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Abstract  

This thesis explores how we can better understand and assess earthquake risks in some of Italy’s 

most seismically active regions. The focus is on evaluating how vulnerable buildings are to 
earthquakes by developing empirical fragility curves for typical residential structures, focusing on 
reinforced concrete and masonry buildings. These curves are based on extensive post-earthquake 
damage data collected from events between 1976 and 2012, sourced from the Da.D.O. platform, 
which offers detailed records on building locations, construction types, and the extent of observed 
damage. 

The research uses the Rosti framework to refine the fragility curves for reviewing and validating 
the input data to ensure consistency and quality. Municipalities with incomplete surveys were 
excluded, leaving the Irpinia 1980 and L’Aquila 2009 earthquake datasets as the most complete 

and reliable case studies.  

The modeling process links Peak Ground Acceleration (PGA) values taken (from Da.D.O. 
shakemaps) to each building’s location and damage report. Damage levels are based on the EMS-
98 classification system, which outlines six levels of structural damage. These levels are further 
adapted to distinguish between structural elements and infill wall damage, giving a more accurate 
picture of building performance during earthquakes. 

A key innovation in this thesis is shifting from traditional lognormal distributions to the 
Generalized Extreme Value (GEV) distribution for fragility modeling, aiming to produce more 
conservative damage predictions. This change, implemented through custom Python tools, leads 
to more neat, accurate, and realistic predictions of how buildings will likely respond to seismic 
events. 

The result is a set of redefined fragility curves that can estimate the probability of damage to 
buildings based on their design level, building height, and the ground motion intensity they 
experience. These predictive models are valuable for seismic design and planning and offer 
practical benefits for the insurance industry, allowing for more informed risk assessments and 
resilience planning. 

 

Key Words: Seismic Hazard, Vulnerability, Italy, DaDO, PGA, GEV Distribution, Risk 
Assessment. 
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Introduction  
Description and History of the Topic 

Earthquakes are among the most devastating natural disasters, which can cause huge damage to 
buildings and infrastructure, disrupting lives, and leaving lasting social and economic impacts. 
While they may not happen often, when they do, their effects can be long-lasting, leading to 
injuries, loss of life, displacement, and long, difficult recovery periods. 

Because earthquakes can have devastating impacts, assessing seismic risk has become a top 
priority for researchers, city planners, and policymakers. These assessments are crucial in 
emergency response plans, strengthening at-risk buildings, and helping communities prepare for 
future quakes. They also ensure that limited resources are used wisely, focusing attention and 
funding on the places that need it most, to minimize damage and build resilience. 

In the face of such devastating impacts, the need for better tools, more reliable data, and smarter 
methods to make earthquake risk predictions more accurate and useful has never been more urgent. 
Governments, city planners, and the insurance world rely on solid data and accurate models to 
determine the risk level, set fair insurance premiums, and design coverage that can truly protect 
people and their property. This growing need is a call to action for all of us to work towards a 
safer, more resilient future. 

In recent years, many studies have focused on understanding the impact of earthquakes and finding 
ways to reduce future damage. Italy, with its long history of seismic activity, has played a major 
role in the progression of this research. One of the country’s most valuable contributions is the 
Da.D.O. platform—a national database that collects detailed information from post-earthquake 
building surveys. With its comprehensive records of how buildings were damaged, their structural 
features, and the intensity of the ground shaking, this platform has become a crucial resource for 
researchers working to improve seismic risk assessments and develop more accurate models for 
predicting earthquake damage. 

Researchers, the driving force behind progress, have used data from the Da.D.O. platform to 
develop new and more effective ways to assess earthquake risk. This rich dataset, a testament to 
their dedication, makes it possible to build empirical fragility curves and vulnerability models, 
while also helping to identify patterns and trends in how buildings respond to earthquakes. As a 
result, Da.D.O. has become a resource for deepening our understanding of seismic risk and shaping 
better strategies to protect both lives and property. 

 

 

 



Statement of the Research Subject 

Seismic risk is a complex, multi-faceted concept that reflects the combination of three key factors: 
the intensity of potential earthquakes (seismic hazard), how vulnerable buildings and infrastructure 
are (structural vulnerability), and how many people and assets are at risk (exposure). In simple 
terms, seismic risk represents the chance that earthquake-related losses—such as damage, injuries, 
or economic costs—will exceed a certain level within a specific area and time frame. Probabilistic 
models often measure this to estimate how likely serious impacts will occur.  

This kind of calculation often looks at the combined losses from multiple earthquakes over time, 
making it essential to create smart, long-term strategies to manage and reduce seismic risk 
effectively. 

 

Figure 1. Components of Risk and Their Interrelation 

A key component of seismic risk assessment is the development of fragility curves—tools that 
estimate the probability of different levels of damage occurring in buildings under specific seismic 
conditions. Traditionally, these curves have been modeled using the lognormal distribution, but 
recent advancements have introduced new approaches, such as the Generalized Extreme Value 
(GEV) distribution. 

This study looks at how we model earthquake damage using the GEV (Generalized Extreme 
Value) distribution to redefine fragility curves, building on earlier methods like the Rosti 
framework. GEV is better at handling extreme cases than the more commonly used lognormal 
model, which is especially important when discussing earthquakes. It does a much better job 
estimating the chances of rare but catastrophic events, like a building collapsing during a major 
quake. These extreme scenarios might not happen often, but the consequences are huge when they 
do. That is why capturing them accurately is important for creating realistic and trustworthy risk 
assessments. 

Using the GEV distribution in fragility modeling, this study aims to make seismic risk assessments 
more accurate and dependable. This improved method gives a clearer picture of how buildings will 
likely behave during earthquakes, which helps guide smarter decisions about where to focus 
resources. In the long run, it supports more effective planning for earthquake preparedness, risk 
reduction, and building stronger, more resilient communities. 



 
Importance of the Research 

Earthquakes pose a serious risk to people, infrastructure, and the overall stability of communities. 
That is why accurately assessing seismic risk and understanding the most vulnerable structures is 
so important. This research offers a new and improved way to make evaluations more precise and 
dependable. 

The importance of this research lies in the following key areas: 

1. Improved Risk Prediction: 

 
By applying the Generalized Extreme Value (GEV) distribution to fragility modeling, this 
research offers a better way to predict earthquake damage. Unlike the traditional lognormal 
model, GEV is more effective at capturing rare but devastating events, which are the 
scenarios that matter most when preparing for major earthquakes and planning effective 
disaster responses. 

2. Data-Driven Insights: 

 
This study draws on the rich data from the Da.D.O. platform, ensuring the findings are 
rooted in real-life experiences from past earthquakes. By using detailed information about 
how buildings were damaged, it becomes possible to understand better which structures 
are most vulnerable and to refine the models we use to predict future damage more 
accurately. 

3. Support for Policy and Decision-Making: 

 
Accurate seismic risk assessments are crucial for helping policymakers, urban planners, 
and engineers make smart, informed decisions. This research supports efforts to identify 
which buildings need retrofitting most urgently, use available resources best, and 
strengthen communities to better prepare for future earthquakes. 

4. Applications in Insurance and Reinsurance: 

 
Predicting potential losses more accurately is valuable for the insurance and reinsurance 
industries. This research offers tools to estimate the chances of buildings failing during an 
earthquake and helps to calculate the financial risks involved.  



Novelty and significance of this work and the Literature Review 
Novelty and Significance  

This study takes seismic risk assessment further by incorporating site-specific response spectra 
that reflect local conditions and seismic activity. This approach allows for more accurate 
predictions of how structures respond during an earthquake (Khatiwada et al. 2023). It also applies 
advanced statistical tools like the Generalized Extreme Value (GEV) distribution to better model 
rare, high-impact seismic events. This makes the assessment more reliable, especially for critical 
infrastructure, such as hospitals, bridges, and power plants (Rohmer et al. 2020). 

Additionally, using probabilistic demand spectra helps account for the uncertainties in seismic 
hazards and how structures respond, offering a stronger and more flexible foundation for 
retrofitting strategies and disaster preparedness (Shahi and Baker 2011). By drawing on real-world 
data from the 2009 L’Aquila earthquake, this study connects theoretical advancements with 

practical applications by making a meaningful contribution to performance-based design 
approaches and developing more accurate fragility curves (A. Rosti et al. 2021).  

Dynamic analysis 
 
Dynamic analysis evaluates how a structure responds to time-dependent forces, like those caused 
by earthquakes. It helps predict how buildings will behave during seismic events. A key part of 
this is modal analysis, which looks at a structure’s natural vibration characteristics like its 
frequencies, mode shapes, and how it absorbs energy (damping). Understanding these properties 
is essential for designing buildings that can safely withstand earthquake forces. Recent studies 
have highlighted the benefits of using site-specific response spectra. By tailoring seismic input to 
match local soil and ground conditions, engineers can optimize structural designs for better 
performance during earthquakes. 

 
Demand and Response Spectra 

 
The response spectrum is a key tool in earthquake engineering. It shows the maximum response, 
such as displacement, velocity, or acceleration, of a simple structure (or oscillator) across a range 
of natural frequencies when exposed to a specific earthquake. This helps engineers understand 
how different buildings with their natural frequencies might respond to the same seismic event. 
We get the demand spectrum from the response spectrum, representing the force or displacement 
a structure is expected to experience during an earthquake. This is especially important in 
performance-based seismic design, where the goal is to match a building’s performance to the 

demands of a likely earthquake. 

One widely used approach is the Capacity Spectrum Method (CSM). It compares the demand 
spectrum with the building’s capacity curve, which shows how much force the structure can 
handle. The two curves intersect at the performance point—a key indicator of how much damage 
or deformation the building will likely suffer in an earthquake. 



 

 

Figure 2. Spectral curve with yield, ultimate points, and damage levels 

Several studies have highlighted the importance of customizing demand and response spectra to 
reflect site-specific seismic conditions. Factors like local soil type, ground motion characteristics, 
and regional seismic activity can significantly affect the shape and intensity of these spectra. By 
accounting for these local variations, advanced models have been developed to provide more 
accurate and reliable predictions of how structures will respond during earthquakes. 

Furthermore, recent research has focused on probabilistic demand spectra, which account for 
uncertainties in both seismic hazard and how structures respond. Unlike traditional approaches 
that provide a single estimated value, these spectra offer a range of possible outcomes, making 
them especially useful for risk assessments. By incorporating this variability, probabilistic spectra 
give a more complete picture of potential structural demands during an earthquake. Their use in 
fragility analysis helps better identify building vulnerabilities and supports more informed 
decisions when planning retrofitting and mitigation strategies. 

Related Studies 

Many studies have contributed valuable insights into using response spectra in seismic design, 
particularly regarding inelastic behavior, ductility demand, and performance-based approaches. 
The study focuses on ductility demand response spectra, showing how different ground motion 
records affect the ductility demands of structures with varying stiffness. This highlights the 
importance of considering inelastic structural behavior when evaluating seismic performance and 
designing buildings to match it (Cheikh 1992). 

A 2015 study from Geoscience World examines earthquake energy demand spectra, calculating 
input and plastic energy to assess a building’s ability to dissipate energy and maintain resilience 

under different soil conditions (Lee, Johnson, and Kibble 2017). Another Geoscience World 
(2017) study proposes the drift spectrum as an alternative to traditional modal analysis, particularly 
for near-fault earthquakes with strong velocity pulses (Chopra and Chintanapakdee 2001).  

 



For far-field earthquakes, identifies gaps in existing seismic codes and introduces improved 
response spectrum models that better capture long-period responses, especially for flexible soil 
profiles (Nabilah et al. 2023). A related study evaluates hysteretic energy and response spectra 
from the Turkey-Syria earthquake, offering insights into how different ductility levels affect 
energy dissipation (Shao 2024).  

Lastly, combines nonlinear static pushover analysis with response spectra to predict seismic 
displacement demands, presenting a simplified yet effective method for performance-based 
seismic design (Elaiwi 2023).  

Together, these studies enhance the understanding of how response spectra can be applied to more 
accurately model structural demands and support safer, more resilient seismic design strategies. 

 

Fragility Curves 
Fragility curves play a central role in seismic risk assessment, offering a probabilistic view of how 
likely structures are to experience different levels of damage during earthquakes. Over the years, 
many studies have advanced the methodology and application of fragility curve development. 

Naumovski et al. (2023) used pushover analysis and the Capacity Spectrum Method (CSM) to 
develop fragility curves for the Philippine General Hospital Spine Building. Their work 
demonstrated the building’s seismic resilience and emphasized the importance of fragility curves 
in safeguarding essential infrastructure (Naumovski et al. 2023) 

Baylon et al. (2022) reinforced these insights by assessing critical healthcare infrastructure, 
emphasizing the fragility-based evaluation for emergency facilities in seismic zones (Baylon et al. 
2022). 

Banerjee et al. (2022) introduced a numerical simulation approach that incorporates probabilistic 
modeling to account for uncertainties in material properties, structural variations, and modeling 
assumptions. Their research showed the necessity of accurately defining parameters for 
trustworthy seismic vulnerability assessments (Banerjee, Das, and Roy 2022). 

Zentner et al. (2008) supported this by demonstrating how material and model uncertainties 
significantly impact fragility curve reliability, particularly in nuclear structures (Zentner, Humbert, 
and Viallet 2008). 

Caruso et al. (2023) compared generic fragility curves to site-specific ones, revealing that 
generalized models could misrepresent local vulnerabilities. Their study highlights the value of 
using localized seismic inputs and structural conditions to improve fragility accuracy (Caruso, Di 
Ludovico, and Prota 2023). 

Milutinovic et al. (2018) compiled a set of fragility curves for various European buildings and 
advocated for standardized methods to enhance international comparability (Milutinovic, 
Trendafiloski, and Scherbaum 2018). 



Wang et al. (2024) challenged the traditional lognormal model by applying ordinal regression to 
real bridge damage data from the Wenchuan earthquake, improving accuracy in complex seismic 
scenarios (Wang, Zhang, and Li 2024). 

Together, these studies mark a step forward in fragility curve research. By tackling common 
challenges like uncertainty, limited data, and long computation times, they help keep fragility 
curves a key part of seismic risk analysis. More importantly, they open the door to broader, more 
practical applications, from designing safer buildings and retrofitting older ones to guiding disaster 
preparedness on both local and global levels. 

 

 
Figure 3. Probability curve showing expected damage levels based on shaking intensity and spectral response 

 

Empirical Seismic Vulnerability Model  
Masonry Paper (Unreinforced Masonry Buildings - URM)(Annalisa Rosti, Rota, and Penna 
2021) 
 

This study is about how Italian masonry buildings—especially older ones not built to withstand 
earthquakes—respond when the ground shakes. The authors wanted to find a way to predict the 
chances of different levels of damage, from minor cracks to total collapse. Moreover, they did not 
rely on computer simulations or lab tests to do that. Instead, they turned to real-life data from two 
big Italian earthquakes: Irpinia in 1980 and L’Aquila in 2009. 

After those earthquakes, engineers had gone out and inspected thousands of buildings. That data 
in the Da.D.O. database includes not just whether a building was damaged, but also details like its 
height, age, construction materials, and design quality. The authors cleaned up this data to make 
sure it was reliable. For example, in some places, only buildings with visible damage were 
inspected, which would skew the numbers if undamaged buildings were left out. So the team 
included data from areas with very little shaking, assuming those buildings had no damage, to 
balance the picture. 

 



The buildings were grouped by key features that affect how they perform in earthquakes, like 
whether their walls were made from good-quality stone or not, whether they had wooden floors 
(which are flexible and tend to shake more), and whether they had tie rods or beams to hold the 
structure together. These categories helped the researchers see which building types were more 
likely to get damaged. 

Then, using a statistical technique, they built “fragility curves.” Imagine these as charts showing, 

for each building type, how likely it is to reach or exceed a certain level of damage when the 
ground shakes at a certain strength. The shaking is measured in terms of “PGA,” the strongest peak 
ground acceleration felt during the earthquake. 

One of the interesting things is that buildings with irregular stone walls and no seismic devices 
(like tie rods) are far more likely to get damaged than those made with regular, high-quality 
masonry and some basic strengthening. Also, buildings with rigid floors (like concrete) did better 
than those with flexible ones (like wood). Furthermore, low-rise buildings (1–2 stories) generally 
performed better than taller ones, which makes sense because they are lighter and sway less. 

To make these results usable for national planning, they sorted the buildings into three broader 
vulnerability classes: A (highly vulnerable), B (medium), and C1 (lower vulnerability). Then they 
matched these classes to census categories of buildings across Italy, so the results could be plugged 
into the IRMA risk platform—a tool that generates seismic risk maps for the country. 

In short, the paper gives Italy a much better way to estimate which types of older masonry homes 
will most likely be damaged in future quakes.  

 

RC Paper (Reinforced Concrete Buildings)(A Rosti et al. 2021). 

This paper focuses on a different part of the building stock: residential buildings made with 
reinforced concrete (RC). These became more common in Italy in the mid-20th century, but not 
all were designed to handle earthquakes. Many older ones were built before seismic codes were 
even a thing. 

Like the masonry paper, the researchers used real-world damage data from post-earthquake 
surveys, relying mainly on the Irpinia 1980 and L’Aquila 2009 events. They looked at about 24,000 

RC buildings in total. However, they were careful—they did not just take all the data at face value. 
Instead, they filtered out towns where only damaged buildings had been inspected, because that 
would skew the results. Only data from towns where most buildings were checked (more than 
90%) were kept for analysis. They also added buildings from areas with very weak shaking and 
assumed those had no damage, to help round out the data. 

The authors focused on two key features of RC buildings: 

1. How they were designed: were they built to resist earthquakes or only gravity loads 

2. How tall they are: taller buildings tend to be more flexible and are more affected by 
seismic waves. 



They used a consistent method to turn observed damage into a 6-level damage scale (from "no 
damage" to "collapse"), using official European criteria. They also included damage to things like 
infill walls and interior partitions—not just the structural frame, which is important because those 
can fail first and lead to costly repairs even if the main structure holds up. 

Then, using the same kind of statistical modeling as in the masonry study, they created fragility 
curves for various building types, showing the likelihood of damage at different levels of shaking. 
These curves clearly show that buildings built only for gravity loads are far more fragile than those 
designed according to seismic codes. Interestingly, even among seismically designed buildings, 
newer codes (post-1981) made a noticeable difference in performance. 

They also grouped these buildings into two vulnerability classes: 

• C2 for older RC buildings that might have followed some basic seismic principles but are 
not up to modern standards. 

• D for newer, code-compliant buildings that are much more resistant. 

They further broke down the fragility curves within each class by building height. 

It is visible that if an RC building was built after Italy updated its seismic codes in 1981 and it is 
low-rise, it is much less likely to suffer heavy damage in a typical quake. However, older, taller 
buildings designed only for gravity loads could be at serious risk. 

Again, all this feeds into the national IRMA platform, allowing planners to assess seismic risk 
block by block and street by street using actual observed performance, not just estimates or lab 
tests. 

Over the years, researchers have made major progress in understanding and applying fragility 
curves, essential for assessing how structures might be damaged during earthquakes. One such 
study by Rohmer et al. (2020) applied a new approach using non-stationary extreme value theory, 
specifically the Generalized Extreme Value (GEV) distribution, to analyze how nuclear power 
plant components respond to seismic activity. Their method tackled uncertainties in how these 
structures behave under earthquake forces and helped improve risk assessments for critical 
infrastructure (Rohmer et al. 2020). 

In a similar line of work, Zentner and Guéguen (2008) used Monte Carlo simulations to estimate 
fragility curves for nuclear facilities. They showed that relying on various statistical models—like 
the GEV distribution—can better reflect how different structures respond to earthquakes (Zentner, 
Humbert, and Viallet 2008). 

Building on this, the U.S. Nuclear Regulatory Commission (2017) compared fragility models that 
use lognormal and GEV distributions. They found that GEV-based models often provide a more 
accurate picture of structures' behavior under extreme seismic forces and recommended their use 
in certain cases (Commission, Dasgupta, and Antonio 2017). 



In Italy, Lucantoni et al. (2001) were pioneers in creating fragility curves for unreinforced masonry 
(URM) and reinforced concrete (RC) buildings. They used real earthquake damage data to reflect 
local construction types and vulnerabilities (Lucantoni, Dolce, and Moroni 2001). 

Later, Di Pasquale et al. (2005) developed a vulnerability index system based on the EMS-98 scale 
to map potential earthquake damage across regions, laying the groundwork for Italy’s broader 

seismic risk strategies (Di Pasquale, Orsini, and Romeo 2005). 

Globally, researchers like Crowley et al. (2004) worked on integrating empirical damage data with 
probabilistic models, helping create better loss estimation tools by combining hazard, exposure, 
and vulnerability data (Crowley, Pinho, and Bommer 2004). 

Meanwhile, Bernardini et al. (2010) emphasized the importance of having standardized damage 
surveys after earthquakes. Their work improved the data quality going into Italy’s national seismic 

risk system, IRMA  (Bernardini, Dolce, and Goretti 2010). 

Rota et al. (2011) focused on how fragility curves are affected by peak ground acceleration (PGA) 
and seismic intensity. They tested their models against real earthquake data and confirmed the 
importance of ground motion in damage predictions (Rota et al. 2011). 

On a larger scale, Silva (2014) helped develop the OpenQuake engine—software that allows 
engineers and researchers to assess seismic risk on a regional or national level. It combines 
uncertainty in hazard, vulnerability, and building exposure into a unified, probabilistic framework 
(Silva 2014). 

From a policy perspective, the Philippines’ National Disaster Risk Reduction and Management 

Council (2011) stressed fragility curves in disaster planning. They encouraged cooperation 
between institutions to improve data-sharing and long-term resilience (“National Disaster Risk 
Reduction and Management Plan ( NDRRMP )” 2011). 

In Italy, Dolce et al. (2021) thoroughly reviewed how vulnerability is assessed nationwide, 
blending historical damage data with newer analytical methods. They also pushed for policy 
updates to better prepare for future earthquakes (Masi et al. 2021). 

Later, Del Gaudio et al. (2020) advanced fragility modeling by incorporating nonlinear dynamic 
analysis, especially for RC and masonry buildings in high-risk areas. Their study offered practical 
recommendations for choosing which buildings should be prioritized for retrofitting (Del Gaudio 
et al. 2020). 

Finally, Rosti et al. (2021) updated empirical fragility curves tailored to Italy's unique seismic 
landscape, using damage data from recent earthquakes to reflect the country’s evolving 

understanding of structural risk (A. Rosti et al. 2021). 

These studies show how fragility curves have evolved from simple empirical tools into advanced, 
data-rich, and probabilistic models. Fragility curves play a vital role in seismic risk assessment by 
integrating methods like GEV modeling, improving data quality, addressing structural 
uncertainties, and tailoring outputs to local and global needs. 



Damage level 

The EMS-98 (European Macroseismic Scale 1998) is a widely used system for classifying 
earthquake damage to buildings, dividing structural damage into six clearly defined levels: 

• D0 – No Damage: No visible damage to structural or non-structural elements. 
• D1 – Slight Damage: Small cracks in plaster or superficial finishes; minor, non-structural 

issues. 
• D2 – Moderate Damage: Visible cracks in load-bearing elements like walls; some 

deformation; moderate non-structural damage. 
• D3 – Heavy Damage: Large cracks in structural components; partial collapse of non-

structural elements; noticeable loss of integrity. 
• D4 – Very Heavy Damage: Extensive cracking and deformation; severe damage to 

structural elements; localized collapses. 
• D5 – Destruction: Near or total collapse of the building; structure is no longer usable. 

 

This classification is essential for understanding how buildings perform under seismic loading, 
capturing structural and non-structural damage. Non-structural damage, like damage to facades, 
internal walls, or utility systems, is crucial for assessing a building’s post-earthquake usability, 
even if the main structure remains standing. 

In fragility analysis, D0 is usually excluded, as the focus lies on modeling the probability of 
reaching or exceeding damage levels D1 through D5. Fragility functions describe the likelihood 
of a structure reaching a specific damage state based on a seismic intensity measure (IM), such as 
Peak Ground Acceleration (PGA). This probabilistic approach allows for more accurate 
earthquake loss predictions, better-informed retrofitting strategies, and more efficient allocation of 
resources for seismic risk management. 

The EMS-98 scale is the basis for many national and international seismic assessment frameworks 
and aligns with standards like Eurocode 8 (EC8). These frameworks promote consistent methods 
for damage classification and fragility curve development, making risk assessments more reliable 
and comparable across different regions. Integrating real-world damage data with seismic inputs, 
EMS-98 helps bridge the gap between theory and practice, strengthening earthquake preparedness 
and resilience strategies (Nabilah et al. 2023). 

 

Figure 4. Classification of damage grades based on EMS98, Hazus definitions, and Eurocode 8 limit states 



 

 

Figure 5. Visual classification of earthquake damage grades for masonry and reinforced concrete buildings, from slight damage 
to destruction 

Methodology/Analysis Framework 
 

Data Collection and Validation 
 

Sources of Seismic Data 
The Da.D.O. platform is a detailed online archive that collects and organizes damage data from 
buildings affected by earthquakes in Italy. As Dolce et al. (2021) described, it offers valuable 
insights into structural and non-structural damage observed after seismic events. The platform is 
built on data from inspections of more than 300,000 residential buildings carried out following 
Italian earthquakes that occurred between 1976 and 2012, making it one of the most 
comprehensive resources for studying how buildings perform during earthquakes (Masi et al. 
2021). 

 

 

 



The Da.D.O. database provides a rich source of information that helps researchers better 
understand how earthquakes affect buildings. It includes detailed data on: 

• Building characteristics: The year of construction, number of floors, and structural type 
(e.g., unreinforced masonry or reinforced concrete). 

• Building usage: Mostly focused on residential buildings, though some data from other 
types are included. 

• Seismic parameters: In many cases, the database records values like peak ground 
acceleration (PGA) and peak ground velocity (PGV)—key indicators of how strong the 
shaking was in specific areas. 

• Post-earthquake inspections: Damage is carefully documented through on-site surveys, 
using the EMS-98 damage scale to classify the severity. This creates a consistent and 
standardized view of how buildings perform during seismic events. 

Quality Control and Validation of Post-Earthquake Survey Data 
Reliable post-earthquake survey data is the foundation of accurate seismic risk assessments. A 
thorough review of all datasets from the Da.D.O. platform was carried out to ensure the data used 
in this study was trustworthy and consistent. The goal was to clean and standardize the data, 
ensuring it reflects how buildings respond to earthquakes. This process included: 
Completeness Analysis 

o A completeness ratio (CR) was calculated for each municipality, defined as the 
ratio of inspected buildings to the total number of residential buildings based on 
census data (ISTAT, 2001). 

o Municipalities with low CR values (below 90%) were excluded. A higher CR 
ensures that damaged and undamaged buildings are represented, mitigating the risk 
of overestimating fragility due to focusing only on damaged structures. 

Selection of Focus Events 
o The datasets for the Irpinia 1980 and L’Aquila 2009 earthquakes were selected as 

the most reliable due to their high completeness ratios. 

o For the 2009 L’Aquila earthquake, a selected group of municipalities reached a 
completeness ratio (CR) greater than 90%, meaning the post-earthquake surveys in 
these areas were representative. The municipalities with high CR include: 

Acciano, Barisciano, Castel di Ieri, Castelvecchio Calvisio, Caporciano, 
Carapelle Calvisio, Castel del Monte, Calascio, Campotosto, L'Aquila, 
Lucoli, Fontecchio, Fossa, Collepietro, Fagnano Alto, Goriano Sicoli, 
Castelvecchio Subequo, Gagliano Aterno, Prata d'Ansidonia, Rocca di 

Mezzo, San Demetrio ne' Vestini, Rocca di Cambio, Pizzoli, Ocre, Poggio 
Picenze, Ofena, San Pio delle Camere, Navelli, San Benedetto, Villa 

Sant'Angelo, Scoppito, Santo Stefano di Sessanio, Villa Santa Lucia degli 
Abruzzi, Tione degli Abruzzi, Sant'Eusanio Forconese, Tornimparte. 

 



 
Figure 6. Map of completeness ratio for surveyed municipalities near the earthquake epicenter 

These municipalities provided especially valuable data for fragility analysis, as the surveyed 
buildings represent the majority of the residential structures in the area.  

Data Filtering and Refinement 

The original Da.D.O. database underwent filtering to focus on structural typologies and usage 
categories: 

• Only residential buildings were included, excluding structures with non-residential uses. 

• Buildings with vertical load-bearing structures other than moment-resisting frames (MRF), 
such as structural walls or mixed systems, were removed. 

• Databases from events with negligible representation of reinforced concrete (RC) buildings 
(e.g., Umbria-Marche 1997; Emilia 2003) or lacking damage data for infills and partitions 
(e.g., Friuli 1976; Abruzzo 1984) were removed. 

 



 
Figure 7.  Map showing the L'Aquila input data and locations of surveyed structures 

 
Figure 8. Abruzzo and Campania regions showing surveyed structures in L’Aquila and Irpinia provinces 

 

 



Seismic Intensity Measures and Damage Classification 

o Use of Peak Ground Acceleration (PGA) as an Intensity Measure 

Peak Ground Acceleration (PGA) is a key indicator in seismic risk analysis, 
capturing the highest level of ground acceleration during an earthquake. This study 
uses PGA as a standard measure of earthquake intensity to assess building fragility 
across different datasets. To maintain consistency, only buildings with PGA values 
greater than 0.06g were included in the L’Aquila and Irpinia datasets. This 
threshold ensures that only structures exposed to significant ground motion are 
analyzed, making comparing the two earthquake events more reliable. 

o Application of the EMS-98 Damage Scale for Classifying Structural and Non-
Structural Damage 

The European Macroseismic Scale (EMS-98) is applied in this study to classify 
building damage levels. It distinguishes between structural damage (affecting load-
bearing elements) and non-structural damage (such as damage to infills and 
partition walls). This classification is used for masonry and reinforced concrete 
(RC) buildings. Damage data for the Irpinia 1980 and L’Aquila 2009 earthquakes 
are presented using this scale.  

 

o  

Figure 9. Comparison of Concrete damage scales for vertical structures and infills/partitions from the 1980 Irpinia and 2009 
L’Aquila earthquakes 



o  

Figure 10. Comparison of masonry damage scales from the 1980 Irpinia and 2009 L’Aquila earthquakes, based on EMS-98 
descriptions and extent of damage 

 

Building Typology Classification 

Introduction to Typology Classification 

This process involves grouping structures based on key characteristics such as construction 
age, number of floors, structural systems, and overall design approach. By organizing 
buildings this way, researchers can better understand how different types perform during 
earthquakes and identify where mitigation efforts should be focused. 

The Irpinia 1980 and L’Aquila 2009 datasets offer detailed information on masonry and 

reinforced concrete (RC) buildings. These structures are categorized according to their 
vulnerability-related features, capturing changes in construction practices and seismic 
design standards over time.  

Reinforced Concrete (RC) Buildings 

Construction Age: 

Irpinia 1980 Dataset: Nearly all RC buildings were constructed before the municipality's 
seismic classification in 1981 (Ministerial Decree 7/3/1981). These buildings were 
designed for gravity loads, making them highly vulnerable to seismic events. 



 

Figure 11. Irpinia construction year distribution based on the percentage of surveyed reinforced concrete buildings 

 

Figure 12. Irpinia design level distribution by reinforced concrete building height and structural category 

 

 

 

 



L’Aquila 2009 Dataset: Most buildings were constructed after the seismic classification 
introduced by Royal Law n.573 (1915). These buildings were seismically designed to resist 
earthquakes. 

 

Figure 13. L'Aquila construction year distribution based on the percentage of surveyed reinforced concrete buildings 

 

Figure 14. L'Aquila design level distribution by reinforced concrete building height and structural category 

 

 

 

 



Irpinia 1980 Dataset: Predominantly low-rise structures: 

 

Figure 15. Irpinia reinforced concrete building height distribution by percentage of low-, medium-, and high-rise structures 

 

Figure 16.  Irpinia floor distribution showing the percentage of reinforced concrete buildings by number of floors 

 

 

 

 

 



L’Aquila 2009 Dataset: Taller buildings dominate: 

 

Figure 17. L’Aquila reinforced concrete building height distribution by percentage of low-, medium-, and high-rise structures 

 

Figure 18. L'Aquila floor distribution showing the percentage of reinforced concrete buildings by number of floors 

 

 

 

 

 



Masonry Buildings 

Wall Texture (Material Quality): 

• Irregular/Poor-Quality Masonry (IRR): Typically found in older buildings, this type 
of masonry uses uneven materials and shows poor quality, resulting in lower 
structural integrity. 

• Regular/Good-Quality Masonry (REG): Common in more recent constructions, 
this masonry features uniform materials and better construction quality, improving 
strength and performance. 

Horizontal Structure (Diaphragm Rigidity): 

• Flexible Diaphragms (F): These are usually made from traditional wood or 
lightweight materials. While common in older buildings, they cannot transfer 
lateral forces during earthquakes. 

• Rigid Diaphragms (R): Made from materials like reinforced concrete, these 
structures provide better horizontal stiffness and are more effective at resisting 
seismic loads. 

Presence of Connecting Devices: 

• With Connecting Devices (CD): These buildings include tie rods, tie beams, or 
other elements that improve the connection between structural components, 
enhancing overall stability and reducing earthquake vulnerability. 

• Without Connecting Devices (NCD): Lacking such reinforcement, these structures 
are more susceptible to the separation of elements and higher levels of damage 
during seismic events. 

 

 

 

 

 

 

 

 

 



 

Statistics of Masonry Buildings 

Construction Age: 

Irpinia Dataset: 

37% of masonry buildings were built before 1900, reflecting a significant presence of 
vulnerable structures. 

 

Figure 19. Irpinia construction year distribution based on the percentage of surveyed masonry buildings 

 

 

 

 

 

 

 

 



L’Aquila Dataset: 

57% of masonry buildings were constructed before 1919, indicating a larger proportion of 
older constructions than in Irpinia. 

 

Figure 20. L'Aquila construction year distribution based on the percentage of surveyed masonry buildings 

 

Number of Floors: 

Irpinia 1980 Dataset: Low-rise (1–2 floors) masonry buildings are 80.9% of the dataset. 

 

Figure 21. Irpinia masonry building height distribution by percentage of low-, medium-, and high-rise structures 



 

Figure 22. Irpinia floor distribution showing the percentage of masonry buildings by number of floors 

 

L’Aquila 2009 Dataset: Low-rise buildings make up 59%, indicating a shift toward taller 
structures. 

 

Figure 23. L'Aquila masonry building height distribution by percentage of low-, medium-, and high-rise structures 



 

Figure 24. L'Aquila floor distribution showing the percentage of masonry buildings by number of floors 

The classification is further detailed in Table 1, which presents a masonry building 
taxonomy based on key parameters such as wall texture, diaphragm rigidity, and the 
presence of connecting devices. 

Category Description 
IRR-F-NCD Irregular texture, Flexible diaphragm, No connecting devices 
IRR-F-CD Irregular texture, Flexible diaphragm, with connecting devices 
IRR-R-NCD Irregular texture, Rigid diaphragm, No connecting devices 
IRR-R-CD Irregular texture, Rigid diaphragm, with connecting devices 
REG-F-NCD Regular texture, Flexible diaphragm, No connecting devices 
REG-F-CD Regular texture, Flexible diaphragm, with connecting devices 
REG-R-NCD Regular texture, Rigid diaphragm, No connecting devices 
REG-R-CD Regular texture, Rigid diaphragm, with connecting devices 

Table 1. Masonry building typology taxonomy 



 

Figure 25. Number of masonry buildings by category and height, showing the distribution across low-rise, medium-rise, and 
high-rise structures 

 

Development of Fragility Curves 

o Traditional lognormal distribution models 
o Integration and benefits of the Generalized Extreme Value (GEV) distribution 

Distributions  
Lognormal distribution 

In probability theory, a log-normal distribution describes a continuous random variable whose 
logarithm follows a normal (Gaussian) distribution. In other words, if you take the natural log of 
a log-normally distributed variable, the result will be normally distributed. This type of distribution 
is commonly used to model positively skewed variables that cannot take on negative values, such 
as income levels, stock prices, or, in engineering, certain types of structural responses to stress or 
load. This means that if a random variable follows a log-normal distribution, its natural logarithm 
Y=ln(X) follows a normal distribution (Weisstein, n.d.). 

Similarly, if Y has a normal distribution, then the exponential function of Y, given by X=exp(Y), 
follows a log-normal distribution. A random variable that is log-normally distributed assumes only 
positive real values, reflecting the fact that the exponential function maps all real numbers to 
positive values (Everitt and Skrondal 2010). 

A log-normal process is a statistical model representing the result of multiplying many 
independent, positive random variables. This behavior can be explained using the central limit 
theorem, but applied in the logarithmic domain. When you take the logarithm of these variables, 



their product turns into a sum, and the central limit theorem illustrates that the sum of many 
independent variables tends to follow a normal distribution. As a result, the original (non-logged) 
variable follows a log-normal distribution. This concept is often known as **Gibrat’s law**, which 

suggests that proportional growth rates—like in economics, biology, or engineering—lead to log-
normal outcomes. According to this law, combining many independent, multiplicative processes, 
the result follows a log-normal distribution (Park and Bera 2009). 

The log-normal distribution is the maximum entropy distribution for a random variable X when 
the mean and variance of ln(X) are fixed. In simpler terms, among all possible distributions with 
a given mean and variance of the logarithm, the log-normal is the most "unbiased" or "least 
informative" choice—it represents the highest level of uncertainty consistent with the known 
constraints (Wikipedia contributors, n.d.). 

A log-normal distribution is defined by a random variable X=eμ+σZ where Z is a standard normal 
variable, and μ and σ are real numbers, with σ>0. The distribution of X is log-normal with 
parameters μ and σ, representing the mean and standard deviation of the natural logarithm of X, 
not X itself. 

If Y=μ+σZ is normally distributed, then X=eY is log-normally distributed. The relationship holds 
for any logarithmic base. 

To produce a log-normal distribution with desired mean μX and variance σX
2, use: 

𝜇 = ln⁡(
𝜇𝑥
2

√𝜇𝑥
2+𝜎𝑥

2
) 

𝜎 = ln (1 +
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2

𝜇𝑥2
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Alternatively, the "multiplicative" or "geometric" parameters μ∗=eμ and σ∗=eσ can be used. These 
parameters have a more direct interpretation: μ∗ represents the median of the distribution, while σ∗ 

is useful for determining the "scatter" or variability of the distribution. 

The probability density function (PDF) of a log-normal distribution, where X∼Lognormal(μ,σ2), 

is derived from the fact that the natural logarithm of X is normally distributed with mean μ and 

variance σ2. Mathematically, if ln(X)∼N(μ,σ2), then the PDF of the log-normal distribution is: 

 

𝑓𝑥(𝑥) =
1

𝑥𝜎√2𝜋
exp⁡(−

(ln(𝑥) − 𝜇)2

2𝜎2
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Where: 

• x>0 (since X is positive) 

• μ and σ are the parameters of the underlying normal distribution of ln(X) 



This formula describes the likelihood of observing a value x from a log-normal distribution 
(Johnson, Kotz, and Balakrishnan 1994). 

(Weisstein, n.d.). 

 

 

The cumulative distribution function (CDF of a log-normal random variable X is:𝑓𝑥(𝑥) =
⁡ φ(

ln(𝑥)−𝜇

𝜎
) 

• Φ is the standard normal distribution  

• μ is the median of the logarithm of X. 

• σ is the standard deviation of the logarithm of X (Wikipedia contributors, n.d.). 

Generalized extreme value distribution 
The Generalized Extreme Value (GEV) distribution brings together three types of extreme value 
distributions—Gumbel (Type I), Fréchet (Type II), and Weibull (Type III)—into a single, unified 
model. It is commonly used in extreme value theory to describe the behavior of the maximum 
values in sequences of identically distributed variables (de Haan and Ferreira 2007). 

 

In studies, the PDF of the standardized GEV distribution is (de Haan and Ferreira 2007). 

(Coles 2001) 

 

 

 

 

 

 

 

 

 



The CDF of the GEV distribution is defined as: 

 

 

Figure 26. Generalized Extreme Value (GEV) distribution curves for different shape parameters (ξ), illustrating variations in 
density behavior: numerator, minus mu, and density behavior: numerator, minus mu, and numeratorand denominator, minus 

mutorand
𝜇

𝜎
  is the standardized variable. 

• μ: Specifies the central value or location. 
• σ: Controls the spread or scale. 

 
• ξ: Determines the tail behavior: 

o ξ>0: Heavy-tailed (Fréchet). 
o ξ=0: Exponential tail (Gumbel). 
o ξ<0: Bounded tail (Weibull). 



 

Figure 27. Comparison of lognormal and GEV distributions against Monte Carlo (MC) simulation results, shown through 
probability density function (PDF) and cumulative distribution function (CDF) plots 

Results and Analysis 
This chapter compares the lognormal fragility curves from the filtered dataset with those from 
Rosti et al. The goal is to evaluate how data filtering affects the curve shape and damage state 
progression across typologies. 

Histogram and Lognormal Distribution 
Histograms were created using the input data, and the lognormal distribution's Probability Density 
Function (PDF) was overlaid for comparison. These results were then evaluated against the fitted 
lognormal distribution in the Rosti paper. While the overall trends and shapes of the distributions 
appear similar, there are noticeable differences between the two. 
 
One key factor behind these differences is the lack of transparency regarding the data filtering 
process used in the Rosti study. Their methodology for filtering the data is not clearly explained. 
This lack of detail makes it difficult to replicate their results or fully understand the adjustments 
they applied. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Concrete buildings 
For concrete inputs, we can summarize the data as follows: 

 



 

 



 
Figure 28.Low-rise gravity load building response for all damage levels, showing frequency distribution and comparison 

between lognormal PDF (input) and lognormal PDF (Rosti input) for each damage state 

When analyzing low-rise reinforced concrete buildings designed only for gravity loads, the 
comparison between my lognormal curves and those of Rosti reveals a consistent trend: while the 
general shape and progression remain similar across damage states, the difference between the 
curves becomes more obvious as the damage state increases. This pattern also appears in low-rise 
buildings designed with seismic criteria. However, at higher damage states—particularly DS5—

the differences become much more significant, with the curves diverging despite following the 
same overall direction. 

 



 

 



 

 



 

Figure 29.Low-rise Seismic pre81 building response for all damage levels, showing frequency distribution and comparison 
between lognormal PDF (input) and lognormal PDF (Rosti input) for each damage state 



 

 



 

 



 
Figure 30.Low-rise Seismic post81 building response for all damage levels, showing frequency distribution and comparison 

between lognormal PDF (input) and lognormal PDF (Rosti input) for each damage state 

 

A similar trend is observed in post-1981 code-compliant low-rise buildings, where the curves stay 
relatively aligned at lower damage levels but begin to deviate more sharply as damage severity 
increases. This suggests that, while both models agree on the initial damage behavior of low-rise 
reinforced concrete structures, their estimates diverge when predicting the likelihood of extensive 
or near-collapse damage. 

 



 

 



 

 



 

Figure 31. medium-rise gravity load building response for all damage levels, showing frequency distribution and comparison 
between lognormal PDF (input) and lognormal PDF (Rosti input) for each damage state 

 

The curves of mid-rise reinforced concrete buildings designed for gravity loads show good 
agreement at lower damage states, indicating a shared understanding of the initial vulnerability 
however, as we move toward DS3 and beyond, the curves diverge, reflecting increasing 
differences in how the models estimate the structure’s performance under stronger shaking. 

 



 

 



 

 



 
Figure 32. medium-rise Seismic pre81 building response for all damage levels, showing frequency distribution and comparison 

between lognormal PDF (input) and lognormal PDF (Rosti input) for each damage state 



 

 



 

 



 

Figure 33. medium-rise Seismic post81 building response for all damage levels, showing frequency distribution and comparison 
between lognormal PDF (input) and lognormal PDF (Rosti input) for each damage state 

A similar trend is visible for pre-code seismic reinforced concrete buildings (constructed before 
1981) in the mid-rise category: alignment at lower damage levels, followed by increasing 
divergence at higher ones. However, in this case, the overall similarity remains better than the low-
rise cases, possibly due to more consistent structural behavior or better representation in the filtered 
dataset. The post-code mid-rise buildings (constructed after 1981) show a nearly identical trend, 
with good agreement in DS1 and DS2 but growing differences as the severity of damage increases, 
though again, with slightly better consistency than their low-rise counterparts. 

 

 



 

 



 

 



 
Figure 34. high-rise gravity load building response for all damage levels, showing frequency distribution and comparison 

between lognormal PDF (input) and lognormal PDF (Rosti input) for each damage state 



 

 



 

 



 

Figure 35. high-rise Seismic pre81 building response for all damage levels, showing frequency distribution and comparison 
between lognormal PDF (input) and lognormal PDF (Rosti input) for each damage state 



 

 



 

 



 

Figure 36. medium-rise Seismic post81 building response for all damage levels, showing frequency distribution and comparison 
between lognormal PDF (input) and lognormal PDF (Rosti input) for each damage state 

 

When looking at high-rise structures, a noticeable shift of the curves to the right is observed in my 
results, indicating that higher PGA values are needed to reach the same probability of damage as 
estimated by Rosti. However, despite this horizontal shift, the overall trend remains similar, and 
especially at lower damage states, the curves show matched behavior, suggesting a shared 
understanding of how high-rise buildings begin to respond under seismic loading. 



The comparison of the Rosti model's Cumulative Distribution Function (CDF) with the input data 
can be visualized as follows: 

 

 

 
Figure 37. Cumulative distribution functions (CDFs) for low-rise, medium-rise, and high-rise buildings under gravity load, 

seismic pre-81, and seismic post-81 design levels, comparing input and Rosti lognormal curves across all damage states (DS1–

DS5). 

 

In almost all cases, the expected trend of increasing probability with higher damage states and a 
clear separation between damage levels is not well captured in the input curves derived from my 
dataset and filtering approach. This pattern, however, is visible in the original curves presented by 



Rosti. In Rosti’s model, the progression from DS1 to DS5 follows a logical and smooth increase 

in probability, with consistent spacing between each damage level. In contrast, my curves often 
show overlapping or irregular transitions between damage states, making it more difficult to 
distinguish the progression of structural degradation as seismic intensity increases. 

The exception is in the gravity load case, where the figures show relatively good similarity between 
the input data and Rosti’s model. In the other typologies, however, my results exhibit a sharper 

change between damage states, especially in the higher ones, while Rosti’s curves maintain a more 

gradual and continuous increase. This difference suggests that while my filtering method may have 
improved data quality by removing inconsistencies, it may also have reduced the smoothness and 
continuity of the damage progression visible in the original model. 

 

 

 



Masonry buildings 

 

 

 

 

 



 

 



 

 
Figure 38. IRR-F-NCD damage level distributions (DS1–DS5) for masonry buildings 

For the IRR-F-NCD class, there is a clear increase in the gap between the input data and Rosti’s 

curves as the damage level increases. However, in the lower damage states, particularly DS1 and 
DS2, the two models display a similar trend, although with a noticeable shift to the left in the input 
curve, indicating a higher estimated vulnerability at lower PGA levels. 



 

 



 

 



 

 
Figure 39. IRR-F-CD damage level distributions (DS1–DS5) for masonry buildings 

In the IRR-F-CD typology, the match is strong in the early damage states, with DS1 and DS2 
closely matching Rosti’s results. However, the similarity drops significantly at DS5, where the 

input curve diverges, suggesting a much different prediction of collapse probability. A similar 
pattern is observed in IRR-R-NCD: while the lower damage levels align well, the higher damage 
states show growing differences, with a steeper increase in the input model. 



 

 



 

 



 
Figure 40. IRR-R-NCD damage level distributions (DS1–DS5) for masonry buildings 

 

 



 

 



 

 



 
Figure 41. IRR-R-CD damage level distributions (DS1–DS5) for masonry buildings 

 

 



 

 



 

 



 
Figure 42. REG-F-NCD damage level distributions (DS1–DS5) for masonry buildings 
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Figure 43. REG-F-CD damage level distributions (DS1–DS5) for masonry buildings 

For IRR-R-CD, REG-F-NCD, and REG-F-CD typologies, the initial damage state DS1 matches 
the two models. Nevertheless, beyond DS1, the differences become substantial, particularly at DS4 
and DS5, where the input curves rise too sharply or fail to follow the gradual increase observed in 
Rosti’s curves. 

 

 

 



 

 

 



 

 
Figure 44. REG-R-NCD damage level distributions (DS1–DS5) for masonry buildings 

 



 

 

 



 

 

 



 
Figure 45. REG-R-CD damage level distributions (DS1–DS5) for masonry buildings 

 

In the cases of REG-R-NCD and REG-R-CD, the input model shows a consistent leftward shift 
compared to Rosti’s, particularly in the higher damage states. While DS1 still demonstrates some 
similarity, this alignment vanishes progressively as the damage level increases. 

The CDF distribution of the masonry buildings can be presented as below for both Rosti and input 
data: 

 
Figure 46.IRR-F-NCD cumulative distribution functions (CDFs) and comparison between input data and Rosti figures 



 
Figure 47.IRR-F-CD cumulative distribution functions (CDFs) and comparison between input data and Rosti figures 

 
Figure 48.IRR-R-NCD cumulative distribution functions (CDFs) and comparison between input data and Rosti figures 



 
Figure 49. IRR-R-CD cumulative distribution functions (CDFs) and comparison between input data and Rosti figures 

 
Figure 50.REG-F-NCD cumulative distribution functions (CDFs) and comparison between input data and Rosti figures 



 
Figure 51. REG-F-CD cumulative distribution functions (CDFs) and comparison between input data and Rosti figures 

 
Figure 52.REG-R-NCD cumulative distribution functions (CDFs) and comparison between input data and Rosti figures 



 
Figure 53.REG-R-CD cumulative distribution functions (CDFs) and comparison between input data and Rosti figures 

Looking at the CDF distributions, the ordering of the damage levels in my results follows the 
correct trend, similar to what Rosti achieved. The progression from lighter to more severe damage 
states is preserved. However, the exceedance probability in my curves is consistently higher across 
all cases. This suggests that while the structure of the damage sequence is reliable, my filtering 
approach results in a more conservative assessment of vulnerability, likely due to the 
characteristics of the filtered dataset. 

Comparison between methods 
Both this study and the Rosti method focused on residential buildings affected by the 1980 Irpinia 
and 2009 L’Aquila earthquakes, using data from municipalities with a completeness ratio higher 

than 90%. However, a key difference lies in how we treated the data after selection. In our 
approach, we did not simply assume that all high-completeness-ratio (CR) data was accurate; 
instead, we took the extra step of checking each entry individually. This extra was particularly 
crucial because the Generalized Extreme Value (GEV) distribution we utilized is highly sensitive 
to outliers and inconsistent records—just one erroneous data point can lead to unrealistic spikes in 
the results. 

For buildings that had undergone multiple surveys, we always used the most recent version as the 
reference. If the latest survey was unavailable, we opted for the most complete alternative. In cases 
where surveys presented major contradictions—such as different reports providing completely 
opposing information—we excluded that data entirely. In summary, our filtering process was 
much stricter than that of Rosti's, which allowed us to develop cleaner and more reliable fragility 
curves. This level of care is especially vital when using advanced models like GEV, as the accuracy 
of the input directly impacts the quality of the outcome. 

 



Histograms and GEV Distribution: 
This section explores how the choice of statistical model—GEV or lognormal—can change how 
fragility is represented. Both models were applied to the same filtered dataset, directly comparing 
building heights and design categories. It helps highlight which model is more conservative or 
sensitive to rare but serious damage.  

Histograms and the Generalized Extreme Value (GEV) distribution are key tools for exploring 
data and modeling extreme events. Histograms provide a visual overview of data distribution, 
helping guide the choice of suitable models. The GEV distribution is used to model the behavior 
of extreme values, with its parameters often informed by patterns observed in histograms. 
Together, these tools improve understanding of the data and support more informed decision-
making across a wide range of applications. 



Concrete buildings: 

 

 



 

 



 
Figure 54. GEV distribution for low-rise gravity load concrete buildings across all damage levels 



 

 



 

 



 
Figure 55. GEV distribution for low-rise seismic pre-81 concrete buildings across all damage levels 



 

 



 

 



 
Figure 56. GEV distribution for low-rise seismic post-81 concrete buildings across all damage levels 



 

 



 

 



 
Figure 57. GEV distribution for medium-rise gravity load concrete buildings across all damage levels 



 

 



 

 



 
Figure 58. GEV distribution for medium-rise seismic pre81 concrete buildings across all damage levels 



 

 



 

 



 
Figure 59. GEV distribution for medium-rise seismic post-81 concrete buildings across all damage levels 



 

 



 

 



 
Figure 60. GEV distribution for high-rise gravity load concrete buildings across all damage levels 



 

 



 

 



 
Figure 61. GEV distribution for high-rise seismic pre-81 concrete buildings across all damage levels 



 

 



 

 



 
Figure 62. GEV distribution for high-rise seismic post-81 concrete buildings across all damage levels 

 

 

 

 



Masonry buildings 

 

 



 

 



 
Figure 63. GEV distribution for IRR-F-CD masonry buildings across all damage levels 



 

 



 

 



 
Figure 64. GEV distribution for IRR-F-NCD masonry buildings across all damage levels 



 

 



 

 



 
Figure 65. GEV distribution for IRR-R-NCD masonry buildings across all damage levels 



 

 



 

 



 
Figure 66. GEV distribution for REG-F-CD masonry buildings across all damage levels 



 

 



 

 



 
Figure 67. GEV distribution for REG-F-NCD masonry buildings across all damage levels 



 

 



 

 



 
Figure 68. GEV distribution for REG-R-NCD masonry buildings across all damage levels 



 

 



 

 



 
Figure 69. GEV distribution for IRR-R-CD masonry buildings across all damage levels 

 

 



 

 



 

 
Figure 70. GEV distribution for REG-R-CD masonry buildings across all damage levels 

 

The figures below show the Cumulative Distribution Function (CDF) of the Generalized Extreme 
Value (GEV) distribution, presented as an updated alternative to the CDF of the lognormal 
distribution.  

 



For concrete buildings:  

 
Figure 71. Cumulative distribution functions (CDFs) of the GEV distribution for concrete buildings with shape parameter ξ = –

0.5 

 

 

 

 



 
Figure 72. Cumulative distribution functions (CDFs) of the GEV distribution for concrete buildings with shape parameter ξ = 0 



 
Figure 73. Cumulative distribution functions (CDFs) of the GEV distribution for concrete buildings with shape parameter ξ = 0.5 

Several inconsistencies were observed in the original figures. For example, some CDF curves 
crossed over one another or did not follow the expected order based on damage severity. In a well-
structured model, higher damage levels should consistently correspond to lower probabilities at 



any given input value, since severe damage is less common. These irregularities pointed to possible 
issues in the underlying calculations. 

One likely cause of these issues was the limited amount of input data. Small datasets can lead to 
highly variable results for the GEV distribution, making parameter estimates unstable or 
exaggerated. This can produce unrealistic or misleading outputs, as evident in some earlier plots. 

The methodology was refined to address these problems. The input data was carefully reviewed, 
parameter estimation techniques were improved, and greater consistency was ensured across 
datasets. These changes were made to improve the CDF curves' reliability and readability. 

The revised figure below shows the updated GEV and lognormal distributions CDFs. It highlights 
the improvements made, offering a clearer and more accurate representation. 

 

Figure 74. Adjusted Generalized Extreme Value (GEV) and lognormal CDFs for concrete buildings 

 



In most cases, the GEV curves tend to rise earlier than the lognormal ones. This means that the 
GEV model usually predicts a higher chance of damage at lower ground shaking levels. This 
difference is especially noticeable in the lower damage states like DS1 and DS2, where the GEV 
curve often increases sooner and more steeply than the lognormal. 

The updated plots show that the GEV model tends to be more conservative and responsive, 
especially as damage levels increase. While both models reflect the expected progression from 
light to severe damage, the GEV distribution better captures how quickly vulnerability can grow 
as seismic intensity increases. This makes it especially useful for identifying risk in more fragile 
or poorly designed buildings, or in situations where a more cautious assessment is needed. 

For masonry buildings:  

After analyzing GEV behavior in RC buildings, I applied it to masonry typologies. Since masonry 
is more irregular and damage-prone, it is important to see how the model behaves when the shape 
parameter (ξ) changes.  

 



 
Figure 75. Cumulative distribution functions (CDFs) of the GEV distribution for masonry buildings with shape parameter ξ = –

0.5

 

Figure 76. Cumulative distribution functions (CDFs) of the GEV distribution for masonry buildings with shape parameter ξ = 0 



 
Figure 77. Cumulative distribution functions (CDFs) of the GEV distribution for masonry buildings with shape parameter ξ = 0.5 

 

In the earlier CDF plots for masonry buildings using the GEV distribution, there were several 
problems. Some of the curves crossed each other or did not follow the correct order of damage 
levels. Normally, we expect more severe damage states to have lower probabilities at any given 
PGA value, since they happen less often. When this order is not followed, it suggests something 
went wrong with the calculations or the data. 

One of the main reasons for these problems was the limited amount of input data. The GEV 
distribution is sensitive to how much data you have, and when the dataset is small or unbalanced, 
the model can give unstable or unrealistic results. This was visible in some plots where the curves 
were not smooth or did not make sense. 

We improved the data and the method used to estimate the GEV parameters to fix this. The input 
data was cleaned more carefully, and the fitting process was made more stable. 

The figure below illustrates the refined CDFs for the GEV and lognormal distributions for masonry 
structures, showcasing adjustments made to enhance accuracy and address inconsistencies 
observed in the initial calculations. These refinements provide a more accurate representation of 
the distributions specific to masonry buildings. 



 

 
Figure 78. Adjusted Generalized Extreme Value (GEV) for masonry buildings 

 

 

 



Study case  
Torino is in an area with seismic activity, so assessing how well its buildings can handle 
earthquakes is important. This study examines the city’s buildings to understand their vulnerability 

and create fragility curves based on local structural and environmental factors. Fragility curves 
help estimate the chance of damage to buildings at different earthquake strengths, making them 
useful tools for planning and risk reduction. 

Modelling  
The dataset includes important details about buildings in Torino, such as construction year, number 
of floors, location, and structural features. These factors are essential for understanding how 
buildings might respond to earthquakes and for creating reliable vulnerability models. However, 
because detailed structural data were limited, all buildings were grouped under the reinforced 
concrete category. While this simplification may reduce accuracy, it was a necessary step to 
organize and filter the data effectively.  

 

 

Figure 79. Building location distribution in Torino and Piemonte, Italy 

 



 

Figure 80. Map of input building data across Torino, Italy, showing spatial distribution of surveyed structures used in the 
analysis 

To categorize the buildings, we can organize the results for each category as follows: 



 

Figure 81. Torino construction year distribution based on the percentage of surveyed buildings 

 
Figure 82. Torino building height distribution by percentage of low-, medium-, and high-rise structures 

 

 



Different categories in the evaluation of the Torino data are presented: 

Material Building Class Design Level 

RC 

LOWRISE 
GRAVITYLOADS 
PRE1981 
POST1981 

MIDRISE 
GRAVITYLOADS 
PRE1981 
POST1981 

HIGHRISE 
GRAVITYLOADS 
PRE1981 
POST1981 

Table 2. Different categories in the evaluation of the Torino data 

Fragility curves 

This study aims to develop fragility curves for the Torino to improve the accuracy of seismic risk 
assessments. This process involves using advanced statistical models—specifically the 
Generalized Extreme Value (GEV) distribution—and detailed data on the city’s building 

characteristics and seismic activity. The results will help shape risk reduction strategies, guide 
building retrofits, and support urban planning efforts to make Torino more resilient to future 
earthquakes. 



 

 

Figure 83.Fragility curves of Torino using the Generalized Extreme Value (GEV) distribution for reinforced concrete (RC) 
buildings across all heights, design levels, and damage levels 

Conclusion 
 

This study explored seismic vulnerability in a structured and practical way, focusing on developing 
accurate fragility curves to better understand how buildings respond to earthquakes. By using 
detailed datasets from Italy—particularly from the Da.D.O. platform—and applying advanced 
methods, the research produced fragility models tailored to different building types and local 
seismic conditions. 

The Generalized Extreme Value (GEV) distribution was a major advancement. Compared to 
traditional lognormal models, the GEV distribution is better at capturing the likelihood of extreme 
damage, especially in high-risk scenarios. This improves the reliability of damage predictions and 
supports more informed decision-making. 



The main contributions of this study include: 

• Use of Real Data: 

The models are based on actual damage data from post-earthquake surveys, which helps 
reduce uncertainty and makes the results more practical and applicable. 

• Policy Support: 

Fragility curves developed in this study can guide retrofitting priorities, help allocate 
resources effectively, and improve community resilience in earthquake-prone areas. 

 

The case study of Torino showed how this approach works in a real-world setting, highlighting its 
flexibility and relevance for different urban environments. 

Future research could build on this work by including more complex factors such as soil-structure 
interaction, real-time seismic monitoring, and the combined impact of multiple hazards. These 
additions would improve the accuracy of fragility models and support stronger, more resilient 
infrastructure planning worldwide. 
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