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Abstract 

 

         The main goal of this thesis is to design an Advanced Industrial 4.0 oriented Digital 

Twin for Simulation of different robots in the Mind-Lab of Politecnico Di Torino, where all 

the Robots Uses different communication protocol. MQTT Brocker is used to collect the Data 

from all the robots as universal platform. This possible communication architecture is more 

reliable, secured, and flexible opening new gates for further adding new robots and sensors in 

the lab and lets controllability.   
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1. Introduction 

            Industrial 4.0 Digital Twin, the idea of a "digital twin" has become more popular as 

industrial processes become more digital. A digital twin is an almost real-time virtual copy of 

a real-world item or procedure that is used to maximize corporate efficiency. Digital twins 

function as virtual copies of factories, supply chains, production lines, and processes in the 

context of Industry 4.0. Data from IoT sensors, devices, PLCs, and other linked items are 

pulled to generate these twins. Digital twins let companies spot physical problems early, 

anticipate outcomes accurately, and create better products by giving them access to a 

product's whole digital footprint. Digital twins can help businesses increase their speed to 

market, improve their operations, lower error rates, and investigate new business 

opportunities. For businesses looking to revolutionize their production processes, the digital 

twin is increasingly accessible as costs come down and technological capabilities advance. 

           Manufacturing: Businesses use Internet of Things sensors to build digital twins of 

actual factories. Predictive maintenance, quality control, and production process monitoring 

are made possible by these twins. Manufacturers can increase productivity, decrease 

downtime, and improve efficiency by simulating various scenarios. 

           Automotive: Vehicle testing, design, and performance optimization are all done with 

digital twins. Digital twins are useful for large engines (like locomotive and jet engines), 

particularly for creating maintenance schedules. 
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1.1. Origin of Digital Twin 

             The idea of digital twins (DT) began with the early stages of virtual manufacturing 

(VM), which Onosato and Iwata presented in 1993. VM used modelling and simulation 

environments to generate virtual representations of physical systems. What is today known as 

Digital Twins originated from this fundamental concept of virtual machines. In contrast to 

what some people say, DT came from the idea of VM rather than the mirrored space model 

(MSM) put forth by Michael Grieves. Although it lacked a clear meaning, the term "DT" first 

surfaced in literature in 1997 when it was used to describe a three-dimensional digital model 

of metropolitan road networks. With its development based on the integration of 

interdisciplinary technical knowledge, industrial software, and information and 

communication technologies (ICT), DT has attracted a great deal of interest over time from 

both industry and academia. The development and useful uses of digital twins in 

computational engineering and sophisticated system modelling and simulation settings are 

highlighted by this historical background. 

          The idea of "digital twins" grew as technology progressed, moving from basic virtual 

representations to more intricate, integrated systems with real-time data processing and 

sophisticated analytics. Advances in IoT, cloud computing, big data, and AI facilitated this 

transition by giving the tools and infrastructure needed to construct dynamic, highly detailed 

digital twins. Michael Grieves first explicitly introduced the concept of a digital twin in 

relation to product lifecycle management (PLM) in a 2002 presentation at the University of 

Michigan. His idea, which centred on the synchronization of the actual and virtual worlds, 

served as the basis for our modern understanding of digital twins. Grieves' three main 

components were the physical product, the virtual product, and the connections that brought 

the two together through data and information flows. 

            Many various industries, including smart cities, healthcare, automotive, and energy, 

are currently using digital twin technologies. In the medical field, digital twins of patients 

offer more customized therapy and improved treatment results. In the automotive industry, 

they assist with vehicle design, testing, and performance improvement. In the energy sector, 

digital twins maximize the operation and maintenance of power plants and renewable energy 

systems. Smart cities employ digital twins for urban planning and infrastructure management. 

The further advancement and integration of cutting-edge technologies like artificial 

intelligence (AI), machine learning, and edge computing are expected to greatly expand the 

capabilities and uses of digital twins. As digital twin technology develops, it has the potential 

to revolutionize whole industries by boosting system intelligence, product reliability, and 

operational productivity. The evolution of digital twins over time is proof of their 

revolutionary potential as well as the ongoing innovation that drives their development. 

 

1.2. Digital Twin in Industrial 5.0 

             The development of Industry 4.0, a technological paradigm shift that incorporates 

digital technology into industrial and manufacturing processes, is closely linked to the birth 

of the notion of the digital twin. The fourth industrial revolution, known as "industry4.0," is 

defined by the fusion of cutting-edge digital and physical technologies, such as Big data 

analytics, Autonomous Robots, System integration, Cybersecurity, Additive manufacturing, 
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Augmented reality, artificial intelligence, and the internet of things (IoT). The ground-

breaking idea of digital twins (DT) was first proposed within the context of Industry 4.0. 

Later in January 2021 the European commission categorized DT as Industrial 5.0 technology 

towards a human centric, sustainable and resilient European industry. Through ongoing data 

processing and analysis, it aims to optimize production processes and facilitate proactive 

maintenance. The idea behind digital technology (DT) is to create a "digital copy" or virtual 

representation of real production systems, including assembly lines or other pieces of 

machinery. With the help of this digital copy, businesses can monitor, simulate, and optimize 

operations in real time, enabling them to quickly modify production parameters and 

procedures in response to market needs. 

           "Digital Twin" refers to the merging of digital and physical worlds in a digital 

manufacturing setting. Using real-time data gathered from physical assets, a DT gives 

businesses deep insights into the effectiveness of their products and production processes. 

This data-driven approach to decision-making helps identifies inefficiencies, shorten 

manufacturing cycles, and speed up the introduction of new products. The Digital Twin 

concept, which leverages networked technology to increase manufacturing efficiency, agility, 

and competitiveness, is the fundamental embodiment of Industry 4.0. As a result, DTs are 

now a crucial part of modern industrial operations, supporting the transition to data-driven, 

intelligent manufacturing systems that are adaptable, efficient, and responsive to shifting 

market conditions. 

             Digital twins have a wide range of effects in Industry 5.0, going beyond simple 

operational gains to include more significant strategic advantages. Manufacturers can 

anticipate probable equipment breakdowns and schedule maintenance to minimize downtime 

and prolong the life of machinery, for instance, by integrating DTs with predictive analytics 

and machine learning. The capacity to do predictive maintenance is essential for preserving 

continuous production flows and lowering expenses related to unplanned equipment failures. 

Additionally, digital twins enable better teamwork at different phases of the product lifecycle. 

DTs facilitate speedier prototyping, more efficient design iterations, and more efficient 

product development processes by offering a full virtual model that many teams can view and 

edit. This collaborative setting guarantees that all parties involved—from engineers to 

designers to maintenance teams—have a single, accurate understanding of the product and its 

state of operation, which promotes more aligned goals and superior results. 

               Digital twins provide real-time monitoring and control over inventories and logistics 

in the context of supply chain management. Businesses may enhance delivery timetables, 

optimize inventory levels, and foresee disruptions by modelling various supply chain 

scenarios. This degree of understanding is especially helpful in the increasingly complicated 

and multinational supply chain environment, where preserving competitive advantage 

depends on responsiveness and agility. Moreover, the use of digital twins is consistent with 

industry 5.0's rising emphasis on sustainability and human centric application. With their 

ability to maximize resource use, minimize waste, and enhance energy efficiency, DTs help 

to promote more environmentally friendly industrial methods. Companies that integrate their 

operations with regulatory standards and corporate sustainability goals can monitor and 

manage their environmental impact more efficiently. 
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               To sum up, the incorporation of Digital Twins into the Industry 5.0 paradigm 

signifies a noteworthy progression in the way industrial processes are carried out. Through 

the integration of the digital and physical realms, DTs offer a strong foundation for creativity, 

effectiveness, and strategic expansion. The future of manufacturing will be shaped by Digital 

Twins, who will play an increasingly significant role as technology advances and push the 

sector toward more intelligent, robust, and sustainable operations. 

 

1.3. Digital Twin in Production line 

           In today's manufacturing landscape, the utilization of a digital twin within production 

lines extends beyond mere virtual representation. Manufacturers may use advanced analytics 

and simulations to make pre-emptive decisions thanks to this cutting-edge technology. A 

digital twin records real-time data from sensors included into the production environment by 

constantly syncing with its physical counterpart. This wealth of data enables predictive 

maintenance strategies, as anomalies and potential issues can be detected and addressed 

before they impact operations. Within the framework of body-in-white (BIW) manufacturing 

systems, a digital twin provides crucial understanding of the intricate interactions among 

machinery, procedures, and final goods. It can, for instance, detect production flow 

bottlenecks, keep an eye on the well-being and efficiency of robots, and adjust resource usage 

to suit changing demand. Using a digital twin also makes it easier for engineers, maintenance 

personnel, and production planners to communicate with one another and encourages 

collaboration among interdisciplinary teams. 

           As companies adopt Industry 5.0 concepts, the use of digital twins in production has 

the potential to revolutionize operational responsiveness and efficiency. Manufacturers may 

use data-driven decision-making and predictive analytics to improve the agility, quality, and 

efficiency of their manufacturing processes. The digital twin, a crucial element in the shift to 

smarter, more flexible production settings, is ushering in an era of greater innovation and 

competition. Digital technologies like AI and Robotics can reshape and optimize human-

machine interactions mainly in the production line with human workers on factory floors. 

 

1.4. Digital Twin in automotive 

             The incorporation of Digital Twin technology is causing a disruptive shift in the 

automotive industry by improving vehicle performance, design, and maintenance. Digital 

twins can enhance designs, facilitate predictive maintenance, and boost safety using advanced 

driver assistance systems (ADAS) by replicating real-time vehicle data. From early CAD 

design and quick prototyping to post-market performance analysis and personalized customer 

experiences, this technology serves the whole vehicle lifecycle. As demonstrated by Tesla's 

use of this technology, manufacturers can utilize Digital Twins to model the behaviour of 

auto parts, predict failure rates, and apply over-the-air software upgrades to solve problems in 

real time. Additionally, by enabling prospective purchasers to digitally alter the appearance of 

vehicles, digital twins enable unique consumer experiences. The increasing developments in 

IoT and AI suggest that Digital Twins will be essential to creating smarter, more efficient, 

and sustainable vehicles, which will have a substantial impact on the future of the automotive 

industry, despite obstacles in data management, networking, and system integration. 
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1.5. Multi Robot integration in Digital twin using MQTT 

               When combined with MQTT brokers, digital twins provide reliable and effective 

communication frameworks for the interchange of data in real time among several robots in 

complex systems found in smart manufacturing settings. Due to its lightweight design and 

dependability, the MQTT protocol makes it easier to communicate with physical entities and 

the Digital Twin by guaranteeing that messages are sent exactly once, which is a crucial 

aspect of data integrity management in dynamic production environments. Different parts of 

the Digital Twin ecosystem can publish to and subscribe to topics using a locally hosted, 

open-source MQTT broker such as Mosquitto, allowing for real-time updates and 

synchronization. With this configuration, the Digital Twin can accurately represent the 

current conditions of the robots, improving the capacity for predictive maintenance and 

decision-making. Additionally, MQTT is a great option for Internet of Things applications 

due to its scalable architecture and low power consumption, which helps smart manufacturing 

systems operate sustainably and effectively. Digital Twins can dependably handle data from 

several sources using MQTT, guaranteeing that the system functions as a whole and reacts 

quickly to any demands or changes in operation. 

 

2. Problem Description 

           A Cyber-Physical System (CPS) with Robots, Cobots, and Mobots will be created as a 

Digital Twin model in this thesis. In order to encourage wider adoption and cooperation, the 

CPS will primarily make use of open-source tools, and the completed environment will be 

made available on open-source platforms. The environment will be user-friendly and able to 

support extensive simulation and interaction thanks to the CPS's processes, devices, and 

interfaces for signal monitoring and regulation. Integrating the digital twins of the three 

distinct robots housed in the Politecnico di Torino Mind Lab is the main goal of the thesis. 

Among these robots are the 60 kg payload carrying ABB IRB4400, the UR3, and the UR2 

installed on a mobile robot (AGV). Real-Time Data Exchange (RTDE) is used by the UR3 

and UR2 robots, the MODbus communication protocol is used by the mobile robot, and the 

API communication protocol is used by the ABB robot. Developing a dependable and 

coherent communication architecture for the CPS is extremely difficult because to the various 

features, communication protocols, and mechanisms that each robot possesses. 

           Furthermore, for the CPS to operate efficiently, smooth interoperability between these 

disparate systems is essential. It is necessary to carefully include each robot's distinct 

communication protocol into a single framework that enables real-time data sharing and 

coordination. Achieving coordinated operations and maximizing the CPS's overall 

performance depend on this integration. Creating an effective plan for data management is 

another major difficulty. Robust data handling and processing procedures are required for the 

CPS, as each communication protocol has distinct data formats and transmission frequencies. 

This involves offering scalable data storage solutions, reducing latency, and guaranteeing 

data integrity. In order to provide operational optimization, performance monitoring, and 

predictive maintenance, the CPS must also support real-time analytics. To allow for future 

additions and updates, the CPS also needs to be designed with scalability and flexibility in 

mind. This covers the possible introduction of fresh sensors, robotics, and other Internet of 

thing’s gadgets. Because the project is open source, more researchers and developers will be 
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able to contribute to its ongoing customization and enhancement, which will promote 

creativity and adaptability. 

           The thesis will also investigate how incorporating cutting-edge technology like 

machine learning and artificial intelligence might enhance the capabilities of the Digital Twin 

model. These technologies make it feasible to assess the massive amounts of data generated 

by the CPS and obtain knowledge that may improve decision-making, predictive 

maintenance, and operational efficiency. Finally, operators will be able to communicate with 

the CPS from any location because to its capabilities for remote monitoring and control. With 

the advent of Industry 5.0 and the growing prevalence of distant and decentralized operations, 

this capability is especially pertinent. A key component of the system's architecture will be to 

ensure dependable and secure remote access, which calls for the deployment of strong 

cybersecurity safeguards. 

            In conclusion, creating a CPS that combines Digital Twins of various robot types with 

various communication protocols is a difficult but incredibly satisfying task. The thesis seeks 

to develop a flexible and scalable environment that not only satisfies present operating 

requirements but also lays the groundwork for upcoming developments in cyber-physical 

systems and Industry 5.0 applications by utilizing open-source tools and platforms. 

           In the thesis, a Cyber Physical System (CPS) comprising Robots, Cobot’s, and Mobot’s 

is developed as a Digital Twin model. The CPS will be developed mostly using open-source 

tools, and the finished environment will be made accessible on open-source platforms. It will 

be simple to interact with the environment and simulate it thanks to the CPS's mechanisms, 

gadgets, and interfaces for monitoring and regulating signals. The main aim of the thesis is to 

integrate Digital Twins of 3 different robot existing in the Politecnico Di Torino Mind Lab. 

The robots include ABB IRB4400 payload 60kgs, UR3 and UR2 mounted on mobile robot 

(AGV). The ABB robot uses API communication protocol, UR3 and UR2 uses RTDE, and 

the mobile robot uses Modbus communication protocol. Developing a dependable 

communication architecture for the cyber-physical system is difficult since every robot has 

unique features, communication protocols, and mechanisms. 
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3. Description of Communication Protocols of Robots 

3.1. ABB IRB 4400 

 

ABB Robot 

3.1.1. ABB Axis: 

           With six axes that are each intended to enable precise and adaptable movement for a 

variety of industrial applications, the ABB IRB 4400 is an incredibly sturdy and versatile 

industrial robot. The axes are: 

1. Axis 1 (Base Rotation): This axis gives the robot a full 360-degree swivel capability 

by enabling it to revolve around its vertical base. For tasks requiring a wide range of 

placement and movements, this is essential. 

2. Axis 2 (Arm Extension): The robot can grasp items at varying distances thanks to 

this axis, which allows the arm to extend forward and backward. 

3. Axis 3 (Arm Elevation): The arm may move up and down on this axis, making it 

easier to handle things of varying heights. 

4. Axis 4 (Wrist Rotation): The wrist may rotate on this axis, which improves the 

robot's capacity to carry out intricate tasks including twisting motions. 

5. Axis 5 (Wrist Bend): The wrist may be bent thanks to this axis, which further 

improves the robot's dexterity and adaptability. 

6. Axis 6 (End Effector Rotation): The end effector, or tool attached to the robot's arm, 

can spin precisely on this axis, facilitating sophisticated and detailed operations. 

These six axes work together to provide the IRB 4400 remarkable flexibility and precision, 

making it perfect for demanding tasks in a variety of industrial applications. 
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ABB AXIS 

 

 

 
 

ABB REACHABLE WORKSPACE 

 

 

3.1.2. Robot available Communication Protocols 

             A variety of communication protocols are used by the ABB IRB 4400 robot to 

guarantee effective and seamless integration into automated systems. Important protocols 

consist of: 

• API Communication Protocol: The robot's controller and other devices or systems 

can communicate with each other more easily thanks to the IRB 4400's use of API 

(Application Programming Interface) protocols. Real-time data sharing and command 

execution are made possible by this protocol, which is crucial for coordinated 

operations in automated settings. 
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API Network 

 

• Modbus Communication Protocol: The Modbus protocol, a widely used standard in 

industrial automation, is another protocol that the IRB 4400 can employ to 

communicate between electrical devices. By facilitating communication with other 

robots, HMIs (Human-Machine Interfaces), and PLCs (Programmable Logic 

Controllers), Modbus enhances interoperability within a manufacturing line. 

 

• Robot Ware and IRC5 Controller: A key component of the IRB 4400's 

communication capabilities is its Robot Ware-equipped IRC5 controller. With support 

for many connectivity methods like Ethernet, Device Net, and PROFIBUS, this 

combination ensures dependable and strong data transmission with external devices 

and systems. 

 

           These communication protocols enable coordinated operations and real-time data 

transmission, and they also make it simple to integrate the IRB 4400 into complex automated 

systems. 

 

 

3.1.3. Robot Uses and Functioning 

           The ABB IRB 4400's sophisticated features and sturdy construction make it ideal for a 

variety of industrial applications. Important applications consist of: 

 

• Manufacturing: The IRB 4400 is widely utilized in the manufacturing sector for 

operations like machine tending, assembly, material handling, and packaging. 

Because of its great speed and accuracy, it is ideal for repetitive tasks requiring 

accuracy and efficiency. 

• Welding and Gluing: The IRB 4400 is capable of welding and gluing, providing 

exact control over the application of welds and adhesives, with the addition of 

optional software packages. 

• Material Removal: The robot can do tasks that call for steady force and accuracy, 

like cutting, grinding, and polishing. 
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• Die-Casting and Foundry Applications: The IRB 4400 is appropriate for die-casting 

and other foundry applications because of its Foundry Plus feature, which enables it to 

function in challenging conditions and withstand exposure to coolants, lubricants, and 

metal spits. 

• Quality Inspection: To ensure that items satisfy strict quality requirements before 

they are released onto the market, quality inspection jobs can be performed by a robot 

that is outfitted with vision systems and sensors. 

 

The IRB 4400 boosts productivity, decreases downtime, and increases overall efficiency in 

industrial processes by combining these uses and features. Because of its dependability and 

versatility in managing a variety of tasks, it is an essential tool in modern automated 

manufacturing systems. 
 

3.2. API 

3.2.1. API Definition and Role 

           An Application Programming Interface (API) is a collection of guidelines and 

conventions that facilitates communication between various software programs. According to 

this thesis, the API is essential to allowing smooth data transfer via Node-RED between the 

ABB IRB 4400 robot and the MQTT broker. The ABB robot collects operational data in real 

time, including joint locations, movement trajectories, and performance parameters, by using 

its API. After that, this data is sent to the flow-based programming tool Node-RED, which 

prepares and processes it before sending it to the MQTT broker. Real-time monitoring, 

simulation, and optimization of the robot's actions within the digital twin environment are 

made possible by the system's utilisation of the API to guarantee that the digital twin receives 

precise and timely data. This integration not only enhances the interoperability of the 

different components within the Cyber-Physical System but also ensures that the digital twin 

can effectively mirror the physical operations of the ABB robot, thereby contributing to the 

overall efficiency and reliability of the manufacturing processes. 

 

3.2.2. API for Robot Communication   

APIs are essential to contemporary robotics because they offer a standardized means of 

communication and interaction between various components and systems. Robots can send 

and receive data, carry out commands, and easily connect with other systems and applications 

thanks to APIs in robot communication. The API makes it easier for other systems to 

communicate with the control software of the ABB IRB 4400 robot by making a variety of 

endpoints available. Real-time status monitoring, command transmission for movement, and 

sensor data retrieval are all part of this interaction. 

The API plays a vital role in this thesis by acting as a link between the ABB robot and the 

larger digital twin environment. The robot can upload its data to the MQTT broker using 

Node-RED by using the API. In this procedure, joint data, location data, and operating 

statuses are transmitted by the robot's API to Node-RED, which processes and passes the data 

to the MQTT broker. As a message mediator, the MQTT broker makes sure that all 

subscribing clients—including the Unity-developed digital twin system—get access to this 
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data. This configuration improves the monitoring and control capabilities within the lab's 

smart manufacturing environment by enabling real-time visibility and interaction with the 

robot's digital twin. 

 

3.2.3. ABB ROBOT API 

ABB robot integration into contemporary industrial environments, particularly in the context 

of Industry 4.0 and the creation of Digital Twins, requires the use of the ABB API 

Communication Protocol. ABB robots and external systems like control software, monitoring 

apps, and digital interfaces may communicate data and commands with ease thanks to this 

protocol's reliable and effective bidirectional communication. A broad range of features 

intended to meet various operational requirements form the foundation of the ABB API. 

These consist of the real-time data transfer of operating statuses, error messages, joint 

positions, and other crucial characteristics. The efficient execution of automated operations, 

problem diagnostics, and robot performance monitoring all depend on this kind of rapid and 

comprehensive information. 

 

3.2.4. Technical overview 

The ABB API is compatible with a variety of network setups and client applications since it 

uses common communication protocols like HTTP and WebSockets. The API endpoints are 

made to perform a wide range of tasks, from simple command execution to sophisticated data 

extraction. Token-based authentication is one of the industry-standard authentication 

techniques used to secure each endpoint, guaranteeing that only authorized users and systems 

can communicate with the robot controllers. 

The ABB API's capability to handle real-time data streams is one of its primary 

characteristics. This is especially significant when implementing a digital twin, as accurate 

modelling and monitoring depend on current data. The API enables the flow-based 

programming tool Node-RED, which is a versatile and user-friendly tool, to upload data in 

real-time from ABB robots to a MQTT broker. By serving as a middleman, Node-RED 

gathers information from the ABB robot controls and sends it to the MQTT broker. By 

ensuring that the Digital Twin receives up-to-date and correct information, this configuration 

improves its ability to simulate, monitor, and optimize robotic activities. 

 

3.2.5. API Security and Reliability 

For the ABB IRB 4400 robot and other systems to communicate safely and consistently, it is 

imperative that the API's security and dependability be guaranteed. Token-based 

authentication, HTTPS, and encryption are examples of security mechanisms that guard 

against unwanted access and data breaches. Robust error-handling, redundancy, and failover 

solutions are employed to preserve reliability, guaranteeing continuous real-time 

synchronization between the physical robot and its Unity digital twin. The digital twin's 

sophisticated features are supported by this reliable and secure communication framework, 

which also maintains data integrity and system resilience. 
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3.3. MQTT Broker 

 

3.3.1. Overview of MQTT 

A key component of the Digital Twin system's communication architecture is the MQTT 

Broker. It serves as a go-between, allowing the various robots and the Digital Twin 

environment to communicate with each other. Because of its dependability and lightweight 

design—which includes a publish-subscribe mechanism that effectively manages data 

transfer with little bandwidth and power consumption—MQTT is favoured. This is especially 

crucial in industrial settings where a multitude of equipment need to interact with one another 

without any problems. The broker supports Quality of Service (QoS) levels, ensuring 

message delivery with varying degrees of assurance, which is critical for maintaining the 

accuracy and reliability of the system. The MQTT Broker ensures seamless integration and 

real-time data synchronization, allowing for accurate representation and control of the ABB 

IRB 4400, UR3, and the mobile robot within the Unity-based virtual environment. This setup 

enhances the system's responsiveness and scalability, crucial for complex industrial 

applications. By leveraging MQTT, the system can adapt to changes and expansions, 

providing a robust framework for the Digital Twin's ongoing development and operational 

needs. 

 

3.3.2. Advantages of Using MQTT   

         There are a number of clear benefits to integrating various robot types, such as ABB 

robots, UR3, and mobile robots, using MQTT as the main communication protocol. MQTT is 

perfect for areas with constrained network resources because of its lightweight design and 

minimal bandwidth requirements. This is especially useful in a laboratory environment where 

several robots are working in tandem and sending out data all the time. The publish-subscribe 

paradigm of MQTT facilitates effective data distribution, allowing robots and the digital twin 

system to communicate in real time. This paradigm also facilitates the integration of robots 

with different communication protocols, as MQTT may operate as a unifying layer that 

abstracts the complexities of individual protocols. 

          One of the key advantages of MQTT is its Quality of Service (QoS) levels, which 

ensure reliable message delivery. This function ensures that important data is not lost during 

transmission, which is essential for preserving the digital twin's correctness and 

synchronization. Depending on the demands of a particular application, the QoS levels vary 

from 0 (at most once delivery) to 2 (exactly once delivery), offering flexibility in balancing 

dependability and network resource utilization. 
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           MQTT's robustness and dependability are further increased by its support for last will 

and testament features and preserved messages. Preserved messages guarantee that a fresh 

recipient gets the most recent message sent about a subject right away, which is crucial for 

setting up freshly linked robots' states. In the event that a robot unintentionally disconnects, 

the last will testament feature enables the system to alert other devices, guaranteeing timely 

and suitable responses to such occurrences. 

          Another important benefit of MQTT is its scalability. MQTT can accommodate the 

growing number of devices and message throughput as the lab's robotic fleet expands without 

requiring major infrastructure modifications. The effective message routing and topic-based 

filtering built into the MQTT protocol enable this scalability. 

           Finally, managing the communication flows is made simple and effective by using 

MQTT with Node-RED. The visual programming interface of Node-RED makes it simple to 

integrate, monitor, and operate the robots, facilitating rapid troubleshooting and adaption. 

This combination improves the lab's digital twin system's overall efficiency and versatility 

while streamlining the process of connecting various robots. The lab can create a scalable, 

dependable, and effective communication infrastructure that facilitates the smooth operation 

and coordination of its many robotic systems by utilizing MQTT. 

 

3.3.3. MQTT Implementation in the Digital Twin  

         ABB IRB4400, UR3, and mobile robots are just a few of the different robots that our 

lab's robotic systems are controlling, synchronizing, and communicating with ease through 

the use of MQTT in the Digital Twin architecture. This requires a number of calculated steps. 

Because of its effectiveness, dependability, and scalability—all of which are essential for 

real-time data processing and system integration in a dynamic lab setting—the MQTT 

protocol was selected. 
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         Establishing a reliable MQTT broker, like Mosquitto, to act as the focal point of all 

message exchanges is the first stage in the implementation process. The broker is in charge of 

overseeing the publish-subscribe process, making sure that all subscribing organizations 

receive data published by robots or control systems in a timely manner. The precision and 

efficacy of the Digital Twin depend on real-time monitoring and control, which is made 

possible by this configuration. 

          Every robot in the lab is set up to handle data transmission and reception using a 

MQTT client. For example, the ABB IRB4400 robot sends operational data to Node-RED via 

its API, and Node-RED broadcasts the data to pertinent MQTT topics. Similar to this, UR3 

and mobile robots communicate with Node-RED using their own communication protocols 

(RTDE and MODbus). Node-RED serves as a middleman, translating and publishing data to 

the MQTT broker. This method makes sure that all robots may communicate with each other 

without any issues using a single MQTT-based framework, even though their native 

communication protocols differ. 

          The hierarchical nature of the MQTT topics makes data organization effective and 

access simple. Different data kinds, including position, status, and commands, have defined 

topics that enable subscribers to filter and analyse just the pertinent data. As more robots and 

gadgets are incorporated into the Digital Twin, this hierarchical subject structure also helps to 

manage the system's scalability. 

           In order to guarantee dependable message delivery, the system additionally 

incorporates techniques to manage quality of service (QoS) levels. QoS level 2 guarantees 

that every message is sent exactly once for critical data that needs to be delivered with 

certainty. For the physical robots and their digital counterparts to remain in sync and for the 

Digital Twin to correctly represent real-world conditions, this dependability is essential. 

          Retained messages are also utilized to keep each robot's most recent known state, 

guaranteeing that new subscribers can get the most recent status right away upon connecting. 

In order to detect and manage unexpected disconnections, MQTT's last will, and testament 

feature is also utilized. This helps the system remain strong and dependable even when there 

are network problems. 

          The SolidWorks models of the robots and the lab setup are animated using Unity in 

order to see and interact with the Digital Twin. The animations are powered by real-time data 

obtained from the Unity application, which subscribes to the pertinent MQTT topics. This 

allows for a dynamic and interactive representation of the lab's activities. To ensure that the 

digital models faithfully replicate the movements and actions of the real robots, Unity uses 

C# scripts to process joint and position data. 

          In conclusion, the integration of MQTT into the lab's robotic systems' Digital Twin 

framework offers a dependable, expandable, and effective communication option. It makes it 

possible for various robot kinds to synchronize and exchange data in real-time, which 

improves lab operation monitoring, control, and optimization. This integration opens the door 

for cutting-edge robotics and automation research and development in the laboratory setting 

in addition to increasing operational efficiency.  
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4. Design and Modelling of the Digital Twin  

        This part contains the comprehensive design and development of the lab layout and 

robotic systems SolidWorks models utilized in our Digital Twin architecture. The main goals 

are to produce precise and useful 3D models of the ABB IRB4400 robot and to integrate the 

mobile robot and UR3 models that already exist to enable efficient simulation and 

visualization. 

         Known for its great payload capacity and adaptability, the ABB IRB4400 robot is an 

essential part of our lab. Its movements and physical attributes were carefully replicated in 

the SolidWorks model through great craftsmanship. With all six of the robot's axes included, 

the model faithfully captures the kinematics and range of motion of the device. The joint 

configurations and link dimensions were carefully considered in order to guarantee that the 

virtual twin acts in the same way as the actual robot in real-world situations. We seek to 

attain great fidelity in our simulations by integrating the unique geometric and functional 

characteristics of the ABB IRB4400, which will increase the dependability of our digital 

twin. 

        Our digital architecture included pre-existing SolidWorks models of the UR3 and the 

mobile robot in addition to the ABB IRB4400. A collaborative robot with a reputation for 

accuracy and flexibility, the UR3, was included to mimic activities requiring a high level of 

precision and flexibility. To accurately depict its operational capabilities, the model 

incorporates end-effector combinations and intricate joint mechanisms. 

       The mobile robot was also modelled and integrated, and it had navigational skills within 

the lab. Its motion characteristics, sensor locations, and environmental interaction processes 

are all captured in this model. Our capacity to plan and optimize workflows is improved by 

the inclusion of the mobile robot in the digital twin, which enables thorough simulations of 

dynamic interactions inside the lab area. 

       The overall lab layout was modelled in SolidWorks to provide a comprehensive virtual 

environment. The lab layout includes workstations, robot operating areas, and pathways for 

the mobile robot. This holistic modelling approach enables a thorough understanding of 

spatial dynamics and interaction between different robotic systems within the lab. The 

detailed layout also assists in planning and optimizing workflows, ensuring efficient use of 

space and resources. 

       The finished SolidWorks models were saved as STL files and then imported into 

Blender. These models were fine-tuned in Blender and exported as Unity-compatible FBX 

files. This conversion procedure is essential because Unity needs FBX files in order to render 

and animate the simulation environment correctly. We make sure the models are intact and 

functional when we import them into Unity by using Blender as a transitional step. 

       Subsections that follow will include illustrations of these SolidWorks models, 

highlighting the fine details of the ABB IRB4400, UR3, and mobile robot in addition to the 

detailed lab architecture. These images show off SolidWorks' ability to produce accurate and 

useful digital twins for cutting-edge robotics applications in addition to illuminating the 

design process. 
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4.1. ABB IRB 4400 model 

An essential component of our Digital Twin architecture is the industrial robot ABB IRB 

4400, which is a strong and adaptable machine meant for high-precision work. This section 

explores the in-depth SolidWorks modelling of the ABB IRB 4400, highlighting the complex 

design process of its 13 mechanical components and how they are assembled to create a 

complete 6-axis robotic system. The digital model faithfully replicates its physical 

counterpart thanks to the careful crafting of each component to match the physical 

characteristics and movement capabilities of the real robot. Creating each component with 

exact measurements and guidelines, then assembling them to precisely mimic the robot's 

mechanical design and joint movements, was the modelling phase. 

For our digital simulations, the SolidWorks models provide the framework. Based on the 

precise specifications of the real ABB IRB 4400 robot, each of the 13 parts—base, arm, and 

different joints—was developed separately. Since it makes accurate simulations and testing 

scenarios possible, this attention to detail is essential to the digital twin's correctness. 

The SolidWorks files were saved as STL files, which were then imported into Blender in 

order to incorporate these models into the Unity simulation environment. The models were 

transformed into Unity-compatible FBX files using Blender. In order to preserve the models' 

functionality and integrity throughout animation and interaction within the digital twin, this 

conversion process is essential. High-quality visuals and interactions within Unity are made 

possible by the FBX format, which guarantees the preservation of intricate geometry and 

textures. 

The subsequent pictures and explanations show the component pieces as well as the 

assembled product, emphasizing the accuracy and meticulousness required to produce a 

dependable digital twin for sophisticated simulation and operational planning. We can 

perform extensive testing, debugging, and optimization of robotic operations in a virtual 

environment by correctly modelling the ABB IRB 4400, which greatly expands the 

capabilities of our digital twin system. 

Existing UR3 and mobile robot types were also used in addition to the ABB IRB 4400. These 

models underwent comparable processing, which included SolidWorks design verification 

and optimization before Blender converted the models into FBX files. All robotic elements 

within the digital twin are guaranteed to retain excellent quality and interoperability thanks to 

this standardized process. 

In order to replicate cooperative activities with the ABB IRB 4400, the UR3 model—a 

smaller but no less accurate robotic arm—was incorporated into the configuration. In addition 

to being modelled and ready for Unity integration, the mobile robot—which is intended for 

independent navigation inside the lab setting—also allowed for dynamic simulations of 

movement and interaction with the stationary robotic arms. 

When combined, these individual models produce a comprehensive and adaptable digital 

twin that can replicate a variety of interactions and situations in the laboratory. In addition to 

facilitating precise and effective design and testing, the procedure offers a solid foundation 

for upcoming additions and improvements to the digital twin environment. 
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ABB Solid Parts: 

 

 

ABB LAYOUT AND MEASURMENTS 

 

 

 

ABB JOINT ONE BASE PART 1 
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ABB JOINT 2 BODY PART 2 

 

 

ABB JOINT 3 BODY PART 3 
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ABB COUNTERBALANCE PART 4 

 

 

ABB ACTUATOR PART 5 
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 ABB ACTUATOR ROD PART 6  

 

 

ABB ACTUATOR CONNECTING ROD PART 7 
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ABB JOINT 5 PART 8 

 

 

ABB JOINT 6 PART 9 
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 ABB END EFFECTOR HOUSING PART 10 

 

 

ABB LEFT HUB PART 11 
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ABB RIGHT HUB PART 12 

 

 

ABB END EFFECTOR PART 13 
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ABB ASSEMBLY 

 

4.2. UR3 modelling 

A thorough digital representation of the robot is created as part of the UR3 modelling process 

so that it may be integrated into different virtual and simulation settings. The UR3 is carefully 

modelled using CAD software like SolidWorks in order to represent its six-axis configuration 

and mechanical parts. In order to create FBX files compatible with Unity, this model is first 

converted to STL files and imported into Blender. This allows for precise and engaging 

simulations for tasks like path planning, collision detection, and operational testing in a 

digital twin environment. In the Project we are using 2 UR3 robots, one mounted to a Frame 

and the other mounted on MirMODlight Mobile robot. 
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UR3 Robot 

 

4.3. Mobile Robot MIR 

The technique of modelling a mobile robot involves digitally simulating the robot with 

exacting details, emphasizing its lab environment navigation and interaction capabilities. The 

structural and mechanical features of the mobile robot are precisely modelled using CAD 

software such as SolidWorks. After that, these models are exported as STL files and imported 

into Blender to create Unity-compatible FBX files. Realistic lab-based mobility, obstacle 

avoidance, and task execution simulations are made possible by this smooth integration into 

the digital twin system. 

 

MirMODLight (Mobile Robot) 
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UR3 Frame 

 

4.4. LAB Layout 

The process of building a complete digital model of the laboratory setting entails figuring out 

how the apparatus, workstations, and paths for the mobile robot are arranged in space. A 

thorough 3D model of the lab is made with SolidWorks, guaranteeing precise measurements 

and locations. After being exported as STL files, Blender is used to process the models and 

produce Unity-compatible FBX files. This digital structure is essential for streamlining 

processes, guaranteeing effective navigation and operation inside the lab space, and 

replicating the interactions between the robots and their surroundings. 

4.4.1. Functional area of the lab 

The lab's functional space is cleverly split into two halves to enable effective robot 

presentation and administration. The first section is devoted to displaying the mobility of the 

mobile robot as it moves about the lab and has an open layout with no barriers. This area is 

free to roam around, which makes it perfect for monitoring and enhancing the robot's 

navigation and path planning. All robots, including the ABB IRB 4400 and UR3, will be 

visualized in the second room, which will have intricate joint animation displays. This section 

is essential for keeping an eye on the robots' exact motions and interactions while offering a 

thorough overview of their coordination and functionality in the lab. 

The primary display zone for the mobile robot is the unobstructed, plain surface area of the 

lab. It is possible to navigate and demonstrate movement in this open space with ease. One 

lab corner is designated as the starting point for the mobile robot's global axis system, which 

is specified in relation to the lab's coordinates. The mobile robot has a sensor installed at this 

corner that allows it to track its orientation and position with accuracy. This sensor records 

the robot's yaw angle and position coordinates continuously, allowing for accurate 

localization inside the lab. After that, the collected data is transmitted over MQTT and Node-

RED, allowing for real-time animation and viewing of the robot's motions within Unity. This 
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configuration not only displays the mobility of the robot but also demonstrates how real-time 

data processing and sophisticated communication protocols are integrated into the lab's 

digital twin environment. 

 

 

Lab layout according to MirMODlight (Mobile Robot) 

 

4.4.2. Simulation Environment in Unity 

To guarantee convenience and thorough visualization, the Unity simulation environment was 

built in two stages. Two distinct environments were made in the initial stage. The initial 

setting is made to accommodate every robot in a single frame, making it possible to see how 

they cooperate and move as a team. This environment shows the coordination and interaction 

between many robots and offers a comprehensive picture of the overall robotic system. 

 

Multi robot unity environment 
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Specifically, the second environment is the lab area where MirMOBlight, the lone mobile 

robot, is present. The goal of this configuration is to precisely replicate the yaw angle and 

position of the mobile robot as it moves throughout the lab. To guarantee realistic motion and 

accurate data representation, the mobile robot may be isolated in its own environment and 

subjected to precise adjustments and calibrations. 

 

Unity environment for mobile robot 

These two Unity environments were smoothly combined in the second stage. This integration 

makes it possible to create a thorough simulation that replicates the precise movements of the 

mobile robot inside the lab as well as the intricate visualization of every robot cooperating 

with one another. This two-phase method guarantees the simulation environment's flexibility 

and detail, offering a strong foundation for evaluating and displaying the lab's digital twin. 

 

 

Unity Environment with Lab Floor and All Robots front view 
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Unity Environment with Lab Floor and All Robots Isometric view 1 

 

 

Unity Environment with Lab Floor and All Robots Isometric view 2 
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Unity Environment with Lab Floor and All Robots top view 

 

4.4.3. Unity Kinematics Defining 

Unity Kinematics works on the global and local Reference frames, global and Euler 

Reference frames. Based on this concept every object or model in unity is defined by 2 

reference frames (coordinate system), one object reference frame and two global reference 

frame. 

Global Reference Frame 

Within Unity, the scene's total coordinate system is referred to as the global reference frame. 

All objects in the scene use this fixed coordinate system as their common reference. The 

position, rotation, and scale of objects with respect to the scene's origin point—typically 

located at coordinates (0, 0, 0) — are defined by the global reference frame. 

• Position: An object's location within the overall scene is its global position. Three 

coordinates (X, Y, Z) are used to represent this, and they show how far it is from the 

origin on each axis. 

• Rotation: The object's orientation with respect to the world axes is specified by the 

global rotation. Typically, quaternions or Euler angles are used to describe this. 

• Scale: An object's size in respect to the global coordinate system is determined by its 

global scale. 

By allowing items to be placed and moved consistently throughout the scene, the global 

reference frame helps to guarantee that every element is in the proper location in relation to 

every other element. 

 

Local Reference Frame 

         Conversely, the local reference frame is unique to every single object. If the object has 

no parent, it is defined in relation to itself. If not, it is defined in relation to the object's parent. 
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More precise control over an object's transformations (position, rotation, and scale) is 

possible with the local reference frame. 

 

• Local Position: The item's location in relation to its parent object is indicated here. 

The child's global position changes when the parent moves, but its local position stays 

the same. 

• Local Rotation: The orientation of an object with respect to its parent is defined by 

its local rotation. While the local rotation stays constant, changes to the parent's 

rotation will have an impact on the child's global rotation. 

• Local Scale: The object's size in relation to its parent's scale is indicated by the local 

scale. The global scale of the child will change in response to changes made to the 

parent's scale. 

 

Developers can establish hierarchical relationships between items and manage complex 

structures and animations more easily by using the local reference frame. In a robotic arm, for 

instance, every joint may have a local reference frame that is relative to its parent joint. This 

feature enables accurate control of specific segments while preserving the overall structure. 

Comprehending the distinction between global and local reference frames in Unity is crucial 

for precise object manipulation within a three-dimensional environment. When animating 

robots, for example, the local reference frame permits fine control over specific joints and 

parts, while the global reference frame guarantees proper movement of the robot within the 

laboratory. This dual-frame method makes realistic and accurate animations possible, which 

is essential for producing successful digital twins and solution.  

 

 

4.4.4. ABB Unity Kinematics 

      The Euler coordinate system idea is used in Unity to construct the ABB robot. The robot's 

movements may be precisely controlled and animated with this method. The ABB robot's 

components are defined hierarchically in this implementation, with each joint being 

represented as an empty game object that serves as an Euler axis for the parts that it is 

connected to. 

 

The hierarchy in this arrangement is built up to match the robot's actual physical design. The 

pivot point for rotation and movement of each joint in the ABB robot is a specific empty 

game object in Unity. These empty game objects, also known as Euler axes, are positioned in 

a way that corresponds to the robot's actual joints. 

 

Hierarchical Structure 

 

• Base: The robot's base acts as the hierarchy's root. It serves as the main point of 

reference from which all other components are connected. 

• Joint 1: A child of the base, an empty game object represents the first joint. This item 

serves as the robot's initial segment's pivot. 

• Segment 1: Joint 1 is where the first segment's physical component is attached. The 

changes in this segment are in relation to Joint 1. 

• Joint 2: A child of Segment 1 is an empty game object that represents the second joint. 

For every succeeding joint and section of the robot, this configuration is repeated. 
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Euler Axis 

 

Euler rotation axes are set up in each joint's empty game object to specify the movement and 

rotation of the associated segment. For a correct simulation of the robot's articulation, these 

axes are essential. 

As an illustration:         

 

• Joint 1: To replicate base rotation, it rotates around the Y-axis. 

• Joint 2: Simulates movement of the first segment by rotating around the X-axis. 

• Joint 3: In a similar manner, it revolves around its own axis to regulate the motion of 

the subsequent segment. 

 

Unity Implementation 

 

The Euler axes in Unity are specified in each empty game object's Transform component. To 

produce the necessary motion, the rotation values are supplied in degrees and changed 

accordingly. The robot's joints can simulate movements found in the actual environment by 

animating these rotation. 

 

The designated axes for every component of the ABB robot are shown in the picture below. 

The Euler coordinate system in conjunction with this hierarchical structure guarantees that 

the movements of the robot are faithfully and realistically simulated within the Unity 

environment. 

 

By controlling each joint independently, developers can create the intricate animations and 

accurate simulations required for jobs like robotic assembly, maintenance, and operational 

training. 

 

 

 
 

ABB Unity structure 
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4.4.5. Mobile Robot Unity Kinematics 

To accomplish precise control and mobility within the Unity environment, we combine 

global, local, and Euler reference frames for the mobile robot (MirMODLight). With this 

method, the UR3 robot, fixed on the mobile platform, travels in relation to the mobile robot 

while the mobile robot navigates the floor coordinate system. 

Global Reference Frame 

The general coordinate system of the environment is represented by Unity's global reference 

frame. It is employed to regulate the mobile robot's orientation and location across the whole 

lab configuration. As the main reference point for all objects in the scene, the origin of the 

global reference frame is usually positioned at a specific corner of the lab. 

 

• Mobile Robot (MirMODLight): The global coordinate system is used to control the 

location and orientation of the mobile robot. This guarantees that its movements are 

faithfully captured in the spatial context of the lab. 

Local Reference Frame 

Within the global coordinate system, each individual item has its own local reference frame. 

The local reference frame is essential for preserving the location and orientation of the UR3 

robot mounted on the mobile robot with respect to the mobile platform. 

 

UR3 Robot: The mobile robot serves as the reference point for the UR3 robot's motions. The 

UR3 robot's local reference frame makes sure it moves in sync with the mobile platform as 

the mobile robot moves around the lab. 

 

Euler Reference Frame 

The UR3 robot and the mobile robot both have rotations that are controlled by the Euler 

reference frame. The UR3 robot's joints and segments are all determined by Euler angles, 

which enables accurate rotational control.  

The movement of the mobile robot is managed by the Euler angles, which are used for lab 

navigation.  

Joints of the UR3 Robot: The UR3 robot's joints are each represented in Unity as empty 

game objects that serve as an Euler axis for the corresponding components. Accurate 

simulation of the articulations of the UR3 robot is made possible by this hierarchical 

framework. 

Implementation in Unity 

The Transform component in Unity is used to determine the global position and orientation of 

the mobile robot. Nestled under the mobile robot's Transform, the UR3 robot's own 

Transform components control its local movements and rotations. 

• Control of Mobile Robot: The position and orientation of the mobile robot inside the 

global reference frame of the lab are managed by its transform. 
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• UR3 Robot Control: The empty game object at each joint serves as an Euler axis to 

control how the connected segments rotate. Node-RED and MQTT data are used to 

update the joint angles (J1, J2, J3, etc.). 

The design of the UR3 and mobile robots in relation to the floor (Plane) is depicted in the 

graphic below, which also shows how the interactions between the global, local, and Euler 

reference frames allow for precise and synchronized movements. This methodical approach 

guarantees that the UR3 robot and the mobile robot can function together in the Unity 

environment, offering a realistic simulation for a range of robotic applications and tasks. 

 

 

Mobile Robot Unity structure 

 

5. Digital Twin Communication architecture 

To guarantee smooth communication between real robots and their Unity virtual version, the 

Digital Twin technology was created. Several communication protocols are integrated into 

the architecture, and Node-RED serves as a middleware to aggregate and process data from 

various robotic systems. A structured pipeline ensures effective transmission and real-time 

synchronization of the data flow. 

The ABB, UR3, and MIR mobile robots all transmit data using different communication 

protocols, as seen in the communication architecture diagram: 

• ABB Robot → Communicates using API to provide joint and positional data. 

• UR3 Robot → Uses Real-Time Data Exchange (RTDE) to stream real-time state 

information. 

• MIR Mobile Robot → Transmits position and orientation data using MODBUS 

TCP/IP. 

Node-RED receives all incoming data and acts as a universal plug-in to collect, preprocess, 

and standardize the data. This stage guarantees that the unprocessed data from various robots 

is sorted and organized into a common format. 

 

The data is sent to the MQTT Broker for processing and publication as structured topics. 

After that, Unity subscribes to these MQTT topics and gets the most recent information 
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instantly. By using this data to animate the Digital Twin, the Unity environment makes sure 

that the robots' virtual representations faithfully replicate their real-world counterparts. 

 

An integral part of the Digital Twin structure, this modular and scalable architecture 

facilitates dependable communication, real-time monitoring, and effective robot coordination. 

 

 

Communication network architecture 

 

6. Implementation of the Digital Twin 

6.1. Data Collection and Processing 

To provide an accurate and up-to-date simulation of the robots' operations, data gathering and 

processing are essential phases in the development of the digital twin. Node-RED and Unity 

are used in a multi-layered manner to implement this process. 

In Node-RED, we establish three separate data flows, each in charge of gathering information 

from various robots. Depending on the particular API that each robot uses, the data that is 

received from them is either in the JSON or XML format. Some robots may use XML, 

however the ABB robot uses an API that generates JSON to convey its data. The data is 

transformed into raw labelled data after it is gathered. In order to guarantee that the data is 

consistently formatted and to make processing and analysis easier in the future, this 

transformation is essential. 

The tagged data is uploaded to a MQTT broker after transformation. Multiple clients (in this 

case, the Unity application) can subscribe to and receive the data in real-time through the 

MQTT broker, which serves as a central hub for data distribution. By using this method, the 
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data flow is guaranteed to be scalable and effective, meeting the changing needs of the digital 

twin. 

Unity Data Processing: UI scripts and game object control scripts are the two categories of 

scripts that Unity uses to handle the data gathered from the MQTT broker. 

UI Scripts: Unity's UI scripts handle the gathering and preliminary processing of data. The 

MQTT topics where the tagged data is released are subscribed to by these scripts. The data is 

received by the UI scripts, which then process it and format it so that the game objects may 

use it with ease. For instance, the ABB robot's joint angle data is processed and allocated to 

variables denoted J1, J2, J3, and so on, which correspond to the robot's individual joints. 

Game Object Control Scripts: These scripts take over from UI scripts in order to control 

how the robots move physically inside the Unity world. For example, every joint on the ABB 

robot is connected to a unique control script. These control scripts make sure that the virtual 

robot moves precisely in line with the data received from the real robot by updating the joint 

angles in real-time depending on the processed data from the UI scripts. 

The implementation of an organized method for gathering and analysing data allows us to 

seamlessly integrate the digital twins of the real robots with Unity. In addition to providing 

real-time visualization and control, this configuration paves the way for future improvements 

and integrations within the digital twin environment. 

 

6.1.1. Data Acquisition Techniques: 

Data acquisition, data sharing, or the digital building blocks of edge computing and cloud 

storage technologies are essential elements for constructing a reliable Digital Twin. Here we 

describe how data from a variety of robotic systems are collected via specialized 

communication protocols and middleware. 

1. Robotic Systems and Communication Protocols 

For transmitting real-time data to the Digital Twin, the three main robotic systems utilized in 

this project—the ABB IRB 4400, UR3, and the mobile robot—each have their own 

connection protocol: 

ABB IRB 4400 Robot: 

• Data, including joint angles (J1 to J6) and other operational parameters, are retrieved 

via the ABB API.  

 

• To query the API and publish the data into the MQTT broker, Node-RED acts as 

middleware.  

 

• Testing the API endpoint: Tools such as Postman are utilized to validate the data 

retrieved from the ABB API. 

• Sample data structure: 

{ 
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    "joint1": 30.5, 

    "joint2": 45.2, 

    "joint3": -12.8, 

    "joint4": 0.0, 

    "joint5": 20.5, 

    "joint6": -10.0 

} 

UR3 Robots: 

• The Real-Time Data Exchange (RTDE) is used by the UR3 robots, enabling quick 

transfer of joint angles and operational data. 

• After processing the incoming RTDE stream, Node-RED publishes the data to the 

MQTT broker in a defined format. 

 

Mobile Robot: 

• Uses the MODbus protocol to send positional data (posix, positionZ) and orientation 

(yaw). 

• The data is collected, transformed into standard JSON format in Node-RED, and then 

forwarded to the MQTT broker. 

2. Middleware Integration with Node-RED 

Node-RED serves as a versatile and scalable middleware layer, connecting robotic systems 

with the MQTT broker: 

Flow Configuration: 

• Data from each robot is processed through dedicated Node-RED flows. 

• For instance, API nodes collect data from ABB robots, RTDE nodes manage UR3 

communications, and MODbus nodes extract data from mobile robots. 

• This ensures that the data is formatted uniformly for integration into the Digital Twin. 

Real-Time Data Publishing: 

• Node-RED publishes all robot data to the MQTT broker under specific topics. 

Examples include: 

o ABB motor joint angles: abbj1, abbj2, ..., abbj6 

o Mobile robot position: posix, positionZ 

o Mobile robot orientation: yaw 
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3. MQTT as the Core Data Transmission Hub 

An MQTT broker serves as a centralized platform for data exchange, enabling real-time data 

integration into Unity for visualization and control: 

Topic Structure: 

• Data from each robot is published to uniquely configured MQTT topics, allowing 

easy identification and subscription. 

• ABB example: 

Topic: abbj1 
Message: {"value": 30.5} 
 

• Mobile robot example: 

Topic: posix 
Message: {"value": 10.0} 

4. Real-Time Synchronization with Unity 

In Unity, the ConnectionMgr script handles the reception of data from the MQTT broker and 

updates robot states accordingly: 

Topic Subscription: 

• Subscribes to relevant topics (e.g., abbj1, posix, etc.). 

• Receives and decodes data for immediate use. 

private void Client_MqttMsgPublishReceived(object sender, MqttMsgPublishEventArgs e) 

{ 

    string topic = e.Topic; 

    string message = System.Text.Encoding.UTF8.GetString(e.Message); 

 

    switch (topic) 

    { 

        case "abbj1": 

            J1 = float.Parse(message); 

            break; 

        case "posix": 

            posx = float.Parse(message); 

            break; 

    } 
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} 

6.1.2. Data Processing Algorithums: 

Efficient data processing is essential to converting raw data from robotic systems into 

meaningful insights for the Digital Twin. This process involves organizing, transforming, and 

synchronizing data to ensure accurate visualization and control within the Unity environment. 

1.Preprocessing in Node-RED 

Node-RED provides the first tier of data processing: gathering from various robotic systems, 

normalization, and further forwarding to an MQTT broker. 

Standardization of Data: Data formats vary between robots: 

• ABB robot data is provided via API in JSON format. 

• RTDE streams are carrying UR3 robot data. 

• The data of the mobile robot uses MODbus communication. 

Node-RED converts this heterogeneous input to a homogeneous JSON format: 

{ 

  "joint1": 30.5, 

  "joint2": 45.2, 

  "positionX": 10.0, 

  "yawAngle": 15.0 

} 

 

Real-time publishing: 

• The pre-processed data are published on MQTT topics depending on their origin and 

type, e.g. abbj1 for ABB joint angles or posix for mobile robot positions. 

• Data publication frequency is set in accordance with the system requirement trade-off 

between real-time performance and network bandwidth. 

2.Data Reception in Unity 

Unity serves as the processing hub where real-time data from the MQTT broker is utilized in 

synchronizing the Digital Twin with physical systems. 

Subscribe to MQTT Topics: 

The ConnectionMgr script subscribes to relevant topics to receive updates: 

foreach (string topic in topics) 

{ 
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    client.Subscribe(new string[] { topic }, new byte[] { 
MqttMsgBase.QOS_LEVEL_AT_LEAST_ONCE }); 

} 

Analyse Received Data: 

The received data is parsed and assigned to static variables, ensuring that the most recent 

values are accessible across all Unity scripts. 

 

3. Real-time Synchronization of Robotic Joints 

Data processing is applied to robotic models within Unity for real-time synchronization: 

Control Scripts for Joints: 

Each joint is controlled by a dedicated script; for example, ABB_link_1 controls Axis 1, 

ABB_link_2 controls Axis 2. Then, the data of each joint is processed and applied to rotate 

the corresponding GameObject: 

transform.localEulerAngles = new Vector3( 

    0f, // X rotation 

    (float)((-1) * ConnectionMgr.J1), // Y rotation 

    0f  // Z rotation 

); 

 

Combining Data for Dependent Joints: 

For dependent axes (e.g., Axis 3’s rotation depends on Axis 2’s state), the data is combined 

algorithmically: 

float rotationZ = (float)(ConnectionMgr.J3 - ConnectionMgr.J2); 

transform.localEulerAngles = new Vector3(0f, 0f, rotationZ); 

 

4. Positional and Orientation Processing for Mobile Robots 

The mobile robot’s position and orientation data are processed to enable realistic movement 

within Unity: 

• Position Updates:Positional data (posix and positionZ) is applied to the robot’s 

GameObject for real-time navigation: 

transform.position = Vector3.MoveTowards(transform.position, 
targetObject.transform.position, moveSpeed * Time.deltaTime); 
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• Yaw Angle Updates:The yaw angle (yaaw) is processed to align the robot’s rotation 

with its physical counterpart: 

 

Vector3 newDirection = Vector3.RotateTowards(transform.forward, targetDirection, 
rotationSpeed * Time.deltaTime, 0f); 
transform.rotation = Quaternion.LookRotation(newDirection); 
 

5. Ensuring Smooth Animations 

To avoid abrupt changes and ensure smooth animations, data is interpolated between 

successive updates: 

• Position Interpolation: Position updates use linear interpolation to create smooth 

transitions, reducing jitter caused by rapid data changes: 

transform.position = Vector3.Lerp(transform.position, 
targetObject.transform.position, 0.1f); 

 

• Rotation Smoothing: Quaternion slerp (spherical linear interpolation) is applied to 

create natural-looking rotations. 

 

6. Error Handling and Data Validation 

Robust error handling is implemented to ensure reliability: 

• Invalid Data Detection: Data parsing includes checks for out-of-range or malformed 

values. Invalid data is ignored, and an error is logged for debugging. 

try 

{ 

    J1 = float.Parse(message); 

} 

catch (FormatException) 

{ 

    Debug.LogError($"Invalid data received for J1: {message}"); 

} 

 

7. Unified Data Flow 

The combination of Node-RED, MQTT, and Unity scripts establishes a seamless data flow: 

• Node-RED preprocesses and publishes data. 
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• MQTT ensures real-time delivery. 

• Unity processes the data and applies it to animate robotic models and synchronize the 

Digital Twin. 

This structured data processing pipeline ensures that the Digital Twin best represents the state 

of the physical robots. It enables real-time visualization, control, and analysis. 

 

6.2. Communication Protocal Implementation 

Implementing reliable communication protocols is at the core of building a functional and 

effective Digital Twin. Communication serves as the bridge that connects the physical robots 

to their virtual counterparts, enabling the system to operate in real time. This process involves 

managing the seamless exchange of data between multiple systems with diverse 

communication standards and ensuring that the Unity-based virtual environment accurately 

reflects the state of the physical robots. By ensuring this synchronization, the Digital Twin 

becomes a powerful tool for monitoring, simulation, and control. To achieve this, the system 

integrates cutting-edge technologies such as Node-RED, MQTT, and protocol-specific 

configurations tailored to the requirements of each robot. These technologies work together 

to establish a robust and flexible architecture, allowing for consistent data flow, rapid 

updates, and the ability to scale for future expansions or additional robots. This integration 

ensures that the Digital Twin not only mirrors real-world operations but also enhances 

functionality by enabling predictive maintenance, real-time visualization, and advanced 

decision-making capabilities. 

 

6.2.1. Setting up Node Red  

Node-RED, in its role as a middleware, serves as an interlink between the Digital Twins when 

it comes to the communication architecture. Because of its flexibility and visual 

programming environment it is seen as a very useful tool for the gap between the robotic 

systems and the MQTT broker. What the types of devices and machines are connected, Node-

RED allows for a simple way to transfer data using the different protocols. It does that by 

providing the ability to preprocess data, standardize them and then routing data. Not only that 

but it is instrumental in unifying the diverse types of robotic systems in one framework. 

The robots in the system are going from one to the other by their own communication 

standard, and Node-RED makes sure this data is transformed into a standardized JSON that is 

applicable for further processing. For example, an ABB IRB 4400 robot provides joint angle 

and operational data through an API. Node-RED makes use of the HTTP request nodes which 

are connected to the appropriate API in order to ensure that the necessary data is collected 

without loss and in a strictly regular manner. Likewise, the UR3 machines are floating the 

instantaneous number through the Real-Time Data Exchange protocol. Node-RED actualized 

the capture of these RTDE streams and provided their information in the form of JSON 

messages and are then ready for publication to the MQTT broker. As the mobile robot 

communicates using the MODbus protocol, it sends its position and orientation information. 

MODbus nodes present in Node-RED are used to capture them and preprocess to ensure their 

correctness bill for their final destination entry in the right MQTT topics. 
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The functions of debugging and monitoring are indistinctly associated with the Node-RED 

Cortex. When the testing stage was in process, the debug nodes of the robot were the main 

parts, which were used to check whether the data collected from the robots was theoretically 

accurate and reliable. Visualization of the data flow and real-time error detection by 

developers was facilitated by these nodes. Afterward, Node-RED added automatic retry 

mechanisms for failed API calls or MODbus queries, thus keeping the operation of the 

system unaffected in the case of short communication failures. 

Robot administration and monitoring can be done by the platform, whereas Node-RED is 

employed as a flexible and scalable middleware. It becomes a channel between the robotic 

systems and the MQTT broker. Moreover, it provides the necessary data consistency, 

reliability, and integration into the Unity-based Digital Twin, which finally is connected to the 

MQTT broker. 

 

6.2.2. Setting up MQTT Broker 

The MQTT broker is central to the communication network architecture. It becomes the 

centre of all the messages exchanged between Node-RED and Unity. Because it uses a 

publish-subscribe paradigm, MQTT is able to ensure that data is sent out in a timely manner. 

The broker builds up the data approximately according to the robots and the parameters 

transmitted. For instance, angles of joints from the ABB robot are grouped into such 

subtopics as abbj1, abbj2, etc., while the position of the mobile robot is posted under the 

topics ‘posix’ and ‘positionZ’. Such a structure makes it very easy to find and subscribe to the 

required information streams. 

Therefore, an important feature of the broker also involves the possibility of choosing the 

level of QoS. In this implementation, QoS Level 1 ensures that each message has at least 

once delivery. This provides reliable data flowing through. The broker also handles retained 

messages, which can be used to avoid possible gaps in synchronization, meaning that a newly 

subscribed subscriber gets the most recent values immediately. 

Broker Configuration: 

• The Mosquitto MQTT broker is deployed, supporting Quality of Service (QoS) levels 

to ensure reliable data delivery. 

• Retained messages are used to provide new subscribers with the latest state of robots 

immediately upon connection. 

Topic Structure: 

1. Data is organized into hierarchical topics to distinguish between different robots and 

their parameters: 

o ABB Robot: 

▪ abbj1, abbj2, ..., abbj6 (joint angles) 

o Mobile Robot: 
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▪ posix (X-axis position) 

▪ positionZ (Z-axis position) 

▪ yaaw (yaw angle) 

o UR3 Robot: 

▪ ur3j1, ur3j2, ..., ur3j6 (joint angles) 

 

6.2.3. Configuring Robot Communication 

For configuring API of ABB, we initially used Robot studio software for generating artificial 

data and used the defined API address to get information of the joint angles of all 6 axis of 

ABB. To check the API address, we used postman software. Here we can visualize the data 

format we receive from ABB. In postman we can manually send a single request to the API 

address and receive data at the instant. Requesting again will refresh the data. This process is 

automated using node red sending a request and receiving data at your desired speed. 

Every robot needs its specific configuration for the Digital Twin to build on its 

communication protocol. For this, ABB IRB 4400 uses API; it continuously shows the angles 

of the joints and all other states. During the setup, some tools, like Postman, were used in 

testing the API endpoints to see if all the data obtained was valid and complete. Once tested 

and validated, this same information was directly fed into Node-RED for publishing into the 

MQTT broker. 

ABB IRB 4400: 

• An API endpoint is configured to retrieve joint angles and operational parameters. 

• Postman is used to validate API endpoints, ensuring accurate data retrieval. 

• Data is requested and received in JSON format: 

{ 

    "joint1": 30.5, 

    "joint2": 45.2, 

    "joint3": -12.8, 

    "joint4": 0.0, 

    "joint5": 20.5, 

    "joint6": -10.0 

} 

 

The UR3 robots are dependent on RTDE for data exchange. These robots stream data 

continuously and will keep updating their joint positions in real time. The incoming RTDE 
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packets are processed by Node-RED, which translates them into a JSON format that Unity is 

able to parse easily. 

In the case of the mobile robot, the MODbus protocol was used. In this way, positional data 

and orientation data were gathered. The Node-RED MODbus nodes were tasked with 

extracting and preprocessing that data in preparation for MQTT transfer. 

 

6.2.4. Ensuring Reliable Data Transmission 

It was important during development that this communication system would be robust. 

Several mechanisms have been put in place that allow for reliable data flow and real-time 

synchronization. The use of retained messages in MQTT was one of the main measures. It 

would ensure that Unity always had the latest state of the robots, even in the case of small 

communication breaks. Moreover, Node-RED was configured to retry a failed API call or 

MODbus query, which minimizes the chance of critical data not being received. Another 

important aspect was error handling. At the Node-RED level, filtering out invalid data, such 

as out-of-range values or incomplete messages, prevented disruptions in Unity. Within Unity 

itself, exception handling was handled within scripts to log and manage errors without halting 

operations. 

 

6.3. Unity Integration with C# Scripting 

Unity integrated with C# scripting forms a critical component of the Digital Twin system for 

real-time visualization, control, and synchronization of physical robots within a virtual 

environment. Unity is used as the platform to render and animate the robotic systems, while 

C# scripts are used to communicate with the MQTT broker to receive data that has been 

processed and published by Node-RED flows. This combination ensures that the Unity-based 

Digital Twin mirrors the operations of physical robots with high accuracy and responsiveness. 

Unity's role is not confined to rendering robot models but extends to providing a solid 

platform for integrating real-world data into simulation workflows. The Digital Twin system 

will utilize Unity's powerful 3D rendering and custom C# scripting to provide a seamless 

interface for data visualization, troubleshooting of robotic movements, and testing operations 

before applying them on physical systems. 

 

6.3.1. Node Red Flows 

Node-RED plays a central role in the pipeline of communication, acting as the middleware 

that bridges data from the various robotic systems to Unity. Its role in preprocessing and 

organizing data before publishing to MQTT is to ensure that Unity gets clean, structured, and 

standardized inputs. This section will detail how Node-RED flows are implemented in order 

to enable Unity integration, with particular focus on specific flows that are developed for 

different robotic systems. 

Purpose of Node-RED in Unity Integration 
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Node-RED will be used within the Digital Twin architecture for decoupling the data 

acquisition and processing layer from Unity to let the latter focus only on rendering and 

animations. Communication is done by each robotic system-ABB robot, UR3 robots, or 

mobile robot-each using its own protocol. These diverse data streams are captured, processed 

into a consistent format, and published to respective MQTT topics. By doing this, Node-RED 

ensures that Unity will communicate with a standardized data structure, regardless of the 

lower-level protocol being used. 

The flexibility of Node-RED also allows for live manipulation and debugging of the data 

streams before they get to Unity. Debug nodes are placed at strategic locations to monitor 

data flow; this ensures that errors and inconsistencies in the raw data are caught at an early 

stage in the data pipeline. This robust way of handling data minimizes issues downstream and 

ensures smooth visualization and synchronization in Unity. 

Key Node-RED Flows 

The integration of Unity with robotic systems relies on several Node-RED flows, each 

tailored to specific tasks. These flows process and publish data to MQTT topics, which are 

subsequently consumed by Unity through C# scripts. 

1. Flow for ABB Robot Joint Data: 

 

• This flow collects real-time joint angle data from the ABB IRB 4400 robot. An 

HTTP request node queries the ABB API at regular intervals, retrieving a JSON 

payload containing the robot's joint angles (J1 to J6). 

• data is split into individual values, each corresponding to a specific joint, and 

published to separate MQTT topics (abbj1, abbj2, etc.). 

• nodes are used to validate data accuracy at every stage of the flow, ensuring that 

Unity receives correct and consistent data. 

 

 

Node Red Structure for ABB data processing 
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Node Red flow for ABB Joints data 

 

2. Flow for Mobile Robot Position and Orientation: 

• This flow processes GPS data (X and Y coordinates) and yaw orientation from the 

mobile robot. Data is extracted using MODbus nodes and converted from binary 

buffer formats into floating-point values for further processing. 

• The position and orientation data are then merged into a single JSON payload and 

published to MQTT topics such as posix, positionZ, and yaaw. 

• The flow ensures that Unity receives accurate positional data, enabling real-time 

visualization of the mobile robot's movements. 
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MIR Mobile robot Data processing in NodeRed 

 

3. Flow for UR3 Robot Joint Data: 

• The UR3 robots transmit joint angle data via the Real-Time Data Exchange 

(RTDE) protocol. A Node-RED flow captures this data, converts joint angles from 

radians to degrees (to align with Unity’s requirements), and publishes them to 

individual MQTT topics (ur3j1, ur3j2, etc.). 

• This flow allows Unity to animate the UR3 robot with smooth and realistic joint 

movements. 

 

UR3 NodeRed Data processing 
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Unity's Role in Consuming Node-RED Outputs 

Unity consumes the processed data published by Node-RED through C# scripts, enabling the 

Digital Twin to represent the physical robots accurately. In Unity, the ‘ConnectionMgr’ script 

manages the MQTT connection and subscribes to the respective topics, updating static 

variables in real time. These variables are accessed by other Unity scripts in order to animate 

the robot models. 

The angles of joints, for example, come into Unity via MQTT topics for the ABB robot: 

‘abbj1’ to ‘abbj6’. Similarly, each of these is applied to a corresponding GameObject in 

Unity. Each of the joints has its own script that updates the rotation of the GameObject based 

on data received. In the same way, position and yaw data from the mobile robot are utilized 

for its movement and orientation within the virtual environment. 

 

6.3.2. C# Code for Data Reception 

C# scripting, as implemented within Unity, forms an essential part of the Digital Twin system 

for receiving data in real-time from the MQTT broker. Unity acts as a visualization platform 

where these scripts process the data published by Node-RED and apply that data to robotic 

models for rendering and control. Such smooth data flow ensures the Digital Twin reflects the 

exact status of physical robots with preciseness and responsiveness. 

The ‘ConnectionMgr’ script is responsible for the reception of data within Unity. It opens an 

MQTT connection, listens for topics, and handles messages. Each MQTT topic is a parameter 

for the physical robot: joint angles for the ABB robot or position information for the mobile 

robot. This information is parsed and then stored into static variables for access from other 

Unity scripts. For example, the following piece of code demonstrates how incoming 

messages are processed and routed to their respective variables: 

private void Client_MqttMsgPublishReceived(object sender, MqttMsgPublishEventArgs e) 

{ 

    string topic = e.Topic; 

    string message = System.Text.Encoding.UTF8.GetString(e.Message); 

 

    switch (topic) 

    { 

        case "abbj1": 

            J1 = float.Parse(message); 

            break; 

        case "posix": 

            posx = float.Parse(message); 
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            break; 

    } 

} 

 

This structured approach allows Unity to handle several data streams in parallel, which 

enables it to process real-time updates from all connected robots and their parameters. 

In addition to data reception, the Unity scripts are designed with robust error handling 

mechanisms to ensure reliable operation in case of unexpected issues. Data validation checks 

filter out invalid or out-of-range values. For example, in case of received data that is out of 

the predefined limits, it logs a warning and skips setting the value. It also includes reconnect 

mechanisms in order to automatically restore the MQTT connection after network 

disruptions. Debugging logs further enhance the reliability by logging every piece of data 

received and the possible errors. 

The centralized architecture of the script ‘ConnectionMgr’ allows for a neat management of 

data in Unity. Unity avoids the unnecessary creation of connections to the MQTT broker by 

storing the incoming data using static variables; hence, other scripts running under Unity can 

have access to these variables for robot model manipulation. This portability is an assurance 

of the efficiency and flexibility that Unity C# scripting does for real-time data manipulation. 

  

6.3.3. Real-Time Animation of Robots 

One of the most impressive visual parts of a Digital Twin system is the real-time animation of 

robots. Digital Twin makes sure that, through the application of received data from MQTT 

topics on Unity's 3D models, the movement and states of the physical robots are accurately 

mirrored in the virtual environment. Every robotic component, from a joint to a position or 

orientation, is responsible for dedicated scripts that make detailed and synchronized 

animations possible. 

 

In the case of the ABB robot, each joint has been animated in a way that the corresponding 

MQTT topic (e.g., ‘abbj1’ for Joint 1) is mapped onto a GameObject in Unity. The static 

variables inside the script ‘ConnectionMgr’ store real-time joint angles and are used to set the 

rotation of each joint via the following script: 

 

void FixedUpdate() 

{ 

    transform.localEulerAngles = new Vector3( 

        0f, // Fixed X-axis rotation 

        (float)((-1) * ConnectionMgr.J1), // Y-axis rotation 
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        0f // Fixed Z-axis rotation 

    ); 

} 

 

This setup ensures that the virtual ABB robot's movements perfectly act like its physical 

counterpart. 

Positional and orientation data were used to control the movement and rotation of the mobile 

robot in Unity. The position and yaw are supplied from the ‘posix’ and ‘yaaw’ MQTT topics, 

respectively, which are applied to update the position and direction of the robot. The script 

used to perform this is depicted by the following: 

 

transform.position = Vector3.MoveTowards( 

    transform.position, 

    targetObject.transform.position, 

    moveSpeed * Time.deltaTime 

); 

 

Vector3 targetDirection = targetObject.transform.forward; 

Vector3 newDirection = Vector3.RotateTowards( 

    transform.forward, 

    targetDirection, 

    rotationSpeed * Time.deltaTime, 

    0f 

); 

transform.rotation = Quaternion.LookRotation(newDirection); 

 

These scripts provided views of smooth, realistic animations of the mobile robot, and 

maintained its physical behaviour properly in the virtual environment. Integrating real-time 

data with Unity's animation capabilities ensures that the physical and virtual systems are kept 

in sync. Updates to the states of robots happen with very minimal latency, thereby setting the 

Digital Twin for dynamic and interactive monitoring, control, and experimentation. The 

Digital Twin leverages the power of Unity's 3D rendering combined with C# scripting to 

perfectly blend accuracy, efficiency, and adaptability. 
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6.3.4. Synchronizing Physical and Digital Twins 

Real-time data exchange between the physical robots and their virtual equivalents is ensured 

inside the Digital Twin. The Node-RED is used for pre-processing the data coming from 

robots and publishes it on MQTT topics. At the same time, Unity C# scripts subscribe to 

these MQTT topics for updates. 

Key parameters include joint angles and positions, orientations that are continually streamed 

into Unity and applied to 3D models. This ensures that any changes that occur in the physical 

robots are instantaneously reflected within the virtual environment, allowing for a perfect 

connection to be maintained between the two systems. 

Consistency and reliability in such cases are further ascertained with the use of error-handling 

mechanisms such as data validation and reconnection protocols. The obtained consistency of 

data provides the enabling framework for correct monitoring, predictive simulation, and 

interactive control of robotic systems using the Digital Twin.  

 

7. Testing And Validation   

Making sure the Digital Twin faithfully replicated the real-time motions of the physical 

robots was the main goal of the testing and validation procedure. Individual robot movements 

were seen in the Unity simulation and the actual lab setting to test the system. The accuracy 

of data collecting, MQTT transmission, and real-time synchronization in Unity were 

confirmed by independent testing of the ABB IRB 4400, UR3, and mobile robot. Following 

the successful completion of individual tests, all robots were merged to evaluate the Digital 

Twin's multi-robot coordination and interaction. The outcomes demonstrated dependable data 

flow, communication stability, and precise 3D display, confirming that the system 

successfully and without discernible delays duplicated the physical movements in Unity. 

These tests confirm that the built system works as planned for real-time monitoring and 

control, validating its efficacy. 
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ABB in the Lab 

 

 

MIR Robot and UR3 in the Lab 
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7.1. KPIs to Be Considered for Testing and Future Improvements 

The following Key Performance Indicators (KPIs) ought to be considered for testing and 

upcoming improvements in order to guarantee the dependability and effectiveness of the 

Digital Twin system: 

1. Real-Time Synchronization Accuracy: calculates the amount of time that passes 

between a robot's actual movements and Unity's virtual representation of them. 

2. Data Transmission Reliability: determines the proportion of successful, loss-

free, and corrupted MQTT data packets received. 

3. Individual Robot Functionality: makes certain that the Digital Twin accurately 

depicts the motions and behaviours of every robot. 

4. Multi-Robot Coordination: evaluates how well several robots cooperate and 

synchronize in the virtual world. 

5. System Stability and Uptime: evaluates the system's capacity to function 

continuously without crashing or experiencing unplanned malfunctions. 

6. Error Handling and Recovery: evaluates the system's resilience to 

communication breakdowns, incorrect data, and network disconnections. 

7. Scalability and Expandability: determines whether adding more robots or 

gadgets to the current Digital Twin framework is simple. 

These KPIs are crucial standards for confirming system performance and pinpointing areas in 

need of further development. 
 

8. Conclusion 

The Digital Twin developed for multi-robot integration represents a huge leap in smart 

manufacturing and Industry 4.0. With the integration of advanced tools like Node-RED, 

MQTT, and Unity, the system has been able to successfully demonstrate its capabilities of 

mirroring the operations of physical robots in real time. The project focused on the 

development of a modular and scalable framework that would be able to handle various 

communication protocols and synchronize data for accurate 3D visualization. 

The proposed solution proves that Digital Twins can play a leading role in innovative 

industrial environment monitoring, prediction, and interaction in real time. ABB, UR3, and 

mobile robots are included within one system framework, proving the flexibility of the 

approach. Among the achieved results are a robust acquisition of data, good efficiency in 

ensuring communication with the use of MQTT, and development of robust Unity scripts for 

animating and synchronizing the robotic models. 

Despite these achievements, the project showed areas for improvement and future research as 

well. The growth of industrial processes in terms of complexity desperately calls for more 

intelligent and adaptive Digital Twin systems. Addressing these issues will be further work 

that enhances usability, scalability, and effectiveness for the Digital Twin. 
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8.1. Advantages of This Digital Twin Architecture 

Numerous benefits that improve its functionality, scalability, and flexibility for industrial 

applications are provided by the developed Digital Twin (DT) architecture. The solution 

guarantees smooth multi-robot coordination, effective data handling, and real-time 

synchronization by incorporating contemporary technologies like Node-RED, MQTT, and 

Unity. The strengths of this architecture are highlighted by the following main advantages: 

1. Decoupling Services to Provide Flexibility and Modularity 

Different components—data collection, processing, communication, and 

visualization—are separated from one another in this modular architecture. 

• This division makes it possible for: System components can be independently 

developed and modified without affecting the system's overall structure. 

• more freedom to upgrade components or integrate more robots. 

• Better maintainability since changes made to one service don't impact others. 

 

2.  Effective Service for Data Provision 

The Digital Twin aggregates real-time data from several robotic systems to serve as a 

centralized data centre. 

• The service that provides data guarantees: All linked robots are continuously 

monitored and receive real-time updates. 

• data flow that is consistent and structured, making analytics and visualization 

easier. 

• The ability to save historical data for analysis and preventative maintenance. 

 

3. Highly Customized and Open System 

This architecture is notable for its open design and high degree of customization. 

Because the system is based on open-source technologies, it permits: 

• complete personalization of graphical components, communication protocols, 

and robot behaviour. 

• Simple adjustment to various robotic configurations and industrial settings. 

• a cooperative development process that makes it simple to apply future 

adjustments and improvements. 

 

4. Node-RED as an Independent and Scalable Platform 

As a middleware, Node-RED makes it easier to integrate and communicate data. 

• Among its main benefits are:Data pipeline setup is made easier using 

Graphical Flow-Based Programming. 

• Scalability: Facilitates future system growth by enabling the integration of 

more robots and gadgets without requiring significant modification. 

• Error Handling and Debugging: Offers integrated debugging capabilities to 

track data flow in real time and identify connectivity problems. 

 

5. MQTT for Secure, Standardized, and Accessible Communication 

The architecture offers several benefits by using MQTT as the primary 

communication protocol. 

• Security: Provides authentication and encryption for safe data transfer. 

• Widely used in industrial automation, this standard guaranteed 

interoperability with a range of robotic and Internet of Things technologies. 
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• Lightweight and Effective: It uses very little bandwidth and is therefore 

perfect for real-time applications. 

• By using a publish-subscribe approach, subscription-based access enables 

data to be sent to various clients (such as monitoring systems or Unity) 

without requiring direct device-to-device interactions. 

 

6. AI and Predictive Maintenance Integration 

The architecture offers a starting point for future integration of machine learning 

(ML) and artificial intelligence (AI). 

• This would enable: Predictive maintenance is the process of anticipating 

failures and scheduling maintenance before problems arise by using trends in 

past data. 

• Anomaly Detection: AI-powered surveillance to identify anomalous robot 

activity and provide remedial measures. 

• Optimization Algorithms: Enhancing robotic productivity through workflow 

optimization and movement pattern analysis. 

 

7. Real-Time Monitoring and Control 

The system makes use of Node-RED, MQTT, and Unity to provide interactive control 

and real-time robot monitoring. 

• Instant Status Updates: Robot states can be seen by operators, who can react 

quickly to system modifications. 

• Remote Access: By enabling monitoring and control from many locations, 

the system architecture enhances operational flexibility. 

• Decreased Downtime: System failures and disruptions are minimized by 

prompt issue identification and resolution. 

 

8. Scalability for Future Expansion 

Because of its great scalability, the Digital Twin can expand to meet changing 

industrial demands. 

• Supports Multiple Robots: Without completely redesigning the system, more 

robotic units can be added. 

• Adaptability of Cloud and Edge Computing: Upcoming versions may employ 

edge computing to speed up reaction times or link to cloud platforms for 

remote processing. 

• Flexible Data Sources: In addition to robots, the system can integrate 

environmental monitoring equipment, production line data, and Internet of 

Things sensors. 

 

9. Cost-Efficiency and Resource Optimization 

By providing a virtual representation of physical robots, the system reduces 

operational costs by: 

• Minimizing Physical Testing: Virtual simulations help test robotic 

movements and workflows before implementing changes in real-world 

systems. 

• Reducing Equipment Wear: Continuous monitoring and predictive 

maintenance reduce unnecessary strain on physical robots. 

• Energy Efficiency: Optimized robot coordination and scheduling improve 

energy consumption. 
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10. Enhanced Collaboration and Training 

In the automation and robotics sectors, the Digital Twin facilitates improved 

workforce training and collaboration. 

• Operator Training Without Risk: New hires can receive training virtually 

without having an impact on actual operations. 

• Before deploying changes in a live system, engineers can use simulation to 

evaluate the effects of various approaches. 

• Cross-Team Collaboration: Without needing physical robot access, several 

teams (such as automation engineers and data analysts) can collaborate in the 

same space. 

 

11. Interoperability with Industrial Systems 

The architecture is future-proof and flexible enough to accommodate new 

technologies because it facilitates integration with current industrial automation 

systems. 

• Can interface with SCADA, MES, and PLCs for smooth industrial 

automation. 

• Connects more smart devices to expand IoT capabilities for thorough system 

monitoring. 

• It is possible to integrate future AI and digital manufacturing applications 

without significantly altering the fundamental design. 

 

8.2. Future Work 

There are numerous suggestions for improving and growing the current system: 

1. Integration of AI and Machine Learning: The integration of AI and machine 

learning skills is the next step in the development of the digital twin. Proactive 

maintenance is made possible using predictive analytics to spot possible problems 

before they arise. Additionally, robot cooperation can be improved by machine 

learning techniques, increasing productivity in multi-robot activities. AI may, for 

instance, anticipate bottlenecks in robot workflows and instantly provide different 

approaches. 

2. Extended Robot Network: The Robot Network can be extended by scaling up the 

current implementation in managing a wider robotic network with much more 

diversity, integrating into one system autonomous drones, collaborative robots, and 

other industrial systems. Further work can be addressed to the problems of dealing 

with high-frequency data streams from a large number of sources and handling the 

synchronization issue. 

3. Improved User Interaction: In the future, development of the Digital Twin could 

include designing a graphical interface for operators. Such an interface would 

intuitively enable users to view robot states, send commands, and visualize complex 

data trends. In addition, the integration of AR technologies will offer immersive 

interaction in which operators can view and control the Digital Twin directly within a 

physical workspace. 

4. Edge/Cloud Computing: As cloud-based architectures are being taken up by the 

industrial system, moving the Digital Twin into the cloud would eventually enable 
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centralized control and storing of data. This again might facilitate collaboration across 

geographically distributed sites. Further exploration is foreseen for edge computing in 

processing data locally next to the robots to reduce latency and grant real-time 

performance if it's high demanding. 

5. Advanced Testing and Validation: While functionality and synchronization have 

been tested for the system, there is a further need to conduct validation under 

industrial conditions. Stress testing of the system with higher complexity of tasks that 

will require collaboration by multiple robots will also reveal the system's limit and 

possible optimization. Such would be a simulation at a factory scale with various 

workloads, which shows points where the system may need more resources or 

optimization. 

6. Decision-making Digital Twin: Beyond the role of visualization and monitoring, the 

Digital Twin can become a decision-making tool. The system would be able to 

simulate several scenarios and recommend the best course of action by combining 

real-time data with past performance indicators. When it comes to a production line, 

for instance, the Digital Twin might recommend a reconfiguration that considers both 

the present and the future to optimize throughput. 
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10. Appendices 

The appendices contain information that is supportive and gives further elaboration on what 

is contained in the body of the report. The section contains detailed technical information, 

code samples, and further diagrams that are too extensive for the primary sections but are 

essential to understand the implementation and methodologies used in this project. The 

appendices serve as a reference for readers who wish to explore the technical aspects of the 

Digital Twin system in greater depth. 

 

10.1. Detailed C# Code 

This appendix contains complete listings of the C# scripts used in Unity to integrate the 

Digital Twin system. Each script is presented with explanations of its purpose, functionality, 

and integration within the broader system. 

 

Unity UI C# code for UR3: 

using System; 

using System.Text; 

// Unity 

using UnityEngine; 

using UnityEngine.UI; 

// TM  

using TMPro; 

public class main_ui_control : MonoBehaviour 

{ 

    // -------------------- GameObject -------------------- // 

    public GameObject camera_obj; 

    // -------------------- Image -------------------- // 

    public Image connection_panel_img, diagnostic_panel_img, joystick_panel_img; 

    public Image connection_info_img; 

    // -------------------- TMP_InputField -------------------- // 

    public TMP_InputField ip_address_txt; 

    // -------------------- Float -------------------- // 

    private float ex_param = 100f; 

    // -------------------- TextMeshProUGUI -------------------- // 

    public TextMeshProUGUI position_x_txt, position_y_txt, position_z_txt; 

    public TextMeshProUGUI position_rx_txt, position_ry_txt, position_rz_txt; 
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    public TextMeshProUGUI position_j1_txt, position_j2_txt, position_j3_txt; 

    public TextMeshProUGUI position_j4_txt, position_j5_txt, position_j6_txt; 

    public TextMeshProUGUI connectionInfo_txt; 

    // -------------------- UTF8Encoding -------------------- // 

    private UTF8Encoding utf8 = new UTF8Encoding(); 

 

    // ------------------------------------------------------------------------------------------------------------------------  // 

    // ------------------------------------------------ INITIALIZATION {START} -----------------------------------------------
- // 

    // ------------------------------------------------------------------------------------------------------------------------  // 

    void Start() 

    { 

        // Connection information {image} -> Connect/Disconnect 

        connection_info_img.GetComponent<Image>().color = new Color32(255, 0, 48, 50); 

        // Connection information {text} -> Connect/Disconnect 

        connectionInfo_txt.text = "Disconnect"; 

 

        // Panel Initialization -> Connection/Diagnostic/Joystick Panel 

        connection_panel_img.transform.localPosition = new Vector3(1215f + (ex_param), 0f, 0f); 

        diagnostic_panel_img.transform.localPosition = new Vector3(780f + (ex_param), 0f, 0f); 

        joystick_panel_img.transform.localPosition = new Vector3(1550f + (ex_param), 0f, 0f); 

 

        // Position {Cartesian} -> X..Z 

        position_x_txt.text = "0.00"; 

        position_y_txt.text = "0.00"; 

        position_z_txt.text = "0.00"; 

        // Position {Rotation} -> EulerAngles(RX..RZ) 

        position_rx_txt.text = "0.00"; 

        position_ry_txt.text = "0.00"; 

        position_rz_txt.text = "0.00"; 

        // Position Joint -> 1 - 6 

        position_j1_txt.text = "0.00"; 

        position_j2_txt.text = "0.00"; 

        position_j3_txt.text = "0.00"; 

        position_j4_txt.text = "0.00"; 
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        position_j5_txt.text = "0.00"; 

        position_j6_txt.text = "0.00"; 

 

        // Robot IP Address 

        ip_address_txt.text = "127.0.0.1"; 

 

        // Auxiliary first command -> Write initialization position/rotation with acceleration/time to the robot 
controller 

        // command (string value) 

        ur_data_processing.UR_Control_Data.aux_command_str = "speedl([0.0,0.0,0.0,0.0,0.0,0.0], a = 0.15, t = 
0.03)" + "\n"; 

        // get bytes from string command 

        ur_data_processing.UR_Control_Data.command = 
utf8.GetBytes(ur_data_processing.UR_Control_Data.aux_command_str); 

    } 

 

    // ------------------------------------------------------------------------------------------------------------------------  // 

    // ------------------------------------------------ MAIN FUNCTION {Cyclic} ----------------------------------------------
-- // 

    // ------------------------------------------------------------------------------------------------------------------------  // 

    void FixedUpdate() 

    { 

        // Robot IP Address (Read) -> TCP/IP  

        ur_data_processing.UR_Stream_Data.ip_address = ip_address_txt.text; 

        // Robot IP Address (Write) -> TCP/IP  

        ur_data_processing.UR_Control_Data.ip_address = ip_address_txt.text; 

 

        // ------------------------ Connection Information ------------------------// 

        // If the button (connect/disconnect) is pressed, change the color and text 

        if (ur_data_processing.GlobalVariables_Main_Control.connect == true) 

        { 

            // green color 

            connection_info_img.GetComponent<Image>().color = new Color32(135, 255, 0, 50); 

            connectionInfo_txt.text = "Connect"; 

        } 

        else if(ur_data_processing.GlobalVariables_Main_Control.disconnect == true) 
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        { 

            // red color 

            connection_info_img.GetComponent<Image>().color = new Color32(255, 0, 48, 50); 

            connectionInfo_txt.text = "Disconnect"; 

        } 

 

        // ------------------------ Cyclic read parameters {diagnostic panel} ------------------------ // 

        // Position {Cartesian} -> X..Z 

        position_x_txt.text = ((float)Math.Round(ur_data_processing.UR_Stream_Data.C_Position[0] * (1000f), 
2)).ToString(); 

        position_y_txt.text = ((float)Math.Round(ur_data_processing.UR_Stream_Data.C_Position[1] * (1000f), 
2)).ToString(); 

        position_z_txt.text = ((float)Math.Round(ur_data_processing.UR_Stream_Data.C_Position[2] * (1000f), 
2)).ToString(); 

        // Position {Rotation} -> EulerAngles(RX..RZ) 

        position_rx_txt.text = ((float)Math.Round(ur_data_processing.UR_Stream_Data.C_Orientation[0] * (180 / 
Math.PI), 2)).ToString(); 

        position_ry_txt.text = ((float)Math.Round(ur_data_processing.UR_Stream_Data.C_Orientation[1] * (180 / 
Math.PI), 2)).ToString(); 

        position_rz_txt.text = ((float)Math.Round(ur_data_processing.UR_Stream_Data.C_Orientation[2] * (180 / 
Math.PI), 2)).ToString(); 

        // Position Joint -> 1 - 6 

        position_j1_txt.text = ((float)Math.Round(ur_data_processing.UR_Stream_Data.J_Orientation[0] * (180 / 
Math.PI), 2)).ToString(); 

        position_j2_txt.text = ((float)Math.Round(ur_data_processing.UR_Stream_Data.J_Orientation[1] * (180 / 
Math.PI), 2)).ToString(); 

        position_j3_txt.text = ((float)Math.Round(ur_data_processing.UR_Stream_Data.J_Orientation[2] * (180 / 
Math.PI), 2)).ToString(); 

        position_j4_txt.text = ((float)Math.Round(ur_data_processing.UR_Stream_Data.J_Orientation[3] * (180 / 
Math.PI), 2)).ToString(); 

        position_j5_txt.text = ((float)Math.Round(ur_data_processing.UR_Stream_Data.J_Orientation[4] * (180 / 
Math.PI), 2)).ToString(); 

        position_j6_txt.text = ((float)Math.Round(ur_data_processing.UR_Stream_Data.J_Orientation[5] * (180 / 
Math.PI), 2)).ToString(); 

    } 

 

    // ------------------------------------------------------------------------------------------------------------------------ // 

    // -------------------------------------------------------- FUNCTIONS -----------------------------------------------------// 

    // ------------------------------------------------------------------------------------------------------------------------ // 
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    // -------------------- Destroy Blocks -------------------- // 

    void OnApplicationQuit() 

    { 

        // Destroy all 

        Destroy(this); 

    } 

 

    // -------------------- Connection Panel -> Visible On -------------------- // 

    public void TaskOnClick_ConnectionBTN() 

    { 

        // visible on 

        connection_panel_img.transform.localPosition = new Vector3(0f, 0f, 0f); 

        // visible off 

        diagnostic_panel_img.transform.localPosition = new Vector3(780f + (ex_param), 0f, 0f); 

        joystick_panel_img.transform.localPosition = new Vector3(1550f + (ex_param), 0f, 0f); 

    } 

 

    // -------------------- Connection Panel -> Visible off -------------------- // 

    public void TaskOnClick_EndConnectionBTN() 

    { 

        connection_panel_img.transform.localPosition = new Vector3(1215f + (ex_param), 0f, 0f); 

    } 

 

    // -------------------- Diagnostic Panel -> Visible On -------------------- // 

    public void TaskOnClick_DiagnosticBTN() 

    { 

        // visible on 

        diagnostic_panel_img.transform.localPosition = new Vector3(0f, 0f, 0f); 

        // visible off 

        connection_panel_img.transform.localPosition = new Vector3(1215f + (ex_param), 0f, 0f); 

        joystick_panel_img.transform.localPosition = new Vector3(1550f + (ex_param), 0f, 0f); 

    } 
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    // -------------------- Diagnostic Panel -> Visible Off -------------------- // 

    public void TaskOnClick_EndDiagnosticBTN() 

    { 

        diagnostic_panel_img.transform.localPosition = new Vector3(780f + (ex_param), 0f, 0f); 

    } 

 

    // -------------------- Joystick Panel -> Visible On -------------------- // 

    public void TaskOnClick_JoystickBTN() 

    { 

        // visible on 

        joystick_panel_img.transform.localPosition = new Vector3(-265f, -129f, 0f); 

        // visible off 

        connection_panel_img.transform.localPosition = new Vector3(1215f + (ex_param), 0f, 0f); 

        diagnostic_panel_img.transform.localPosition = new Vector3(780f + (ex_param), 0f, 0f); 

    } 

 

    // -------------------- Joystick Panel -> Visible Off -------------------- // 

    public void TaskOnClick_EndJoystickBTN() 

    { 

        joystick_panel_img.transform.localPosition = new Vector3(1550f + (ex_param), 0f, 0f); 

    } 

 

    // -------------------- Camera Position -> Right -------------------- // 

    public void TaskOnClick_CamViewRBTN() 

    { 

        camera_obj.transform.localPosition    = new Vector3(0.114f, 2.64f, -2.564f); 

        camera_obj.transform.localEulerAngles = new Vector3(10f, -30f, 0f); 

    } 

 

    // -------------------- Camera Position -> Left -------------------- // 

    public void TaskOnClick_CamViewLBTN() 

    { 

        camera_obj.transform.localPosition = new Vector3(-3.114f, 2.64f, -2.564f); 

        camera_obj.transform.localEulerAngles = new Vector3(10f, 30f, 0f); 
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    } 

 

    // -------------------- Camera Position -> Home (in front) -------------------- // 

    public void TaskOnClick_CamViewHBTN() 

    { 

        camera_obj.transform.localPosition = new Vector3(-1.5f, 2.2f, -3.5f); 

        camera_obj.transform.localEulerAngles = new Vector3(0f, 0f, 0f); 

    } 

 

    // -------------------- Camera Position -> Top -------------------- // 

    public void TaskOnClick_CamViewTBTN() 

    { 

        camera_obj.transform.localPosition = new Vector3(-1.2f, 4f, 0f); 

        camera_obj.transform.localEulerAngles = new Vector3(90f, 0f, 0f); 

    } 

 

    // -------------------- Connect Button -> is pressed -------------------- // 

    public void TaskOnClick_ConnectBTN() 

    { 

        ur_data_processing.GlobalVariables_Main_Control.connect    = true; 

        ur_data_processing.GlobalVariables_Main_Control.disconnect = false; 

    } 

 

    // -------------------- Disconnect Button -> is pressed -------------------- // 

    public void TaskOnClick_DisconnectBTN() 

    { 

        ur_data_processing.GlobalVariables_Main_Control.connect    = false; 

        ur_data_processing.GlobalVariables_Main_Control.disconnect = true; 

    } 

 

} 

 

Unity MQTT Client handler “M2MqttUnityClient”: 

using System; 
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using System.Collections; 

using System.Collections.Generic; 

using UnityEngine; 

using uPLibrary.Networking.M2Mqtt; 

using uPLibrary.Networking.M2Mqtt.Messages; 

 

/// <summary> 

/// Adaptation for Unity of the M2MQTT library (https://github.com/eclipse/paho.mqtt.m2mqtt), 

/// modified to run on UWP (also tested on Microsoft HoloLens). 

/// </summary> 

namespace M2MqttUnity 

{ 

    /// <summary> 

    /// Generic MonoBehavior wrapping a MQTT client, using a double buffer to postpone message processing in 
the main thread.  

    /// </summary> 

    public class M2MqttUnityClient : MonoBehaviour 

    { 

        [Header("MQTT broker configuration")] 

        [Tooltip("IP address or URL of the host running the broker")] 

        public string brokerAddress = "localhost"; 

        [Tooltip("Port where the broker accepts connections")] 

        public int brokerPort = 1883; 

        [Tooltip("Use encrypted connection")] 

        public bool isEncrypted = false; 

        [Header("Connection parameters")] 

        [Tooltip("Connection to the broker is delayed by the the given milliseconds")] 

        public int connectionDelay = 500; 

        [Tooltip("Connection timeout in milliseconds")] 

        public int timeoutOnConnection = MqttSettings.MQTT_CONNECT_TIMEOUT; 

        [Tooltip("Connect on startup")] 

        public bool autoConnect = false; 

        [Tooltip("UserName for the MQTT broker. Keep blank if no user name is required.")] 

        public string mqttUserName = null; 

        [Tooltip("Password for the MQTT broker. Keep blank if no password is required.")] 
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        public string mqttPassword = null; 

         

        /// <summary> 

        /// Wrapped MQTT client 

        /// </summary> 

        protected MqttClient client; 

 

        private List<MqttMsgPublishEventArgs> messageQueue1 = new List<MqttMsgPublishEventArgs>(); 

        private List<MqttMsgPublishEventArgs> messageQueue2 = new List<MqttMsgPublishEventArgs>(); 

        private List<MqttMsgPublishEventArgs> frontMessageQueue = null; 

        private List<MqttMsgPublishEventArgs> backMessageQueue = null; 

        private bool mqttClientConnectionClosed = false; 

        private bool mqttClientConnected = false; 

 

        /// <summary> 

        /// Event fired when a connection is successfully established 

        /// </summary> 

        public event Action ConnectionSucceeded; 

        /// <summary> 

        /// Event fired when failing to connect 

        /// </summary> 

        public event Action ConnectionFailed; 

 

        /// <summary> 

        /// Connect to the broker using current settings. 

        /// </summary> 

        public virtual void Connect() 

        { 

            if (client == null || !client.IsConnected) 

            { 

                StartCoroutine(DoConnect()); 

            } 

        } 
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        /// <summary> 

        /// Disconnect from the broker, if connected. 

        /// </summary> 

        public virtual void Disconnect() 

        { 

            if (client != null) 

            { 

                StartCoroutine(DoDisconnect()); 

            } 

        } 

 

        /// <summary> 

        /// Override this method to take some actions before connection (e.g. display a message) 

        /// </summary> 

        protected virtual void OnConnecting() 

        { 

            Debug.LogFormat("Connecting to broker on {0}:{1}...\n", brokerAddress, brokerPort.ToString()); 

        } 

 

        /// <summary> 

        /// Override this method to take some actions if the connection succeeded. 

        /// </summary> 

        protected virtual void OnConnected() 

        { 

            Debug.LogFormat("Connected to {0}:{1}...\n", brokerAddress, brokerPort.ToString()); 

 

            SubscribeTopics(); 

 

            if (ConnectionSucceeded != null) 

            { 

                ConnectionSucceeded(); 

            } 

        } 
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        /// <summary> 

        /// Override this method to take some actions if the connection failed. 

        /// </summary> 

        protected virtual void OnConnectionFailed(string errorMessage) 

        { 

            Debug.LogWarning("Connection failed."); 

            if (ConnectionFailed != null) 

            { 

                ConnectionFailed(); 

            } 

        } 

 

        /// <summary> 

        /// Override this method to subscribe to MQTT topics. 

        /// </summary> 

        protected virtual void SubscribeTopics() 

        { 

        } 

 

        /// <summary> 

        /// Override this method to unsubscribe to MQTT topics (they should be the same you subscribed to with 
SubscribeTopics() ). 

        /// </summary> 

        protected virtual void UnsubscribeTopics() 

        { 

        } 

 

        /// <summary> 

        /// Disconnect before the application quits. 

        /// </summary> 

        protected virtual void OnApplicationQuit() 

        { 

            CloseConnection(); 

        } 
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        /// <summary> 

        /// Initialize MQTT message queue 

        /// Remember to call base.Awake() if you override this method. 

        /// </summary> 

        protected virtual void Awake() 

        { 

            frontMessageQueue = messageQueue1; 

            backMessageQueue = messageQueue2; 

        } 

 

        /// <summary> 

        /// Connect on startup if autoConnect is set to true. 

        /// </summary> 

        protected virtual void Start() 

        { 

            if (autoConnect) 

            { 

                Connect(); 

            } 

        } 

 

        /// <summary> 

        /// Override this method for each received message you need to process. 

        /// </summary> 

        protected virtual void DecodeMessage(string topic, byte[] message) 

        { 

            Debug.LogFormat("Message received on topic: {0}", topic); 

        } 

 

        /// <summary> 

        /// Override this method to take some actions when disconnected. 

        /// </summary> 

        protected virtual void OnDisconnected() 

        { 
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            Debug.Log("Disconnected."); 

        } 

 

        /// <summary> 

        /// Override this method to take some actions when the connection is closed. 

        /// </summary> 

        protected virtual void OnConnectionLost() 

        { 

            Debug.LogWarning("CONNECTION LOST!"); 

        } 

 

        /// <summary> 

        /// Processing of income messages and events is postponed here in the main thread. 

        /// Remember to call ProcessMqttEvents() in Update() method if you override it. 

        /// </summary> 

        protected virtual void Update() 

        { 

            ProcessMqttEvents(); 

        } 

 

        protected virtual void ProcessMqttEvents() 

        { 

            // process messages in the main queue 

            SwapMqttMessageQueues(); 

            ProcessMqttMessageBackgroundQueue(); 

            // process messages income in the meanwhile 

            SwapMqttMessageQueues(); 

            ProcessMqttMessageBackgroundQueue(); 

 

            if (mqttClientConnectionClosed) 

            { 

                mqttClientConnectionClosed = false; 

                OnConnectionLost(); 

            } 
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        } 

 

        private void ProcessMqttMessageBackgroundQueue() 

        { 

            foreach (MqttMsgPublishEventArgs msg in backMessageQueue) 

            { 

                DecodeMessage(msg.Topic, msg.Message); 

            } 

            backMessageQueue.Clear(); 

        } 

 

        /// <summary> 

        /// Swap the message queues to continue receiving message when processing a queue. 

        /// </summary> 

        private void SwapMqttMessageQueues() 

        { 

            frontMessageQueue = frontMessageQueue == messageQueue1 ? messageQueue2 : messageQueue1; 

            backMessageQueue = backMessageQueue == messageQueue1 ? messageQueue2 : messageQueue1; 

        } 

 

        private void OnMqttMessageReceived(object sender, MqttMsgPublishEventArgs msg) 

        { 

            frontMessageQueue.Add(msg); 

        } 

 

        private void OnMqttConnectionClosed(object sender, EventArgs e) 

        { 

            // Set unexpected connection closed only if connected (avoid event handling in case of controlled 
disconnection) 

            mqttClientConnectionClosed = mqttClientConnected; 

            mqttClientConnected = false; 

        } 

 

        /// <summary> 

        /// Connects to the broker using the current settings. 
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        /// </summary> 

        /// <returns>The execution is done in a coroutine.</returns> 

        private IEnumerator DoConnect() 

        { 

            // wait for the given delay 

            yield return new WaitForSecondsRealtime(connectionDelay / 1000f); 

            // leave some time to Unity to refresh the UI 

            yield return new WaitForEndOfFrame(); 

 

            // create client instance  

            if (client == null) 

            { 

                try 

                { 

#if (!UNITY_EDITOR && UNITY_WSA_10_0 && !ENABLE_IL2CPP) 

                    client = new MqttClient(brokerAddress,brokerPort,isEncrypted, isEncrypted ? 
MqttSslProtocols.SSLv3 : MqttSslProtocols.None); 

#else 

                    client = new MqttClient(brokerAddress, brokerPort, isEncrypted, null, null, isEncrypted ? 
MqttSslProtocols.SSLv3 : MqttSslProtocols.None); 

                    //System.Security.Cryptography.X509Certificates.X509Certificate cert = new 
System.Security.Cryptography.X509Certificates.X509Certificate(); 

                    //client = new MqttClient(brokerAddress, brokerPort, isEncrypted, cert, null, 
MqttSslProtocols.TLSv1_0, MyRemoteCertificateValidationCallback); 

#endif 

                } 

                catch (Exception e) 

                { 

                    client = null; 

                    Debug.LogErrorFormat("CONNECTION FAILED! {0}", e.ToString()); 

                    OnConnectionFailed(e.Message); 

                    yield break; 

                } 

            } 

            else if (client.IsConnected) 

            { 
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                yield break; 

            } 

            OnConnecting(); 

 

            // leave some time to Unity to refresh the UI 

            yield return new WaitForEndOfFrame(); 

            yield return new WaitForEndOfFrame(); 

 

            client.Settings.TimeoutOnConnection = timeoutOnConnection; 

            string clientId = Guid.NewGuid().ToString(); 

            try 

            { 

                client.Connect(clientId, mqttUserName, mqttPassword); 

            } 

            catch (Exception e) 

            { 

                client = null; 

                Debug.LogErrorFormat("Failed to connect to {0}:{1}\n (check client parameters: encryption, 
address/port, username/password):\n{2}", brokerAddress, brokerPort, e.ToString()); 

                OnConnectionFailed(e.Message); 

                yield break; 

            } 

            if (client.IsConnected) 

            { 

                client.ConnectionClosed += OnMqttConnectionClosed; 

                // register to message received  

                client.MqttMsgPublishReceived += OnMqttMessageReceived; 

                mqttClientConnected = true; 

                OnConnected(); 

            } 

            else 

            { 

                OnConnectionFailed("CONNECTION FAILED!"); 

            } 

        } 
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        private IEnumerator DoDisconnect() 

        { 

            yield return new WaitForEndOfFrame(); 

            CloseConnection(); 

            OnDisconnected(); 

        } 

 

        private void CloseConnection() 

        { 

            mqttClientConnected = false; 

            if (client != null) 

            { 

                if (client.IsConnected) 

                { 

                    UnsubscribeTopics(); 

                    client.Disconnect(); 

                } 

                client.MqttMsgPublishReceived -= OnMqttMessageReceived; 

                client.ConnectionClosed -= OnMqttConnectionClosed; 

                client = null; 

            } 

        } 

 

#if ((!UNITY_EDITOR && UNITY_WSA_10_0)) 

        private void OnApplicationFocus(bool focus) 

        { 

            // On UWP 10 (HoloLens) we cannot tell whether the application actually got closed or just minimized. 

            // (https://forum.unity.com/threads/onapplicationquit-and-ondestroy-are-not-called-on-uwp-10.462597/) 

            if (focus) 

            { 

                Connect(); 

            } 

            else 
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            { 

                CloseConnection(); 

            } 

        } 

#endif 

    } 

} 

 

Unity ABB MQTT log C# code “AbbAloqa”: 

using UnityEngine; 

using System; 

using uPLibrary.Networking.M2Mqtt; 

using uPLibrary.Networking.M2Mqtt.Messages; 

 

public class AbbAloqa : MonoBehaviour 

{ 

    public static float abbjoint1; 

    public static float abbjoint2; 

    public static float abbjoint3; 

    public static float abbjoint4; 

    public static float abbjoint5; 

    public static float abbjoint6; 

 

    private MqttClient client; 

    public string brokerAddress = "lepiot.polito.it"; 

    public int brokerPort = 8081; 

 

    public string[] topics = { "abb.j1", "abb.j2", "abb.j3", "abb.j4", "abb.j5", "abb.j6" }; 

 

    void Start() 

    { 

        client = new MqttClient(brokerAddress, brokerPort, false, null); 

        client.MqttMsgPublishReceived += Client_MqttMsgPublishReceived; 

        client.Connect(Guid.NewGuid().ToString()); 
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        foreach (string topic in topics) 

        { 

            client.Subscribe(new string[] { topic }, new byte[] { MqttMsgBase.QOS_LEVEL_AT_LEAST_ONCE }); 

        } 

    } 

 

    private void Client_MqttMsgPublishReceived(object sender, MqttMsgPublishEventArgs e) 

    { 

        string topic = e.Topic; 

        string message = System.Text.Encoding.UTF8.GetString(e.Message); 

 

        Debug.Log($"Received message on {topic}: {message}"); 

 

        switch (topic) 

        { 

            case "abb.j1": 

                abbjoint1 = float.Parse(message); 

                break; 

            case "abb.j2": 

                abbjoint2 = float.Parse(message); 

                break; 

            case "abb.j3": 

                abbjoint3 = float.Parse(message); 

                break; 

            case "abb.j4": 

                abbjoint4 = float.Parse(message); 

                break; 

            case "abb.j5": 

                abbjoint5 = float.Parse(message); 

                break; 

            case "abb.j6": 

                abbjoint6 = float.Parse(message); 

                break; 
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            default: 

                Debug.LogWarning("Received message on an unrecognized topic: " + topic); 

                break; 

        } 

    } 

 

    void OnDestroy() 

    { 

        if (client != null && client.IsConnected) 

        { 

            client.Disconnect(); 

        } 

    } 

} 

 

Unity MQTT Broker settings “BrokerSettings”: 

using System; 

using System.Xml.Serialization; 

using UnityEngine; 

 

namespace M2MqttUnity 

{ 

    /// <summary> 

    /// Serializable settings for MQTT broker configuration. 

    /// </summary> 

    [Serializable] 

    [XmlType(TypeName = "broker-settings")] 

    public class BrokerSettings 

    { 

        [Tooltip("Address of the host running the broker")] 

        public string host = "localhost"; 

 

        [Tooltip("Port used to access the broker")] 

        public int port = 1883; 
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        [Tooltip("Encrypted access to the broker")] 

        public bool encrypted = false; 

 

        [Tooltip("Optional alternate addresses, used if the previous host is not accessible")] 

        public string[] alternateAddress; 

    } 

} 

 

MQTT-Based Data Acquisition for ABB Robot and Mobile Robot Positioning in Unity 

C# code “ConnectIn_ABB”: 

using UnityEngine; 

using System; 

using uPLibrary.Networking.M2Mqtt; 

using uPLibrary.Networking.M2Mqtt.Messages; 

 

public class ConnectIn : MonoBehaviour 

{ 

    public static float J1; 

    public static float J2; 

    public static float J3; 

    public static float J4; 

    public static float J5; 

    public static float J6; 

    public static float posx; 

    public static float posZ; 

    public static float yaw; 

 

    private MqttClient client; 

    public string brokerAddress = "lepiot.polito.it"; 

    public int brokerPort = 8081; 

 

    public string[] topics = { "abb.j1", "abb.j2", "abb.j3", "abb.j4", "abb.j5", "abb.j6", "posix", "positionZ", 
"yaaw" }; 
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    void Start() 

    { 

        client = new MqttClient(brokerAddress, brokerPort, false, null); 

        client.MqttMsgPublishReceived += Client_MqttMsgPublishReceived; 

        client.Connect(Guid.NewGuid().ToString()); 

 

        foreach (string topic in topics) 

        { 

            client.Subscribe(new string[] { topic }, new byte[] { MqttMsgBase.QOS_LEVEL_AT_LEAST_ONCE }); 

        } 

    } 

 

    private void Client_MqttMsgPublishReceived(object sender, MqttMsgPublishEventArgs e) 

    { 

        string topic = e.Topic; 

        string message = System.Text.Encoding.UTF8.GetString(e.Message); 

 

        //Debug.Log($"Received message on {topic}: {message}"); 

 

        switch (topic) 

        { 

            case "abb.j1": 

                J1 = float.Parse(message); 

                break; 

            case "abb.j2": 

                J2 = float.Parse(message); 

                break; 

            case "abb.j3": 

                J3 = float.Parse(message); 

                break; 

            case "abb.j4": 

                J4 = float.Parse(message); 

                break; 

            case "abb.j5": 
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                J5 = float.Parse(message); 

                break; 

            case "abb.j6": 

                J6 = float.Parse(message); 

                break; 

            case "posix": 

                posx = float.Parse(message); 

                break; 

            case "positionZ": 

                posZ = float.Parse(message); 

                break; 

            case "yaaw": 

                yaw = float.Parse(message); 

                break; 

            default: 

                Debug.LogWarning("Received message on an unrecognized topic: " + topic); 

                break; 

        } 

    } 

    void OnDestroy() 

    { 

        if (client != null && client.IsConnected) 

        { 

            client.Disconnect(); 

        } 

    } 

} 

 

Unity ABB Joint control “ABBJoint1”: 

// System 

using System; 

//using System.Diagnostics; 

// Unity  

using UnityEngine; 
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using static UnityEngine.GraphicsBuffer; 

//using Debug = UnityEngine.Debug; 

 

public class ABBJoint1 : MonoBehaviour 

{ 

    private Vector3 velocity = Vector3.zero; // Declare this as a class veriable 

    public float smoothTime = 0.3f; //Adjust this value based on your needs 

 

    void FixedUpdate() 

    { 

        try 

        { 

            Vector3 currentAngles = transform.localEulerAngles; 

            Vector3 targetAngles = new Vector3(0f, (float)((1) * AbbAloqa.abbjoint1), 0f); //set your target euler 
angle 

            Vector3 smoothAngles = Vector3.SmoothDamp(currentAngles, targetAngles, ref velocity, smoothTime); 

            transform.localEulerAngles = smoothAngles; 

             

            //transform.localEulerAngles = new Vector3(0f, (float)((-1) * AbbAloqa.abbjoint1), 0f); 

            Debug.Log("Received message1: " + AbbAloqa.abbjoint1); 

            Debug.Log("Received message1: " + AbbAloqa.abbjoint2); 

            Debug.Log("Received message1: " + AbbAloqa.abbjoint3); 

            Debug.Log("Received message1: " + AbbAloqa.abbjoint4); 

            Debug.Log("Received message1: " + AbbAloqa.abbjoint5); 

            Debug.Log("Received message1: " + AbbAloqa.abbjoint6); 

        } 

        catch (Exception e) 

        { 

            Debug.Log("Exception:" + e); 

        } 

    } 

    void OnApplicationQuit() 

    { 

        Destroy(this); 

    } 
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} 

 

Unity MIR robot position control “mir100trnsfrm”: 

using System; 

// Unity 

using UnityEngine; 

 

using Debug = UnityEngine.Debug; 

 

public class mir100trnsfrm : MonoBehaviour 

{ 

 

    //public float ZPosition = ConnectIn.posZ; 

 

    void FixedUpdate() 

    { 

        try 

        { 

            // Update the game object's position in the x and y coordinates 

            transform.localPosition = new Vector3( 

                ConnectIn.posx, // X position 

                transform.localPosition.y, 

                ConnectIn.posZ // Y position 

                 

            ); 

 

            // Update the game object's rotation around the Z-axis (yaw angle) 

            transform.localEulerAngles = new Vector3( 

                -90f, // X rotation 

                (float)((-1) * ConnectIn.yaw), 

                0f // Y rotation 

                 // Z rotation (yaw) 

            ); 
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           Debug.Log($"Received message on posX: {ConnectIn.posx}"); 

           Debug.Log($"Received message posZ : {ConnectIn.posZ}"); 

           Debug.Log($"Received message Yaw : {ConnectIn.yaw}"); 

        } 

        catch (Exception e) 

        { 

            Debug.Log("Exception:" + e); 

        } 

    } 

 

    void OnApplicationQuit() 

    { 

        Destroy(this); 

    } 

} 

 


