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Abstract 

Traditional simulation methods struggle with unconventional reservoirs, which have 
extremely low permeability and complicated natural fracture systems. Traditional 
numerical approaches like dual-porosity and dual-permeability models are unable to 
adequately account for the impact of fracture connectivity and topology, particularly in three-
dimensional domains. This paper proposes a semi-analytical solution for simulating transient 
single-phase flow in fractured porous media using Green's functions. The approach allows for 
precise and effective pressure and production predictions by explicitly incorporating the 
geometry and connectivity of intricate fracture networks. 

 
The suggested model includes steady-state and transient fracture flow equations together 
with Green's functions for point, line, and plane sources obtained for an anisotropic cuboidal 
reservoir. The model is validated against both traditional analytical solutions and commercial 
numerical simulators, and superposition principles are used to achieve coupling between the 
reservoir and the fracture. Real field data from the Barnett Shale, multi-stage transverse 
fractures, and simple planar fractures are among the case studies.  

 

The findings show that the technique can capture precise flow behaviour and 
pressure transmission dynamics in arbitrarily complicated fracture systems while greatly 
decreasing computing time. This study aids in the creation of a reliable and 
scalable methodology for simulating and optimizing production in unconventional reservoirs. 
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1.Introduction 

 

Advanced modelling methods are required to describe fluid movement in complicated 
geological settings due to the development of unconventional hydrocarbon 
reservoirs. Unconventional plays, such as shale gas, tight oil, and coalbed methane, 
depend heavily on significant hydraulic fracturing to increase production, unlike traditional 
reservoirs. Conventional dual-porosity or structured-grid numerical simulators are unable to 
accurately replicate the network of fractures, both induced and natural, that frequently 
results from these treatments. 
 
In order to replicate pressure and production behaviour in complicated fracture networks, 
this thesis presents a semi-analytical technique based on Green's functions. The 
formulation allows for quick, physics-based simulations by utilizing the superposition of 
analytical Green's function solutions for various source types (point, line, and plane) in 
restricted domains. 

 

1.1 Motivation 

Fractured reservoirs show a wide range of flow behaviours depending on the fracture 
geometry, connectivity, and reservoir heterogeneity. The fine gridding required around 
fractures is difficult for traditional simulators to handle, or they require simplifying 
assumptions that distort the physical reality of how flow behaves in such systems. Even in 
three dimensions, these systems may be modelled with a high level of accuracy and 
computational efficiency by using Green's function. 

 

 

 

 

 

 

 

Figure 1. Longitudinal and transverse fracture schematics (Zhou 2014) 

 

As shown in Figure 1., hydraulic fractures may take various forms including longitudinal, 
transverse, and orthogonal geometries. Fig.1 shows the transverse fractures perpendicular to 
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a horizontal well, typically aligned with the minimum horizontal stress (σₕ), and longitudinal 
fractures aligned with the maximum horizontal stress (σᴴ). 

 

The evolution of these fractures and their interaction with natural fractures (Fig. 2) leads to 
highly variable production outcomes. Understanding these dynamics is critical for optimizing 
fracture treatments and maximizing recovery. 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Hydraulic fractures interacting with existing fractures 

 

 

This figure illustrates the complex interaction between induced hydraulic fractures and pre- 
existing natural fractures, highlighting deviations, intersections, and connectivity evolution 
within fractured reservoirs. Fracture propagation is influenced by the in-situ stress field and 
the orientation of pre-existing discontinuities. (Adapted from Weng et al., 2011). 

 

 

 

 

–3200  –2800  –2400  –2000  –1600  –1200 800 

X-axis 

–400 0 400 



 

 
9 

1.2 Objectives 

The core objectives of this thesis are: 

• To derive and apply Green's function solutions for transient flow in fractured porous 
media. 

• To implement a numerical scheme coupling analytical reservoir response with steady-
state fracture flow. 

• To validate the methodology against existing commercial simulators and analytical 
benchmarks. 

• To apply the model to real and synthetic case studies and interpret pressure and 
production data. 

 

 

 

1.3 Thesis Structure 

This thesis is structured as follows: 

• Chapter 2 provides a detailed literature review on fractured reservoir modeling.  

• Chapter 3 outlines the theoretical framework, including derivations of point, line, and 
plane Green's functions. 

• Chapter 4 presents the numerical implementation and solution methodology.  

• Chapter 5 details simulation results from a variety of synthetic and real-world fracture 
configurations. 

• Chapter 6 discusses implications and interpretation of results.  

• Chapter 7 concludes the thesis and proposes future research directions.  
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2. Literature review 

2.1 Fractured reservoir simulation methods 

 

Over the course of the last few decades, there has been a lot of progress in the way that fluid 
flow in fractured reservoirs is modelled. Earlier simulation attempts used average 
permeability tensors to implicitly model fractures. Later, dual-porosity and dual-permeability 
models were developed to differentiate between the contributions of the matrix 
and fractures. The Warren and Root (1963) dual-porosity model posits 
that fractures operate as high-permeability conduits while the matrix serves as the main 
storage medium.  

Although this conceptual model is effective, it assumes a uniform and orthogonal fracture 
network, which restricts its use for actual reservoirs that have complicated relationships. 
Discrete fracture network (DFN) models, which explicitly represent each fracture with its own 
distinct geometry and characteristics, have been developed.  

Although these models give a more accurate depiction of natural and induced fractures, they 
are computationally demanding and need a lot of data input. Unstructured grids are 
frequently used in the implementation of DFNs, which enable intricate geometries but 
also call for sophisticated numerical solvers and precise meshing close to fracture tips. 

 

 

 

 

 

 

 

 

 

 

 

                                     

Figure 3. Conventional simulation vs DFN simulation (Discrete Fracture Network). 
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Comparison between conventional structured-grid simulation and discrete fracture network (DFN) 
simulation techniques. DFN explicitly represents fractures with complex geometries, enabling higher 
fidelity at the cost of greater computational demands. 

 

2.2 Dual-porosity and dual-permeability models 

Dual-porosity models treat the rock matrix and fracture system as overlapping continua,  with 
shape factors dictating the flow between the two domains. This model, however, does not 
address the spatial variability in the interaction between fractures and the matrix, even though 
it is useful. Dual-permeability models address this by permitting flow in both the fracture and 
matrix domains, but in fracture systems with high anisotropy or stochastic distribution, the 
geometric assumptions remain inadequate. 
Additionally, both models have trouble replicating realistic fracture geometries, particularly 
when dealing with vertical, sloping, or multidirectional fractures. Their use in realistic 3D 
systems is greatly constrained when used in conjunction with structured grid simulators. 

 

 

Figure 4. Conceptual model of dual-porosity and dual-permeability systems. 

The matrix blocks provide storage, while fractures act as primary conduits. Flow occurs both 
between and within these continua. 

 

2.3 Discrete fracture modeling approaches 

The DFN methodology models fractures as explicit geometric features. Two main categories 
exist: 

• Embedded Discrete Fracture Models (EDFM) 

• Fully Discrete Fracture Models (FDFM).  
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In EDFM, fractures are incorporated into the matrix using modified transmissibility factors, 
thus avoiding mesh conformity. In FDFM, mesh is conformal to the fracture network, 
leading to high accuracy but large computational cost. Despite their flexibility, DFNs are 
limited by computational scalability and the challenge of mesh generation in field-scale 
models. 

 

 

 

 

 

 

Figure 5. Discrete Fracture Modeling (DFM) approach illustrating explicit representation of 
fractures as individual entities within the reservoir matrix.  

 To each fracture, specific geometrical and flow properties are assigned allowing high-fidelity 
simulations. 

 

 

 

Figure 6. Comparison of modeling approaches for complex fractures, including dual-
continuum models, local grid refinement, unstructured grids, and embedded discrete 
fracture models (EDFM). The figure contrasts accuracy, flexibility, gridding ease, and 
computational efficiency across methods. 
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2.4 Green’s Function Method in Reservoir Engineering 

By utilizing the linearity of the diffusivity equation to depict the reservoir response as a 
superposition of fundamental solutions, Green's function techniques provide an 
alternative. As a source term, each fracture segment contributes to the overall pressure field. 
Based on this theory, Zhou et al. (2014) developed a semi-analytical approach.  

The model may replicate transient pressure behaviour without discretizing the whole reservoir 
by employing Green's functions for point, line, and plane sources in constrained domains. By 
combining numerical fracture flow simulations with analytical reservoir solutions, the method 
maintains both speed and precision. 

Green’s function solution for a point source in a cuboidal reservoir is given by:  

 

 

 

 

where is derived from elliptic theta functions to satisfy no-flow boundary 
conditions in a rectangular geometry. Representing extended fractures and fracture surfaces, 
respectively, this approach has been applied to line and plane sources. Every Green's 
function solution is customized to meet boundary conditions and anisotropic diffusivity in the 
reservoir. 

2.5 Summary of prior work and gaps 

Trade-offs between accuracy, computational speed, and geometric fidelity have been made in 
prior simulation methods. Classical analytical solutions are quick but restricted in 
geometry. Numerical simulators provide precise solutions but necessitate 
significant computational effort and knowledge.  

By combining Green's function-based solutions with local numerical fracture 
flow computations, Zhou (2014) provides a semi-analytical method that bridges this 
gap. It maintains computational efficiency while 
facilitating flexible geometric representation and transient analysis. 

 
More studies are needed, nevertheless, even after these improvements: 

• Extend the model to multiphase and gas flows. 

• Include pressure-dependent permeability and fracture conductivity. 

• Handle stress-sensitive reservoir conditions. 

• Integrate with real field data for large-scale optimization. 

(1) Zhou 2014 
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3. Theoretical framework 

This chapter presents the mathematical foundations of flow in fractured porous media using 
Green's function solutions. The goal is to construct an accurate, efficient model for predicting 
pressure behavior in 3D reservoirs with complex fracture networks.  

 

3.1 Governing equations of flow in porous media 

The conservation of mass principle and Darcy's law regulate fluid flow in porous 
materials. These physical principles can be used to derive the diffusivity equation 
when applied to a somewhat compressible, single-phase flow in an 
isotropic, homogenous porous medium. 

Mass conservation for a control volume can be written as (Fundamentals of Reservoir 
Engineering by L. P. Dake, 1978): 

 

 

 

 

                             

 

 

 

(2) 
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These describe how the system behaves over time, considering fluid characteristics, 
fractures, and wells. Numerical or analytical methods are used to understand well 
productivity and pressure distribution. Green's functions are used to generate 
beautiful analytical solutions that are specific to boundary conditions 
and intricate geometries.  

 

 

(6) Fundamentals of Reservoir Engineering by L. P. Dake, 1978  

(7) 
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3.2 Green’s function solution: point source 

The pressure response in the reservoir because of a unit source at a given point in space and 
time is represented by Green's function. The Green's function solution respects the boundary 
conditions in a limited rectangular reservoir domain and offers an analytical method for 
creating the whole solution by superposition. 

     

In bounded domains, this Green’s function is expressed as a summation of Eigen functions or, 
more efficiently, using Elliptic theta functions, which accelerate convergence and capture 
reflections at the reservoir boundaries. 

The compact analytical solution (Thambynayagam, 2011) in terms of theta functions is:  

 

 

                                                                                                              

 

 

 

                                                   Figure. 7 Point source conceptual model. 

(8) 

(9) 
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This Green's function forms the basis for constructing the line and plane source solutions and 
allows efficient superposition to model arbitrarily complex source distributions.  

 

3.3 Green’s function solution: line source 

Numerous real-world fluid flow circumstances in reservoir modelling have sources or 
sinks spread out along a line rather than focused on a single location. Hydraulic fractures, 
horizontal wells, or segments of complicated fracture networks are all examples. The Green's 
function for a line source is the correct representation of pressure response in such systems. 

Conceptual foundation 

A line source can be visualized as a continuous distribution of point sources along a straight 
line. Mathematically, this is expressed by integrating the point source Green’s function over the 
length of the line. 

 

(10) 
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                                                  Figure. 8 Line source conceptual model. 

 

(11) 
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Green’s function estimation for a line source 

 

 

 

(12) 
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Practical example 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Green’s function solution: plane source 

 

Theoretical Concept 

In many cases, fractured reservoirs are made up of fractured surfaces rather than simply 
locations (wells) or lines (fracture traces). These surfaces have an extended 2D shape that 
allows fluids to flow into or out of the formation. Plane sources become crucial in this 
scenario. 
A plane source depicts a finite area through which fluid enters the porous matrix in a uniform 
or non-uniform manner, whereas point and line sources represent very small or narrow 
features. These are often used to simulate: 

• Hydraulic fractures (vertical or horizontal) 

• Natural fractured swarms (e.g., bedding planes, faults) 

• Heat exchanged in geothermal systems 

• Fault sealing or leaking interfaces 
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Why use plane sources? 

Using plane sources allows us to: 

• Respect the actual shape and dimensions of the fracture. 

• Capture pressure diffusion in all directions from the surface. 

• Incorporate storage and transmissibility across the surface. 

 

 

Geometrical representation 

 

 

 

Physical Behavior of Plane Sources 

• Uniform pressure drop across the surface (in simplified models) 

• Distributed inflow or outflow: not a single point of injection, but a surface exchanging 
fluid with the matrix 

• Early-time linear flow, transitioning to radial or spherical spreading 

• Significant impact on simulated reservoir volume (SRV) in unconventional reservoirs 
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From Theory to Computation 

In Green’s Function theory: 

• The plane source is built as a superposition of point sources across a 2D surface. 

• Each point source contributes to the overall pressure field. 

• By integrating or summing these effects, we get the full pressure response at any point 
in the reservoir. 

This theoretical approach: 

• Honors complex boundary conditions (via theta functions) 

• Allows for efficient computation in large fractured systems 

• Enables analytical solutions in systems with many fractures using convolution and 
superposition 

 

 

 

 

 

 

 

 

Tab 1. Plane source assumptions. 

 

Feature Plane source modeling advantage 

Geometry Captures full surface area of fractures 

Pressure behaviour Models linear-to-radial flow transition 

Boundary accuracy Incorporates reflections from reservoir boundaries 

Fracture networks Allows modeling of multiple overlapping planar fractures 

Realism 
Closely mimics physical fractures in hydraulically stimulated 
zones 
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Mathematical formulation 

 

 

(13) 
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                          Figure. 9 Plane source conceptual model. 

 

(14) 
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Practical Green’s function variation overtime.  

 

Simulation parameters  
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Figure. 10 Example of Green’s Function variation for a plane source. 
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3.5 Superposition and boundary handling 

 

Theoretical concept 

Numerous sources, such as fractures, wells, or boundaries, interact in a complex geometry in 
real-world reservoir situations. The superposition principle allows for 
the convenient management of these interactions using Green's functions. The global 
pressure solution can be created by adding up each distinct solution after treating it 
separately. This method significantly simplifies calculation when dealing 
with complicated fracture networks. 

 
With superposition, we may calculate the overall impact of several pressure sources that 
are each analytically represented, without having to numerically solve the entire domain for 
each new arrangement. Furthermore, picture theory is utilized to meet no-flow boundary 
conditions. Corresponding image sources are established across the reservoir borders for 
each real source to maintain zero normal flow at the reservoir boundaries. 

Advantages of the Superposition and Boundary Image Method: 

Feature Superposition & boundary handling benefit 

Complexity scalability Simulate hundreds of sources with minimal cost 

Flexibility Model varied source types and flow histories 

Boundary realism Automatically satisfies no-flow conditions 

Convolution ready Accommodates variable-rate production or injection histories 

Analytical consistency Fully consistent with the underlying physics 

 

3.6 Elliptic theta functions and analytical integrals 

One of the most computationally efficient and mathematically elegant tools used in Green’s 
function representations for transient flow problems is the elliptic theta function, 
particularly the Jacobi theta function of the third kind, denoted as ϑ3(q,u). 

In the context of pressure diffusion from instantaneous or line sources in a bounded domain, 
theta functions are used to represent the infinite summation of images due to reflection 
across boundaries. This makes them extremely well-suited for modeling reservoirs with no-
flow boundaries in 1D, 2D, and 3D. 
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(15) 
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Use in Green’s Function Formulation 

Theta functions allow for compact representations of solutions to the diffusion equation in 
bounded domains. For example, the 1D Green’s function in a bounded slab of size with zero 
flux boundaries can be written as: 

 

 

 

 

 

Numerical Implementation Considerations 

The infinite series in ϑ3 is truncated numerically at a finite number of terms 
N. High accuracy is possible with a small number of terms due to the exponential 
convergence (for instance, N = 20 is frequently adequate). 

 
Since MATLAB and Python don't offer native support for ϑ3, you must write the code 
yourself using the definition. When q is extremely near to 0 or 1, care must be taken to 
maintain numerical stability. 

Application Example 

The use of ϑ3 simplifies the calculation of the pressure at a point caused by a source in a 
reservoir with rectangular no-flow boundaries by substituting a single function call for 
hundreds of image words. A typical example implementation is: 

 

 

 

 

 

 

 

Integrating theta functions into multidimensional convolution integrals, this chapter 
lays the groundwork for the complete analytical Green's function formulae that are developed 
in Chapter 4. 

 

(16) Zhou, H. (2014) 
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4. Model Implementation and Validation 

In this chapter, we discuss the Green's function method's computational 
implementation for simulating pressure behaviour in three-dimensional fractured 
porous materials. The aim is to create a scalable and reliable simulation framework using the 
theoretical equations presented in Chapter 3. The implementation is designed to manage 
complicated fracture geometries, temporal flow changes, and the impact of no-flow limits 
using elliptic theta function representations. 
 
The model is implemented in a modular fashion to permit freedom in time discretization, 
fracture configurations, and domain geometry. It uses a semi-analytical method based on 
Green's functions. The mathematical methods used in theta function evaluation, the 
numerical treatment of time convolution integrals, and the discretization techniques used to 
both plane and line sources are all crucial to this implementation. 

 
Each step of the model is designed to prioritize computational efficiency,  accuracy, and 
compatibility with physical boundary conditions. In this chapter, the algorithmic steps are 
described in detail, along with implementation specifics and validation 
against established reference cases from the literature or analytical benchmarks. The 
numerical experiments in the following chapters are based on the framework described here. 

 

4.1 Algorithm overview 

The simulation algorithm uses a semi-analytical approach, combining: 

• Green’s functions for bounded domains 

• Superposition principle for multiple sources 

• Time-domain convolution for variable-rate source histories 

• Discretization of line and plane sources into finite elements  

 

Each simulation proceeds through the following stages: 

a. Input parsing: geometric domain, rock/fluid properties, fracture locations 

b. Discretization: fracture surfaces and line segments into finite source elements  

c. Theta-function generation: compute q-values for all time steps 

d. Green’s function evaluation: computing between each source and observation point 

e. Convolution: apply Duhamel’s principle to evaluate pressure over time  
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4.1.1 Fracture discretization 

Plane and line fractures are subdivided into rectangular and linear elements, respectively. 
Each sub-element acts as a constant-strength source. 

Let: 

• Nx, Ny: number of elements in x and y direction 

• Aij: area of element (plane) 

• Li: length of element (line) 

Observation points are placed at desired reservoir coordinates to monitor pressure behavior.  

 

4.1.2 Numerical time convolution  

 

 

4.1.3 Boundary handling via theta functions 

 

(17) 
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4.1.4 Validation and benchmarking 

 

 

     4.1.5 Example  

Reservoir properties  

 

 

 

 

 

 

 

Reservoir geometry 

  

 

 

 

(18) 
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Observation point  

 

 

 

 

Plane fracture geometry  

 

 

 

 

Source and pressure conditions 

• Injection rate (q) = 25 m³/s 
• Initial pressure (Pᵢ) = 5,2*10^7 Pa 
• Observation time: 100 days 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

                    Figure. 11 Pressure vs time at a given observation time 



 

 
35 

4.2 Coupled fracture-reservoir flow modeling 

 

The dynamic interaction between individual fracture components and the surrounding porous 
matrix is integrated by coupled fracture-reservoir flow modelling. This method is crucial 
for fractured reservoirs, where the matrix serves as the main storage medium and fractures 
act as favoured routes for fluid movement. The model used in this study simulates 
the pressure evolution caused by production or injection operations within complicated 3D 
fracture networks using a semi-analytical Green's function formulation. 

 
Fractures are discretized into finite elements (point, line, or plane sources)  in the existing 
model, with each element influencing the pressure distribution over 
time. These contributions can be combined at each observation point using the superposition 
principle. Green's function convolution with respect to the source's rate history is used to 
establish the impact of each source. 

Key Features of Coupled Modeling: 

• Fracture as Source Terms: Fractures are represented as discretized sources that 
inject or extract fluid, influencing local and global pressure fields.  

• Matrix as Storage: The porous matrix responds to changes in fracture pressure by 
gradually exchanging fluid, leading to pressure diffusion. 

• Dual-Continuum Effects: The model implicitly captures dual-porosity behavior where 
matrix and fractures interact dynamically. 

• Boundary Conditions: No-flow boundaries are accounted for through the use of 
bounded Green’s functions, preserving the physical constraints of the reservoir.  

• Time-Dependent Rates: Variable-rate histories are included through Duhamel’s 
principle, which allows convolution over arbitrary temporal sequences.  

 

This combination makes it possible to mimic the early-time fracture-dominated flow as well 
as the late-time matrix-dominated diffusion. By examining the pressure against time 
behaviour, one may see the transition between these regimes and make 
a diagnostic assessment of the reservoir's response.  

We illustrate this link through thorough case studies in subsequent chapters. The influence of 
each fracture configuration on pressure distribution, flow interference, and boundary 
reflection effects is assessed. 
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Figure. 11 PTA analysis for a single planar fracture 

 

Figure 11(Zhou 2014). shows the rate and pressure response as well as the pressure-
transient-analysis (PTA) log-log plot. The three dashed lines in the log-log plot are the 
expected solution for the bilinear (pink), formation linear (cyan), and radial flow regimes 
(red), respectively, with which the results match extremely well.  
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4.3 Finite-difference implementation in fractures 

To complement the Green’s function approach, finite-difference methods (FDM) can be 
employed to model fluid flow explicitly within fractures. This approach treats fractures as 
discrete domains with their own pressure and flow fields, rather than as source terms only.  

The governing diffusivity equation within a 2D fracture domain is:  

This is discretized using a standard central difference scheme in space and an implicit or 
explicit scheme in time. 

 

An example implementation uses a rectangular fracture plane subdivided into a grid of  

Nx × Ny cells. Pressure at each node is updated over time using the finite-difference 
equations. 

 

 

 

 

 

Boundary nodes are treated with no-flow 
or constant pressure conditions 
depending on physical assumptions. 

 

 

 

Figure 12: Grid-based discretization of a 2D fracture plane for finite-difference simulation.  

(19) Zhou, H. (2014) 
(iGreen'function 
formulation, 
especially in 
simplified 2D 
cases) 
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Figure 13: Pressure evolution over time in a finite-difference fracture model. Early-time 
response is localized around the production point; later-time effects spread across the 
fracture plane. 

This approach captures complicated geometries or heterogeneities that may 
be challenging to depict using Green's functions alone, hence complementing semi-
analytical models by giving high-resolution insight into fracture flow behaviour. The effects of 
each fracture arrangement on pressure distribution, flow obstruction, and boundary 
reflection are assessed. 

4.4 Non-darcy flow and newton-raphson solution 

In high-velocity or tight formations, fluid flow through fractures may deviate from Darcy’s 
linear behavior, exhibiting what is known as non-Darcy flow. This behavior is typically 
described by the Forchheimer equation: 

 

  

 

 

 

 

 

 

The second term introduces non-linearity to the pressure gradient, especially at high 
velocities. To solve such nonlinear relationships, the Newton-Raphson iterative method is 
widely used. 

(20) 
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Newton-Raphson Formulation: Given a nonlinear function f(p) = 0, Newton-Raphson 
updates the pressure as follows: 

p(n+1) = p(n) - f(p(n)) / f'(p(n))      

Where: 

• p(n) is the pressure at the nth iteration 

• f'(p) is the derivative of the function with respect to pressure  

 

Practical Example: For a given flow segment with length L and velocity guess v₀, the 

pressure drop Δp is: 

• Δp = μ·v/k·L + β·ρ·v²·L 

• This equation is solved iteratively for v using Newton-Raphson updates until convergence. 

 

 

4.5 Numerical stability and convergence 

Numerical simulations of pressure diffusion in fracture networks must be carefully 

designed to ensure stability and convergence. Improper choices of discretization 

parameters or time stepping can lead to oscillations, divergence, or physically incorrect 

results. 

Mathematical Basis for Stability 

In finite-difference time-domain simulations of the 2D diffusivity equation: 

 
 
 

 

Using an explicit scheme, the stability condition is governed by the CFL (Courant–Friedrichs–Lewy) 

criterion: 

 

(21) 

(22) 

(23) 
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(24) 
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5. Case Studies and Results 

5.1 Single planar fracture (Script in appendix)  

This case is used as a benchmark to verify the semi-analytical solution produced by Green's 
Functions. We analyse a single, independent rectangular fracture that is surrounded 
by a confined reservoir. By comparing the predictions made by the Green's Function 
formulation to those produced by conventional finite-difference solutions, the objective is to 
determine the accuracy of the Green's Function formulation. 

Parameters 

 

 

Bilinear flow 

Linear flow 

Spherical flow 
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Figure 14. Single-fracture case: bottomhole pressure (BHP), rate target, and log-log plot. 

 

Results Analysis 

The finite-difference numerical solution, which was utilized as a reference, and the Green's 

function semi-analytical model utilized in Case 1 (single planar fracture) produced outstanding 
simulation results that were in perfect accord. 

Pressure-Time Behavior 

                     5.1.1    Bilinear flow behaviour: Occurs at early times when flow occurs        
simultaneously in the fracture and into the matrix perpendicular to it.  

Pressure Derivative Slope: Slope ≈ ¼ on a log-log plot. 
Interpretation: Fracture conductivity dominates, and pressure support is mostly 

from the near-fracture matrix. 
 

5.1.2 Linear flow behaviour: As time progresses, flow becomes predominantly 
perpendicular to the fracture plane. 

Pressure Derivative Slope: Slope ≈ ½ on log-log scale. 
Interpretation: Characteristic of infinite-acting fracture; matrix contribution 

increases. 

                      5.1.3 Spherical (or pseudo-Radial) flow behaviour:  

                              At late times, flow becomes radial or spherical due to reservoir boundaries.  

Pressure Derivative Slope: Derivative flattens to horizontal (slope = 0) 
Interpretation: Steady-state-like behavior; the entire reservoir contributes to 
pressure distribution. 
 



 

 
43 

 
 
The agreement between the two models 
is within a relative error of ±3%, which 
supports the validity of the Green's 
function method in predicting pressure 

transients and long-term flow regimes. 

 

 

 

              Figure 15. BHP variation overtime  

Spatial pressure distribution 

• At t = 10 days, the pressure field shows a symmetric diffusion pattern radiating from the 
fracture plane. 

• The contour map and 3D volume plot reveal that the pressure propagates more rapidly in 
the plane of the fracture, while vertical diffusion is comparatively limited due to the lower 

thickness. 

 

 

 

 

Figure 16. Pressure distribution in single planar fracture (Zhou 2014) 

Validation summary 

• The maximum deviation between the semi-analytical and finite-difference pressures at the 
observation point remains below 0.02 MPa throughout the entire simulation window. 

• Numerical stability and convergence were maintained even for small time steps, verifying 

the robustness of the Green’s function convolution in transient analysis.  

 

 5.2 Multi-stage transverse fractures (Script in appendix)  

This case study examines pressure response in a reservoir that has been 
treated with several transverse fractures at intervals along the length of a horizontal 
wellbore. It demonstrates the Green's function model's capacity to manage complex 
geometries and mirrors a typical arrangement in hydraulic fracturing procedures. 
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Model description: 

 

 

 

Implementation specifics:       Each 

fracture is represented by 
a distinct rectangular source. Linear 
superposition is used to 
superimpose the separate Green's 
functions from each fracture at chosen 

observation locations in order to 
determine the pressure at those points 

 

 

 

 

Figure 17. Multistage transverse-fracture case configuration. 

Key observations: 

• Early-time response is dominated by the nearest fracture. 
• At intermediate times, interference between adjacent fractures becomes evident. 

• At late times, the pressure response converges to that of a composite fractured system. 
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Figure 18. Multistage transverse-fracture case: BHP, rate target, and log-log plot. 

 

 

 

 

Linear flow 

Radial flow 
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Figure 19. Drainage map (Zhou 2014) at different timesteps and the relation with the 

log-log plot. 

 

Interpretation: The significance of fracture spacing in influencing the efficiency 

of reservoir drainage and pressure communication between fractures is made clear by the 

findings. Without requiring fine gridding between stages, the approach effectively 

addresses the interaction between fracture-induced flow regions. 

 

Due to the proximity of the fractures in multistage hydraulic fractures, they typically 

interfere with one another very early, preventing isolated flow conditions and precluding 

the early-time bilinear flow regime. Furthermore, the pressure drop necessary for bilinear 

behaviour is reduced by high fracture conductivity and complex fracture 

networks, whereas wellbore storage effects may obscure it at first. Because of this, 

we frequently see a direct shift to linear or spherical flow instead. 

 

This case supports the Green's function model's ability to accurately simulate actual multi-

stage fracture behaviour while remaining computationally efficient. 

2 

1 

3 
4 
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5.3 Orthogonal fracture networks (Script in appendix) 

The semi-analytical Green's function method is used in this case study to create a conceptual 
orthogonal fracture network. Zhou et al. (2014) present this case in their study, which 
illustrates the method's capability for dealing with non-planar, intersecting fractures, which 

are common in formations with natural fractures or faults.  

 

 

 

 

 

 

 

 

 

 

Figure 19. Orthogonal-fracture-network case: configuration (Zhou 2014) 

 

 

5.3.1 Fracture network representation: 
The model uses discretized panels arranged orthogonally (as in Fig. 17 of the 

paper) to capture interconnected hydraulic and natural fractures. 

 

 

 

5.3.2 Flow regimes identified: 

Formation linear flow: Appears early and confirms the total fracture length (Lf/2 

slope). This is visible in the derivative curve. 

Pseudo-boundary-dominated flow: Seen between linear and radial regimes. 

Indicates effective drainage area shaped by fracture boundaries. 

Radial flow: Appears at late time with circular pressure contours 
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5.3.3 Log-Log plot interpretation  

The pressure derivative matches the analytical solution for linear flow at Lf/2. 

A slope ≈ 1 regime is observed after linear flow before transitioning to radial — this 

is associated with pseudo-boundary flow. 

 

5.3.4 Drainage maps  

Early: Isolated contribution zones around each fracture 

Intermediate: Interacting pressure fields bounded by fracture lines 

Late: Circular radial expansion indicating complete system drainage 

 

Figure 20. Orthogonal-fracture-network case: BHP, rate target, and log-log plot. 
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5.3.5 Implications and benefits of the Green’s Function approach for orthogonal fracture 
networks 

       Flexibility in handling complex geometries 

Green’s function method offers exceptional flexibility in simulating arbitrary fracture 
configurations, including: 

• Orthogonal intersections 

• Non-aligned natural fractures 

• Multiscale or randomly oriented DFN (Discrete Fracture Networks) 

 

In contrast to numerical simulators based on grids, such as finite-difference or finite-
element methods, there is no need for sophisticated meshing or local refinement around 
intersecting planes. Every fracture segment is treated as a separate source 
panel. Their combined effect is assessed using linear superposition, which guarantees 
that intersecting flows are modelled correctly. 

 

Insightful flow regimes and diagnostic capabilities 

The pressure derivative response obtained from orthogonal networks reveals distinct flow 
regimes: 

• Early-Time Linear Flow: This regime consistently reflects half the total fracture length 
(Lf/2), regardless of geometry or intersection, confirming that the model captures 
effective stimulated volume. 

• Transition (Pseudo-boundary) Flow: Occurs after linear regime and before radial flow, 
highlighting pressure interference between intersecting segments.  

• Late-Time Pseudo-Radial Flow: Indicates full drainage and shows the effective 
composite permeability of the entire fracture system. 

The linear regime’s slope is often used in practice to back-calculate total fracture length, 
making this feature diagnostically valuable. 

 

Realistic flux distribution across panels 

Another strength of this approach is its ability to simulate flux heterogeneity across 
fracture panels: 

• At early time, production is dominated by panels located nearest to the well or the 
observation point. 
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• As time progresses, the pressure field equilibrates and flow contributions gradually 
shift toward the tips of the fractures. 

• This behavior aligns with physical expectations in high-conductivity systems, where 
the ends of the fracture become increasingly active as the near-well region depletes. 

 

This evolving flux pattern is not easily captured in simplified 1D analytical models, but is 
naturally embedded in the semi-analytical Green’s function formulation. 

This case validates the ability of the semianalytical Green’s function approach to:  

• Model complex, intersecting fracture geometries 
• Predict pressure response accurately across multiple flow regimes 
• Reveal drainage characteristics critical for interpreting fracture effectiveness 

Its ease of implementation and high accuracy make it a compelling alternative to numerical 
simulators, particularly for conceptual design, validation, or rapid sensitivity analysis.  

 

5.4 Real field example: Barnett Shale 

The practical use of Green's function-based semi-analytical method in a genuine unusual gas 
reservoir, a Barnett-Shale Well, is assessed in this chapter.  This case demonstrates how 
well the method can adapt to the intricate fracture networks that are common in shale 
formations and how well it can align numerical models with actual production results. 

 

5.4.1 Field background and setup 

The Barnett Shale is a tight-gas formation in North America characterized by: 

• Low matrix permeability (nano- to microdarcy) 
• Complex fracture systems (induced + natural) 
• Long horizontal wells often completed in multi-stage hydraulic fractures 

 

The field case centers around a single horizontal well that is 3200 ft long laterally 
and was fractured in four steps. The thorough geological and geomechanical 
data included: 

 

• 3D seismic interpretation, identifying natural fracture swarms 
• Sonic and image logs, helping estimate stress anisotropy and rock properties 
• Microseismic maps, showing fracture propagation 
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This data was then used to create a realistic Discrete Fracture Network (DFN) that included 
numerous linked hydraulic and natural fractures, which was subsequently simplified into a 
panel-based representation for the Green's function model. 

 

5.4.2 Modelling approach 

The simulation focuses on Stage 1 of the well to isolate the pressure response from a 
manageable subset of fractures. Two modeling approaches were compared: 

Numerical Simulation 
A fine-grid unstructured reservoir model (e.g., UFM in CMG or Eclipse) with explicit 
fracture-matrix interaction. 

Green’s Function-Based Semi-Analytical Simulation 
The same geometry was represented using a collection of rectangular panels, each 
defined by position, orientation, and fracture conductivity. The convolution of Green’s 
functions was used to simulate pressure and production behavior over time.  

To represent heterogeneity, two types of fractures were included:  

• Propped fractures (high conductivity): These are intentionally created during 
hydraulic fracturing and filled with proppant. 

• Unpropped fractures (low conductivity): These are naturally existing fractures that 
may open under stress but lack proppant and have lower flow capacity.  

 

 

Figure 20. On the left is a complex-fracture-network model and the unstructured 
gridding used for reservoir simulation (from Cipolla et al. 2011). On the right is 
the same network model used by the semianalytical approach described in 
this paper. 
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Simulation parameters 

Parameters were defined as in SPE 146876 and are summarized across three tables:  

• Table 4: Four cases of propped and unpropped fracture conductivities  
• Table 5: Reservoir properties (e.g., k=0.0001, ϕ=0.1, layer thickness = 100 ft) 
• Table 6: Gas PVT data (pressure-dependent viscosity and gas formation volume factor) 

Production was simulated for 33 years under constant BHP = 1,250 psi.  

 

 

 

 

 

 

Boundary Condition: The well was simulated under constant bottom-hole pressure  

(BHP) = 1,250 psi for 33 years (long-term performance validation). 

 

Simulation results 

 

 

 

 

 

Figure 21. Drainage map (Zhou 2014) at different timesteps and the relation with the log-

log plot. 

 

 

Parameter 

 

 

k (md) 

 

 

Porosity 

TABLE 5—RESERVOIR PROPERTIES 

 

Layer Thickness (f t) Initial Pressure (psi) 

 

 

Bottomhole-Pressure Target (psi) 

Value 0.0001 0.1 100 4,000 1,250 

 

 
p (psi) 

TABLE 6—GAS PVT 

 
Bg (RB/Mscf) 

TABLE 
 

 

lg (cp) 

400 7.647794768 0.01301619 

800 3.67477316 0.01371502 

1,200 2.36568861 0.014642084 

1,600 1.726155581 0.015793424 

2,000 1.356971385 0.017151072 

2,400 1.124053616 0.018671995 

2,800 0.968679429 0.020294739 

3,200 0.860551988 0.021956976 

3,600 0.782459722 0.02361003 

4,000 0.724103302 0.025223125 

4,400 0.679122037 0.026780332 
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Analysis and interpretation 

Flow path dominance 

• At early time, flow is dominated by high-conductivity propped fractures. 
• As pressure depletes, natural fractures begin to contribute more significantly, 

especially if conductivity > 0.1 md-ft. 

Conductivity sensitivity 

• Increasing propped fracture conductivity above 15 md-ft yielded minimal production 
gains, likely due to early-time saturation. 

• Increasing unpropped conductivity from 0.03 to 0.3 md-ft led to substantial increases 
in cumulative gas, indicating their importance for long-term drainage. 

Method accuracy 

• Despite simplifying a complex DFN into ~25 panels, the semi-analytical model 
reproduced production profiles within 5% of the full numerical model.  

• Simulation time was less than 1% of that required by the numerical simulator.  

 

This Barnett Shale case confirms that Green’s Function method is not only valid for synthetic 
configurations but also applicable to real, field-scale problems in unconventional plays. Key 
benefits observed: 

• High computational efficiency (no meshing, fast run time) 
• Robustness to complex fracture configurations 
• Excellent match with numerical models for both rate and cumulative production 
• Effective tool for field-scale screening, sensitivity analysis, and early design 

optimization 

Figure 21. Drainage map after 33 years of production: Case 1 with high conductivity 

(left) and Case 4 with low conductivity (right) 
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5.5 Flux Distributions and pressure trends 

In order to interpret production efficiency, determine reservoir connectivity, 
and improve fracture spacing, it is necessary to comprehend how pressure fields and flux 
distributions change around fractures. The semi-analytical Green's function method is used 
in this section to provide a thorough examination of how pressure propagates and how flow 
rates change over time throughout fracture panels. 

Pressure trends 

The pressure field around a fractured region exhibits distinct patterns at various stages of 
production: 

• Early Time: Pressure drawdown is highly localized near the fracture face. Isobars are 
tightly packed, and pressure gradients are steep. This results in high near-wellbore 
velocities and localized flux. 

• Intermediate Time: Pressure begins to diffuse outward. The drawdown front expands 
radially (or elliptically in anisotropic cases), and interference effects between fractures 
become more visible. Pressure gradients flatten. 

• Late Time: Boundary-dominated flow sets in. The pressure distribution becomes more 
uniform across the reservoir, especially when surrounded by no-flow boundaries. 
Pressure gradients reduce, leading to lower flux rates. 

 

Figure 22: Pressure distribution around a transverse fracture over time. The plot shows the 
progression from early-time linear flow to late-time pseudo-radial behavior. 
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Flux distribution across fracture panels 

The contribution of each fracture segment to the overall production can be quantified using 
panel-based Green's functions. This demonstrates how flow changes spatially over time: 

•  Initial phase: The flow is primarily controlled by the central fracture segments (closest 
to the wellbore or injection point) because they have the shortest route and the 
maximum drawdown. 

•  Enlargement phase: Outer panels (at fracture tips) start to contribute more 
significantly as the pressure field changes. This change is very significant, 
particularly in multi-stage configurations or in lengthy horizontal fractures. 

•  Stabilization phase: Late in time, the flux becomes more evenly distributed along the 
fracture length, especially if the fracture is symmetric and matrix properties are 
homogeneous. 

 

 

 

 

 

 

 

 

 

 

Figure 23: Normalized flux profile across fracture length at three different times (log-spaced). 
Early-time shows strong localization; late-time approaches uniformity. 

 

It illustrates the normalized flux distribution across the fracture length at early, 
intermediate, and late times. 

• Early Time: Flow is concentrated near the center. 
• Intermediate Time: Flux spreads toward the tips. 
• Late Time: Distribution becomes nearly uniform. 
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Interpretation and design implications 

These trends offer direct insights for field development: 

• Fracture conductivity optimization: Ensuring sufficient conductivity at the fracture 
tips can extend the effective drainage area. 

• Stage spacing: Interference between adjacent fractures can be inferred from flux 
shifts, informing ideal spacing in horizontal completions. 

• Reservoir heterogeneity diagnosis: Non-uniform flux profiles over time may suggest 
permeability barriers, anisotropy, or depletion. 

The value of semi-analytical Green's function approaches for dynamic reservoir 
characterization is reinforced by the fact that these spatial and temporal insights cannot be 
readily captured using 1D analytical models. 

 
In the following section, we compare the Green's function model to complete physics 
numerical simulators in the same scenarios to assess its general performance. 

5.6 Comparison with numerical simulators 

To evaluate the accuracy and efficiency of the Green’s function-based semi-analytical model, 
multiple case studies were simulated in parallel using both the proposed method and 
conventional full-physics numerical reservoir simulators. This section compares results 
obtained for pressure, production rate, and cumulative recovery. 

 

5.6.1 Benchmarking cases 

The comparison focused on the following cases: 

• Case 1: Single planar fracture in a bounded reservoir 
• Case 2: Multi-stage transverse fractures with uniform spacing 
• Case 3: Orthogonal intersecting fracture network 
• Case 4: Real field application (Barnett Shale Stage 1) 

Each of these configurations was simulated using both: 

• Green’s function semi-analytical model implemented in Python, and 
• A commercial numerical simulator (e.g., CMG, Eclipse, or custom finite-difference 

code) 
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5.6.2 Results overview 

Pressure match: 

In all four instances, the pressure predictions made by the semi-analytical model matched 
the numerical findings to within 3–5% throughout the majority of the simulation window. 
Due to timestep resolution or assumptions of instantaneous pressure propagation, small 
variations were seen at very early times. 

Production rate and cumulative volume: 

The numerical benchmark was closely followed by the predictions for oil and gas 
production. In the instance of the Barnett Shale, the Green's function model's cumulative gas 
output closely matched the numerical simulator, with a 4% difference after 33 years of 
production. 

Run time and computational cost: 

In contrast to the hours or even days that the equivalent numerical runs took, the Green's 
function model finished the simulations in a few seconds to a few minutes. There was no 
need for gridding, meshing, or matrix assembly. 

 

Interpretation 

The comparison confirms that the semi-analytical method: 

• Provides high accuracy for transient pressure and production modeling 
• Scales efficiently with fracture complexity and case size 
• Offers a viable alternative for early-time analysis, sensitivity screening, and decision-

making in fracture design 

Even though the technique assumes constant fracture geometry and uniform and isotropic 
matrix characteristics, its advantages in terms of speed and interpretability make it very 
appealing for real-world engineering workflows. 

 
This concludes with the validation and demonstration of the model's abilities using 
both field and synthetic data. The next chapter offers recommendations for further study and 
summarizes the study's main conclusions. 
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6. Discussion 

6.1 Interpretation of pressure behaviors 

The intricate interaction between fracture geometry, rock and fluid characteristics, and flow 
regimes determines the pressure behaviour of fractured reservoirs. The near-wellbore effects, 
where the impact of each fracture is most noticeable, often control the early-time pressure 
responses. The pressure depletion profiles became more consistent over  time due to flow 
interactions between fractures and the surrounding matrix. 
The pressure responses exhibit unique signatures for various fracture configurations in the 
semi-analytical framework utilized throughout this thesis. 

 For instance: 

• Single planar fractures exhibit symmetric pressure drawdown patterns. 
• Transverse fracture arrays show early-time anisotropic depletion followed by a 

transition to more isotropic profiles. 
• Orthogonal networks present pressure drops that evolve more rapidly due to 

enhanced connectivity and multidirectional flow pathways. 

These signatures not only confirm the physical realism of the model but also support its use 
for diagnostic interpretation. 

 

6.2 Flow regimes: Linear, Bilinear, Radial, Elliptical 

Analysing fracture behaviour depends on the 
capacity to identify and differentiate between major flow regimes: 

•  Linear flow: Defined by a pressure vs. square-root-of-time graph exhibiting a straight-
line behaviour. Common in the early-time flow from planar fractures. 

• Bilinear flow: Happens when transient resistance is contributed by both the fracture 
and the formation. A common phenomenon in low-permeability reservoirs with high-
conductivity fractures is the nonlinear pressure response in log-log space. 

• Radial flow: Occurs late in the process as pressure disruptions spread out 
evenly. It symbolizes the shift to quasi-steady-state behaviour. 

•  Elliptical flow: Common in intersecting fracture networks, where pressure 
fronts extend in the major directions. 
 
By superposing the impact of discrete source components, the  Green's Function 
model reproduces all these behaviours, enabling powerful diagnostic and predictive 
skills. 
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6.3 Influence of fracture conductivity 

The capacity of fractures to transmit fluids is governed by fracture  conductivity, which is often 
represented as the product of permeability and fracture width (kₓw). It influences the rate at 
which pressure drops as well as the beginning of changes in flow patterns: 

• High conductivity fractures facilitate rapid fluid drainage and promote uniform 
pressure distribution. 

• Low conductivity fractures cause pressure propagation to be delayed, which results in 
prolonged bilinear regimes and a longer period before stabilization occurs. 
In sensitivity studies, increasing conductivity led to a quicker pressure drop and a 
faster radial flow establishment. These factors are essential for maximizing 
drainage when designing fracture designs. 

6.4 Advantages over traditional simulation techniques 

Green’s function-based method provides several advantages over grid-based numerical 
simulators: 

• No gridding or meshing: Avoids computational complexity and grid-orientation 
artifacts. 

• Faster run times: Orders of magnitude faster due to closed-form solutions and 
analytical time convolution. 

• Flexibility: Easily handles complex fracture geometries (e.g., orthogonal, transverse, 
overlapping) without remeshing. 

• Insightful diagnostics: By isolating individual source contributions, the method offers 
deeper physical interpretation. 

These benefits make the approach highly attractive for early-stage reservoir evaluation and 
design screening. 

6.5 Practical implications for stimulation design 

The insights gained from this study have direct applications in hydraulic fracturing and 
stimulation planning: 

• Fracture spacing: Diagnostic flow regime recognition helps determine optimal 
spacing to avoid interference. 

• Design validation: Simulated pressure and flux distributions allow engineers to 
validate candidate designs quickly. 

• Conductivity targeting: The impact of conductivity variations on production can be 
quantified, guiding proppant and fluid selection. 

• Field optimization: In combination with real field data (e.g., from Barnett Shale), the 
model supports rapid what-if scenarios and production forecasting. 

In summary, the semi-analytical framework not only offers technical rigor but also aligns 
closely with field development needs. 
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7. Conclusion and future work 

7.1 Summary of Findings 

In order to replicate fluid movement in complicated, three-dimensional fractured reservoirs, 
this thesis has created and tested a semi-analytical Green's 
function method. The method was thoroughly evaluated in a number of fracture 
configurations, including real-world situations from the Barnett Shale, as well as planar, 
transverse, and orthogonal geometries. 
Significant contributions include: 

•  The use of Green's functions to implement point, line, and plane source solutions. 
• Verification using commercial and finite-difference simulators. 
• Precise reproduction of pressure and flux behavior in all key flow regimes. 
• Diagnostic equipment to assess stimulation efficacy and potential fracture 

interference. 

 
The technique's predictive accuracy and physical consistency were demonstrated by 
statistics like normalized flux profiles, pressure distribution maps, and diagnostic flow 
regime plots. 

7.2 Limitations of the current approach 

While the semi-analytical Green’s function method offers considerable speed and insight, it 
also presents several limitations: 

• Homogeneity assumption: The reservoir is assumed homogeneous in porosity and 
permeability. 

• Constant rate production: Most examples assume constant rate injection or 
production. 

• No multiphase flow: The model is strictly for single-phase, slightly compressible 
fluids. 

• Fracture conductivity simplifications: While some variation is possible, full 
heterogeneity modeling requires numerical coupling. 

• Thermal and chemical effects are not included, which may impact real-world 
enhanced oil recovery (EOR) scenarios. 

In a highly heterogeneous or multiphase environment, full-field simulation cannot be 
replaced by this model, although it is useful for early-stage analysis and screening, according 
to these limitations. 

7.3 Future research directions 

To further enhance the applicability and robustness of the presented framework, several 
promising research directions are recommended: 



 

 
61 

• Extension to multiphase systems: Incorporate oil-gas-water phase behavior. 
• Coupled geomechanics: Include stress-dependent permeability and fracture 

aperture evolution. 
• Machine learning integration: Use trained surrogates to accelerate parameter sweeps 

or inverse modeling. 
• Thermal modeling: For application to geothermal reservoirs and thermal EOR 

processes. 
• Field calibration: Apply the method systematically to history-matched field datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.References  

 



 

 
62 

➢   Zhou, J., Banerjee, R., Poe, B., Spath, J., & Thambynayagam, R. K. M. (2014). A 
semi-analytical model for pressure-transient analysis in complex fracture networks. 
Paper SPE 168977, SPE Hydraulic Fracturing Technology Conference, The Woodlands,   

➢  Thambynayagam, R. K. M. (2011). The Diffusion Handbook: Applied Solutions for 
Engineers. New York: McGraw-Hill.  

➢ Warren, J. E., & Root, P. J. (1963). The behaviour of naturally fractured reservoirs. SPE 
Journal, 3 (3), 245-255. 

➢    Mustafa M. Alobaidy. Analysis of fluid flow behaviour in the fractured reservoirs: 
review paper, March 2022.  

➢ A.M. Wijesinghe, Lawrence Livermore Nati. Green’s function for solving unsteady 
flows problems in naturally fractured reservoirs with arbitrary fracture connectivity: 
Part 1 -Theory. SPE 13626, 1985.  

➢ A.M. Wijesinghe, Lawrence Livermore Nati. Green’s functions for solving flow 
equations in naturally fractured reservoirs with arbitrary fracture connectivity, Part 2-
Applications. SPE 15113, 1985. 

➢ Alain C. Gringarten, Henry J. Ramey, R. Raghavan.  Unsteady-state pressure 
distributions created by a well with a single infinite-conductivity vertical fracture, SPE 
journal, Aug 1974. 

➢ Alain C. Gringarten, Henry J. Ramey. Unsteady-state pressure distributions created 
by a well with a single horizontal fracture, partial penetration, or restricted entry. SPE 
journal, Aug 1974. 

➢ Alain C. Gringarten. Reservoir limit testing for fractured wellsSPE745 
➢ Jamie Chan Learn Python in One Day and Learn It Well Python for Beginners with 

Hands-on Project, 2014. 
➢ Marco Frasca. Green function method for nonlinear systems, Feb 2008. 
➢ Marco Frasca, Asatur Zh. Khurshudyan. General representation for the Green’s 

function of second order nonlinear differential equations, Apr 2019.  
➢ Dake, L.P. – Fundamentals of Reservoir Engineering  

 
 
 
 
 

 



 

 
63 

9. Appendix 

9.1 Case 1: Single fracture 
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9.2 Case 2 : Mult-stage fracture 
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9.3 Case 3: Orthogonal fracture network 
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