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I. Abstract

Hydropower plants are widely regarded as an effective and sustainable solution for 
electricity generation. They leverage water, a renewable resource, to produce energy, 
thereby promotion environmental sustainability. Their relatively low operational and 
maintenance costs contribute to their economic viability. The crucial water storage 
capacity in their reservoirs also enables the provision of auxiliary services, beyond 
solidifying their role as a versatile and reliable component in modern energy 
systems.

Optical Motion Magnification (OMM) is used for condition monitoring for 
hydropower turbines by enhancing small motions in video recordings, OMM is a 
non-contact, vision-based technique, allows for the detection and visualization of 
vibrations and displacements that would otherwise be hidden beneath the noise floor 
or invisible to the human eye. The technique approach is to track the mechanical 
characteristics of turbine components without the use of physical sensors by 
enhancing subtle movements in high-resolution video data.

The study explores OMM's potential as a substitute for conventional measurement 
tools including proximity probes and laser displacement sensors, which are 
frequently employed in defect detection and turbine vibration analysis. To evaluate 
OMM's sensitivity and accuracy against these well-known sensing technologies, 
several tests were carried out. Whether optical motion magnification can produce 
equivalent outcomes in detecting mechanical problems and describing the dynamic 
response of hydropower turbines is the goal.

By providing a more adaptable, non-invasive alternative that lessens the need for 
intricate installations and maintenance, the study's findings could make a substantial 
contribution to the field of condition monitoring. If successful, OMM might be a 
more affordable and secure option for keeping an eye on spinning equipment in 
extensive energy infrastructure.
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III. Structural Health Monitoring
1. Introduction

Condition Monitoring is a process to measure machine motion, temperature, and oil 
condition. Which allows us to notice any visible change that may cause an error or 
failure. Condition monitoring is collecting data over time, that shows us how the 
machine works now and how it worked in the past. By comparing these data, we can 
predict how the machine might behave in the future and do the maintenance before 
the failure happens [1]. By noticing this, it gives us the advantage to fix the problems 
before any series damage that lead to increase the machine service life [2].

2. Vibration Analysis
Unbalanced forces are frequently applied to rotational shafts in rotating machinery, 
which can result in a variety of defects and ultimately mechanical failure. These 
flaws are serious because they affect the appropriate operation of equipment used in 
both small and large-scale industrial settings. Vibration signals, which show 
amplitude variations and are regularly displayed as simple harmonic motion, can be 
analyzed to monitor these defects. 
Monitoring vibration conditions is important for identifying and avoiding problems, 
which extends the life of rotating machinery. A few things can lead to bearing faults, 
such as cyclic loads, mistakes made by maintenance personnel, insufficient 
lubrication, and poor-quality component manufacturing. These problems frequently 
result in both localized and distributed faults.
The vibration spectrum's frequency characteristics can be used to identify each of 
these issues. This includes changes in energy levels and amplitude that reveal the 
kind and extent of the fault. The frequency characteristics of these bearing defects 
can be determined using a variety of techniques, including analytical, numerical 
simulations, and experimental approaches.
In addition to providing harmonic frequency data at different speeds and conditions, 
the frequency characteristics derived from these methods represent fundamental 
frequencies. Time, frequency, and time-frequency domain analyses are crucial 
factors to consider when comparing vibration analysis methods. These vibration 
signals lead to determine the machinery's overall health.[3]
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3. Conditional Monitoring Techniques
As more data is gathered for condition monitoring, the system grows more complex 
and expensive. Full monitoring is therefore typically only employed when poor 
output, low availability, or poor quality could result in significant issues and warrant 
costs. Due to their strength, dependability, affordability, and efficiency, rotating 
motors are frequently employed in industries. These motors may experience issues 
while in operation, and if they exceed safe limits, they may fail, resulting in 
shutdowns and significant financial losses. Therefore, it's critical to keep an eye on 
them to identify problems early. Numerous techniques have been developed to 
identify issues with these motors.[4]

Figure 1:Need for Condition Monitoring

i.Infrared thermology
Non-destructive testing technique for predictive maintenance, infrared 
thermography tracks the temperature of equipment and operations. Infrared 
thermography tracks offer a remote, visible thermal view of the entire component or 
system, in contrast to conventional contact-based temperature measurement 
instruments like thermocouples and resistance temperature detectors. This makes it 
possible to identify irregular temperature distributions early on and perform 
preventative maintenance before possible malfunctions.
Civil infrastructure, electrical systems, machinery, aerospace, nuclear facilities, 
PCBs, food processing, and material fatigue studies are just a few of the many 
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diverse industries where infrared thermography tracks have been widely used for 
condition monitoring. It has demonstrated efficiency in assessing procedures such 
as chemical vapor deposition, tracking deformations, and examining welds. The 
method has also been utilized to detect high current densities in microwave circuits 
and in industries like the paper and wood sectors.[5]

ii.Ultrasound
Ultrasonic sensors are used to capture high-frequency waves produced by small 
cracks, scratches, or faults; ultrasound-based fault detection is a relatively new 
technique that is gaining attention across various industries for its ability to detect 
early-stage mechanical faults. Unless the crack becomes significantly large, the 
ultrasonic waves produced by these impulse shocks are often undetectable by 
traditional vibration analysis.
Ultrasound has limitations. It can find it difficult to distinguish between specific 
kinds of faults or detect false signals, including those brought on by frequent impacts 
from loose bolts. The location of the sensor has a significant impact on its efficiency, 
the closer the sensor is to the defect, the better the findings.
Ultrasound is used to determine bearing faults frequencies. However, vibration 
analysis is used to identify specific faults like unbalanced or misalignment.[6]

iii.Acoustic Emission
Acoustic emission is known as elastic stress waves within a material. This 
phenomenon is usually caused by deformation, sudden stress redistribution, or 
contact between rough surfaces. These signals have a broad frequency range, 
typically from 20 kHz to 1 MHz, and are naturally non-stationary. In addition to 
man-made processes like wear, slip, dislocation motion, plastic deformation, 
friction, fracture, phase changes, melting, leaks, matrix cracking, fiber breakage, and 
delamination in composite materials, acoustic emission can also result from natural 
events like earthquakes and rock bursts.

In rotating machinery, acoustic emission sources may include impacts, cyclic 
fatigue, material loss, turbulence, friction, cavitation, leakage, and contact between 
surface irregularities. Vibration analysis has been used by numerous researchers to 
study failure detection and prediction in such systems. However, compared to 



16

traditional vibration sensors, acoustic emission sensors provide several clear 
advantages.

Firstly, surrounding noise and mechanical resonance can greatly change vibration 
signals, while acoustic emission signals are less vulnerable to these interferences. 
This makes it possible for acoustic emission sensors to deliver more accurate and 
clean data in noisy settings.

Secondly, mechanical surface flaws frequently produce a broad spectrum of 
frequencies that can be higher than vibration sensors' operational bandwidth. These 
signals are better captured by acoustic emission sensors, which can identify high-
frequency stress waves.

Thirdly, small surface flaws might not have a noticeable impact on the overall 
structural vibration or cause noticeable variations in acceleration. However, acoustic 
emission sensing is more sensitive to early-stage or incipient errors since these minor 
flaws can still produce detectable acoustic emission activity. 

Fourthly, flexible sensor placement is made possible by the spherical outward 
radiation of acoustic emission waves from a point source. Acoustic emission sensors 
can gather enough data from a single place or direction, in contrast to vibration 
sensors, which frequently need multi-axis measurements.

Finally, the precise location of the emission source can be determined thanks to 
acoustic emission technology. This feature is particularly useful for pinpointing the 
exact location of any damage and determining the underlying cause of malfunctions. 
Because of their better sensitivity and localization skills, acoustic emission-based 
diagnostics are becoming more and more popular in predictive maintenance 
applications.[7]

4. Condition Monitoring Types
Various formats and methods of monitoring the condition of machines each serve a 
specific purpose in terms of data collection.

The most popular formats are:
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i.Offline Condition Monitoring
Offline condition monitoring involves assessing the performance and health of 
machinery or equipment by routine measurements, inspections, and sample testing. 
This usually takes place during planned maintenance or when the machinery is not 
in use. At some intervals, offline monitoring offers comprehensive insights into the 
state of the equipment. To enable preventive maintenance and a longer equipment 
lifespan, the major goal of offline condition monitoring is to identify possible 
defects, wear, or deterioration that could result in failures. It is a useful tool for 
companies where periodic downtime for inspections is possible and where 
equipment functions in stable, predictable conditions. 
Numerous diagnostic methods, including vibration analysis, oil and fluid sampling, 
infrared thermography, ultrasonic testing, and insulation resistance testing, are 
employed in offline condition monitoring. Without interfering with regular 
operations, these techniques allow specialists to spot early warning indications of 
issues such imbalances, misalignments, wear, and material degradation.
This method is a cost-effective alternative for many companies since it can be 
planned during scheduled maintenance windows. 
Although offline condition monitoring offers comprehensive and detailed data, 
inspections and analysis do take time. Regular and timely testing is essential to its 
efficiency since it guarantees that possible problems are identified before they 
become expensive failures. 
An essential component of a proactive maintenance approach, offline condition 
monitoring helps businesses save maintenance expenses, increase equipment 
reliability, and prevent unscheduled downtime.

ii.Online Condition Monitoring
Online conditions monitoring is continuously monitoring the health of the machine 
by wirelessly attaching sensors connected to integrated software. These sensors track 
several factors, including vibration, acoustic emissions, ultrasound, and infrared 
thermal pictures, and they offer real-time alerts. It's crucial to consider the machine's 
form, bearing type, speed, parts, and components while choosing an online 
monitoring equipment.

The sensor wirelessly connects to a remote monitoring system that shows real-time 
data after it is positioned correctly on the machine. This enables operators to get a 
real-time picture of the machine's state. The system can monitor the asset and spot 
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possible problems using a variety of sensor data types, including vibration, thermal 
imaging, and acoustics.

Real-time notifications can be configured using online monitoring, which may notify 
operators via emails or remote devices when a problem is identified. Apart from the 
ongoing surveillance, data from sensors mounted on equipment can also be read by 
portable devices. We call this procedure "portable computer diagnostics."

The online condition monitoring tool offers proactive, ongoing insights into the state 
of the equipment, enabling prompt repair and lowering the possibility of unplanned 
breakdowns.[1]

5. Condition Monitoring Maintenance
Condition monitoring is proactive maintenance strategy that involves routinely or 
periodically evaluating the functionality and state of machinery, equipment, or 
structural systems. Condition monitoring uses scheduled or real-time data collecting 
to find early indications of wear, degradation, or malfunction rather than waiting for 
a failure to happen. This makes it possible to plan maintenance tasks just when they 
are required, increasing dependability, decreasing downtime, and maximizing 
maintenance expenses.
This is accomplished by using a variety of sensor technologies to track important 
operating parameters that act as gauges of the equipment's health, such as 
temperature, vibration, pressure, or noise. To extract valuable information about the 
state of the system, the acquired raw data is processed and examined using 
sophisticated signal processing and decision-making algorithms.
In condition monitoring systems, a centralized diagnostic unit also known as a health 
control center is crucial. This section uses diagnostic techniques to identify and 
differentiate between various problem types, particularly in complex systems where 
fault identification can be difficult due to several interacting components.[1]
Maintenance strategies can be generally categorized into three stages of 
development:

i.Breakdown Maintenance
The run till failure maintenance approach involves keeping equipment in use until it 
totally fails, at which point it is replaced. This method is usually applied when a 
machine malfunction does not result in serious injury to humans or large financial 
losses. 
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This approach aims to prolong the equipment's operating life before resulting in 
increased expenses for extra personnel, increased machine downtime, and decreased 
production capacity. 
However, due to the potential for safety hazards, equipment damage, and decreased 
overall efficiency, this approach is typically viewed as undesirable. Furthermore, a 
breakdown maintenance program frequently leads to higher expenditures, such as 
higher inventory management and spare part costs.[8]

ii.Preventive Maintenance
Time-based or periodic maintenance are common terms used to describe this kind of 
maintenance. Although it can lessen the likelihood of unforeseen failures, it is 
typically seen as economically wasteful. This method's fundamental principle is that 
a machine will continue to function well if it receives routine maintenance. 
However, overall production is frequently reduced because of this strategy. Because 
it frequently relies solely on past data and experience, it also runs the danger of 
creating inaccuracies. 
This maintenance approach's primary objective is to increase the equipment's useful 
life by controlling wear and tears before it becomes unacceptable. Over time, the 
rate of deterioration of certain equipment components is comparatively constant. 
However, the wear patterns of some parts, such as rolling element bearings, vary 
greatly. This variance may result in forecasts where the average time before failure 
is two to three times longer than the bare minimum.[8] 

iii.Condition-based Maintenance:
Condition-Based Maintenance is a traditional method based on fixed schedules. 
Condition-Based Maintenance is a modern approach to maintenance that assesses 
the current state of machines to determine when maintenance is necessary. Only 
when certain indicators indicate a decline in performance or a potential failure do 
Condition-Based Maintenance perform maintenance, extending machine lifespan, 
improving operational efficiency, lowering daily operating costs, improving system 
quality, minimizing maintenance workload, and lowering the risk of human error.
Condition-Based Maintenance is regarded as a demand-driven approach in which 
maintenance tasks are initiated based on the system's actual requirements rather than 
preset schedules. Condition Monitoring data is the main source of information used 
to inform these activities. By facilitating precise maintenance scheduling and 
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determining the best moments to step in, condition monitoring plays a critical role 
in making sure that parts are repaired before serious deterioration happens.
There are several crucial steps in the Condition-Based Maintenance process. First, 
information regarding the machine's working state is gathered by sensors and 
monitoring equipment. The data is then processed to identify irregularities and 
understand different signals. Lastly, to produce practical maintenance suggestions, 
decision-making procedures are used, such as diagnostic and prognostic algorithms. 
Analyzing real-time data to find functional changes and early warning indicators of 
failure is the process's ultimate objective.
Vibration analysis with non-contact sensors is one of the several condition 
monitoring approaches that has demonstrated significant potential in anticipating 
mechanical failures and determining maintenance requirements prior to breakdown. 
Reliability can be greatly increased and unexpected downtime can be decreased with 
these predictive capabilities.[8]

6. Conclusion
Vibration analysis is widely acknowledged as one of the most successful methods 
used in condition-based maintenance and is essential to many predictive 
maintenance programs. It provides a dependable, affordable, and useful method for 
keeping an eye on the condition of equipment and identifying problems early. The 
fundamental principle of vibration analysis is the presumption that modifications in 
the machine's vibration patterns accompany most mechanical breakdowns.
Vibration sensors, usually accelerometers, monitor the machine's vibration while it 
is operating to record these patterns. To increase accuracy, the gathered vibration 
signals go through pre-processing, which includes operations like data normalization 
and noise reduction. Depending on the type of fault being examined, the signals can 
be pre-processed and then evaluated in various domains, such as the frequency 
domain (spectrum analysis) or the time domain.

Organizations can minimize maintenance costs and production downtime, prevent 
unplanned equipment breakdowns, and execute timely repairs by identifying issues 
early. Additionally, this proactive approach maximizes revenue and operational 
efficiency. Predictive maintenance techniques are very beneficial to businesses 
because they minimize the need for expensive emergency repairs, reduce the demand 
for spare parts inventories, and prevent production delays brought on by equipment 
failure.
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In addition to assisting in determining the sort of fault that exists, a thorough 
examination of vibration signals enables precise assessment of the machine's 
remaining usable life, necessary replacement parts, tools, available staff, and repair 
time. Vibration analysis therefore helps with better resource management and 
maintenance planning, which eventually results in significant cost savings and 
increased system reliability.
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IV. Motion Magnification

1. Introduction
Monitoring the vibrating characteristics of structures and machines is crucial to their 
safe and efficient operation. This is true in cases where we don't fully understand 
how specific conditions or events are affecting the machine, as well as while 
performing routine inspections to evaluate if a machine or building is deteriorating 
over time. Vibration signals in these situations can serve as warning indicators, 
assisting us in identifying undesirable or hazardous alterations within the system or 
in the way it interacts with its environment. However, vibration isn't always an issue 
that can be resolved. Certain equipment, such as conveyor belts or vibrating tables, 
are designed to vibrate as part of their operation. We may modify the system to 
perform better under various loads or jobs by seeing how these vibrations behave.
Now, accelerometer sensors are the most used method of measuring vibrations. 
These are often affixed straight to the machine and can be either piezoelectric or 
Micro-Electro-Mechanical Systems varieties. At the location where the sensor is 
installed, they gauge how much the machine is speeding up or slowing down. Other 
techniques, such as sensors that use magnetic fields (eddy current), lasers that 
measure distance, or devices that use the Doppler effect to determine speed, can be 
used if we need to take measurements without encountering the machine. The data 
we obtain from these sensors can be utilized independently or transformed into 
various practical formats, such as changes in speed, location, or shape. We now have 
versatile methods to comprehend and characterize vibrations in considerably greater 
depth thanks to contemporary hardware and software.
Traditional approaches do have a drawback, though, in that they only provide data 
from spots. This implies that humans may overlook important information, 
particularly in complicated constructions or machines with numerous moving parts 
or complex stress patterns. Adding extra sensors is one approach to address this, but 
doing so complicates and increases the cost of the system. Using computer models 
based on our understanding of the structure, we occasionally attempt to fill in the 
blanks by estimating how the entire system will react based on a single measurement 
or two. However, these assumptions may not be entirely correct. People frequently 
simply follow typical testing methods without thinking of quicker or more efficient 
ways to complete them. For example, picking the right location for a sensor or 
modifying its settings may call for additional effort or perhaps several tests, which 
slows down the process overall.
Using conventional sensors has additional drawbacks. Certain conditions, such as 
extremely hot, damp, or unclean surroundings, can harm the sensors or prevent them 



23

from functioning correctly. Even connecting a sensor to the machine can be 
challenging in certain situations. Additionally, adding the sensor can occasionally 
alter the machine's normal operation, particularly if the sensor weighs more than the 
element it is measuring. To explain these kinds of problems, a table (Table 1) 
contrasts conventional accelerometers with camera-based measurement devices. 
There are new ways to observe how objects vibrate thanks to computer vision 
techniques that use cameras and intelligent software. One example is measuring a 
structure's movement or deformation under both stationary and moving conditions 
by employing triangulation and tracking points.

Table 1: Comparison of base constrains of accelerometer and visual motion sensor.

Accelerometer Video Camera
Contact Simultaneous multi point location (quasi 

continuous)
Close neighborhood impact in assembly 

point (sensitivity to temperature, 
chemical, etc.)

Line of sight disturbance sensitivity
(sensitivity to lighting, fog, smoke, etc.)

Measurement of absolute values Measurement of relative values (relative 
to camera base)

Direct acquisition In plane 3d to 2d projection (in case of 
single camera)

Motion magnification is a particularly helpful category of visual aids. Without 
encountering the item, these techniques can track several points simultaneously and 
determine their locations, accelerations, and speeds. For example, they have shown 
great utility in verifying the motions of robotic arms and contrasting the outcomes 
with those obtained from conventional sensors. 
When measuring vibrations, we typically don't really see them; instead, we receive 
data from the sensors, process them, and display the results as numbers, graphs, or 
charts. These devices enable us to see things that are ordinarily invisible to the naked 
eye, such as minute motions. This is altered by motion magnification, which allows 
us to directly perceive these tiny motions by making them visible. It is important to 
realize that when we use the term small in this context, we are referring to motions 
that are not typically visible to the human eye, not because they are not significant 
or meaningful. The outcomes of these methods are typically displayed in easily 
interpreted visual representations, such as waveforms, graphs, or animated plots.
However, even watching a video of a machine in action can also be beneficial but 
only if the movements are visible. Making a graph out of raw measurement data is 
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frequently insufficient to identify the problem. Making decisions quickly can 
sometimes be greatly aided by experiencing the movement immediately, even if only 
visually. Sailors judging the wind based on the appearance of the sea is a basic 
example. They simply observe the waves without the usage of sensors.
Instead of going through hard measurement methods, users can make better and 
faster decisions for many devices when they can see clearly how something is 
vibrating. Advances in camera technology and computational power have made it 
feasible to record and analyze machine video to identify vibrations. This implies that 
by employing cameras as a sort of eye between the machine and the observer, we 
might investigate novel approaches to vibration observation. Over time, the camera 
takes a few pictures. Each image depicts the object's 3D shape as seen from a single 
viewpoint at that precise instant.
These techniques magnify the slight variations between video frames until they are 
large enough for us to see. This is referred to as motion microscopy or motion 
magnification. It functions by adding motion to the video, which makes it simpler 
for the human eye to pick up on minute movements.[9]

2. Motion Magnification Methods
Applications for motion magnification are quite diverse and span a wide range of 
domains, such as medical diagnostics (mostly because they are non-invasive) and 
the observation of different technological items. 
When information about motion in an image is recorded as optical flow, we can 
intentionally distort it to highlight displacements that allow us to draw conclusions 
about processes at the objects that are not visible to the unaided eye when watching 
the video recording directly.

i.Lagrangian Motion Magnification Method:
Lagrangian motion analysis, a method from fluid dynamics, was the first known way 
to amplify motion in videos. This strategy needs monitoring the motion of individual 
particles over time, frequently with the aid of techniques such as optical flow. 
Defined motion perception as the outcome of variations in patterns of brightness 
brought about by the relative movement of the visual sensor (such as the CMOS 
sensor in a camera or the retina in human eyes) and the scene being examined. By 
estimating motion as vector fields, optical flow techniques measure these changes, 
frequently with a very fine (even sub-pixel) level of detail. The assumptions that 
support these estimations, such as object structural consistency and movement 
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smoothness, are mathematically expressed in what are referred to as the optical flow 
constraint equations (OFCE).  ÿā�(þ, ā) + ÿþ�(þ, ā)Ă = 0                                                                           (1)
Where I(x,t) is the brightness intensity at 1-D spatial location x, temporal index t, 
and u is a spatial displacement assuming that temporal displacement is 1. The 
equations basically mean finding vector fields in the local area with respect to 
minimal variation of total brightness. Assumed the hard constraint zero change in 
image brightness between local patch patches of two different timepoints choose a 
soft constraint a minimize of constraint violation:

                                                (2)              

Where N is the considered local area, u is an optical flow field, and ¼ is the 
regularization parameter for smoothness of optical flow. Suitable assumptions and 
implementations are made for specific types of tracked motions.
To preserve object structure over time, they track periodic feature points as they 
travel through video frames and then cluster these motion courses according to 
comparable movement patterns. Since it is assumed that only global affine motion 
affects these stable sites, it is possible to reconstruct their locations from predicted 
flow vectors with an acceptable degree of inaccuracy.
Changes in perspective, such as the camera's movement or adjustments to the 
position or shape of objects, frequently cause the perception of motion in videos. To 
analyze and comprehend physical entities, the latter object-related motion is the 
main emphasis of this study. Several techniques that reduce the impact of 
unimportant motion sources have been put forth to isolate significant motion. A 
popular method involves using feature points to register successive frames, then 
calculating warp matrices to align frames depending on shifts that are identified. 
After then, motion magnification is used while maintaining the video sequence's 
texture and object shape consistency.
The motion trajectories of feature points are tracked across frames and their motion 
trajectories are clustered based on correlation, so that each group corresponds to a 
common motion source. For example, objects traveling along the same path, like 
those carried by a current, may have different speeds, but are still grouped based on 
their directional similarity. Since multiple motion patterns may overlap in the same 
spatial area, additional visual cues, such as texture, are used to assign pixels to the 
most likely motion layer (the background usually forms the largest cluster, which is 
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characterized by minimal movement, while smaller clusters represent regions with 
more significant motion).
This method is not regarded as biologically plausible, even if it successfully 
stabilizes and segments motion layers using conventional video processing 
techniques. Instead of using global operations like full-scene segmentation or 
clustering to analyze the entire visual field, human visual processing depends on 
selective attention and concentrates on regions of interest.
This has led to the development of a motion magnification technique that is more 
biologically inspired. It makes use of principal component analysis for unsupervised 
motion layer separation and sophisticated motion estimates based on a multi-channel 
Gaussian model. This method is inspired by research in visual neuroscience that 
indicates the brain recognizes complicated motion patterns using higher-order 
directional cells. To create meaningful motion clusters that correlate to moving 
objects, these neural properties are combined over time and location.
This approach utilizes a combination of first and second order filters over many 
spatial temporal dimensions rather than depending just on fundamental horizontal 
and vertical derivatives. This improves motion estimation in difficult areas like sharp 
corners or even surfaces. Projecting motion data into orthogonal subspaces, each of 
which represents an uncorrelated motion pattern allows for the separation of various 
motions. These subspaces can be independently amplified and are found without 
supervision. This approach removes the requirement for direct feature point tracking 
and creates denser, smoother motion fields, although requiring more computing 
power.
Another method uses a parametric scaling function to define a scale space for motion 
magnification, which is a heuristic approach. The highest expected motion 
magnitude and the desired magnification factor are used to model this function 
exponentially. Each target frame is aligned to a reference frame and then to the last 
frame in the sequence using a two-step registration procedure. This approach 
emphasizes acceleration more precisely, the change in motion magnitude between 
successive frames rather than velocity amplification. Forward warping is then 
applied to the motion field to produce magnified frames. This method highlights the 
benefits of using Lagrangian-based techniques to capture subtle yet important 
motions that are otherwise included into large-scale motion patterns.[10]

ii.Eulerian Motion Magnification Method
A standard video input is first broken down into spatial components, followed by the 
application of temporal filtering. Then, using a selected magnification factor, this 
filtered signal is increased to help reveal minute or subtle motions that are often 
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invisible to the naked eye. This method is based on the Eulerian methodology, which 
was first applied to the study of fluid dynamics and involves tracking changes in 
parameters such as velocity and pressure over time at fixed points in space.
When applied to videos, the Eulerian approach accentuates oscillate within a certain 
frequency range of interest by analyzing how pixel values vary over time at each 
point. Temporal filtering, for instance, can be used to identify low-frequency signals 
like a baby's breathing or a person's heartbeat. Even if these weak signals are 
otherwise obscured by digital noise, they can be made visible by boosting them.
This technique can highlight slight color shifts in addition to revealing small 
motions. It works effectively for minor displacements and motions with little spatial 
information because the same temporal filter is applied uniformly across all spatial 
levels and pixels. Other techniques stress higher-frequency filtering to highlight 
significant movements or provide exaggerated, unrealistic visual effects, but this 
method is most effective for subtle, low-frequency changes.
The Eulerian method increases motion by improving temporal changes at specified 
pixel places, in contrast to techniques that directly estimate object motion (such as 
the Lagrangian approach). It is based on the same mathematical ideas as optical flow 
approaches, which use variations in pixel intensity over time to infer motion. 
In the past, temporal filtering has also been employed for a variety of reasons, 
including highlighting otherwise undetectable information or smoothing out motion.
Measuring a person's pulse from a basic facial video captured with a normal webcam 
in natural illumination is one useful application of this technique. Other studies have 
demonstrated that ordinary digital cameras may be used to extract cardiovascular 
signals, demonstrating that minute variations in skin tone brought on by blood flow 
can be identified for medical purposes such as remote health monitoring, fitness 
tracking, or skin condition examination.
By converting high frame-rate videos into regular playback speeds and using filters 
to lessen problems like motion artifacts or temporal aliasing, some systems also 
provide real-time processing capabilities. These filters can be tailored to do a variety 
of functions, such minimizing blur, smoothing motion, or creatively altering the way 
motion appears in the video. To further manage how motion is emphasized or muted, 
data in the frequency domain are also analyzed using certain filter sets.
Overall, Eulerian video magnification is an effective method for identifying and 
amplifying increase changes in video, particularly those that are not visible to the 
human eye. Newer techniques have enhanced the original method, which relied on 
linear approximations, by providing more sophisticated image processing tools and 
more effective methods for handling phase-based motion magnification. To further 
improve the output and lessen visual artifacts, post-processing procedures have also 
been suggested.[11]
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a) Linear Approximation Method
The Eulerian based linear approximation method combines spatial and temporal 
processing to explore the imperceptible motion, temporal variations in video. This 
process is illustrated in figure 2.

Figure 2: Video magnification framework

1. The input is a regular video sequence. To find the necessary frequency 
band, it is then divided into several bands using a three to four level Gaussian 
pyramid. To create a Laplacian pyramid, each video frame is down-sampled 
after being filtered using a low-pass filter (LPF). Different frequency bands 
may be amplified to differing degrees because their signal to noise ratios vary.

Band-pass filtering is used to isolate the frequency range of interest by 
applying temporal filtering to each spatial frequency band. To do this, the time 
series data for every spatial pixel in the selected frequency range must be 
examined. For example, increasing a baby's pulse rate can be achieved by 
applying a narrow band filter around a frequency range of 0.4–4 Hz, or 24–240 
beats per minute
3. An amplification factor (³) is used to increase the signals. The 
following is the definition of the acceptable range for ³: (1 + �)�(ā) < � 8⁄                                                                                     (3)

Where: 

• �(t) = spatial displacement function
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• Spatial wavelength (») = 2ÿ�
• ω = spatial frequency

The motion magnification in temporals relies on the first order-Taylor series 
expansions.

4. By collapsing the spatial pyramid and integrating the amplified signal 
with the original signal, the final output video is recreated.

The frequency of color changes in the extracted band-pass signal can be used to 
estimate heart rate. A bandpass filter is constructed using two first order lowpass 
filters with cutoff frequencies ωl and ωh. For example, a temporal window size of 
10 to 15 frames is typically used for videos recorded at 30 frames per second. The 
choice of temporal filter depends on the application, for instance, a narrow bandpass 
filter is preferred for color amplification to minimize noise, but a broader bandpass 
filter is better suited for motion magnification.[11]

b) Phase-Based Video Processing Using Complex Steerable Pyramid
Another solution inside the Eulerian framework that overcomes the drawbacks of 
linear approaches is phase-based video motion processing. This method concentrates 
on the phase information in the video signal, as opposed to linear alternatives, which 
assume motion changes in a straight-line fashion. Because of this, it can manage 
greater motion amplification across all spatial frequencies, which means it performs 
well at various image detail levels. In comparison to linear approaches, it also tends 
to generate less visual noise because it just processes the phase component.
The foundation of this method is complex-valued steerable pyramids, which are 
modeled after phase-based optical flow, a methodology for motion estimation in 
video. In this case, phase shifts indicate slight movements within several picture 
regions, or sub-bands. Reducing noise in these phase signals and amplifying tiny 
motions are the primary objectives. To do this, the image is divided into several 
layers according to position, orientation, and spatial scale the size of the features.

The technique extends the sophisticated steerable pyramids to include sub-octave 
bandwidth filters to enhance motion detection and amplification even more. These 
more precisely adjusted filters provide superior spatial coverage and aid in precisely 
identifying and enhancing minute movements. Even the smallest motions in a movie 
can be made more noticeable while maintaining low noise levels because of this 
method is layered breakdown and filtering procedure.
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Figure 3: Process for Phased-Based Video Motion Magnification

Where:

a) Decomposition of video and separation of amplitude from phase.
b) Temporal filtering at each location, orientation and scale.
c) Phase denoising to increase phase SNR (Signal-to-Noise Ratio).
d) Amplify or attenuate temporally band pass phase.
e) Reconstruction of video.

This method uses a steerable pyramid to calculate the local phase of the video over 
time at each level of detail (spatial scale) and direction (orientation). These phase 
values are then subjected to temporal bandpass filters. Only particular motion 
frequency ranges are permitted to flow through these filters, which eliminate any 
constant motion (DC component). The filtered phases are amplified by an 
amplification factor ³, to increase the visibility of the motion since they describe real 
motion in the film. A magnified motion effect is then produced by adjusting each 
video frame using these amplified phase alterations.[11]

The limits of ³ for octave-bandwidth (for 4 orientation) steerable pyramid is:
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��(ā) < �4                                                                                                       (4) 

•�(t) = spatial displacement function
•Spatial wavelength (») = 2ÿ�
•ω = spatial frequency

The limits of ³ for half octave (for 8 orientation) steerable pyramids are:��(ā) < �2                                                                                                      (5)
• �(t) = spatial displacement function
• Spatial wavelength (») = 2ÿ�
• ω = spatial frequency

c) Fast Phase-Based Video Processing Using Riesz Pyramid

Using the Riesz transform, the technique applies phase analysis to the input image 
at all scales. An effective, self-invertible image pyramid (like the Laplacian pyramid) 
is used to first divide the image into non-oriented sub-bands before constructing the 
Riesz pyramid. Each of these sub-bands is then subjected to the Riesz transform.

A two-dimensional extension of the one-dimensional Hilbert transform is the Riesz 
transform (RT). Two basic filters called three-tap finite difference filters are used in 
its construction. Each pixel is main feature is aligned with a quadrature pair, which 
is a pair of signals that are 90 degrees out of phase, thanks to this transformation. 
The block diagram in Figure 4 illustrates how this configuration enables efficient 
motion analysis and magnification.



32

Figure 4: Stages for motion magnification using Riesz pyramid

Where:

1) Input video.
2) Decomposition using a Laplacian-like pyramid (only one level is 
shown). The Riesz transform is taken to produce the Riesz pyramid.
3) The quaternion norm is used to compute the amplitude (top row) and 
the quaternion logarithm is used to produce the quaternionic phase (bottom 
rows).
4) The quaternionic phase is spatial temporally filtered to isolate motions 
of interest and then this quantity is used to phase-shift the input Riesz pyramid 
level to produce a motion magnified sub-band
5) These sub-bands can then collapse to produce a motion magnified 
video.

The fastest phase-based method is obtained by using the Riesz pyramid in the spatial 
domain. According to the results, this approach is four to five times quicker than the 
sophisticated steerable pyramid with eight orientations. In addition, it is less costly 
to install than a sophisticated steerable pyramid
The only limitation is unlike the ideal Riesz transform, the approximate Riesz 
transform may not preserve the power of an input signal, which may result in slight 
artifacts.[11]
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d) Enhanced Eulerian Video Magnification
To enhance the conventional Eulerian Video Magnification, a new post-processing 
technique has been put forth. This method enables pixel-level motion mapping by 
first using values directly, in contrast to regular Eulerian Video Magnification. It can 
therefore withstand more motion amplification and be less impacted by noise. This 
increases its stability and efficacy, particularly when handling delicate or intricate 
motion Eulerian Video Magnification as a tool to assess motion in a video across 
time and location. The Enhanced Eulerian Video Magnification method does not, 
however, adapt the video's pixel. The block diagram in Figure 5 depicts the entire 
procedure.

Figure 5: Overview of the Enhance Eulerian Video Magnifications Framework

Pixel-level motion mapping is computed in the Enhanced Eulerian Video 
Magnification method by comparing the output of conventional Eulerian Video 
Magnification processing with the original input video. Every pixel in the video may 
be seen moving over time in this motion map. Using a technique known as picture 
warping, which involves shifting certain frame pixels in the direction suggested by 
the motion map, motion in the video is amplified. The motion map is sub-sampled 
to speed up processing, resulting in a sparse grid that requires fewer calculations.

The noise problems that are frequently present in ordinary Eulerian Video 
Magnification can be more successfully addressed using the Enhanced Eulerian 
Video Magnification approach. It doesn't considerably lengthen processing time 
because it merely employs sparse grid warping and low-resolution image disparities. 
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Regardless of this, it has important advantages including allowing for more motion 
amplification with less noise and distortions.

Furthermore, the Enhanced Eulerian Video Magnification technique can also be used 
to eliminate or reduce minor, undesired movements in films by flipping the motion 
mapping (also known as negative motion mapping). This makes it especially helpful 
for tasks like video stabilization, motion de-noising, and the removal of minor 
movements.[11]

iii.Advancements and/or Variations to the Main Motion Magnification 
Techniques

In addition to the main motion magnification technique proposed above, there has 
been subsequent work recently to advance and/or vary these fundamental 
techniques.

a) Spatial Decomposition
This type of transformation primarily makes use of Gaussian derivatives, which are 
frequently employed in image processing due to their resemblance to the way the 
human eye perceives objects. The Riesz transforms and other comparable filters 
have unique characteristics, such as remaining constant when the image's size or 
location changes. The earliest stages of human eyesight likewise exhibit these 
characteristics. By phase, energy, and frequency at each instant, these transforms 
provide a means of characterizing pictures and 2D signals.

This allows the signal to be rebuilt with little distortion or noise while applying 
further mathematical procedures. The way the Riesz transforms the handles phase is 
one of its primary distinctions from other filters. The Riesz transform discovers the 
phase in two dimensions since it operates with one more dimension than the input 
signal, whereas normal filters only take the phase in one direction.

Additionally, this technique eliminates the necessity of precisely aligning the filter 
direction with the image feature direction, which is typically challenging. An 
intelligent and practical method for picture analysis is the Riesz transform, which is 
a sophisticated variant of the Hilbert transform for signals with multiple dimensions.



35

To speed up the procedure, it is suggested to employ the Laplacian pyramid once 
more rather than the self-inverting pyramid. This alteration would, however, result 
in a smaller impulse response, lowering the maximum motion magnification. To 
minimize grid noise around the edges of moving objects, it is also advised to apply 
a median filter after reconstructing the image from the pyramid.

Some methods use wavelet decomposition to construct the picture pyramid rather 
than Laplacian or steerable filters, as the original MIT researchers did. This approach 
provides data in both the frequency and time domains. A Chebyshev Type I band-
pass filter was employed for filtering over time.

Using filters that break down the image using the dual-tree complex wavelet 
transform (DT-CWT) is an additional choice. These filters have benefits including 
maintaining crisp edges and are easier to use than steerable pyramids. Additionally, 
DT-CWT does not require time-based filtering, hence it can be applied even in cases 
where the motion's frequency is unknown. Motion is magnified by multiplying the 
phase discrepancies between frames by a factor after the image has been 
decomposed using DT-CWT.

One method substituted a fast local Laplacian filter during the spatial breakdown 
step for the standard Laplacian filter in Eulerian motion amplification. This 
adjustment preserves the image's edges while smoothing out minor textures. Motion 
magnification can thereby highlight edges without significantly distorting other 
areas of the image.[12]

b) Extraction of the Emphasis of Motion Signals
After spatial decomposition, principal component analysis (PCA) was applied to the 
sub-bands to enhance the amplitude-based Eulerian (linear) motion magnification 
approach.
They broke down the image geographically and then concentrated on clearly 
isolating the motion-related components of the signal.

More specifically, they believed that motion was depicted in the video as minor 
adjustments to a still image. Thus, a single frame can be defined as follows:
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�ÿ(þ, ÿ, ā) = �0(þ, ÿ, ā) + �(þ, ÿ, ā) + Ā(þ, ÿ, ā)                                   (6)
Where:

• �0(þ, ÿ, ā) is represents the mean observed image intensity.
•�(þ, ÿ, ā) denotes the motion signal component.
•Ā(þ, ÿ, ā) denotes the video acquisition noise.

Subtracting the meaning gives the residual signal:�ÿ(þ, ÿ, ā) = �(þ, ÿ, ā) + Ā(þ, ÿ, ā)                                                          (7)
•�(þ, ÿ, ā) denotes the motion signal component.
•Ā(þ, ÿ, ā) denotes the video acquisition noise.

The residual frames �ÿ (x, y, t) of the movie are then subjected to Principal 
Component Analysis (PCA) to identify the primary, unrelated directions of variation. 
This aids in separating noise from motion signals. Every frame is handled as a 
distinct sample. Therefore, for numerous frames, a vector is made for each pixel 
position (x,y), and these vectors are analyzed using PCA.

Similarly, another approach used Empirical Mode Decomposition (EMD) to break 
down the data before applying motion magnification. This was done to isolate and 
eliminate background information that is deemed noisy and is not significant.

In addition to background information, repeated motions are deemed superfluous or 
extraneous when describing motion. To ensure that only the most significant motions 
are retained, a sparsity constraint was introduced into the dynamic mode 
decomposition procedure, as detailed below:�(þ, ÿ, ā) j ÿÿąÿÿĀ (�Āýÿ��)                                                                (8)

Where:

•§ and V represent spatial and temporal components of motion.
•D is their respective coefficients.

Before employing the Laplacian pyramid, an additional step was added to the phase-
based motion magnification procedure. They began by dissecting the video frame 
and extracting the motion-related phase information using a Fourier transform. A 
Butterworth low-pass filter is then utilized for temporal filtering once this phase 
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information has been transferred into the phase-based motion magnification 
procedure.[12]

c) Motion Representation
Rather than use manually designed filters to depict motion in video frames, this 
approach automatically learns the filters using deep convolutional neural networks 
(CNNs). The appropriate motion representations are produced with the use of these 
filters and subsequently enlarged.
Three neural networks are used in the process: an encoder, a manipulator, and a 
decoder. The encoder first distinguishes between shapes and textures in the video 
frames. The manipulator then gains knowledge of the non-linear changes in these 
forms between frames. The video frame is then reconstructed by the decoder using 
magnified motion, and the results are compared to the original frame (ground-truth). 
An L1 loss function that contrasts textures, forms, and brightness (intensity) is used 
to quantify the difference.

The objective is to use a complete encoder-manipulator-decoder network to learn 
and magnify subtle form changes. However, the quality of the synthetic training data 
has a significant impact on the method's performance. As a result, biases in the 
training samples may affect the encoder and decoder, even when the test results seem 
realistic.

In another section of their study, they suggested an alternative method to the standard 
Riesz transform approximation for calculating local phase, which is used to describe 
motion. Atomic functions, or mathematical functions with simple derivatives, served 
as the foundation for their approach. It is possible to estimate the Riesz transform 
and determine the local phase using these derivatives, particularly the first-order 
one.[12]

d) Small Motion Vs Large Motion
First, they examined the challenge of distinguishing between small and large 
motions. This is crucial because motion magnification functions best when the 
camera or objects remain largely still. Only the motions that are important to us 
should be magnified, not the entire scenario.
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By segregating the regions with meaningful motion from the backdrop, early 
systems attempted to address this issue. In one technique, the target area was 
manually selected by segmentation in a layer-based manner, ensuring that just that 
portion would be amplified.

Using an additional depth sensor, another approach sought to address the same issue. 
This would allow a depth-weighted bilateral filter to automatically pick out areas of 
the image that were at the same depth and magnify them as a single layer.

A third approach employed a similar concept, but it identified significant areas by 
using saliency the degree to which a portion of the image sticks out based on 
structure matrix decomposition. After that, these areas were divided for motion 
magnification.

Lastly, kernel k-means segmentation was employed in another method. To better 
distinguish the crucial region, this technique projected the first video frame into a 
higher-dimensional space. After that, it employed picture matting to give the chosen 
area more precise and organic borders. This step models the pixel intensity as a 
combination of background (B) and foreground (F) values.�(þ, ÿ) = �(þ, ÿ)ý(þ, ÿ) + (1�(þ, ÿ)þ(þ, ÿ))                                      (9)
For some foreground opacity ³(x,y). Rewriting this, we get:�(þ, ÿ) j ÿ�(þ, ÿ) + Ā, ⍱ (þ, ÿ) ɛ ý                                                    (10)
Where a= 1ý2þ , b= þþ2ý for small window w. Then a cost function J is minimized for 
parameters:

                                           

                                            (11)
They observed that while large motions, like those from camera shake or facial 
movements, tend to be linear, little motions are typically non-linear. To make minor, 
non-linear motions easier to notice, they presented a novel idea: rather than 
amplifying all motion equally throughout time, they advised increasing the changes 
in motion (called acceleration). 
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The second derivative of a signal � (x, t) over time is its acceleration. They employed 
a temporal acceleration filter, which adds a second-order derivative to �(þ,ā), to 
obtain this acceleration. A Laplacian filter, the second derivative of a Gaussian 
smoothing filter, was used for this.

The following formula explains the relationship between the Laplacian filter and the 
second derivative due to the mathematical principles of linearity:

                                                                                                                                                                                      (12)
Where:

•þ�(t) is a Gaussian filter.
•σ its variance.

•�2þ�(ā)�ā2       is the Laplacian 

This acceleration is amplified by a factor ³ reincorporated in the signal I(x,t) 
resulting in the acceleration magnified signal. For instance, for the amplitude based 
Eulearian motion magnification technique of reference.�̂(þ, ā) = �(þ, ā) + �ÿ(þ, ā)                                                                     (13)
For the case of phase based Eulerian motion magnification, the temporal filtering is 
applied to the phase ϕ instead, by convolving with a Laplacian:ÿ(þ, ÿ, ā) = �(þ, ÿ, ā) × �2þ�(þ,ÿ,ā)�ā2  = �2�(þ,ÿ,ā)�ā2 × þ�(þ, ÿ, ā)           (14)
And this is then amplified with ³ and added to the phase:�̂(þ, ÿ, ā) = �(þ, ÿ, ā) + �ÿ(þ, ÿ, ā)                                                     (15)
There are certain drawbacks to this approach, particularly when big motions change 
rapidly. In those situations, even though they are not the intended little motions, these 
rapidly changing huge motions are also captured by the second-order derivative filter 
and ultimately magnified.
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They proposed using a smoothness filter based on jerk the third derivative of motion 
over time to address this. Jerk helps to lessen the impact of sudden, undesired big 
motions by measuring the rate at which acceleration changes.

More specifically, they applied a third-order derivative to the phase signal �(þ,ÿ,ā) 
to obtain the jerk-filtered signal for phase based Eulerian motion magnification. 
They then used convolution to smooth it using a Gaussian filter:Ā(þ, ÿ, ā) = �3�(þ,ÿ,ā)�ā3 × þ�(þ, ÿ, ā) = �(þ, ÿ, ā) × �3þ�(þ,ÿ,ā)�ā3              (16)

A jerk based smoothness function f(⋅), is then constructed using this result. It 
provides a value near 0 for abrupt or irregular motion and near 1 for smooth motion. 
Before the acceleration signal is magnified by a factor �, it is smoothed out using 
this function. The result is then obtained by adding the smoothed and amplified 
signal to the original signal's phase:�̂(þ, ÿ, ā) = �(þ, ÿ, ā) + �(ÿ(þ, ÿ, ā) × Ą(Ā(þ, ÿ, ā))                      (17)
Crucially, a third-order Gaussian filter was used to compute the third-order term Ā(þ,ÿ,ā), which denotes jerk. The ultimate outcome was obtained by magnifying this 
value and then adding it back to the image's local phase:�̂(þ, ÿ, ā) = �(þ, ÿ, ā) + �Ā(þ, ÿ, ā)                                                     (18)
The premise behind the video acceleration magnification technique is that little 
changes are non-linear, but large motions are linear. This assumption, however, fails 
to consider the possibility that some huge motions may potentially be non-linear.

To make this better, the approach uses the input motion signal �(þ,ā) as a composite 
displacement function. This means that the movement is derived from a combination 
function �(ā), which shows how the displacement varies over time:�(þ, ā) = Ą(þ + �(ā))                                                                               (19)
Where the composite function:�(ā) = �(ā) + �(ā)                                                                                   (20)
Composes the translation motion (small change) �(t) and �(t) denotes the large 
motion. The aim is then to obtain the amplified signal:
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�̂(þ, ÿ, ā) = Ą(þ + (1 + �)�(ā) + �(ā)                                                 (21)
They estimate the equation as follows in the case of amplitude based Eulerian motion 
magnification using the first-order Taylor series expansion around point x:�(þ, ā) = Ą(þ + �(ā)) j Ą(þ) + ĂĄ(þ)Ăþ �(ā)= Ą(þ) + ĂĄ(þ)Ăþ (�(ā) + �(ā))                                       (22)
Let B(x,t) denote the deviation between the signal I(x,t) at time t, and the initial 
signal I(x,0) =f(x), then:þ(þ, ā) = ĂĄ(þ)Ăþ (�(ā) + �(ā))                                                               (23)
After that, frequency domain filters are applied to þ (þ, ā) to extract only the portion 
pertaining to ��(þ)�þ �(ā) The basic idea is to apply a Fourier transform to translate þ(þ,ā) into the frequency domain. Then, spectral amplitude thresholding is used to 
exclude the large motions, leaving only the small, significant ones.

Then ��(þ)�þ �(ā) is amplified by ³ and reincorporated into the signal I(x,t), obtaining:

�̂(þ, ā) = �(þ, ā) + � ĂĄ(þ)Ăþ �(ā)= Ą(þ) + (1 + �)�(ā) ĂĄ(þ)Ăþ + �(ā) ĂĄ(þ)Ăþ
j Ą(þ + (1 + �)�(ā) + �(ā))                                                                (24)

Where the last line is due to approximation by the first order Taylor series, indicating 
that only the small motion, spatial displacement �(t), has been magnified by the amount (1+α).[12]
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e) Distinguishing or Manipulating the Target Motion
The difficulty lies not only in distinguishing between small and large motions, but 
also in identifying the target's particular movement amid numerous irrelevant ones. 
Even in the presence of additional distracting motions, resolving this would assist in 
concentration on and improve only the crucial movement.
More specifically, this technique can be applied to any type of motion data, including 
frame difference and optical flow. The main concept is that the motion data comes 
from a variety of sources. Previous approaches attempt to distinguish between 
different motions in the frequency domain by utilizing their existing knowledge of 
the target motion's frequency, or how frequently it occurs.

Researchers discovered a limit on the amount of phase change in a different field of 
study known as phase-based frame interpolation. When attempting to comprehend 
motion, this limit helps prevent confusion, but if it is exceeded, the new frames may 
appear incorrect.

One issue with the frequency-based method is that it cannot separate the target 
motion from other movements that occur at the same or similar frequency.

To comprehend the relationship between the motion data and the desired motion, the 
primary technique is to employ a deep convolutional neural network (CNN). In 
particular, the CNN receives the motion data as input and outputs the target motion 
signal's first-order derivative. At time t, an image I (x, t) is composed of many 
frequencies sub-bands, each of which takes the following form:ý(Ā, �, ā)ă��(Ā,�,ā)                                                                                       (25)
For specific scale s and orientation θ.

Taking the first order temporal derivative of the local phase ϕ(s,θ,t):ÿ1(Ā, �, ā) = �(Ā, �, ā + 1) 2 �(Ā, �, ā)                                               (26)
Motion at scales and orientations can be inferred from the phase fluctuation over 
time (between successive image frames). The CNN model, Deep Mag, learns the 
first-order time derivative from existing datasets of paired films and real motion 
signals rather than directly computing the target motion X1. The target motion is 
magnified or approximated with a factor γ after the estimated gradients are 
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normalized using the L1-norm across a few time steps (N). In this machine learning 
technique, N and γ are both programmable settings (hyper-parameters).

Conventional motion removal techniques operate globally, processing the full video 
frame and are typically employed for video noise reduction. Some techniques, on 
the other hand, concentrate on eliminating motion at the level of specific objects 
within any frame. For instance, video de-animation preserves only small, intricate 
motions while separating and eliminating massive movements in user-selected 
places.

One prevalent belief is that high-frequency variations are seen as noise, while the 
intended motion signals occur at low frequencies. In time-lapse videos, this concept 
is utilized to eliminate tiny, fast motion hiccups.

In addition to increasing motion visibility, motion attenuation is the opposing 
technique. This is accomplished by setting the magnification factor ³ to -1, which 
eliminates motion in a specific frequency band and cancels out phase shifts over 
time. Motion attenuation has been used to minimize minor facial movements so that 
color-based motion magnification does not also magnify them, as well as to 
eliminate atmospheric turbulence, which creates low-to-mid frequency jitters in 
videos.

Motion component magnification was presented as a solution to the problem of 
selectively eliminating motion. Principal component analysis (PCA) is used in place 
of the conventional linear temporal filtering in motion magnification. The output 
images are separated into 8x8 pieces after the image has been spatially broken down. 
PCA is applied to the aggregated data of all 64 series, with each pixel in a block 
being regarded as a time series channel. Using power spectral density, the top four 
primary components are selected and examined. The power in a certain frequency 
band divided by the overall power is known as the normalized band power. The 
motion of interest can be eliminated by multiplying the component with the highest 
value (Q) by zero.[12]
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iv.Amplitude-Based Filtering for Video Magnification in Presence of Large 
Motion

Techniques for video magnification assist in displaying minute changes in videos 
that are difficult for the human eye to detect. These consist of motions such as 
breathing, heartbeat, or item vibrations. But when there is a lot of motion in the 
video, conventional techniques frequently falter, leading to noise and blurring.
Older techniques, such as Eulerian video magnification, work well for little 
movements but poorly for large ones. To address this problem, more recent methods 
have been developed. Some use special depth cameras or need human selection of 
specific video segments, however they might be slow, imprecise, or condition 
specific.

A new amplitude filtering technique that performs better in huge motion. It can 
vividly display even the smallest changes without the need for additional data or 
human input. It demonstrates that their approach improves outcomes and lessens 
blurring by testing it on both genuine and false videos. They also go over its 
limitations and how it operates.[13]

a) Amplitude Based Filtering
It is recommended to use a pre-filter in conjunction with a conventional band-pass 
filter to concentrate on the tiny signals because the video contains big movements. 
The suggested technique lessens the impact of large motion by using amplitude-
based filtering. When there are large movements in the video, this easy method helps 
to increase the magnification. Strong motion distortions have bigger amplitudes than 
the slight changes we are looking for, which is the basis for the concept. A Fourier 
transform is used to convert the brightness variations over time into the frequency 
domain for signal analysis. To distinguish between small and big motions, the 
complex signal is divided into two components in this form.��(þ , ý) = �Āÿ(þ, ý) + �Ā(þ, ý)                                                         (27)
Where:

•�Āÿ(þ, ý) stands for the signal’s component with spectral amplitude above the 
threshold ρ.
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•��Ā(þ, ý) stand for the signal’s component with spectral amplitude below the 
threshold ρ.

Selecting the appropriate threshold for spectral amplitude control is crucial for 
eliminating significant motion from the time series. When the amplitudes of the 
major motions are greater than those of the minor changes, this works well. The 
amplitude-based filtering separates the massive movements from the little signals 
we wish to retain using a unique weighting function, much like an ideal band-pass 
filter. þý,ý = {1  ýĀ [�1, �2]0 āā/ăÿýÿĀă                                                                             (28)
Where:

• [�1, �2] denotes the amplitude range of interest.
•ρ1 is the minimum amplitude bound, which is not critical because small noise 
can be negligible after selecting the frequency band of interest.

Alternatively, we set the value to 0.0001 which is an empirical value. h is the 
maximum amplitude threshold used for removing the large motion, which can be set 
using the mean or median of amplitude. Specifically, we first compute the meaning 
and median of amplitude. Then, the smaller of them is selected as the value of h.[13]

b) Modified Phase Based Motion Magnification
When it comes to video motion magnification, the phase based Eulerian method 
outperforms the standard linear method with less noise. Amplitude-based filtering is 
used to phase changes in videos with a lot of motion to eliminate interference and 
draw attention to the minor motions. For instance, the image brightness can be 
expressed as a function of the steady motion of an item in a one-dimensional signal. 
Fourier series can then be used to evaluate and amplify the subtle variations in this 
image by breaking it down into a few wave-like components.
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�(þ, ā) = Ą(þ 2 �(ā)) = ∑ ýýă��(þ2�(ā))∞
ý=2∞     

= ∑ ýýă��þ∞
ý=2∞ ă2���(ā)                                                  (29)

The amount that an object moves over time is correlated with the global phase of a 
signal in the video. We can quantify this movement by comparing the phase at time 
with a reference frame. Small movements can be made more noticeable by 
multiplying this phase difference by a magnification factor if the motion is 
straightforward and steady. However, this straightforward approach may produce 
hazy results if there is also a lot of motion. The smaller movements are separated 
and focused on using amplitude and frequency-based filters since large motions 
typically have greater signals in the frequency domain.

Most videos have local motion rather than global motion, which means that various 
areas of the image move in different ways. The image is divided into local wave-like 
signals to address this, and local phase changes are monitored throughout time. 
Small motions are then highlighted using these local modifications. Phase 
unwrapping is a technique that fixes wrapping problems caused by phase signals 
repeating in a cycle.[13]

3. Conclusion
For mechanical systems and structures to be safe, long-lasting, and functional, 
vibrations must be studied and analyzed. Contact-based sensors, such piezoelectric 
and MEMS accelerometers, which offer precise, localized acceleration readings, 
have historically been used to do this. These gadgets work well in a variety of 
settings and provide accurate information for identifying wear, malfunction, or 
anomalies. Nevertheless, they have several drawbacks, including the need for 
physical contact, sensitivity to environmental variables like temperature, humidity, 
or contamination, and the potential for intrusive placement or disruption of the 
system dynamics. Furthermore, traditional sensor configurations usually only record 
information at locations, making it difficult to see dispersed or intricately spaced 
vibrations throughout a surface or building.
Camera-based techniques have emerged in response to the need for sophisticated, 
non-invasive, and scalable vibration measurement methods as systems become more 
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complex and reliability needs rise. High-resolution video and computational 
techniques for visual sensing create new ways for a more comprehensive and 
intuitive knowledge of mechanical action. Even accurate movements can be 
identified and examined, frequently in real time, by recording the motion of a whole 
object or structure across time and using signal processing techniques.

Motion magnification, which attempts to magnify minute vibrations in video 
recordings, so they are visible to the human eye, is one of the most potent of these 
visual approaches. This facilitates interpretation and helps close the gap between 
visual comprehension and raw numerical sensor data. There are two primary 
methodological approaches utilized in motion magnification: Eulerian and 
Lagrangian.

The Lagrangian approach tracks individual feature points over video frames and 
analyzes their motions. It is based on concepts from fluid dynamics. By clustering 
trajectories, this technique may separate distinct motion layers within a film and is 
efficient in handling complex, multi-source motions. It estimates motion with sub-
pixel accuracy using complex mathematical models such as optical flow constraint 
equations. To better differentiate overlapping motion patterns, more biologically 
inspired versions have been created that use PCA and multichannel Gaussian models 
to simulate the selective attention of the human visual system. Despite being precise 
and adaptable, Lagrangian techniques can be computationally taxing since they 
require motion layer stabilization, feature tracking, and clustering.

To infer motion, the Eulerian method uses a fixed spatial perspective and examines 
how pixel intensity values vary over time. This technique amplifies minute 
frequency variations at each pixel position by using temporal filtering. Even when 
low-amplitude, periodic actions like breathing or heartbeat are not visually 
noticeable in the original film, it is excellent at amplifying them. To increase 
stability, lower noise, and enable higher amplification without appreciable distortion, 
improved versions of this approach employ post-processing techniques such as 
pixel-level motion mapping. Accuracy and speed have been further enhanced by 
innovations like phase-based video magnification employing intricate steerable or 
Riesz pyramids. By using phase changes in sub bands of image data to analyze 
motion, these methods minimize visual artifacts and enable high-fidelity 
magnification across a variety of spatial scales and orientations.
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High sensitivity and spatial detail are provided by phase-based techniques, 
especially those that employ steerable pyramids, which makes them appropriate for 
examining intricate motions in biological tissues or mechanical components. With a 
notable speedup and smaller memory footprint, the more modern Riesz pyramid 
offers comparable visual quality while increasing computational efficiency. For real-
time or near-real-time applications in robotics, medical diagnostics, industrial 
monitoring, and infrastructure evaluation, phase-based magnification is therefore 
feasible.

Camera-based systems provide non-contact, high-resolution, and spatially 
continuous measurements, but accelerometers record absolute values and function 
well in harsh environments. Despite their sensitivity to visual disturbances like 
sunlight, fog, or occlusion, cameras offer a great deal of versatility in settings where 
traditional sensors are unfeasible or physical access is limited.

The transition from physical to visual sensors is indicative of a larger change in 
engineering diagnostics, moving away from hardware-centric, localized solutions 
and toward software-augmented, comprehensive systems that make use of computer 
vision and machine learning. These techniques should become more precise, widely 
available, and be integrated into standard monitoring systems as cameras and 
processing units become more sensitive and powerful. In addition to research and 
diagnosis, the ability to visually and intuitively watch, measure, and even interact 
with vibrational behaviors holds great promise for quality assurance, preventive 
maintenance, and even real-time system control.

Motion magnification methods, whether Eulerian or Lagrangian, linear or phase-
based, constitute a revolutionary advancement in vibration analysis. They make it 
possible for a new paradigm of high-resolution, non-invasive motion recording by 
getting around the environmental and spatial constraints of conventional sensors. By 
bridging the gap between measurement and observation, these techniques enable 
quicker, better-informed decision-making in a wide range of applications and bring 
invisible phenomena into the visible realm. Further development of these methods 
will solidify their position as vital resources in contemporary engineering, medicine, 
and other fields, particularly regarding computing speed, noise resilience, and 
conditional flexibility.
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V. Lab Experiment
1. Introduction

Several monitored laboratory tests are carried out in this chapter to assess the motion 
magnification technique's viability and accuracy. In particular, the study uses phase-
based RDI software to magnify small movements to verify its accuracy by 
comparing its results with measurements from a high-precision laser sensor. 
Two important research questions are intended to be addressed by the study:

1. How reliable are the results generated by the RDI software? 
2. How does the camera's working distance from the target affect the noise 
floor?

These initial assessments are necessary to guarantee a thorough comprehension of 
the system's strengths and weaknesses before it is implemented in actual field 
settings, where operational and environmental factors may be erratic or 
uncontrollable.

2. RDI Software
Machines are meant to move, excessive motion and unplanned vibrations can cause 
structural damage, equipment wear, and unanticipated breakdowns. These problems 
lead to expensive downtime and higher maintenance requirements in addition to 
reducing the lifespan of vital assets. Vibration is a common early sign of mechanical 
issues in industrial environments. Oscillations from motors, pumps, bearings, shafts, 
gears, and other parts can deteriorate performance and jeopardize safety over time.
Although some vibration is inevitable when a machine is operating, excessive or 
erratic movement may indicate more serious mechanical problems such imbalance, 
misalignment, looseness, or structural instability. Reliability and operating 
efficiency of the equipment depend on determining the underlying cause of these 
issues early on. However, when working with complicated systems or low-frequency 
movements, traditional vibration monitoring techniques may not be able to give a 
complete picture.

Motion Amplification from RDI Technologies provides a revolutionary answer to 
these problems. This method turns the entire field of view into a vast array of non-
contact vibration sensors by converting each pixel into a data point using a high-
speed camera and sophisticated video processing algorithms. This makes it possible 
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to see motion that would otherwise be imperceptible to the human eye, giving 
engineers and maintenance specialists the ability to precisely detect, measure, and 
diagnose movement and vibration.

Motion Amplification has been demonstrated in real-world applications to enhance 
worker safety, lower maintenance costs, and avoid unscheduled downtime. The 
method improved component life in a power plant by detecting excessive movement 
in a turbine coupling that was missed by conventional sensors. It discovered that 
rolling equipment alignment problems were being caused by flexing in structural 
supports at a steel factory. The system's visualization of resonance in overhead crane 
supports at a manufacturing facility resulted in targeted upgrades that improved 
dependability and safety.

Motion Amplification facilitates quicker diagnosis, more efficient maintenance 
plans, and long-term performance enhancements in a variety of sectors by offering 
concise, actionable insights regarding machine behavior.

Modal Amplified offers a quick, camera-based solution that replaces time-
consuming, conventional procedures, introducing a revolutionary way to modal 
testing and analysis. To evaluate structural dynamics, conventional modal testing 
usually entails thorough sensor mapping, accurate physical sensor placement and 
fixation, and sophisticated animation modeling. Much of this setup is removed by 
Modal Amplified, allowing for immediate data collection, real-time visualization, 
and in-depth study of actual structures.

With the use of high-speed video, this method synchronizes the measurement of 
input forces with the structural response. By converting every camera frame into a 
dense grid of virtual sensors, users can create an infinite number of zones of interest 
within a structure. This eliminates the need for time-consuming physical 
instrumentation and allows for the instant visualization of mode shapes and modal 
outcomes within minutes of data capture.

Modal Amplified produces actionable data more quickly and clearly by streamlining 
the procedure and boosting measurement density. Previously time-consuming test 
setups that took hours or even days to complete can now be finished in a fraction of 
the time. Because of its portability, the device may be easily repositioned to capture 
numerous viewpoints, guaranteeing a more thorough comprehension of the 



51

structural behavior seen in real life. This lowers the total cost and complexity of 
modal analysis in addition to streamlining procedures.

Building on the revolutionary capabilities of the original Iris M, RDI Technologies' 
all-new Iris MX extends Motion Amplification's power to high-speed applications. 
The Iris MX enables users to see and measure motion over a wide frequency range, 
including motions well above 5,000 Hz, by capturing video at up to 1,400 frames 
per second in high definition (HD) and even surpassing 10,000 fps at lower 
resolutions. This capability level offers unmatched insight into the behavior of 
equipment, structures, and supporting environments by enabling the detection and 
analysis of almost every displacement within a scene.

Figure 6: Iris MX High Resolution Camera

The Iris MX was created with portability in mind, allowing for quicker and more 
adaptable field data collecting. By capturing the complete system in motion rather 
than simply individual parts, it gives users a comprehensive view and facilitates the 
identification of the underlying causes of mechanical problems. Technology 
facilitates communication between technical and non-technical staff by producing 
clear and understandable visual outputs, which speeds up and improves decision-
making. An important development in motion diagnostics and structural health 
monitoring is the Iris MX, which combines high-level analysis with an easy-to-use 
interface.
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3. Laser Displacement Sensor

Non-contact measurement capabilities, the best option will rely on the particulars of 
the target material and application environment. Keyence's 1D laser displacement 
sensors offer a highly accurate, non-contact solution for measuring the height, 
position, or distance of a target, when multiple sensors are combined, additional 
measurements such as thickness and width can also be performed.
Light is sent and received along the same axis in confocal displacement sensors. This 
idea is strengthened by multi-color confocal sensors, which project several 
wavelengths with distinct focal points. The color that is clearly concentrated on the 
target is used by the sensor to calculate distance. Regardless of surface reflectance, 
stable measurement is possible with this technique. With the help of a high-intensity 
light source and small, light sensor heads that are simple to mount on machinery, 
Keyence's CL-3000 Series ensures precise distance measuring even in difficult or 
constrained configurations. This series is perfect for high-precision positioning in 
automated industrial settings because it reduces measurement mistakes brought on 
by heat or electrical noise.

Laser triangulation sensors use the angle of reflected laser light to determine 
displacement. The sensor determines displacement by sensing the shift in the angle 
of reflection caused by changes in the distance to the object. High-resolution sensors 
are used in the LK-G5000 Series to provide consistent readings of even the smallest 
displacements, especially in dynamic or fast-moving applications. Laser 
triangulation sensors are often speedier, which makes them ideal for high-speed 
production lines. However, their sensitivity to surface properties like gloss or 
transparency can limit performance.



53

Figure 7:Keyence LK-G5000

For more complex applications, surface scanning confocal sensors, like those in the 
Keyence LT-9000 Series, quickly sweep across the measurement range using a dual-
axis scanning mechanism and a vibrating objective lens. This makes it possible to 
employ a focused laser beam as narrow as 2 µm in diameter to make extremely 
accurate and steady observations. This technique is very effective on a range of 
surface types, including clear, glossy, or uneven surfaces, because it depends on 
detecting when light is strongly concentrated through a pinhole and is not impacted 
by changes in light intensity.

Figure 8:Keyence LT-9000
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These sensors are used in a variety of materials and applications. Conventional 
contact-based techniques like calipers or Linear Variable Differential Transformers 
can harm or introduce measurement inaccuracies for fragile surfaces like silicon 
wafers, thin films, or polished metals. Non-contact laser displacement sensors, on 
the other hand, provide precise, repeatable findings without influencing the target. 
These sensors guarantee accuracy and dependability whether they are utilized for 
position control in robotic applications, real-time feedback in coating or welding 
procedures, or quality inspection.

Confocal sensors can perform better than conventional laser displacement systems 
in specific situations, such as measuring the thickness of glass, particularly when 
surfaces have distinct reflectance characteristics because of coatings or patterns. For 
instance, by identifying the exact focus point of the reflected wavelength, the CL-
3000 Series removes tracking mistakes brought on by fluctuating reflectivity. This 
increases the speed and uniformity of inspections by guaranteeing extremely precise 
and reproducible measures.

Figure 9:Keyence CL-3000

Confocal sensors can be installed next to the nozzle in automatic dispensing systems 
to measure and regulate height in real time. This configuration reduces errors 
brought on by vibrations or residual movement and guarantees precise coating, even 
on translucent or uneven surfaces. A greater range of materials and surface 
geometries can be measured using the confocal method's coaxial nature without 
sacrificing accuracy.
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The capacity of this technology to precisely measure challenging objects, including 
semi-transparent solder masks on Printed Circuit Boards or even delicate surfaces, 
like soap bubbles, is among its most remarkable features. The instability typical of 
measurements affected by diffuse reflections is avoided by Keyence's confocal 
sensors, which analyze only the targeted wavelength band. Even for intricate or 
light-sensitive materials like silicon wafers, glass, or micro lenses, this capacity 
allows for accurate measurements.

Several crucial elements, such as measuring range, resolution, speed, and the target's 
material characteristics, influence the choice of displacement sensor. While laser 
triangulation sensors offer faster measurements and are therefore well-suited for 
high-speed industrial operations, confocal sensors often offer superior stability and 
are best suited for surfaces with variable reflectance. Comprehending these 
principles facilitates the selection of the best sensors, allowing for more precise 
monitoring, control, and inspection in modern production settings.

4. Proximity Probe
An apparatus that can identify the existence of an object in proximity without 
requiring physical contact is known as a proximity sensor. Numerous pieces of 
equipment and electronic systems frequently employ this kind of sensor. Its unique 
ability to perceive items by invisible signals, that is, without the sensor and the object 
it detects coming into physical contact makes it unique.
Typically, proximity sensors emit an electromagnetic field or a beam of 
electromagnetic radiation, like infrared light, to detect their surroundings. The sensor 
then keeps an eye out for any modifications to that signal or field. The sensor can 
identify the presence of something if it approaches closely enough to disrupt the field 
or reflect the light. The target of the sensor is frequently the object being detected.

Different sorts of sensors are needed for different kinds of targets. For instance, a 
photoelectric sensor or a capacitive proximity sensor may be used to identify a 
plastic object. Non-metal materials can be detected by these sensors. However, as an 
inductive proximity sensor is built especially to detect metal targets, it would be the 
ideal option if the object is made of metal. Since not all sensors are compatible with 
all materials, this is crucial.
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The long working life and high reliability of proximity sensors are two major 
benefits. This is because they don't require contact with the object they are sensing 
and don't have any moving parts. The sensor can function correctly for a long time 
without breaking or requiring much maintenance because of reduced wear and tear.

Another popular application for proximity sensors is the monitoring of machine 
vibration. Engineers must monitor the amount that the shaft a spinning component 
of the machine moves inside its support in huge machines like electric motors, 
compressors, and steam turbines. Sleeve-type bearings are frequently used in these 
devices, and it's critical to determine whether the shaft is moving excessively or 
insufficiently. The tiny variations in distance between the shaft and the bearing can 
be measured by a proximity sensor, which aids in the early detection of issues.

Proximity sensors are sometimes employed at very close ranges. They can function 
as a touch switch when positioned in this manner. This is typical of contemporary 
touch-sensitive gadgets, where a function can be activated by merely bringing your 
finger near the surface.

Figure 10: Proximity Probe
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5. Experiment 1
In this experiment, varying amounts of imbalanced mass were introduced to measure 
the vertical displacement of a rotor motor under various beginning conditions. The 
RDI software (used IRIS MX camera), which was placed at a predetermined 
working distance of 0.5 meters from the region of interest, was used to assess the 
measurement accuracy. These outcomes were contrasted with the reference standard, 
which was a laser displacement sensor (Keyence LK-G5000).
Five different initial conditions were used for the experiment: a balanced state and 
four imbalanced states produced by gradually adding 2g, 4g, 6g, and 8g of mass. To 
guarantee consistency in the data and to make statistical analysis easier, each 
condition was tested three times.

Figure 11: Experiment Setup 1

•Rotor motor is clamped to the table.
•The shaft rotation speed is 40 Hz.
•The camera frame is 1,000 frames per second.
•The laser frame is 1,000 data per second.
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Figure 12:Region of Interest for Experiment 1

a) Balanced (No mass added)

 

Figure 13: Time Domain for Sample 1 Figure 14:Frequency Domain for Sample 1

Figure 15:Time Domain for Sample 2 Figure 16: Frequency Domain for Sample 2
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Finally, we compute the mean and standard deviation for the three samples.

Figure 13: Compared Results of RMS

Figure 17: Time Domain for Sample 3 Figure 18: Frequency Domain for Sample 3
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Figure 14: Compared Results of Amplitude

b) Unbalanced (2g Added)

Figure 21: Time domain of Sample 1 Figure 22: Frequency Domain of Sample 1

Figure 23: Time Domain of Sample 2 Figure 24: Frequency Domain of Sample 2
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Finally, we compute the mean and standard deviation for the three samples.

Figure 18: Compared Results of RMS

μ

Figure 16: Time Domain of Sample 3 Figure 17: Frequency Domain sample 3
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Figure 19: Compared Results of Amplitude

c) Unbalanced (4g added)

Figure 30: Time Domain of Sample 1 Figure 31: Frequency Domain of Sampe 1

Figure 20: Time Domain of Sample 2 Figure 21: Frequency Domain of Sample 2
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Finally, we compute the mean and standard deviation for the three samples.

Figure 24: Compared Results of RMS

Figure 36: Time Domain Sample 3 Figure 37: Frequency Domain Sample 3
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Figure 25: Compared Results of Amplitude

d) Unbalanced (6g added)

Figure 40: Time Domain of Sample 1 Figure 41: Frequency Domain of Sample 1

Figure 42: Time Domain of Sample 2 Figure 43: Frequency Domain of Sample 2
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Finally, we compute the mean and standard deviation for the three samples.

Figure 26: Compared Results of RMS

Figure 44:Time Domain of Sample 3 Figure 45: Frequency Domain at Sample 3
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Figure 27: Compared Results of Amplitude

e) Unbalance (8g added)

Figure 48: Time Domain od sample 1 Figure 49: Frequency Domain of Sample 1

Figure 50: Time Domain of Sample 2 Figure 51: Frequency Domain of Sample 2



67

Finally, we compute the mean and standard deviation for the three samples.

Figure 28: Compared Results of RMS

Figure 52: Time Domain of Sample 3 Figure 53: Frequency Domain of Sample 3
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Figure 29: Compared Results of Amplitude

f) Conclusion

To evaluate measurement accuracy and consistency, the mean and standard deviation 
of the data were calculated after all experimental experiments were finished. After 
that, a comparison of the outcomes produced by the RDI software and the laser 
displacement sensor was carried out. The results show a high degree of agreement 
and validate the accuracy and dependability of the RDI software with respect to the 
reference sensor (Laser), with all data points from both measurement systems falling 
within one standard deviation from the mean.

6. Experiment 2
In this experiment, a bar was firmly attached to a table so that a regulated impact 
could be applied and the dynamic response could be recorded. Both a laser 
displacement sensor and the RDI software were used to gather data at the same time. 
Plotting of the time-domain and frequency-domain signals was then done for 
comparison. To assess the accuracy and consistency of the two approaches, the 
experiment's main goal was to align the signals from the two measuring devices and 
produce the Time Response Amplitude Curve (TRAC) and Frequency Response 
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Amplitude Curve (FRAC). The test was repeated four times to allow statistical 
measurements.

Figure 30: Experimental Setup 2

•Bar is clamped on the table.
•The camera frame is 1,000 frames per second.
•The laser frame is 1,000 data per second.

The Figure below shows my region of interest.

Figure 31: Region of Interest

This test is repeated four times to allow statistical measurements.
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a) Sample 1

Figure 32: Time Domain Sample 1

Figure 33: Time Response Amplitude Curve Sample 1
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Figure 34: Frequency Domain Sample 1

Figure 35: Frequency Response Amplitude Curve Sample 1
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b) Sample 2

Figure 36: Time Domain Sample 2

Figure 37: Time Response Amplitude Curve Sample 2
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Figure 38: Frequency Domain Sample 2

Figure 39: Frequence Response Amplitude Curve Sample 2
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c) Sample 3

Figure 40: Time Domain Sample 3

Figure 41:Time Response Amplitude Curve Sample 3
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Figure 42: Frequency Domain Sample 3

Figure 43: Frequency Response Amplitude Curve Sample 3
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d) Sample 4

Figure 44: Time Domain Sample 4

Figure 45: Time Response Amplitude Curve Sample 4
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Figure 46: Frequency Domain Sample 4

Figure 47: Frequency Response Amplitude Curve Sample 4
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e)    Conclusion

Figure 48: TRAC and FRAC Accuracy Percentage

Following these tests, I achieved around 97% accuracy in both the time and 
frequency domains, indicating that RDI is a reliable method.

7. Experiment 3
The study focuses on understanding the relationship between the Field of View, 
Working Distance, and Noise Floor in vibration analysis. To achieve this, 
experiments are conducted at varying working distances, ensuring that the measured 
vibrations exceed the noise floor. These tests help evaluate how changes in working 
distance influence the quality and reliability of the data. Additionally, the time-
domain results obtained from the RDI software are compared with those acquired 
through laser-based measurement techniques, such as laser measuring device, to 
assess the accuracy and consistency of the two methods. This analysis aims to 
determine the extent to which working distance impacts measurement precision, 
providing insights for optimizing experimental setups in vibration studies.
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a) Field of View
The Field of view depends on Camera type, focal length and working distance.

Figure 49: Optical Geometry (Pixel Scaling with Focal Length and Working Distance)

From the formula below, we can see that only the working distance changes. This 
change helps us understand the relationship between working distance and the Field 
of View. By studying this, we can see how adjusting the working distance affects the 
area captured.

ýÿý(ÿ) = ĀăĀĀāÿ(Ăþ) × Āÿþăþ ĀÿĀă (ÿÿāÿāĀĂþ ) × þāÿýÿĀą ĀÿĀāÿĀāă(ÿ)1000 × ýāāÿþ �ăĀąā/ (ÿÿ)
Equation 1

Camera IRIS MX characteristics:

•Sensor Width (px) = 2560
•Sensor Height (px) = 2080
•Pixel Size Width (micron/px) = 5
•Pixel Size Height (micron/px) =5
•Focal Length (mm) = 25
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Figure 50: The Variation of Width with Respect to Working Distance

Figure 51: The Variation of Height with Respect to Working Distance
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For example, once I choose the Field of View I want, I can refer to these curves to 
determine the working distance needed. This helps me figure out exactly where to 
position my tools to achieve the desired Field of View for accurate measurements.

By selecting either the width or height of the field of view, it becomes possible to 
determine the exact working distance for positioning the camera.

b) Noise Floor
In this experiment, the shaker remains stationary without any vibrations while the 
working distance is adjusted between 1 meter to 7 meters. To ensure reliable results, 
the data is filtered to reduce the influence of lighting conditions. The Root Mean 
Square (RMS) of the time-domain data is then calculated for both the width (x-axis) 
and the height (y-axis) to analyze the measurements accurately.

Figure 52: Setup of experiment 3

The working distance is changed from 1 to 7m.

The results have been filtered to eliminate the effect of light.
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The Camera is focused on the cube placed at the top of the shaker as shown in the 
figure below:

Figure 53: Region of Interest

The pictures below show the time-domain of the noise floor at 7 different working 
distances in 2 directions.

Figure 54:Time Domain for Noise Floor at Working Distance 1m in x Direction
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Figure 55:Time Domain for Noise Floor at Working Distance 1m in y Direction

Figure 56:Time Domain for Noise Floor at Working Distance 2m in x Direction
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Figure 57:Time Domain for Noise Floor at Working Distance 2m in y Direction

Figure 58:Time Domain for Noise Floor at Working Distance 3m in x Direction
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Figure 59: Time Domain for Noise Floor at Working Distance 3m in y Direction

Figure 60:Time Domain for Noise Floor at Working Distance 4m in x Direction
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Figure 61:Time Domain for Noise Floor at Working Distance 4m in y Direction

Figure 62:Time Domain for Noise Floor at Working Distance 5m in x Direction
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Figure 63:Time Domain for Noise Floor at Working Distance 5m in y Direction

Figure 64:Time Domain for Noise Floor at Working Distance 6m in x Direction
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Figure 65:Time Domain for Noise Floor at Working Distance 6m in y Direction

Figure 66:Time Domain for Noise Floor at Working Distance 7m in x Direction
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Figure 67:Time Domain for Noise Floor at Working Distance 7m in y Direction

Then, we calculate the RMS in both directions.

Table 2: Results of RMS in x and y Direction

Figure 68:This Curve Shows the Relationship Between Working Distance and RMS in x Direction

μm

μ
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Figure 69:This Curve Shows the Relationship Between Working Distance and RMS in y Direction

As expected, the results indicate that the noise floor increases with increasing 
working distance.

Further tests have taken, data was collected at working distances ranging from 1 to 
7 meters, with three samples taken at each distance to ensure consistency. The shaker 
operated at a vibration frequency of 2-3 Hz, maintaining an RMS value above the 
noise floor. The results were then compared with measurements obtained from a 
laser-based device to evaluate accuracy and reliability. To check how the increase of 
noise floor will affect the accuracy and consistency, the experiment's main goal was 
to align the signals from the two measuring devices and produce the Time Response 
Amplitude Curve (TRAC) and Frequency Response Amplitude Curve (FRAC). 

Figure 70:Time Domain at Working Distance 1m Sample 1

μ
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Figure 71: Time Response Amplitude Curve at Working Distance 1m Sample 1

Figure 72:Time Domain at Working Distance 1m Sample 2
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Figure 73:Time Response Amplitude Curve at Working Distance 1m Sample 2

Figure 74:Time Domain at Working Distance 1m Sample 3
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Figure 75:Time Response Amplitude Curve at Working Distance 1m Sample 3

Figure 76:Time Domain at Working Distance 2m Sample 1
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Figure 77:Time Response Amplitude Curve at Working Distance 2m Sample 1

Figure 78:Time Domain at Working Distance 2m Sample 2
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Figure 79:Time Response Amplitude Curve at Working Distance 2m Sample 2

Figure 80:Time Domain at Working Distance 2m Sample 3
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Figure 81:Time Response Amplitude Curve at Working Distance 2m Sample 3

Figure 82:Time Domain at Working Distance 3m Sample 1
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Figure 83:Time Response Amplitude Curve at Working Distance 3m Sample 1

Figure 84:Time Domain at Working Distance 3m Sample 2
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Figure 85:Time Response Amplitude Curve at Working Distance 3m Sample 2

Figure 86:Time Domain at Working Distance 3m Sample 3
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Figure 87:Time Response Amplitude Curve at Working Distance 3m Sample 3

Figure 88:Time Domain at Working Distance 4m Sample 1
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Figure 89:Time Response Amplitude Curve at Working Distance 4m Sample 1

Figure 90:Time Domain at Working Distance 4m Sample 2
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Figure 91:Time Response Amplitude Curve at Working Distance 4m Sample 2

Figure 92:Time Domain at Working Distance 4m Sample 3
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Figure 93:Time Response Amplitude Curve at Working Distance 4m Sample 3

Figure 94:Time Domain at Working Distance 5m Sample 1
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Figure 95:Time Response Amplitude Curve at Working Distance 5m Sample 1

Figure 96:Time Domain at Working Distance 5m Sample 2
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Figure 97:Time Response Amplitude Curve at Working Distance 5m Sample 2

Figure 98:Time Domain at Working Distance 5m Sample 3
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Figure 99:Time Response Amplitude Curve at Working Distance 5m Sample 3

Figure 100:Time Domain at Working Distance 6m Sample 1
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Figure 101:Time Response Amplitude Curve at Working Distance 6m Sample 1

Figure 102:Time Domain at Working Distance 6m Sample 2
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Figure 103:Time Response Amplitude Curve at Working Distance 6m Sample 2

Figure 104:Time Domain at Working Distance 6m Sample 3
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Figure 105:Time Response Amplitude Curve at Working Distance 6m Sample 3

Figure 106:Time Domain at Working Distance 7m Sample 1
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Figure 107:Time Response Amplitude Curve at Working Distance 7m Sample 1

Figure 108:Time Domain at Working Distance 7m Sample 2
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Figure 109:Time Response Amplitude Curve at Working Distance 7m Sample 2

Figure 110:Time Domain at Working Distance 7m Sample 3
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Figure 111:Time Response Amplitude Curve at Working Distance 7m Sample 3

The results shown above demonstrate that the spread of the blue data points increases 
with greater working distances, indicating a decline in measurement accuracy.

Figure 112: This Curve Show the Variation of TRAC% with Respect to Working Distance

c) Conclusion
If the intended field of view is known, Figure 60 and 61 can be used to calculate the 
necessary working distance for camera placement. Then, figures 78 and 79 can be 
used to calculate the relevant noise floor, and figure 101 is used to determine the 
percentage of accuracy.
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VI. Field Test
The test has been taking place on an 8.65 MW Francis turbine in the Boott 
Hydropower plant in Lowell town, Massachusetts state, United state of America.

Figure 113: Location of the Hydropower Plant

Characteristics of the turbine:

•Head = 11.89 m (39ft)
•Speed = 120rpm (2 Hz)
•Manufacture = Fuji Electric

Figure 114: Top View of the Hydropower Turbine
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Figure 115: Side View of the Hydropower Turbine

Our examination centers on two primary components: Shaft 1 and Shaft 2.

Figure 116:Identification of the two analyzed regions and reference system.

In this test, we compared the performance of a preinstalled proximity on the shafts 
with both RDI software and laser displacement sensor.

For shaft 1, the comparison between proximity probe and RDI was conducted in Y-
direction, while the comparison between proximity probe and the laser displacement 
sensor was carried out in Z-direction.

For shaft 2, the comparison between proximity probe and RDI was conducted in Y-
direction, while there is no comparison in Z-direction for impossibility to place the 
laser displacement sensor.
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Figure 117: Experiment Setup for Shaft 1 in Y-Direction

Working distance is 2.7m so the noise floor in Y-direction for shaft 1 is 11.88¼m we 
can capture any movement above this value.

 
Figure 118: Experiment Setup for shaft 1 in Z-Direction
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Figure 119: Experiment Setup for Shaft 2 in Y-Direction

Working distance is 2.27m so the noise floor in Y-direction for shaft 1 is 9.94¼m we 
can capture any movement above this value.

Sensor characteristics:

•5mega pixel Iris MX camera operating at 125 fps.
•Keyence LK-G402 laser displacement sensor operates at 1,000 Hz.

We plotted the time-domain data from the laser and the RDI, computed the peak-to-
peak values for each cycle, and then calculated the average and standard deviation 
because the proximity probe delivers peak-to-peak values. These outcomes were 
compared with the proximity probe's readings. Two measurements were made to 
allow statistical analysis.
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1. Shaft 1
In shaft 1 we examined the shaft in two directions Y-direction and Z-direction.

a) Y-direction

Figure 120: Time Domain Sample 1

Figure 121:Frequency Domain Sample 1
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Figure 122:Time Domain Sample 2

Figure 123: Frequency Domain Sample 2

Then we calculate Peak-to-Peak from the time domain for each cycle, then get the 
average and the standard deviation. Then compared the results with proximity probe.
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Figure 124:Results Comparison for shaft 1 in Y-Direction.

b) Z-direction

Figure 125: Time Domain Sample 1.
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Figure 126: Frequency Domain Sample 1.

Figure 127: Time Domain Sample 2
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Figure 128: Frequency Domain Sample 2

Then we calculate Peak-to-Peak from the time domain for each cycle, then get the 
average and the standard deviation. Then compared the results with proximity probe.

Figure 129:Results Comparison for shaft 1 in Z-Direction.

μ
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2. Shaft 2

Figure 130: Time Domain Sample 1

Figure 131: Frequency Domain Sample 1
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Figure 132: Time Domain Sample 2

Figure 133: Frequency Domain Sample 2

Then we calculate Peak-to-Peak from the time domain for each cycle, then get the 
average and the standard deviation. Then compared the results with proximity probe.
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Figure 134:Results Comparison for shaft 2.

3. Conclusion

Tests were carried out on a working 8.65 MW Francis turbine to check how well 
OMM can detect movements of the machine’s shaft. The results showed that OMM 
can detect very small displacements, around 100 micrometers, with accuracy like 
the proximity probes already installed on the turbine. The measurement errors 
ranged between 3% and 19%. Although more testing is still required, OMM has 
proven to be a dependable method for this kind of task.

4. Miter Gate
a) Gate Rotation Bearing

Every rotating gate needs some kind of support to rotate. Because they sustain the 
gate and enable appropriate opening and closing, hinges, bearings, or bushings are 
crucial components of hydraulic gates. Both a top hinge (called a gudgeon) and a 
bottom hinge (called a pintle) are used in common lock gates, such as miter gates. 
The design of sector gates is similar. A trunnion pin, which sustains water pressure 
and permits movement, is encircled by radial and visor gates. Similarly, horizontal 
hinge is used by hinge crest gates and flap gates to transmit water forces to the 
concrete structure.
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The ease of maintenance must be considered by engineers when constructing 
bushings, hinges, or bearings. A system may wear out before it reaches the end of its 
anticipated life if it is difficult to maintain. As a result, the design needs to include 
the loads on the structure, the frequency and distance of part movement, and the 
system's expected lifespan.[14]

b) Electromechanically Driven Gate
An electric motor, a gearbox, a sector gear, and a linkage that attaches to the gate are 
frequently used in electromechanical miter gate systems. Mechanical systems 
require frequent lubrication since they contain more moving components than 
hydraulic ones, which can wear out more quickly. Parts are frequently more difficult 
to replace, and maintenance is more rigorous. The system may deteriorate more 
quickly if alignment is not done correctly. While hydraulic systems may experience 
comparable problems, mechanical systems may also be more susceptible to abrupt 
forces or impacts from boats.
The longevity and reputation for dependability of mechanical systems are two 
advantages. They also lessen the possibility of significant oil spills into the lake. 
They can still pollute the environment, though, by leaking oil and grease, particularly 
from springs, bearings, and open gears. According to contemporary environmental 
guidelines, these materials have the potential to pollute the environment by washing 
into the water. Gearboxes should be positioned above flood levels or appropriately 
sealed to minimize leaks.

Another problem is that it's not always easy to find spare parts, like gears. Because 
many parts are custom-made, replacing them could take a while. For maintenance, 
they frequently need to be sent back to the manufacturer. Components like screw 
rods and gearboxes are scarce, and the original manufacturer is typically required to 
do repairs.

Shock absorbers, like strut springs, are advised to lessen the effect of abrupt forces 
on electromechanical systems. These can shield the system from light collisions, 
abrupt stops or starts, and wave motion. Since hydraulic systems frequently 
incorporate integrated shock control, this is particularly crucial for electric systems.
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The gates can be moved more smoothly by using hydraulic pumps or motors with 
multiple speeds, particularly at the beginning or conclusion of the action. The size 
of the gates determines how long it takes to open or close them.

Finally, miter gates are often constructed to withstand one side of water pressure. To 
prevent the gates from opening in the wrong direction, additional safety measures or 
locks might be required in locations where water levels can rise on either side.[15]

c) Mechanical Linear Actuator
sealed electro-mechanical device including a motor, a bearing-equipped screw 

drive, a housing, and a piston rod that moves in and out to transfer power is called a 
linear mechanical electric actuator. These actuators are an updated form of 
mechanical drive systems from the past.
Long extension distances and tremendous force are within their capabilities. The two 
primary components are an electric motor and a screwdriver, which, depending on 
the direction of the motor, drives the piston rod forward or backward.

Linear actuators are less complicated and require less maintenance than earlier 
mechanical systems. Many providers offer them as regular items, which eliminates 
the need for intricate maintenance and specially built parts. Their design necessitates 
less frequent maintenance and reduces the possibility of oil leaks.

These actuators are comparable to self-contained hydraulic systems due to their 
complete enclosure. Their primary benefit is that they don't require fluid lines or 
external systems. This lessens the chance of environmental leaks.

Other benefits include:

•No oil leakage due to sealed design and quality seals.
•Electro-mechanical force instead of hydraulic pressure.
•Built in controls to adjust movement and force for smooth and accurate gate 
operation.
•Long lasting components that reduce maintenance.
•Standard design makes spare parts easier to find.
•Energy is only during movement, which saves power.
•Low noise levels.
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These actuators may not have the same power as conventional hydraulic systems, 
despite their ability to deliver a powerful force.

The actuator should have a spring system to lessen impact damage. There are several 
ways to build the screw mechanism (such as ball or trapezoid threads), and the piston 
rod needs to be completely shielded from ice, water, and dirt. A frequency converter 
controls torque and speed, while a hand wheel enables manual operation in an 
emergency.

The motor works in both directions, moving the piston in or out, like how hydraulic 
systems connect directly to gates. A spring assembly helps protect the system from 
minor collisions.[15]

d) Miter Gate
Our job is to keep an eye on the motor that runs one side of the miter gate. In addition 
to the motor itself, we are also examining the motor shaft and the surrounding 
buildings, among other related components. Our objective is to comprehend the 
behavior of each of these components when in use, particularly regarding vibration.

We are employing a camera to simultaneously monitor vibration in several locations. 
This enables us to investigate the responses of each component to various vibration 
frequencies. Our goal is to determine which component is aroused at which 
frequency and the intensity of the vibration in each instance. This is crucial because 
excessive vibration in specific frequency ranges may cause wear, damage, or 
decreased functionality.

We can get a better understanding of the system's overall behavior by simultaneously 
concentrating on multiple areas of interest. This aids in the early detection of 
possible issues and improves our comprehension of the motor's and its associated 
structure's dynamic functioning. Future designs or maintenance schedules can be 
enhanced with the help of the data we gather.
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Figure 135: Regions of Interest

(1) Region of Interest 1
In X-Direction:

Figure 136: Time Domain in X-Direction
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Figure 137: Frequency Domain in X-Direction

In Y- Direction:

Figure 138: Time Domain in Y-Direction
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Figure 139: Frequency Domain in Y-Direction

(2) Region of Interest 2
In X-Direction:

Figure 140: Time Domain in X-Direction
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Figure 141: Frequency Domain in X-Direction

In Y-Direction:

Figure 142: Time Domain in X-Direction
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Figure 143: Frequency Domain in Y-Direction

(3) Region of Interest 3
In X-Direction:

Figure 144: Time Domain in X-Direction
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Figure 145:Frequency Domain in X-Direction

In Y-Direction:

Figure 146: Time Domain in Y-Direction
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Figure 147: Frequency Domain in Y-Direction

(4) Region of Interest 4
In X-Direction:

Figure 148: Time Domain in X-Direction
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Figure 149: Frequency Domain in X-Direction

In Y-Direction:

Figure 150: Time Domain in Y-Direction



135

Figure 151: Frequency Domain in Y-Direction

(5) Region of Interest 5
In X-Direction:

Figure 152: Time Domain in X-Direction
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Figure 153: Frequency Domain in X-Direction

In Y-Direction:

Figure 154: Time Domain in Y-Direction
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Figure 155: Frequency Domain in Y-Direction

(6) Region of Interest 6
In X-Direction:

Figure 156: Time Domain in X-Direction
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Figure 157: Frequency Domain in X-Direction

(7) Region of Interest 7
In X-Direction:

Figure 158: Time Domain in X-Direction
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Figure 159: Frequency Domain in X-Direction

(8) Conclusion
The shaft of this motor vibrates between 180 and 380 microns in the X-direction at 
a frequency of 0.78 Hz. The nearby structures also exhibit vibrations at the same 
time, albeit with varying amplitudes and frequencies.

The structures vibrate at 22.5 Hz in the X-direction, with amplitudes ranging from 
25 to 35 microns. The structures vibrate at 15.5 Hz in the Y-direction, with 
amplitudes ranging from 55 to 65 microns

We can better comprehend how each component of the system reacts to movement 
thanks to these variations in vibration frequencies and amplitudes. Additionally, it 
demonstrates that certain parts are activated at various frequencies, which is useful 
for identifying possible problems or enhancing the design.
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VII. Expanding OMM Utility in Operational Hydropower 
Environments

1. Flow-Rate Variation Tests
Evaluate how changing hydraulic impacts OMM’s ability to detect shaft and blade 
vibration.

Methodology:

•Operate turbine at low, medium, and high flow.
•Simultaneously capture video and conventional sensor data under each flow.
•Apply band‐pass temporal filters tuned to known blade‐pass frequencies.

2. Multi‐View 3D Displacement Mapping
Extend OMM from 2D plane measurements to full 3D displacement mapping of 
rotating components.

Methodology:

•Deploy two or more synchronized high-speed cameras at orthogonal vantage 
points.
•Calibrate a 3D coordinate system.
•Fuse 2D OMM results into 3D trajectories of critical.

3. Long‐Term Health Monitoring and Fatigue Detection
Demonstrate OMM’s capability for continuous, long‐term monitoring and early 
detection of fatigue‐induced changes.

Methodology:

• Install a fixed OMM rig on a non‐critical turbine during routine operation for 
several months.
•Schedule periodic recordings under consistent load.
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•Track statistical trends in vibration amplitude, frequency drift, and phase 
coherence over time.

4. Cavitation and Erosion Detection on Runner Blade
Use OMM to visualize and quantify blade surface oscillations associated with 
cavitation inception and progression.

Methodology:

•Apply a speckle or high‐contrast pattern on blade surfaces under laboratory 
or scaled model conditions.
•Vary cavitation number to induce incipient and full cavitation.
•Perform high‐fps OMM to reveal localized high‐frequency and low‐
frequency envelope modulations.

5. Comparative Study with Other Non‐Contact Techniques
Benchmark OMM against alternative vision‐based methods such as digital image 
correlation, laser vibrometry.

Methodology:

•Select a common test rig.
•Simultaneously apply OMM, digital image correlation (DIC), and single‐
point laser Doppler vibrometry (LDV).
•Compare spatial resolution, sensitivity, setup complexity, and cost.
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