.7 +1 Lap +21.2 2 Stops M → M → H 

Italian GP Magnussen 17 4637.9 +1 Lap +9.2 2 Stops M → H → H 

Italian GP Ocon 18 4639.5 +1 Lap +1.6 2 Stops M → H → H 

Italian GP Gasly 19 4644.2 +1 Lap +4.7 2 Stops M → H → M 

Italian GP Stroll 20 4651.8 +1 Lap +7.6 2 Stops M → H → H 

 

To complement the tabular outputs, several graphical representations are used to provide a clearer and 

more intuitive understanding of the race dynamics. One of the most informative among them is the 

Race Position Evolution plot in Figure 6.2, which traces the position of each driver throughout the race 

on a lap-by-lap basis. This figure enables a visual reconstruction of the race order and shows how 

positions changed over time. 

A key feature of this plot is that every position change is governed by the overtaking logic described in 

detail in Chapter 5.9. Only the overtaking driver is actively tracked in this logic, since the overtaken 

driver is passively repositioned as a consequence. However, not all position changes stem from 

overtaking attempts. In particular, reordering due to pit stops, where a driver momentarily loses 

positions while in the pit lane, is not processed through the overtaking logic and thus does not count 

toward the overtaking statistics. Similarly, positional reshuffling caused by lapping scenarios, where a 

slower driver is overtaken due to being behind on race distance, is excluded from the overtaking 

framework. 

At the end of each driver’s line in the plot, a label reports the driver’s abbreviation followed by their 

final race gap relative to the winner. This summary allows for a rapid visual interpretation of both 

finishing position and race performance. If a driver finishes the race more than one lap behind the 

winner, this is denoted explicitly as a lapped status. In such cases, the number of laps by which the 

driver has been lapped is calculated by dividing the final time gap by the base lap time. For example, a 

driver with a time gap equivalent to two base lap times will be labeled as “+2 Laps”. This provides a 

simple yet realistic reflection of race distance deficits in a consistent manner with real-world 

classification standards. 

Overall, this plot not only reflects the competitive flow of the race but also helps to isolate critical 

phases such as mid-race overtakes, pit strategy effects and late-stage performance drops or gains.  
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Figure 6.2: Lap-by-lap position changes across the whole race 

The Lap Times Race Progression plot in Figure 6.3 provides a visual summary of how each driver’s 

lap times evolve over the course of this race. This figure is particularly helpful for interpreting tire 

degradation patterns, assessing overall performance consistency and identifying the timing and 

consequences of pit stops. 

Typically, lap times exhibit a gradual upward trend within a stint, reflecting the cumulative effect of 

tire wear. As the tire compound degrades, grip levels decrease and lap times progressively increase, 

even in the presence of a reducing fuel load. This trend is especially noticeable in softer compounds. 

Superimposed on these trends are sharp spikes (sudden increase in lap time) that correspond to pit stop 

phases. These spikes a generally twofold: the first occurs during the in-lap, where the driver 

decelerates and enters the pit lane and the second, larger spike takes place during the out-lap, when the 

full duration of pit lane travel, tire change and re-acceleration to full speed is absorbed into the lap 

time. This pattern creates a characteristic signature that visually distinguishes pit stop events from 

normal racing conditions. 

By analyzing these curves, one can easily detect when each driver initiated and completed their pit 

strategy, how their pace evolved across tire stints and how performance varied in response to 

compound choice and track conditions. As such, this plot serves as a dynamic tool for evaluating 

strategic effectiveness and performance resilience throughout the race. 
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Figure 6.3: Lap times across the whole race for all the drivers 

Another helpful figure for evaluating overall race performance is the Cumulative Race Time Summary 

plot in Figure 6.4. This graph provides a compact yet comprehensive overview of the total race time 

accumulated by each driver by the end of the simulation. Each driver is represented by a horizontal 

bar, whose length corresponds to his/her final cumulative race time, allowing for direct visual 

comparison across the grid. 

At the top of the chart, the race winner is clearly identified by having the shortest race time, setting the 

benchmark for all subsequent gaps. Each remaining driver’s bar is accompanied by two reference 

values: the time gap to the winner and the time gap to the driver immediately ahead in the final 

classification. This dual gap reporting allows for an intuitive understanding of both the driver’s 

competitiveness against the front of the field and their closeness to adjacent rivals. 

In addition to timing metrics, the plot also integrates key strategic information by indicating the 

number of pit stops performed by each driver. This provides immediate context for understanding 

driver and team performance and how different strategies may have contributed to overall race time. 
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Figure 6.4: Final race summary for all the drivers regarding the time gaps to the leader and to the driver in front 

The Race Strategy Summary plot in Figure 6.5 illustrates the tire strategies adopted by each driver 

throughout the race. Each horizontal bar represents a driver’s full race stint, segmented into colored 

blocks that denote the compound used during each phase: red for SOFT, yellow for MEDIUM and 

grey for HARD. This visual format allows for a clear and immediate understanding of when tire 

changes occurred, how long each stint lasted and which compound choices were made. 

This plot is particularly valuable for comparing the diversity in race strategies across the field. Not all 

drivers followed the same tire sequence and the variation in strategy often influenced their final 

classification. A notable example is Sargeant, who concluded the opening lap in the last position. 

However, by the end of the race, he had progressed to P14, an improvement largely attributed to his 

alternative tire strategy. Unlike most of the grid, which opted for a MEDIUM → HARD → HARD 

sequence, Sargeant ran a HARD → MEDIUM → HARD strategy. This approach allowed him to 

extend his initial stint, preserve track position during early pit phases and capitalize on fresher tires 

when others were managing degradation. 

In contrast, Gasly employed a MEDIUM → HARD → MEDIUM strategy, which ultimately yielded 

less favorable results. His middle stint on the HARD compound appeared to stretch too long likely 

resulting in a drop in performance due to excessive tire wear. Although he returned to the MEDIUM 

compound for the final laps, the performance advantage it offered was insufficient to recover the time 

lost earlier in the race. This example highlights how the effectiveness of a strategy is not merely 

defined by compound selection, but also by the timing and duration of each stint. 
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Figure 6.5: Race strategy summary across the whole race for all the drivers 

In addition, overtaking activity is displayed through specific diagrams. The Overtaking Summary 

diagram in Figure 6.6 provides a concise visual record of all overtaking attempts across the entire race, 

including whether each attempt was successful or not. This plot is relatively straightforward in its 

interpretation, offering a clear overview of which drivers were more active in challenging rivals and 

how often those moves resulted in a change of position.  

The Lap-Wise On-Track Overtaking Summary plot in Figure 6.7 offers a more detailed breakdown, 

summarizing overtaking attempts and successful maneuvers on a per-lap basis. This plot is particularly 

insightful for identifying the most dynamic phases of the race. It is evident from the chart that cars are 

more closely packed in the early stages, increasing the opportunity for drivers to engage in on-track 

battles before strategies and pace differentials begin to spread out the field. As the race progresses and 

gaps stabilizes, both the number of attempts and successes naturally decline. 

It is important to note that, in both plots, overtakes resulting from pit stop reordering or from lapping 

significantly slower drivers are explicitly excluded. This ensures that the data reflects only genuine on-

track overtaking scenarios governed by the overtaking logic described in Chapter 5.9. Together, these 

diagrams offer a clear and quantifiable picture of race engagement, making it easier to assess how 

competitive the on-track battles were throughout the event. 
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Figure 6.6: On track overtaking summary collecting the successful overtakes against the failed ones 

 

Figure 6.7: Lap-by-lap on track overtaking summary comparing the successful overtakes and the failed ones 

Together, these tables and plots give a complete picture of the simulated race evolution, combining 

detailed numbers with visual clarity. They contribute to explaining how race strategies were executed 

and how driver performance evolved throughout the race, thereby offering both a quantitative 

technical assessment and a coherent narrative of the simulation’s progression for a single-event 

scenario.  
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6.4 Visual Representation of a Single Simulation with FCY Phases 
 

Following the execution of a single race simulation, again under dry conditions but this time involving 

the deployment of a FCY phase, a series of tables and visual outputs are produced to represent the 

resulting race dynamics. The presence of an FCY event, whether in the form of a SC or VSC, plays a 

critical role in shaping the progression and final outcome of the race. These neutralization phases 

momentarily freeze the relative gaps between drivers, often eliminating carefully built time advantages 

and compressing the field into tighter proximity. As a result, cumulative race times tend to increase 

and strategy execution may be significantly altered. The present chapter highlights how such events 

affect not only the raw performance figures but also the strategic unfolding and competitive landscape 

of the race. 

Table 6.4 illustrates a selection of lap data from a single driver’s race (selected driver is Leclerc), 

offering insights into race dynamics under a SC phase. Between laps 4 and 6 (highlighted in yellow in 

Table 6.4), a notable increase in lap time is observed, corresponding to the deployment of the SC on 

lap 4. This slowdown reflects the mandatory pace reduction imposed by race control during 

neutralization, effectively bunching up the field. During this phase, although the fuel level continues to 

decrease, the rate of consumption is clearly reduced due to the lower energy demand associated with 

the slower pace. This highlights how the simulator realistically accounts for fuel-saving effects during 

neutralized conditions, integrating external race events like the SC with internal performance 

parameters.  

Table 6.4: Driver-specific (Leclerc) lap-by-lap table capturing key race metrics, highlighting SC period (yellow shade) 

Driver Circuit Lap 
Lap  

Time [s] 

Race 

Time [s] 
Position Compound Tire Age 

Fuel  

Level [%] 

In-

Lap 

Out-

Lap 

Leclerc Italian GP 1 87.834 87.834 2 MEDIUM 1 98.08 No No 

Leclerc Italian GP 2 86.938 174.77 2 MEDIUM 2 96.15 No No 

Leclerc Italian GP 3 86.972 261.74 2 MEDIUM 3 94.23 No No 

Leclerc Italian GP 4 93.702 355.45 2 MEDIUM 4 93.75 No No 

Leclerc Italian GP 5 119.85 475.29 2 MEDIUM 5 93.27 No No 

Leclerc Italian GP 6 119.97 595.27 2 MEDIUM 6 92.79 No No 

Leclerc Italian GP 7 86.132 682.22 2 MEDIUM 7 90.77 No No 

… … … … … … … … … … … 

Leclerc Italian GP 17 89.038 1553.4 3 MEDIUM 17 70.60 Yes No 

Leclerc Italian GP 18 108.45 1661.8 11 HARD 1 68.58 No Yes 

Leclerc Italian GP 19 85.920 1747.7 9 HARD 2 66.57 No No 

… … … … … … … … … … … 

Leclerc Italian GP 52 84.621 4589.9 2 HARD 14 0 No No 

 

Another useful output is the final race results overview presented in table 6.5. Beyond comparing 

overall performance and strategies, this tale reveals the broader impact of race events. The leader’s 

total race time shows a 1.7% (+76 s) increase compared to uninterrupted runs, reflecting the effect of 
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the SC phase between laps 4 and 6. Additionally, Piastri is marked as retired (on lap 4), illustrating 

how simulated failures are captured and influence both race outcome and flow. 

Table 6.5: Final race results for all the drivers, including several key metrics 

Circuit Driver Position 
Race Time 

[s] 

Gap To 

Leader [s] 

Gap To 

Driver 

Ahead [s]  

Pit Stop 

Strategy 

Used 

Compounds 

Italian GP Sainz 1 4587.1 [-] [-] 2 Stops M → H → H 

Italian GP Leclerc 2 4589.9 +2.9 +2.9 2 Stops M → H → H 

Italian GP Verstappen 3 4597.9 +1.0 +7.9 2 Stops M → H → H 

Italian GP Perez 4 4602.9 +10.8 +5.0 2 Stops M → H → H 

Italian GP Hamilton 5 4613.2 +15.9 +10.3 2 Stops M → H → H 

Italian GP Albon 6 4613.6 +26.1 +0.4 2 Stops M → H → H 

Italian GP Russell 7 4615.9 +28.9 +2.4 2 Stops M → H → H 

Italian GP Norris 8 4626.2 +39.1 +10.3 2 Stops M → H → H 

Italian GP Alonso 9 4649.3 +62.2 +23.1 2 Stops M → H → H 

Italian GP Tsunoda 10 4663.0 +76.0 +13.8 2 Stops M → H → H 

Italian GP Lawson 11 4666.6 +79.5 +3.5 2 Stops M → H → H 

Italian GP Hulkenberg 12 4670.0 +82.9 +3.5 2 Stops M → H → H 

Italian GP Sargeant 13 4679.4 +1 Lap +9.4 2 Stops H → M → H 

Italian GP Bottas 14 4683.1 +1 Lap +3.7 2 Stops M → H → H 

Italian GP Zhou 15 4705.5 +1 Lap +22.5 2 Stops M → M → H 

Italian GP Gasly 16 4706.5 +1 Lap +0.9 2 Stops M → H → M 

Italian GP Magnussen 17 4711.4 +1 Lap +4.9 2 Stops M → H → H 

Italian GP Ocon 18 4712.8 +1 Lap +1.4 2 Stops M → H → H 

Italian GP Stroll 19 4722.5 +1 Lap +9.7 2 Stops M → H → H 

Italian GP Piastri 20  DNF    

 

To complement the tables, several diagrams are used to provide a visual interpretation of the race. The 

Race Position Evolution plot in Figure 6.8 illustrates how driver positions evolved lap by lap. Between 

laps 4 and 6, the effect of the SC phase is clearly visible, with position lines stabilizing and no 

overtakes occurring during this period, as overtaking is not permitted under neutralized conditions. 

The plot also highlights Piastri’s retirement on lap 4: from that point onward, his position is fixed at 

the bottom of the chart, represented by a dashed line to indicate that he is no longer actively 

participating in the race. This visual summary provides a clear and intuitive overview of race flow, 

including strategy moments, retirements and the structural impact of the SC. 
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Figure 6.8: Lap-by-lap position changes across the whole race, featuring a SC period (yellow shade) 

The Lap Times Race Progression plot in Figure 6.9 displays the evolution of each driver’s lap times 

throughout the race. While it is typically used to observe tire degradation patterns, performance trends 

and the impact of pit stops, the plot also clearly reflects the dynamics of the SC phase. During laps 4 to 

6, lap times increase significantly for all drivers, corresponding to the mandatory speed reduction 

imposed during the neutralized period. This behavior is consistent with the simulator’s enforcement of 

SC constraints, where drivers slow down to follow the SC and maintain a controlled pace before race 

conditions resume.  

 

Figure 6.9: Lap times across the whole race for all the drivers, featuring a SC period (yellow shade) 

Another helpful figure is the Cumulative Race Time Summary plot in Figure 6.10, which displays the 

total race time accumulated by each driver by the end of the simulation. This visualization allows for 

quick comparison of finishing times and relative performance across the field. Notably, the driver who 

did not finish the race, Piastri, is represented at the bottom of the plot, separated from the rest of the 



76 

 

classified drivers. His placement visually reinforces his early retirement and exclusion from final 

timing comparison, while still acknowledging his participation in the race event. 

 

Figure 6.10: Final race summary for all the drivers regarding the time gaps to the leader and to the driver in front 

The Race Strategy Summary plot in Figure 6.11 presents how each driver used different tire 

compounds over the race distance. Each color segment represents a different compound used during a 

stint (SOFT compound tire is red, MEDIUM compound tire is yellow, HARD compound tire is grey). 

This visual provides an immediate overview of when drivers made pit stops and how their compound 

choices evolved across the race. Piastri, who retired on lap 4, is placed at the bottom of the chart. His 

strategy appears truncated, reflecting that no further stints were executed beyond his retirement. This 

graphical treatment ensures consistency with his starting compound and initial race participation. 

 

Figure 6.11: Race strategy summary across the whole race for all the drivers 

In addition, overtaking activity is displayed through specific diagrams. The Overtaking Summary 

diagram (Figure 6.12) shows all overtaking attempts across the race and whether they were successful. 

The Lap-Wise On-Track Overtaking Summary plot (Figure 6.13) illustrates the number of overtaking 
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attempts and successful moves for each lap, providing a clear view of where most of the race action 

occurred. However, it is important to note that during laps 4, 5 and 6, when the SC phase is active, no 

overtaking is permitted. As a result, no overtaking logic is evaluated during this neutralized window 

and the corresponding section of the plot shows zero overtaking activity, in line with regulatory 

constraints. 

 

Figure 6.12: On track overtaking summary collecting the successful overtakes against the failed ones 

 

Figure 6.13: Lap-by-lap on track overtaking summary comparing the successful overtakes and the failed ones 

In conclusion, the described process applies to any simulation scenario in which a FCY phase is 

introduced. The simulator is capable of handling multiple FCY phases during the same race, whether 

triggered by an accident (initiating a SC) or by a mechanical failure (leading to a VSC). Each time a 

driver retires, they are immediately placed at the bottom of the classification relative to the remaining 

participants, according to the lap of retirement. Concurrently, the lap times of all active drivers are 

adjusted to comply with the pace restrictions imposed by the FCY regulations, during which no 

overtaking is permitted. As a result, the total race time increases significantly, reflecting the 
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neutralization of race pace and the regrouping of the field. This mechanism ensures that the simulator 

realistically replicates the effects of safety interruptions on the race outcome, maintaining both 

strategic coherence and competitive integrity.  
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7 Monte Carlo Method: Simulator Application and Results 

As detailed in the previous chapters, this thesis has developed a race simulation framework capable of 

reproducing the progress of a Formula One race lap by lap. The earlier sections explained how key 

phenomena, including tire degradation, fuel mass reduction, pit stop timing, FCY phases and 

overtakes, are modelled through deterministic equation and rules. However, as highlighted throughout 

those chapters, even a single race simulation run in this framework is not purely deterministic. Several 

parameters and mechanisms within the simulation run are inherently stochastic, such as lap time 

variability due to driver performance fluctuations, random variations in pit stop durations or the 

probabilistic success of overtaking attempts. These stochastic components introduce randomness into 

each individual simulation and make every run unique, even if initial conditions remain the same. 

Nevertheless, a single stochastic simulation still represents only one possible realization of how a race 

might unfold. In reality, Formula One races are shaped not only by planned strategies and technical 

parameters but also by the immense variability of random events, like accidents, mechanical failures, 

fluctuations in driver performance and the unpredictable timing and frequency of race incidents. 

To fully capture this inherent uncertainty, this work extends the simulation framework using a Monte 

Carlo Simulation (MCS) approach, building directly upon the deterministic and stochastic modelling 

described in the earlier chapters. The Monte Carlo Method is a numerical technique based in random 

sampling, used to approximate solutions for complex or analytically intractable problems. As 

described by Chen [30], this method has been widely adopted since the 1940s across disciplines such 

as physics, engineering, finance and computer science, precisely because of its power in dealing with 

problems where exact solutions are difficult or impossible to obtain analytically. 

The fundamental idea of Monte Carlo Methods lies in probability theory, specifically the Law of 

Large Numbers and the Central Limit Theorem [30]. These principles ensure that, as the number of 

simulation trials increases, the average result converges towards the true expected behavior of the 

system. The general procedure involves defining the problem and its uncertain variables, generating 

large numbers of random samples for these variables, computing the outcome for each set of random 

inputs and finally analyzing the statistical properties of all results, such as averages, variances and 

probability distributions. Unlike traditional numerical methods, the computational cost of MCS 

depends primarily on the number of samples rather than the problem’s dimensionality [30]. This 

makes them exceptionally effective for tackling high-dimensional systems or irregular problem 

domains that are difficult to handle with classical techniques. 

As emphasized by Heilmeier, one of the primary advantages of MCS in motorsport is the possibility to 

evaluate the robustness of pre-race strategies under varying stochastic conditions, allowing teams to 

move beyond single deterministic predictions and assess the range and likelihood of potential 

outcomes [4]. Importantly, each simulated race run in the MCS is independent of the others, enabling 

straightforward parallelization to exploit multi-core computational resources effectively, which is a 

significant benefit given the complexity and runtime of modern race simulations. 

Moreover, the aggregation of thousands of simulations provides distributions of possible race 

outcomes rather than a single deterministic forecast. This probabilistic insight allows strategists to 

quantify risks associated with various strategic options, to estimate probabilities of achieving certain 

race positions and to understand how random events might influence the success or failure of specific 

strategies. Such insights are invaluable not only for pre-race planning but also for making rapid, data-

informed decisions in real time during a race [2]. 

To ensure that the insights derived from this Monte Carlo approach are statistically robust, this thesis 

performs the race simulation 10000 times. The choice of 10000 simulations reflects a balance between 

computational feasibility and the reliability of the results. As highlighted by Heimeier, the Law of 
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Large Number ensures that the more often a random experiment is repeated, the closer the average 

result will approach the true expected value of the system [4]. In his work, the deviation between 

batches of simulation runs diminishes noticeably as the number of runs per batch increases, as it can 

be seen in Figure 7.1. In most cases, 10000 simulations represent an effective compromise, delivering 

stable statistical indicators while remaining manageable in terms of computation time. However, it is 

crucial to emphasize that the reliability of MCS outcomes also depends on the accurate 

parametrization of the race simulation model itself. 

 

Figure 7.1: Mean rank positions and deviations (95 % confidence) for Hamilton inside Heilmeier's work [4] 

In the following sections, the results of the MCS are explored in two parts. The first one provides an 

overview of race-level statistics, such as the frequency of SC periods, gaps between drivers, 

overtaking figures and variations in race time for the leader across different race scenarios. The second 

one focuses on driver-specific analysis, comparing race strategies and examining how these influence 

finishing positions.  

In summary, MCS enables a far deeper understanding of how race strategies might perform under the 

myriad uncertainties inherent to motorsport, providing critical insights for both pre-race planning and 

real-time decision-making.  
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7.1 Race Craft Analysis 
 

This section presents a comprehensive analysis of race craft and leader-centric metrics across the 

10000 simulations conducted for this thesis. The goal is to evaluate how realistically the simulation 

replicates the dynamics of a real Formula One race and to create a solid foundation for comparison 

with actual race results. Each result presented here is a window into how random factors, driver 

performance and race events shape competitive narrative of a race. 

 

7.1.1 MCS Analysis of Leader’s Median Cumulative Race Time  

 

A fundamental starting point for the analysis is the examination of the median cumulative race time of 

the leading driver across all simulations. This metric is first computed as an overall median and 

standard deviation taken across the entire set of 10000 simulations, without distinguishing whether 

each individual simulation did or did not experience SC phases. As a result, this median value 

provides a central estimate of race duration as it emerges from the full range of race scenarios 

generated by the stochastic model, capturing both race conditions and the variability introduced by 

potential race interruptions and other unpredictable events. In this case, the MCS produces a median 

race time for the winning driver at the Italian Grand Prix of 4427.162 ± 65.203 s. It is important to 

note that the real 2023 Italian Grand Prix was shortened to 51 laps due to several interruptions during 

the formation lap, which slightly reduced the typical total race distance and consequently the overall 

race time. The simulation has been, therefore, adjusted according to this modification to capture the 

same race distance as the real one. For comparison, the actual winning time recorded by Max 

Verstappen in the 2023 Italian Grand Prix was 4421.143 s, according to official Formula One data 

[31]. According to this result, the leader’s race time of the simulation is only 6.019 s longer than the 

real one, corresponding to a very modest relative error of 0.14%. Such a close agreement suggests that 

the simulation is highly effective in replicating realistic race durations, even when accounting for the 

complexities and stochastic nature of race events. A clear visual comparison is presented in Table 7.1. 

Table 7.1: Representation of simulated median race time and standard deviation over 10000 simulations at the Italian Grand 

Prix relative to the winners, compared to the actual race time of the 2023 season winner at the same circuit. Also the relative 

error between the simulated and the actual race time value is represented 

Winner Simulated  

Race Time [s] 

Simulated Standard 

Deviation [s] 

Winner Actual Race 

Time [s] 

Relative Error from 

Actual Value [%] 

4427.162 65.203 4421.143 +0.14 % 

 

7.1.2 MCS Analysis of FCY Related Median Cumulative Race Time  

 

To gain a clearer picture of how neutralization specifically affect race time, a second analysis is 

performed in which the simulations are categorized based on the number of SC phases observed: zero, 

one, two, three or more. For each of these categories, the median and standard deviation of leader’s 

cumulative race time are calculated separately. This distinction allows to quantify how the occurrence 

of neutralization typically shifts the race duration and how variable race times become under differing 

race conditions. By comparing these detailed simulated statistics with real race timing data, it becomes 

possible to evaluate whether the simulation realistically reproduces both the mean effects and 

variability introduced by neutralized phases.  
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The results demonstrate a trivial trend. Races with no SC phases have the shortest median race time, 

measured at 4425.042 ± 11.845 s, reflecting a smooth, uninterrupted race under pure racing conditions. 

When one SC occurs, the race time increases to 4521.134 ± 24.730 s, suggesting that even a single 

neutralization event can add approximately 96 seconds to the overall race duration due to slower laps, 

potential pit stops taken under SC or subsequent race restarts. In case of two SC phases, the race time 

extends further to 4607.995 ± 29.944 s, while three or more SC phases record the longest duration at 

4701.837 ± 29.926 s, demonstrating the significant impact of repeated neutralizations on overall race 

length.  

It is important to note that these medians conceal significant underlying variability driven by the 

stochastic duration of each SC period. In real races, as well as in the simulations, the length of a SC 

phase can fluctuate considerably, typically lasting anywhere from 2 to 8 laps depending on the nature 

and severity of the incident that triggers it, as modelled in previous chapters. A short neutralization 

might only minimally disrupt race dynamics, while a prolonged SC period can substantially extend the 

race duration and compress the gaps between drivers, dramatically influencing strategy and final 

results. Consequently, while the medians give valuable insight into general trends, the true impact of 

FCY phases on race time is inherently probabilistic and must be interpreted within the context of this 

variability. 

These findings are critical because they show how sensitive the total race time is to the frequency of 

FCY appearances and they align with the intuitive understanding that more interruptions lead to longer 

overall race durations. Table 7.2 summarizes these results, presenting the median and standard 

deviation of the leader’s race time for each SC appearance. This table serves as a reference point for 

validating and assessing how well the model captures the time-altering effects of neutralized phases. 

Table 7.2: Median cumulative race time of the leader across simulations, classified by the number of SC phases, with 

incremental differences between classes 

SC 

Appearances 

Median Race 

Time [s] 

Standard 

Deviation [s] 

Margin to 

Previous [s] 

Percentage 

Increase [%] 

0 4425.042 11.845 - - 

1 4521.134 24.730 +96.092 +2.17 % 

2 4607.995 29.944 +86.861 +1.92 % 

≥ 3 4701.837 29.926 +93.842 +2.04 % 

 

Building upon this, the analysis further explores the distribution of the cumulative race time of the 

leader across all simulations, separated by the number of SC phases that occurred during each race. 

The overlapping histograms represented in Figure 7.2 illustrates how the presence or absence of SC 

periods influences the likely duration of the race. Such insights are invaluable because they highlight 

the stochastic impact of race incidents on the leader’s finishing time. For instance, as explained before, 

races with two or more SC deployments tend to finish significantly slower than clean races. This plot 

exploits the comparison with real-world race times, ensuring the model not only replicates average 

behaviors but also captures the range of possible outcomes under different race scenarios. 
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Figure 7.2: Distribution of the leaders' final race time across 10000 simulations on Monte Carlo approach, classified by the 

number of SC appearances. Each color represents races with a different count of SC phases (0, 1, 2, ≥3). The plot highlights 

the increasing spread and upward shift in race time as the number of SC deployment grows, reflecting the time impact of 

race neutralizations on overall performance 

Closely connected to race duration is the analysis of the frequency of SC phases across the simulated 

races. Reporting these frequencies serves both as validation check against real race statistics and as 

essential context for understanding the variability in simulated race outcomes. Table 7.3 reports the 

appearances of SCs across simulations and compares it with the historical percentage registered by 

Heilmeier [4] and previously reported in Table 5.1. 

Table 7.3: Comparison between simulated and historical frequencies of SC phases across 10,000 simulations 

SC 

Appearances 

Simulated  

Counts 

Simulated 

Probability [%] 

Historical 

Probability [%] 

Relative 

Error [%] 

0 6770 67.70 % 45.50 % +48.79 % 

1 2308 23.08 % 41.30 % -44.10 % 

2 856 8.56 % 9.90 % -13.54 % 

≥ 3 66 0.66 % 3.30 % -80.00 % 

 

The comparison reveals notable discrepancies between the simulation outputs and historical data 

regarding SC occurrences. The simulations predict a significantly higher proportion of races without 

any SC phases (67.70 %) compared to the historical rate (45.50 %). Conversely, the occurrence of one 

or more SC phases is markedly underestimated in the simulations, severely underpredicting the 

appearance of 3 or more SC periods (simulated 0.66 % compared to historical 3.30 %), resulting in a 

80.00 % error. These differences suggest that the simulation, in its current parametrization, tends to 

model races as too clean and uninterrupted, underestimating the frequency of events that lead to 

neutralization. It should be noted, however, that the historical data on SC frequencies are computed 

over a span of five Formula One seasons across multiple circuits [4], whereas the simulated results in 

this work are derived from a single circuit simulation. This inherent limitation means that circuit-

specific characteristics, such as track layout, run-off areas and historical incident rates, are not fully 
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reflected in the current simulation’s frequency estimates. Furthermore, it is possible that the sample 

size of 10000 simulations, while substantial, may still be insufficient to fully capture the rarer events 

and match the precise historical percentages observed in real races. In the simulation logic 

implemented in the previous chapters, every accident directly triggers a SC period. Therefore, the 

lower frequency of SC phases observed in the simulations might also suggest that the model is 

generating too few accidents overall, possibly due to conservative assumptions in the probability 

settings for race incidents. These factors together may explain why the simulation shows fewer race 

disruptions than what actually happens in real races. 

 

7.1.3 MCS Analysis of Position Related Mean Final Race Gap to Leader 

 

An equally important aspect of understanding race dynamics is the examination of mean time gaps 

between the leader and each other classified driver. For every simulated race, the finishing time of the 

leader is subtracted from the times of all other drivers and these gaps are averaged over the entire 

Monte Carlo dataset. The results are presented in both tabular and graphical formats, offering a 

detailed perspective on the typical spread of the field. Such analysis is crucial for identifying whether 

certain time gaps could suggest dominance by particular drivers or cars or a performance drop-off 

beyond certain places in the order. For instance, if the simulation consistently shows a significant time 

jump between several positions, it could point to a natural split between the top teams and the 

midfield. This allows for direct comparison with real race data to assess whether the model accurately 

reflects the competitive landscape for the sport. 

The analysis is complemented by Table 7.4 and Figure 7.3, which report the average time gaps 

between the leader and each finishing position across all the 10000 simulations. The gap grows 

steadily moving down the field and, notably, there’s a significant jump in the gaps starting from 

around the fifth position onwards. For example, the gap between fifth and sixth is smaller (about 3 

seconds), but then gaps gradually widen, reaching over 63 seconds for the tenth-place driver and 

exceeding 142 seconds for the last-place finisher. 

This pattern suggests that the simulation captures a clear spread in performance between the top cars 

and the midfield, as well as between the midfield and the back markers. In real races, similar gaps are 

often seen, especially in circuits where overtaking is difficult or where race pace differences between 

teams are pronounced. However, the steadily increasing gaps might also indicate that the simulation 

slightly exaggerates how quickly time differences accumulate down the field, particularly in the lower 

positions where the gaps surpass a minute. Comparing these simulated values to real race results helps 

verify whether the model realistically portrays the competitive landscape in Formula One or whether it 

may be overestimating performance disparities among teams. 
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Table 7.4: Simulated mean time gaps between the leader and each classified position across 10,000 race simulations at the 

Italian Grand Prix 

Position Mean Gap to Leader [s] 

1 - 

2 3.859 

3 8.231 

4 18.150 

5 21.843 

6 25.108 

7 28.417 

8 32.882 

9 42.829 

10 62.948 

11 72.802 

12 79.835 

13 84.694 

14 90.003 

15 99.993 

16 118.685 

17 124.711 

18 129.438 

19 136.795 

20 142.773 
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Figure 7.3: Simulated mean time gaps to the race leader for each classified finishing position at the Italian Grand Prix, 

computed across 10000 simulations of Monte Carlo approach. The plot shows how the average gap increases progressively 

through the field, reflecting typical performance differentials between the front runners, midfield and back markers in 

simulated race scenarios 

Alongside the analysis of gaps between each finishing position and the leader, a specific focus is 

placed on the time gap between the leader and the last classified driver. To capture how much of an 

advantage the leader tends to build over the slowest car in the field, the simulation calculated this gap 

for each of the 10000 simulations, creating a statistical distribution that reflects the range of possible 

outcomes. 

This distribution is illustrated in Figure 7.4, where the horizontal axis shows the size of the time gap in 

seconds and the vertical axis indicates how often gaps of various sizes occur across all simulations. 

The figure highlights that, in the majority of cases, the gap between the leader and the last classified 

driver falls within a relatively narrow range, clustering around a central value. Specifically, the 

simulation reports a mean gap between the leader and the last finisher of 142.503 ± 9.377 s. In the real 

2023 Italian Grand Prix, Verstappen finished first and Magnussen was the last classified driver in P18, 

officially listed as +1 lap behind. However, according to detailed post-race analysis, the actual time 

gap between them was 100.149 s [32], even though Magnussen was one lap down in the final 

classification (comparison summary can be seen in Table 7.5). Comparing this real-world value to the 

simulation suggests that the model tends to slightly overestimate the gap to back markers, since the 

simulated mean gap of 142.773 s corresponds to about +1.6 laps, given the base lap time of roughly 88 

seconds at Monza. Nevertheless, while the simulator predicts a larger spread than occurred in this 

particular race, it remains a valuable tool for capturing the general range of possible outcomes, 

especially considering the gaps can vary substantially depending on race circumstances. 

Table 7.5: Comparison between the simulated mean race time gap from leader to the last classified driver and the actual gap 

observed between Verstappen and Magnussen (last place) in the 2023 Italian Grand Prix 

Type First-to-Last Gap [s] Difference [s] 

Actual 100.149 - 

Simulated 142.503 +42.354 
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Figure 7.4:Distribution of simulated total race time gaps between the first and last classified drivers at the Italian Grand 

Prix, computed across 10000 simulations of Monte Carlo approach. Vertical dashed lines indicate the time thresholds 

corresponding to +1 lap and +2 laps relative to the leader's base lap time. The histogram shows that the most frequent gap 

between the leader and the last classified driver centers around approximately +1.6 laps, illustrating the likelihood of lapped 

traffic under simulated conditions 

This analysis is significant because it reveals the extent of the leader’s dominance over the slowest 

competitor. In real Formula One events, some races conclude with a tightly packed field, while others 

see the leader finish one or even two laps ahead of the back marker. By comparing this simulated 

distribution to actual race data, it is possible to assess whether the model realistically reflects how 

large, or small, these differences typically are. If the simulated distribution is too narrow, it might 

underestimate the variability of real race outcomes, whereas a distribution that is too wide could 

suggest the model is overestimating differences in car performance. 

 

7.1.4 MCS Analysis on Overtaking Statistics 

 

Finally, the analysis turns to overtaking statistics, which are critical for evaluating the realism of 

racing interactions in the simulation. Across the 10000 simulated races, the number of overtaking 

attempts and the number of successful overtakes are tracked and averaged to produce mean values. 

These figures are compared to historical race data to gauge the simulation’s accuracy in reproducing 

on-track battles. Overtaking is central to Formula One’s spectacle and significantly influences 

strategic decision-making, as races with frequent overtakes are more dynamic and less predictable.  

Specifically, MCS reports an average of 111.49 overtaking attempts per race, resulting in an average 

of 38.39 successful overtakes. These figures are compared to the historical data from the 2023 season 

Italian Grand Prix, where the official count of real overtakes was 31 [17]. A summary report is 

illustrated in Table 7.6. This comparison reveals that the simulation predicts a slightly higher number 

of successful overtakes than was observed in the real event, suggesting that the model may slightly 

overestimate overtaking opportunities under the race conditions typical of Monza circuit. Such 

differences could arise from circuit-specific factors not fully captured by the empirical overtaking 

thresholds, from the inherent variability introduced in the simulation’s overtaking model or from the 

possibility that the simulator generates an excessive difference in pace between drivers, making 

overtakes easier to perform than they might be in reality. 
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Table 7.6: Comparison of overtaking statistics between the MCS results and historical data from the 2023 Italian Grand 

Prix. The table reports the mean number of overtaking attempts and successful overtakes across 10000 simulated races at 

Monza. Relative error is calculated for successful overtakes as the percentage difference between the simulated and the 

actual number of overtakes observed during the race 

Simulated Attempts Simulated Overtakes Actual Overtakes Relative Error [%] 

111.49 38.39 31 +23.84 % 

 

If the simulation produces consistently higher or lower overtaking figures than real races, it might 

signal that certain parameters, such as the probability of successful overtakes or the impact of DRS 

and tire wear, need recalibration. Thus, overtaking statistics serves both as a direct measure of race 

craft realism and as a diagnostic tool for refining the model. 

Taken together, the analyses in this chapter construct a detailed picture of how races unfold within the 

MCS framework. They allow for rigorous comparison with real race data, providing critical validation 

for the model and ensuring its practical utility for strategic analysis in Formula One racing. 

 

7.1.5 MCS Analysis of Selected Drivers’ Final Race Times 

 

As a further step in validating the simulation framework, this section presents a targeted comparison of 

the simulated final race times for selected drivers against the actual times recorded in the 2023 Italian 

Grand Prix. Unlike previous comparisons focusing on the race leader, this analysis extends the 

validation of the model to other competitors, aiming to confirm that the simulation realistically 

predicts a plausible race time for each individual driver. By directly comparing the simulated times 

with the actual results, the analysis assesses how closely the simulator replicates real race 

performances across different drivers. 

Three drivers have been selected to perform the analysis: Charles Leclerc, George Russell and Lando 

Norris. Their respective race times at the end of the 2023 Italian Grand Prix are 4432.520 s for 

Leclerc, 4444.171 s for Russell and 44466.592 s for Norris [31]. It is important to note that the race 

was shortened to 51 laps due to issues during the formation lap and that no SC deployments occurred 

during the entire race. Therefore, the simulated race times of these drivers have been filtered in order 

to include only those scenarios without any SC deployments, ensuring a fair comparison with the 

actual race conditions. 

In the MCS runs performed for this study, the simulator produces median race times that remain close 

to their real-world counterparts. Specifically, the median simulated time for Leclerc is 4439.943 ± 

9.852 s, while Russell’s simulated time is 4453.375 ± 10.427 s and Norris’s result stands at 4473.325 

± 11.298 s. These simulated results exceed the actual race times by only modest margin, 

corresponding to relative errors of just 0.168 %, 0.207 % and 0.151 % respectively. These details are 

summarized in Table 7.7. 

These small discrepancies indicate that the simulator slightly overestimates the total race times for 

these drivers. However, the close alignment between the simulated and the actual results demonstrates 

that the model effectively reproduces not only the absolute performance of the race leader but also the 

relative race dynamics among other competitors, with only minor deviations. This reinforces 

confidence in the simulator’s predictive capability. 

Importantly, this analysis also confirms that the relative gaps between drivers are realistically 

represented within the simulation model. While absolute times are slightly longer, the proportional 

differences closely mirror those observed in the real race, providing strong evidence of the simulator’s 
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value as a tool for evaluating not just individual race outcomes but also competitive relationships 

within the field. 

Table 7.7: Comparison between actual race times from the 2023 Italian Grand Prix and median simulated race times 

obtained from MCS for selected drivers. The table shows the absolute difference between simulated and actual race times 

and the corresponding relative error, indicating how closely the simulation reflects real-world performance. 

Driver 
Actual Race 

Time [s] 

Median Race 

Time [s] 

Standard 

Deviation [s] 
Difference [s] 

Relative 

Error [%] 

Leclerc 4432.520 4439.943 9.852 +7.423 +0.168 % 

Russell 4444.171 4453.375 10.427 +9.204 +0.207 % 

Norris 4466.592 4473.325 11.298 +6.733 +0.151 % 
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7.2 Single Driver Strategy Analysis 
 

The previous analyses of MCS results have shown how race variability and stochastic events can 

significantly influence overall race outcomes. In particular, the distributions of leader race times and 

the spread of gaps across the field have highlighted that even small differences in race circumstances 

can lead to substantial variability in race duration and finishing order. This underscores the reality that 

a single deterministic prediction cannot capture the full complexity of a Formula One race. 

Building upon this, it becomes essential to examine how different race strategies affect the 

performance of an individual driver, particularly in the context of the variability captured by the MCS 

framework. Strategy decisions, such as tire selection and pit stop timing, play a critical role in 

determining not only the absolute race time but also the likelihood of achieving a strong finishing 

position amidst the uncertainty of racing events. While a particular strategy might appear optimal 

under ideal circumstances, it may expose the driver to greater risks from tire degradation, SC 

interventions or time lost in traffic, potentially leading to poorer race results overall. 

To explore this dimension, the present section focuses on the strategic evaluation of a single driver, 

simulating how different combinations of tire compounds and pit stops influence both race time and 

race classification across a wide range of simulated scenarios. The analysis leverages the MCS 

approach, conducting 10000 race simulations for each strategy to assess not only the expected 

performance but also the statistical variability and robustness of different tactical choices. 

In this study, six distinct strategies were examined, covering both one-stop and two-stop 

configurations. In all strategies, the first compound type denotes the starting tire used for the opening 

stint of the race. Table 7.8 summarizes the strategies analyzed: 

Table 7.8: Overview of the six pit stop strategies evaluated for a single driver in the Italian Grand Prix simulations. Each 

strategy indicates the number of pit stops and the sequence of tire compounds used, with the first compound representing the 

starting tire for the race 

Strategy Number of Stops Tire Sequence 

A 1 MEDIUM → HARD 

B 1 HARD → MEDIUM 

C 2 MEDIUM → HARD → HARD 

D 2 MEDIUM → HARD → MEDIUM 

E 2 HARD → MEDIUM → HARD 

F 2 MEDIUM → HARD → SOFT 

 

These strategies were chosen to reflect realistic race possibilities often observed at the Italian Grand 

Prix in Monza, a circuit characterized by long straights, high speeds ad relatively low tire degradation 

compared to other tracks. The inclusion of strategy F, which ends on the SOFT compound, was 

specifically designed to test whether a late switch to a softer tire could provide a decisive performance 

advantage in the final phase of the race. 

The following sections present two different perspectives on strategy evaluation, focusing on both 

identifying the strategy yielding the fastest average race time and examining which strategy delivers 

the best mean finishing position, reflecting strategic consistency and reliability under the variable 

conditions captured in the simulations.  
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7.2.1 Fastest Strategy 

 

The first aspect of this analysis addresses the purely time-focused perspective, seeking to determine 

which of the six strategies results in the lowest average race time across the 10000 simulations of the 

MCS approach. Figure 7.5 presents the race time distributions for each strategy, while Table 7.9 

summarizes the mean race times achieved. The driver of choice for the various simulations is Max 

Verstappen. 

The simulations revealed that among all tested configurations, strategy A (MEDIUM → HARD, 1 

stop) emerged as the fastest on average, achieving a mean race time of approximately 75.91 minutes. 

This outcome reflects the nature of the Monza circuit, where high speeds and log straights make pit 

stops particularly costly in terms of time lost relative to maintaining track position. Consequently, a 

one-stop approach minimizes time spent in the pit lane and proves advantageous on such a fast track. 

Interestingly, the comparison between two-stop strategies that conclude either MEDIUM or SOFT 

tires shows minimal differences in overall time. The data indicate that finishing on the SOFT 

compound does not provide a decisive advantage over ending the race on MEDIUM tires. This result 

likely stems from the significant degradation suffered by the SOFT tires in the latter stages of the race, 

preventing them from fully exploiting their higher performance potential. Meanwhile, the MEDIUM 

tire appears to strike a better balance between performance and durability, effectively compensating 

for the theoretical pace advantage of the softer compound over a long stint. 

Among the one-stop strategies, starting on HARD tires and witching to MEDIUM, as seen in strategy 

B, proved less effective. This may be attributed to the combination of the car’s high fuel load at the 

race start and the inherent limitations of the HARD compound, which together reduce the ability to 

extract competitive lap times in the early phases of the race. The HARD tires, while durable, seem less 

able to generate the necessary grip under heavy fuel conditions, impacting the overall pace. 

The slowest strategy observed in the simulations was strategy C (MEDIUM → HARD → HARD, 2 

stop). This approach appears to underperform partly because it relies entirely on the two hardest 

compounds, which, although more durable, may lack the necessary grip and thermal performance to 

deliver competitive lap times at Monza. Running both stints on HARD tires seems to diminish the 

car’s potential, especially given the relatively low tire degradation characteristic of the Italian Grand 

Prix, which otherwise allows softer compounds to be effectively utilized. 

It is important to note, however, that while differences exist among various strategies, these 

differences are relatively small, since approximately 0.1 min separates the fastest and slowest 

strategies. This limited spread likely reflects the competitive strength of Verstappen’s car, which 

operates at the front of the field where overtaking variations produces only modest differences in total 

race time for a leading driver of this caliber. 

The comparison between the simulation results and the real race data highlights a significant 

validation of the model’s effectiveness. Notably, the simulation correctly identified strategy A 

(MEDIUM → HARD, 1 stop) as the fastest option, which aligns precisely with the actual strategy 

adopted by Verstappen in the 2023 Italian Grand Prix. This correspondence underscores the ability of 

the simulation to capture the strategic dynamics of a real race. However, a closer examination of race 

times reveals that the mean simulated race time for strategy A is 75.91 min, whereas Verstappen’s 

actual race time is 73.69 min [31], resulting in a relative error of approximately 3.02 % (result 

summary can be seen in Table 7.10). This modest difference suggests that while the simulation 

reliably predicts the optimal strategy choice, it tends to be slightly conservative in estimating the total 

race time for a leading driver and car combination. The small overestimation may arise from 

simplified assumptions within the model or from unique real-world factors such as precise driving 

performance, specific track conditions or race management decisions that are challenging to replicate 
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fully in simulation. Nonetheless, the close alignment in strategy ranking and overall timing 

demonstrates that the simulation framework provides valuable and credible insights for race planning 

and strategic analysis. 

Table 7.9: Mean race times for each strategy applied to Max Verstappen computed across 10000 simulations of MCS 

approach for the Italian Grand Prix, sorted from fastest to slowest 

Strategy Mean Race Time [min] 

A 75.91 

D 75.92 

F 75.94 

E 75.95 

B 75.97 

C 75.99 

 

Table 7.10: Comparison between the mean simulated race times for the fastest simulated strategy and Verstappen's actual 

race strategy during the 2023 Italian Grand Prix. The relative error quantifies how closely the simulation matches  

real-world performance 

Strategy Type Mean Race Time [min] Relative Error [%] 

A Actual 73.69 - 

A Simulated 75.91 +3.02 % 

 

 

Figure 7.5: Simulated average race times for six different strategies applied to Max Verstappen across 10000 simulations of 

MCS approach for the Italian Grand Prix, sorted from fastest to slowest 
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7.2.2 Best Strategy for Mean Finishing Position 

 

While the pursuit of the fastest possible race time is undoubtedly appealing, success in Formula One 

often hinges on securing the best possible finishing position across a wide range of race conditions. To 

address this dimension, the next analysis focuses on identifying the strategy that achieves the best 

mean finishing position across the simulated races. 

Figure 7.6 illustrates the distribution of finishing positions for the driver under each of the six 

strategies, while Table 7.11 summarizes the average finishing position achieved for each approach. 

The analysis of finishing positions across all simulated strategies reveals that there is relatively little 

variation in the mean finishing position achieved by each strategic approach. The distributions shown 

in Figure 7.6 demonstrate that, regardless of tire sequence or number of pit stops, Verstappen 

consistently finishes within the top positions, reflecting the strong baseline performance of his car and 

the reduced influence of overtaking challenges for a front-running driver. 

Among the strategies, strategy A (MEDIUM → HARD, 1 stop) emerges as the one providing the 

slightly best average finishing position, confirming its effectiveness not only in terms of race time but 

also in securing reliable race outcomes. The combination of a single pit stop and the optimal 

exploitation of the performance of both MEDIUM and HARD compound tires appears to offer an 

optimal compromise between pace and race consistency, while minimizing the time loss associated 

with pit stops on a high-speed circuit like Monza. 

Although other strategies, including two-stop approaches such as strategy E (HARD → MEDIUM → 

HARD, 2 stops), demonstrate solid performance with finishing positions close to those of strategy A, 

they do not yield a substantial advantage in terms of final classification. The analysis indicates that 

ending the race on softer compounds, as in strategy F (MEDIUM → HARD → SOFT, 2 stops), does 

not translate into better average positions, likely due to both the higher degradation of the SOFT tires 

in the latter stages of the race, which negates their potential performance benefit, and the trivial time 

loss relative to the occurrence of the second stop. 

Overall, while differences exist, the spread in mean finishing positions across all strategies is minimal, 

typically varying by only a few tenths of position. This narrow range underscores the competitive 

strength of Verstappen’s car and highlights that, for a leading driver, strategic choices tend to produce 

broadly similar outcomes under stable race conditions. Nonetheless, strategy A demonstrates a slight 

edge in delivering the most consistent and favorable race results within the variability captured by the 

MCS approach. 

The real race saw Verstappen achieving first place [31], while the simulations estimate a mean 

finishing position of approximately 1.83 relative to the fastest strategy, strategy A (MEDIUM → 

HARD, 1 stop), across 10000 simulated races. This slight difference suggests that the model slightly 

underestimates the dominance of a top-performing driver and car combination like Verstappen’s, 

possibly due to the inherent variability included in the simulation or real-world dynamics that are 

difficult to predict in the simulator. Nevertheless, the fact that strategy A emerges as the leading 

choice in both simulation and reality confirms the model’s effectiveness in predicting strategic 

success, while the small gap in average finishing position underscores the challenges of perfectly 

replicating the exceptional consistency and race craft displayed by top drivers in real-world conditions 

(result summary can be seen in Table 7.12). 
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Table 7.11: Mean finishing positions for each strategy applied to Max Verstappen across the 10000 simulations of MCS 

approach for the Italian Grand Prix, sorted from best to worst 

Strategy Mean Finishing Position 

A 1.83 

C 1.84 

D 1.85 

B 1.88 

E 1.88 

F 1.88 

 

Table 7.12: Comparison between the mean simulated finishing position and Verstappen's actual finishing result during the 

2023 Italian Grand Prix 

Strategy Type Mean Finishing Position 

A Actual 1 

A Simulated 1.83 

 

 

Figure 7.6: Distribution of finishing positions for Max Verstappen across six different strategies computed over 10000 

simulations of MCS approach for the Italian Grand Prix 

In conclusion, the analysis highlights how different race strategies can influence both total race time 

and finishing positions, even if the differences are often small for a top-performing driver like 

Verstappen. While strategy A (MEDIUM → HARD, 1 stop) proved to be the most effective overall, 

other strategies showed competitive results without offering significant advantages. These findings 

underline that, although strategy plays a key role, the performance of the car and driver remains 

crucial. Importantly, the use of the MCS approach provides valuable insights by showing how 

strategies might perform across many possible race scenarios, helping teams make more informed and 

confident decisions.  
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8 Future Developments 

The simulator developed in this thesis has proven effective in capturing the essential dynamics of a 

Formula One race, offering a detailed view of race times, overtaking interactions and strategic 

consequences of pit stops and race events. Nonetheless, despite its robust framework and promising 

results, several areas remain open for further development to enhance the accuracy, realism and 

practical usefulness of the simulation tool. 

The first important area for future improvement lies in refining the input parameters upon which the 

simulation is based. Currently, although the simulator handles numerous parameters effectively, there 

are cases where certain race outcomes, such as total race times or overtaking numbers, appear slightly 

overestimated when compared to actual race data. This is largely due to limitations in the availability 

of precise input data and the necessary simplifications adopted for some of the statistical models 

implemented. To address this, one avenue of development would be to introduce more detailed and 

physically based modelling for each parameter. For instance, tire degradation in the current simulator 

is modelled using empirical data fitted to simple quadratic or linear trends. However, tire performance 

in reality depends not only on the number of laps completed but also on the specific driving conditions 

experienced during those laps, such as longitudinal and lateral accelerations, cornering loads and 

surface temperatures. Incorporating such detailed telemetry-derived factors into the tire degradation 

model would allow for a more precise estimation of performance loss over time, leading to improved 

lap time predictions and more accurate strategic simulations. 

This idea leads directly to the second area for future development, which is the inclusion of a vehicle 

dynamics model within the simulation architecture. At present, the simulator operates purely on 

statistical and empirical relationships, without considering the physical laws that govern the behavior 

of the vehicle on track. While the statistical approach has the advantage of computational simplicity 

and the ability to reproduce general race trends, it lacks the capacity to explain how the car physically 

interacts with different circuits or how vehicle setup changes might influence lap times and race 

outcomes. By integrating a vehicle dynamics model, whether in the form of a simplified quasi steady-

state model or a more advanced transient dynamics simulation, it would be possible to simulate the 

car’s behavior under various track conditions, including cornering forces, aerodynamic efficiency, 

braking capabilities and traction limitations. Such an enhancement would not only increase the fidelity 

of lap time predictions but would also open up the possibility to investigate the influence of 

engineering decisions, such as suspension tuning and aerodynamic setups, on race strategy and 

performance. 

Closely linked to this is the third potential improvement, which involves the generation of the base lap 

time though a dedicated LTS. In its current form, the simulator calculates the base lap time by 

adjusting historical qualifying times with average race pace deltas derived from fastest laps during 

previous races. While this method provides a pragmatic solution, it is fundamentally dependent on the 

availability of historical data and therefore cannot easily accommodate scenarios involving new 

circuits, regulatory changes or significant shifts in vehicle performance characteristics. Developing a 

dedicated LTS, based on physics-driven models and incorporating track geometry, vehicle dynamics 

and tire characteristics, would enable the simulator to generate base lap times form first principles. 

This approach would reduce the dependency on past race data and enhance the flexibility of the 

simulator, allowing it to predict race performance under hypothetical or future conditions. 

A fourth significant step forward would be the implementation of a strategy optimizer within the 

simulation framework. In this current version of the simulator, pit stop strategies are defined manually 

based on typical stint lengths and compound usage observed during past races. While this approach 

allows for realistic scenarios, it does not explore alternative strategies that might yield better outcomes 

under specific race conditions. A strategy optimization module could dynamically determine the most 



96 

 

effective pit stop laps and compound choices to minimize total race time, taking into account variables 

such as evolving tire degradation, traffic conditions, risk of SC deployments and competitors’ 

strategies. This capability would transform the simulator from a tool used primarily for evaluating 

predefined strategies into an instrument capable of actively generating optimal strategies tailored to 

particular race circumstances. 

Finally, a powerful expansion of the simulator would be the inclusion of wet-weather modelling. At 

present, the simulator is designed exclusively for dry weather conditions, as wet races introduce a 

level of variability and complexity that significantly exceeds the capabilities of the existing model. 

Wet weather affects almost every aspect of race performance, including tire compounds and grip 

levels, braking distances, fuel consumption and the probability of incidents such as aquaplaning or 

spins. Additionally, wet conditions often lead to more frequent SC deployments and dramatic shifts in 

race strategy. Developing models to capture these effects, including the behavior of intermediate and 

full wet tires, variable track drying rates and changing grip levels, would considerably increase the 

versatility and realism of the simulator. It would also enable the simulation of a broader range of race 

scenarios, reflecting the unpredictable nature of real Formula One seasons. 

In summary, while the simulator already represents a significant step forward in modelling race 

dynamics and strategic outcomes, these future developments offer the possibility of transforming it 

into an even more powerful tool. Incorporating physically based vehicle modelling, advanced 

parameter calibration, strategy optimization, base lap time simulation and wet-weather capabilities 

would further align the simulator with the complex realities of modern Formula One racing. These 

improvements would not only enhance predictive accuracy but also provide deeper insights for 

engineers and strategists seeking to optimize performance in one of the most competitive and data-

driven sports in the world.  



97 

 

9 Conclusions 

Over the past two decades, Formula One has transformed into an increasingly data-driven sport, where 

simulation tools have become essential for both engineering development and strategic race planning. 

The motivation for this thesis arose from the need to build a race simulator capable of predicting race 

outcomes not only under ideal circumstances but also under the uncertainties and stochastic events that 

inevitably shape real races. As outlined in the introduction, this demand stems from regulatory 

constraints limiting on-track testing, the complexity of modern vehicles and the critical importance of 

race strategy in determining final results. 

This thesis sets out to develop a probabilistic race simulator for Formula One, integrating telemetry-

derived parameters and statistical models to replicate the dynamics of an entire race. The simulator 

was designed to operate at a lap-by-lap, driver-specific level, accounting for multiple influencing 

factors such as fuel consumption, tire degradation, driver variability, pit stop performance FCY phases 

and overtaking maneuvers. A key objective was to move beyond purely deterministic models and to 

embrace the inherent randomness of motorsport events, providing not just single predictions but 

distributions of possible outcomes. 

The work presented in this thesis has achieved these goals through the construction of a modular 

simulator implemented in MATLAB, supported by extensive data acquisition using the FastF1 Python 

library and other statistical data sources. The simulator combines deterministic modelling, based on 

known physical and empirical relationships, with stochastic components driven by probability 

distributions calibrated from historical race and telemetry data. This hybrid approach allows the 

simulator to capture the average behavior of a race while also reflecting the variability that can 

dramatically influence results. 

The effectiveness of the developed simulator was validated through two levels of analysis. First, single 

simulation runs were conducted for selected race events. These single simulations demonstrated the 

simulator’s ability to generate realistic lap-by-lap evolutions of driver positions, tire usage strategies 

and cumulative race times. Visual outputs, including lap time trends, race position plots and 

overtaking summaries, confirmed that the simulator closely reproduces the typical patterns and 

dynamics of a real Grand Prix. For instance, in the simulation of the 2023 Italian Grand Prix, the lap 

times exhibited realistic degradation patterns, pit stop sequences were faithfully represented and the 

time gaps between drivers were consistent with observed race behaviors. Nevertheless, the single 

simulations also highlighted areas where the simulator tends to overestimate certain metrics, such as 

the number of overtakes, pointing to opportunities to further refinement. 

Beyond single event analysis, the simulator was extended to perform large-scale MCS, running 

thousands of race iterations to analyze the statistical properties of race outcomes. This Monte Carlo 

approach proved highly valuable, allowing the evaluation of strategy robustness and the quantification 

of risks associated with various race scenarios. The results of the MCS revealed meaningful insights 

into how different variable, such as the occurrence of SC phases or stochastic driver variability, 

influence overall race dynamics. Additionally, the simulator successfully captured the distribution of 

time gaps between drivers across simulations, reflecting the spread typically observed in real races. 

However, the Monte Carlo analysis also revealed discrepancies in certain areas, such as an 

underestimation of number of SC deployments compared to historical data, suggesting that some 

probability parameters might require recalibration. 

Despite these minor discrepancies, the results collectively demonstrate that the simulator effectively 

fulfils its primary purpose, modelling Formula One races in a way that combines event realism with 

stochastic variability. It enables detailed analysis of strategic decisions and provides a framework for 

exploring not only expected outcomes but also the full range of possible race scenarios. Such 
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capabilities are invaluable for engineers and strategists seeking to optimize race performance in a 

highly competitive environment where small margins can determine success or failure.  



99 

 

10 Appendix 

Table 10.1: Circuit-specific quadratic and linear parameters regarding the compounds used during 2023 Formula One 

season 

Circuit Parameter C0 tire C1 tire C2 tire C3 tire C4 tire C5 tire 

Bahrain 

Grand Prix 

Quadratic No data 0.0059 0.0384 0.0118 No data No data 

Linear No data 0.0613 0.0000 0.0593 No data No data 

Saudi 

Arabian 

Grand Prix 

Quadratic No data No data 0.0006 0.0017 0.0014 No data 

Linear No data No data 0.0076 0.0044 0.0698 No data 

Australian 

Grand Prix 

Quadratic No data No data 0.0003 0.0012 0.0000 No data 

Linear No data No data 0.0001 0.0342 0.0000 No data 

Azerbaijan 

Grand Prix 

Quadratic No data No data No data 0.0003 0.0027 No data 

Linear No data No data No data 0.0074 0.0068 No data 

Miami 

Grand Prix 

Quadratic No data No data 0.0002 0.0005 No data No data 

Linear No data No data 0.0208 0.0142 No data No data 

Monaco 

Grand Prix 

Quadratic No data No data No data 0.0005 0.0018 0.0028 

Linear No data No data No data 0.0269 0.0008 0.0000 

Spanish 

Grand Prix 

Quadratic No data 0.0003 0.0005 0.0046 No data No data 

Linear No data 0.0712 0.0466 0.0345 No data No data 

Canadian 

Grand Prix 

Quadratic No data No data No data 0.0016 0.0022 0.0029 

Linear No data No data No data 0.0063 0.0074 0.0000 

Austrian 

Grand Prix 

Quadratic No data No data No data 0.0013 0.0034 No data 

Linear No data No data No data 0.0411 0.0327 No data 

British 

Grand Prix 

Quadratic No data 0.0020 0.0004 0.0011 No data No data 

Linear No data 0.0530 0.0147 0.0190 No data No data 

Hungarian 

Grand Prix 

Quadratic No data No data No data 0.0016 0.0020 0.0030 

Linear No data No data No data 0.0479 0.0147 0.0000 

Belgian 

Grand Prix 

Quadratic No data No data 0.0000 0.0067 0.0033 No data 

Linear No data No data 0.1714 0.1603 0.1116 No data 

Dutch 

Grand Prix 

Quadratic No data 0.0000 0.0017 0.0021 No data No data 

Linear No data 0.0000 0.0031 0.0273 No data No data 
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Italian 

Grand Prix 

Quadratic No data No data No data 0.0021 0.0052 No data 

Linear No data No data No data 0.0376 0.0091 No data 

Singapore 

Grand Prix 

Quadratic No data No data No data 0.0015 0.0036 0.0053 

Linear No data No data No data 0.0090 0.0098 0.0000 

Japanese 

Grand Prix 

Quadratic No data 0.0034 0.0040 0.0078 No data No data 

Linear No data 0.0733 0.0794 0.0631 No data No data 

Qatar 

Grand Prix 

Quadratic No data 0.0028 0.0018 0.0000 No data No data 

Linear No data 0.0179 0.0337 0.0000 No data No data 

United 

States 

Grand Prix 

Quadratic No data No data 0.0022 0.0051 0.0000 No data 

Linear No data No data 0.0366 0.0276 0.4945 No data 

Mexican 

Grand Prix 

Quadratic No data No data No data 0.0007 0.0014 No data 

Linear No data No data No data 0.0826 0.0555 No data 

San Paulo 

Grand Prix 

Quadratic No data No data No data 0.0020 0.0044 No data 

Linear No data No data No data 0.0358 0.0138 No data 

Las Vegas 

Grand Prix 

Quadratic No data No data No data 0.0026 0.0070 No data 

Linear No data No data No data 0.0066 0.0008 No data 

Abu Dhabi 

Grand Prix 

Quadratic No data No data No data 0.0027 0.0068 No data 

Linear No data No data No data 0.0192 0.0195 No data 
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Table 10.2: Driver-specific mean variability values 𝜀𝑙𝑎𝑝 (Equation 5.11) and probabilistic starting performance values 

𝑡𝑠𝑡𝑎𝑟𝑡,𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒  [4] (Equation 5.13). The table accounts for all the drivers who appeared in the 2023 Formula One season 

Driver Team 𝜀𝐥𝐚𝐩 𝒕𝒔𝒕𝒂𝒓𝒕,𝒑𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆 

Alexander ALBON Williams 𝒩(0,  0.32782) 𝒩(0.044,  0.1742) 

Fernando ALONSO Aston Martin 𝒩(0,  0.36222) 𝒩(−0.009,  0.01522) 

Valtteri BOTTAS Alfa Romeo 𝒩(0,  0.35472) 𝒩(0.088,  0.2452) 

Nick DE VRIES AlphaTauri 𝒩(0,  0.32212) 𝒩(0.027,  0.1462) 

Pierre GASLY AlphaTauri 𝒩(0,  0.37952) 𝒩(−0.047,  0.1122) 

Lewis HAMILTON Mercedes 𝒩(0,  0.35092) 𝒩(−0.052,  0.0982) 

Nico HULKENBERG Haas 𝒩(0,  0.39822) 𝒩(0.102,  0.1562) 

Liam LAWSON AlphaTauri 𝒩(0,  0.38522) 𝒩(0.027,  0.1462) 

Charles LECLERC Ferrari 𝒩(0,  0.35432) 𝒩(−0.042,  0.1252) 

Kevin MAGNUSSEN Haas 𝒩(0,  0.38042) 𝒩(−0.014,  0.1712) 

Lando NORRIS McLaren 𝒩(0,  0.38392) 𝒩(0.003,  0.1422) 

Esteban OCON Alpine 𝒩(0,  0.33512) 𝒩(−0.027,  0.1152) 

Sergio PEREZ RedBull 𝒩(0,  0.39792) 𝒩(0.044,  0.1152) 

Oscar PIASTRI McLaren 𝒩(0,  0.39692) 𝒩(−0.097,  0.1262) 

Daniel RICCIARDO AlphaTauri 𝒩(0,  0.40542) 𝒩(0.027,  0.1462) 

George RUSSELL Mercedes 𝒩(0,  0.37442) 𝒩(−0.028,  0.1352) 

Carlos SAINZ Ferrari 𝒩(0,  0.34692) 𝒩(−0.050,  0.1152) 

Logan SARGEANT Williams 𝒩(0,  0.37342) 𝒩(0.029,  0.1282) 

Lance STROLL Aston Martin 𝒩(0,  0.38062) 𝒩(−0.095,  0.1352) 

Yuki TSUNODA AlphaTauri 𝒩(0,  0.33482) 𝒩(0.050,  0.1682) 

Max VERSTAPPEN RedBull 𝒩(0,  0.32702) 𝒩(−0.001,  0.1712) 

Guanyu ZHOU Alfa Romeo 𝒩(0,  0.39132) 𝒩(0.006,  0.1482) 
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Table 10.3: Driver-specific data-driven retirement percentages [17] and estimated posterior distribution parameters 

Driver Team 
Historic Retirement 

Percentage 
Posterior Distribution 

Alexander ALBON Williams 0.115 𝐵𝑒𝑡𝑎(15,  126) 

Fernando ALONSO Aston Martin 0.025 𝐵𝑒𝑡𝑎(13,  426) 

Valtteri BOTTAS Alfa Romeo 0.065 𝐵𝑒𝑡𝑎(19,  264) 

Nick DE VRIES AlphaTauri 0.039 𝐵𝑒𝑡𝑎(13,281) 

Pierre GASLY AlphaTauri 0.105 𝐵𝑒𝑡𝑎(19,  171) 

Lewis HAMILTON Mercedes 0.011 𝐵𝑒𝑡𝑎(7,  387) 

Nico HULKENBERG Haas 0.022 𝐵𝑒𝑡𝑎(8,  256) 

Liam LAWSON AlphaTauri 0.039 𝐵𝑒𝑡𝑎(13,  281) 

Charles LECLERC Ferrari 0.095 𝐵𝑒𝑡𝑎(17,  167) 

Kevin MAGNUSSEN Haas 0.108 𝐵𝑒𝑡𝑎(23,  199) 

Lando NORRIS McLaren 0.086 𝐵𝑒𝑡𝑎(14,  151) 

Esteban OCON Alpine 0.103 𝐵𝑒𝑡𝑎(19,  174) 

Sergio PEREZ RedBull 0.043 𝐵𝑒𝑡𝑎(15,  303) 

Oscar PIASTRI McLaren 0.065 𝐵𝑒𝑡𝑎(6,  77) 

Daniel RICCIARDO AlphaTauri 0.039 𝐵𝑒𝑡𝑎(13,  281) 

George RUSSELL Mercedes 0.132 𝐵𝑒𝑡𝑎(20,  145) 

Carlos SAINZ Ferrari 0.068 𝐵𝑒𝑡𝑎(17,  226) 

Logan SARGEANT Williams 0.194 𝐵𝑒𝑡𝑎(10,  63) 

Lance STROLL Aston Martin 0.108 𝐵𝑒𝑡𝑎(21,  182) 

Yuki TSUNODA AlphaTauri 0.115 𝐵𝑒𝑡𝑎(13,  111) 

Max VERSTAPPEN RedBull 0.057 𝐵𝑒𝑡𝑎(15,  231) 

Guanyu ZHOU Alfa Romeo 0.132 𝐵𝑒𝑡𝑎(12,  93) 
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Table 10.4: Driver-specific probability values, computed by means of Bayesian inference, regarding accidents (𝑃𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡), 
accidents on lap 1 (𝑃𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡,𝑙𝑎𝑝1) and failures (𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒  [4]) 

Driver Team 𝑷𝒂𝒄𝒄𝒊𝒅𝒆𝒏𝒕 𝑷𝒂𝒄𝒄𝒊𝒅𝒆𝒏𝒕,𝒍𝒂𝒑𝟏  𝑷𝒇𝒂𝒊𝒍𝒖𝒓𝒆  

Alexander ALBON Williams 0.0859 0.859 0.0568 

Fernando ALONSO Aston Martin 0.0239 0.239 0.0448 

Valtteri BOTTAS Alfa Romeo 0.0541 0.541 0.0448 

Nick DE VRIES AlphaTauri 0.0357 0.357 0.0568 

Pierre GASLY AlphaTauri 0.0806 0.806 0.0688 

Lewis HAMILTON Mercedes 0.0144 0.144 0.0328 

Nico HULKENBERG Haas 0.0246 0.246 0.0808 

Liam LAWSON AlphaTauri 0.0357 0.357 0.0568 

Charles LECLERC Ferrari 0.0745 0.745 0.0688 

Kevin MAGNUSSEN Haas 0.0834 0.834 0.0808 

Lando NORRIS McLaren 0.0685 0.685 0.0936 

Esteban OCON Alpine 0.0793 0.793 0.0688 

Sergio PEREZ RedBull 0.0380 0.380 0.0568 

Oscar PIASTRI McLaren 0.0590 0.590 0.0936 

Daniel RICCIARDO AlphaTauri 0.0357 0.357 0.0568 

George RUSSELL Mercedes 0.0576 0.576 0.0328 

Carlos SAINZ Ferrari 0.0564 0.564 0.0688 

Logan SARGEANT Williams 0.0945 0.945 0.0568 

Lance STROLL Aston Martin 0.0833 0.833 0.0448 

Yuki TSUNODA AlphaTauri 0.0847 0.847 0.0568 

Max VERSTAPPEN RedBull 0.0492 0.492 0.0568 

Guanyu ZHOU Alfa Romeo 0.0925 0.925 0.0448 
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Table 10.5: Circuit-specific time loss relative to pit lane travel and circuit-specific overtaking data 

Circuit 𝒕𝒑𝒊𝒕𝒅𝒓𝒊𝒗𝒆 [s] 𝛼𝐨𝐯𝐞𝐫𝐭𝐚𝐤𝐞 𝑷𝒐𝒗𝒆𝒓𝒕𝒂𝒌𝒆 

Bahrain Grand Prix 20.057 -0.353 0.355 

Saudi Arabian Grand Prix 16.112 -0.305 0.432 

Australian Grand Prix 12.798 -0.300 0.440 

Azerbaijan Grand Prix 14.445 -0.283 0.467 

Miami Grand Prix 19.814 -0.351 0.358 

Monaco Grand Prix 18.984 -0.600 0.600 

Spanish Grand Prix 17.415 -0.351 0.359 

Canadian Grand Prix 18.914 -0.291 0.454 

Austrian Grand Prix 18.644 -0.368 0.331 

British Grand Prix 24.462 -0.294 0.45 

Hungarian Grand Prix 17.222 -0.314 0.417 

Belgian Grand Prix 21.222 -0.387 0.301 

Dutch Grand Prix 15.021 -0.450 0.300 

Italian Grand Prix 19.746 -0.326 0.398 

Singapore Grand Prix 25.152 -0.595 0.448 

Japanese Grand Prix 18.792 -0.294 0.45 

Qatar Grand Prix 22.842 -0.334 0.386 

United States Grand Prix 19.814 -0.370 0.328 

Mexican Grand Prix 17.883 -0.309 0.425 

San Paulo Grand Prix 23.297 -0.339 0.377 

Las Vegas Grand Prix 19.814 -0.437 0.221 

Abu Dhabi Grand Prix 17.019 -0.387 0.301 
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Table 10.6: Team-specific Fisk distribution parameters (taking into account that loc parameter is null for simplicity) and 

average pit stop time relative to 2023 Formula One season [4, 23] 

Teams Shape Scale Average Pit Stop Time [s] 

RedBull 2.045 0.598 2.64 

Ferrari 2.414 0.737 2.90 

McLaren 2.639 0.98 2.91 

Aston Martin 3.498 1.188 3.08 

Mercedes 1.563 0.48 3.18 

Alpine 3.876 1.433 3.19 

AlphaTauri 4.29 1.606 3.23 

Williams 2.562 0.966 3.28 

Alfa Romeo 5.827 2.327 3.51 

Haas 5.324 1.866 4.22 
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