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Abstract

This thesis presents a preliminary analysis of the accuracy of ECCO deterministic
calculations applied to LFR (Lead-cooled Fast Reactor) fuel assemblies, by comparing
them with reference Monte Carlo simulations. The primary objective is to quantify and
understand the discrepancies introduced by deterministic modeling when applied to fast
reactor systems, particularly in view of ECCO’s computational efficiency compared to
Monte Carlo methods.

Verification was carried out using the OpenMC Monte Carlo code, which is widely ac-
cepted as a reliable and validated tool in the nuclear community. Experimental data were
not available at this stage, so the comparison is limited to numerical benchmarks. The
deterministic calculations were performed using the ECCO module from the ERANOS
2.3 code system.

The comparison focused on key neutronic parameters including the effective multi-
plication factor (k-eff), neutron flux distributions, reaction rates, and microscopic cross
sections. The study modeled a representative LFR fuel assembly with hexagonal geome-
try, consistent with typical fast reactor core configurations.

This code-to-code comparison effort highlights the strengths and weaknesses of ECCO
for fast reactor applications and sets the groundwork for further studies. The absence of
experimental data limits the scope of the conclusions, but future work will include sensi-
tivity analyses and, where possible, comparisons against critical benchmark experiments
to enhance the reliability of the validation process.
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Organization of the thesis

This thesis will show the first step needed for the validation of ECCO. In the first chapter
it will introduce the general context and the concepts of verification and validation and
what it will use in this thesis. Then the second and third chapter focus on the theory at
the basis of the approximations that ECCO does. In the fourth chapter the codes will
introduced, end wards the problem will be discussed. The results will be shown from the
easiest model to most complex. In the end the conclusions will be drawn, as well as some
future perspective.
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Chapter 1

Introduction

1.1 General context

A nuclear reactor is a complex system where multiple physical phenomena interact.
Among the engineering disciplines involved, reactor physics is central,since it determines
the reaction rates that drive power generation. These rates result from neutron interac-
tions with matter, which depend on both the material properties (like density, tempera-
ture, and composition) and the neutron population.

To describe these interactions, reactor physics uses a statistical mechanics framework
rooted in Boltzmann’ s transport theory. Since neutrons are neutral and present at rela-
tively low densities, neutron-neutron interactions are negligible, simplifying the transport
equation into a linear form.

Nuclear reactors operate through a self-sustained chain reaction, where neutrons from
fission events cause further fissions. A reactor is said to be critical when this process
maintains itself over time. Modeling this process requires solving the neutron transport
equation, which becomes especially challenging due to the heterogeneous structure of the
reactor and the variability in nuclear material properties.

With modern high-performance computing, it is now possible to perform detailed
full-core 3D simulations. However, such simulations are computationally expensive and
impractical for routine design work. Therefore, approximate models, validated against
high-fidelity simulations, are often used. These models account for multi-physics phe-
nomena such as delayed neutrons, thermal feedback, and material expansion, leading to
non-linear and time-dependent behavior.

There are two main approaches to solving transport problems:

1. Deterministic Methods: These involve discretization the problem’ s phase space and
solving a simplified version of the transport equation. However, this can require an
impractically fine energy discretization (due to resonant behavior of nuclides), so
further approximations like resonance self-shielding models are introduced;

2. Stochastic (Monte Carlo) Methods: These simulate particle histories to estimate
desired quantities with high fidelity and no geometric approximations. While highly
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Introduction

accurate and used as reference solutions, they are computationally intensive and not
always feasible for full-core reactor simulations.

To manage this complexity, engineers use a calculation scheme,i.e. a sequence of
steps with controlled approximations. While fast and practical, such schemes need expert
judgment to stay within valid ranges and are often validated against detailed models and
experimental data.

The standard deterministic method for core analysis uses a two-step approach:
Step 1: Perform detailed transport calculations on reactor substructures (e.g., fuel

assemblies) to generate homogenized data libraries.
Step 2: Use these libraries in a coarse-mesh core calculation (often with a 3D diffusion

model) to model the entire reactor efficiently.
While this method introduces approximations, it significantly reduces computation

time. For this reason, deterministic codes can be highly valuable in the early stages of
reactor design, where rapid estimates are needed to guide development.

This thesis was the report of my internship at newcleo S.P.A., where I focused my
attention on the deterministic code ECCO. The aim of this internship was to initiate
the validation and verification (V&V) process of the ECCO code for calculations related
to new reactor technologies, specifically Lead-cooled Fast Reactors (LFR). The main
strength of ECCO lay in its ability to provide homogenized and condensed cross sections
at both the pin and assembly levels, a feature that was essential for directly employing
the processed data in full-core calculations, including within stochastic codes, thereby
significantly reducing computational times. The ALFRED reactor was chosen as the
reference case since it was based on the same technology as the reactor that was being
designed by newcleo.

1.2 Verification&Validation

The definition of verification &validation( V&V) is not unique, one of them is: "Verifica-
tion is determining that a simulation computer program performs as intended".

Validation is concerned with determining whether the conceptual simulation model is
an accurate representation of the system under study" [1] . In other words, the verification
focuses on the software, script and their errors while the validation is the study and
comparison of the model with respect the real to reality, understanding how much the
simulation is accurate, and for this reason V&V are important issues.

1.2.1 Preliminary evaluations

The subject of this work is ECCO and the focus is the evaluation of errors on the ho-
mogenized cross section produced of a Lead-cooled Fast Reactor. To do a validation, as
said before, are needed data take at the end of experiments, since ALFRED is currently
under design and not yet operational, direct experimental data on the reactor are not
available. Therefore, it is necessary to rely on a different type of reference benchmark.
In this work, a model of the LFR reactor will be developed using an already validated
stochastic code, which will serve as the reference for the analyses.
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1.2 – Verification&Validation

This work is a preliminary analysis based on the evaluation of errors between these
outputs and the corresponding values from the Monte Carlo code (OpenMC), which will
be used as a reference, as no data from experiments will be used.his work is the first step
and is a preliminary analysis between the deterministic code . The procedure of this work
will be similar a V & V one, composed by three phases:

• choice of a reference problem;

• modeling in the software;

• evaluation of errors.
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Chapter 2

Theory

2.1 Physical quantities
The population density n(r⃗, Ω⃗, E, t) is a function of time and a distribution of particles
in the phase space. The properties of a medium are given in terms of probability per unit
path (macroscopic cross sections), so it is possible know the total distance of particles
done in one second in a element of phase space drdΩdE. The product of the population
density and the module of their average velocity is angular flux:

ϕ(r⃗, Ω⃗, E, t) = v(r⃗, E)n(r⃗, Ω⃗, E, t) (2.1)

While the scalar flux is the number of reactions per unit time, unit volume and energy
interval around point r⃗ and energy E, and it is the result of the contributions of all the
particles coming from any direction, and is defined as:

Φ(r⃗, E, t) =
∮︂
dΩϕ(r⃗, Ω⃗, E, t) (2.2)

The particles inside the reactor interacts with each other and these events are base on
the cross section, which defined the probability that a specific event occurs when two
particles interact. The number of reactions of type x per unit surface and unit time is
observed to be proportional to the number of incident particles per unit surface and unit
time and the number of nuclides per unit surface:

drrx = σxNnvrds (2.3)

where drrx is the surface reaction rate of type x,σx microscopic cross section of x reaction
type, N is number of nuclides per unit volume, n particles per unit volume, vr relative
velocity and ds is small width od the target of beam.

The dimension of σx is an area and it is possible define it as bigger is and more
possibility they will interact to have a reaction x.

Obliviously in a reactor the target is a mixture of isotopes and to describe the it is
used the macroscopic cross section Σx define as:

Σx =
∑︂

i

Σx,i =
∑︂

i

σx,iNi (2.4)
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Theory

where Ni is the number of the particles of the isotope i. The unit of macroscopic cross
section is 1

cm

If 2.3 is integrate per unite time, unite volume, and energy interval around r⃗, is defined
as:

RRx(t) =
∫︂
dE

∮︂
dΩΣx(r⃗, E)ϕ(r⃗, Ω⃗, E, t) (2.5)

The next definition will also be useful in this thesis for comparison on microscopic
values, such as the microscopic reaction rate, which depends on isotope i and reaction
type x integrates per unite time, unite volume, and energy interval around r⃗.

rrx,i(t) =
∫︂
dE

∮︂
dΩσx,i(r⃗, E)ϕ(r⃗, Ω⃗, E, t). (2.6)

2.2 Neutron transport equation

The behavior of a nuclear reactor is governed by the distribution in space, energy, and
time of the particles in the system, and one of the central problems of reactor theory is
to predict this distribution and the transport equation describes how is the balance of
particles in each point of the phase space (r, Ω, E) changes in time. In reactor physics,
the main assumptions that are generally adopted are the following:

• Neutrons do not interact with each other, justified by the nearly absence of force
fields and the much lesser density of the neutron gas with respect to that of the
materials, making the probability per unit path to interact with other neutrons so
small that the event is rare and can be neglected;

• The neutrons are modeled as points moving along straight lines called free paths,that
are defined as the distance between two collision points and are much larger than
the neutron size;

• The materials are isotropic in space;

• The nuclides are in thermal equilibrium with their neighbors.

To obtain the neutron transport equation, we generally adopt an Eulerian approach,
so we observe an element drdΩdE of the phase space, centered in the position r, solid
angle Ω and energy E, we call it A(r⃗, Ω⃗, E), and see how the number of particles changes
in it during a time interval dt between the instants t and t+dt. This variation is expressed
as:

[n(r⃗, Ω⃗, E, t+ dt)ân(r⃗, Ω⃗, E, t)]drdΩdE (2.7)

Let’s consider all the events for a particles to be emitted in A(r⃗, Ω⃗, E). It’s possible define
S(r⃗, Ω⃗, E) an external source density that provides the number of particles emitted in
A(r⃗, Ω⃗, E) per unit volume, unit solid angle and unit energy element at time t. The total
number of emitted particles is:

S(r⃗, Ω⃗, E)drdΩdEdt (2.8)
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2.2 – Neutron transport equation

Now let’s consider also the particles emitted through scattering events, for which any
of them can traveling with all possible energy and directions. This contribution is the
scattering source is given by the number of events:∫︂

4π
dΩ′

∫︂ ∞

0
dE′Σs(r⃗, E′ → E,Ω′⃗ · Ω⃗)ϕ(r⃗, E, Ω⃗, t)drdΩdEdt (2.9)

with isotropic material assumption. Move on the fission source, the most interesting
source, and its contributions is to A(r⃗, Ω⃗, E):

∑︂
i

χi(r⃗, E)
4π

∫︂
4π
dΩ′

∫︂ ∞

0
dE′νΣf,i(r⃗, E′ → E,Ω′⃗ · Ω⃗)ϕ(r⃗, E, Ω⃗, t)drdΩdEdt (2.10)

where νi(E) is the average number of neutrons produced by the fission of an isotope i
and it depends on the incident particle energy, and χi(E) is the fission spectrum of isotope
i, supposed independent of the energy of the incident particles and modeled iso-tropically
resulting in a uniform probability of emission in angle equal to 1

4π and it is normalized
to one.

Now let’s focus on the losses, so the events for which the particles disappear from
A(r⃗, Ω⃗, E), that are three: absorption, scattering with an other element and spatial leak-
age. The first two way can be sum up in one contribution and it represents the probability
of a neutron undergoing any type of interaction (scattering or absorption) with a nucleus
in the material.

Σt(r⃗, Ω⃗, E)ϕ(r⃗, E, Ω⃗, t)drdΩdEdt (2.11)

Then the spatial leakage in A(r⃗, Ω⃗, E) is :

Ω⃗ · ∇ϕ(r⃗, E, Ω⃗, t)drdΩdEdt (2.12)

To preserve the balance of neutrons in A(r⃗, Ω⃗, E) at each instant t, the variation of the
population in the interval dt must equal:

Population V ariation = Sources− Leakages

Putting together all the previous contributions for the losses and the emissions in the last
equation, dividing by drdΩdEdt both sides of the equation and taking the limit t → 0,
the neutron transport equation reads:

1
v(r⃗, E)

∂ϕ(r⃗, Ω⃗, E, t)
∂t

=
∫︂

4π
dΩ′

∫︂ ∞

0
dE′Σs(r⃗, E′ → E,Ω′⃗ · Ω⃗)ϕ(r⃗, E, Ω⃗, t)+

∑︂
i

χi(r⃗, E)
4π

∫︂
4π
dΩ′

∫︂ ∞

0
dE′νiΣf,i(r⃗, E′ → E,Ω′⃗ · Ω⃗)ϕ(r⃗, E, Ω⃗, t)+

S(r⃗, Ω⃗, E) − Ω⃗ · ∇ϕ(r⃗, E, Ω⃗, t) − Σt(r⃗, Ω⃗, E)ϕ(r⃗, E, Ω⃗, t) (2.13)

where we have substituted n(r⃗, Ω⃗, E, t) = 1
v(r⃗,Eϕ(r⃗, Ω⃗, E, t).
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Theory

In this work, the problems will be always in steady state so it is possible rewrite it as
follow:

Ω⃗·∇ϕ(r⃗, E, Ω⃗)+Σt(r⃗, Ω⃗, E)ϕ(r⃗, E, Ω⃗) =
∫︂

4π
dΩ′

∫︂ ∞

0
dE′Σs(r⃗, E′ → E,Ω′⃗ ·Ω⃗)ϕ(r⃗, E, Ω⃗)+

∑︂
i

χi(r⃗, E)
4π

∫︂
4π
dΩ′

∫︂ ∞

0
dE′νiΣf,i(r⃗, E′ → E,Ω′⃗ · Ω⃗)ϕ(r⃗, E, Ω⃗) + S(r⃗, Ω⃗, E) (2.14)

Equation 2.14 is the integro-differential form of the neutron transport equation, which
is a first-order differential equation with respect to space. It requires one boundary
condition such that:

ϕ−(rb⃗, E, Ω⃗) = ϕ−
in(rb⃗, E, Ω⃗) + β(E,Ω′⃗ → Ω⃗)ϕ+(r′

b
⃗ ,E,Ω′⃗ ) (2.15)

where rb⃗ stand for boundaries od spatial domain, ϕ−
in is the incoming angular flux, β

is the albedo parameter that accounts for any albedo boundary condition. For vacuum
boundary condition, the parameter β equals zero, and ϕ−

in can be considered as an external
source or null.

2.3 Treatment of the Scattering Source
In reactor physics, the materials treated is typically isotropic for neutrons, so the cross
sections are independent of the incident direction of a particle and it depends only on the
angle of deviation.

Σs(E → E′, Ω⃗ → Ω′⃗ ) = 1
2πΣs(E → E′, Ω⃗ · Ω′⃗ ) (2.16)

Where the 2π is for the take in account the isotopically. Now, the scattering cross
section is generally expanded on the Legendre polynomials Pl up to the the order of
scattering of the system, that depends on µo and is equal of Ω⃗ → Ω′⃗ .

Σs(E → E′, µo) =
L∑︂

l=0

2l + 1
2 Σsl(E → E′)Pl(µo) (2.17)

with
Σsl(E → E′) =

∫︂ 1

−1
dµoΣs(E → E′, µo)Pl(µo) (2.18)

Let’s rewrite the scattering source, 2.9, with the Legendre polynomials expansion:∫︂ ∞

0
dE′

L∑︂
l=0

2l + 1
4π Σsl(E → E′)

∫︂
4π
dΩ′Pl(Ω · Ω′)ϕ(r⃗, E′,Ω′⃗ ) (2.19)

To compute the integral over dΩ′, is useful take advantage of spherical harmonics, ad
the following:

Pl(Ω · Ω′) =
l∑︂

m=−l

Al,m(Ω)Al,m(Ω′) (2.20)
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2.4 – Leakage model

where Al,m(Ω) is a spherical harmonic, [6]. After some steps, It is possible represent
the angular flux over with the spherical harmonics approximated to L-order:

ϕ(r⃗, E, Ω⃗) =
L∑︂

l=0

2l + 1
4π

l∑︂
m=−l

ϕl,m(r⃗, E)Al,m(Ω) (2.21)

where the ϕl,m(r⃗, E) are the angular moments of neutron flux,which is defined as:

ϕl,m(r⃗, E) =
∮︂

4π
dΩ′ϕ(r⃗, E,Ω′⃗ )Al,m(Ω′) (2.22)

And finally the Scattering source become:

∫︂ ∞

0
dE′

L∑︂
l=0

2l + 1
4π Σsl(E → E′)

l∑︂
m=−l

ϕl,m(r⃗, E′)Al,m(Ω) (2.23)

2.4 Leakage model
This model is introduced in the deterministic codes, because can simulate the leakage of
the system though the evaluation of a geometrical parameter called Buckling B, so thank
to its it’s possible enforce a study of a infinity lattice, which is generally super critical,
to a critical situation, value of kinf = 1. In the following part we will explore better the
homogenization, but the base of it is this method because to do it is useful an angular
flux of a critical assembly or pin.

The neutron flux is written as the product of a macroscopic distribution in space ψ
and a periodic fundamental mode φ :

ϕ(r⃗, E, Ω⃗) = φ(r⃗, E, Ω⃗)ψ(r⃗) −→ ϕ(r⃗, E, Ω⃗) = φ(r⃗, E, Ω⃗)eiB⃗·r⃗ (2.24)

This factorization is exact if we are under the asymptotic situation, which can be
represented by the Laplace problem:

∇2ψ(r⃗) +B2ψ(r⃗) = 0 (2.25)

where ψ is a property of the reactor and the solution of the Laplace equation, and B
is the Buclking, a geometrical parameter. Let’s substitute in the transport equation:

iB⃗ · Ω⃗ + Σt(r⃗, E)]φ(r⃗, E, Ω⃗) =
∫︂ ∮︂

4π
Σs(r⃗, E′ → E,Ω′⃗ → Ω⃗)φ(r⃗, E′,Ω′⃗ )dΩ′⃗ dE′

+ 1
k

∫︂ ∮︂
4π
νΣf (r⃗, E′)φ(r⃗, E′,Ω′⃗ )χ(r⃗, E)

4π dΩ′⃗ dE′ (2.26)

Where the first term of equation iB⃗ · Ω⃗ acts as a fictitious absorption term, depending
on the geometrical buckling B.
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Chapter 3

Numerical Methods

3.1 Deterministic approximation

This chapter will discuss of numerical method introduces by deterministic codes to solve
the transport equation, for examples the multigroups approximation and inconsistent
method, to simplify the equation and the level of computation cost.

3.2 Multi-group Approximation

The first approximation that i would introduce is on the energy domain, and it is the
Multigroups formalism. The idea is of moving from a continuous domain to a discrete
one. To do this it’s necessary integrate the equation on a interval of energy [E,E + ∆E]
called group. Moreover we have a maximum energy and minimum one and we divide
into finite groups N , inside which the neutrons are considered uniformly distributed.
The multigroup cross sections are then to be precomputed per each energy group as
follows:

Σg
x,i(r⃗) =

∫︁
∆E dE Σx,i(r⃗, E)w(r⃗, E)∫︁

∆E dE w(r⃗, E) (3.1)

where ∆E is the energy interval associated to group g, x and i are respectively the
reaction type and the isotope, and w is a weighting function. The number of the groups
can change because there are some isotopes, called resonant isotopes, that have a par-
ticular behavior in the epithermal region, energies between 0.4 eV and 10 eV. The w is
generally substitute with the spectrum of emission in order to preserve the the reaction
rates in each group, although a rigid process would like angular flux.

The multigroup cross sections is not the unique quantity to be integrated, but also
the multigroup angular flux, and scalar flux:

ϕg(r⃗) =
∮︂
dEϕ(r⃗, Ω⃗, E) (3.2)

Φg(r⃗, E) =
∮︂
dΩϕg(r⃗, Ω⃗) (3.3)

17



Numerical Methods

φg(r⃗) =
∮︂
dEφ(r⃗, Ω⃗, E) (3.4)

To obtain the multigroup transport equation is necessary integrate each operator of 2.26.
Let’s start from the loss operator:∫︂

∆E
dE[iB⃗ · Ω⃗ + Σt(r⃗, E)]φ(r⃗, E, Ω⃗) = [iB⃗ · Ω⃗ + Σg

t (r⃗)]φg(r⃗, Ω⃗) (3.5)

The fission source:

∑︂
i

∫︂
∆E

dE
χi(r⃗, E)

4π

∮︂
4π
dΩ′

∫︂ ∞

0
dE′νiΣf,i(r⃗, E′)φ(r⃗, E′,Ω′⃗ ) =

= χg
i (r⃗)
4π

N∑︂
g′

∮︂
4π
dΩ′νiΣg′

f,i(r⃗)φ
g′(r⃗,Ω′⃗ ) (3.6)

In the end the scattering source:∫︂
∆E

dE

∫︂ ∞

0
dE′

∮︂
4π

Σs(r⃗, E′ → E,Ω′⃗ → Ω⃗)φ(r⃗, E′,Ω′⃗ )dΩ′⃗ =

=
L∑︂

l=0

2l + 1
4π

l∑︂
m=−l

Al,m(Ω)
∫︂

∆E
dE

∫︂ ∞

0
dE′Σsl(E → E′)φl,m(r⃗, E′)

=
N∑︂
g′

L∑︂
l=0

2l + 1
4π Σg′→g

sl (r⃗)
l∑︂

m=−l

Al,m(Ω)φg′

l,m(r⃗) (3.7)

It can be seen that Σg′→g
sl is a square matrix, which ca be divide into three sub-matrices

: in a diagonal self -scattering matrix, a lower triangular down-scattering matrix and an
upper triangular up-scattering matrix.

Thanks to this rearranging, the transport equation turns into a system of N mono-
kinetic equations coupled by the fission and scattering source, with the following form:

[iB⃗ · Ω⃗ + Σg
t (r⃗)]φg(r⃗, Ω⃗) =

N∑︂
g′

L∑︂
l=0

2l + 1
4π Σg′→g

sl (r⃗)
l∑︂

m=−l

Al,m(Ω)φg′

l,m(r⃗)+

+
∑︂

i

χg
i (r⃗)
4π

N∑︂
g′

∮︂
4π
dΩ′νiΣg′

f,i(r⃗)φ
g′(r⃗,Ω′⃗ ), ∀g ∈ [1, ..., N ] (3.8)

In order to solve the system of N equations, an iterative method is used to reduced
the number of unknowns. It is composed by three loops [6]:

1. Outers: consists in a Power iterations , where the fission source and eigenvalue are
fixed and updated at the end of each step using the new neutron flux. This loop is
used to resolved the equations also for fast groups;
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2. Thermals: some terms of scattering source are unknowns because they have the
up-scattering, which depends on the high energy groups. So this loop focuses on
the up scattering source, which is update at the end of each iteration;

3. Inners: here the convergence is on the self-scattering source, which is update at the
end of each iteration.

3.3 The Spherical Harmonics Method
I have obtained a system of integro-differential equations, and generally the deterministic
codes use spherical harmonics as basis functions to project the system and to obtain the
Pn or the Bn method, because I have already the expansion of scattering source on them
2.3. To simplify the notation, is useful define the emission density ,Qg(r⃗, Ω⃗) depends on
the neutron flux, therefore, it is also expanded on spherical harmonics:

Qg(r⃗, Ω⃗) =
L∑︂

l=0

2l + 1
4π

l∑︂
m=−l

Al,m(Ω)Qg′

l,m(r⃗) (3.9)

with

Qg′

l,m(r⃗) =
N∑︂
g′

Σg′→g
sl (r⃗)φg′

l,m(r⃗) + 1
k

∑︂
i

χg
i (r⃗)
4π

N∑︂
g′

νiΣg′

f,t(r⃗)φ
g′

l,m(r⃗)δl0 (3.10)

to rewrite the system as following :

[iB⃗ · Ω⃗ + Σg
t (r⃗)]φg(r⃗, Ω⃗) = Qg(r⃗, Ω⃗) (3.11)

There are a lot definition of spherical harmonics, but the following is the one which the
function after the projection will be real [6]:

A0,0 = 1 A1,−1 = Ωz A1,0 = Ωx A1,1 = Ωy (3.12)

where l = 0,1 and m = −1,0,1. The angular distribution of the neutron flux over the
unit sphere can be expressed through a spherical harmonics expansion truncated at order
L. In this formulation, the coefficients φℓ,m represent the angular moments of the flux.

In particular, for ℓ = 0 and ℓ = 1, the corresponding angular moments are associated
with the scalar flux and the neutron current, respectively, as follows:

φ(r⃗) = φ0,0 J(r⃗) = φ1,0 · î+ φ1,1 · ĵ + φ1,−1 · k̂ (3.13)

.

3.3.1 Pn

The PN equations are given by expanding

[iB⃗ · Ω⃗ + Σg
t (r⃗)]φg

l,m(r⃗, Ω⃗) = Qg′

l,m(r⃗) (3.14)
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and projecting Equation 3.11 on spherical harmonic Al′,m′(Ω)

∫︂
4π
dΩ⃗Al′,m′(Ω⃗)

[︂
iB⃗ · Ω⃗ + Σg

t

]︂ N∑︂
ℓ=0

ℓ∑︂
m=−ℓ

φg
ℓ,mAl,m(Ω⃗) =

∫︂
4π
dΩ⃗Al′,m′(Ω⃗)Qg

ℓ,m (3.15)

After that, there is the integration over the domain of Ω⃗ we obtain a system of L+ 1
equation for each groups. The order of scattering used in this study is L = 1, as said
before, and the P1 equation are:

⎧⎨⎩iBφ
g
1 + Σg

tφ
g
0 = ∑︁

g′ Σg′→g
s,0 φg′

0 + 1
k

∑︁
g′ νΣg′

f φ
g′

0
χg(−→r )

4π
iB
3 φ

g
0 + Σg

tφ
g
1 = ∑︁

g′ Σg′→g
s,1 φg′

1 + 1
k

∑︁
g′ νΣg′

f φ
g′

1
χg(−→r )

4π

(3.16)

where φg
0 is the angular flux , and φg

1 is the current.

3.3.2 Bn

As the Pn, the process to derive the Bn equation has the same steps more one. Indeed
before the projection the transport equation it is necessary divide by [Σg

t − iB⃗ · Ω⃗], then
is the same, and for our study the equations of B1 are [8]:⎧⎨⎩iBφ

g
1 + Σg

tφ
g
0 = ∑︁

g′ Σg′→g
s,0 φg′

0 + 1
k

∑︁
g′ νΣg′

f φ
g′

0
χg(−→r )

4π
iB
3 φ

g
0 + b0

Σt,1
Σg

tφ
g
1 = ∑︁

g′ Σg′→g
s,1 φg′

1 + 1
k

∑︁
g′ νΣg′

f φ
g′

1
χg(−→r )

4π

(3.17)

where b0 is a constant [11].

3.4 Homogeneous and Heterogeneous
The treatment of homogeneous or heterogeneous geometries in ECCO are based on two
formulation. For the first one it uses Fundamental mode, other than the equations
derived in the previous paragraphs and applied to all geometry. If the model is hetero-
geneous, it is necessary use the Collision Probability (CP) method. The Collision
Probability (CP) Method originates from the projection of the integral form of the neu-
tron transport equation onto spherical harmonics, resulting in a system of equations
expressed in terms of the angular flux moments φℓ,m.

Due to the strong spatial coupling introduced by this formulation which often leads to
computationally expensive solutions historical implementations have relied on approxi-
mations of the scattering source. A common approach is to truncate the source expansion
up to a certain anisotropy order, typically L = 1.

To numerically solve the resulting equations in multidimensional geometries, the do-
main is partitioned into Nr homogeneous regions. For simplicity, the scalar flux and cross
sections are assumed constant within each region. As a result, the volume integral over
the entire domain becomes a sum over the regions j (each with volume Vj).

Integrating over the volume of region i, the resulting balance equation takes the form:
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Viφi =
Nr∑︂
j=1

Q0
jVjPij (3.18)

where:
φi is the scalar flux in region i, Q0

j is the isotropic source in region j, Vj is the volume
of region j, Pij is the collision probability coefficients defined below.

The coefficients Pij is given by:

Pij = 1
Vj

∫︂
Vi

d3r

∫︂
Vj

d3r′ e
−τ(r⃗′,r⃗)

|r⃗ − r⃗′|2
(3.19)

The matrix Pij is symmetric, and each Pij represents the probability that a neutron
emitted isotropically and uniformly in region j reaches region i without undergoing a
collision. The product ΣiPij , where Σi is the total macroscopic cross section in region i,
is called the first-flight collision probability which gives the method its name.

Due to the full spatial coupling, the CP method is most suited to small systems where
the number of regions Nr remains manageable. Another limitation is the approximation
of the isotropic angular source, as including higher-order angular moments would require
similarly dense coupling matrices. Nevertheless, the method has key advantages:

• It eliminates the angular variable without approximating the angular flux represen-
tation;

• It allows grouping of regions with similar properties, assuming they experience
comparable neutron fluxes thus reducing computational burden.

This formulation is particularly suited to heterogeneous geometries, such as fuel pins
or assemblies, where a fine spatial subdivision of the domain is required.

3.5 Consistent and Inconsistent
This approximation is a peculiarity of ECCO because the equations 3.17 and 3.16 are
already in the consistent formulation. To achieve faster computation, it is possible to
introduce another approximation on the first-order scattering moment,the extended
transport approximation, and it consisting of assuming:∑︂

g′

Σg′→g
s,1 φg′

1 = Σg
s,1φ

g′

1 (3.20)

With this addition, the method becomes inconsistent.

3.6 Resonance Effects and Self-Shielding Treatment Using
Probability Tables

In reactor physics, certain isotopes such as 238U and 240Pu exhibit prominent resonance
behavior due to quantum-level nuclear effects. These resonances appear as sharp peaks
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in the microscopic cross section σ(E), especially in the epithermal energy region. When
neutrons slow down and pass through these resonance energies, their probability of inter-
action increases significantly, leading to localized flux depressions known as self-shielding.

Self-shielding occurs because strong absorbers reduce the neutron flux precisely where
their absorption cross section is highest. As a result, the effective (i.e., flux-weighted) cross
section becomes smaller than its unshielded value. This phenomenon must be accurately
treated to predict reaction rates and neutron economy, especially in heterogeneous reactor
cores.

Traditional deterministic transport methods average cross sections over energy groups,
which can smooth out sharp resonance features. To address this limitation, the ECCO
code uses probability tables a statistical method that allows for accurate modeling of
cross-section fluctuations and self-shielding within each energy group.

Within ECCO, the total microscopic cross section σ(u) is statistically represented
over a lethargy group [ug−1, ug] using a discrete probability distribution. Each probability
table is composed of K sublevels, each defined by:

• a total cross section value σk,

• an associated probability weight ωk (with ∑︁k ωk = 1),

• corresponding partial cross sections σx,k for reaction types x (e.g., capture, fission,
scattering).

This approach allows ECCO to compute self-shielded cross sections and neutron fluxes
using a consistent transport framework, preserving detailed resonance behavior.

While the self-shielding treatment in ECCO is based on the subgroup method, where a
separate transport calculation is performed for each cross-section level in the probability
table. The main steps are:

1. Flux Calculation for Each Probability Level: For each subgroup k, the neutron
flux φi

g is determined by solving the collision probability transport equation:

φi
g = Si

g +
∑︂

j

P gg
ij φ

j
g, (3.21)

where P gg
ij are the collision probabilities calculated using the total cross section σk for

the corresponding level.

2. Self-Shielded Cross Section Evaluation: Once the fluxes are known, the self-
shielded cross section for a reaction type x is computed as:

σi
x,g =

∑︁
k∈αj

pkSj
g,kσ

k
x,g∑︁

k∈αj
pkSj

g,k

, (3.22)

where pk are the probabilities from the table and Sj
g,k are the source terms at level k.

22



3.6 – Resonance Effects and Self-Shielding Treatment Using Probability Tables

The narrow resonance approximation (NRA), used in this method, becomes valid in
fine lethargy meshes, where:

• the energy loss by elastic scattering is much greater than the group width,

• the within-group neutron source is nearly constant due to external origin of incom-
ing neutrons.

The use of a fine group structure is essential not only to validate the NRA, but also
to:

• explicitly resolve wide and overlapping resonances from different isotopes,

• build group-to-group transfer matrices that are independent of the weighting spec-
trum,

• ensure accurate flux profiles across energy groups, particularly for slowing-down
calculations.
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Chapter 4

Codes

4.1 Deterministi code: The ECCO Cell Code and the ER-
ANOS Suite

The study of nuclear reactors requires simulating physical phenomena at small scales,
even when the geometric domain spans several meters. This need arises from the com-
peting scales imposed by the neutron mean free paths in the various materials of a highly
heterogeneous domain, alongside the macroscopic distribution of the neutron flux. To
reduce the computational cost of such simulations, calculations are typically divided into
two sequential phases: cell (or lattice) calculations followed by reactor calculations.

The main purpose of a cell calculation is to generate, from a general-purpose nuclear
data library (such as JEFF or ENDF/B), a derived dataset tailored to the specific problem
being studied. The cell code is generally applied to a limited domain, like a single assembly
or pin, where microscopic and macroscopic cross sections are computed through energy
condensation and volume homogenization.

In the subsequent reactor calculation, the data obtained from the cell calculations
are assigned to the various core regions, each assumed to be homogeneous. The reac-
tor code is then used to solve the quasi-static transport equation and to compute the
required quantities, including integral parameters, sensitivity coefficients, and uncertain-
ties. Additionally, the reactor code can be used for other analyses, such as depletion
calculations.

In this thesis, ECCO was employed as the cell code. ECCO is part of the ERA-
NOS suite, which is a reference tool for the core design of fast-spectrum nuclear reactors.
Within ERANOS, the BIdimensionnel Sn TRansport OptimisÃ¨ (BISTRO) code is used
for reactor calculations, enabling the solution of the transport (or diffusion) equation in
one-dimensional or two-dimensional core geometries. BISTRO uses the discrete ordinates
method for angular discretization and the finite difference method for spatial discretiza-
tion of the neutron flux. While BISTRO provides the neutron flux distributions within
the reactor core, the VARIANT module extends these calculations by performing sensi-
tivity and uncertainty analyses relevant to fast reactor systems. It executes perturbation
calculations on nuclear data and system parameters, enabling the evaluation of the im-
pact of uncertainties on key reactor performance indicators such as reactivity and neutron
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flux distributions.
The overall calculation scheme, which integrates these two phases, is illustrated below:

Figure 4.1: ERANOS calculation scheme

4.1.1 The ECCO Cell Code

As noted in the previous section, the ECCO cell code is designed to process original
nuclear data libraries at 1968 (ultra-fine) energy groups (e.g., JEFF or ENDF/B) and
produce condensed cross sections for use in reactor calculations. For computational ef-
ficiency, reactor calculations typically use a reduced number of energy groups compared
to those in the original libraries, and material properties are homogenized within the
calculation lattice cell. This approach enables a simplified core model while ensuring
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4.1 – Deterministi code: The ECCO Cell Code and the ERANOS Suite

that the cross sections and material properties are generated from refined cell or lattice
calculations.

To perform energy condensation and spatial homogenization, ECCO requires
detailed information about the geometry and materials of the cell under analysis. The
input data for ECCO can be organized into two main components:

• Cell Description: Includes the geometry, material compositions, and boundary con-
ditions of the cell;

• Calculation Procedure Description: Specifies the number of calculation steps and
the operations to be performed at each stage, also called ROUTE.

Before analysing these two components in detail, it is important to emphasize that
ECCO is a versatile code capable of handling any type of cell calculation, whether for
thermal or fast reactor applications.

Cell description The geometric description of a cell in ECCO involves constructing
geometries with varying levels of complexity, beginning with simple geometric elements
referred to as links within ECCO. These links vary according to their dimensionality and
can be:

• 0D (zero-dimensional, HOMOGENEOUS),

• 1D (CYLINDRICAL, PLANE),

• 2D (SQUARE LATTICE, RECTANGULAR LATTICE, HEXAGONAL LATTICE).

More generally, links are categorized as either simple or lattice-type. Each cell is repre-
sented using a three structure in which a simple model corresponds to a branch, while a
lattice acts as a node capable of generating multiple branches.

The geometry is defined in a nested manner, progressing from the outermost link
inward. Each link can contain other links or be filled with a homogeneous material, whose
composition must be specified at a given temperature (thermal expansion coefficients can
be included to account for temperature-dependent effects). If the inner link does not fully
occupy the outer link, a uniform material must be specified in the remaining space. A
VOID material can be used in such cases, effectively reducing the material density to zero;
to avoid computational errors (such as divisions by zero densities), certain workarounds
are applied, for example, homogenizing with the immediately adjacent geometry.

It is important to note that the permissible geometries depend on the method selected
for computing the neutron flux within the cell, as will be discussed in the section on
calculation methods.

Boundary conditions are defined on the faces of the outermost link, except in the case
of homogeneous cells, where boundary conditions are not required. Various boundary
conditions are available, as described in the ECCO manual, and their selection depends
on the geometry of the cell under analysis.

In summary, ECCO is capable of handling both homogeneous and heterogeneous cells
using suitable resolution methods. Additionally heterogeneous cells can be automatically
homogenized during a computational step of the cross-section condensation process.

27



Codes

Calculation Procedure Description The procedure for generating the nuclear data
library to be used by the reactor code for a specific case involves several sequential steps.
The user typically defines the number of these steps and specifies, for each step, the
approach for the geometrical schematization, energy group structure, list of nuclides, res-
onance shielding treatment, and flux calculation. This is essential because cross sections
for different nuclides and reactions may require calculations at different levels of geometric
detail or with varying energy group structures.

For instance, fine-group calculations (1968 groups in ECCO) may be performed using
a homogenized cell, even if the original geometry is heterogeneous, to condense elastic
scattering matrices for light elements efficiently. Conversely, standard broad-group cal-
culations (33 groups in ECCO), using the subgroup method, can be conducted on the
heterogeneous geometry of the same cell to handle the remaining nuclides and reactions.

ECCO offers two primary calculation routes: “Reference” and “Fast.” The Refer-
ence route involves a fine-group treatment of elastic scattering, with subgroup parameters
for resonance self-shielding also evaluated at the fine-group level. The Fast route similarly
applies fine-group treatment for elastic scattering. Users may also select arbitrary group
structures, provided that the outer boundaries of all structures align with those of the
finest group structure in the general library. Further details can be found in [4].

Condensation of fluxes, cross sections, and other relevant quantities occurs whenever
transitioning from a fine-group calculation step to a broader group step. Most cross
sections are collapsed using flux weighting:

σG
x,e,i =

∑︁
g∈G σ

g
x,e,iϕ

g
i

ϕG
i

, (4.1)

where:

• i: cell region,

• e: isotope,

• x: reaction type (e.g., total, capture, fission),

• g: fine energy group,

• G: broad energy group,

• ϕG
i = ∑︁

g∈G ϕ
g
i : collapsed flux.

It is important to note that some quantities are weighted using the current instead of
the flux, as detailed in [4].

Homogenization of quantities can be performed within the calculation steps using
multiple energy groups or in the final step to generate data for reactor calculations.
Microscopic cross sections are homogenized using a volume (V ), flux (φ), and number
density (N) weighted average:

σg
x,e =

∑︁
i Viφ

g
iNe,iσ

g
x,e,i

V φgNe
, (4.2)
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where:

• φg =
∑︁

i
Viφ

g
i

V : homogenized flux,

• Ne =
∑︁

i
ViNe,i

V : homogenized number density.

Calculation Scheme: ROUTE Each step is a transport calculation to evaluate the
angular flux.

In the first step, the cell is homogenized, and using the 172-group cross-section library,
the flux distribution is calculated either by imposing a fixed buckling (in the case of an
infinite cell configuration) or by searching for the critical buckling value (in the case of a
critical cell configuration).

In the second step, the calculation is performed using the original heterogeneous
geometry, starting from the buckling obtained in the previous step while maintaining the
same 172-group energy structure.

In the third step, the calculation is repeated with the energy structure expanded
to the 1968-group (ultra-fine) cross-section library. For the main isotopes, a standard
1968-group library is used, while for the remaining isotopes, the 172-group structure is
deconvoluted to match the 1968-group structure. Subsequently, the cross sections are
condensed to the number of groups n.

In the fourth step, the calculation is carried out in the original heterogeneous geometry
using the condensed n-group structure, and the buckling value is updated (noting that
in the infinite configuration, the buckling remains unchanged, because is zero).

In the final step, the buckling value from the previous step is used, and the cell
is homogenized, resulting in the homogenization of the cross sections. These newly
condensed and homogenized cross sections are then saved and provided to reactor
calculations.

From this point forward, the calculation scheme for the critical cell will be referred
to as the “REFERENCE ROUTE”.
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Figure 4.2: REFERENCE ROUTE scheme

This scheme was originally necessary when computers had significantly lower compu-
tational power than those available today. In fact, the first step could now be skipped,
starting directly with the heterogeneous geometry and the critical buckling search, with-
out a significant increase in computation time (on the order of minutes).

This thesis will not use the REFERENCE ROUTE because the stochastic code is
not able to reproduce the leakage model in its calculations. For this reason, the route will
be changed to the ZERO BUCKLING ROUTE. The differences lie in the first and
fourth steps, where the REFERENCE ROUTE performs a Bsearch (to find the values of
buckling), while in this new route, the buckling is set equal to zero, as the name suggests.

4.2 Stochastic ode: OpenMC

The Monte Carlo (MC) methods provide a statistical approach to estimate physical ob-
servables by performing computer-based sampling. These methods are essential for resolv-
ing integrals in scattering and fission source terms within the neutron transport equation
(NTE) [12].

Using probability density functions (PDFs), it is possible to analyse the evolution and
probability of event occurrences, such as the number of neutron collisions during their
lifetime. The PDF, denoted as f(x), depends on the independent variable x and contains
all the information about the probability of event occurrence. The space where the
density function is defined is the Sample Space (S), which in nuclear physics corresponds
to the phase-space (three spatial variables and one energy variable), encapsulating all
NTE operators (Collision, Transport, Fission, Scattering).

MC methods utilise Random Variables (ξ) to perform statistical sampling from the
PDF, where ξ maps outcomes from the sample space to real numbers. Random variables
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can be discrete (fixed event probabilities) or continuous (taking any value within an
interval). The PDF, fξ(x), is positive and normalised, ensuring:∫︂ b

a
fξ(x) dx = 1. (4.3)

The mean value for a distribution, corresponding to the first-order moment, is given
by:

E[x] =
∫︂ b

a
xfξ(x) dx. (4.4)

MC sampling allows estimation of this mean value using:

ξ̄
(N) = 1

N

N∑︂
i=1

ξi, (4.5)

whereN is the number of experiments, with each ξi sampled independently and identically
according to the PDF. As N → ∞, the sample average converges to the mean value.

A general integral can be rewritten as:

R =
∫︂

D
ξ(x)fξ(x) dx, (4.6)

where ξ(x) is an estimator dependent on the integral under consideration and D is the
integration domain. Since finite integrals equate to the expected value of the integrand,
Eq. (4.5) can be utilised to evaluate integrals in the NTE.

The estimation of physical phenomena through statistical sampling inherently carries
uncertainty, typically expressed as variance, calculated via the second-order moment:

E[x2] =
∫︂ b

a
x2fξ(x) dx, (4.7)

σ2(x) = E[x2] − (E[x])2. (4.8)

The sample variance during MC sampling is:

σ̄2
x = 1

N − 1

N∑︂
i=1

(ξi − ξ̄
(N))2, (4.9)

and converges to the distribution variance as N → ∞. Lower variance indicates higher
estimation accuracy. Furthermore, the standard deviation (SD) and relative standard
deviation (RSD) are defined as:

σ̄x =
√︂
σ̄2

x, (4.10)

RSD = σ̄x

ξ̄
(N) . (4.11)

In MC methods, the variance convergence is inversely proportional to
√
N , implying

that to reduce variance, an increase in sample size (and computational time) is necessary.

31



Codes

4.2.1 Monte Carlo Methods for Particle Transport

MC methods for particle transport simulate the behaviour of neutral particles (neutrons,
photons) using statistical sampling to solve the transport equation, including displace-
ment and interaction terms. The exponential distribution PDF for particle displacement
is:

f(x) = Σte
−Σtx, x ≥ 0, (4.12)

where Σt is the total macroscopic cross-section, constant for homogeneous media, with
the mean free path:

⟨x⟩ = 1
Σt
. (4.13)

To determine particle paths, a Random Walk (RW) is generated using the inverse
transform method by relating the cumulative density function (CDF):

F (x) = 1 − e−Σtx = ρ, (4.14)

where ρ is a uniformly distributed random number in [0,1). Inverting Eq. (4.14) yields:

l = − ln(1 − ρ)
Σt

, (4.15)

which computes the particle’s path length until its next collision.
MC codes simulate numerous particle histories, estimating flux or reaction rates

through tallies during fixed source or eigenvalue (criticality) modes, and in this OpenMC
is employed in eigenvalue mode.

4.2.2 OpenMC Estimators

Tallies in MC codes compute macroscopic quantities through:

X =
∫︂
dr⃗

∫︂
dΩ
∫︂
dE f(r⃗,Ω, E)ϕ(r⃗,Ω, E), (4.16)

where f is the scoring function and ϕ is the flux.
OpenMC supports three estimators:

1. Analog Estimator: counts the number of actual reactions:

Rx = 1
W

∑︂
i∈A

wi, (4.17)

where W is the total particle weight.

2. Collision Estimator: scores contributions at each collision:

ϕ = 1
W

∑︂
i∈C

wi

Σt(Ei)
. (4.18)

3. Track-length Estimator (default in OpenMC):

V ϕ = 1
W

∑︂
i∈T

wili, (4.19)

where li is the path length within the desired volume.

32



Chapter 5

Results

5.1 Introduction to Nuclear Reactors
Nuclear reactors are devices designed to initiate, control, and sustain nuclear fission
reactions for the purpose of generating thermal energy, which is subsequently converted
into electricity. Over time, technological advancements have led to the development of
several generations of nuclear reactors, each introducing improvements in safety, efficiency,
and environmental sustainability [18].

Generational Classification:

• Generation I: Prototype reactors built during the 1950s and 1960s, most of which
are now decommissioned.

• Generation II: Commercial reactors currently in operation in many countries,
such as PWRs (Pressurized Water Reactors) and BWRs (Boiling Water Reactors).

• Generation III / III+: Advanced reactors featuring improved efficiency and
passive safety systems (e.g., EPR, AP1000).

• Generation IV: Reactors currently under development, aiming to enhance sus-
tainability, reduce long-term radioactive waste, increase resistance to nuclear pro-
liferation, and lower operational costs.

5.2 The Lead - Cooled Fast Reactor
Among the Generation IV technologies, in this section, the principles, technological chal-
lenges, and design features of Lead - Cooled Fast Reactors (LFRs) are presented, with
detailed focus on the ALFRED demonstrator core, focus also of this work [13].

Lead-Cooled Fast Reactors are fast-spectrum systems operating at high temperatures
with pressures close to atmospheric levels. Lead is used as coolant due to its high boiling
point of 1737ÂřC and chemical inertness, which eliminates the risk of violent reactions
in the event of contact of the coolant with air or water.

The absence of explosive reactions with lead simplifies the reactor design, removing the
necessity for an intermediate heat exchanger, and its high thermal inertia and density
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Figure 5.1: Scheme of LFR reactor. [19]

enable effective decay heat removal through natural circulation. Neutronic properties
of lead allow wider fuel rod spacing, reducing pressure drops while preserving the fast
neutron spectrum.

Current designs operate with coolant outlet temperatures between 480ÂřC and 530ÂřC
due to corrosion limitations, with targets up to 750 − 880ÂřC in the future, enabling ef-
ficiencies of at least 42% in secondary cycles [14].

Two design configurations were studied: loop and pool-type, with the pool-type pre-
vailing to avoid seismic issues with lead-filled piping. Reference Generation IV LFR
systems include the ELFR (600 MWe), the BREST-OD-300 (300 MWe), and SSTAR
(10 - 100 MWe). The European design evolved from ELSY, which introduced compact
pooltype configurations with integrated steam generators.

A critical challenge remains the development of structural materials capable of with-
standing hightemperature lead corrosion, necessitating extensive material qualification
under irradiation conditions.

5.3 The ALFRED Features
ALFRED (Advanced Lead Fast Reactor European Demonstrator) serves as the Euro-
pean demonstrator for LFR technology and as a prototype for LFR -SMR applications,
designed with a power of 300 MWth (125 MWel) [15].

Its pooltype design ensures passive safety by maintaining lead temperatures between
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Figure 5.2: Primary system of ELSY reactor [21].

Figure 5.3: Primary system of the ALFRED demonstrator [16].

380ÂřC and 600ÂřC, preventing coolant solidification and limiting corrosion rates. Due
to the limited availability of fastspectrum irradiation facilities, ALFRED will qualify
protective coatings within its own operational cycles.

In 2018, the core design was revised to incorporate a central irradiation position and
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phased power and temperature increases to achieve material qualification under opera-
tional conditions.

The updated core comprises 151 main assemblies: 134 Fuel Assemblies (FAs), 12
Control Rods (CRs), 4 Safety Devices (SDs), and 1 Test Assembly, surrounded by 102
Dummy Assemblies for reflection and shielding.

Figure 5.4: Crosssectional map of the ALFRED core [15].

MOX fuel enrichment is distributed as:

• 56 inner FAs with 20.5 wt.% PuO1.97,

• 78 outer FAs with 26.2 wt.% PuO1.97,

supporting a five - batch annual refueling strategy, with a targeted maximum burnup of
100 MWd/kgHM and optimized power distribution for reactivity control and safety [16].

5.3.1 The ALFRED Fuel Pin

Fuel pins consist of sintered MOX pellets with a diameter of 9 mm and a 2 mm central
hole to reduce pellet cladding mechanical interaction (PCMI). The AIM1 steel cladding
has a thickness of 0.6 mm with a 0.15 mm gap to accommodate assembly tolerances and
limit PCMI.

36



5.4 – Analysis

Figure 5.5: Cross-section of an ALFRED fuel pin [20].

5.3.2 The ALFRED Fuel Assembly

Each hexagonal fuel assembly features an AIM1 steel wrapper enabling lead outlet tem-
perature monitoring, containing 126 fuel pins arranged in a triangular lattice around a
central dummy pin for diagnostics, with a lattice pitch of 13.6 mm, a wrapper thickness
of 3.5 mm, and a 4 mm interassembly gap for lead bypass flow.

Figure 5.6: Fuel assembly crosssection at the active region [16].

This structured overview provides a comprehensive technical foundation on ALFRED’s
design, operational safety strategy, and its role in the development of Generation IV LFR
technology.

5.4 Analysis
In this chapter, we will discuss of outputs of ECCO and Open MC. The results will be
show from the simplest geometry, the homogeneous pin, to the heterogeneous assembly.
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In each of this geometry will find similar comparison expect for the homogeneous, which is
the simplest and for this reason is the perfect subject to isolate the discrepancies without
an overlapping of effect.

Normalizations Before to show the result is important to elaborate what are these
normalizations and how we can reproduced them. By starting from the eigenvalue prob-
lem in the form of operators, it is possible to obtain two normalizations.

L̂ · φ = 1
k
F̂ · φ (5.1)

where L̂ is the reduced absorption operator [12], and F̂ is the fission operator.

L̂ · φ = 1 Thanks this notarization it is possible underline the contribution og each
fissionable isotopes in each group on the kinf The 5.1 become:

Fn̂ · φ = k (5.2)

and the key is the comparison of two calculation

Fn̂ · φ− F ′
n̂ · φ′ = k − k′ = ∆k (5.3)

Where the prime indicates the value obtained from the OpenMC calculation, while the
absence of a prime refers to the ECCO calculation.

By adding the assumption of constant flux across the entire region, we can write the
operators as a summation over the groups of macroscopic reaction rates and a summation
over the nuclides.

Fn̂ · φ =
∑︂

g

∑︂
i

rri,g,νf = k (5.4)

As shown previously we can obtain the difference between them for each individual
group and nuclide.

F̂ · φ = 1 Similarly as previus with this notarization it is possible underline the contri-
bution of each isotopes in each group on the ρ The step and assumption are the same.

Ln̂ · φ = 1
k

Compare two calculation:

Ln̂ · φ− L′
n̂ · φ′ = ρ′ − ρ = ∆ρ

Each Reduced absorption operator is:

Ln̂ · φ =
∑︂

g

∑︂
i

(rri,g,t − rri,g,s) = ρ
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5.5 Homogeneous Pin
The homogeneous pin is an inner fuel pin of the ALFRED reactor. The pin composi-
tion was taken from the reactor benchmarking in [7]. The model is analyzed under the
following conditions:

• homogeneous ALFRED fuel pin ;

• infinite lattice (no leakages);

• no dilatation (geometry in cold conditions), and at T = 973.6K [7];

• nuclear libraries used ENDB-F VII.

The weight homogenization was then performed before the calculation as follows:

• Vf : volume of the fuel;

• Vg: volume of the gap;

• Vc: volume of the cladding;

• Vtot = Vf + Vg + Vc: total volume of the pin.

For each isotope i, the homogenized atomic density N̄ i over the pin volume is calcu-
lated as:

N̄ i = 1
Vtot

(Ni,f · Vf +Ni,g · Vg +Ni,c · Vc)

where:

• Ni,f : atomic density of isotope i in the fuel,

• Ni,g: atomic density of isotope i in the gap,

• Ni,c: atomic density of isotope i in the cladding.

The analyses that will be performed on the homogeneous pin are:

1. Comparison of the different setups used for the flux calculation.;

2. resonance treatment;

3. evaluations of errors.

The route used to perform the calculations consists of the following steps:

1. Calculation of the flux on 172 groups;

2. Calculation of the flux on 1968 groups and condensation of new Cross section on
X groups;

3. Calculation of the flux on new cross section.

For the comparison between the methods, the condensation was performed three times
the first on 1G, the second on 33G ( ECCO-33 ) and in the end on 172G ( XMAS ).
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5.5.1 Comparison between methods

Four calculations are made chancing only the method inside the run. This step is very
important , because is the base of work, as a basis of the subsequent analysis that will
investigate the best method to represent the geometry. As a starting point, a 1-group
analysis was employed:

P1 B1
Consistent Inconsistent Consistent Inconsistent

kinf 1.35166 1.35166 1.35166 1.35166

1G Macro XS

Total - 0 0 0
Capture - 0 0 0
ν Fis - 0 0 0

Elastic - 0 0 0
n,xn - 0 0 0

Table 5.1: Difference between the setups.

It can be clearly seen that that there is no difference between the Pn and Bn expan-
sions, but it was necessary to proceed with the 33-group analysis.

Figure 5.7: Cross-section for total reactions.
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Figure 5.8: Microscopic reaction rate for total reactions.

Figure 5.9: Cross-section for capture reactions.

Figure 5.10: Microscopic reaction rate for capture reactions.
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Figure 5.11: Cross-section for nu-fission reactions.

Figure 5.12: Microscopic reaction rate for nu-fission reactions.

Figure 5.13: Cross-section for elastic reactions.
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Figure 5.14: Microscopic reaction rate for elastic reactions.

The following are the comparisons of the different setups for the 33-group calculations.
In the legend there is only the subscript "E" in general form, without specify if is P1
consisten, P1 inconsiste, ecc. because there are not differences as show the next table.

P1 B1
Consistent Inconsistent Consistent Inconsistent

macro XS

Total - 0.0 0.0 0.0
Capture - 0.0 0.0 0.0
ν Fis - 0.0 0.0 0.0
Elastic - 0.0 0.0 0.0

RR

Total - 0.0 0.0 0.0
Capture - 0.0 0.0 0.0
ν Fis - 0.0 0.0 0.0
Elastic - 0.0 0.0 0.0

Table 5.2: Root mean square errors with respect P1 consistent

This table shows the Root Mean Square (RMS) differences between the macroscopic
cross sections and reaction rates with respect to the OpenMC values, demonstrating that
the model behaves consistently. To be sure it is suitable said that the method are already
identical, but was made also an analysis on 172 groups, but i will show only the table
with the RMS, because the result is the same of previeuv analysis.

The errors between the setup are zero and for this reason the next result are evaluated
on P1 Consistet, because it is the setup recommanded by tecnical guide in ECCO.

5.5.2 Resonance treatment

To eliminate interpolation errors due to the input nuclear data, three temperatures were
used: 293.6 K, 573.6 K, 973.6 K, and 1473.6 K. In parallel, 4 fixed temperature libraries
were also created in Open Mc to avoid the same problem. For this reason there would
be 4 sections that will change only on the temperature and in each of them we would
see the comparison of flux to underline if a finer mesh on energy is useful or not. To
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P1 B1
Consistent Inconsistent Consistent Inconsistent

macro XS

Total - 0.0 0.0 0.0
Capture - 0.0 0.0 0.0
ν Fis - 0.0 0.0 0.0
Elastic - 0.0 0.0 0.0

RR

Total - 0.0 0.0 0.0
Capture - 0.0 0.0 0.0
ν Fis - 0.0 0.0 0.0
Elastic - 0.0 0.0 0.0

Table 5.3: Root mean square errors with respect P1 consistent

facilitate reading, only 973.6K analisys will be reported but the other are summarized in
the table ??. With respect the route of comparison of methods, there is no differnts in
the number of step but in this paragraph the route will have as output only cross section
on 172 groups, to avoid undesirable phenomena on condensation.

For clarity, the steps of this workflow are reported again below:

1. Calculation of flux on 172 groups;

2. Calculation of flux on 1968 groups and condensation of new Cross section on 172
groups;

3. Calculation of flux on new cross section.

As numbered in the previous list, the first step will have the subscript XE,1, the
second XE,2 and the third XE,3. The errors will have εE,1/O is the Root Mean Square
between the step 1 of ECCO and the result of OpenMC (O), and similir for the other.

973.6 K Let’s start on the comparison of the kinf in each step:

Results k1 k2,3 OpenMc ∆k1,2 ∆k1,O ∆k2−3,O

973.6K 1.35880 1.35166 1.35374 ±0.00017 -714 pcm 506pcm -208pcm

Table 5.4: Comparison of kinf between each step and the reference.

This initial result already shows the impact on the model of using the fine library
in the second step. Moreover I like to remember that is impossible start at first step
with data taken from 1968G because insede it there are only the data of resonce isotopes.
Indeed the ∆k1,2, which is only a subtraction, shows a huge difference on k, and the
∆k1,O and ∆k2−3,O prove that the second is closer.

Moving on to the flux plots:
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Figure 5.15: Flux on 172 groups of homogeneous pin.

Figure 5.16: Comparison of the flux on 172 groups of homogeneous pins.

In the 5.15, ECCO fluxes and the OpenMC flux have an obvious difference at low
energy values, the OpenMc has no values, and from our point of view is 0. This is a
logical consequence arising from the choice of reactor type. Alfred is a fast reactor and
therefore its spectrum will be concentrated on high energy values, where corresponds
a high probability of having neutrons with that energy. Therefore having made some
neutron calculations with OpenMC trying to have an uncertainty on the kinf of about 10
pcm, it is possible that all the neutrons simulated on the model did not reach that range.
This idea is also enhanced by the second plot showing rsd( relative standard deviation).
The yellow dashed line is in the shape of a ’parabola’ and tells us the uncertainty that each
energy range has, in the middle we find the lowest values and that are the energy values
at which there is more probability to find neutrons, and at the sides less and less.Also
for this reason the root mean square, is not calculated on all groups (it would result in
a very high error) but only on those in which OpenMC value is meaningful according to
the formula 5.5.
Indeed the zeros values and the values that has the some order their standard deviations
aren’t used.

ε1,O =

⌜⃓⃓⃓
⎷ 1
N

N∑︂
g=1

(︄
xE,1,g − yO,g

xE,1,g

)︄2

(5.5)
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Root Mean Square
ε1,O 0.45341
ε2/3,O 0.0108
ε1,2/3 0.78860
ε2,3 0.00019

Table 5.5: Comparison of RMS of the Flux on 172 groups of homogeneous pins.

Both the two plots and the table show the trend described above, where refinement
shows a better result.

It is possible notice that the second step, which introduce a better behaviour under
resonance phenomena and it is evidence on the small error of ε2,O and ε3,O.

Figure 5.17: Cross-section for total reactions.

Figure 5.18: Microscopic reaction rate for total reactions.
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Figure 5.19: Cross-section for capture reactions.

Figure 5.20: Microscopic reaction rate for capture reactions.

Figure 5.21: Cross-section for nu-fission reactions.
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Figure 5.22: Microscopic reaction rate for nu-fission reactions.

Figure 5.23: Cross-section for elastic reactions.

Figure 5.24: Microscopic reaction rate for elastic reactions.
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Root Mean Square
973.6 K Σt Σc Σf Σe

ε1,O 0.02537 0.01905 0.03633 0.02533
ε2/3,O 0.01943 0.02784 0.01124 0.01892
ε1,2/3 0.01442 0.04893 0.06284 0.06284
ε2,3 0.0 0.0 0.0 0.0

Table 5.6: Root mean square on macroscopic cross section.

Table 5.6 presents the Root Mean Square (RMS) of the relative errors on macroscopic
cross sections: Σc (capture cross section), Σf (fission cross section), and Σe (extinction
cross section), comparing ECCO calculations across different steps.

It can be seen that the error between step 2 and 3 of ECCO of the cross sections is
zero, since even if the flow is calculated on XMAS the output of the second coincides with
the cross sections used by the third. What is expected is that the same error on reaction
rate is different to zero.

Root Mean Square
973.6k RRt RRc RRf RRe

ε1,O 0.47912 0.47184 0.47501 0.57462
ε2/3,O 0.02509 0.01656 0.03331 0.02561
ε1,2/3 0.49481 0.48159 0.49480 0.49245
ε2,3 0.00012 0.00015 0.00012 0.00793

Table 5.7: Root mean square on macroscopic reaction rates.

The ε2,3 can be seen as a check on ECCO, because from definition the cross sections
at the output of 2-nd step are the same of the cross sections used in the 3-rd, but this
is not true for the flux because in the second step is evaluated on 1968 gruops and then
condenseted on 172 while in the third step is evalueted with the new cross section. In
other words, it is inferred that the flux calculated using the cross sections on 1968 and
after condensation on 172 groups and condenses the cross sections, is different from the
flux calculated using the latter cross sections.

Then there are the microscopic cross-section and reaction rates:
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Figure 5.25: Microscopic cross-section for U-235 capture reaction.

Figure 5.26: Microscopic reaction rate for U-235 capture reaction.

Figure 5.27: Microscopic cross-section for U-235 fission reaction.
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Figure 5.28: Microscopic reaction rate for U-235 fission reaction.

Figure 5.29: Microscopic cross-section for U-238 capture reaction.

Figure 5.30: Microscopic reaction rate for U-238 capture reaction.
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Figure 5.31: Microscopic cross-section for U-238 fission reaction.

Figure 5.32: Microscopic reaction rate for U-238 fission reaction.

Figure 5.33: Microscopic cross-section for Pu-239 capture reaction.
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Figure 5.34: Microscopic reaction rate for Pu-239 capture reaction.

Figure 5.35: Microscopic cross-section for Pu-239 fission reaction.

Figure 5.36: Microscopic reaction rate for Pu-239 fission reaction.
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Figure 5.37: Microscopic cross-section for Pb-208 capture reaction.

Figure 5.38: Microscopic reaction rate for Pb-208 capture reaction.

Root Mean Square
U238 U235 Pu239 Pb208

σc σf σc σf σc σf σc

ε1,O 0.44283 0.445208 0.46675 0.45633 0.47675 0.43088 0.43328
ε2/3,O 0.00957 0.02056 0.00054 0.00545 0.01356 0.00096 0.08940
ε1,2/3 0.45133 0.48346 049215 0.462620 0.48207 0.46364 0.41806
ε2,3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 5.8: Root mean square on microscopic cross section for isotopes and reaction type.

There is the same performance of the macroscopic cross section and reaction rate,
where the effect of high number of groups improve the flux and the reaction rate with
respect the reference, and in addition we notice that the error between untreated cross
sections and those treated with refinement is very high.

Now the self shielding factor is the ratio between the unshielded cross section and the
self-shielded cross section

Fsh = σm

σf
= σE,1
σE,2/3

(5.6)
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Root Mean Square
U238 U235 Pu239 Pb208

rrc rrf rrc rrf rrc rrf rrc

ε1,O 0.26033 0.26470 0.25016 0.24942 0.25792 0.25616 0.25616
ε2/3,O 0.02354 0.01256 0.03268 0.02766 0.01949 0.03413 0.12281
ε1,2/3 0.51788 0.54749 0.50740 0.49764 0.52923 0.50051 0.50055
ε2,3 0.00012 0.00010 0.00014 0.00012 0.00012 0.00015 0.00012

Table 5.9: Root mean square on microscopic reaction rate for isotopes and reaction type.

where σm is the microscopic cross section of medium mesh, and σf is the microscopic
cross section of fine mesh.

Figure 5.39: Evaluation of auto protection Factor.

The graph shows that the treatment of resonances results in a local reduction of
macroscopic cross sections at the resonances, particularly in the epithermal zone, due
to the self-protection of the material. This effect results in a self-protection factor less
than 1 in the resonant regions and correctly reflects the physics of the problem, confirm-
ing the effectiveness of the treatment in reducing the apparent absorption and correctly
calculating the reaction cross sections in the presence of narrow resonances.
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We have just seen how to derive normalisation, and now we can understand its utility,
and start with the possibility to understand the weight of each isotope on the k:

Wi,k =
∑︁

g rri,g,νf

k
(5.7)

where Wi,k the weight of isotope i on kinf .

Pu239

77.16

Pu241

11.51
U235

0.96 U238
10.47

Other
9.82

The plot is a comparison of the most important nuclide in term of difference between
the calculation 239Pu, and also in term of important of the k.

Figure 5.40: Comparison of ∆k of 239Pu

Where ∆rr239P u = rr239P u,g,E − rr239P u,g,O is the difference between ECCO and
OpenMC of the macroscopic reaction rate of group g.

The plots show the delta k in each groups for the nuclide 239Pu and it shows positive
and negative ϵ, that can be associeted to compensation effect.

239Pu S1 −O S2−3 −O

∆rr 295 -88

Where ∆rr = ∑︁
g(∆rr239P u) is the sum of the difference between ECCO and OpenMC

for each groups, and the result is same of previous. Now it is possible focus on the second
second normalization:
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Wi,ρ =
∑︁

g (rri,g,t − rri,g,s)
ρ

(5.8)

where Wi,k the weight of isotope i on ρ.
Pu239

40.55
Pu241

5.57U235
0.61

U238

39.50

Fe56

8.18
Pb208

0.09 Other
9.75

The nuclide 238U was selected because it significantly highlights the transition from
a coarse library to a fine one.

Figure 5.41: Comparison of ∆k of 238U

239Pu S1 −O S2−3 −O

∆rr -247 -88

Where ∆rr238U = rr238U,g,E − rr238U,g,O is the difference between ECCO
and OpenMC of the macroscopic reaction rate of group g.

The plots show the delta k in each groups for the nuclide 238U and it shows positive
and negative ϵ. It possible to notice errors on the 3th step are lower.

At the end of this section is evident that the second step, so going through a step to
which has a finer energy mesh for resonant isotopes is critical.

293.6 - 573.6 - 1473.6 K The behavoir of other temperatures is the same and for this
reason there is the following table, which summarises the general features and underline
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the thermal effect on kinf , which the increasing of the temperatures there is a decreasinf
of kinf ( Doppler effect).

Results k1 k2,3 OpenMc ∆k1,2 ∆k1,O ∆k2−3,O

293.6 K 1.36903 1.36147 1.36432 ± 0.00015 -759 pcm 471 pcm -285 pcm
573.6K 1.36317 1.35584 1.35840 ±0.00017 -833 pcm 477 pcm -256 pcm
973.6K 1.35880 1.35166 1.35374 ± 0.00017 -714 pcm 506 pcm -208 pcm
1473.6K 1.35580 1.34859 1.35060 ± 0.00017 -699 pcm 498 pcm -201 pcm

Table 5.10: Comparison between of kinf at different step.

5.6 Heterogeneous geometries
The following analysis are very similar because the initial idea is a first step to validate
ECCO, and to do its is important have a evaluation on the same parameters. In the
following section we will see:

• evaluation of critical factors on 1 group discretization [7];

• calculation on different values of groups(33 ,172),for both of them there will be
valuation of errors on:

– macroscopic cross section;
– macroscopic reaction rates;
– microscopic cross section;
– microscopic reaction rates.

5.6.1 Heterogeneous Pin

The analysis is on a fuel pin of a inner fuel assembly of the ALFRED’s core The Hy-
pothesys are:

• Infinity lattice, to do a critical analysis;

• Cold configuration, so no dilatation ;

• Consideration of the heterogeneity;

• The library used is the ENDFB-VII.

• the pin-cell is a Hexagonal, with a sudivition of 5 regions 5.5;

• the diameters of pellets and claddings, and composotion of materials are provided
by ALFRED’s benchmark;

The route used is similar to the Reference route (5 steps) but with a difference:

• The Buckling is imposedd equal to zero, to simulate the infinite lattice;
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The buclikng was emposed equal to zero, because OpenMC has not a option already
implemented to simulate the leakages.

kinf & Critical factors The first step of benchmarking of ALFRED required the
following parameters evalueted on 1G discretization:

ECCO OpenMC ∆k
kinf 1.35315 1.35581 ± 0.00015 266 pcm

Critical Factors
ECCO OpenMC Relative Error

η 1.40252 1.40530 0.00105 0.20%
f 0.96238 0.96235 0.00082 3e-03%

ΣtrA 0.30751 0.31191 0.00023 1.41%

Table 5.11: Comparison of critical factors on heterogenous pin.

where η (Neutron reproduction factor) and f (Thermal utilization factor), and Σtr

is transport cross section. For ΣtrA, the relative difference is 1.41%, which is a larger
value than the other factors, attributable to the different approximations in the treatment
of anisotropic scattering and transport in deterministic methods compared with Monte
Carlo.
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Microscopic σx ECCO OPENMC εE/O[%]
Fe56 CAT 0.00818 0.00821 ±0.00002 0.41%
Pb208 CAT 0.00067 0.00067 ±0.00000 0.43%

INE 0.02594 0.02637 ±0.00001 1.65%
Pu239 FIS 1.72510 1.72503 ±0.00112 0.00%

ν × FIS 5.07060 5.07052 ±0.00326 0.00%
CAT 0.44682 0.44630 ±0.00152 0.12%

Pu241 FIS 2.39310 2.39572 ±0.00333 0.11%
ν × FIS 7.09670 7.10457 ±0.00525 0.11%
CAT 0.40559 0.40796 ±0.00432 0.58%

U235 FIS 1.82980 1.83022 ±0.00257 0.02%
ν × FIS 4.49230 4.49346 ±0.00331 0.03%
CAT 0.51046 0.51051 ±0.00188 0.01%

U238 FIS 0.03663 ±0.03677 0.00007 0.36%
ν × FIS 0.09974 0.10014 ±0.00011 0.40%
CAT 0.27093 0.26971 ±0.00024 0.45%
INE 0.96769 0.96880 ±0.00661 0.11%

Table 5.12: Comparison of the data required by the ALFRED benchmark??

The error on the σP b,ine is the highest, and the reason might depend on OpenMC
inelastic tally.

33G analysis In this section will be the cross section and reaction rate on an energy
discretization of 33 groups. Then let’s move on the flux :

Figure 5.42: Flux on 33 groups of heterogeneous pin.
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Figure 5.43: Comparison of the flux on 33 groups of heterogeneous pins.

RMSE/O = 0.0108 (5.9)

this is the RMS on Flux.
Also in this case it is possible notice that the flux of OpenMC is zero at low energy,

and is coherent with the physics of problem.

Figure 5.44: Cross-section for total reactions (XS).

Figure 5.45: Reaction rate for total reactions (RR).
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Figure 5.46: Cross-section for capture reactions (XS).

Figure 5.47: Reaction rate for capture reactions (RR).

Figure 5.48: Cross-section for fission reactions (XS).
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Figure 5.49: Reaction rate for fission reactions (RR).

Figure 5.50: Cross-section for elastic reactions (XS).

Figure 5.51: Reaction rate for elastic reactions (RR).
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Figure 5.52: Cross-section for inelastic reactions (XS).

Figure 5.53: Reaction rate for inelastic reactions (RR).

The table above reports the Root Mean Square (RMS) of the Σx (macroscopic cross
sections) and RRx (reaction rates) for each reaction type across the 33-group energy
structure, allowing a quantitative comparison between ECCO and OpenMC results.

It can be observed that:

RMSE/O

Σx RRx

TOTAL 0.00447 0.00540
CAPTURE 0.00976 0.00189
FISSION 0.00431 0.00533
ELASTIC 0.00437 0.00534

INELASTIC - 0.00534

Table 5.13: Root Mean Square of Sigmax RRx of each reaction rate on 33 G

It can be observed that the overall RMS errors for macroscopic cross sections and re-
action rates are approximately 0.4%−0.5%, indicating a good level of agreement between
ECCO and OpenMC for total tallies.

No data is reported for the inelastic reaction channels in this analysis, as it can be
seen from the graph that there is a significant discrepancy between the two curves. Issues
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were encountered with the OpenMC tally concerning the inelastic reaction, preventing a
reliable comparison B.

Figure 5.54: Cross-section for Fe-56 capture (XS micro).

Figure 5.55: Reaction rate for Fe-56 capture (RR micro).

Figure 5.56: Cross-section for Pb-208 capture (XS micro).
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Figure 5.57: Reaction rate for Pb-208 capture (RR micro).

Figure 5.58: Cross-section for Pu-239 capture (XS micro).

Figure 5.59: Reaction rate for Pu-239 capture (RR micro).
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Figure 5.60: Cross-section for Pu-239 fission (XS micro).

Figure 5.61: Reaction rate for Pu-239 fission (RR micro).

Figure 5.62: Cross-section for Pu-241 capture (XS micro).
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Figure 5.63: Reaction rate for Pu-241 capture (RR micro).

Figure 5.64: Cross-section for Pu-241 fission (XS micro).

Figure 5.65: Reaction rate for Pu-241 fission (RR micro).
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Figure 5.66: Cross-section for U-235 capture (XS micro).

Figure 5.67: Reaction rate for U-235 capture (RR micro).

Figure 5.68: Cross-section for U-235 fission (XS micro).
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Figure 5.69: Reaction rate for U-235 fission (RR micro).

Figure 5.70: Cross-section for U-238 capture (XS micro).

Figure 5.71: Reaction rate for U-238 capture (RR micro).
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Figure 5.72: Cross-section for U-238 fission (XS micro).

Figure 5.73: Reaction rate for U-238 fission (RR micro).

εE/O

σx rrx

Fe56 CAT 0.01590 0.02821
Pb208 CAT 0.05883 0.03390
Pu239 FIS 0.00169 0.01640

CAT 0.04656 0.02151
Pu241 FIS 0.02479 0.02366

CAT 0.00020 0.02999
U235 FIS 0.00813 0.02576

CAT 0.01652 0.02418
U238 FIS 0.00713 0.02289

CAT 0.02652 0.01330

Table 5.14: Root Mean Square of microscopic cross section and reaction rate far each
isotopes.
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The RMS values for microscopic cross sections and reaction rates are generally around
1-6%.

The highest error is the microscopic cross section of capture of Pb208.
The derivation of the normalisation procedure has been presented, allowing for a clear
understanding of its utility. This provides the basis for analysing the contribution of each
isotope to the effective multiplication factor k and the reactivity.

239Pu

68.06

241Pu

12.28

235U

0.96
238U

9.31 Other
11.37

Figure 5.74: Weight of fissionable isotopes with respect the kinf

The plot is a comparison of the most important nuclide in term of difference between
the calculation 239Pu, and also in term of important of the k.

Figure 5.75: Comparison of ∆k of 239Pu

Where ∆rr239P u = rr239P u,g,E − rr239P u,g,O is the difference between ECCO
and OpenMC of the macroscopic reaction rate of group g.

The 5.75 show the delta k in each groups for the nuclide 239Pu and it shows positive
and negative ϵ, that can be associeted to compensation effect.

239Pu SE/O

∆rr -112

Where ∆rr = ∑︁
g(∆rr239P u) is the sum of the difference between ECCO and OpenMC

for each groups.
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239Pu

40.45
241Pu

5.10
235U

0.81

238U

38.81

56Fe

7.76
208Pb

0.09 Other
6.97

Figure 5.76: Weight of isotopes with respect the ρ

The nuclide 238U was selected because it significantly highlights the transition from
a coarse library to a fine one.

Figure 5.77: Comparison of ∆ρ of 238U

Where ∆rr238U = rr238U,g,E − rr238U,g,O is the difference between ECCO
and OpenMC of the macroscopic reaction rate of group g.

The plots show the delta k in each groups for the nuclide 238U and it shows positive
and negative ϵ. It possible to notice errors on the 3th step are lower.

238U SE/O

∆rr 106

Where ∆rr = ∑︁
g(∆rr238U ) is the sum of the difference between ECCO and OpenMC

for each groups.

172G analysis Having completed the initial comparison and validation on the hetero-
geneous pin using a 33-group discretization, the analysis is now extended using a finer
energy discretization with 172 energy groups. This will allow a more detailed resolu-
tion of the resonance structures, especially in the epithermal and fast regions, improving
the consistency of the flux and reaction rate predictions between deterministic and Monte
Carlo calculations.
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Figure 5.78: Flux on 172 groups of heterogeneous pin.

Figure 5.79: Comparison of the flux on 172 groups of heterogeneous pins.

RMSE/O = 0.02501 (5.10)

this is the RMS on Flux. And if we compare it with the same on 33G we see that the
error on 172G is more than the double.

As previously noted, the OpenMC flux approaches zero at low energies, consistent with
the fast-spectrum nature of the ALFRED reactor In particular, due to the fast spectrum
nature of ALFRED and the absence of a moderator, the thermalization of neutrons is
negligible, resulting in a very low flux level in the thermal energy range. This behavior
confirms the physical consistency of the OpenMC simulation and provides a valuable
reference for evaluating the deterministic ECCO flux treatment in the low-energy region.
It is possible to see that the yellow dashed curve(rsd) drops rapidly toward 100eV, as
expected, and the values that make statistical sense will be those between about 100 eV
and 1circa 2 MeV.
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Figure 5.80: Cross-section for total reactions (XS).

Figure 5.81: Reaction rate for total reactions (RR).

Figure 5.82: Cross-section for capture reactions (XS).
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Figure 5.83: Reaction rate for capture reactions (RR).

Figure 5.84: Cross-section for fission reactions (XS).

Figure 5.85: Reaction rate for fission reactions (RR).
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Figure 5.86: Cross-section for elastic reactions (XS).

Figure 5.87: Reaction rate for elastic reactions (RR).

Figure 5.88: Cross-section for inelastic reactions (XS).
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Figure 5.89: Reaction rate for inelastic reactions (RR).

To assess the agreement between ECCO and OpenMC under the refined 172-group
discretization, the following table reports the Root Mean Square (RMS) of the relative
differences on the macroscopic cross sections Σx and the corresponding reaction rates
RRx for each reaction type.

RMSE/O

Σx RRx

TOTAL 0.01910 0.00588
CAPTURE 0.02232 0.02557
FISSION 0.01339 0.01150
ELASTIC 0.01950 0.00547

INELASTIC - 0.00547

Table 5.15: Root Mean Square of Sigmax RRx of each reaction rate on 172 G

Also for these macroscopic cross section and reaction rate, the root mean square is
highest on 172G then 33G.

The RMS values on macroscopic cross sections (Σx) are in the range of 1% to2.5%,
with the highest discrepancy observed in the capture reaction rate (2.2%).

As 5.88 shows, there is an ’obvious discrepancy between the cross sections that results
in an RMS much higher than 1.As much as the error on RRi agrees with the others it is
less reliable.

Following the macroscopic analysis, the comparison between ECCO and OpenMC is
now extended to the microscopic cross sections and the corresponding microscopic
reaction rates for the key isotopes within the heterogeneous pin using the 172-group
discretization.
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Figure 5.90: Cross-section for Fe56 capture (XS micro).

Figure 5.91: Reaction Rate for Fe56 capture (rr micro).

Figure 5.92: Cross-section for Pb208 capture (XS micro).
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Figure 5.93: Reaction Rate for Pb208 capture (rr micro).

Figure 5.94: Cross-section for Pu239 capture (XS micro).

Figure 5.95: Reaction Rate for Pu239 capture (XS micro).
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Figure 5.96: Cross-section for Pu239 fission (XS micro).

Figure 5.97: Reaction Rate for Pu239 fission (XS micro).

Figure 5.98: Cross-section for Pu241 capture (XS micro).
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Figure 5.99: Reaction Rate for Pu241 capture (XS micro).

Figure 5.100: Cross-section for Pu241 fission (XS micro).

Figure 5.101: Reaction Rate for Pu241 fission (XS micro).
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Figure 5.102: Cross-section for U235 capture (XS micro).

Figure 5.103: Reaction Rate for U235 capture (XS micro).

Figure 5.104: Cross-section for U235 fission (XS micro).
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Figure 5.105: Reaction Rate for U235 fission (XS micro).

Figure 5.106: Cross-section for U238 capture (XS micro).

Figure 5.107: Reaction Rate for U238 capture (XS micro).
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Figure 5.108: Cross-section for U238 fission (XS micro).

Figure 5.109: Reaction Rate for U238 fission (XS micro).

The table below reports the relative error εE/O between ECCO and OpenMC for each
isotope and reaction type.
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εE/O

σx rrx

Fe56 CAT 0.04248 0.07264
Pb208 CAT 0.09051 0.12082
Pu239 FIS 0.01580 0.0142

CAT 0.00272 0.02741
Pu241 FIS 0.00551 0.01422

CAT 0.04613 0.07671
U235 FIS 0.00262 0.02755

CAT 0.00624 0.02382
U238 FIS 0.01378 0.01629

CAT 0.02110 0.00892

Table 5.16: Root Mean Square of microscopic cross section and reaction rate far each
isotopes.

The relative errors on the microscopic cross sections are consistently in the range
of 0.5% to 9% across all isotopes and reaction types, while the relative errors on the
microscopic reaction rates are in the range of 0.1% to 12%, and also in this case the
higher error is on the Pb208.

Figure 5.110 shows the distribution of the main nuclides in the system, highlighting
that 239Pu is the most important contributor both in terms of k.

239Pu

69.14

241Pu

10.31

235U

0.86

238U

9.41 Other
10.28

Figure 5.110: Nuclide composition relevant to reactivity.

The plot in Figure 5.111 presents the group-wise ∆k for 239Pu, where:

∆rr239Pu,g = rr239Pu,g,E − rr239Pu,g,O

represents the difference in the macroscopic reaction rates between ECCO (E) and OpenMC
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(O) for group g.

Figure 5.111: Group-wise ∆k comparison for 239Pu.

The figure reveals both positive and negative contributions across energy groups,
indicative of compensation effects where discrepancies in some groups are balanced
by opposite differences in others, maintaining consistency in the integrated reactivity.

The integrated differences are summarized in Table 5.17, showing the cumulative sum:

∆rr =
∑︂

g

∆rr239Pu,g,

which quantifies the total difference in macroscopic reaction rates for 239Pu across the
groups.

239Pu SE/O

∆rr -117 pcm

Table 5.17: Integrated ∆rr for 239Pu across refinement steps.

A similar analysis is performed for 238U, shown in Figure 5.112 making it an excellent
case to highlight the effects of each isotope with respect the reactivity.

239Pu

40.04
241Pu

5.49
235U

0.61

238U

38.94

56Fe

7.85
208Pb

0.09 Other
6.98

Figure 5.112: Nuclide composition highlighting the relevance of 238U.
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The corresponding group-wise ∆ρ for 238U is presented in Figure 5.113:

Figure 5.113: Group-wise ∆ρ comparison for 238U.

Here,
∆rr238U,g = rr238U,g,E − rr238U,g,O

represents the difference in the macroscopic reaction rates for each group.
The plots show positive and negative contributions across the groups, indicative of

compensation effects. This confirms the importance of fine-group treatment for isotopes
like 238U, where resonance capture and scattering significantly influence reactivity and
flux distribution in fast reactor systems.

238U E - O
∆rr 117

Table 5.18: Integrated ∆rr for 238U across refinement steps.
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5.6.2 Heterogeneous Assembly

The analysis is on a fuel pin of a inner fuel assembly of the ALFRED’s core The Hy-
pothesys are:

• Infinity lattice, to do a critical analysis;

• Cold configuration, so no dilatation ;

• Consideration of the heterogeneity;

• The library used is the ENDFB-VII.

• the assembly-cell is a Hexagonal, with a subdivision in 7 rings 5.6;

• all pins are fuel pin and except in the center because there is a void-pin ;

• the diameters of pellets and claddings, and composition of materials are provided
by ALFRED’ s benchmark;

Discretization of Assembly If we see the structure of the assembly, it is possible
identify 3 different inner fuel pin, because they are identical under geometrical parameter
and materials, but they have different "neighbors":

• from second to fifth ring, each pin is surrounded by other 6 pin;

• each pin of first ring has one neighbor that is a void pin;

• on the sixth ring they are surrounded only by the inner side, while outwardly they
see the cladding of the assembly.

This is the reason of this step before of whole analysis of assembly. I made two model
in ECCO of assembly:

1. the first has 2 types of pin, the void and mox( i will refer as 2R);

2. the second has 7 types of pin (7R), I had to create 6 different mox pins computation-
ally but not compositionally, because otherwise the same pin cannot be associated
with different rings.;

Here are the codes of the two models compared:
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! 2 region code
CELL ’ASS_INN’

COMPOSITION_ORDER ’MOX’ ’CLAD’ ’COOL’ ’COOL_EXT’ ’VOID’ ’COOL2’
GEOMETRY DATA
HEX (N_HEX_REG) !3 regions
(L_int_wrap) ! PRIMA REGIONE

HEXLAT ! NELLA PRIMA REGIONE ABBIAMO IL LATTICE
!(N_conc_layers) (pitch_lattice) (N_HEX_REG_LAT)
7 1.36 2

CYLINDRICAL 2
(r_clad_void_in) REGION 1 ’VOID’ COMP 5 (T_ref)
(r_clad_void_ot) REGION 2 ’CLAD’ COMP 2 (T_ref)
IN REGION 3 ’COOL’ COMP 3 (T_ref)

CYLINDRICAL 2
(r_in_clad) REGION 4 ’MOX’ COMP 1 (T_ref)
(r_ot_clad) REGION 5 ’CLAD’ COMP 2 (T_ref)
IN REGION 6 ’COOL’ COMP 3 (T_ref)

1 2 2 2 2 2 2
IN REGION 7 ’COOL2’ COMP 6 (T_ref)

(L_ext_wrap) REGION 8 ’CLAD’ COMP 2 (T_ref) ! SECONDA REG
(L_ext_hex) REGION 9 ’COOL_EXT’ COMP 4 (T_ref) ! TERZA REG
REFLECTION

END OF GEOMETRY DATA
;
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! 7 region code
CELL ’ASS_INN’

COMPOSITION_ORDER ’MOX’ ’CLAD’ ’COOL’ ’COOL_EXT’ ’VOID’ ’COOL2’
GEOMETRY DATA
HEX (N_HEX_REG) !3 regions
(L_int_wrap) ! PRIMA REGIONE

HEXLAT ! NELLA PRIMA REGIONE ABBIAMO IL LATTICE
!(N_conc_layers) (pitch_lattice) (N_HEX_REG_LAT)
7 1.36 7

CYLINDRICAL 2
(r_clad_void_in) REGION 1 ’VOID’ COMP 5 (T_ref)
(r_clad_void_ot) REGION 2 ’CLAD’ COMP 2 (T_ref)
IN REGION 3 ’COOL’ COMP 3 (T_ref)

CYLINDRICAL 2
(r_in_clad) REGION 4 ’MOX’ COMP 1 (T_ref)
(r_ot_clad) REGION 5 ’CLAD’ COMP 2 (T_ref)
IN REGION 6 ’COOL’ COMP 3 (T_ref)

CYLINDRICAL 2
(r_in_clad) REGION 7 ’MOX’ COMP 1 (T_ref)
(r_ot_clad) REGION 8 ’CLAD’ COMP 2 (T_ref)
IN REGION 9 ’COOL’ COMP 3 (T_ref)

CYLINDRICAL 2
(r_in_clad) REGION 10 ’MOX’ COMP 1 (T_ref)
(r_ot_clad) REGION 11 ’CLAD’ COMP 2 (T_ref)
IN REGION 12 ’COOL’ COMP 3 (T_ref)

CYLINDRICAL 2
(r_in_clad) REGION 13 ’MOX’ COMP 1 (T_ref)
(r_ot_clad) REGION 14 ’CLAD’ COMP 2 (T_ref)
IN REGION 15 ’COOL’ COMP 3 (T_ref)

CYLINDRICAL 2
(r_in_clad) REGION 16 ’MOX’ COMP 1 (T_ref)
(r_ot_clad) REGION 17 ’CLAD’ COMP 2 (T_ref)
IN REGION 18 ’COOL’ COMP 3 (T_ref)

CYLINDRICAL 2
(r_in_clad) REGION 19 ’MOX’ COMP 1 (T_ref)
(r_ot_clad) REGION 20 ’CLAD’ COMP 2 (T_ref)
IN REGION 21 ’COOL’ COMP 3 (T_ref)

1 2 3 4 5 6 7
IN REGION 22 ’COOL2’ COMP 6 (T_ref)

(L_ext_wrap) REGION 23 ’CLAD’ COMP 2 (T_ref) ! SECONDA REG
(L_ext_hex) REGION 24 ’COOL_EXT’ COMP 4 (T_ref) ! TERZA REG
REFLECTION

END OF GEOMETRY DATA ;
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2R 7R OpenMC ∆k2R ∆k7R

kinf 1.28462 1.28584 1.28690 ± 0,00013 228 106

Table 5.19: Comparison on kinf with respect the discretization.

Σx

2R 7R OpenMC
TOTAL 0.347225 0.347179 0.346171

CAPTURE 0.00272546 0.00272441 0.00271668
FISSION 0.00212837 0.00213089 0.00212716
ELASTIC 0.333318 0.353418 0.332281

Table 5.20: Comparison on Σx with respect the discretization.

The most impactful figure is definitely the kinf in that thanks to discretization it
could be shortened by about 100 pcm compared to that of OpenMC. In addition, the
macroscopic cross sections of the 7R model are also closer. We can infer that as expected
creating a better discretization without losing in computation time, both are performed
in a couple of minutes, reflects a better result and that is why the following analyses were
performed only with 7R.

kinf & Critical factors As for the pin, let’s start again with the first step of bench-
marking of ALFRED, which required the following parameters evaluated on 1G discretiza-
tion:

ECCO OpenMC ∆k
kinf 1.28584 1.28690 ± 0,00013 106

Critical Factors
P1 Con OpenMC ε

\η 1,35873 1,31140 ± 0,00024 3,61%
f 0,94112 0,97900 ± 0,00020 3,87%

Σtr 0,30865 0,31892 ± 0,00022 3,22%

Table 5.21: Critical factor analysis on heterogeneous assembly.

The comparison shows a very small discrepancy of 106 pcm on kinf . The relative
errors on the critical factors (η, f , Σtr) ,A, remain within 3-4%.

To deepen the analysis, the microscopic cross sections and reaction rates for key
isotopes have also been compared, as reported below.
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Microscopic σx ECCO OPENMC εE/O

Fe56 CAT 8.2458E-03 8.2908E-03 ± 5E-06 0.544
Pb208 CAT 6.6676E-04 6.6465E-04 ± 3E-07 0.318

INE 2.2495E-02 2.2865E-02 ±4E-07 1.618
Pu239 FIS 1.7631 1.7609 ±4E-04 0.148

ν × FIS 5.1767 5.1690 ±3E-03 0.149
CAT 4.9439E-01 4.93136E-01 ±5E-04 0.254

Pu241 FIS 2.4882 2.4874 ±8E-07 0.044
ν × FIS 7.3743 7.3709 ±5E-03 0.046
CAT 4.3411E-01 4.36464E-01 ± 8E-04 0.539

U235 FIS 1.9060 1.9046 ±6E-07 0.099
ν × FIS 4.6763 4.6715 ±3E-03 0.103
CAT 5.4551E-01 5.4480E-01 ± 7E-04 0.130

U238 FIS 3.3850E-02 3.3617E-02 ±1E-05 0.692
ν × FIS 9.2103E-02 9.1468E-02 ±1E-04 0.770
CAT 2.8537E-01 2.8422E-01 ± 8E-05 0.405
INE 9.4350E-01 9.4862E-01 ±7E-03 0.540

Table 5.22: Comparison of the data required by the ALFRED benchmark??

The results show a generally good agreement between ECCO and OpenMC across the
isotopes and reactions analyzed, with relative errors typically below 1%. However, it is
noted that the largest discrepancy occurs for the inelastic cross section of Pb208,
where the relative error reaches 1.62%. This behavior is consistent with the sensitivity
of lead’s inelastic scattering treatment under a 1G discretization and indicates an area
where further refinement or detailed energy treatment may be beneficial in future studies.

33G analysis In this section, the flux spectra obtained using the 33-group discretiza-
tion are analyzed, providing a visual and quantitative comparison between ECCO and
OpenMC for the heterogeneous pin-cell configuration.

Figure 5.114: Flux on 172 groups of heterogeneous pin.
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Figure 5.115: Comparison of the flux on 172 groups of heterogeneous pins.

RMSE/O = 0.0015 (5.11)

which corresponds to a relative difference of approximately 0.1% on average across all
groups.

It can also be observed that, as expected, the OpenMC flux approaches zero in
the low-energy groups. This behavior is physically consistent with the characteristics
of the system under investigation, as ALFRED operates as a fast-spectrum reactor with
no moderator, resulting in negligible thermalization of neutrons and a suppressed flux at
thermal energies.

Figure 5.116: Cross-section for total reactions (XS).
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Figure 5.117: Reaction rate for total reactions (RR).

Figure 5.118: Cross-section for capture reactions (XS).

Figure 5.119: Reaction rate for capture reactions (RR).
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Figure 5.120: Cross-section for fission reactions (XS).

Figure 5.121: Reaction rate for fission reactions (RR).

Figure 5.122: Cross-section for elastic reactions (XS).
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Figure 5.123: Reaction rate for elastic reactions (RR).

Figure 5.124: Cross-section for inelastic reactions (XS).

Figure 5.125: Reaction rate for inelastic reactions (RR).

To quantitatively assess the agreement between ECCO and OpenMC under the 33-
group discretization, the Root Mean Square (RMS) of the relative differences has been
computed for the macroscopic cross sections Σx and the corresponding reaction rates RRx

across each reaction type. The results are summarized in Table ??.
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RMSE/O

Σx RRx

TOTAL 0.01325 0.01470
CAPTURE 0.01885 0.02015
FISSION 0.02682 0.02834
ELASTIC 0.01168 0.01346

INELASTIC - 0.01314

Table 5.23: Root Mean Square of Sigmax RRx of each reaction rate on 33 G

It can be observed that the overall RMS errors for macroscopic cross sections and
reaction rates are approximately 1.3% − 2.6% and the RMS values on the macroscopic
cross sections (Σx) are generally low. No data is reported for the inelastic reaction
channels in this analysis, as it can be seen from the graph that there is a significant
discrepancy between the two curves. Issues were encountered with the OpenMC tally
concerning the inelastic reaction, preventing a reliable comparison B.

Figure 5.126: Cross-section for Fe56 capture (XS micro).

Figure 5.127: Reaction rate for Fe56 capture (RR micro).
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Figure 5.128: Cross-section for Pb208 capture (XS micro).

Figure 5.129: Reaction rate for Pb208 capture (RR micro).

Figure 5.130: Cross-section for Pu239 capture (XS micro).
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Figure 5.131: Reaction rate for Pu239 capture (RR micro).

Figure 5.132: Cross-section for Pu239 fission (XS micro).

Figure 5.133: Reaction rate for Pu239 fission (RR micro).
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Figure 5.134: Cross-section for Pu241 capture (XS micro).

Figure 5.135: Reaction rate for Pu241 capture (RR micro).

Figure 5.136: Cross-section for Pu241 fission (XS micro).
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Figure 5.137: Reaction rate for Pu241 fission (RR micro).

Figure 5.138: Cross-section for U235 capture (XS micro).

Figure 5.139: Reaction rate for U235 capture (RR micro).
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Figure 5.140: Cross-section for U235 fission (XS micro).

Figure 5.141: Reaction rate for U235 fission (RR micro).

Figure 5.142: Cross-section for U238 capture (XS micro).
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Figure 5.143: Reaction rate for U238 capture (RR micro).

Figure 5.144: Cross-section for U238 fission (XS micro).

Figure 5.145: Reaction rate for U238 fission (RR micro).

==========
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εE/O

σx rrx

Fe56 CAT 0.03765 0.03667
Pb208 CAT 0.06845 0.06695
Pu239 FIS 0.01400 0.01543

CAT 0.01241 0.01386
Pu241 FIS 0.01830 0.01966

CAT 0.01271 0.01135
U235 FIS 0.01534 0.01669

CAT 0.01825 0.01962
U238 FIS 0.04315 0.04446

CAT 0.02444 0.02573

Table 5.24: Root Mean Square of microscopic cross section and reaction rate far each
isotopes.

The RMS values for macroscopic cross sections are generally around 1-7%, are very
close between cross sections and reaction rates.

The higher error is again the microscopic cross section of capture of Pb208.
We have previously derived the normalization approach, which now allows us to quan-

tify the weight of each isotope with respect to the infinite multiplication factor kinf

and reactivity.

239Pu

70.0

241Pu

10.6

235U

0.9

238U

8.6 Other
10.1

Figure 5.146: Weight of fissionable isotopes with respect to kinf .

The pie chart highlights that 239Pu is the most influential isotope on kinf , both due to
its high contribution to fission and its relevance in fast-spectrum reactors like ALFRED.

To analyze the detailed behavior, the group-wise differences in macroscopic fission
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reaction rates between ECCO and OpenMC for 239Pu are reported in Figure 5.147. The
difference is defined as:

∆rr239Pu,g = rr239Pu,g,E − rr239Pu,g,O, (5.12)

where g is the energy group index.

Figure 5.147: Group-wise ∆k comparison for 239Pu.

The plot shows both positive and negative differences, indicating compensation ef-
fects across energy groups, where discrepancies in certain ranges are balanced by opposite
deviations in others, preserving the overall consistency in reactivity calculations.

The integrated difference across all groups is summarized below:

239Pu SE/O

∆rr -91

Table 5.25: Integrated difference ∆rr between ECCO and OpenMC for 239Pu.

Here, ∆rr = ∑︁
g ∆rr239Pu,g quantifies the total difference in macroscopic fission reac-

tion rates for 239Pu between the two codes.

Moving forward, we now compute the isotope weight with respect to the reactivity, ρ
The chart demonstrates that 238U becomes significantly more important when con-

sidering ρ, due to its role in resonance absorption and scattering, making it a key isotope
for assessing the impact of fine-group structures compared to coarse-group libraries.

To highlight this, Figure 5.149 presents the group-wise ∆k for 238U:
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5.6 – Heterogeneous geometries

239Pu

39.2

241Pu

5.4
235U

0.6

238U

38.3

56Fe

1.6

208Pb

0.1 Other

14.9

Figure 5.148: Weight of isotopes with respect to ρ.

Figure 5.149: Group-wise ∆k comparison for 238U.

where the difference is defined as:

∆rr238U,g = rr238U,g,E − rr238U,g,O. (5.13)

The figure shows both positive and negative contributions across energy groups, indi-
cating compensation effects similar to the 239Pu case. It is also observed that discrepancies
are reduced in subsequent refinement steps, confirming that using fine-group structures
significantly improves the consistency of cross-section treatment for key isotopes like 238U,
which is critical in fast-spectrum reactor analyses.

238U SE/O [pcm]
∆rr 90

Table 5.26: Integrated difference ∆rr between ECCO and OpenMC for 238U.

172G analysis In the end there is this analsys of assembly on 172G discretization.

107



Results

Figure 5.150: Flux on 172 groups of heterogeneous pin.

Figure 5.151: Comparison of the flux on 172 groups of heterogeneous pins.

RMSE/O = 0.04454 (5.14)

Here find the highest error on the flux, as expeted more complexivity, more approxi-
mation could be translated into a higher error. —————————————-

Figure 5.152: Cross-section for total reactions (XS).
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5.6 – Heterogeneous geometries

Figure 5.153: Reaction rate for total reactions (RR).

Figure 5.154: Cross-section for capture reactions (XS).

Figure 5.155: Reaction rate for capture reactions (RR).
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Results

Figure 5.156: Cross-section for fission reactions (XS).

Figure 5.157: Reaction rate for fission reactions (RR).

Figure 5.158: Cross-section for elastic reactions (XS).
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5.6 – Heterogeneous geometries

Figure 5.159: Reaction rate for elastic reactions (RR).

Figure 5.160: Cross-section for inelastic reactions (XS).

Figure 5.161: Reaction rate for inelastic reactions (RR).

Evaluation of root mean square to summarise the previus plots:
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RMSE/O

Σx RRx

TOTAL 0.01943 0.02510
CAPTURE 0.02784 0.01656
FISSION 0.01124 0.03333
ELASTIC 0.01892 0.0262

INELASTIC - -

Table 5.27: Root Mean Square of Sigmax RRx of each reaction rate on 172 G

The error on the macroscopic parameters are between the 1 and 3 %, is sligth higer
but in general these quantities has not a difference of order of magnitude for the RMS.

Let’s move on the last microscopic analysis of cross section and reaction rates.

Figure 5.162: Cross-section for Fe56 capture (XS micro).

Figure 5.163: Reaction rate for Fe56 capture (RR micro).
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5.6 – Heterogeneous geometries

Figure 5.164: Cross-section for Pb208 capture (XS micro).

Figure 5.165: Reaction rate for Pb208 capture (RR micro).

Figure 5.166: Cross-section for Pu239 capture (XS micro).

113



Results

Figure 5.167: Reaction rate for Pu239 capture (RR micro).

Figure 5.168: Cross-section for Pu239 fission (XS micro).

Figure 5.169: Reaction rate for Pu239 fission (RR micro).
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5.6 – Heterogeneous geometries

Figure 5.170: Cross-section for Pu241 capture (XS micro).

Figure 5.171: Reaction rate for Pu241 capture (RR micro).

Figure 5.172: Cross-section for Pu241 fission (XS micro).
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Figure 5.173: Reaction rate for Pu241 fission (RR micro).

Figure 5.174: Cross-section for U235 capture (XS micro).

Figure 5.175: Reaction rate for U235 capture (RR micro).
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5.6 – Heterogeneous geometries

Figure 5.176: Cross-section for U235 fission (XS micro).

Figure 5.177: Reaction rate for U235 fission (RR micro).

Figure 5.178: Cross-section for U238 capture (XS micro).
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Results

Figure 5.179: Reaction rate for U238 capture (RR micro).

Figure 5.180: Cross-section for U238 fission (XS micro).

Figure 5.181: Reaction rate for U238 fission (RR micro).
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5.6 – Heterogeneous geometries

εE/O

σx rrx

Fe56 CAT 0.04071 0.07716
Pb208 CAT 0.0901 0.12281
Pu239 FIS 0.01420 0.01949

CAT 0.00483 0.03413
Pu241 FIS 0.00335 0.03073

CAT 0.04966 0.08325
U235 FIS 0.00155 0.02835

CAT 0.00251 0.03267
U238 FIS 0.01389 0.02353

CAT 0.02360 0.01253

Table 5.28: Root Mean Square of microscopic cross section and reaction rate far each
isotopes.

Generally has the same behaviour of heterogeneous pin on 172G, indeed the highest
error is on Pb208 on capture reaction.

We have just seen how to derive normalisation, and now we can understand its utility,
and start with the possibility to understand the weight of each isotope on the k and
reactivity:

239Pu

60.8

241Pu

9.1

235U

0.8

238U

8.3
Other

21.2

The plot is a comparison of the most important nuclide in term of difference between
the calculation 239Pu, and also in term of important of the k.
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Figure 5.182: Comparison of ∆k of 239Pu

Where ∆rr239P u = rr239P u,g,E − rr239P u,g,O is the difference between ECCO
and OpenMC of the macroscopic reaction rate of group g.

The plots show the delta k in each groups for the nuclide 239Pu and it shows positive
and negative ϵ, that can be associeted to compensation effect.

239Pu SE/O

∆rr -117

Where ∆rr = ∑︁
g(∆rr239P u) is the sum of the difference between ECCO and OpenMC

for each groups.

239Pu

33.1

241Pu

4.4

235U

0.5

238U

32.3

56Fe

2.6

208Pb

0.1
Other

27.2

The nuclide 238U was selected because it significantly highlights the transition from
a coarse library to a fine one.
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5.6 – Heterogeneous geometries

Figure 5.183: Comparison of ∆k of 238U

Where ∆rr238U = rr238U,g,E − rr238U,g,O is the difference between ECCO
and OpenMC of the macroscopic reaction rate of group g.

The plots show the delta k in each groups for the nuclide 238U and it shows positive
and negative ϵ. It possible to notice errors on the 3th step are lower.

238U SE/O [pcm]
∆rr 118

Table 5.29: Integrated difference ∆rr between ECCO and OpenMC for 238U.
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Chapter 6

Conclusion

In this work, the capability of the ECCO code to compute the condensed and homog-
enized cross sections of an LFR (ALFRED) reactor was verified through bench-
marking against OpenMC Monte Carlo calculations. The analyses were conducted
progressively on three configurations: homogeneous pin, heterogeneous pin, and
heterogeneous assembly.

For the homogeneous pin:

• The setup analysis confirmed that the methods employed provide consistent out-
puts, justifying the use of the p1 consistent option in ECCO.

• The adoption of the 1968 library for the treatment of resonant isotopes proved
beneficial, resulting in a reduction of the error on kinf of several hundreds of pcm.

• The normalization analyses highlighted that the isotopes contributing the most to
k and to the reactivity are 239Pu and 238U.

In the heterogeneous cases:

• The previous results were confirmed also in this scenario, showing that the average
errors in the macroscopic cross sections calculated by ECCO compared to those
from OpenMC are in the order of 1–3% (approximately 103 pcm).

• Additional analyses on microscopic cross sections and reaction rates high-
lighted that for certain isotopes and reactions, discrepancies can reach up to 10%.

• The representation of the assembly from 2 to 7 regions demonstrated a closer match
to the Monte Carlo reference values.

The following table summarizes the results across the three configurations:
It can be observed that the heterogeneous assembly configuration yields the k

value closest to the reference; however, this agreement might be due to compensation
effects, as indicated by the normalization analyses.

As reiterated throughout this thesis, this work represents the first step of V&V
campaign performed at Newcleo concerning the ECCO code for its future use
in the design of LFR reactors. The aim of this V&V activity is to generate homogenized
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Table 6.1: Comparison of kinf between ECCO and OpenMC with deviations

kinf ECCO OpenMC ∆k
Pin-Homo 1.35267 1.35480 ± 0.00011 213 pcm
Pin-Hete 1.35315 1.35581 ± 0.00015 266 pcm
Asse-Hete 1.28584 1.28690 ± 0.00013 106 pcm

and condensed pin and assembly cross sections to accelerate partial or full-core reactor
calculations during the design phase.

Future Work

The results obtained open different paths for future development:

• Extending the analysis to inactive regions of the reactor(e.g. control rods,
reflector ,etc.), to assess ECCO’s predictive capability under non-multiplicative con-
ditions.

• Assessing the acceptability of the discrepancies through perturbative
studies, to determine whether the differences with OpenMC are acceptable for
design purposes.

• Further investigating the homogeneous pin phase, to identify the causes
of the residual discrepancies between ECCO and OpenMC, with the goal of pin-
pointing sources of error and potentially improving the cross section treatment,
particularly for the microscopic cross sections and reaction rates where dis-
crepancies up to 10% were observed.

This work, therefore, provides a solid foundation for the deployment of ECCO in new-
cleo’s workflows, enabling fast and reliable preparation of cross sections for LFR design
calculations, while highlighting areas for improvement to further refine the accuracy of
macroscopic and microscopic nuclear data predictions.
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Appendix A

Transport cross section

The formula of the transport cross section is the following:

Σtr = Σt − µΣs,0 = Σt − Σs,1 (A.1)

where Σt is the total cross section, µ average angle of scattering, Σs,0 is the moment of
scattering of order 0, Σs,1 is the moment of scattering of order 1.

In Ecco there are a lots of option and in base of them, the output change an example
is :

• PN_MOMENT 0 → Σg∗
tot = Σg

tr;

• PN_MOMENT n, with n>0 → Σg∗
tot = Σg

t1;

• add at the end P0_TOTAL → Σg∗
tot = Σg

tot.

where Σg∗
tot is the value in the output file of ECCO. Oblusly the first idea to have as

output the Transport cross section is the PN_MOMENT 0, but it is not the correct one
if we are in 1G analisys because: with extended transport approximation∑︂

g′

Σsl,g′→gϕg′ ≈
∑︂
g′

Σsl,g→g′ϕg′ (25)

thus

Σtr,g = Σt1,g −
∑︂
g′

Σsl,g→g′ (26)

but the up-scattering in 1g is 0, so:

Σtr,g = Σt1,g (26)
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Appendix B

Cross- section: Inelastic

As mentioned in the results understanding, there is a discrepancy between the inelasticity
of ECCO and OpenMC. Plots of the work on microscopic sections of some isotopes
rpoducted from the simulations and those taken from JANIS will be shown below.

Fe56:

Figure B.1: microscopic Inelastic cross section microscopi of Fe56 of ECCO and OpenMC

Figure B.2: microscopic n,n’ cross section microscopic of Fe56 by JANIS [22]

127



Cross- section: Inelastic

Pu239:

Figure B.3: microscopic Inelastic cross section microscopi of Pu239 of ECCO and
OpenMC

Figure B.4: microscopic n,n’ cross section microscopi of Pu239 by JANIS [22]

U238:

Figure B.5: microscopic Inelastic cross section microscopi of U238 of ECCO and OpenMC
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Cross- section: Inelastic

Figure B.6: microscopic n,n’ cross section microscopi of U238 by JANIS [22]

U235:

Figure B.7: microscopic Inelastic cross section microscopi of U235 of ECCO and OpenMC

Figure B.8: microscopic n,n’ cross section microscopi of U235 by JANIS [22]

The analysis was done for all the various nuclides that were indicated in the tables
during the thesis, and the same phenomenon was found: ECCO described these the
reaction more accurately than OpenMC. Checking on the forum, the problem is related
to the tally that evaluates the particular reaction and not the code.

129



130



Bibliography

[1] Jack P.C. Kleijnen Verification and validation of simulation models .
[2] Roberto Ponciroli, Antonio Cammi, Alessandro Della Bona, Stefano Lorenzi, Lelio

Luzzi.
Development of the ALFRED reactor full power mode control system.

[3] G. Rimpault, D. Honde, J. M. Rieunier.
ERANOS: manuel des methodes.
Technical Report NT-SPRC-LEPh-93-252, CEA, 1993.

[4] G. Rimpault et al.
SchÃ©ma de calcul de rÃ©fÃ©rence du formulaire ERANOS et orientations pour le
schÃ©ma de calcul de projet.
Technical Report NT-SPRC-LEPh-96-220, CEA, 1996.

[5] G. I. Bell, S. Glasstone.
Nuclear reactor theory.
Krieger Publishing Company, 1979.

[6] Antonio Galia.
A Dynamic Homogenization Method for Nuclear Reactor Core Calculations.

[7] Giacomo Grasso et al.
EGPRS Lead-cooled Fast Reactor (LFR) Benchmark.
Benchmark under the guidance of the Expert Group on Physics of Reactor Systems
(EGPRS).

[8] Pietro Ravetto.
A revisitation of space asymptotic theory in neutron transport.

[9] Alain HÃ¨bert
Applied Reactor Physics

[10] G. RIMPAULT R. JACQMIN A. BERNARD
Rapport Technique

[11] G. RIMPAULT - D. HONDE - J.M. RIEUNIER
ERANOS : MANUEL DES METHODES Transferts Internes de DonnÃ©es Nu-
clÃ©aires

[12] https://docs.openmc.org/en/stable/
The OpenMC Monte Carlo Code

[13] K. Aoto, P. Dufour, Y. Hongyi, et al.,
âA summary of sodium-cooled fast reactor development,â Progress in Nuclear Energy

[14] M. Frignani, A. Alemberti, and M. Tarantino,

131



Bibliography

âAlfred: A revised concept to improve pool related thermal-hydraulics,â Nuclear Engi-
neering and Design

[15] G. Grasso, M. Sarotto, F. Lodi, and D. M. Castelluccio,
âAn improved design for the alfred core,â in International Congress on Advances in
Nuclear Power Plants (ICAPP 2019)

[16] A. Alemberti, M. Caramello, M. Frignani, et al.,
âAlfred reactor coolant system design,â Nuclear Engineering and Design

[17] G. I. I. Forum, Gif 2023 annual report, 2023

[18] Stephen M. Goldberg and Robert Rosner
Nuclear Reactors:Generation to Generation

[19] U. D. N. E. R. A. Committee and the Generation IV International Forum
A technology roadmap for generation iv nuclear energy systems

[20] G. Grasso, C. Petrovich, D. Mattioli
The core design of alfred, a demonstrator for the european lead-cooled reactors

[21] C. F. Smith and L. Cinotti
Chapter 6 - lead-cooled fast reactors (lfrs),n Handbook of Generation IV Nuclear
Reactors (Second Edition)

[22] https://www.oecd-nea.org/jcms/pl39910/janis

132


	Introduction
	General context
	Verification & Validation
	Preliminary evaluations


	Theory
	Physical quantities
	Neutron transport equation
	Treatment of the Scattering Source
	Leakage model

	Numerical Methods
	Deterministic approximation
	Multi-group Approximation
	The Spherical Harmonics Method 
	Pn
	Bn

	Homogeneous and Heterogeneous
	 Consistent and Inconsistent
	Resonance Effects and Self-Shielding Treatment Using Probability Tables

	Codes
	Deterministi code: The ECCO Cell Code and the ERANOS Suite
	The ECCO Cell Code

	Stochastic ode: OpenMC
	Monte Carlo Methods for Particle Transport
	OpenMC Estimators


	Results
	Introduction to Nuclear Reactors
	The Lead - Cooled Fast Reactor
	The ALFRED Features
	The ALFRED Fuel Pin
	The ALFRED Fuel Assembly

	Analysis
	Homogeneous Pin
	Comparison between methods
	Resonance treatment

	Heterogeneous geometries
	Heterogeneous Pin
	Heterogeneous Assembly


	Conclusion
	Transport cross section
	Cross- section: Inelastic
	Bibliography

