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ABSTRACT 
In civil, mechanical and aerospace engineering, structural stability is an important issue 

when concerning open, thin-walled elements; for example C, L or Z profiles. These 

components are commonly found in lightweight structures due to their high strength-to-

weight ratio, and can be subjected to buckling phenomena regarding local, distortional 

and global stability. 

This thesis focuses on the global buckling of open thin-walled beams, with the main 

objective of implementing a Matlab code with an effective and versatile one-

dimensional finite element formulation of literature. The Thesis combines theoretical 

formulations together with analytical and numerical modelling. 

Firstly, the general concepts of structural stability and elastic buckling are recalled, 

discussing different types of bifurcation. Then, Vlasov's theory for open thin-walled 

sections is summarized. Also, the Finite Element Method (FEM) was introduced as a 

general and powerful tool to model behavior of beams subjected to various loading 

conditions and boundary conditions. 

As an original contribution, a Matlab code was implemented to analyze elastic buckling 

of open thin-walled profiles by exploiting a finite element formulation of literature 

which uses exact or approximated interpolating functions. This code aims at being an 

open tool allowing to get quick solutions and to be easily embedded into more general 

Matlab codes. 

In the last part of the Thesis, the analysis was extended to tall buildings, providing a 

global view of the effects due to wind and seismic loads, also considering the correlation 

between the global stability and local buckling of a structural element. 

The results obtained by the formulation implemented were compared with others 

available in literature or with those obtained with a commercial finite element program. 

The program implemented allows for the global elastic buckling analysis of straight 

beams with open cross-section under different loading and boundary conditions.  

Tapered beams can be analyzed by connecting a discrete sequence of segments of 

uniform cross-section each, but with different sections from segment to segment.  
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Possible future developments can consider a parallel-arranged system of open thin-

walled beams, as well as open-section profiles having local closures at specific 

locations, like those of present in some tall building structures. 
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1. INTRODUCTION 
Buckling and structural stability is a fundamental topic for civil, mechanical and 

aerospace engineering practitioners. The phenomenon of buckling is especially 

important for thin-walled and open-section members that are extensively used in 

engineering applications due to their high strength-to-weight ratio and structural 

efficiency. Indeed, thin-walled and open-section members form the backbone of many 

lightweight structural work modules (i.e. frames, bridges, aerospace components) in 

engineering applications. However, owing to their geometry they are also more prone to 

buckling phenomena (local, distortion, global, etc.). Furthermore, the complex 

behaviors of these members under load do require robust and extensive analysis, which 

takes into consideration the geometry and the boundary and loading conditions. 

The primary aim of this thesis is to investigate the buckling behavior of thin-walled 

open-section rods, particularly the mechanisms of buckling and what factors affect their 

capacity under load. This investigative work is carried out using a combination of 

theoretical analysis, numerical simulations, and structural analysis using computational 

software. 

The discussion proceeds on the basis of the fundamentals of buckling and the main 

theories of elastic buckling then proceeds to an analysis of the geometric and mechanical 

properties of the thin-walled open sections. At the end of this discussion, numerical 

analyses of results and concluding comments are documented, for the express purpose 

to know and understand the phenomenon and what its implications are for design. 

The thesis is divided into eight main chapters, each developing a specific component of 

the problem being investigated. The first chapter introduces the notion of structural 

stability and provides an overview of the main types of buckling phenomena as 

bifurcation instability, limit point instability and snap-through instability.  

The relationship between the global stability of the structure as a whole, and the local 

stability of each individual section, is also examined, at this point. 

 

 



2.1 Preliminary Considerations about Stability and Equilibrium 

14 
 

Following that, there is a detailed exploration of the Vlasov postulate that is key to open-

section, thin-walled elements. The exploration how the internal stress distribution - the 

axial and tangential stresses - will affect the buckling behavior of this form of structural 

element. 

The focus is on elastic buckling of this type of thin-walled open section member and 

reference will reveal the elastic stiffness operator, geometric stiffness operator, the 

equilibrium equations and the elastic potential energy. The investigation will also 

include a specific case of uniformly compressed beams. 

An important aspect of the investigation to ensure a full representation of the topic, and 

therefore, to clarify torsional behavior of thin-walled sections is the shear center 

methodology, which will include descriptions of the various methods of calculating 

shear center for a number of geometries including rectangles and C-sections. 

The thesis will in addition include the consideration of the Finite Element Method 

(FEM) applied to modelling and investigation of behavior of thin-walled sections. It will 

also discuss polynomial elements, interpolation functions and the stiffness matrices. The 

thesis will also consider some real applications for beams subjected to different loading 

and boundary conditions. 

The last part of the thesis will involve the application of stability concepts to tall 

buildings involving lateral (transverse) load distributions coming from wind or seismic 

action. It will also investigate local stability of structural elements, and the relationship 

between global instabilities with local instabilities, including some notes on implications 

for design. 

In providing this context, and to represent effectively and interpretively the buckling 

phenomenon of open-wall thin sections, the thesis will adopt a mixed theoretical, 

analytical and application based methodology. The outcomes will provide effective, 

simple and quick tools for the elastic buckling analysis, including the possibility to be 

embedded into more general Matlab codes.  
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2. STABILITY 

2.1 Preliminary Considerations about Stability and Equilibrium 

Structural stability is the ability of a structure to maintain its shape and resist 

deformation or collapse under the action of external loading, e.g. earthquakes, wind, 

snow and environmental factors, among others. Structural stability is, mainly, known as 

a field of mechanics that studies the behavior of structures under compression [1]. 

A structure is referred to as stable if it can retain its equilibrium under the applied loads, 

and any small perturbation does not cause the structure to fail or collapse [1]. 

Analyzing this concept more in detail, it is possible to say that, considering a system, 

the concept of stability is linked to the idea that a small disturbing action does not change 

the state of equilibrium achieved, while the concept of equilibrium is connected to the 

permanence of the system in the state in which it finds itself, in the absence of disturbing 

actions and under the effect of the forces applied to it [2]. 

Taking into account an elastic body, like a beam, called Ci the generic equilibrium 

configuration under the action of the load F applied to it, if the external actions are 

suddenly made to vary by ΔF, that for hypothesis is very small, the body assumes a new 

configuration very close to the initial one [2]. 

If the perturbing cause of ΔF is removed, depending on the behavior assumed by the 

system, it will be said that the body, in configuration Ci, is in equilibrium: 

- Stable: if it returns to the initial configuration; 

- Unstable: if it takes on new configurations different from the previous ones;  

- Indifferent or neutral: if it remains in the assumed configuration [2]. 

 

Figure 1: Stable (a), Unstable (b) and Indifferent (c) equilibrium configurations [29] 
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Depending on whether the loss of stability concerns more or less conspicuous parts of a 

structure, instability can be defined: 

- Global: if it affects the entire structure (e.g. an arch or a vault): 

- Partial: if it affects only a part of the structure (e.g. the compressed beam of a 

truss); 

- Elementary: if it affects only one element of the structure (e.g. a frame member); 

- Local: if it affects a part of an element (e.g. the outline of the core of a solid-

walled beam). 

Instability can only occur in structures that are either long and slender or relatively thin, 

meaning their thickness or one of their dimensions is significantly smaller compared to 

the others [2]. 

 

2.2 Stability of a Structure  

As can be easily understood, the stability of a structure, in relation to the forces that are 

applied to it, represents a critical aspect of structural engineering. 

In particular, structural stability refers to the ability of a built system or structure to 

maintain its equilibrium under the influence of external forces without experiencing 

failure or collapse, therefore the behavior of structures subjected to different loading 

conditions have to be analyzed [3]. 

When a structural stability analysis is performed, there are a lot of aspects that have to 

be taken into account, such as load-bearing capacity, material strength, geometric 

configuration, and the effects of dynamic forces like wind, seismic activity, and 

temperature variations [3]. 

Structural stability assessment need computer simulations and physical testing to assess 

the structural integrity and performance under different loading scenarios.  

In particular, thanks to finite element analysis, structural dynamics analysis, as well as 

experimental tests, can be a valuable aid to predict structural behavior and which 

elements are most likely to collapse or failure [3]. 

To reduce the possibility of structural failures and increase the durability of structures, 

it is possible to follow the design guidelines that allow for comprehensive stability 
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assessments. This way, the structure is designed in a way that the structures can 

withstand forces such as wind, seismic activity and material fatigue, improving overall 

safety and longevity [3]. 

To improve structural stability, it is necessary to adopt appropriate design practices, 

choose suitable materials and use advanced calculation methods. It is also possible to 

use reinforcement techniques and retrofit solutions to increase stability and robustness 

[3].  

As far as existing structures are concerned, regular monitoring, continuous maintenance 

and scheduled inspections are of paramount importance to detect potential stability, 

collapse and deformation problems at an early stage [3]. 

Thanks to technological innovations and design standards, analysis techniques to assess 

the stability and safety of structures are increasingly improving, which make it possible 

to promote more sustainable and resilient built environments [3]. 

 

2.3 Structural Instability 

Taking into account the behavior of structures under a sufficiently high compressive 

force (or stress), that leads to losing its stiffness, experiencing a noticeable change in 

geometry, and becoming unstable, it is possible to notice that the structure loses its 

capacity to carry the applied loads and is incapable of maintaining a stable equilibrium 

configuration [4]. 

Examples of structural instability include:  

- buckling of a column under a compressive axial force,  

- lateral torsional buckling (LTB) of a beam under a transverse load,  

- sideways buckling of an unbraced frame under a set of concentric column forces,  

- etc... [4]. 
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2.4 Types of Instability  

Instability can generally be classified into: Bifurcation (branching) instability, limit 

point instability, finite disturbance instability, and snap-through instability [4]. 

 

2.5 Preliminary Information about Bifurcation 

The phenomenon of bifurcation, which is a fundamental concept in the mechanics of 

materials and stability theory, is related to dynamic analysis and occurs when a system, 

subjected to loads, passes through a critical point where its behavior characteristics 

change drastically. Bifurcation theory is the mathematical study of how the qualitative 

or topological structure of a set of curves or the solutions of differential equations 

changes. In particular, the phenomenon of bifurcation occurs when, due to a small 

gradual change in the parameters of a System, a sudden change in the behavior of the 

structure is generated. Bifurcations can occur in both continuous and discrete systems, 

leading to significant changes in system dynamics [10]. 

 

2.5.1 Mathematical definition of bifurcation 

Mathematically, a bifurcation occurs when the stability of an equilibrium points of a 

differential equation or a dynamical system change as a parameter varies. Consider a 

system described by: 

 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝜇) (2.1) 

where: x represents the state variable, μ is a control parameter and f(x, μ) is a smooth 

function describing the system. 

A bifurcation point occurs at μ = μc when the qualitative nature of the solutions x(t) 

changes, such as losing stability or branching into new equilibrium states [10]. 
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2.5.2 Types of bifurcation 

It is useful to divide bifurcations into two principal classes, local and global bifurcations: 

Local Bifurcations: these are analyzed by examining changes in the local stability of 

equilibria, periodic orbits, or other invariant sets as parameters cross critical thresholds. 

Examples include: 

- Saddle-Node Bifurcation: two fixed points (one stable, one unstable) collide and 

annihilate each other. 

- Pitchfork Bifurcation: a single stable equilibrium splits into multiple equilibria, 

which can be stable or unstable depending on whether the bifurcation is 

subcritical or supercritical. 

- Hopf Bifurcation: a stable equilibrium loses stability and generates a periodic 

orbit, which can be stable (supercritical) or unstable (subcritical). 

- Trans-critical Bifurcation: two fixed points exchange stability as parameters are 

varied. 

Global Bifurcations: these occur when larger invariant sets "collide" with each other or 

with system equilibria. They are often more difficult to analyze and typically involve 

complex topological changes [10]. 

 

2.5.3 Considerations 

By understanding the phenomenon of bifurcation, it is possible through structural 

engineering, to predict and prevent undesirable behavior of structures, making sure that 

they remain in a state of stable equilibrium during their use, thus preventing failures or 

instabilities [10]. 

Bifurcation can happen in multiple instances: 

1. Buckling of beams and columns represent a structural element that compresses to a 

point that exceeds a critical load that generates stability and instability, i.e., two 

equilibria. 
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2. In fluid dynamics, the transition from laminar flow to turbulent flow can be 

represented with a bifurcation diagram. 

3. When predator-prey dynamics have bifurcation effects when the rates of change of 

population either increase or decrease. 

4. In economics, the initial changes of markets occurring from crashes or shocks can 

be analyzed using bifurcation theory [10]. 

 

2.6 Buckling and Post-buckling of Conservative Systems 

Conservative mechanical systems, particularly elastic structures subjected to potential 

loads (primarily dead loads), constitute a significant topic of interest in the study of 

bifurcation phenomena. Numerous academic works are dedicated exclusively to this 

subject.  

The pertinent theoretical framework, commonly referred to as Buckling and Post-

Buckling Theory, is predominantly formulated within a static context. This is because 

dynamic effects are generally considered irrelevant to the stability of such systems [11]. 

In the analysis of static systems, the initial step involves determining the fundamental 

equilibrium path, which represents the succession of equilibrium states traversed by the 

system as a control parameter is progressively increased from zero.  

This evaluation can be conducted either numerically, via continuation methods, or 

analytically (or semi-analytically) using perturbation or asymptotic methods. While 

continuation methods offer a high degree of accuracy, their application requires 

repeating the analysis for every new set of parameters, such as varying imperfections 

[11]. 

Conversely, perturbation methods, although approximate, provide explicit analytical 

expressions that facilitate parametric studies.  

Once the fundamental equilibrium path is established, the occurrence of bifurcations 

along this path must be thoroughly examined.  
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The bifurcation analysis involves the resolution of the following points:  

a) an eigenvalue problem associated with the bifurcation parameter,  

b) a sequence of linear equations, all governed by the same singular operator.  

Bifurcations can occur at branch points, which represent many different paths are 

intersecting, or at bend points, which represent the existence of limit loads [11]. 

The perturbation method has advantages: 

a) It is possible to make asymptotic expressions for the branched equilibrium paths, 

b) It is possible to learn about the impact of imperfections, which usually diminish the 

maximum load we can sustain, 

c) It is possible to make non-trivial fundamental paths, by extrapolating from the 

equilibrium points we have, we can estimate the limit loads [11]. 

 

2.6.1 Static analysis of conservative systems  

The nonlinear equilibrium equation of an undamped elastic system with n degrees of 

freedom (DOF), subjected to positional conservative forces influenced by a single 

parameter μ, can be derived from the stationary condition of the Total Potential Energy 

(TPE) [11]. 

 𝛱(𝐪) ≔ 𝑈(𝐪) + 𝜇𝑉(𝐪) (2.2) 

Here, U(q) represents the elastic potential energy of the system, which is assumed to be 

positive definite. V(q) denotes the potential energy of the applied loads, while q is the 

vector of Lagrangian parameters describing the system's configuration.  

The stationary condition of the Total Potential Energy, Π, is expressed as: 

 𝛿𝛱(𝐪) = ቆ൤
𝜕𝑈

𝜕𝐪
൨

்

+ 𝜇 ൤
𝜕𝑉

𝜕𝐪
൨

்

ቇ 𝛿𝐪 = 0,         ∀𝛿𝐪 (2.3) 

which implies: 

 
𝜕𝑈

𝜕𝐪
+ 𝜇

𝜕𝑉

𝜕𝐪
= 0 (2.4) 

This expression represents the nonlinear equilibrium equation of the system.  
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By definition, the internal elastic force is given by: 

 𝐟௘௟(𝐪) ≔ −
𝜕𝑈

𝜕𝐪
 (2.5) 

and the positional external force is defined as: 

 𝐟௘௫௧(𝐪) ≔ −
𝜕𝑉

𝜕𝐪
 (2.6) 

Therefore, Equation 4.3 can be equivalently rewritten as: 

 𝐟௘௟(𝐪) + 𝜇𝐟௘௫௧(𝐪) = 0 (2.7) 

Alternatively, this can be written via a direct equilibrium approach, i.e., particularizing 

the cardinal equation of dynamics [11]: 

 𝐌𝐪̈ = 𝐟௜௡௧(𝐪, 𝐪̇) + 𝜇𝐟௘௫௧(𝐪, 𝐪̇) (2.8) 

 

2.6.2 Equilibrium paths and bifurcation 

The (generally multiple) solutions of the nonlinear Equation to define fel characterize 

the equilibrium paths of the system, typically represented in a parametric form such as 

q = q(s) and μ = μ(s), where s denotes a control parameter.  

The primary objective of static bifurcation analysis is to thoroughly describe the 

neighborhoods surrounding the singularity points that occur along these equilibrium 

paths. 

Achieving this objective requires two main tasks:  

a. identifying and characterizing the singularity points, and  

b. in the case of branching points, constructing the paths that emerge from these 

points.  

Regarding the construction of equilibrium paths, two approaches are commonly 

employed: numerical and analytical methods [11]. 
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2.7 Observation about Elasto-Plastic Buckling of Planar Beam Systems 

Analyzing elasto-plastic buckling of planar beam systems is invariably complicated 

when considering buckling behavior beyond the elastic limit, both from an algorithmic 

and conceptual standpoint [11]. 

Algorithmically, it is not possible to derive equilibrium equations using the familiar 

stationary condition from total potential energy, as there is no potential for a non-

conservative system, and we will need to use a different route, such as the direct method 

or the principle of virtual work. Further, the piecewise nature of the constitutive law to 

describe the mechanical behavior of the system through its stages of plasticization, 

makes the task of evaluating the response of the entire system incrementally [11]. 

Conceptually, even though static analyses based on energy criteria are readily applicable 

to elastic systems, it is not possible to easily hold the same assumption for elasto-plastic 

systems due to the obvious elastic unloadings. However, under monotonic increasing 

stresses, the system will tend to act as a nonlinearly elastic structure, somewhat allowing 

for the more classical analytical techniques [11]. 
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2.8 Bifurcation Instability  

Bifurcation instability happens when deformation that occurs in one direction suddenly 

changes to another direction. An example is that of a perfectly straight column subject 

to a concentric compressive load. When the load is first applied, the column shortens or 

experiences axial deformation in the direction of the applied force [4]. 

When the applied load gradually increases, there comes a point when the mode of 

deformation suddenly switches from one of axial to one of lateral in which the column 

buckles in a direction perpendicular to the direction of the applied force. The load at 

which this occurs is referred to as the bifurcation, or critical, load. Bifurcation instability 

can be symmetric or asymmetric [4]. 

As shown in Fig. 2, for symmetric bifurcation the secondary equilibrium path, that is 

the equilibrium path that corresponds to the buckled configuration of the structure, is 

symmetric about the primary equilibrium path (the equilibrium path that corresponds to 

the pre-buckled configuration of the structure) [4]. 

 

Figure 2: Bifurcation Instability [4] 

 

Symmetric bifurcation is considered stable when the secondary equilibrium path rises 

above the critical load (as shown in Curve a), while it becomes unstable if the path drops 

below the critical load (as in Curve b).  
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A classic example of stable symmetric bifurcation is the elastic buckling of a perfectly 

straight, slender column under a centrally applied compressive load.  

On the other hand, an example of unstable symmetric bifurcation is the elastic buckling 

of a guyed tower in asymmetric bifurcation, the secondary equilibrium path does not 

mirror the primary path (illustrated by Curve c). For instance, in a geometrically perfect 

L-shaped frame subjected to a concentric axial load on the column, the secondary 

equilibrium path may either drop below or rise above the critical load. This depends on 

whether the buckling direction causes the beam's shear force to act downward or upward 

on the column, respectively [4]. 

 

2.9 Limit Point Instability  

Limit point instability refers to the scenario when a single deformation mode exists 

throughout the load history. The deformation increases when the load increases from 

start of loading to final failure. The load-deflection behavior of a structure that 

experiences limit point instability is shown in Fig. 3.  

The maximum load that the structure can carry before failure is referred to as the limit 

load. Examples of structures that exhibit limit point instability are geometrically 

imperfect (crooked) columns subject to concentric compressive forces [4]. 

 

Figure 3: Limit Point Instability [4] 
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2.10 Finite Disturbance Instability  

Finite disturbance instability occurs when a compressive force is applied along the 

longitudinal or axial direction of a thin-walled cylinder shell [4]. 

As depicted schematically in Fig. 4, the load-deflection curve rises to the (theoretical) 

critical load Ncr, then drops suddenly to a lower value in order for the structure to 

maintain equilibrium. The value of Ncr has been shown by Donnell and Wan to be very 

sensitive to the initial geometrical imperfections present in the shell. The slightest 

imperfections drastically reduce Ncr [4]. 

 

 

Figure 4: Finite Disturbance Instability [4] 

 

Finite disturbance buckling is of particular interest for thin cylindrical shells because, 

unlike perfect elastic buckling, it accounts for the unavoidable geometric imperfections 

encountered during production. These geometric imperfections introduce loss of 

stability and reduce critical Ncr load considerably. 

The Ncr values experimentally established are usually less than the theoretical Ncr values 

exactly because of these initial imperfections, emphasizing the importance of 

considering these imperfections in numerical models and design procedures. 
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2.11 Snap-Through Instability (limit-point instability) 

Snap-through instability occurs when there is a sudden, large deformation under a 

constant load [4]. 

For certain systems, such as the in-plane buckling of a shallow truss or arch subjected 

to a transverse load, or the buckling of a shallow spherical cap under a radial load, 

equilibrium can only be maintained when the load reaches a critical point (point A in 

Fig. 5) [4]. 

At this stage, the displacement abruptly shifts from point A to point B, as indicated by 

the solid horizontal line. The dotted curved line represents an unstable equilibrium state, 

which can only be observed under ideal displacement-controlled conditions [4]. 

 

Figure 5: Snap-Through Instability [4] 

 

Therefore, it is possible to say that Snap-Through Instability is a form of nonlinear 

geometric instability characterized by a sudden and non-gradual change in structural 

equilibrium, often modelled by force-displacement diagrams with bifurcations and 

multiple equilibrium paths.  

This phenomenon is relevant for thin and light structures, such as arches, shells, trusses, 

deployable structures, MEMS systems, and shape memory materials. It is analyzed 

using methods such as finite element analysis (FEM) and bifurcation and post-buckling 

theories. 
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2.12 Stability in NTC 2018 

When designing a structure, there are several effects that need to be taken into 

consideration. A building has to be able to transfer loads to the ground, this includes 

both vertical forces from the structural system and interior, and also lateral loads 

(Gardner, 2014). 

In the Italian technical standard NTC 2018 (Technical Standards for Construction), there 

are references and definitions relating to the stability of structures [6]. 

The NTC 2018 states that structures must be designed and constructed in such a way as 

to ensure their stability under all expected load conditions. This includes resistance to 

phenomena such as buckling and global stability [6]. 

The standard specifies that the load-bearing capacity of the structures must be such as 

to guarantee stability, avoiding subsidence or collapse. The stability check must take 

into account all permanent, variable and accidental loads [6]. 

In addition, designers are required to perform specific analyses to evaluate the behavior 

of structures subjected to compressive or torsional loads. In particular, reference is made 

to buckling analysis for columns and beams [6]. 

Regarding the stability conditions, NTCs provide guidance on stability verification 

methods, including analytical and numerical methods. The constraint conditions and 

interactions between the different parts of the structure must also be considered [6]. 

The standard also defines the use of safety coefficients to take into account uncertainties 

related to materials, load conditions and construction methods [6]. 

Therefore, in summary, it is possible to say that the evaluation of the stability of a 

structure requires a careful analysis of both the individual sections and the overall 

stability, as the stability of the individual sections directly affects the overall stability, so 

it is essential to perform integrated analyses to ensure the safety and reliability of the 

structure as a whole [6]. 
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2.13 Global Stability Analysis 

Talking about Global stability, it is necessary to consider the entire structure and its 

capacity to maintain integrity if subjected to external loads and is influenced by the 

geometry of the structure, the materials used, and the restraint conditions [7]. 

Therefore, a global analysis considers the interactions between the different parts of the 

structure and their distribution of loads, and in particular it has the aim to identify 

buckling modes that can compromise overall stability [7]. 

  

2.14 Stability of Individual Sections 

In addition to the overall stability, the stability of the individual sections must also be 

evaluated, so for each section the resistance to compression, bending, and torsional 

loads. 

In particular, the stability of a section is determined by its load capacity, which must be 

sufficient to support the forces acting on it without experiencing excessive deformation 

or failure [7]. 

 

2.15 Global System Buckling 

An entire building can buckle as a whole due to lacking stiffness created by the vertical 

members on each level of the building. The vertical elements need to ensure stability on 

each level of the building (Gardner, 2014). 

It is useful to have a fairly constant utilization of the resistance on each story, so, it is 

generally beneficial to maintain a fairly consistent utilization of the resistance on each 

story, because a failure could develop on any level [7]. 

From a Rules point of view, in the Eurocode, the global buckling issue is taken into 

account by examining the elastic buckling load or conducting second-order analysis. 

Alternatively, the deflection can be measured to indicate a possible deficiency in the 

global stability of the structure [7].  
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2.15.1 Deflection 

The deflection limits are defined in order to guarantee adequate comfort criteria for the 

occupants of the building and maintaining the safety and durability of the structure, so 

in general the guidelines for each floor collectively establish an overall deflection 

standard [7]. 

The deflection is an indicator of the effects of lateral actions, such as global buckling. A 

deflection can also lead to additional effects. One of these effects is when vertical loads 

act on these displacements (Hoenderkamp, 2002). 

The eccentricities of the vertical loads can cause additional bending moments on the 

structure, which can cause global failure [7]. 

 

2.15.2 Member buckling 

The instability can also occur in individual members of the system, when large 

deformations can develop and there is a redistribution of loads, due to the fact that the 

member will no longer be able to carry a load, this can cause other members to fail, due 

to the increase in load, until the entire structure becomes unstable [7].  

As indicated in the Eurocode, the possible types of buckling instability that can occur in 

members, as already said before, are: 

- flexural buckling (caused by compressive stresses), can lead members to deflect 

perpendicularly to loading in the weak axis, this type of instability is closely related 

to the Euler critical load, which defines the theoretical limit at which a perfectly 

straight and ideal member under compression becomes unstable and buckles; 

- torsional buckling arises due to a lack of torsional stiffness; 

- lateral torsional buckling (caused by bending stresses), can result in a deflection of 

flanges due to compression; 

- plate buckling (caused by compressive stresses in either the webs or the flanges) that 

can occur in steel members where plates have been welded together to form a cross-

section [7]. 
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Euler buckling 

As pointed-out before, the Euler buckling phenomenon is a specific case of flexural 

buckling, which occurs when a slender member under axial compression reaches its 

critical load and becomes unstable [26]. 

Let's consider a homogeneous, isotropic and perfectly straight beam, and assume that 

the (compressive) load is perfectly axial, that the stress state of the beam is purely elastic 

and that the deflection occurs on a single plane. 

Given these assumptions, it is possible to derive a mathematical expression capable of 

describing this type of subsidence [26]. 

Now consider the boundary condition for which P is just above the critical load Pcr. 

Under these conditions, even a very small radial force F (imbalance) immediately leads 

to a deformation of the beam, which cannot be recovered even by eliminating the stress. 

To describe this evidence mathematically it is possible to rely on the elastic line 

equation. For a beam supported by two supports (carriage hinge) and axially loaded, this 

second-order differential equation admits a solution for the displacement v which, 

considering that at the hinges this displacement must be zero, turns out to be: 

 𝑣 = 𝐶ଵ ∙ 𝑠𝑖𝑛 ቀ𝑛 ∙
𝜋𝑥

𝐿
ቁ 

 

(2.9) 

In which L is the length of the beam while n is an integer called the number of half-

waves. The constant C1 represents the maximum deflection of the beam [26]. 

The minimum value of P, called the Eulerian Critical Load, is obtained with n = 1. 

 
𝑃௖௥ =

𝜋ଶ𝐸𝐽

𝐿ଶ
 

 

(2.10) 

This is the minimum load for which the member can be subjected to buckling.  

“n =1” means that the deformation will simply be a single sine half-wave passing 

through the two points [26]. 

Conversely, with “n = 2”, the value of the critical load quadruples but deformations can 

occur with a double wave (complete sine wave). 
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Analyzing the formula, it is possible to say that the value of the critical load does not 

depend on the strength characteristics of the material with which the beam is made but 

only on the length L, the inertial properties J and modulus of elasticity E. From Euler's 

formula it is also easy to guess how the instability of will occur in the plane with minimal 

inertial properties. From here it is immediate to understand why the columns often have 

a circular section (balanced moments of inertia) [26]. 

In the same way as for a member with double support, it is possible, starting from the 

equation of the elastic line, to determine the solution in terms of deflection v for a 

member with double interlocking which will result: 

 
𝑣 =

𝑀଴

𝑃
∙ ቂ1 − 𝑐𝑜𝑠 ቀ2

𝜋𝑥

𝐿
ቁቃ 

 

(2.11) 

where M0 is the constraining relation given by the interlocking. In this case, the critical 

load, considering LL = 0.5L, is: 

 
𝑃௖௥ =

𝜋ଶ𝐸𝐽

𝐿௅
ଶ  

 

(2.12) 

LL is called the free length of inflection, and represents the distance between two points 

where the bending moment is zero, its values are shown in the table below: 

 

Table 1: Euler free deflection lengths LL and Critical Load Pcr for beams with different constrains, modified by [27], [28] 



2. STABILITY 

33 
 

2.15.3 Additional stability effects 

There are further effects in buildings that can cause lacking stability, such as thermal 

action, creep and moisture. Thermal expansion and contraction can either cause 

deformations or stresses dependent on the degree members are restrained. These 

additional effects can cause the structure to become unstable. The main components that 

affect the distribution of temperature are solar radiation, humidity, wind speed and 

changes in air temperature in shade (Radovanović et al, 2015). 

There are a lot of factors that can influence the effects of the external forces acting on a 

structure, such as its orientation, climate, structural mass, geometry, and the materials 

used. Consequently, an important factor to take into account is the thermal effects. A 

possible solution is to implement suitable expansion joints that can help manage 

controlled expansion and contraction [7]. 

In addition, in concrete structures, moisture can cause shrinkage, leading to additional 

stresses in the system. Moreover, creep in these structures can reduce stiffness, 

increasing their susceptibility to instability issues [7]. 

 

2.16 Link between Section Stability and Global Stability 

The stability of a single section is closely linked to the stability of the entire structure, 

that is because, of course, if a section exhibits unstable behavior this can negatively 

affect overall stability. 

In particular, in composite structures, the behavior of one section can affect the load 

distributed over other sections.  

This leads to the facts that stability checks of individual sections must be integrated with 

global analyses to ensure that even if each section is stable individually, the entire 

structure remains stable as a whole [8]. 
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2.17 Methods of Analysis 

Several analysis methods can be applied to analyze a structure: 

 Linear Analysis: uses simplified models to define internal forces and deformations. 

Linear models may not be enough for complex structures or structures subject to 

different loads. 

 Nonlinear Analysis: looks at how structures behave in real-life loading conditions, 

addressing that structures can sustain plasticity or buckling. 

 Numerical Models: structural analysis programs, like Finite Element Method (FEM), 

can be used to analyze the behavior of complex structures and provide in-depth 

simulations [8]. 

The linear analysis is used when the relationships between the variables are easy and 

direct, and this means that the relation between the input and output is a straight line. 

Linear equations are used, therefore, they are the primary tool for this type of analysis. 

The non-linear analysis is used when the relationships between the variables are hard 

and indirect, because this means that the relation between the variables is not direct. 

More complex mathematical functions are needed; thus, they are used to model the 

relationships between the variables [8]. 

 

2.17.1 Linear analysis 

Linear analysis is a branch of mathematics that deals with the study of linear 

relationships and systems. It involves analyzing and understanding linear equations, 

functions, and transformations using the principle of linearity such that the operations 

of addition and scalar multiplication preserve the properties of linearity. 

Solving systems of linear equations, eigenvalues and eigenvectors, and behavior of 

linear transformations can be determined [8].  

The features of linear analysis are: 

- Linearity: the principle of superposition applies, so the total response to multiple 

inputs is simply the sum of the responses to each individual input.  
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- Proportionality: Linear analysis focuses on understanding proportional relationships, 

where the output varies directly with changes in the input.  

- Additivity: Linearity in analysis entails that adding two solutions or inputs together 

results in the sum of their individual solutions or outputs. 

- Homogeneity: if the input is scaled by a constant factor, also the output is scaled by 

the same factor. 

- Linear Transformations: linear transformations are mappings between vector spaces 

that preserve linearity properties. 

- Systematic Solution: Linear analysis provides systematic techniques for solving 

systems of linear equations. 

- Eigenvalues and Eigenvectors: Linear analysis involves determining eigenvalues and 

eigenvectors of linear transformations. 

- Generalization: Linear analysis serves as a foundation for more advanced 

mathematical concepts, allowing for generalizations to more complex systems [8]. 

 

2.17.2 Non-linear analysis 

Non-linear analysis focuses on the study of complex mathematical functions, equations, 

and transformations that display non-linear behavior, which does not follow the 

principles of proportionality, superposition, or linearity [8]. 

The features of nonlinear analysis are:  

- Non-linearity: Nonlinear analysis focuses on the study of relationships and systems 

that do not follow linear patterns or exhibit linear behaviors.  

- Complexity: Nonlinear analysis and discourse engage with mathematically 

complicated functions and systems that often involve exponential growth, curves, and 

non-unique solutions. 

- Sensitivity to Initial Conditions: Non-linear systems are sensitive to minor variations 

in the initial conditions, which also contributes to the butterfly effect and increased 

difficulties in making long-term prediction. 
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- Nonlinear Differential Equations: Nonlinear analysis deals with nonlinear differential 

equations, which model many different phenomena, and require special methods to 

analyze. 

- Bifurcation Analysis: Non-linear analysis deals with changes to the qualitative 

behavior of a system as some parameter varies, referred to as bifurcation analysis. 

- Numerical Methods: Non-linear analysis often employs numerical methods and 

computation, as closed form solutions are often not available. 

- Nonlinear Optimization: it is concerned with optimization of non-linear objective 

functions subject to non-linear constraints requiring different optimization 

algorithms. 

- Mathematical Modeling: Non-linear analysis is necessary for modelling and 

understanding complex real-world phenomena that exist in non-linear environments 

[8]. 

 

2.17.3 Numerical models 

When dealing with a complex structure, to evaluate the stability, a good solution is the 

use of structural analysis software [9]. 

Finite Element Method (FEM) is a computational technique widely used in structural 

analysis to model and evaluate complex structures, because allows the simulation 

of how structures will respond to different loading conditions, including stress, strain, 

and displacement. 

The approach, which is a numerical one, consists in subdividing a complex structure 

into smaller and simpler parts called finite elements, and then to study them by applying 

a set of equations that governs these elements based on physical laws [9]. 

FEM is a powerful instrument because is capable to handle complex geometries, 

materials, and boundary conditions, so it a versatile tool for a wide range of engineering 

applications.  

In additions, since FEM works by creating a finite element mesh, it helps to simulate 

and analyze local effects and their impact on the overall structure [9]. 
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3. VLASOV’S THEORY 
Vlasov's theory is applied in the study of the torsion of open thin sections and is a 

generalization of Saint-Venant's classical theory of torsion, with the addition of the 

introduction of the concept of non-uniform torsion, which takes into account the 

deformation of the cross-section along the axis of the beam [18]. 

Vlasov’s theory is the most widely used method to study the behavior of open thin 

sections subject to torsion, because it takes into account the phenomenon of warping, 

which cannot be neglected in these structures. 

Therefore, it is applied when De Saint Venant's theory, which provides uniform torsion, 

is insufficiency [18]. 

This is the case, for example, for open sections (such as L, C, I, T, Z profiles), where the 

uniform torsion is not sufficient to describe the real behavior, since the thin walls deform 

along the longitudinal axis (warping), so that, when an open section is subjected to 

torsion, the cross-section does not simply rotate around its axis.   but deforms out of the 

plane. 

This leads to additional normal stresses (in addition to the classic tangential stresses of 

the Saint-Venant torsion). Vlasov's theory allows us to calculate the real torsional 

stiffness [18]. 

 

Figure 6: Bi-moment in a cantilever with thin-walled open cross-section and the torsion-warping phenomenon. (a) cantilever 
with a torsional moment at the top, (b) forces that produce the torsional moment, (c) bending moment and bimoment, (d) 

warping [18] 
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3.1 Introduction to Vlasov’s Theory 

A torsional load applied to a thin-walled open core generates a warping of the section, 

which would be prevented if the floors were infinitely rigid.  

 

Figure 7: Structural core (Nucleo) and Floor slab (Laje) [5] 

 

Figure 8: Warping Deformation of Floor Slab [5] 

 

Warping is totally prevented in the built-in at the base of the core, whereas it is only 

partial in correspondence of the floors. 

 𝑤 = −𝜐ᇱ𝑦 − 𝜃′𝜔 (3.1) 

 𝑤′ = −𝜐ᇱᇱ
𝑦 − 𝜃′′𝜔 (3.2) 

Kinematics  warping 

Statics  additional axial stress [12]. 
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3.2 Vlasov’s Theory 

The hypothesis of transversal indeformability: 

 𝑢 = 𝜉(𝑧) − 𝜃(𝑧)𝑦 (3.3) 

 𝑣 = 𝜂(𝑧) − 𝜃(𝑧)𝑥 (3.4) 

ξ and η are the transversal displacements in the X and Y directions and θ is the rotation 

angle about the Z axis.  

 

Figure 9: Open-section surface in a 3D coordinate system [12] 

 

 

Figure 10: Thin-walled open beam section element, showing arc length s, the sectorial coordinate ω(s), the vector δt 
representing the transverse displacement, the width b(s), and the warping function h(s) in a 2D coordinate system [12] 
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The tangential displacement of the generic point of the thin-walled section is δt:  

 𝛿௧ = {𝛿}்{𝑢௧} = 𝑢
𝑑𝑥

𝑑𝑠
+ 𝑣

𝑑𝑦

𝑑𝑠
 (3.5) 

and, according to Eqs. (3.3) and (3.4), we have:  

 𝛿௧ = 𝜉
𝑑𝑥

𝑑𝑠
+ 𝜂

𝑑𝑦

𝑑𝑠
+ 𝜃ℎ(𝑠) (3.6) 

h(s) represents the distance between the origin O of the reference system and the tangent 

line to the section midline:  

 ℎ(𝑠) = {𝑟}்{𝑢௡} = 𝑥
𝑑𝑦

𝑑𝑠
− 𝑦

𝑑𝑥

𝑑𝑠
 (3.7) 

Considering that:  

 𝑢ത௧ =
𝑑𝑥

𝑑𝑠
𝚤̅ +

𝑑𝑦

𝑑𝑠
𝚥 ̅ (3.8) 

 𝑢ത௡ =
𝑑𝑦

𝑑𝑠
𝚤̅ +

𝑑𝑥

𝑑𝑠
𝚥 ̅ (3.9) 

The axial displacement component w can be obtained by Vlasov’s second hypothesis, 

according to which the shearing strains γzs on the midline are considered negligible:  

 𝛾௭௦ =
𝜕𝑤

𝜕𝑠
+

𝜕𝛿௧

𝜕𝑠
 (3.10) 

Deriving Eq.(3.6) and substituting into Eq.(3.10), we have:  

 𝛾௭௦ =
𝜕𝑤

𝜕𝑠
+ 𝜉′

𝑑𝑥

𝑑𝑠
+ 𝜂′

𝑑𝑦

𝑑𝑠
+ 𝜃′ℎ(𝑠) (3.11) 

and then, equating to zero and integrating in the variable s, we have: 

 𝑤 = 𝜁(𝑧) + 𝜉ᇱ𝑥 − 𝜂′𝑦 + 𝜃′𝜔 (3.12) 

where ζ(z) is an arbitrary constant of integration, which represents the axial 

displacement due to the axial force, and ω is the sectorial area: 

 𝑑𝜔 = ℎ(𝑠)𝑑𝑠 (3.13) 
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The warping function ω is twice the sectorial area generated by the radial vector r, that 

is, the area of the infinitesimal triangle which has base ds and height h(s) [12]. 

 𝜔(𝑠) = න ℎ(𝑠)𝑑𝑠
௦

଴

 (3.14) 

 

Figure 11: Geometric representation of a curved beam element in Vlasov's theory, illustrating the sectorial coordinate dω/2, 
the arc length ds, and the warping function h(s) in a 2D coordinate system [12] 

 

Eqs.(3.3), (3.4), (3.12) show the four fundamental unknowns, which are functions of z: 

 𝜁 = 𝜁(𝑧) , 𝜉 = 𝜉(𝑧) , 𝜂 = 𝜂(𝑧) , 𝜃 = 𝜃(𝑧)   (3.15a,b,c,d) 

Deriving Eq. (3.12), the axial deformation εz is obtained: 

 𝜀௭ =
𝜕𝑤

𝜕𝑧
= 𝜁ᇱ − 𝜉ᇱᇱ𝑥 − 𝜂ᇱᇱ𝑦 − 𝜃′′𝜔 (3.16) 

The normal axial stress σz = Eεz can be written as: 

 𝜎௭ = 𝐸(𝜁ᇱ + 𝜉ᇱᇱ
𝑥 − 𝜂ᇱᇱ𝑦 + 𝜃ᇱᇱ𝜔) (3.17) 

 𝜎௭ = 𝜎௭
ௌ௏ + 𝜎௭

௏௅ (3.18) 

Where: 

 𝜎௭
௏௅ = −𝐸𝜃′′𝜔 (3.19) 
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3.3 Internal Actions Producing Axial Stress σz 

The static moments are defined as follows, where a is the cross-sectional area of the 

beam:  

 𝑆௬ = න 𝑥𝑑𝐴
஺

  , 𝑆௫ = න 𝑦𝑑𝐴
஺

  , 𝑆ఠ = න 𝜔𝑑𝐴
஺

 (3.20a,b,c) 

On the other hand, the moments of inertia are defined as: 

 𝐼௬௬ = න 𝑥ଶ𝑑𝐴
஺

  , 𝐼௫௫ = න 𝑦ଶ𝑑𝐴
஺

  , 𝐼ఠఠ = න 𝜔ଶ𝑑𝐴
஺

 (3.21a,b,c) 

𝐼௬௫ = 𝐼௫௬ = න 𝑥𝑦𝑑𝐴
஺

, 𝐼௫ఠ = 𝐼ఠ௫ = න 𝜔𝑦𝑑𝐴
஺

, 𝐼௬ఠ = 𝐼ఠ௬ = න 𝜔𝑥𝑑𝐴
஺

 (3.22a,b,c) 

 

Eq. (3.18) allows the definition by integration of the internal actions related to the 

extensional and flexural behavior of the beam (static equivalence) [12]: 

 𝑁 = න 𝜎௭𝑑𝐴
஺

= 𝐸(𝐴𝜁ᇱ − 𝑆௬𝜉ᇱᇱ − 𝑆௫𝜂ᇱᇱ − 𝑆ఠ𝜃ᇱᇱ) (3.23) 

 𝑀௬ = න 𝜎௭𝑥𝑑𝐴
஺

= 𝐸(𝑆௬𝜁ᇱ − 𝐼௬௬𝜉ᇱᇱ − 𝐼௬௫𝜂ᇱᇱ − 𝐼௬ఠ𝜃ᇱᇱ) (3.24) 

 𝑀௫ = න 𝜎௭𝑦𝑑𝐴
஺

= 𝐸(𝑆௫𝜁ᇱ − 𝐼௫௬𝜉ᇱᇱ − 𝐼௫௫𝜂ᇱᇱ − 𝐼௫ఠ𝜃ᇱᇱ) (3.25) 

 𝐵 = න 𝜎௭𝜔𝑑𝐴
஺

= 𝐸(𝑆ఠ𝜁ᇱ − 𝐼ఠ௬𝜉ᇱᇱ − 𝐼ఠ௫𝜂ᇱᇱ − 𝐼ఠఠ𝜃ᇱᇱ) (3.26) 

Remarks: 

In the barycentric coordinate system: 

 𝑆௫ = 𝑆௬ = 0 (3.27) 

With respect to sectorial barycenter:  

 
𝑆ఠ = 0 

(3.28) 
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With respect to principal axes: 

 𝐼௫௬ = 𝐼௬௫ = 0 (3.29) 

If the origin of the reference system coincides with the shear center: 

 𝐼௫ఠ = 𝐼ఠ௫ = 𝐼௬ఠ = 𝐼ఠ௬ = 0 (3.30) 

and, therefore:  

 𝜃ᇱᇱ = −
𝐵

𝐸𝐼ఠఠ

      ,      𝜎௭
௏௅ =

𝐵𝜔

𝐼ఠఠ

 (3.31a,b) 

 

3.4 Internal Actions Producing Tangential Stress τzs  

Eqs. (3.23), (3.24), (3.25) highlight the axial and bending moment internal actions. On 

the other hand, Eq. (3.26) defines the internal action of bimoment, as a further action 

that produces axial stress σz [12]. 

 

Figure 12: Diagram illustrating the internal actions producing tangential stress τzs, including axial force N, bending moments 
Mx and My [12] 
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Figure 13: Tangential stresses τzs under general loading conditions, including torsional moment Mz and shear 
forces Tx and Ty. [12] 

 

In the more general load conditions, the tangential stresses τzs are also present and are 

assumed to be uniform through the thickness b of the beam wall [12]. 

The three internal actions producing tangential stresses are:  

 𝑇௫ = න 𝜏௭௦

𝑑𝑥

𝑑𝑠
𝑑𝐴

஺

 (3.32) 

 𝑇௬ = න 𝜏௭௦

𝑑𝑦

𝑑𝑠
𝑑𝐴

஺

 (3.33) 

 𝑀௭
௏௅ = න 𝜏௭௦ℎ𝑑𝐴

஺

 (3.34) 

Where h is the oriented distance expressed by Eq. (3.7), and mz
vl is the secondary 

torsional moment according to Vlasov [12].  

Expressing h(s) by Eq. (3.13) and setting: 𝑑𝐴 = 𝑏𝑑𝑠. 
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Simple integration by parts provides the following three relations: 

 𝑇௫ = න 𝜏௭௦

𝑑𝑥

𝑑𝑠
𝑑𝐴

஺

= − න
𝜕(𝜏௭௦𝑏)

𝜕𝑠
𝑥𝑑𝑠

஼

 (3.35) 

 𝑇௬ = න 𝜏௭௦

𝑑𝑦

𝑑𝑠
𝑑𝐴 = − න

𝜕(𝜏௭௦𝑏)

𝜕𝑠
𝑦𝑑𝑠

஼஺

 (3.36) 

 𝑀௭
௏௅ = න 𝜏௭௦ℎ𝑑𝐴 = − න

𝜕(𝜏௭௦𝑏)

𝜕𝑠
𝜔𝑑𝑠

஼஺

 (3.37) 

Eqs. (3.35), (3.36), (3.37) do not contain the finite terms as a consequence of the 

tangential stresses τzs vanishing at the extreme points of the section (principle of 

reciprocity) [12]. 

 

Figure 14: Diagram illustrating the distribution of axial stresses σz and tangential stresses τzs in a beam element [12] 

 

Furthermore, the equilibrium to the axial translation requires:  

 ൬
𝜕𝜏௭௦

𝜕𝑠
𝑑𝑠൰ 𝑏𝑑𝑧 + ൬

𝜕𝜎௭

𝜕𝑧
𝑑𝑠൰ 𝑏𝑑𝑠 = 0 (3.38) 

Or:  

 
𝜕(𝜏௭௦𝑏)

𝜕𝑠
+

𝜕(𝜎௭𝑏)

𝜕𝑧
= 0 (3.39) 
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Eqs. (3.35), (3.36), (3.37) can be expressed in the following form:  

 𝑇௫ = − න
𝜕(𝜏௭௦𝑏)

𝜕𝑠
𝑥𝑑𝑠 = න

𝜕(𝜎௭𝑏)

𝜕𝑧
𝑥𝑑𝑠 =

஼஼

𝑑

𝑑𝑧
න 𝜎௭𝑥𝑑𝐴

஺

 (3.40) 

 𝑇௬ = − න
𝜕(𝜏௭௦𝑏)

𝜕𝑠
𝑦𝑑𝑠 = න

𝜕(𝜎௭𝑏)

𝜕𝑧
𝑦𝑑𝑠 =

஼஼

𝑑

𝑑𝑧
න 𝜎௭𝑦𝑑𝐴

஺

 (3.41) 

 𝑀௭
௏௅ = − න

𝜕(𝜏௭௦𝑏)

𝜕𝑠
𝜔𝑑𝑠 = න

𝜕(𝜎௭𝑏)

𝜕𝑧
𝜔𝑑𝑠 =

஼஼

𝑑

𝑑𝑧
න 𝜎௭𝜔𝑑𝐴

஺

 (3.42) 

The previous relations, considering Eqs. (3.24), (3.25), (3.26) become:  

 𝑇௫ =
𝑑𝑀௬

𝑑𝑧
= 𝐸(𝑆௬𝜁ᇱᇱ − 𝐼௬௬𝜉ᇱᇱᇱ − 𝐼௬௫𝜂ᇱᇱᇱ − 𝐼௬ఠ𝜃ᇱᇱᇱ) (3.43) 

 𝑇௬ =
𝑑𝑀௫

𝑑𝑧
= 𝐸(𝑆௫𝜁ᇱᇱ − 𝐼௫௬𝜉ᇱᇱᇱ − 𝐼௫௫𝜂ᇱᇱᇱ − 𝐼௫ఠ𝜃ᇱᇱᇱ) (3.44) 

 𝑀௭
௏௅ =

𝑑𝐵

𝑑𝑧
= 𝐸(𝑆ఠ𝜁ᇱᇱ − 𝐼ఠ௬𝜉ᇱᇱᇱ − 𝐼ఠ௫𝜂ᇱᇱᇱ − 𝐼ఠఠ𝜃ᇱᇱᇱ) (3.45) 

If the origin of the reference system coincides with the shear center, we have: 

 𝜃ᇱᇱᇱ = −
𝑀௭

௏௅

𝐸𝐼ఠఠ

 (3.46) 

Applying the indefinite equations of equilibrium, we obtain the generalized equations 

of the elastic line or Vlasov equations: 

 𝑝௫ = −
𝑑𝑇௫

𝑑𝑧
= 𝐸(−𝑆௬𝜁ᇱᇱᇱ + 𝐼௬௬𝜉ூ௏ + 𝐼௬௫𝜂ூ௏ + 𝐼௬ఠ𝜃ூ௏) (3.47) 

 𝑝௬ = −
𝑑𝑇௬

𝑑𝑧
= 𝐸(−𝑆௬𝜁ᇱᇱᇱ + 𝐼௫௬𝜉ூ௏ + 𝐼௫௫𝜂ூ௏ + 𝐼௫ఠ𝜃ூ௏) (3.48) 

 𝑚௭
௏௅ = −

𝑀௭
௏௅

𝑑𝑧
= 𝐸(−𝑆ఠ𝜁ᇱᇱᇱ + 𝐼ఠ௬𝜉ூ௏ + 𝐼ఠ௫𝜂ூ௏ + 𝐼ఠఠ𝜃ூ௏) (3.49) 

If the origin of the reference system coincides with the shear center, we have: 

 𝜃ூ௏ =
𝑚௭

௏௅

𝐸𝐼ఠఠ

 (3.50) 
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In each cross-section of the beam, the torsional moment is the sum of the two 

contributions:  

 𝑀௭ = 𝑀௭
ௌ௏ + 𝑀௭

௏௅ (3.51) 

 𝑀௭ = 𝐺𝐼௧𝜃ᇱ − 𝐸𝐼ఠఠ𝜃′′′ (3.52) 

The indefinite equation of equilibrium related to the torsional moment is:  

 𝑚௭ = −
𝑑𝑀௭

𝑑𝑧
 (3.53) 

By replacing the previous expression of mz in the indefinite equation of equilibrium, we 

obtain the non-uniform torsion equation (thin-walled open-section beams):  

 𝐸𝐼𝜃ூ௏ − 𝐺𝐼௧𝜃ᇱᇱ = 𝑚௭ (3.54) 

Which is analogous to the equation of the elastic line with second-order effects and a 

tensile axial force:  

 𝐸𝐼𝑣ூ௏ − 𝑁𝑣ᇱᇱ = 𝑞(𝑧) (3.55) 

Both stiffening and stabilizing contributions [12]. 

 

Figure 15: Beam under a distributed load q(z) and an axial tensile force N. The figure shows the deflection v along the 
beam's length z, representing the deformation due to second-order effects [12] 
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4. BUCKLING OF TWB 

4.1 Introduction to Buckling of TWB 

In this chapter, an alternative theory will be discussed, still for the study of the behavior 

of thin-walled open sections, from source [11]. 

The form of buckling manifested, due to the low torsional stiffness, is the flexural-

torsional buckling and lateral buckling, in which the beam bends into one or both the 

principal inertia planes, and, at the same time, twists. 

The flexural-torsional coupling also occurs in beams solicited by forces transversal to 

the axis, contained in one of the two principal planes. 

Upon reaching the critical load, the beam buckles into the plane orthogonal to that of 

solicitation and simultaneously twists. [11]. 

The same behavior happens both if the beam is simply bent or eccentrically compressed 

in a plane: this form of buckling is called lateral instability [11]. 

The beam model used is based on Vlasov's theory of non-uniform torsion, which 

considers the warping by curvature, because describes the torsional behavior of the 

TWB, with respect to its elastic and geometric stiffness. 

This theory says that the cross-section of the beam maintains its natural shape in its own 

plane, but undergoes warping out of this plane. [11]. 

Because of the non-uniformity of the torsion and the fact that the warping is generally 

variable along the beam axis, complementary normal and tangential stresses arise and 

are not negligible compared to those predicted by the de Saint-Venant (DSV) model of 

uniform torsion. [11]. 

Another important aspect to consider is the determination of the centre of torsion. 

The centre of torsion is a geometric property of the cross-section, generally different 

from the centroid because the rotation of the cross-section takes place around it.  

It is found to be coincident with the shear centre of the Jourawsky theory of non-uniform 

bending.  [11]. 

Because of all this, in the case of TWB, it is useful to describe the displacement field 

with reference not only to the centroid, as usually done for compact beams. [11]. 
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It has to be described also with reference to the centre of torsion, as regards the in-plane 

displacements, and to the centroid, as regards the out-of-plane displacements.  [11]. 

So, one of the distinctive characteristics of TWB, is that they have two different axes. 

 

4.2 Elastic Stiffness Operator  

To define the elastic stiffness operator, reference is made to a 1D model of a beam, with 

TWB section. Initially, the elastic problem is formulated in the context of the linear 

theory to identify the elastic stiffness operator. Afterwards, the analysis of the effects of 

the prestress is performed. [11]. 

 

4.2.1 Kinematics 

A straight beam is considered, with centroidal axis z, and an open and thin cross-section 

that has central inertia axes x and y, originating by the centroid G (Fig. 16a).  

It can be also introduced a basis of orthonormal vectors (ax, ay, az), aligned with the 

homonym axes. [11]. 

Γ is the midline of the cross-section, and along it, a curvilinear abscissa s of origin O is 

taken.  

The thickness of the cross-section can be variable and is denoted by b(s).  

In our analysis, it is assumed that all the quantities of interest are constant on the 

thickness, in this way the displacement is u = u(s, z).  [11]. 

As hypothesis, is it possible to assume that the cross-section is undeformable in its own 

plan π, but not out of this plane, orthogonally to which it undergoes a warping ω(s, z).  

The TWB is assumed to be shear undeformable on its middle surface S, that means on 

the surface of trace Γ on the cross-section: this means that in bending and extension, the 

beam has the same behavior of an Euler-Bernoulli beam and that warping depends only 

on twist.  

However, the shear strains are nonzero beyond the middle surface, where they are 

defined according to the DSV torsion model. [11]. 

4.2 Elastic Stiffness Operator 
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Figure 16: Open thin-walled beam: (a) cross-section and sectorial area, (b) displacements [11] 
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4.3 In Plane Displacements 

Following the theory of non-uniform torsion, the cross-section rotates within its own 

plane around a point C (centre of torsion which coincides with the shear centre), whose 

coordinates are xC and yC. [11]. 

Consequently, it is practical to describe the rigid in-plane displacement relative to this 

point. Let uC(z) = uC(z) ax + vC(z) ay represents the in-plane translation of the centre C, 

and θ(z) the angle of twist.  [11]. 

The in-plane (infinitesimal) displacement uπ := u(s,z) ax + v(s,z) ay of a point P(s), with 

coordinates x(s), y(s), is expressed as (Fig. 16b) [11]: 

 𝒖𝝅 =  𝑢஼(𝑧) +  𝜃(𝑧) 𝒂௭  × 𝑪𝑷(𝑠)  (4.1) 

The projection of this relationship onto the axes gives that [11]: 

 𝑢 =  𝑢஼(𝑧) −  𝜃(𝑧) (𝑦(𝑠) − 𝑦஼)  (4.2) 

 𝑣 =  𝑣஼(𝑧) −  𝜃(𝑧) (𝑥(𝑠) − 𝑥஼)  (4.3) 

 

4.4 Out-of-Plane Displacements 

Regarding the Out-of-Plane Displacements, the displacement u⊥: = ω(s,z) az, that is the 

one orthogonal to the cross-section plane, is related to the superposition of three effects 

[11]:  

- a translation along z, 

- a rotation φ(z) : = φx (z) ax + φy (z) ay around an axis lying in the plane π,   

- a warping proportional to pure torsion, κt = θ’ (z).  

Considering the rotation around an axis, which passes through the barycenter G of the 

cross-section, and taking into account the results obtained through Vlasov's theory, we 

have that (Fig. 16b) [11]: 

 𝜔 =  𝜔ீ(𝑧) +  𝝋(𝑧) × 𝐺𝑃(𝑧)𝒂௭ − 𝜃′(𝑧) 𝜔(𝑠)        (4.4) 

Where ωG(z) is the axial displacement of the centroid, and ω(s) represents the warping 

function (which corresponds to twice the sectorial area, as illustrated in Fig. 16a).  
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To determine the rotation φ(z), the shear undeformability condition is applied when the 

beam undergoes no torsion (Fig. 17).  [11]. 

The internal constraint dictates that the cross-section (which remains planar during this 

motion) remains perpendicular to all longitudinal fibers, which rotate by the same angle 

φ(z).  

Given that the transverse displacement of each longitudinal fiber is uC(z), the relative 

displacement between two points P and Q, separated by a distance dz along the same 

fiber, is duC = φ(z) × dz az [11]. 

Hence, u’C(z) = φ(z) × az = φy ax – φx ay (as shown in Fig. 17).  [11]. 

Taking into account that u’C(z) = u’C(z) ax + v’C(z) ay, so φx = -v’C(z) and φy = u’C(z), 

thus: 

 𝜔 = 𝜔ீ − 𝑣஼
ᇱ (𝑧) 𝑦(𝑠) − 𝑢஼

ᇱ (𝑧) 𝑥(𝑠) −  𝜃ᇱ(𝑧) 𝜔(𝑠) (4.5) 

 

Figure 17: Unshearability condition [11] 
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4.5 Strains 

Taking into account that the central surface of the TWB is non-deformable under shear 

and that the cross-section retains its shape in the π plane, the axial unit extension remains 

the only non-zero deformation on this surface, 𝜀௓  =  
డ௪

 డ௭
 ; by using Eq. 4.5, it reads: 

 𝜀௓  =  𝜔ீ
ᇱ (𝑧) − 𝑢஼

ᇱᇱ(𝑧)𝑥(𝑠) − 𝑣஼
ᇱᇱ(𝑧)𝑦(𝑠) − 𝜃′′(𝑧)𝜔(𝑠) (4.6) 

In the previous expressions, it is possible to identify two effects:  

- an axial extension, two Euler-Bernoulli bending modes,  

- the Vlasov warping.  

To incorporate the axial extension in Eq. (4.6), the shear strain beyond the mid-surface 

SS must also be taken into account, as outlined in the de Saint-Venant (DSV) torsion 

theory [11]. 

The strains determined, obviously produces a normal stress: 𝜎௭ = 𝐸𝜀௓. 

The following are relationships that apply to both Euler-Bernoulli and Vlasov beams: 

 𝜔ீ
ᇱ =

ே

ா஺
   ,   𝑢஼

ᇱᇱ =
ெ೤

ாூ೤
   ,   𝑣஼

ᇱᇱ = −
ெೣ

ாூೣ
   ,   𝜃’’ =

஻

ாூഘ
 (4.7a,b,c) 

where B is the bimoment and Iω the sectorial inertia of the cross-section [11]. 

 

4.5.1 Equilibrium equations  

To obtain the equilibrium equations of the TWB, the stationary of the total potential 

energy (TPE) has been enforced:  

 𝛱 =  𝑈 + 𝑉  (4.8) 

Where the two contributes are the elastic potential energy, U, and of the potential energy 

of the external forces, V [11]. 
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4.6 Elastic Potential Energy 

The elastic potential energy of the beam, computed as: 

 𝑈: = 𝑈ఌ + 𝑈ఊ  (4.9) 

has two components:  

- 𝑈ఌ , related to the axial extensions,  

- 𝑈ఊ, related to the shear strains.  

The expression for the first contribution is given by: 

 

𝑈ఌ =
1

2
න 𝑑𝑧

௟

଴

න 𝐸𝜀௭
ଶ(𝑠, 𝑧)𝑏(𝑠)𝑑𝑠

௰

=
𝐸

2
න 𝑑𝑧

௟

଴

න (𝜔ீ
ᇱ − 𝑢஼

ᇱᇱ𝑥 − 𝑣஼
ᇱᇱ𝑦 − 𝜃′′𝜔)ଶ𝑏𝑑𝑠 =

௰

 

=
1

2
න ൫𝐸𝐴𝜔ீ

ᇱ ଶ
− 𝐸𝐼௬𝑢஼

ᇱᇱଶ
− 𝐸𝐼௫𝑣஼

ᇱᇱଶ
− 𝐸𝐼ఠ𝜃′′ଶ൯𝑑𝑧

௟

଴

 

(4.10) 

The orthogonality properties of the functions x(s), y(s), and ω(s) have been utilized. 

As usual, A represents the cross-sectional area, Ix and Iy denote the moments of inertia 

about the principal axes, and Iω corresponds to the sectorial moment of inertia. The 

second contribution to the potential energy is related to the shear strains, as described 

by the De Saint-Venant (DSV) theory [11]. 

Considering the one-dimensional model, it can be expressed as follows: 

 𝑈ఊ =
1

2
න 𝐺𝐽𝜃ᇱଶ𝑑𝑧

௟

଴

 (4.11) 

where GJ is the De Saint-Venant torsional stiffness [11]. 

Considering these two contributions it is possible to define the strain energy is obtained, 

whose first variation reads [11]: 

𝛿𝑈 = න ൫𝐸𝐴𝜔ீ
ᇱ 𝛿𝜔ீ

ᇱ − 𝐸𝐼௬𝑢஼
ᇱᇱ𝑢𝛿஼

ᇱᇱ − 𝐸𝐼௫𝑣஼
ᇱᇱ𝛿𝑣஼

ᇱᇱ − 𝐸𝐼ఠ𝜃ᇱᇱ𝛿𝜃ᇱᇱ + 𝐺𝐽𝜃ᇱ𝛿𝜃ᇱ൯𝑑𝑧
௟

଴

 (4.12) 
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4.7 Load Potential Energy 

To define the Load potential energy, the forces that are considered to act on the thin-

walled beam (TWB) are the following ones [11].:  

- transverse loads with a linear density of p = px(z) ax + py(z) ay applied along the 

center of the torsion axis, 

- twisting couples with a linear density of cz(z).  

Considering the one-dimensional model and the loads, the potential energy can be 

expressed as: 

 𝑉 = − න ൫𝑝௫𝑢஼ + 𝑝௬𝑣஼ + 𝑐௭𝜃൯𝑑𝑧
௟

଴

 (4.13) 

Whose first variation is: 

 𝛿𝑉 = − න ൫𝑝௫𝛿𝑢஼ + 𝑝௬𝛿𝑣஼ + 𝑐௭𝛿𝜃൯𝑑𝑧
௟

଴

 (4.14) 

As an alternative, px, py, and cz, (generalized forces) could also be derived from a 3D 

model, but that won't be covered in this analysis. 

The derivation shows that when distributed longitudinal forces are also considered, they 

not only generate bending moments but also introduce a new generalized force, known 

as the distributed bicouple; this force is the dual of the twist gradient [11]. 
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4.8 Equilibrium Equations  

Taking into account the previous equations, the first variation of the TPE, equated to 

zero, can be written as [11].: 

𝛿𝛱 = න ൫𝐸𝐴𝜔ீ
ᇱ 𝛿𝜔ீ

ᇱ − 𝐸𝐼௬𝑢஼
ᇱᇱ𝛿𝑢஼

ᇱᇱ − 𝐸𝐼௫𝑣஼
ᇱᇱ𝛿𝑣஼

ᇱᇱ − 𝐸𝐼ఠ𝜃ᇱᇱ𝛿𝜃ᇱᇱ + 𝐺𝐽𝜃ᇱ𝛿𝜃ᇱ൯𝑑𝑧 +
௟

଴

 

− න ൫𝑝௫𝛿𝑢஼ + 𝑝௬𝛿𝑣஼ + 𝑐௭𝛿𝜃൯𝑑𝑧
௟

଴

= 0 ,   ∀(𝛿𝜔ீ , 𝛿𝑢஼ , 𝛿𝑣஼ , 𝛿𝜃) 

(4.15) 

Performing an integration by parts, it is possible to obtain the following field equations: 

 −𝐸𝐴𝜔ீ
ᇱᇱ = 0 (4.16) 

 𝐸𝐼௬𝑢஼
ᇱᇱᇱ = 𝑝௫ (4.17) 

 𝐸𝐼௑𝑣஼
ᇱᇱᇱ = 𝑝௬  (4.18) 

 𝐸𝐼ఠ𝜃ᇱᇱᇱᇱ − 𝐺𝐽𝜃ᇱᇱ = 𝑐௭ (4.19) 

with the relative geometric or mechanical boundary conditions, alternately: 

 [𝐸𝐴𝜔ீ
ᇱ 𝛿𝜔ீ

ᇱ ]଴
௟ = 0 (4.20) 

 ൣ𝐸𝐼௬𝑢஼
ᇱᇱ𝛿𝑢஼

ᇱ ൧
଴

௟
= 0 (4.21) 

 ൣ−𝐸𝐼௬𝑢஼
ᇱᇱᇱ𝛿𝑢஼൧

଴

௟
= 0 (4.22) 

 [𝐸𝐼௫𝑣஼
ᇱᇱ𝛿𝑣஼

ᇱ ]଴
௟ = 0 (4.23) 

 [−𝐸𝐼௫𝑣஼
ᇱᇱᇱ𝛿𝑣஼]଴

௟ = 0 (4.24) 

 [(𝐺𝐽𝜃ᇱ − 𝐸𝐼ఠ𝜃ᇱᇱᇱ)𝛿𝜃]଴
௟ = 0 (4.25) 

 [𝐸𝐼ఠ𝜃ᇱᇱ𝛿𝜃ᇱ]଴
௟ = 0 (4.26) 

This equations, as said before, comes from source [11]. 
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The field equations, Eqs. (4.16), (4.17), (4.18), (4.19), which will be referred to as the 

elastic line equations of the open TWB, can be expressed in the operational form: 

 Ҡ௘u(𝑧) =  p(𝑧) (4.27) 

where u(𝑧): = (𝜔ீ(𝑧),  𝑢஼(𝑧), 𝑣஼(𝑧), 𝜃(𝑧))் is the vector of unknown displacement 

components, and p(𝑧): = (0, 𝑝௫(𝑧),  𝑝௬(𝑧), 𝑐(𝑧))் is the vector of applied loads [11]. 

It is also possible to define the diagonal elastic stiffness operator, in which 𝜕𝑧 ∶=  
ௗ

ௗ௭
  : 

 Ҡ௘ ∶=  

⎣
⎢
⎢
⎢
⎡
−𝐸𝐴𝜕௭

ଶ

0

0

𝐸𝐼௬𝜕௭
ସ

0

0

0

0

     

0

0

0

0
𝐸𝐼௫𝜕௭

ସ

0

0

𝐸𝐼ఠ𝜕௭
ସ − 𝐺𝐽𝜕௭

ଶ⎦
⎥
⎥
⎥
⎤

 (4.28) 

It is convenient to partition the displacements as: 

 u(𝑧) ≔ (uୄ(𝑧), uగ(𝑧)) (4.29) 

Where:  

- uୄ(𝑧) ≔ (𝜔ீ(𝑧)) is the out-of-plane component, 

- uగ(𝑧) ≔ (𝑢஼(𝑧), 𝑣஼(𝑧), 𝜃(𝑧))் is the generalized displacements in the cross 

section plane [11].  

Consequently: 

 Ҡ௘ ∶=  ൤
𝐾௘

ୄ 0

0 𝐾௘
గ൨ (4.30) 

where: 

 Ҡ௘
ୄ ∶=  [−𝐸𝐴𝜕௭

ଶ] (4.31) 

 

Ҡ௘
గ ∶=  ቎

𝐸𝐼௬𝜕௭
ସ 0 0

0 𝐸𝐼௫𝜕௭
ସ 0

0 0 𝐸𝐼ఠ𝜕௭
ସ − 𝐺𝐽𝜕௭

ଶ

቏ (4.32) 
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4.9 Geometric Stiffness Operator 

To perform the linearized stability analysis of a TWB it is necessary to construct the 

geometric stiffness operator [11]. 

This arises from the variation of the quadratic part of the prestressing energy: 

 𝑈଴ = න 𝑑𝑧
௟

଴

න ൫𝜎௭
଴𝜀௭

(ଶ)
+ 𝜏௭௦

଴ 𝛾௭௦
(ଶ)

൯𝑏𝑑𝑠
௰

 (4.33) 

This expresses the work of normal prestresses σz
0(s, z) and tangential stresses τzs

0(s, z), 

on the second-order components of the unknown incremental strains εz
(2)(s,z), γzs

(2) (s, 

z), all evaluated on the middle surface S [11]. 

Considering that the deformations depend on the displacements of the point P(s) at the 

abscissa z and that this can be expressed in terms of displacements of the two central 

lines of the TWB, which depend only on z, it is possible to transform the three-

dimensional model into a one-dimensional model [11]. 

 

4.10 Prestresses  

By limiting the attention to beams under extension and bending (but not torsion) and 

resorting to results of DSV and Jourawsky theories, the prestresses are evaluated as: 

 𝜎௭
଴ =

𝑁଴(𝑧)

𝐴
+

𝑀௫
଴(𝑧)

𝐼௫

𝑦(𝑠) −
𝑀௬

଴(𝑧)

𝐼௬

𝑥(𝑠) (4.34) 

 𝜏௭௦
଴ = −

𝑇௫
଴(𝑧)𝑆௬

∗(𝑠)

𝐼௬𝑏(𝑠)
−

𝑇௬
଴(𝑧)𝑆௫

∗(𝑠)

𝐼௫𝑏(𝑠)
 (4.35) 

where N0, M0x, M0y, T0x, and T0y are, respectively, the axial force, the bending moments, 

and the shear forces acting in the prestressed configuration [11]. 

Here, the geometric characteristics of the cross-sections assume the usual meaning. 
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4.11 Quadratic Strains  

From the quadratic component of the Green-Lagrange strain tensor it is possible to 

deduce the nonlinear part of the incremental strains:  

 𝜀௭
(ଶ)

=
1

2
൫𝑢,௭

ଶ + 𝑣,௭
ଶ + 𝜔,௭

ଶ ൯ (4.36) 

 𝛾௭௦
(ଶ)

= 𝑢,௭𝑢,௦ + 𝑣,௭𝑣,௦ + 𝜔,௭𝜔,௦ (4.37) 

where the barred terms are neglected, to take into account the fact that out-of-plane 

displacements are smaller than in-plane displacements [11]. 

Since the calculation of the geometric stiffness operator in the general case is very 

complex, it was decided to follow an approach that derives the operator in successive 

steps, starting from simple loads. Taking into account the linearity of the problem, the 

general case will be constructed by superposition [11]. 
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4.12 Uniformly Compressed Thin-Walled Beams  

In the following section, the analysis of the bifurcation of uniformly compressed TWB 

is performed. This problem extends Euler's planar beam problem to a TWB situated in 

3D space. 

First of all, the equilibrium equations are formulated and then, simple solutions are 

illustrated, to discuss important phenomenological aspects [11]. 

Considering a TWB, uniformly compressed by an axial force P, it is possible to write 

the state of prestress as: 

 𝜎௭
଴ = −

𝑃

𝐴
 (4.38) 

The relevant prestress energy, by Eq. (4.33), is written as: 

 𝑈଴ = න 𝑑𝑧
௟

଴

න 𝜎௭
଴𝜀௭

(ଶ)
𝑏𝑑𝑠

௰

= −
1

2

𝑃

𝐴
න 𝑑𝑧

௟

଴

න ൫𝑢,௭
ଶ + 𝑣,௭

ଶ൯𝑏𝑑𝑠
௰

 (4.39) 

where use has been made of Eq. (4.36). By substituting Eqs. (4.2), (4.3), u(s, z), v(s, z) 

are expressed in function of the generalized displacements uC(z), vC(z), θ(z) of the torsion 

center line; consequently: 

𝑈଴[𝐮గ] = −
𝑃

2𝐴
න 𝑑𝑧

௟

଴

න {[𝑢஼
ᇱ − 𝜃ᇱ(𝑦 − 𝑦஼)]ଶ + [𝑣஼

ᇱ − 𝜃ᇱ(𝑥 − 𝑥஼)]ଶ}𝑏𝑑𝑠
௰

= 

= −
𝑃

2
න [𝑢஼

ᇱଶ + 𝑣஼
ᇱଶ + 𝑟஼

ଶ𝜃ᇱଶ + 2𝑦௖𝑢஼
ᇱ 𝜃ᇱ − 2𝑥௖𝑣஼

ᇱ 𝜃′]𝑑𝑧
௟

଴

 

(4.40) 

Here, it has been considered that the static moments of the cross-section are zero [11]. 

𝑟஼
ଶ is the square of the polar moment of inertia relative to the centre of torsion, also has 

been introduced, and it is possible to define it as: 

 𝑟஼
ଶ ≔

1

𝐴
න [(𝑥 − 𝑥஼)ଶ + (𝑦 − 𝑦஼)ଶ]𝑏𝑑𝑠 =:

௰

𝐼஼

𝐴
 (4.41) 

It is noted that due to the approximation presented in Eq. (4.36), the functional U0 relies 

solely on the in-plane displacements uగ(𝑧) ≔ (𝑢஼ , 𝑣஼ , 𝜃)் and is independent of the 

axial displacement ωG [11]. 
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4.13 Geometric Stiffness Operator 

If the first variation of the energy and integration by parts are performed, it is possible 

to write:  

 

𝛿𝑈଴ = −𝑃 න [𝑢஼
ᇱ 𝛿𝑢஼

ᇱ + 𝑣஼
ᇱ 𝛿𝑣஼

ᇱ + 𝑟஼
ଶ𝜃ᇱ𝛿𝜃ᇱ + 𝑦௖(𝑢஼

ᇱ 𝛿𝜃ᇱ + 𝜃ᇱ𝛿𝑢஼
ᇱ )]

௟

଴

𝑑𝑧 

−𝑃 න [−𝑥௖(𝑣஼
ᇱ 𝛿𝜃ᇱ + 𝜃ᇱ𝛿𝑣஼

ᇱ )]
௟

଴

𝑑𝑧 = 

= 𝑃 න [(𝑢஼
ᇱᇱ + 𝑦௖𝜃ᇱ′)𝛿𝑢஼ + (𝑣஼

ᇱᇱ + 𝑥௖𝜃ᇱ′)𝛿𝑣஼]
௟

଴

𝑑𝑧 + 

+𝑃 න [(𝑟஼
ଶ𝜃ᇱᇱ + 𝑦௖𝑢஼

ᇱᇱ − 𝑥௖𝑣஼
ᇱᇱ)𝛿𝜃]

௟

଴

𝑑𝑧 + [−𝑃(𝑢஼
ᇱ + 𝑦௖𝜃ᇱ)𝛿𝑢஼]଴

௟  

+[−𝑃(𝑣஼
ᇱ − 𝑥௖𝜃ᇱ)𝛿𝑣஼ − 𝑃(𝑟஼

ଶ𝜃ᇱ + 𝑦௖𝑢஼
ᇱ − 𝑥௖𝑣஼

ᇱ )𝛿𝜃]଴
௟  

(4.42) 

By letting 𝛿𝑈଴ = ∫ 𝛿uగ
் Ҡ௚,௖uగ𝑑𝑧 + [… ]଴

௟௟

଴
, the geometric stiffness operator of the 

compressed TWB is recognized: 

 Ҡ௚,௖ ∶=  𝑃 ቎

1 0 𝑦஼

0 1 −𝑥஼

𝑦஼ −𝑥஼ 𝑟௖
ଶ

቏ 𝜕௭
ଶ (4.43) 

It is non-diagonal, which results in coupling between the transverse displacement 

components uC, vC, and the twist θ [11]. 
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4.14 Equilibrium Equations 

By combining the elastic and geometric contributions, it is possible to derive the general 

equilibrium equations: 

 Ҡ௘
ୄuୄ = 0 (4.44) 

 (Ҡ௘
గ + Ҡ௚,௖)uగ = 𝟎 (4.33) 

that, in extended form, can be also written as: 

 −𝐸𝐴𝜔ீ
ᇱᇱ = 0 (4.34) 

 𝐸𝐼௬𝑢஼
ᇱᇱᇱ + 𝑃(𝑢஼

ᇱᇱ + 𝑦஼𝜃′′) = 0 (4.35) 

 𝐸𝐼௫𝑣஼
ᇱᇱᇱ + 𝑃(𝑣஼

ᇱᇱ + 𝑥஼𝜃′′) = 0 (4.36) 

 𝐸𝐼ఠ𝜃ᇱᇱᇱᇱ − 𝐺𝐽𝜃ᇱᇱ + 𝑃(𝑟஼
ଶ𝜃′′ + 𝑦஼𝑢஼

ᇱᇱ − 𝑥஼𝑣஼
ᇱᇱ) = 0 (4.37) 

Operating in the same way, the boundary conditions are found: 

 [𝐸𝐴𝜔ீ
ᇱ 𝛿𝜔ீ

ᇱ ]଴
௟ = 0 (4.38) 

 ൣ𝐸𝐼௬𝑢஼
ᇱᇱ𝛿𝑢஼

ᇱ ൧
଴

௟
= 0 (4.39) 

 ൣ(−𝐸𝐼௬𝑢஼
ᇱᇱᇱ − 𝑃(𝑢஼

ᇱ + 𝑦஼𝜃′))𝛿𝑢஼൧
଴

௟
= 0 (4.40) 

 [𝐸𝐼௫𝑣஼
ᇱᇱ𝛿𝑣஼

ᇱ ]଴
௟ = 0 (4.41) 

 [(−𝐸𝐼௫𝑣஼
ᇱᇱᇱ − 𝑃(𝑣஼

ᇱ + 𝑥஼𝜃′))𝛿𝑣஼]଴
௟ = 0 (4.42) 

 [(𝐺𝐽𝜃ᇱ − 𝐸𝐼ఠ𝜃ᇱᇱᇱ − 𝑃(𝑟஼
ଶ𝜃ᇱ + 𝑦஼𝑢஼

ᇱ − 𝑥஼𝑣஼
ᇱ ))𝛿𝜃]଴

௟ = 0 (4.43) 

 [𝐸𝐼ఠ𝜃′′𝛿𝜃′]଴
௟ = 0 (4.44) 

The field equations, together with their boundary conditions, show that the axial 

displacement ωG is independent of the other displacements [11]. 

Since the operator −𝐸𝐴𝜕௭
ଶ is non-singular and the boundary conditions are 

homogeneous, Eqs. (4.16) and (4.20) only allow the trivial solution ωG = 0 [11]. 
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This allows us to say that the first-order mode of instability is inextensible, similar to 

that found for the Euler bundle [11]. 

The remaining equations involving uC, vC, θ create a twelfth-order differential problem, 

which makes finding analytical solutions difficult [11]. 

Subsequently, in Chapter 6, the general problem will be addressed using numerical 

methods [11]. 
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5. SHEAR CENTER 

5.1 What is Shear Center? 

The shear centre is the point through which if the resultant shear force acts then member 

is subjected to simple bending without twisting. It means a load acting on a beam 

through shear centre will produce bending without torsion or twisting. Shear centre is 

also called centre of flexure [15]. 

 

5.2 Location of Shear Center 

- Shear centre always lies on the axis of symmetry if exists [15]. 

- Shear centre generally does not coincide with the centroid of section, but if there 

are two or more than two axes of symmetry, then shear centre will coincide with 

the point of intersection of the axes of symmetry. In this case, the shear centre of 

the area will be the same as the centroid of the area [15]. 

- If a section is made of two narrow rectangles, then shear centre lies on the 

junction of both rectangles [15]. 

 
Figure 18: Diagram of an C-shaped section with shear centre and centroid marked [19] 
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Figure 19: Diagram of an I-section and a plus-section with shear centre = centroid (S = CG) [16] 

 

 
Figure 20: Set of diagrams showing different sections with shear centre (S) and centroid (CG) marked, including L-shape, T-

shape, cross-shape, and angled sections [19] 

 

5.3 Steps to Compute the Shear Center 

- Define the geometry: specify the coordinates of the cross-section and its thickness.  

- Calculate the centroid: compute the centroid of the section, as it is needed for further 

calculations.  

- Determine the moment of Inertia: calculate the second moments of area (Ix, Iy, and 

Ixy) about the centroidal axes.  

- Shear flow distribution: find the shear flow along the section using equilibrium 

equations. 

- Locate the shear center: find the point at which the resultant moment due to shear 

flow is zero. 
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5.4 Shear Center of Rectangular Cross-Sections with b≪h 

Considering a thin rectangle section, symmetric about the vertical axis with:  

- Height h 

- Base b (very small, b≪h) 

- Thickness t (assumed constant along the perimeter). 

It is possible to say that the centroid of the section lies at the geometric centre: Cx = b/2, 

Cy = h/2, because of symmetry. Any applied shear force along the vertical axis will not 

cause twisting. 

 

5.5 Shear Center of Narrow Circular Cross-Section 

For a hollow circular section, the shear centre coincides with the geometric centre (or 

centroid) of the section. This is because of the symmetry of the section: any applied 

shear force will not cause twisting, as the shear flow is symmetric around the centre. 

The shear flow is constant along the circular wall for a thin-walled hollow section. 

So, for a thin-walled hollow circular section, the centroid is at (0,0) and the shear centre 

is also at (0,0), i.e., it coincides with the centroid. 

 

5.6 Shear Center of a C-Section 

The cross-section C in Fig. 21 has a horizontal axis of symmetry; therefore, the principal 

inertia axes are the axis of symmetry and the orthogonal axis to it. If the applied load is 

vertical, as shown in Fig. 21, the neutral bending axis coincides with the horizontal 

principal inertia axis [20]. 

Since the section walls are thin, the moment of inertia of the section with respect to the 

neutral axis can be calculated in a simplified manner, without significant errors, by 

considering the section's midline. 

 𝐽 =
ℎ ∙ 𝑐ଷ

12
+ 2 ∙ (𝑎 ∙ ℎ) ∙ ቀ

𝑐

2
ቁ

ଶ

 (5.1) 
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Figure 21: C-section subjected to a vertical shear action [20] 

 

Shear stresses in the flanges 

If we cut the section (Fig. 22) along a generic chord in a flange (chord 1-1), we can 

calculate the average shear stress along the chord using Jourawski's formula: 

 
𝜏 =

𝑇 ∙ 𝑆

𝑏 ∙ 𝐽
=

𝑇 ∙ (𝜂ℎ) ∙
𝑐
2

ℎ ∙ 𝐽
 (5.2) 

The shear stress τ is directed parallel to the axis line of the flange. Eq. (5.2) shows that 

the stress τ varies linearly with respect to the coordinate η. 

The stress  is zero at the extreme of the wing and is valid at the intersection of the wing 

with the soul 𝜏 =
்∙

ೌ೎

మ

௃
 [20]. 

 

Figure 22: Calculating Tangential Forces in a Wing in a C-Section [20] 
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Shear stresses in the web 

If we consider (Fig. 23) the generic chord in the web (chord 2-2), we can calculate the 

average shear stress along chord 2-2 as: 

 
𝜏 =

𝑇 ∙ 𝑆

𝑏 ∙ 𝐽
=

𝑇 ∙ ቂ(𝑎ℎ) ∙
𝑐
2

+ (𝜂ℎ) ∙ ቀ
𝑐
2

−
𝜂
2

ቁቃ

ℎ ∙ 𝐽
 (5.3) 

The shear stress τ is directed parallel to the midline of the web. Eq. (5.3) indicates that 

the stress τ varies according to a parabolic law with respect to the coordinate η. 

The stress  is worth: 𝜏 =
்∙

ೌ೎

మ

௃
 at the upper end of the core and reaches its maximum 

value at the neutral axis 𝜏 =
்∙൤

ೌ೎

మ
ା

೎మ

ఴ
൨

௃
 [20]. 

 

Figure 23: Calculating Tangential Forces in a Wing in a C-Section [20] 

The distribution of shear stresses τ in the section is illustrated in Fig. 24. 

 

Figure 24: Trend of tangential forces in a C-section [20] 
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Let’s now calculate the resulting forces F1 and F2 of the stresses acting on the flanges 

and the web, respectively (Fig. 25) [20]. 

 𝐹ଵ = න 𝜏(𝜂) ∙ ℎ ∙ 𝑑𝜂 =
௔

଴

න
𝑇𝜂𝑐

2𝐽
∙ ℎ ∙ 𝑑𝜂 =

𝑇𝑐

4𝐽
∙ ℎ ∙ 𝑎ଶ

௔

଴

 (5.4) 

 
𝐹ଶ = 2 න 𝜏(𝜂) ∙ ℎ ∙ 𝑑𝜂 =

௖
ଶ

଴

න
𝑇

𝐽
ቂ𝑎

𝑐

2
+ 𝜂 ∙ ቀ

𝑐

2
−

𝜂

2
ቁቃ ∙ ℎ ∙ 𝑑𝜂 = ⋯ = 𝑇

௔

଴

 (5.5) 

As illustrated in Fig. 25, it can be observed that the forces F1 and F2 acting on the flanges 

and the web (Fig. 25a) are statically equivalent to a system composed of a vertical force 

T and a torsional moment of value F1c (Fig. 25b). This system is, in turn, statically 

equivalent to a single force T (Fig. 25c) acting at a specific point C, known as the shear 

center. 

 

Figure 25: Equivalent systems of forces and shear center [20] 

The shear center is, therefore, the specific point of the section such that if the applied 

load passes through this point, no spurious torsional moment is generated, and the beam 

bends without twisting.  

Conversely, if the load does not pass through the shear center, the shear stresses 

generated by the shear force produce a spurious torsional moment, causing the beam to 

undergo both twisting and bending [20]. 

To calculate the position of the shear centre, we can impose that the equivalent systems 

(i.e., the system consisting of force F1 plus the force couple F2, and the system consisting 

of the single force T) have the same moment with respect to a freely chosen point. 
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In this specific case, we can, for example, choose point H and equate the moments of 

the two systems with respect to that point. 

 𝐹ଵ ∙ 𝑐 = 𝑇 ∙ 𝑒 (5.6) 

So: 

 𝑒 =
𝐹ଵ ∙ 𝑐

𝑇
 (5.7) 

The shear center is therefore located on the horizontal axis of symmetry at a distance ee 

from point H. The position of the torsion center for thin-walled sections with different 

shapes can be determined by following a similar approach [20]. 
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6. FINITE ELEMENT METHOD 

6.1 What is FEM?   

The Finite Element Method (FEM) is a numerical procedure used to obtain 

approximations to the solution of boundary value problems. These problems typically 

involve sets of ordinary or partial differential equations, where the solution is subject to 

specific boundary conditions. FEM works by discretizing the domain into smaller, 

simpler parts (elements), and then solving the resulting system of equations that governs 

the behavior of the entire structure or system under the given conditions [21]. 

The Finite Element Method (FEM) was developed to address complex problems of 

elastic and structural analysis, particularly in the fields of civil and aerospace 

engineering. Its origins can be traced back to the years 1930-1935, with the work of A. 

R. Collar and W. J. Duncan, who introduced a primitive concept of structural elements 

to solve aeroelasticity problems.  

Later, between 1940 and 1941, Alexander Hrennikoff and Richard Courant, although 

using different approaches, shared the idea of breaking down a complex problem into 

simpler subdomains, known as finite elements [22]. 

The real rise of FEM happened in the late 1950s, as a result of a series of 1970 key 

works by M. J. Turner of Boeing, who first created and improved upon the so-called 

Direct Stiffness Method, the first FEM method to be applied to continuous systems. In 

civil engineering, Turner’s work was replicated and disseminated by John Argyris 

(University of Stuttgart) and Ray W. Clough (University of Berkeley). Clough, who was 

first to use the name “FEM,” teamed with Turner for a book that is deemed the starting 

point of modern FEM. 

Significant developments were made by B. M. Irons, who invented or developed 

isoparametric elements, shape functions, the patch test, and the frontal solver for linear 

algebraic systems, and R. J. Melosh, classified FEM as a Rayleigh-Ritz method and 

specified its variational format, which was elaborated further by Strang and Fix in 1973 

[22]. 
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Additionally, E. L. Wilson developed the first open-source FEM software known as 

SAP, which became a reference model for many similar programs. 

In 1967, Zienkiewicz published the first book dedicated to finite elements. From the 

1970s onwards, FEM rapidly became a popular numerical modelling technique in 

various engineering fields, such as electromagnetism, fluid dynamics, geotechnics, and 

structural analysis. This period also marked the emergence of major commercial FEM 

software packages, including NASTRAN, ADINA, ANSYS, ABAQUS, SAMCEF, and 

MESHPARTS [22]. 

Although FEM competes with other numerical strategies in specific areas (such as the 

finite difference method, finite volume method, boundary element method, cell method, 

and spectral method), it retains a dominant position in the landscape of numerical 

approximation techniques.  

FEM serves as the core of most commercially available automatic analysis codes, 

particularly in structural and thermo-structural applications. However, its use in 

Computational Fluid Dynamics (CFD) is more limited due to the instability of solvers 

at relatively high Reynolds numbers [22]. 

The general idea is to formulate a deformation of a solid or fluid as a matrix equation of 

the following form: 

 𝐾𝑢 =  𝑓 (6.1) 

Here K is a symmetric, positive definite stiffness matrix, u is a vector of nodal 

displacements and f is a vector of external forces.  

The goal of FEM is to solve for u [21]. 
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6.2 Characteristics of the Elements 

Each finite element is characterized by: 

 Dimension: elements can be 1-dimensional (1D), 2-dimensional (2D), or 3-

dimensional (3D), depending on the complexity of the problem and the detail 

required for the analysis. 

 Nodes: nodes are discrete points used to define the geometry of the element. The 

degree of every field or field gradient of interest is provided at each node, and these 

values describe the response of the entire structure. In mechanical elements, 

proposed reaction forces and displacements are normally expressed for each node 

in the form of a field. 

 Degrees of Freedom (DOF): the possible values of the fields or field gradients at 

each node. All adjacent nodes have the same values for their corresponding DOF. In 

structural analysis, they are typically expected displacements and rotations. 

 Nodal Forces: external forces applied to the nodes or the effect of reaction forces. A 

fundamental principle of FEM is the duality between forces and displacements. 

Given f as the external force vector at a node and u as the vector of DOF, the 

relationship is assumed to be linear and expressed by Eq. (6.1). The relationship 

highlights the duality between external forces and displacements, where the scalar 

product fu corresponds to the work done by external forces. The terms "force", 

"reaction force", and "stiffness matrix" are broadly applicable beyond mechanical 

structures, where FEM was initially developed. 

 Constitutive Properties: these define the material properties and behavior of the 

element. For instance, an isotropic material with linear elastic behavior is 

characterized by Young’s modulus and Poisson’s ratio. 

 Solution of a System of Equations: the overall problem is solved by numerically 

handling a potentially nonlinear system of equations. In linear systems, like the one 

under consideration, the numerical error introduced by the solution process is 

typically negligible [22]. 
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The Finite Element Method (FEM) has originated and has been used in academia and 

the industry entirely because it can be used as a versatile and flexible analytical tool. 

Focusing on either finite or infinite physical and engineering problems, for example, 

approximate numerical solutions to complex equations, from a practical point of view it 

is useful, since a true analytical solution would be often difficult to find and not very 

useful at all [23]. 

Research on FEM began somewhat quietly back in the 1960s, but a development boom 

took place because of the computational tools available during that period had a broad 

use of the principles and practices of FEM. Its development has been spectacular 

because of its applicability in so many different fields [23]. 

FEM has proven itself as one of the best tools available when there is a system to be 

analyzed, especially when experimental investigation and laboratory testing would lead 

to huge relative costs and difficulties in measuring physics values [23]. 

While early automated approaches for solving differential equations governing physical 

phenomena primarily relied on finite difference methods, FEM expanded these 

capabilities by offering unparalleled flexibility.  

The generality of the method, initially developed by engineers and later rigorously 

formalized by mathematicians, has enabled numerous studies and applications. This 

foundational work has paved the way for new research avenues addressing both 

theoretical and practical challenges of great interest [23]. 

The method involves discretizing the structure into finite elements, each of which is 

represented by a set of mathematical equations.  

These equations describe the material behavior, geometric properties, and loading 

conditions applied to the individual elements. Once all the elements are mathematically 

defined, they are assembled into a comprehensive computational model of the structure 

[24]. 
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The numerical solution method allows users to find the stress and deformation 

conditions within the structure at all points in the model. 

This allows the FEM model to be a reliable tool for predicting structural behavior 

when subjected to an external load, and providing insights into areas of stress and 

deformation [24]. 

The FEM model is one of the most frequently used modelling methods across many 

engineering fields, including structural strength analysis, simulation of mechanical 

system behavior, product design, and performance optimization [24]. 

 

Figure 26: Example results of a FEM analysis [23] 
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6.3 FEM Analysis of Thin-Walled Beams 

The buckling behavior analysis of thin-walled open section beams can be particularly 

challenging, especially when seeking for a solution in an exact form [11]. 

This complexity arises from several factors: 

1. Constraint Conditions: The specific constraints imposed on the beam can 

significantly influence its buckling behavior, particularly in terms of warping. 

2. Variable Coefficients: When the beam is subjected to transverse loads, the 

equilibrium equations involve variable coefficients, further complicating the analysis. 

3. Load Application Point: The location of the applied transverse loads can also affect 

the buckling response. 

For this study in the field of finite elements, it was decided to analyze a single, straight 

beam. Polynomial interpolation functions are only used, since the problem cannot be 

integrated in exact form, even in a subdomain [11]. 

To perform the analysis some hypothesis have been taken into account: 

- The initial bending moment, which can vary arbitrarily along the beam's length, is 

simplified by approximating it as a piecewise linear function. This approximation is 

based on the nodal values of the bending moment. 

- Additionally, the axial force is assumed to be constant within each element of the 

finite element model [11]. 

 

6.3.1 Polynomial Finite Element 

As is usually the case in the application of the finite element methodology, the analysis 

was carried out on a single element of a beam with an open thin section; the individual 

elements were then combined to obtain the complete analysis of the beam [11]. 
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6.3.2 Total potential energy 

The analyzed element e of the open TWB section, has a length l and is pre-solicited by 

a constant axial force 𝑁଴ and bending moments 𝑀௫
଴(𝑧) and 𝑀௬

଴(𝑧) , variables along z 

[11]. 

It is possible to define: 

- the transverse nodal displacements 𝑢஼௜, 𝑣஼௜, 𝜃௜ with (i = 1,2) of the torsion center axis,  

- the torsional curvatures 𝜅௧௜ ≔ 𝜃௜′;  

- the longitudinal nodal displacements 𝜔௜, 𝜑௫௜,  𝜑௬௜ with (i = 1,2) of the centroid axis. 

The beam element therefore has 14 degrees of freedom: 

 𝐪(௘) ≔ ൫𝑢஼ଵ, 𝑣஼ଵ, 𝜔ଵ, 𝜑௫ଵ, 𝜑௬ଵ, 𝜃ଵ, 𝜅௧ଵ; 𝑢஼ଶ, 𝑣஼ଶ, 𝜔ଶ, 𝜑௫ଶ, 𝜑௬ଶ, 𝜃ଶ, 𝜅௧ଶ ൯
்

 (6.2) 

The incremental nodal forces acting at the ends of the beam are: 

 𝐟(௘) ≔ ൫𝑓௫ଵ, 𝑓௬ଵ, 𝑓௭ଵ, 𝑚௫ଵ, 𝑚௬ଵ, 𝑚௭ଵ, 𝑏ଵ; 𝑓௫ଶ, 𝑓௬ଶ, 𝑓௭ଶ, 𝑚௫ଶ, 𝑚௬ଶ, 𝑚௭ଶ, 𝑏ଶ ൯
்

 (6.3) 

Where 𝑓௫௜ , 𝑓௬௜ , 𝑓௭௜ are proper transverse and longitudinal forces; 𝑚௫௜ , 𝑚௬௜ , 𝑚௭௜ are 

flexural and torsional couples; 𝑏௜ are bicouples, dual of the torsional curvature [11].  

 

Figure 27: Finite element of open TWB: axes [11] 
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Figure 28: Finite element of open TWB: nodal displacements (on the left) and nodal forces (on the right) [11] 

 

It is possible to compute the total potential energy of the prestressed system as:  

 𝛱 = 𝑈෩ + 𝑈଴ + 𝑉 (6.4) 

where 𝑈෩ is the incremental elastic energy, 𝑈଴ is the prestress energy, and 𝑉 is the load 

potential energy (of prestressing and incremental loads) [11]. 

These contributions can be calculated as: 

 𝑈෩ =
1

2
න ൫𝐸𝐴𝜔ீ

ᇱଶ + 𝐸𝐼௬𝑢஼
ᇱᇱଶ + 𝐸𝐼௫𝑣஼

ᇱᇱଶ + 𝐺𝐽𝜃ᇱଶ + 𝐸𝐼ఠ𝜃ᇱᇱଶ൯𝑑𝑧
௟

଴

 (6.5) 

 
𝑈଴ = 𝜇

𝑁଴

2
න [𝑢஼

ᇱଶ + 𝑣஼
ᇱଶ + 𝑟஼

ଶ𝜃ᇱଶ + 2𝑦஼𝑢஼
ᇱ 𝜃ᇱ − 2𝑥஼𝑣஼

ᇱ 𝜃ᇱ]𝑑𝑧
௟

଴

 

+𝜇 න ቂ−(𝑀௫
଴𝜃)ᇱ(𝑢஼

ᇱ + 𝑦ு𝜃ᇱ) − ൫𝑀௬
଴𝜃൯

ᇱ
(𝑣஼

ᇱ + 𝑥ு𝜃ᇱ)ቃ𝑑𝑧
௟

଴

 

(6.6) 

 𝑉 = 𝜇
𝑒ொ

2
න 𝑝(𝑧)𝜃ଶ(𝑧)𝑑𝑧

௟

଴

− 𝐟(௘)்𝐪(௘) (6.7) 

Where: 

- 𝑥஼  and 𝑦஼  are the coordinates of the shear center C; 

- 𝑒ொ is the distance between C and the point of application of force Q 

- 𝑥ு and 𝑦ு coordinates of the axial center of force H, calculated as a correction with 

respect to the coordinates of the center of shear C according to the formulas: 

𝑥ு ≔ 𝑥஼ −
1

2𝐼௬

න 𝑥(𝑥ଶ + 𝑦ଶ)
௰

𝑏𝑑𝑠 , 𝑦ு ≔ 𝑦஼ −
1

2𝐼௫

න 𝑦(𝑥ଶ + 𝑦ଶ)
௰

𝑏𝑑𝑠 (6.8a,b) 
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6.3.3 Interpolation functions  

The displacement fields 𝑢(𝑧), 𝑣(𝑧), 𝜔(𝑧), and 𝜃(𝑧) are interpolated between the nodal 

values: 

 𝜔(𝑧) = 𝜓ଵ(𝑧)𝜔ଵ + 𝜓ଶ(𝑧)𝜔ଶ (6.9) 

 𝑢(𝑧) = 𝜓ଷ(𝑧)𝑢ଵ + 𝜓ସ(𝑧)𝜑௬ଵ + 𝜓ହ(𝑧)𝑢ହ + 𝜓଺(𝑧)𝜑௬ଶ (6.10) 

 𝑣(𝑧) = 𝜓ଷ(𝑧)𝑣ଵ − 𝜓ସ(𝑧)𝜑௫ଵ + 𝜓ହ(𝑧)𝑣ଶ − 𝜓଺(𝑧)𝜑௫ଶ (6.11) 

 𝜃(𝑧) = 𝜓ଷ(𝑧)𝜃ଵ + 𝜓ସ(𝑧)𝜅௧ଵ + 𝜓ହ(𝑧)𝜃ଶ + 𝜓଺(𝑧)𝜅௧ଶ (6.12) 

Where 𝜓௜(𝑧), 𝑖 =  1, . . . ,6, are the following interpolation functions: 

 𝜓ଵ(𝑧) = 1 −
𝑧

𝑙
   ,    𝜓ଶ(𝑧) =

𝑧

𝑙
 (6.13a,b) 

 𝜓ଷ(𝑧) = 1 − 3 ቀ
𝑧

𝑙
ቁ

ଶ

+ 2 ቀ
𝑧

𝑙
ቁ

ଷ

  ,   𝜓ସ(𝑧) = 𝑧 ൤1 − 2
𝑧

𝑙
+ ቀ

𝑧

𝑙
ቁ

ଶ

൨ (6.14a,b) 

 
𝜓ହ(𝑧) = 3 ቀ

𝑧

𝑙
ቁ

ଶ

− 2 ቀ
𝑧

𝑙
ቁ

ଷ

   ,   𝜓଺(𝑧) = 𝑧 ൤ቀ
𝑧

𝑙
ቁ

ଶ

−
𝑧

𝑙
൨ (6.15a,b) 

The prestress bending moments are linearly interpolated between the nodal values 𝑀௫௜
଴ , 

𝑀௬௜
଴  (𝑖 = 1, 2) as: 

 𝑀௫
଴(𝑧) = 𝜓ଵ(𝑧)𝑀௫ଵ

଴ + 𝜓ଶ(𝑧)𝑀௫ଶ
଴  (6.16) 

 𝑀௬
଴(𝑧) = 𝜓ଵ(𝑧)𝑀௬ଵ

଴ + 𝜓ଶ(𝑧)𝑀௬ଶ
଴  (6.17) 

By substituting the equations of the displacement field and the prestress bending 

moments into the energy equations, integrating over z, and enforcing stationarity with 

respect to the Lagrangian parameters, the following element equilibrium equations are 

obtained: 

 ൫𝐊௘
(௘)

+ 𝜇𝐊௚
(௘)

൯𝐪(௘) = 𝐟(௘) (6.18) 

Where 𝐊௘
(௘) is the elastic matrix and 𝐊௚

(௘) the geometric matrix [11].  
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In particular, the geometric matrix is the sum of three contributions: 

 𝐊௚
(௘)

=: 𝐊௚,ே
(௘)

+ 𝐊௚,ெ
(௘)

+ 𝐊௚,௣
(௘)

 (6.19) 

Which are the contributions, respectively, due to axial prestress, bending prestresses and 

eccentricity of the transverse loads [11]. 

 

6.3.4 Stiffness matrices of the TWB finite element 

The stiffness matrices 𝐊௘
(௘), 𝐊௚,ே

(௘) , 𝐊௚,ெ
(௘) , 𝐊௚,௣

(௘)  have the dimensions of DOF×DOF, so 

14×14, and are partitioned into four sub-matrices of dimension 7×7 [11]. 

It is possible to write, in general: 

 𝐊ఈ ≔ ቈ
𝐊ఈ

(ଵ,ଵ)
𝐊ఈ

(ଵ,ଶ)

𝐊ఈ
(ଶ,ଵ)

𝐊ఈ
(ଶ,ଶ)

቉ (6.20) 

With 𝐊ఈ
(ଶ,ଵ)

= ൫𝐊ఈ
(ଵ,ଶ)

൯
்
. 

The following are the non-zero values of the elements of the four stiffness matrices [11]. 
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• Elastic matrix [11]: 

𝐊௘
(ଵ,ଵ): 

𝐾௘ଵଵ
(ଵ,ଵ)

=
𝐸𝐴

𝑙
         , 𝐾௘ଶଶ

(ଵ,ଵ)
=

12𝐸𝐼௬

𝑙ଷ
        , 𝐾௘ଶଷ

(ଵ,ଵ)
=

6𝐸𝐼௬

𝑙ଶ
        , 𝐾௘ଷଷ

(ଵ,ଵ)
=

4𝐸𝐼௬

𝑙
 

𝐾௘ସ
(ଵ,ଵ)

=
12𝐸𝐼௫

𝑙ଷ
         , 𝐾௘ସହ

(ଵ,ଵ)
= −

6𝐸𝐼௫

𝑙ଶ
         , 𝐾௘ହ

(ଵ,ଵ)
=

4𝐸𝐼௫

𝑙
        

𝐾௘଺
(ଵ,ଵ)

=
12𝐸𝐼ఠ

𝑙ଷ
+

6𝐺𝐽

5𝑙
         , 𝐾௘଺଻

(ଵ,ଵ)
=

6𝐸𝐼ఠ

𝑙ଶ
+

𝐺𝐽

10
         , 𝐾௘଻଻

(ଵ,ଵ)
=

4𝐸𝐼ఠ

𝑙
+

2𝐺𝐽𝑙

15
 

(6.21) 

𝐊௘
(ଶ,ଵ): 

𝐾௘ଵଵ
(ଶ,ଵ)

= −
𝐸𝐴

𝑙
         , 𝐾௘ଶଶ

(ଶ,ଵ)
= −

12𝐸𝐼௬

𝑙ଷ
         , 𝐾௘ଶଷ

(ଶ,ଵ)
= −𝐾௘ଷ

(ଶ,ଵ)
= −

6𝐸𝐼௬

𝑙ଶ
 

𝐾௘ଷଷ
(ଶ,ଵ)

=
2𝐸𝐼௬

𝑙
         , 𝐾௘ସ

(ଶ,ଵ)
= −

12𝐸𝐼௫

𝑙ଷ
         , 𝐾௘ସହ

(ଶ,ଵ)
= −𝐾௘ହସ

(ଶ,ଵ)
=

6𝐸𝐼௫

𝑙ଶ
 

𝐾௘ହହ
(ଶ,ଵ)

=
2𝐸𝐼௫

𝑙
         , 𝐾௘଺଺

(ଶ,ଵ)
= −

12𝐸𝐼ఠ

𝑙ଷ
−

6𝐺𝐽

5𝑙
            

𝐾௘଺଻
(ଶ,ଵ)

= −𝐾௘଻଺
(ଶ,ଵ)

= −
6𝐸𝐼ఠ

𝑙ଶ
−

𝐺𝐽

10
         , 𝐾௘଻଻

(ଶ,ଵ)
=

2𝐸𝐼ఠ

𝑙
−

𝐺𝐽𝑙

30
 

(6.22) 

𝐊௘
(ଶ,ଶ): 

𝐾௘ଵ
(ଶ,ଶ)

=
𝐸𝐴

𝑙
      , 𝐾௘ଶଶ

(ଶ,ଶ)
=

12𝐸𝐼௬

𝑙ଷ
       , 𝐾௘ଶଷ

(ଶ,ଶ)
= −

6𝐸𝐼௬

𝑙ଶ
       , 𝐾௘ଷଷ

(ଶ,ଶ)
=

4𝐸𝐼௬

𝑙
 

𝐾௘ସସ
(ଶ,ଶ)

=
12𝐸𝐼௫

𝑙ଷ
         , 𝐾௘ସହ

(ଶ,ଶ)
=

6𝐸𝐼௫

𝑙ଶ
         , 𝐾௘ହହ

(ଶ,ଶ)
=

4𝐸𝐼௫

𝑙
 

𝐾௘଺଺
(ଶ,ଶ)

=
12𝐸𝐼ఠ

𝑙ଷ
+

6𝐺𝐽

5𝑙
       , 𝐾௘଺଻

(ଶ,ଶ)
= −

6𝐸𝐼ఠ

𝑙ଶ
−

𝐺𝐽

10
       , 𝐾௘଻଻

(ଶ,ଶ)
=

4𝐸𝐼ఠ

𝑙
+

2𝐺𝐽𝑙

15
 

(6.23) 
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• Geometric matrix, related to the axial force [11]: 

 

𝐊௚,ே
(ଵ,ଵ)

≔ 𝑁଴

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0

0
6𝑙

5

1

10

0
1

10

2𝑙

15

0 0

0 0

0 0

0 0

6𝑦஼

5𝑙

𝑦஼

10
𝑦஼

10

2𝑙𝑦஼

15

0 0 0

0 0 0

0
6𝑦஼

5𝑙

𝑦஼

10

6𝑙

5
−

1

10

−
1

10

2𝑙

15

−
6𝑥஼

5𝑙

𝑥஼

10

−
6𝑥஼

5𝑙
−

𝑥஼

10
𝑥஼

10

2𝑙𝑥஼

15
6𝑟஼

ଶ

5𝑙

𝑟஼
ଶ

10

0
𝑦஼

10

2𝑙𝑦஼

15
−

𝑥஼

10

2𝑙𝑥஼

15

𝑟஼
ଶ

10

2𝑙𝑟஼
ଶ

15 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝐊௚,ே
(ଶ,ଵ)

≔ 𝑁଴

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0

0 −
6𝑙

5
−

1

10

0
1

10
−

𝑙

30

0 0

0 0

0 0

0 0

−
6𝑦஼

5𝑙
−

𝑦஼

10
𝑦஼

10
−

𝑙𝑦஼

30

0 0 0

0 0 0

0 −
6𝑦஼

5𝑙
−

𝑦஼

10

−
6𝑙

5

1

10

−
1

10
−

𝑙

30
6𝑥஼

5𝑙
−

𝑥஼

10

−
6𝑥஼

5𝑙
−

𝑥஼

10
𝑥஼

10
−

𝑙𝑥஼

30

−
6𝑟஼

ଶ

5𝑙
−

𝑟஼
ଶ

10

0
𝑦஼

10
−

𝑙𝑦஼

30
−

𝑥஼

10
−

𝑙𝑥஼

30

𝑟஼
ଶ

10
−

𝑙𝑟஼
ଶ
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• Geometric matrix, related to the bending moments [11]: 
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• Geometric matrix, related to the eccentricity, with respect to the centre of torsion, of 

the application point of the transverse loads [11]:  
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6.3.5 Matrix assembly 

A straight TWB is considered, divided into finite elements labeled 𝑒 =  1,2, . . . , 𝑚.  

Once the prestress state at the nodes is determined using the previous expressions, the 

stiffness matrices for each element are computed. These matrices are then assembled, 

and constraints are applied, following the standard linear elastic analysis approach. 

Specifically, when a torsional clamp is applied at node i, it holds that θi = 0.  

However, it is necessary to distinguish whether the constraint restricts or allows warping 

[11]. 

In the first scenario, the torsional curvature is set to zero 𝜅௧௜ = 0, whereas in the second 

scenario 𝜅௧௜ is left unrestricted (examples in Appendix C illustrate this concept) [11]. 

The procedure leads to the eigenvalue problem: 

 ൫𝐊௘ + 𝜇𝐊௚൯𝐪 = 0 (6.29) 

where μ is the multiplier of the prestresses.  

The smallest eigenvalue μc is the critical value sought for [11]. 
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6.4 Implementation of the theory in a Matlab code: an overview of the 
code structure  

Taking into account the analysis just proposed, a code was implemented using the 

“Matlab” software, to perform an elastic buckling analysis of thin-walled beams using 

the finite element method (FEM), with the aim of determining the critical buckling load 

and analyzing the behavior of the structure under load. The code has been structured as 

follows, specifically using Matlab functions to divide the problem into logical and 

independent modules, thus improving the readability and maintainability of the code, as 

each function has been designed to perform a specific task. 

 

1. Definition of the Initial Parameters 

Initially, the geometric parameters, material characteristics and numerical factors 

necessary for the analysis were defined: 

 Degrees of Freedom (DOF): The total number of degrees of freedom per node and 

for the entire structure. 

 Cross-sectional geometry: all parameters have been defined to characterise the 

section and the geometric properties of the section, such as area, moments of inertia 

and polar moment, have been calculated. 

 Material properties: The modulus of elasticity E and the shear modulus G were 

defined to characterize the elastic behavior of the material. 

 Discretization: the total length of the ltot beam was defined, then divided into a 

number m of finite elements, each with a length le. 

 

2. Applied loads 

Subsequently, the loads acting on the structure were defined:  

 Distributed load, p (it has been chosen to consider a uniform load along z-axes); 

 Axial forces, N; 

 Bending moments, My,first_node, My,last_node; 

 Twisting moments, Mx,first_node, Mx,last_node. 
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3. Global Forces Vector 

Subsequently, the vector of global forces was assembled considering the distribution of 

equivalent nodal loads along the degrees of freedom of the structure. 

 

4. Definition of the Remaining Parameters Necessary for the Analysis 

Other necessary parameters were calculated, such as: the coordinates of the shear center 

(xC, yC), the radius of the shear center (rC), and the eccentricity of the load (eQ). 

These parameters are critical to consider the effects of torsional and flexural buckling. 

 

5. Stiffness Matrices 

The elastic stiffness matrices (Ke) and geometric (Kg) have been calculated for each 

finite element, taking into account: 

 The axial, flexural and torsional stiffness, 

 The geometric effects due to the applied loads. 

The global stiffness matrices were then iteratively assembled for the entire structure. 

 

6. Normalization of the Global Stiffness Matrix 

To improve numerical stability, the global stiffness matrix Kglobal, has been normalized 

with respect to the maximum value of its elements. 

 

7. Critical Load Analysis 

To perform the critical load analysis, we solved a problem with eigenvalues and 

eigenvectors to determine the critical buckling load, considering: 

 The identification of constrained degrees of freedom (fixed_dof); 

 The modification of the stiffness matrices to include boundary conditions; 

 The calculation of the global critical load (Pc) and the related eigenvectors (qPc). 
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8. Calculation of Critical Displacements 

Finally, through the use of the interpolation functions reported above, the critical 

displacements of the beam under the critical load were calculated, including: 

 Transverse displacements (w, v); 

 Axial displacements (u); 

 Rotations (θ); 

The results have been normalized to take into account that a linear buckling analysis is 

being performed. 

 

In the following section, a comparison between the results obtained through the code 

implemented on Matlab and the results obtained by the authors of the reported Theory, 

present in the source [11], has been reported. 

To summarize the functioning of the code, a workflow was developed and is described 

in Chapter 7, prior to the presentation of the additional analyses conducted using it. 
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6.5 Simply Supported Beam with Circular Cross-Section Subjected to 
P 

Parameters: R = 40 mm, b = 4 mm, l = 4 m, E = 207,000 N/mm2 and G = 79,300 N/mm2. 

The analysis has been performed considering a mesh of m = 50. 

Compressed TWB, simply supported, torsionally clamped with free warping:  

Result from the book:  

 

Figure 29: Model of the beam and applied load (on the left) and result of the analysis (on the right) [11] 

Pc = 55 KN 

Results from the Matlab code: 

 
Figure 30: Result of the buckling analysis from Matlab code 

 

The critical load calculated from the following analysis is: 5.1344 E+04 N 

The percentage difference between the two values is: 6,64% 
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6.6 Simply Supported Beam Torsionally Constrained with Circular 
Cross-Section Subjected to P 

Parameters: R = 40 mm, b = 4 mm, l = 4 m, E = 207,000 N/mm2 and G = 79,300 N/mm2. 

The analysis has been performed considering a mesh of m = 30. 

Simply supported compressed twin-walled beam, torsionally clamped with prevented 

warping:  

Results from the book: 

 

Figure 31: Model of the beam and applied load (on the left) and result of the analysis (on the right) [11] 

Pc = 81.04 KN 

Results from the Matlab code: 

 
Figure 32: Result of the buckling analysis from Matlab code 

 

The critical load calculated from the following analysis is: 8.2152 E+04 N 

The percentage difference between the two values is: 1,37% 
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6.7 Simply Supported Beam with Circular Cross-Section Subjected to 
Couple C 

Parameters: R = 40 mm, b = 4 mm, l = 4 m, E = 207,000 N/mm2 and G = 79,300 N/mm2. 

The analysis has been performed considering a mesh of m = 50. 

Uniformly bent thin-walled beam, simply supported, torsionally clamped with 

prevented warping:  

Results from the book: 

 

Figure 33: Model of the beam and applied load (on the left) and result of the analysis (on the right) [11] 

Cc = - 4.06 KNm 

Results from the Matlab code: 

 
Figure 34: Result of the buckling analysis from Matlab code 

 

The critical load calculated from the following analysis is: -3.81 Nm 

The percentage difference between the two values is: 6,36% 
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6.8 Cantilever Beam with Narrow Rectangular Cross-Section 
Subjected to F 

Parameters: b = 2 mm, h = 100 mm, l = 1 m, E = 207,000 N/mm2 and G = 79,300 N/mm2. 

The analysis has been performed considering a mesh of m = 500. 

Fixed-free TWB with thin rectangular cross-section, non-uniformly bent by a 

concentrated load:  

Results from the book: 

 
Figure 35: Model of the beam and applied load (on the left), geometric parameters of the section (in the center) and result of 

the analysis (on the right) [11] 

Fc = 68.9 KN 

Results from Matlab code: 

 
Figure 36: Result of the buckling analysis from Matlab code 

 

The critical load calculated from the following analysis is: -7.1348 E+04 N 

The percentage difference between the two values is: 4.35% 
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6.9 Simply Supported Beam with Narrow Rectangular Cross-Section 
Subjected to Distributed Load p 

Parameters: b = 2 mm, h = 100 mm, l = 1 m, E = 207,000 N/mm2 and G = 79,300 N/mm2. 

The analysis has been performed considering a mesh of m = 50. 

Simply supported TWB with a thin rectangular cross-section with an applied distributed 

load:  

Results from the book: 

 

Figure 37: Model of the beam and applied load (on the left) and result of the analysis (on the right) [11] 

 Pc ≈ 500 N/m 

Results from Matlab code: 

 
Figure 38: Result of the buckling analysis from Matlab code 

 

The critical load calculated from the following analysis is: - 495.15 N/m 

The percentage difference between the two values is: 0,80% 
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7. HIGH-RISE BUILDINGS 
Emporis standards define a high-rise building as “A multi-storey structure between 35-

100 meters tall, or a building of unknown height from 12-39 floors”. The International 

Conference on Fire Safety in high-rise buildings defined a high rise as “any structure 

where the height can have a serious impact on evacuation. Whereas, from a structural 

engineer’s perspective, a building is considered tall when, due to its height the lateral 

forces suffered by the structure play a significant role in the design [14]. 

 

7.1 Historical Aspects of High-Rise Buildings 

In the last 200 years, there is been a demographic growth of the world population. Taking 

into account this, the classical development model, which relies on the infinite 

availability of land, water, and energy, cannot be sustainable anymore. Therefore, it 

became necessary to take advantage of tall buildings, an American invention from the 

late 19th century, after the fire that devastated Chicago in October 1871 [13]. 

This event presented a valuable opportunity to reassess the design and construction of 

the urban environment, evaluate the limitations of conventional materials, and explore 

the potential of innovative materials and structural systems [13]. 

The urgent need to rapidly rebuild structures while maximizing the use of expensive 

downtown space led to the emergence of a new architectural typology: the skyscraper 

[13]. 

With regard to the structural aspect, the buildings in wood and masonry could have a 

limited height, so to overcome this obstacle, masonry walls were replaced by steel beams 

and columns, forming a relatively thin metal skeleton that was identical on each floor. 

In this way, the facades, which had lost their load-bearing function, could be built by 

attaching closure panels to the structural frame, allowing for the construction of a large 

number of glass surfaces [13]. 
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7.2 Evolutions and Structural Analysis 

During that period, alongside technological advancements, significant progress was 

made in structural analysis methods. A key example is the work of Hardy Cross, a 

professor of structural engineering at the University of Illinois at Urbana-Champaign, 

who in 1930 published the article “Analysis of Continuous Frames by Distributing 

Fixed-End Moments”. This study introduced a method for determining stress 

distribution in indeterminate systems, addressing one of the most challenging problems 

in structural analysis at the time. After a pause due to World War II, the construction of 

steel skyscrapers resumed with a more essential and minimalist approach [13]. 

Further advancements took place in the 1970s with the arrival of the first 

supercomputers, such as the Cray Computer, which provided the computational power 

needed to model increasingly complex structures. Moreover, the development of new 

disciplines, including wind engineering and geotechnical engineering, contributed to the 

creation of ever more bold and innovative structural solutions [13]. 

 

7.3 Height Records 

Below is a comparative diagram of the height of some of the world's tallest skyscrapers, 

with the height expressed in meters and the year of completion [13]. 

 

Figure 39: World's tallest skyscrapers heights [13] 
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Buildings represented (highest to lowest): 

1. Burj Dubai (now Burj Khalifa) – 828 m, Dubai, United Arab Emirates, completed in 

2010 (the highest in the world). 

2. Taipei 101 – 508 m, Taipei, Taiwan, completed in 2004. 

3. Shanghai World Financial Center – 492 m, Shanghai, China, completed in 2008. 

4. Petronas Towers – 452 m, Kuala Lumpur, Malaysia, completed in 1998. 

5. Willis Tower (formerly Sears Tower) – 442 m, Chicago, United States, completed in 

1974. 

6. Trump International Hotel & Tower – 423 m, Chicago, USA, completed in 2009. 

7. Jin Mao Building – 421 m, Shanghai, China, completed in 1999. 

8. Two International Finance Centre – 415 m, Hong Kong, China, completed in 2003. 

9. CITIC Plaza – 390 m, Guangzhou, China, completed in 1996 [13]. 

 

The height of a skyscraper depends on: 

- Material strength 

- Site conditions 

- Structural system 

- Analytical modeling skills 

- Understanding the structural behavior of the building 

- Financial limitations  

- Symbolic and representative requirements [13]. 
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7.4 Functionality  

Functionality is a fundamental requirement for effective design [13].  

The most critical factor is the acceleration caused by wind-induced motion. How 

occupants perceive this movement depends on the building’s intended use, as well as 

the stiffness, mass, and damping characteristics of the structural system [13]. 

 

Maximum displacement at the top 

Currently, high-rise buildings are designed to have elastic displacements of h/500 due 

to wind with a 50-year return period. This specification outlines how stiff the structural 

system should be in terms of mass and damping properties of the entire building [13]. 

For high-rise buildings, a P-Δ effect caused by lateral displacement can produce many 

more deformations and consequently greater stresses in vertical gravity load elements. 

Damping will be a key aspect of developed design forces and the maximum wind-

induced accelerations [13]. 

The P-Δ effect can be derived from the hysteresis cycles of several structural and non-

structural materials, aeroelastic interactions, and/or by particular energy dissipation 

devices (supplemental damping). All so-called damping criteria help to mitigate 

acceleration and improve the comfort of the occupants [13]. 

 

7.4.1 Ratio of height to width (slenderness)  

When the structural system is placed on the perimeter of a tall building, the optimal ratio 

between height and width ranges from 6 to 8. For higher ratios, it is advisable to use 

energy dissipation devices to reduce the amplitude of oscillations induced by the wind. 

For central stiffening cores (cores), the ratio can even reach 15 [13]. 
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Figure 40: Comparison of skyscrapers based on height, aspect ratio, and materials, accompanied by diagrams illustrating 
mass distribution, the effect of wind forces, and structural behavior in relation to the height-to-width ratio (H/D) [13] 

 

7.4.2 Lateral movements 

The lateral displacement of a frame can be considered as the sum of two components, 

similar to those that occur in a prismatic cantilever beam. One component is due to 

bending deformation, while the other is due to shear deformation. Contrary to what 

happens with prismatic beams, in frames the shear deformation (70%) predominates 

over the bending deformation (30%), especially in the case of not-too-tall frames [13]. 

 

Figure 41: Illustration of structural deformations in buildings: flexural deformation (30%), shear deformation (70%), and 
their combined effect, highlighting the different contributions to overall structural behavior [13] 
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7.5 Remarks 

It is possible to make some remarks: 

- Bending deformation occurs through the change in length of the columns, caused 

by the axial force that balances the overturning moment of the horizontal forces. 

The upwind columns elongate, while the downwind ones shorten [13]. 

- Shear deformation is due to the bending of the columns and beams. The in-plane 

shear is distributed among all the columns in the plane, causing them to bend 

with double curvature and a flexure point around the midpoint. The moment at 

the joints is also transferred to the ends of the beams, which deform similarly to 

the columns [13]. 

Frame structures are generally not very efficient because horizontal forces are mainly 

balanced by the bending of structural elements, rather than by axial forces. This requires 

the use of significant amounts of material, especially in cases of considerable heights. 

In such cases, it is preferable to use other types of structures [13]. 

 

7.6 Central Core Systems  

Central core systems are commonly employed in reinforced concrete buildings, where 

the core serves as the primary resistance against horizontal forces. To ensure stability, 

the core must be sufficiently rigid to limit horizontal displacements within acceptable 

thresholds. Floor systems in these structures can either be fully cantilevered or designed 

in modular arrangements, where perimeter columns transfer their loads to a specially 

reinforced lower floor [13]. 
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Figure 42: Slabss in core systems: cantilever slabs (a), strengthened cantilever slabs (b) [13] 

 

 

Figure 43: Slabs in the mega core system: cantilever slab (a), supported (b) [13] 
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The core consists of a number of rooms and functions that remain the same on all floors 

of the building. The core consists of emergency stairwells, elevators, staircases, 

restrooms, electrical panels, technical rooms for HVAC units, and utility shafts. There 

are three main cores: central, lateral, and multiple core, that can take from 15% to 30% 

of the floor area respectively [17].  

Most commercial skyscrapers have a central core, providing the most flexible location 

of spatial arrangements in each floor. In addition, a central core enhances the location of 

distributed air ducts, since the floor can be configured from both sides of a core. A 

central core also has structural advantages due to the stiffness of the core that enhances 

resistance to wind loads [17].  

In certain instances, a lateral core might be the best option, such as if the floors are 

shorter or an existing building is adjacent to the new building. The lateral core won’t 

prevent winning from directly transporting the air supply from conditioning units for 

each level [17].  

In cases of very large floor areas, multiple cores may be necessary to minimize the 

distance to the nearest restroom and the stairwells. The main concern with multiple cores 

is in terms of cost - each core needs an elevator and must have adequate service shafts 

for each stairwell [17]. 
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7.7 Floor-to-Floor Height  

The overall cost of a skyscraper is influenced by the internal height of each floor. Even 

a slight variation in height, when multiplied by the number of floors and considered 

across the entire floor area, can significantly increase the building’s external surface 

area, thus raising the cost related to the building envelope [17]. 

The floor-to-floor height consists of four factors:  

- The height of the raised floor, if present;  

- The net height, which typically varies between 2.60 m and 3.00 m;  

- The height of the suspended ceiling, which depends on lighting systems and air 

ducts;  

- The thickness of the structural slab. 

Overall, the floor-to-floor height generally ranges from 3.8 m to 4.1 m. However, there 

are specific areas, such as data centers (DCs), which require greater heights [17]. 

 

Figure 44: Interfloor height [17] 
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7.8 The Stability of High-Rise Buildings 

The increasing demand for tall structures necessitates a thorough understanding of 

buckling phenomena that can occur in buildings. It is essential to have a solid grasp of 

reliable calculation methods for designing such structures and to be confident in 

applying them effectively.  

Observations from past earthquakes have shown that buildings with discontinuities in 

stiffness and mass are prone to concentrations of forces and deformations at those points 

of discontinuity, potentially leading to member failure at junctions and overall structural 

collapse. The most economical approach to prevent soft-storey failure is by 

incorporating shear walls into tall buildings [14]. 

 

7.8.1 Wind effects on structures  

Wind effects on structures can be classified as:  

- Static: static wind effect primarily causes elastic bending and twisting of 

structure.  

- Dynamic: for tall, long span and slender structures a “dynamic analysis” of the 

structure is essential. Wind gusts cause fluctuating forces on the structure which 

induce large dynamic motions, including oscillations [14].  

The movement of air masses exerts pressure on the side of the building directly exposed 

to the wind, while creating a depression on the opposite side. On the surfaces parallel to 

the wind direction, a dragging action occurs. Additionally, the detachment of vortices 

generates variable transverse forces, which play a crucial role in the overall wind effects 

[14]. 

Wind actions are dynamic (changing over time) and induce vibrations in the entire 

structure, affecting the comfort conditions inside the building. A well-designed 

aerodynamic shape can significantly reduce wind forces [14]. 
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Figure 45: Graphs illustrating wind velocity and pressure variation with elevation, alongside a diagram showing wind 
direction and its impact on the windward and leeward sides of a building [14] 

 

 

Figure 46: Generation of eddies In elevation (a) and in plan (b) [25] 

 

The previous force was most often based on using some regulatory standards for 

determining the approximate wind forces. However, there is great advantage to wind 

tunnel testing, as especially navigating in the complex wind interactions created in urban 

assemblies of neighbouring tall buildings, [14].  

More can be analyzed more deeply in terms of these concepts. 
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The structural design of tall buildings requires special consideration with respect to wind 

effects, as aerodynamic forces acting on these structures lead to substantial and complex 

loads. A quasi-static treatment of wind loads has been the traditional approach for low- 

and medium-rise buildings.  

This pseudo-static approach neglects some critical aspects of the behavior of wind and 

the dynamic response of the structure itself. Hence, this treatment is not suitable for very 

tall buildings, as it may lead to grossly conservative estimates of the loads on the 

structure or dangerously underestimating them [25].  

The limitations of this assumption are the neglect of proper dynamic response of the 

building, the effects of interference by adjacent buildings, directionality effects and 

crosswind response. All of these considerations must be evaluated in order to ensure the 

safety and functioning of a tall building. 

 

Figure 47: Mean wind profiles for different terrains [25] 

 

The dynamic response of the structure is one of the most important aspects that the 

quasi-static consideration overlooks. As a result of their height and flexibility, tall 

buildings are particularly sensitive to resonance (the wind frequency matching the 

natural frequency of the structure) [25]. 

This can amplify the oscillations considerably and cause discomfort for the occupants 

as well as structural damage. In addition, acceleration, damping and stiffness of the 

structural system are critical to the dynamic response of buildings and must be 

considered in the design [25]. 
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One further factor that is commonly overlooked is interference among structures.  

In built up urban areas, structures that might exist together cannot just influence wind 

flows, they may create complex wind behaviors (e.g., turbulence, local accelerations, 

and changes in lateral loading) that cannot be estimated even from a simplified process, 

so the designer will require very advanced measures, such as wind tunnel testing, to 

repro- duce real world conditions, then study wind interaction with their structure, and 

to give them data with a better known measure to work from [25]. 

Wind directionality represents another critical factor. Wind does not always act 

uniformly or predictably but varies in intensity and direction over time. This can 

significantly influence the lateral and crosswind loads on tall buildings, requiring 

detailed analysis to ensure that the structure can withstand all possible loading 

conditions. Furthermore, the crosswind response to wind, which manifests as 

oscillations perpendicular to the primary wind direction, can cause discomfort to 

occupants and compromise the stability of the building if not adequately considered 

[25]. 

 

Figure 48: Wind response directions [25] 

 



7.8 The Stability of High-Rise Buildings 

110 
 

To take into account these complexities, it is necessary to adopt an advanced approach 

to wind load design, such as the one outlined in the Australian code. 

This approach integrates dynamic analyses, numerical simulations, and wind tunnel 

testing to accurately assess the effects of wind on tall buildings. Wind tunnel tests, in 

particular, provide a level of detail and accuracy that cannot be achieved through 

traditional methods [25]. 

 

Figure 49: Schematic of a typical open-circuit wind tunnel [25] 

 

They allow for wind behavior in real-world conditions, for turbulent conditions, 

interference of buildings and fluctuations of wind direction. The information from the 

results of the tests can contribute to better structural design, safety, stability, and provide 

a comfortable experience for the end user. 

In summary, the design of tall buildings includes a process that is holistic with 

consideration of wind effects. This stage of the design process must use the most current 

techniques in order to guarantee tall buildings can resist the aerodynamic forces in a safe 

and efficient manner and improve quality of life in urban settings [25]. 
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7.8.2 Seismic effects on high-rise buildings  

When earthquakes occur, a building undergoes dynamic motion. This is because the 

building is subjected to inertia forces that act in the opposite direction to the acceleration 

of earthquake excitations. These inertia forces, called seismic loads, are usually dealt 

with by assuming forces external to the building. Time histories of earthquake motions 

are also used to analyze high-rise buildings, and their elements and contents for seismic 

design. The earthquake motions for dynamic design are called design earthquake 

motions [14]. 

In the previous recommendations, only the equivalent static seismic loads were 

considered to be seismic loads. In ISO/TC98 which deals with “bases for design of 

structures”, the term “action” is used instead of “load” and action includes not only load 

as external force but various influences that may cause deformations to the structures. 

In the future, “action” may take the place of “load” [14]. 

 

7.9 Final Observations about High-Rise Buildings 

The most important factor in the designing of high-rise buildings, however, is the 

building’s need to withstand the lateral forces imposed by the winds and potential 

earthquakes. Most high-rises have frames made of steel or steel and concrete. Their 

frames are constructed of columns (vertical support members) and beams (horizontal 

support members). Cross-bracing or shear walls maybe used to provide a structural 

frame with greater rigidity in order to withstand wind stresses [14]. 

The shear force and bending moments are greater for ground-floor columns compared 

to the first-floor columns. In terms of storey drift, base shear, and roof displacement, 

square columns perform better than rectangular ones. Shear walls are employed to 

mitigate lateral loads and soft-storey effects. When placed centrally, shear walls have a 

minimal impact on the overall behavior of the structure. The inclusion of masonry infill 

in structures enhances the stiffness of the structural elements [14].  

 

 



7.10 Stability in High Rise Buildings 

112 
 

7.10 Stability in High Rise Buildings 

In tall buildings, buckling problems can occur due to various structural phenomena 

related to bending, twisting and local buckling.  

 

7.10.1. Global instability 

This affects the entire structure and is often due to the action of horizontal loads such as 

wind and earthquakes. 

a. Lateral load buckling (P-Δ effect)  

When a tall building flexes under wind or earthquake load, a secondary moment is 

generated due to the lateral displacement of vertical forces. This leads to an amplified 

effect of deformations, which can lead to progressive failure.  

Possible solutions to avoid this problems are: Increase stiffness with reinforced 

concrete cores, diagonal braces, or rigid frames and check the stability factor. 

b. Global torsional buckling  

If the stiffness distribution is asymmetrical, a building can undergo rotation around 

its axis under lateral loading. This phenomenon is typical of buildings with off-center 

cores or asymmetry in the partitions and pillars.  

Possible solutions to avoid these problems are: design the center of gravity of the 

stiffness close to the center of gravity of the masses and use symmetrical diagonal 

bracing or strong core cores. 

 

7.10.2. Local instability of structural elements 

Even individual elements (pillars, walls, beams) can undergo local buckling phenomena, 

especially if they are slender or thin. 

a. Buckling of the pillars (Very tall and thin pillars can lose stability under compressive 

load (Euler buckling)).  

Possible solutions to avoid this problem are: increase the stiffness of the section and 

reduce slenderness with cross-elements or rigid connections. 
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b. Thin wall buckling (hull)  

If the building has thin concrete or steel walls, these can deform locally under 

compression or shear. This problem is typical in very tall and thin reinforced concrete 

cores.  

Possible solutions to avoid these problems are: vertical and horizontal stiffeners (ribs 

or diaphragms) and thicker walls or with more resistant sections. 

 

7.10.3. Aerodynamic instability 

In very tall buildings, the effects of the wind can generate unstable oscillations. 

a. Von Kármán vortex effect 

Wind can generate vortex trails that cause dangerous oscillations in the structure. If 

the frequency of the vortices is close to the building's own frequency, a resonance can 

be triggered. 

Possible solutions to avoid this problem is: modify the shape of the building to disturb 

the formation of vortices (rounded shapes or changes in section) and add dampers 

(e.g., TMD-tuned mass dampers used in high-rise buildings). 

A good structural design must ensure a balance between stiffness, strength and damping, 

using braces, strong cores, stiffeners and optimal aerodynamic shapes. 
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7.11 Study of Tall Buildings 

The study of tall buildings can be addressed, for example with the theory of open thin 

sections of Vlasov previously reported, particularly useful when the structure has a thin 

and open load-bearing core (e.g. “C”, “L”, “U” shape).  

This theory allows us to analyze the combined effects of bending, torsion, and buckling 

with a more accurate formulation than the classical Saint-Venant torsion theory. 

In particular, Vlasov's theory in tall buildings is applicable if a building has a thin, open 

core, and behaves like an open section subject to deformable torsion.  

The torsional stiffness is very low, so the torsional deformation cannot be neglected. 

Therefore, it is applicable to buildings with: 

- Reinforced concrete core in the shape of “C”, “L”, “U”, “E”, where torsion can cause 

significant deformations. 

- Tall towers with lightweight structures, where twisting and buckling effects are 

important. 

- Steel structures with thin profiles, in which torsional behavior is dominant. 

While not applicable if the section is completely closed, because in that case the 

torsional stiffness is very high and the behavior is closer to the Saint-Venant torsion. 

The key effects of Vlasov's theory are that: 

- Allows you to calculate the non-uniform torsion, considering the out-of-plane 

deformation of the section. 

- Introduce a two-moment moment B to represent the distribution of tensions due to 

the war. 

- Describe torsional deformation with a more complex differential equation that takes 

into account the stiffness at war. 
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7.12 Application of the Code to High-Rise Buildings 

When it is needed to run a simplified study of the statics of tall buildings, a structure of 

great height is often assimilated to a corbel (or shelf embedded at the base) for several 

reasons related to structural behavior: 

1. Base constraint: A tall building is generally anchored to the ground by a rigid 

foundation, which behaves in a similar way to a joint, preventing translation and 

rotation at the base. 

2. Preponderant deformation: The main deformation of a tall building with respect to 

horizontal loads (wind or earthquake) is similar to those of a corbel, the structure 

tends to twist in which the maximum displacements occur at the tip with progressive 

deformation of curvature along the height. 

3. Preponderant horizontal actions: In tall buildings, horizontal actions (wind, 

earthquake) become more important than vertical loads. The cantilever model allows 

the influence of these forces to be studied in a simplified manner in terms of flexural 

and shear resistance. 

4. Bending moment distribution: As in a wedged shelf, tall buildings tend to have 

maximum bending moments at the base and minor bending moments at the top. This 

helps to design the stiffness and strength of the building efficiently. 

5. Simplified engineering approach: Analogy with a shelf allows for quick estimates of 

stresses and strains without resorting to complex structural models, facilitating 

preliminary analysis of building behavior. 

In summary, the cantilever model represents an effective schematization to understand 

the global behavior of a tall building under horizontal loads, while being a simplification 

with respect to the more complex structural reality. Taking this into consideration, and 

applying the theory previously described, the analysis of three models with cantilever 

schemes representing models of tall buildings was carried out. 

The results were compared using finite element software, "LUSAS". In all the cases, a 

cantilevered beam of 100 m height was considered, representing a tall building and it 

has been considered a steel with Young Modulus equal to 210.0∙109.  
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7.13 Flow-Chart 

To summarize the functioning of the Matlab code, a flowchart is shown below: 
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7.14 Example 1: Piecewise Constant Narrow Rectangular Section 

Defined along the z-axis, divided in m = 100 (number of mesh), by narrow rectangular 

section, with same depth b = 4 m and height varying from 20 m at the base to 18 m at 

the top with successive Δ = 0.5 m. 

The detailed characteristics of the sections have been here reported: 

 

Figure 50: Characteristics of the section of the first fifth part of the model 

 

 

Figure 51: Characteristics of the section of the second fifth part of the model 

 

 

 

 

 

 

Figure 52: Characteristics of the section of the third fifth part of the model 



7.14 Example 1: Piecewise Constant Narrow Rectangular Section 

118 
 

 

Figure 53: Characteristics of the section of the fourth fifth part of the model 

 

 

Figure 54: Characteristics of the section of the fifth fifth part of the model 

 

A distributed load has been applied. 

The model is the following one: 

 
Figure 55: Model and applied load 

The buckling load and the values of the deformations uC and θ, were then calculated.  
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The results are as follows: 

LUSAS 

 
Figure 56: uc computed by LUSAS software 

 

 
Figure 57: θ computed by LUSAS software 

Initial load (total global distributed load): 100 N 

Load amplification factor: 6.551 E+07 

Buckling load: 6.551 E+09 N 
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MATLAB 

 
Figure 58: uc displacement from Matlab analysis 

 

 
Figure 59: θ displacement from Matlab analysis 

 

Initial load: 10 N/m 

Load amplification factor: 6.39785 E*05 

Buckling load: -6.3978 E+09 N 

 

 

 

 

 

 



7. HIGH-RISE BUILDINGS 

121 
 

General results 

Difference between the computed Buckling loads and displacements: 

Percentage difference between buckling loads: 2,34% 

Displacement along x: 

 
Figure 60: Comparison between LUSAS and Matlab results about uc 

 

Rotation about z: 

 
Figure 61: Comparison between LUSAS and Matlab results about θ 
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Through LUSAS, the total result of the movements was also highlighted 

 
Figure 62: Total result of LUSAS analysis 

 

 

Figure 63: Total results of LUSAS analysis in graph form 
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7.15 Example 2: C-section 

Defined along the z-axis a C-section and considering m = 50. The dimension of the 

section has been reported in Fig. 64: 

 

Figure 64: Characteristics of the section of the model 

 

A distributed load has been applied. 

 
Figure 65: Model and applied load 
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The results are the following: 

LUSAS 

 
Figure 66: uc computed by LUSAS software 

 
Figure 67: θ computed by LUSAS software 

 

Initial load (total global distributed load): 1000 N 

Load amplification factor: -1.40433 E+05 

Buckling load: 1,40433 E+08 N 
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MATLAB 

 
Figure 68: uc displacement from Matlab analysis 

 

 
Figure 69: θ displacement from Matlab analysis 

 

Initial load: 10 N/m 

Load amplification factor: 1.38518 E+05 

Buckling load: -1.3852 E+08 N 
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General results 

Difference between the computed Buckling loads: 

Percentage difference between buckling loads: 1,37% 

Displacement along x: 

 
Figure 70: Comparison between LUSAS and Matlab results about uc 

 

Rotation about z: 

 
Figure 71: Comparison between LUSAS and Matlab results about θ 
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Through LUSAS, the total result of the movements was also highlighted 

 
Figure 72: Total results of LUSAS analysis 

 

 
Figure 73: Total results of LUSAS analysis in graph form 
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7.16 Example 3: Circular Cross-Section 

Defined along the z-axis a circular cross-section and considering m = 100. The 

dimension of the section has been reported in Fig. 74: 

 

Figure 74: Characteristics of the section of the model 

A distributed load has been applied. 

 
Figure 75: Model and applied load 
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The results are the following: 

LUSAS 

 
Figure 76: Uc computed by LUSAS software 

 

 
Figure 77: θ computed by LUSAS software 

 

Initial load (total global distributed load): -10000 N 

Load amplification factor: 7.14524 E+05 

Buckling load: 7.14524 E+09 N 
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MATLAB 

 
Figure 78: uc displacement from Matlab analysis 

 

 
Figure 79: θ displacement from Matlab analysis 

 

Initial load: 10 N/m 

Load amplification factor: 7.14123 E+06 

Buckling load: 7.14123 E+09 N 

 

 

 

 

 



7. HIGH-RISE BUILDINGS 

131 
 

General results 

Difference between the computed Buckling loads: 

Percentage difference between buckling loads: 0,056% 

Displacement along x: 

 
Figure 80: Comparison between LUSAS and Matlab results about uc 

 

Rotation about z: 

 
Figure 81: Comparison between LUSAS and Matlab results about θ 
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Through LUSAS, the total result of the movements was also highlighted 

 
Figure 82: Total results of LUSAS analysis 

 

 
Figure 83: Total results of LUSAS analysis in graph form 
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7.17 Final Observations about the Results 

The buckling analysis on the open thin sections, conducted using finite element analysis, 

allowed to determine the critical values of displacement uc and rotation θ under a 

distributed horizontal load to simulate wind pressure.  

The analyses confirmed structural deformation was fully consistent with the boundary 

conditions enforced, specific to the interlocked beam with no governing torsional 

restraints conditions also confirmed the fidelity of the FEM model back to the original 

initial condition. 

It was demonstrated from the plots illustrated above, and at the paragraphs 6.4 to 6.8 on 

each occasion the values of uc at point of critical state were always equal to and less than 

1, as expected, indicating linear buckling analysis characteristic normalization, that was 

replicated in the Matlab code faithfully, where both values were intended to act as 

representations to the mode of buckling shape, based on a fixed maximum displacement 

value of 1 for ease of interpreting purposes: this value isn't a physical absolute 

amplitude, but rather a relative deformation to the critical load factor calculated. 

As expected at this stage, it was demonstrated that the model was able to replicate critical 

behavior of open thin sections under distributed loads and provided adequate confidence 

to assess structural stability. 

Future research could include the combinations of multiple level complexities and 

including torsion constraints, analysis of moving load systems, or other irregular or 

generic cross sections. 

For example, a study could be done to characterize the difference in behavior between 

a wedged-free beam with a thin open C-section and a wedged-free beam that has a closed 

section locally, using the interfloors. 

In this instance the model should be updated in several ways, such as considering 

potential differences of stiffness and materials between the C-section and the interfloors. 
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In addition to performing this analysis for this type of structure on LUSAS, a Modeling 

with plate elements should be performed and a section with different features than those 

of the beam should be defined to be assigned only in the summaries where the inter-

storey is inserted. 

An example of this kind of modeling would incorporate elements "flat thin shell". 

The geometrical and material data are the following: 

- Height: 100 m 

- Flanges: 5 m 

- Web: 10 m 

- Elastic modulus: 210∙ 10ଽ N/mm2. 

 

Without inter-floor 

Buckling load: 1212.9 N 

 

Figure 84: Deformation along x 
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Figure 85: Rotation 

 

Figure 86: Total result of LUSAS analysis 
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One inter-floor at mid-span 

Buckling load: 4825.48 N 

 

Figure 87: Displacement along x - one interfloor 

 

Figure 88: Rotation - one interfloor 
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Figure 89: Total result of LUSAS analysis - one interfloor 

 

The stiffer section decreases the free length of deflection and increases the overall 

stiffness and reduces the vulnerabilities of the member to global buckling. 

The added stiffening also changes the mode of buckling; instead of buckling as one 

beam, the member is able to buckle into two independent segments with a node at the 

stiffening. This means a net result of more stiffness and less deflection overall. 

The types of regional instability are: 

- Wing Flaking: this is where the wings of the section may deflect laterally 

- Core Flaking: this is where the core might deflect due to compressive load or shear 

Finally, as the analysis is regarding a C-section, there is generally low torsional stiffness 

since it is an open section rather than a closed section, and therefore it is also vulnerable 

to torsional - flexural flexing. 
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The half-length stiffener applies an additional intermediate constraint on the free length 

to flex and thus increases overall stability. 

The critical load can be increased by approximately 4 times on a single floor spacing 

with the single stiffener located at the centerline. 

The next few pages outline two additional cases, one that includes the addition of a 

stiffener at the centerline and the top, and the second that has a stiffener every 25 m. 

The results of both cases are outlined on the following pages. 

 

Two inter-floors at mid-span and top 

Buckling load: 9343.11 N 

 

Figure 90: Displacement along x - two interfloors 
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Figure 91: Rotation - two interfloors 

 

Figure 92: Total result of LUSAS analysis 

 



7.17 Final Observations about the Results 

140 
 

Multiple inter-floors 

Buckling load: 15722.5 N 

 

Figure 93: Displacement along x - four interfloors 

 

Figure 94: Rotation - four interfloors 
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Figure 95: Total result of LUSAS analysis - four interfloors 

 

The behavior of the beam structurally alters significantly with the addition of multiple 

stories to consider. With respect to the beam only, multiple stories are just more added 

constraints and distributed loads down through the height of the structure, which will 

change the structural behavior as follows: 

 Increased Global Stiffness: each added floor adds additional rigidity to the overall 

structural system, as rigid diaphragms create more overall constructed rigidity, 

impacting the overall movement and the ability to resist bending and torsional stress. 

 Load Distribution: each distributed load will now be distributed over multiple stories 

and therefore decrease the Stresses each individual story will see; however, there 

will now be considerably more expansive internal forces including shear forces and 

bending moments at the connections between stories and the beam. 

 Local Effects: local effects i.e., concentrated stresses in the connection points or at 

the structural nodes etc., may become a concern from adding more stories and will 

need to be accounted for in a design if you want to mitigate instability or local failure. 
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 Changes in Modes of Vibration: as each added floor adds unsuspended mass, the 

vibration modes of the structure will be varied. More stories have a lower natural 

frequency which increases the dynamic behavior of the structure. The probability of 

the structure having sensitivity to some resonance phenomena or dynamic loading 

(wind load or seismic loading) will be more probable with more stories. 

In conclusion, there are a number of ways the addition of multiple stories can change 

the structural behavior of the beam from mostly the increase in global stiffness, but 

complicating the issues of load distribution as well as considering local effects and 

overall dynamic behavior which will need adequate attention through the design and 

layering. 
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8. CONCLUSION 
This Thesis, as mentioned above, aims to analyze structural stability, in particular when 

it involves thin-walled elements, e.g. C, L or Z profiles, widely used in lightweight 

structures due to their high strength/weight ratio, but which may be subject to buckling 

phenomena concerning local and global stability.  

These types of sections are critical for designing slender structures such as skyscrapers; 

in fact, their vulnerability to global instability, such as the lateral or torsional instability, 

requires careful analysis to ensure safety and strength, as required by Eurocodes or other 

Standards, to avoid design errors and comply with safety requirements. In addition, 

under dynamic or seismic loads, these sections can be subject to amplified buckling, 

making the study of stability essential to prevent structural collapse. 

Over time, several theories have been developed for the study of the stability of open 

thin sections, such as Vlasov's theory. Nowadays, it is possible to use new tools, like 

Finite Element Analysis, to solve these kinds of engineering problems. At the same time, 

simplified analytical and numerical models can help in the preliminary design phase as 

they can provide rapid, approximate solutions. 

In connection to this, the Thesis focused on the implementation of a Matlab code to 

analyze buckling of uni-dimensional open thin-walled profiles subjected to various 

loading and boundary conditions; as an application, tall building structures were 

considered, providing a global view of the effects due to wind and seismic loads. The 

results obtained by the formulation implemented were compared with others available 

in literature or with those obtained with a commercial finite element program. 

Thanks to the Finite Element Method, the buckling analysis of the open thin sections 

was conducted, allowing for the determination of the critical values of displacement and 

rotation under different loads, giving a structural deformation that was fully consistent 

with the boundary conditions enforced. 

An aspect to take into account is that, in the context of linear buckling analysis, a 

characteristic normalization has been applied, so the values of uc at the point of critical 

state were always equal to or less than 1; obviously, this value isn't a physical absolute 

amplitude, but rather a relative deformation to the critical load factor calculated. 
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As expected at this stage, it was demonstrated that the model was able to replicate critical 

behavior of open thin sections under different loads, providing adequate confidence to 

assess structural stability. 

As regards tall building structures, the code was applied to analyze the elastic stability 

of a tapered stepped narrow rectangular section, of a uniform C-section, and of a uniform 

circular section, subjected to distributed transverse load. 

It must be taken into account, however, that the limit of this type of analysis is that it 

can be difficult to implement the behavior of the structure and discretize in finite 

elements on calculation software such as Matlab, obtaining results from numerical 

analysis that could differ from analytical or real ones. 

Furthermore, since analytic theories have basic simplifications and assumptions, when 

they are implemented on a numerical computing software such as Matlab, there is a risk 

of obtaining incorrect results due to the accumulation of approximations; in fact, the 

basic assumptions of the theory, such as linear elasticity or the absence of imperfections, 

are combined with the hypotheses and limitations of numerical algorithms,  such as 

discretization and rounding errors, as well as convergence problems: all these problems 

can lead to results that do not accurately represent the real behavior of the system. 

To conclude, in the last part of the Thesis, an analysis of the possible future development 

of the work has been performed. In particular, a code could be implemented to 

characterize the difference in behavior between a wedged-free beam with a thin open C-

section and a wedged-free beam that has a closed section locally, using the interfloors, 

taking into account potential differences in stiffness and materials between the C-section 

and the interfloors.  

In addition, future research development could involve the combination of various 

factors influencing structural behavior, such as the inclusion of torsional restraints under 

different loading conditions. Another interesting analysis could concern the response of 

systems subjected to moving loads, carrying out an investigation of the dynamic effects 

and their interaction with structural stability. Also, other possible developments could 

be to examine irregular or generic cross-sections, to better understand how 

unconventional shapes respond to various types of loads and constraints. These 

advances would contribute to a more comprehensive understanding of structural 

behavior under complex and realistic conditions. 
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