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Summary

The objective of this thesis is to implement firmware within the STM32CubelDE
environment for the STM32F303RE microcontroller by STMicroelectronics. This mi-
crocontroller is responsible for managing communication with a second device, the Micro
Digital One by Microphase, via the CANopen communication protocol, in order to con-
trol two SPM motors mechanically coupled in opposition and powered through a common
DC link.

The CANopen protocol is implemented at the hardware level using the STM32F303RE’s
integrated CAN peripherals, and at the software level using the open-source CANopenN-
ode library. In this setup, the STM32F303RE operates as the master, issuing commands
to the Micro Digital One, which is configured to receive and execute these commands
accordingly.

The two motors are controlled using different strategies: the first operates in speed
control mode, following the logic defined by the Micro Digital One, while the sec-
ond is driven using a Field-Oriented Control (FOC) algorithm implemented directly in
STM32CubelDE and executed by the STM32F303RE.
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Chapter 1

Hardware overview and assembly

The main goal of this first chapter is to provide an overview of the hardware compo-
nents involved in the experimental set up. The system is composed of an STM32 Nucleo
Board with a paired inverter, a Microphase Micro Digital One inverter a transceiver and
two coupled induction motors. These componets assembled create the system for the
control in back to back configuration.

1.1 System Components

The bench test consists of several components, each contributing to the realisation
of the tests. These include a microcpntroller unit (MCU) mounted on the STM32
Nucleo Board, the two invertes responsible for power delivery to the two motors and
the transceiver connecting the micro via CANopen. In the following sections detailed
explanation of each component will be provided, focusing on their roles and how they
interact within the system.

1.1.1 STM32Nucleo-64-UM1724 Nucleo Board

The STM32 Nucleo-64 boards represent cost-effective and versatile development
platforms, specifically designed to support users in evaluating and initiating develop-
ment with STM32 microcontrollers in 64-pin LQFP packages. These microcontrollers
are built on widely adopted ARM Cortex cores and incorporate an on-board ST-LINK
debugger/programmer, thereby removing the need for external debugging hardware. Ad-
ditionally, the boards support Arduino Uno V3 connectivity as well as ST morpho headers,
allowing for seamless integration with a broad range of expansion shields. The specific
model utilized in this work is the 64-pin NUCLEO-F303RE board, which is based on the
STM32F303RE microcontroller. This MCU offers the following key features:

- ARM Cortex-M4 core (CPU) running at an internal clock speed of 72 M Hz;
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- 512 Kbytes of Flash memory;
- Four ADCs with selectable resolution ranging from 6 to 12 bits;
- 14 timers, including PWM channels, pulse counting and encoder signals;

- Communication interfaces such as a CAN interface, up to 5 USARTSs and up to 4
SPI channels.

Figure 1.1 depicts the Nucleo board used in this application.

CN2 ST-LINK USB

ST-LINK/Nucleo mini B connector
selector

LD1
CN4 (Red/Green LED)

SWD connector

B1USER
button

JP6 IDD
measurement
LD3

(Red LED)
power

B2
RESET button

B2
3.3V regulator output

LD2
(Green LED)

ARDUINO®
connector
CN7

ST morpho
connector

CN5
ARDUINO® connector

CN10
ST morpho connector

CNg
CNg ARDUINO* connector
ARDUINO®
connector
32KHz
crystal(1) ~—

microcontroller

Figure 1.1: NUCLEO-F303RE Board

The pins of the MCU are accessible through the side connectors of the board.
Figure 1.2 displays the pinout configurations of both the Nucleo board and the LQFP64
package.
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1.1.2 Inverter Board X-NUCLEO-IHM08M1

The X-NUCLEO-IHMO08M1 is a three-phase inverter expansion board developed
for use with STM32 Nucleo platforms. It integrates the STL220N6F7 STripFET™
F7 Power MOSFET and the L6398 half-bridge gate driver, delivering an efficient and
compact solution for motor control applications. The board supports both sensorless and
sensor-based control strategies and includes configurable jumpers to enable either single-
shunt or three-shunt current sensing. Full compatibility with STM32 Nucleo boards is
ensured, and the presence of ST morpho connectors allows straightforward integration
and expansion. An overview of its connection and configuration is provided in Figure
1.3.

Connectors to the
nucleo board

- ]

(a) X-NUCLEO-IHM0O8M 1 (b) Inverter plugged on NUCLEO-F303RE

Figure 1.3: Expansion Board X-NUCLEO-IHM08M1

The schematic of the inverter’s power section is shown in Figure 1.4.
The DC-link requires a supply voltage between 8 V and 48 V, and the MOSFET bridge
is realized using 60 V STL220N6F7 discrete devices.
Each leg of the three-phase inverter is driven by a dedicated gate driver IC, such as U22
for phase 1.
The labels TIM1_Cxx indicate the gate driver commands generated by the MCU of the
Nucleo board, such as TIM1_CHI1 and TIM1_CHIN for phase one.

Gate Driver and Bootstrap

The L6398 integrated circuit employed on this STM32 Nucleo expansion board is a
high-voltage gate driver developed by STMicroelectronics. It is capable of driving N-
channel power MOSFETs in half-bridge configurations and supports supply voltages up
to 600 V. Each gate driver stage utilizes a 1 ps external bootstrap capacitor to supply the
floating high-side drive circuitry. In this context, floating refers to a node not referenced
to ground.
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As illustrated for phase one in Figure 1.4, when the low-side MOSFET Q12 is
conducting, the bootstrap diode D15 becomes forward-biased, allowing the bootstrap
capacitor C119 to charge to approximately +15 V. When Q12 is turned OFF and the
high-side MOSFET Q11 is activated, the output at node OUT]1 rises to the DC-link
voltage (exceeding 15 V), reverse-biasing diode D15. At this point, capacitor C119, now
disconnected from ground, serves as a 15 V floating supply referenced to OUT1, enabling
proper high-side gate drive.

While the bootstrap technique is a simple and cost-efficient method for supplying the
high-side driver, it does come with several inherent limitations:

- Periodically, the low-side switch must turn ON to recharge the bootstrap capacitor;

- Lower switching frequencies require a larger bootstrap capacitor to ensure stable
operation.

As discussed later, it is crucial to limit the duty cycle within a narrower range to
ensure proper recharging of the bootstrap capacitor during each PWM cycle, preventing
issues with the high-side gate drive performance. In the presented control system, duty
cycles are saturated between 0.05 and 0.95.
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Shunt Resistors and Overcurrent Protection

Figure 1.5 shows the location of three shunt resistors positioned at the bottom of each
inverter leg. These components are responsible for detecting the current flowing through
the respective low-side MOSFETs. When a low-side MOSFET is active, the current
passing through its corresponding shunt resistor effectively represents the motor phase
current, albeit with a negative sign. As previously outlined, reliable current sampling
within each PWM cycle requires appropriate saturation of the duty cycles. This condition
ensures that the low-side switches remain active for a sufficient duration during every
switching period, thereby enabling the acquisition of valid current measurements.

Vshunt_1 > Vshuni_2 Vshunt_3 )
R43 Ra4 R45
0.010 1w 0.010 1W 0.010 1W

-

Figure 1.5: Shunt Resistors

The analog conditioning circuitry depicted in Figure 1.6 serves to buffer the voltage
drop across the shunt resistors and rescale it to fit within the 0-3.3 V input range of
the microcontroller’s ADC channels. This rescaling is achieved through a combination
of gain and offset, defined by the resistor network within the circuit. However, due to
the relatively high tolerance of these resistors, precise current measurements cannot be
ensured without recalibrating the offset digitally at each motor startup.

Once conditioned, the analog signal within the 0-3.3 V range is sampled by a 12-bit
ADC and converted into a digital value, which is then read in real time directly from the
ADC register.
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Figure 1.6: Conditioning Circuitry and Hardware Protection

The X-NUCLEO-IHMO8M1 is rated for 15 A (22 A,) output current. Figure 1.6
also highlights the hardware overcurrent protection circuit, which is configured with a
threshold of 30 A,r. When the current through a shunt resistor exceeds the reference
voltage V. r, the output of the comparator (BKIN) is pulled low (to GND). This BKIN
signal is connected to the TIM1gKIN input of the microcontroller, which allows the
timer TIM1 to immediately and asynchronously disable the PWM modulation signals by
triggering its Break function.
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1.1.3 Microphase Mirco digital One inverter

The Micro digital One is a very compact full digital regenerative servo drive for
permanent Brushless and Brush DC servomotors. The Micro Digital One drive features
a high-integration RISC microprocessor, enabling a compact design, high dynamics, and
exceptional resolution in speed and positioning control.

It can operate in torque, speed, and positioning control modes and supports fieldbus
communication protocols such as S-NET, S-CAN, Modbus RTU, and CANopen.

Models

There are avaliable two different models due to different range for voltage operation.
They take the anme of Modello 65 and Modello 100.

Table 1.1: Micro digital One models

Models Voltage range Nominal voltage

Modello 65  20-84 Vpc 65 Vpe
Modello 100 30-130 Vpc 100 Vpce

It is also possible choose from different current sizes for the two models.

Table 1.2: Micro digital One sizes

Sizes Nominal current Peak voltage

2/4 2A 4 A
4/8 4 A 8A
7/14 7A 14 A
10/20 10 A 20A

For this specific applacation is used the Modello 65 size 10/20.

Programming

Before using Micro Digital One, it is necessary to configure certain parameters based
on the motor and the selected application.

To modify these parameters, the dedicated Drive Watcher software (version 4.03 or
later) must be used on a Windows-based PC, connecting to the drive via an RS422 serial
interface through one of the CN5 or CN6 connectors.

A comprehensive set of parameters is available to optimize the system according
to specific requirements. Additionally, dedicated software tools are provided for more
complex mechatronic functions.
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The Drive Watcher program enables an in-depth analysis not only of the drive’s
operational variables but also of the entire dynamic system, including the motor and load.

Using the program’s utility, it is possible to graphically monitor and store key variables
such as current, speed, and voltage, facilitating a precise assessment of the torque demand.
This, in turn, helps optimize motor sizing.

The generated graphs can be either printed or saved as files for further analysis.

Onboard Diagnostics

The onboard diagnostic system enables real-time monitoring of the drive’s status and
verification of its proper operation.

The drive is equipped with protective measures against power stage short circuits,
ground faults, overcurrent, overvoltage, and encoder cable disconnection.

These faults are logged in the system memory. Multiple alarms are stored and can be
retrieved as long as the drive’s service power supply (+24 Vp¢) remains active

Serial Communication

The RS422 serial port is available as a standard feature, allowing the Micro Digital One
drive to be connected to a PC for programming and debugging via a standard USB/RS422
interface. Additionally, the serial interface supports Modbus communication, enabling
remote control and integration into industrial automation systems.

Technical Specifications

In the following table are reported the most relevant parameters of the Micro one
Digital.

Table 1.3: Micro digital One paramters

Signal Description

Vbc Power Supply 20-84 V

Vbcrjo  Control Section Power Supply and Digital Inputs 24 V + 15,2 A
A Nominal output current 10 A,

fow Swithcing frequency 20 kHz PWM
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Interface Description

In this pharagraph are listed and briefly discussed all the port present on the Micro
digital One which give its ability to connect with other devices.

Table 1.4: Micro digital One ports

Port

Description

Motor Hall Sensor Inputs

Motor Encoder Inputs

Serial Port
CAN port
Isolated Digital Inputs

Isolated Digital Outputs

The inputs are single-line type operating at 0-5 V

and can be connected to 5 V line driver encoders,

using either the direct signal or a push-pull configuration
The inputs are single-line type, operating at 0-5 V,

and can be connected to 5 V line driver encoders,

using either the direct signal or a push-pull configuration.
Dual RS422 (opto-isolated)

Dual and opto-isolated

The system includes 8 isolated digital

inputs operating at 24 V with an impedance of 2.2 k€Q.

- Logic level 1: Input signal at +24 Vpc

- Logic level O: Input signal at 0 V or disconnected

1 relay output: 24 V, 100 mA, used for drive OK signaling.
4 configurable outputs: 24 V, 0.5 A each.

Input

0v24 T
O

C+24V I
A l :

l I Output

(a) Digital input reference circuit (b) Digital output reference circuit

Figure 1.7: Micro digital One I/O reference circuits
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Connectors

The variuos ports prensent on the Micro digital One are placed along the front side
and the upper side of the cover like shown in figure 1.8.

CAN/RS422

1CANH

2CANL

j 3 CAN-RS422 GND
2/ 1RS422TX

S 5R42TX
\s SHEELD
7RS422RX
8RS422RX\

SIGNALS

o +HV
o || GND POWER
o || U(-M)
o || V(+M)

i
2
3
4
5
6
1
8
9

Figure 1.8: Micro digital One ports

In the upper side are presents two connectors CN2 and CN3. In table 1.5 and 1.6 are
briefly described the connectors pinout whose labels are also visible in figure 1.8.

Table 1.5: Micro digital One CN2 connector

N° pin Signal Signal description

LS1 Input 24 V limit switch 1
LS2 Input 24 V limit switch 2
SYNC Input 24 V SYNC

EMER Input 24 V EMER

OUTEQOJ Output OUTEOJ 24 V,0.5 A
ALARM  Output ALARM 24V,05 A
BRAKE Output BRAKE24V,05 A
VEL Output VEL 24 V,0.5 A

01NN AW

10
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Table 1.6: Micro digital One CN3 connector

N° pin Signal

Signal description

INO
IN1
IN2
IN3
IN4
IN5

01O\ N KW

HOME

Configurable input 24 V
Configurable input 24 V
Configurable input 24 V
Configurable input 24 V
Configurable input 24 V
Configurable input 24 V

STROBE Input STROBE 24 V

Input HOME 24 V

CN3

CN2

1

1

OOODOOOO\

0000000

fan)

Figure 1.9: Micro digital One top connectors schematic

The majority of the connectors are placed on the side of the Micro digital One and in
this aplication are the most used, connecting the Micro to PC with CNS5 or CN6 (table
1.7), supplying the logic with CN1 (table 1.8), monitoring the motor with CN4 (table
1.9) and supplying the motor with M1 (table 1.10).
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Table 1.7: Micro digital One CNS and CN6 connector

N° pin Signal

Signal description

OO\ N B W=

CANH
CANL
CAN GND
TX

TX()

SH

RX

RX(-)

Signal CAN H

Signal CAN L

CAN refernece / RS422
RS422 TX

RS422 TX(-)

Shield

RS422 RX

RS422 RX(-)

Table 1.8: Micro digital One CN1 connector

N° pin Signal

Signal description

0NN AW~

24V
0v24

OK

IEN
TEN
REF
REF/

SH

Input 24 V
Signal reference for 24 V iput

Output 24 V

Input 24 V movement enablement
Input 24 V coupling enabling
Positive input 10 V

Negative input -10 V

Analog signal reference

Table 1.9: Micro digital One CN4 connector

N° pin Signal Signal description

1 GND Ground for encoder

2 ENC A Input encoder A 0-5V
3 ENC B Input encoder B 0-5 V
4 ENCZ Input encoder Z 0-5 V
5 +V (OUT) Onput5V (150 mA)
6 GND Ground for hall

7 Hall 1 Input hall 1 0-5V

8 Hall 2 Input hall 2 0-5V

9 Hall 3 Input hall 30-5V

12
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Table 1.

10: Micro digital One M1 connector

N° pin Signal Signal description

(W N R S

+HV Power supply for motor

GND Power supply reference for motor
U (-M) Phase U (postive DC motor)

V (+M) Phase V (negative DC motor)

\

Phase W

CNS

CNo6

D ]

1

1

L o

o o

A

e

| ==l 1

D

CNI1 CN4

Ml

Figure 1.10: Micro digital One side connectors schematic
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1.1.4 Induction Motors

For this application two induction motors are coupled together. One motor is the
S1402B353 Brushless Servomotor and S1601B303 Brushless Servomotor both pro-
vided by Microphase.

They have some common aspects:

- Sinusoidal B.EM.F;

- Rare earth magnets (NdFeB);

- Special falanges and shaft;

- Facoder 2048PPR 5V LD or absolut encoder;
- Flying screw connectors;

- Low rotor inertia.

In the following tables are listed the specifics of the two induction motors.

Table 1.11: Induction motors S1601B303 Brushless Servomotor specifics

Parameter Symbol Value
Stall torque My (Nm) 0.35
Peak torque My (Nm) 2.60
Rated torque My (Nm) 5.30
Torque constant Kr 0.159
Voltage constant Kg (Vis | krpm)  9.36
Stall current Ito (Armsa) 5.45
Rated current Iy (A) 5.30
Peak current Inpax (Arms) 16.4
Rated power Py (W) 250
Rated speed Ny (rpm) 3000
Max speed Nyax (rpm) 4000
Rotor inertia Jr (kg = cm?) 0.19
Winding resistence ~ Ry_y (ohm) 0.85
Winding inductance Ly_y (mH) 2.60
Weight M (kg) 1.2
Max radial load (N) 250
Max axial load (N) 80
Time rating - Continuos
Level of protection - 1P55
Insulation class - FClass

14
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Table 1.12: Induction motors S1402B353 Brushless Servomotor specifics

Parameter Symbol Value
Stall torque My (Nm) 0.35
Peak torque My (Nm) 0.96
Rated torque My (Nm) 0.32
Torque constant Kr 0.05
Voltage constant Kg (Vips | krpm)  3.15
Stall current Ito (Armsa) 6.7
Rated current Iy (A) 6.6
Peak current Inpax (Arms) 18
Rated power Py (W) 100
Rated speed Ny (rpm) 3000
Max speed Nyax (rpm) 5000
Rotor inertia Jr (kg = cm?) 0.06
Winding resistence ~ Ry_y (ohm) 0.5
Winding inductance Ly-y (mH) 0.53
Weight M (kg) 0.65
Max radial load (N) 120
Max axial load (N) 80
Time rating - Continuos
Level of protection - IP55
Insulation class - FClass

1.1.5 Other required components

In order to connect via CANopen the Nucleoboard with the inverter and the Micro
digital One a SN6SHVD230 CAN transceiver (3.3 V) is used. A PCAN probe can be
used paire with the PCAN-View software with the purpose of monitornig the CANopen
net and with the possibility of sendind message to the nodes of the net directly from
PCAN-View.
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1.2 Test bench set up configuration

In the following Figure 1.11 a look to the test bech is provided.

$160-1B303 motor]

[ DC Power Supply ]

Nucleo Board +
inverter

/

As can be seen two DC power supply are needed for the Micro digital One, the first
supply the logic and the second supply the power part. The STM32F303RE use the
second DC power supply for the inverter portion while the nucleo is supply by the USB
port. The set up is completed with the trwo motors in back-to-back configuration, the
transceiver for CANopen communication and the PCAN probe for reading and sending
messages into the network.

Figure 1.11: Test bench set up
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B A o
w* o v ., T
[ PCAN Probe ]
Rete CANopen I Rete CANopen
| 3 4

Micro digital One <

—-<—’[ udea Board inverter]

[ S160-1B303 motor ]—-—[ S$140-2B353 motor ]

Figure 1.12: Scheme for the test bench

The scheme in Figure 1.12 can be clarify the interaction of the CANopen network
between the two microcontroller driving the motors.
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Chapter 2

Microcontroller Configuration and
Firmware Implementation

This chapter presents a comprehensive description of the development of the embed-
ded firmware and the configuration of the microcontroller peripherals employed in the
project. It details the procedures involved in automatic code generation, the configuration
of hardware timers, the initialization of key peripheral modules, and the implementation
of the CANopen communication protocol. These activities are fundamental to enabling
reliable data exchange between the STM32F303RE-based Nucleo Board and the Micro
Digital One system.

2.1 Project Generation

The real-time control project is developed using STM32CubeMX, a graphical con-
figuration tool provided by STMicroelectronics. It simplifies the initialization of micro-
controller peripherals, including pin assignment and peripheral setup.

STM32F303RE_CANopen.ioc - Pinout & Configuration

Pinout & Configuration Clock Configuration Project Manager

v Software Packs v Pinout

STM32F303RETx
LQFP64

Middleware and Software Pac... >

~  Unused GPIOs: |25/5

- @l

Figure 2.1: STM32CubeMX Overview

19
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The deployed MCU features 64 pins, each capable of supporting multiple peripheral
functions through multiplexing. Figure 2.2 presents a detailed pin configuration, illus-
trating the specific function assigned to each pin.

Additionally, the figure includes the Nucleo board pinout, with the pins used in this
project highlighted in red to clearly indicate their roles.

B1 [Blue PushButton]

y NUCLEO-F303RE
RCC_0SC32_IN . 3
RCC_0SC32_0UT ‘
keguose ___ GNT CN6 pog NS CN1D
RCC_0SC_OUT TIM1_CH3 Service PCT0 =] PC11 [ PC8
[P 3 PD2 P8O PCé
IIM1-CH2 VDD =3 ESV PC5
7 GND iy usv
ADC1_ING |8 TIM1_CH1 NG GND e
b OFE v e ] P2
RESET } PAT1

STM32F303RETx

V3
8V
GND
oo IVLCRZLPAS =T PWM pgy
VIN TIM1 CHI{;’-‘%{ {PBT} TIM1CH3N
NC ENC_CHz P10} PBI15
ADC1_IN1 LQFP64 PC15 HZIHIES T TPEA PB14
2 i PFO [PAT] VB PB13
aoctn: (RN PF1 "BAT DACL AGND
USART_TX VBAT LPBO: TIM1 CH2N TIM1 CH PC4
= PC2 BCT! i_b NC
o ol ol = PC3 1PCO; i_c NG
g g & 2 L CNg CN9
% 72z 2z ¢
= L 5 3 1 B Aduino B Morpho
(a) MCU Configuration (b) Nucleo Board Configuration

Figure 2.2: MCU and Nucleo Board Configuration

Specifically, the employed peripherals are:

- Timer TIM1 — Generates gate commands to drive the MOSFETs and triggers the
execution of the control algorithm within the Interrupt Service Routine (ISR);

- Timer TIM2 — Counts encoder pulses to determine the motor’s mechanical position;

- Timer TIM7 — Provides the time base for the CANopen network, ensuring correct
timing for signal transmission;

- ADCI1 - Samples the three-phase currents measured via the inverter’s shunt resis-
tors, as well as the DC-link voltage supplying the inverter;

- GPIO - Interfaces with the user button on the Nucleo board to detect inputs and
trigger specific system actions.

The software is organized into distinct configuration sections, each dedicated to a

specific peripheral. These sections allow for the customization of parameters such as
clock sources, operating modes, interrupt priorities, and communication settings.
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Timer

Reference Gate Commands

pm——————-——

Interruptat T'g

Feedback

Figure 2.3: Block Diagram of the Embedded Controller

2.1.1 Clock Configuration

The System Clock is responsible for managing the internal timing of the MCU and dis-
tributing clock signals to all peripherals. Figure 2.4 illustrates the adopted configuration,
in which each peripheral receives an input clock frequency of 72 M Hz.

e Crack W
/32 ———— %O . Tol2C1 (MHz)
263 Clock s
.

>0 To RTC (K > = [

32.768 LSE O —®
~ Lsine . ) Totcs ha)

© 0

—0

S To IWDG (KHz)
—_— s rerumekmm
Systom Clock Mux

Hsi

\
MH: HSE
R N Ny N7

A

Enable CSS

oot equency [ P
> oo rocrz e X1 [ 72 v umercoss iy
USART Clock
. To ADGS.4 (e A~
0
T sourco Mux -
PLCLKZN, g N
O —»O
To Tt e rovez | =
To 25 (Hz) pove | USART Clock Mux »©
. —»|®
o) 7 svseL ™\
Jo s ey —*0
B sl
® L
” Lse o USART2 (MHz)
=10 usarmscrockmun
romms o pesr | -
e e
% o
| — Jrousanr
W7 source W =0
C ART4 Cloc —®
Led! < ) Jo s A
). — —»|® -
~ // —» 0
T . [ ]
— )
©|< T2 sourco Mux Of  varTs Clockmux
pLLoLk2N\ ® KN\
N —»(0 —*e® —»O
M3/4 source Mux 72 To TIM2 (MHz) !
sova| 2] “ o
N —»® e *ﬂ ‘ «
—O |~ >0
Jo ez e e
e
>

Figure 2.4: System Clock Configuration
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2.1.2 TIM1 Configuration

Figure 2.5 shows the configuration of Timer TIM1. Channels CH1, CH2, and CH3
are set to generate PWM signals that control the three legs of the inverter. Each channel
provides two complementary outputs: CHx for the high-side MOSFET and CHxN for
the low-side MOSFET. Additionally, CH4 is configured to generate a trigger signal for
ADCI, enabling synchronized sampling of the three-phase currents and the DC-link
voltage.

* PWH Generation Channel 2 and 2N
Mode PWM mode 1
Pulse (16 bits value) 0

Channel3 PWM Generation CH3 CH3N

TIM1 Mode and Configuration :  PWH Generation Channel 1:and 1N
e P
Pulse (16 bits value) 0
Stave Mode Disable | Fastlode Disable
Trigger Source Disable M CH Polarity High
Clock Source |Internal Clock - CHN Polarity Low
CHdle State Reset
Channel1[PWM Generation CH1 CH1N v] il Siate oot
Channel2[PWM Generation CH2 CH2N v]

Channel4 PWM Generation No Output

FastMode Disable

CH Polarity High
‘ = o CHN Polarity Low
. CHdle State Reset
CH Il State Reset
® Parameter Settings @ User Constants ~ PWM Generation Ghannel 3and 3N
Configure the below parameters: | Hoce P mode 1
- ; Pulse (16 bits value) 0
h | ° Fastllode Disable
-+ Counter Settings l o Polarty igh
Prescaler (PSC - 16 bits value) 0
Counter Mode Center Aligned mode3 CHN Polariy Low
Counter Period (AutoReload Regi... 7200 CHdle Sate Resel
Internal Clock Division (CKD) No Division . P\WCG:NH:::”‘a;am . Resel
Repetition Counter (RCR - 16 bit... 0
auto-reload preload Enable Made PUN mode 1
 Trigger Output (TRGO) Parameters Pulse (16 bits value) 162
Master/Slave Mode (MSM bit) Disable (Trigger input effect not delayed) FastMode Disable
Trigger Event Selection TRGO Output Compare (OC4REF) CH Polarity High
Trigger Event Selection TRGO2 Reset (UG bit from TIMx_EGR) CHdle State Reset

Figure 2.5: TIM1 Configuration

These settings configure TIM1 in an up/down counting mode to emulate a symmetric
triangular PWM carrier. The counter increments up to the value in the Auto-Reload
Register (ARR), set to 7200, then decrements back to zero. With a 72 M Hz input clock,
each counter step occurs every 13.8 ns. This results in a PWM carrier frequency of 5
kHz, as the full up-down cycle takes 200 us.

TIM1 also generates update events to synchronize key system operations. These
events trigger both the Interrupt Service Routine (ISR) for control code execution and the
ADCI conversion process. Operating in Center-Aligned Mode 3, TIM1 produces update
events at both the rising and falling edges of the triangle waveform—i.e., at the counter’s
zero and ARR values—resulting in two update events per PWM period.

To limit ISR execution to the positive peak (ARR value), the Repetition Counter
Register is used. Initially set to 0, it is later configured to 1 in the user code, allowing an
ISR call on every second update event. This setup is critical because the phase currents,
sensed via low-side shunt resistors, can only be accurately sampled when the low-side
MOSFETs are conducting.

Channel 4 of TIM1 is configured in PWM mode, but instead of generating a PWM
output, it produces a TRGO trigger output when the counter reaches 7182. This occurs
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0.25 us before the ISR is invoked (when the counter reaches 7200). This timing ensures
that ADC conversions begin just prior to ISR execution, aligning current and voltage
sampling with the ideal point in the PWM cycle.

2.1.3 ADCI1 Configuration

Due to physical pin mapping constraints between the inverter and the Nucleo board, it
is not feasible to utilize all four ADC units available on the microcontroller. Consequently,
only ADCI1 is employed to sample the three-phase currents and the DC-link voltage.

ADCI measures:

- Phase current i, (channel 1),
- Phase current i, (channel 7),
- Phase current i, (channel 6),
- DC-link voltage v c (channel 2).

ADCI1 operates in injected conversion mode, which allows a sequence of conversions
to be triggered by an external event—specifically, the TRGO signal generated by TIM1
Channel 4. Once triggered, ADC1 performs the four conversions in sequence, storing
each result in a dedicated JDATAX register.

Ideally, all three-phase currents should be sampled at the positive peak of the triangular
PWM carrier, where they most accurately reflect their average values. However, since
only one ADC unit is available, the currents cannot be sampled simultaneously.

Each 12-bit ADC conversion takes approximately 0.25 us, so sampling the three
currents requires 0.75 us in total. To align the samples as closely as possible with the
PWM peak, TRGO is configured to occur 0.25 us before the ISR is triggered at the
triangle’s maximum. This scheduling ensures that the first current sample (i, ) is taken at
the optimal point, while i, and i, follow with minimal delay, still remaining close to the
peak.

The final conversion in the sequence is the DC-link voltage, v;c, which is not as
time-sensitive as the phase current measurements. Therefore, its placement at the end of
the sequence does not impact control performance.

Figure 2.6 illustrates the ADC1 configuration and the detailed timing of the conversion
sequence.

23



Microcontroller Configuration and Firmware Implementation

ADCA1 Mode and Configuration

IN1[IN1 Single-ended

~]
IN2[IN2 Single-ended ~]
~]

[@Disable

ING [ING Single-ended

conflict with:
USART2 : Mode Asynchronous.

IN7 IN7 Single-ended

Reset Configuration
@ Paral s

> ADCs_Common_Settings
v ADC_Setings
Clock Prescaler
Resolution
Data Alignment
Scan Conversion Mode
Continuous Conversion Mode
Discontinuous Conversion Mode
DIA Continuous Requests
End Of Conversion Selection
Overrun benaviour
Low Power Auto Wait
> ADC_Regular_Conversioniode
v ADC_Injected_Comversiontlods
Enable Injected Conversions
Number Of Conversions
External Trigger Source
External Trigger Conversion Edge
Injscted Conversion Mode
Qusue Injected Context Node
Rank
Rank
Rank
Rank

ADC Asynchronous clock mode
ADC 12-bit resolution

Right alignment

Enabled

Disabled

Disabled

Disabled

End of single conversion
Overrun data overwritien
Disabled

Enable

4

‘Timer 1 Trigger Out event

Trigger detection on the rising edge

None

Injscted Queue enabled with Mode 0 (2 contexts, last active

2
3
4

Ip

Figure 2.6: ADC1 Configuration

2.1.4 TIM2 Configuration

Timer TIM2 is a general-purpose timer that, unlike TIM1, does not produce comple-
mentary PWM signals to control the inverter legs. This type of timer is typically used to
count the position pulses from an incremental encoder.

Figure 2.7 shows the configuration of TIM2.
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TIM2 Mode and Configuration ;
Mode

Ehannei3[Disable

Channel4 [Disable

Combined Channeis(Encoder Mode

Resat Configuratian

[Configure the below parameters

~ Counter Setings
Prescaler (PSC - 16 bits value)
Counter Mode
Counter Period (AutoReload Register - 32 bits value )
Internal Clock Division (CKD)
auto-reload preload
~ Trigger Output (TRGO) Parameters
MasteriSlave Mode (MSM bit)
Trigger Event Selection TRGO
~ Encoder
Encoder Mode
___ ParametersforChannel 1___
Polarity
IC Selection
Prescaler Division Ratio
Input Filter
___ Parametersfor Channel 2___
Polarity
IG Selection
Prescaler Division Ratio
Input Filter

When operating in Encoder Mode, channels 1 and 2 receive the quadrature signals
A and B from the encoder. The encoder features a 13-bit resolution, providing 2048
mechanical divisions per revolution. Due to the 90° phase shift between signals A and
B, this results in 8192 pulses per revolution. Both channels are configured to trigger
on rising edges, allowing the counter to increment on each rising transition of signals
A and B. The encoder’s index signal (Ri), which marks the mechanical zero position, is
connected to pin PB10. This pin is set up in EXTI (external interrupt) mode to generate
an interrupt on a rising edge. When the interrupt is triggered, the TIM2 counter is reset

to zero.

No Division
Disable

Disable (Trigger input effect not delayed)
Reset (UG bit fram TIMy_EGR)

Encoder Mode TI1 and T2

Rising Edge
Direct

No division
0

Rising Edge
Direct

No division
0

& GPI0 @ Sin & ADC G0
[.].] GPIO mode ePio Pull-upPuli-a. ][] UserLabel  [m.]
PAS Output Push Pull No pull up pull down LD2 [Green Led]
PB10 External Interrupt Mode with Rising edge trigger detecti.. No pull up pull down )
PC13 External Interrupt Mode with Falling edge frigger dstecti... No pull up pull down 81 (Blue PushBution]
PB10 Configurat
GPIO mode [External Interrupt Mode with Rising edge trigger detection ~]

[ Group By Peripherals

GPIO Mode and Configuration

T

GPIO Pull-up/Pull-down

User Label

[No pull up pull down

Figure 2.7: TIM2 Configuration
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2.1.5 TIM7 Configuration

Timer TIM7 is like timer TIM2 a general purpose timer that is used to count the

pulse position in order to giving a precise time count for the CANopen network. TIM7 is
related to bus APB1 and it has a 72 M Hz clock.

TIM7 Mode and Configuration
Mode

Activated

[J One Pulse Mode

Configuration

Reset Configuration

© Parameter Settings | @& User Constants | @ NVIC Settings | @ DMA Settings
Configure the below parameters : ‘

Q ‘ 0
~ Counter Settings

Prescaler (PSC - 16 bits value) 71

Counter Mode Up

Counter Period (AutoReload Register - 16 bits value ) 1000

auto-reload preload Enable
~ Trigger Output (TRGO) Parameters

Trigger Event Selection Reset (UG bit from TIMx_EGR)

Figure 2.8: TIM7 Configuration

2.1.6 NVIC Configuration

The system handles multiple interrupts, including the TIM1 update event, TIM1
break event, external interrupt (EXTI), CAN7X interrupt, CANgX interrupt, and the
TIM?7 interrupt. The Nested Vectored Interrupt Controller (NVIC) is configured to
manage these interrupts based on their predefined priority levels, as shown in Figure 2.9.
In the corresponding section of the CubeMX-generated code, it is possible to configure
interrupt behavior by adjusting both priority and subpriority values.
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@& NVIC | @ Code generation

Memory management fault 0 0
Pre-fetch fault, memory access fault 0 0
Undefined instruction or illegal state 0 0
System service call via SWI instruction 0 0
Debug monitor 0 0
Pendable request for system service 0 0
Time base: System tick timer 15 0
PVD interrupt through EXTI line 16 O 0 0
Flash global interrupt O o 0
RCC global interrupt O o 0
DMA1 channel6 global interrupt 0 0
DMA1 channel7 global interrupt 0 0
ADC1 and ADC2 interrupts O o 0
USB high priority or CAN_TX interrupts 0 0
USB low priority or CAN_RXO interrupts 0 0
CAN_RX1 interrupt O o 0
CAN_SCE interrupt O o 0
TIM1 break and TIM15 interrupts 0 0
TIM1 update and TIM16 interrupts i 0
TIM1 trigger, commutation and TIM17 interrupts O 0 0
TIM1 capture compare interrupt O 0 0
TIM2 global interrupt O o 0
USART?2 global interrupt / USART2 wake-up interrupt through EXTI line 26 O 0 0
EXTI line[15:10] interrupts 0 0
TIM7 global interrupt 2 0
Floating point unit interrupt O 0 0
[l Preemption Prioritv ’—‘ Sub Prioritv ’—‘

Figure 2.9: NVIC Configuration

The external interrupt is linked to the encoder’s Ri channel, ensuring that the TIM2
counter is accurately reset to zero when the encoder reaches its mechanical zero position.
As aresult, this interrupt is assigned a higher priority than the TIM 1 update event interrupt.
In the event that the external interrupt is triggered while the main interrupt service routine
(ISR) is being executed, the main ISR is preempted, and the external ISR takes precedence.
The break event interrupt, which is triggered upon overcurrent detection, is assigned the
highest priority among all interrupts. This configuration guarantees that, in the event of
an overcurrent, the converter is immediately shut down to prevent hardware damage.
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2.1.7 IWDG Configuration

The Independent Watchdog Timer (IWDG) is a down-counter that automatically resets
the microcontroller if the execution time exceeds a predefined threshold, determined by the
IWDG reload value. Under normal operating conditions, the watchdog is periodically
refreshed by the software at the beginning of each interrupt service routine (ISR), as
illustrated in Figure 2.10.

Reload value

IWDG Downcounter
Areload A
Ly Lyt 1 (T
1 ready
ISR execution /
| FW time
I TS

Figure 2.10: IWDG

For safety purposes, the IWDG clock is internally generated and operates indepen-
dently of the MCU’s main system clock. As illustrated in Figure 2.4, it runs at a fixed
frequency of 40 kHz. As shown in Figure 2.11, the prescaler is configured to 4, and
the reload value of the down-counter is set to 50. This configuration results in a timeout
period of 300 s, after which the microcontroller is automatically reset if the watchdog
is not refreshed in time.

IWDG Mode and Configuration :

Activated

Reset Configuration

& Parameter Settings | @ |lser Constants

[Configure the below parameters |

QFeach A ] ® O o
~ Watchdog Clocking

IWDG counter clock prescaler 4

IWDG window value 4095

IWDG down-counter reload value 3

Figure 2.11: IWDG Configuration
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2.1.8 USART Interface

To monitor global variables within the MCU in a manner similar to using an os-
cilloscope, a MATLAB-based application called Pandora Scope was employed. This
tool was designed and developed by Fausto Stella and Enrico Vico, researchers at the
Politecnico di Torino. Figure 2.12 displays the application interface along with a typical
real-time data acquisition session performed during motor testing. On the left side of the
interface, a list of relevant variables from the control code is presented, enabling the user
to select which variables to visualize and how many to plot concurrently. Furthermore,

the application supports the creation of multiple figures or the overlay of different data
sets within a single figure for comparative analysis.
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Figure 2.12: Pandora Scope

During each TIM1 update interrupt service routine (ISR), data is transmitted via the
USART interface. The microcontroller sends the signals to the ST-LINK/V2 debugger
over the USART communication line, which then relays the information to the host
computer through a USB interface emulating a COM port.

The application’s downsampling functionality enables the transmission of a large number
of variables, which was crucial for generating the motor control plots presented in the
subsequent chapters.

Moreover, the application supports both the recording of several seconds of signal data for
offline post-processing in MATLAB and real-time visualization, functioning as a virtual
oscilloscope with an integrated trigger mechanism.
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2.2 Project File Organization

The project is composed of multiple source files, some of which are entirely user-
defined, including:

- Constants file, where motor parameters and key constant values are defined for
use within the control code. This strategy enhances computational efficiency by
avoiding runtime operations such as divisions;

- Variables file, which contains the definition and initialization of all global variables
required for system operation;

- Data types file, which defines custom data structures used to represent three-phase
quantities and other non-standard variable types;

- Control functions file, where all functions required for implementing the control
algorithm are defined. This modular approach improves code readability, main-
tainability, and execution efficiency;

- Additional optimization files, which include user-defined functions and callbacks
for CANopen communication. While the core CANopen functionality is imple-
mented using the CANopenNode library, these files support the integration and
customization of its features.

The STM32CubeMX-generated code is further developed and refined within STM32CubelDE,
an integrated development environment that provides a complete workflow for writing,
compiling, and debugging firmware. Once the user code is finalized, it can be com-
piled (via the Build action) and programmed into the MCU memory using the built-in
programmer. STM32CubelDE also offers an advanced debugging interface, enabling
real-time monitoring of register states, variable values, and code execution flow through
breakpoints, watch windows, and live expressions—facilitating efficient debugging and
in-depth system analysis.
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The two primary files generated by STM32CubeMX that require user modifications
are:

- main.c: This file contains the initialization and configuration code for the MCU
peripherals, along with the infinite while (1) loop that continuously executes while
waiting for interrupts. In this project, the main loop is responsible for initializing,
managing, and terminating the CANopen network communication between the
STM32F303RE and the Mirco Digital One device. After each interrupt is serviced,
control returns to this loop, which then awaits the next event;

- stm32 f3xx;t.c: This file handles the interrupt service routines (ISRs) and includes
the user-defined control logic. To meet real-time constraints, each ISR must com-
plete its execution within 200 us, ensuring the system is ready to handle subsequent
interrupts without delay.
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2.3 Control Code

Figure 2.13 shows the user code integrated within the main.c file. In this file, the
CANopen network is initialized (a more detailed discussion on this topic is provided in
the following chapter), while the peripherals configured through STM32CubeMX are
explicitly initialized and enabled by directly manipulating specific bits in their corre-
sponding registers using C bitwise operations. This low-level register access is neces-
sary because certain peripheral configurations cannot be fully accomplished within the
STM32CubeMX graphical interface.

ENABLE_CANOPEN
CANopen_Node_Setup(MX_CAN_Init);

pScope_init();

ADC1->CR|=((1<<0));
ADC1->CR|=(1<<3);

TIM1->CCER|=1;
TIM1->CCER|=(1<<

TIM1->CCER|=(

TIM1->CCER|=(

TIM1->CCER|=(

TIM1->CCER|=(

TIM1->BDTR|=(
TIM1->SR=0;

TIM1->CR1|=1;
TIM1->DIER|=1<<7;

TIM1->RCR=1;
TIM1->DIER|=1;

TIM2->CR1|=1;

TIM6->CR1|=1;
TIM6->DIER|=1;

IWDG->KR =

Figure 2.13: File main.c
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The stm32 f3xx;t.c file contains the TIM 1y PrIM16;RQ Handler () function, which
serves as the interrupt service routine (ISR) triggered by TIM1 update events occurring
once per PWM period. The user-defined code within this function implements the motor
control algorithm, performing all necessary real-time computations to regulate the motor
operation. This file is organized to support both the embedded control system and the
Simulink motor control model. It includes conditional code sections that can be enabled
or disabled depending on whether the control algorithm is executed in real-time on the
motor or is being tested within the Simulink environment.

State=0;
pwm_stop=1;
TIM1->SR&=~(1<<7);

HAL_TIM_IRQHandler(&htiml);

Figure 2.14: Interrupt Handlers and Simulink Integration
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Figure 2.14 illustrates the function TIM13RKrIM15;RQHandler(), which man-
ages break events triggered by overcurrent detection. Upon detecting an overcurrent
condition, this function immediately transitions the system into an ERROR state and dis-
ables the PWM modulation, thereby protecting both the power electronics and the motor
from potential damage. Additionally, the figure highlights a dedicated code section for
Simulink-based control, where input signals—such as measured phase currents, DC-link
voltage, reference speed, and the selected control technique—are received directly from
the Simulink model.
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Figure 2.15 illustrates the initial operations executed when the ISR is called.

GPIOC->0DRA=(1<<3);
pScope_task();
IWDG->KR =

H
thetaEnc = (( ) TIM2 ->CNT)*ENC_FAC;
theta_r = thetaEnc - enc_offset;

(theta_r<o) ‘theta_r+=TWOPI;
(theta_r>=TWOPI) theta_r-=TWOPI;

SinCos_r = sinf(theta_r);
SinCos_r.cos cosf(theta_r);

SinCos_r_el = sinf(PP*theta_r);
SinCos_r_el = cosf(PP*theta_r);
speed_compute_sc(SinCos_r, &SinCos_r_old, &omega_r);

Filter(omega_r, omega_r_filt, (TWOPI* F*Ts));

omega_r_rpm_filt=omega_r_filt*(1.0f/TWOPI*60);

(((ADC1->TSR)&(1<<6))==8){}
ADC1->ISR|=((1¢<6));

input. che=( )ADC1->IDR1;
input.chl=( )ADC1->JDR2;
input.ch2=( )ADC1->JDR3;

nput.ch@-offset_current_a)*scala_current;

chl-offset_current_b)*scala_current;

isal c nput.ch2-offset_current_c)*scala_current;
vde = (( )ADC1->IDR4)*scala_voltage;

(((GPIOC->IDR)& (1<<13))==0 & Go_flag==1){
Go = i3

Go = i
((GPIOC->IDR)& (1<<13)) Go_flag=1;

CurrentProtection(isabc,&State,&pwm_stop);

(State){

Figure 2.15: Angle & Speed Computation, Feedback Acquisition

First, the watchdog timer is reloaded to prevent the microcontroller from resetting
due to a timeout condition. Subsequently, the rotor position is calculated in radians
based on the pulse count obtained from the TIM2 counter. This angle is then corrected as
described in Section 2.3.3. The rotor speed is derived from the position data and filtered to
minimize measurement noise. Next, the system waits for the completion of the feedback
signal acquisition, which started 0.25 us prior to the ISR trigger. This ensures that the
ADC conversions of the phase currents and DC-link voltage are finalized before these
values are utilized within the control algorithm, enabling precise closed-loop control and
accurate motor operation.
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Figure 2.16: PWM Task Organization

time

The ISR is then organized into five operating states: ERROR, WAKE-UP, COMMIS-
SIONING, READY and START.
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23.1 ERROR

The ERROR state is the default condition when the MCU is turned ON or upon Reset.
In this state, PWM modulation is disabled to ensure a safe operating environment. It
also serves as the initialization stage for system variables, as depicted in Figure 2.17.
Furthermore, the system transitions to the ERROR state if a hardware fault is detected,
such as an overcurrent condition.

(State){

ERROR:
pwm_stop = 1;
counter H
offset_current_a=2120;
offset_current_b=
offset_current_c=
offset_:
offset_in.ch2=
offset_in.ch3=
duty_abc.a=
duty_abc.b=

duty_abc.c=

n_ref_i
omega_ref_:

SinCos:r‘ef.

Ctrl_type=3;

n_ref_in=
accel = 1

pos_kp= TWOPI*2.0f;

sp_par. TWOPI*4 F*];
sp_par.ki= (sp_par.kp*TWOPI*

isdq_ref.d=

id_par.
id_par.ki

iq_par.
iq_par.

(Go) State = WAKE_UP;

Figure 2.17: ERROR State

When the blue user button on the Nucleo board is pressed, the system transitions to
the temporary WAKE-UP state.
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2.3.2 WAKE-UP

As shown in Figure 2.18, the WAKE-UP state is dedicated to preliminary operations:

- PWM activation: PWM modulation is enabled, and all three inverter legs are set
to a duty cycle of 0.2;

- Bootstrap capacitors pre-load: with all duty cycles setto 0.2, the low-side MOSFETs
are active for 80% of each PWM period. This configuration ensures that the gate
drivers’ bootstrap capacitors fully charge over 500 cycles (approximately 0.1 sec-
onds), as they charge during the low-side conduction period and discharge during
the high-side conduction period;

- ADC offset computation: ADC]1 channels capture phase current readings, which
should be near zero under these conditions, to compute the offsets for each channel.

After 500 cycles, the preliminary operations are complete, and the system automati-
cally transitions to the READY state.

WAKE_UP:

duty abc.a=
duty abc.b=
duty abc.c=

pwm_stop = 0;

(counter>100){
offset_in.ch@+=input.cho;
offset_in.chl+=input.chl;
offset_in.ch2+=input.ch2;

¥

(counter== 2) {

offset_current_a ) (offset_in.cho/ S

offset_current_b=( )(offset_in.ch1/ AE)8
offset_current_c=( )(offset_in.ch2/ iGN

}

(counter > ) {
counter=0;
State=COMMISSIONING;

}

counter++;

5

Figure 2.18: WAKE_UP State
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2.3.3 COMMISSIONING

In general, the COMMISSIONING state is typically used in Field-Oriented Control
(FOC) of synchronous motors to align the control axes (dg-axes) before starting the
control loop.

For asynchronous motors controlled using FOC techniques, this state is not strictly re-
quired because the dg-axes are determined by the rotor flux.

COMMISSIONING:
ramp (TWOPI*4, *Ts, &theta_ref );

(theta_ref==TWOPI*4)
counter++;

(counter== ){
enc_offset=theta_r;

(counter== ){
State=READY;
counter=0;

}

SinCos_ref.sin=sinf(theta_ref);
SinCos_ref.cos=cosf(theta_ref);

_clarke(isabc, isab);

isdq_ref.q = 0.;
_rot(isab, SinCos_ref, isdq);

id_var.ref=isdq_ref.d;
id_var.fbk=isdq.d;
id_par.1im=SQRT10VER3*vdc;
PIReg(&id_par, &id var);
vsdq_ref.d=id_var.out;

iq_var.ref=isdq_ref.q;

iq_var.fbk=isdq.q;
ig_par.lim=sqrtf(id_par.lim*id par.lim-id var.out*id var.out);
PIReg(&iq_par, &iqg var);

vsdq_ref.q=iq_var.out;

_invrot(vsdq_ref, SinCos_ref, vsab ref);

3

Figure 2.19: COMMISIONING
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234 READY

When in the READY state, the duty cycles for all three legs are set to 0.5.
Once the blue user button on the Nucleo board is pressed, the system transitions to the
START state.

READY:
duty abc.a=0.5f;
duty abc.b=0.5f;
duty_abc.c=0.5F;

counter = 0;
(Go) State=START;

Figure 2.20: READY State
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2.3.5 START

After the correct excution of the previous State in the START the motor is getting in
motion by a specif control tht can be chose by the variable Ctrl_type. In the START
are present 4 diffrent type of motor control but the only one relevant for this application
is the fourth.

(counter < ){
Tref = £
counter++;

Tref i

isdq_ref.d = i
isdq_ref.q = Tref * INV_KT;

_rot(isab, SinCos_r_elt, isdq);

omega r filt elet = PP * omega r filt;
vsdq_ref ffw.d = RS * isdq ref.d - omega r filt elet * LS * isdq_ref.q;
vsdq_ref ffw.q = RS * isdq _ref.q + omega_r filt elet * (LS * isdq_ref.d + LAMBDA M);

id_var.ref = isdq_ref.d;

id_var.fbk = isdq.d;

id_par.lim = SQRT10VER3 * vdc - vsdq_ref ffw.d;
PIReg(&id par, &id var);

vsdq_ref.d = id_var.out;

ig_var.ref = isdq_ref.q;

ig_var.fbk = isdq.q;

ig_par.lim = sqrtf(id_par.lim * id_par.lim - id_var.out * id_var.out) - vsdq_ref ffw.q;
PIReg(&iq_par, &iq var);

vsdq_ref.q = iq_var.out;

vsdq_ref.d += vsdq_ref_ffw.d;
vsdq_ref.q += vsdq_ref_ffw.q;

_invrot(vsdq_ref, SinCos_r_elt, vsab ref);

Figure 2.21: START State

As reported in Figure 2.21 this FOC control impose a constant torque that has a step
varition after the counter variable reach 10000. Then the FOC control is implemeted,
the theory behind the implementation will be discussed in the next Chapter.
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Chapter 3

CANopen and Control strategy
implementations

3.1 Introduction to CANopen

CANopen is a robust communication protocol and device profile specification primar-
ily designed for embedded systems used in automation environments. Situated within the
OSI model, CANopen spans layers from the network layer upward, providing structured
communication, network management, and device interaction.

This protocol is based on the Controller Area Network (CAN) standard, although
implementations over alternative transport layers, such as Ethernet Powerlink and Ether-
CAT, are also supported. The protocol architecture encompasses various components,
including addressing schemes, lightweight communication protocols, and application-
level specifications defined by device profiles.

The foundation of the CANopen standard lies in the CiA 301 specification, maintained
by CAN in Automation (CiA), which defines core device and communication profiles.
Specialized device functionalities are addressed through additional specifications such as
CiA 401 for I/O modules and CiA 402 for motion control systems.

A key feature of each CANopen-compliant device is the implementation of a stan-
dardized communication interface. Devices operate within a well-defined state machine
that includes Initialization, Pre-operational, Operational, and Stopped states, transition-
ing based on Network Management (NMT) commands. At the heart of the device’s
configuration and data structure lies the Object Dictionary, a hierarchical collection of
indexed variables used for parameter configuration and real-time data exchange.

CANopen facilitates various communication paradigms including master/slave, client/server,
and producer/consumer models, each tailored to different operational contexts. Commu-
nication protocols such as SDO (Service Data Object), PDO (Process Data Object), and
EMCY (Emergency Messages) ensure flexible, timely, and prioritized data exchanges.
Advanced synchronization is achieved through SYNC and TIME protocols, allowing
deterministic behavior in time-critical automation applications.
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The protocol’s adaptability and comprehensive support for network diagnostics, con-
figuration, and data transport make CANopen a widely adopted standard in industrial
automation systems, particularly where reliability, interoperability, and real-time perfor-
mance are crucial.

CANopen is a robust communication protocol and device profile specification primar-
ily designed for embedded systems used in automation environments. Situated within the
OSI model, CANopen spans layers from the network layer upward, providing structured
communication, network management, and device interaction.

This protocol is based on the Controller Area Network (CAN) standard, although
implementations over alternative transport layers, such as Ethernet Powerlink and Ether-
CAT, are also supported. The protocol architecture encompasses various components,
including addressing schemes, lightweight communication protocols, and application-
level specifications defined by device profiles.

The foundation of the CANopen standard lies in the CiA 301 specification, maintained
by CAN in Automation (CiA), which defines core device and communication profiles.
Specialized device functionalities are addressed through additional specifications such as
CiA 401 for I/O modules and CiA 402 for motion control systems.

A key feature of each CANopen-compliant device is the implementation of a stan-
dardized communication interface. Devices operate within a well-defined state machine
that includes Initialization, Pre-operational, Operational, and Stopped states, transition-
ing based on Network Management (NMT) commands. At the heart of the device’s
configuration and data structure lies the Object Dictionary, a hierarchical collection of
indexed variables used for parameter configuration and real-time data exchange.

CANopen facilitates various communication paradigms including master/slave, client/server,
and producer/consumer models, each tailored to different operational contexts. Commu-
nication protocols such as SDO (Service Data Object), PDO (Process Data Object), and
EMCY (Emergency Messages) ensure flexible, timely, and prioritized data exchanges.
Advanced synchronization is achieved through SYNC and TIME protocols, allowing
deterministic behavior in time-critical automation applications.

The protocol’s adaptability and comprehensive support for network diagnostics, con-
figuration, and data transport make CANopen a widely adopted standard in industrial
automation systems, particularly where reliability, interoperability, and real-time per-
formance are crucial. CANopen is a robust communication protocol and device profile
specification primarily designed for embedded systems used in automation environments.
Situated within the OSI model, CANopen spans layers from the network layer upward,
providing structured communication, network management, and device interaction.

This protocol is based on the Controller Area Network (CAN) standard, although
implementations over alternative transport layers, such as Ethernet Powerlink and Ether-
CAT, are also supported. The protocol architecture encompasses various components,
including addressing schemes, lightweight communication protocols, and application-
level specifications defined by device profiles.

The foundation of the CANopen standard lies in the CiA 301 specification, maintained
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by CAN in Automation (CiA), which defines core device and communication profiles.
Specialized device functionalities are addressed through additional specifications such as
CiA 401 for I/O modules and CiA 402 for motion control systems.

A key feature of each CANopen-compliant device is the implementation of a stan-
dardized communication interface. Devices operate within a well-defined state machine
that includes Initialization, Pre-operational, Operational, and Stopped states, transition-
ing based on Network Management (NMT) commands. At the heart of the device’s
configuration and data structure lies the Object Dictionary, a hierarchical collection of
indexed variables used for parameter configuration and real-time data exchange.

CANopen facilitates various communication paradigms including master/slave, client/server,
and producer/consumer models, each tailored to different operational contexts. Commu-
nication protocols such as SDO (Service Data Object), PDO (Process Data Object), and
EMCY (Emergency Messages) ensure flexible, timely, and prioritized data exchanges.
Advanced synchronization is achieved through SYNC and TIME protocols, allowing
deterministic behavior in time-critical automation applications.

The protocol’s adaptability and comprehensive support for network diagnostics, con-
figuration, and data transport make CANopen a widely adopted standard in industrial
automation systems, particularly where reliability, interoperability, and real-time perfor-
mance are crucial.
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3.1.1 CANopen - higher layer protocol

It is essential to understand that CANopen functions as a higher-layer protocol built
on top of the CAN bus standard. In this context, the CAN bus (as defined by ISO
11898) acts as the transport medium while CANopen messages are carried throught the
network. CANopen can also be interpreted within the framework of the 7-layer OSI
model, occupying the upper layers of the stack.

7 layer OSI model

CiA 401, 402, ...

Device profiles (I/0, ...)

Application

CiA 303-2 (CANopen)

Managers & program. devices

Presentation

Network

Data link ISO 11898-1 (CAN)

L]

Physical ISO 11898-2 (CAN)
Figure 3.1: 7-layer OSI model

CANopen in OSI model context

The OSI model is a conceptual framework that standardizes communication func-
tions across heterogeneous communication systems. The lower layers are responsible for
fundamental transmission tasks, such as the handling of raw bit streams, while the upper
layers manage more abstract functions, including message segmentation and communi-
cation services like initiation, indication, response, and confirmation.

Within this framework, the CAN bus corresponds to the two lowest OSI layers—Layer
1 (Physical) and Layer 2 (Data Link). In practical terms, this means that CAN is
responsible for the transmission of data frames containing an 11-bit CAN identifier,
a Remote Transmission Request (RTR) bit, and up to 64 data bits. These fields are
essential for the operation of higher-layer protocols. Accordingly, CAN plays the same
foundational role in CANopen as it does in other protocols such as J1939.

As shown above, CANopen operates at the Application layer (Layer 7) of the OSI
model and is defined through a set of standardized specifications. Within this layer,
CANopen introduces arange of higher-level functionalities and abstractions, which will be
discussed in the following sections. It is also worth mentioning that, although CANopen
is typically associated with the CAN data link layer, it can be adapted to work over other
communication protocols such as EtherCAT, Modbus, or Powerlink.
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3.2 Six core CANopen concepts

Although familiarity with CAN bus and protocols like J1939 may provide a useful
foundation, CANopen incorporates a number of important higher-layer concepts that
distinguish it from other CAN-based protocols.

Figure 3.2: Communication Mod-
els

Figure 3.3: Communication Proto-
cols

0000

Figure 3.4: Device States

Communication Models: There are 3 models
for device/node communication: Master/slave,
client/server and producer/consumer.

Communication Protocols: Protocols are used
in communication, e.g.  configuring nodes
(SDOs) or transmitting real-time data (PDOs).

Device States: A device supports different states.
A ’master’ node can change the state of a ’slave’
node — e.g. resetting it.
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oD Object Dictionary: Each device has an OD with
— entries that specify, e.g., the device configuration.
It can be accessed via SDOs.

Figure 3.5: Object Dictionary

Electronic Data Sheet: The EDS is a standard
file format for OD entries —allowing, e.g., service
tools to update devices.

Figure 3.6: Electronic Data Sheet

CiA Device Profile Standards: Describe modules
401 (CiA 401) and motion control (CiA 402) for ven-
dor independence.

Figure 3.7: Device Profile Stan-
dards
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The below illustration shows how the CANopen concepts link together - and we will

detail each below:

-

Communication
interface

Master/Slave
Client/Server
Consumer/Producer

Network Management
Synchronization
Emergency
Timestamp
Heartbeat

CAN bus

| PDO

| sDo

CANopen node

Object dic

tionary

Application

Application Software
Device Profiles
Device Functionality

Figure 3.8: CANopen concepts link together

49

?

v
Process

environment



CANopen and Control strategy implementations

3.3 CANopen communication basics

Effective communication among multiple devices in a CANopen network is enabled
through three distinct communication models, each designed to address specific types of
data exchange and interaction patterns.

3.3.1 CANopen communication models

Master/Slave In a typical CANopen network,
one node—such as a control interface—acts as
the application master or host controller. It com-
municates with multiple slave nodes, such as
servo motors, by sending commands or request-
ing data. This model is commonly used for tasks
such as diagnostics or device state management.

In this context, a producer-consumer paradigm

R is employed: the producer node transmits data

I across the network, while the consumer node re-
ceives and processes it. The data can be trans-
mitted either upon explicit request from the con-
sumer (pull model) or autonomously by the pro-
ducer (push model).

Figure 3.9: Master/Slave Standard CANopen networks can support up to
127 slave nodes. It is also important to note that
multiple host controllers can coexist on the same
network, sharing the same data link layer.

An example of a service operating under this
model is the Network Management (NMT) pro-
tocol.

Slave Slave Slave
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Client

Server

Figure 3.10: Client/Server

Con-
sumer

Producer

Con-
sumer

Figure 3.11: Consumer/Producer

Client/Server In this communication model, a
client node initiates a request for data from a
server node, which then responds with the re-
quested information. This mechanism is typi-
cally used when an application master needs to
access data from the Object Dictionary (OD) of
a slave device.

From the perspective of the server, reading data is
referred to as an upload, while writing data to the
server is termed a download. This terminology
reflects the server-centric viewpoint adopted in
the CANopen specification.

An example of a service implementing this model
is the Service Data Object (SDO) protocol.

Consumer/Producer In this model, a producer
node periodically broadcasts data to the entire
network, where it is received and interpreted by
one or more consumer nodes. The data transmis-
sion can follow either a pull model, where the
data is sent in response to a request, or a push
model, where the producer transmits the data au-
tonomously without an explicit request.

A typical example of a service utilizing this
model is the Heartbeat protocol, which is used for
node monitoring and fault detection in CANopen
networks.

As illustrated, the underlying communication mechanisms in these models are largely
similar. However, they are distinguished primarily for the sake of terminology consistency

within the CANopen specification.

3.3.2 The CANopen frame

To understand CANopen communication, it is necessary to break down the CANopen

CAN frame:
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(0-44 bits)

NODE ID DATA DATA
LENGTH

I L J
| [
: J

Figure 3.12: CANopen frame

The 11-bit CAN identifier used in CANopen is known as the Communication Object
Identifier (COB-ID). By default, it is divided into two parts: the first 4 bits represent the
function code, while the remaining 7 bits specify the node ID.

To understand how the COB-ID is structured and utilized, we refer to the pre-defined
identifier allocation scheme commonly used in simple CANopen networks (see Figure
3.13). Note that COB-IDs and node IDs will be referenced in hexadecimal format in the
following discussion.

As shown, specific COB-IDs (e.g., 0x381, 0x581, ...) are associated with particular
communication services, such as Transmit PDO 3 or Transmit SDO. This means that
each COB-ID encodes not only the type of service being used, but also the identity of the
node involved in the data transmission or reception.

COMMUNICATION  FUNCTION NODE IDs COB-IDs COB-IDs  #
OBJECT CODE (4 bit, bin) (7 bit, bin) (hex) (dec)

1 NMT 0000 0000000 0 0 1

2 SYNC 0001 0000000 80 128 1

3 EMCY 0001 0000001-111111~ 81-FF 129-255 127

4 TIME 0010 0000000 100 256 1

5 Transmit PDO 1 0011 0000001-1111111~ 181-1FF 385 - 511 127
Receive PDO 1 0100 0000001-1111111  201-27F  513-639 127
Transmit PDO 2 0101 0000001-11T111~ 281-2FF  641-767 127
Receive PDO 2 o1o 0000001-1111111 ~ 301-37F  769-895 127
Transmit PDO 3 om 0000001-T1T111 ~ 381-8FF  897-1023 127
Receive PDO 3 1000 0000001-1111111~ 401-47F  1025-11S1 127
Transmit PDO 4 1001 0000001-1111111 ~ 481-4FF  1153-1279 127
Receive PDO 4 1010 0000001-1111111 ~ 501-57F  1281-1407 127

6 Transmit SDO 1om 0000001-1111111 ~ 581-SFF 1409 -1535 127
Receive SDO 1100 0000001-111111 601 67F  1537-1693 127

7 HEARTBEAT o 0000001111111 701-77F  1793-1919 127

Figure 3.13: CANopen COB-ID
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3.3.3 CANopen communication protocols/services

Below, is provided a brief overview of the seven CANopen service types referenced
earlier, including how each one utilizes the 8 data bytes available in a standard CAN
frame.

- Network Management (NMT) The Network Management (NMT) service is re-
sponsible for controlling the operational state of CANopen devices, such as transi-
tioning between pre-operational, operational, and stopped states, through specific
NMT commands (e.g., start, stop, reset).

To initiate a state change, the NMT master transmits a 2-byte message using a
CAN ID of 0 (corresponding to function code 0 and node ID 0). This message
is processed by all slave nodes on the network. The first data byte specifies the
requested state, while the second data byte identifies the target node ID. A node ID
value of 0 indicates that the command is broadcast to all nodes.

Common NMT commands include transition to operational mode (state 0x01),
stopped mode (state 0x02), pre-operational mode (state 0x80), as well as reset
application (state 0x81) and reset communication (state 0x82).

- Synchronization (SYNC) The SYNC message is primarily used to synchronize
the input sampling and output actuation of multiple CANopen devices, typically
coordinated by the application master.

The application master transmits the SYNC message with a COB-ID of 0x080 to
the CANopen network, optionally including a SYNC counter. Multiple slave nodes
can be configured to respond to this SYNC message by either transmitting input
data captured simultaneously or by applying outputs at the same precise moment,
enabling coordinated synchronous operation across devices. The SYNC counter
allows the configuration of multiple groups of devices operating synchronously
within the network.

- Emergency (EMCY) The Emergency (EMCY) service is employed when a device
encounters a critical error, such as a sensor failure, enabling it to notify the entire
network of the fault condition.

The affected node transmits a single EMCY message—using a COB-ID corre-
sponding to the node (for example, 0x085 for node 5)—with high priority on the
CANopen network. The data bytes within the message convey detailed informa-
tion about the nature of the error, which can be referenced for diagnostics and
troubleshooting.

- Timestamp (TIME) [PDO] The TIME service enables the distribution of a global
network time across CANopen devices. This service transmits date and time
information using a 6-byte data field.
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An application master periodically broadcasts the TIME message with a CAN ID
of 0x100. The first four data bytes represent the time in milliseconds elapsed
since midnight, while the final two bytes indicate the number of days passed since
January 1, 1984.

Process Data Object [PDO] The Process Data Object (PDO) service is used for
the real-time transmission of data between devices. This includes measured values
such as position feedback, as well as command data like torque requests.

Service Data Object [SDO] Service Data Object (SDO) services enable access
to and modification of entries within a CANopen device’s Object Dictionary. This
is typically employed when an application master needs to configure or update
specific parameters of a CANopen device.

Node monitoring (Heartbeat) [SDO] The Heartbeat service serves two primary
purposes: to signal that a node is operational ("alive") and to acknowledge receipt
of NMT commands.

An NMT slave device periodically transmits the Heartbeat message—typically
every 100 ms—with a CAN ID corresponding to the node (for example, 0x2C1 for
node 5). The first data byte of this message contains the current state of the node.
The recipient(s) of the Heartbeat message, such as the NMT master and optionally
other devices, monitor its reception and trigger an alert if no message is received
within a predefined timeout period.
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3.4 CANopen Object Dictionary

All CANopen nodes are required to maintain an Object Dictionary (OD), which is
a standardized data structure encompassing all parameters that define the behavior and
configuration of the node. Entries within the OD are accessed using a 16-bit index and
an 8-bit subindex. For instance, the entry at index 0x1008 (subindex 0) typically holds
the device name of a CANopen-compliant node.

Each Object Dictionary entry is characterized by a set of attributes, specifically
defined as follows:

* Index: 16-bit base address of the object;

* Object name: Manufacturer device name;

Object code: Array, variable, or record;

Data type: E.g. VISIBLE_STRING, UNSIGNED32 or Record Name;

* Access: rw (read/write), ro (read-only), wo (write-only);

Category: Indicates if this parameter is mandatory/optional (M/O);

3.4.1 OD standardized sections

The Object Dictionary is organized into standardized sections, with certain entries
defined as mandatory and others left fully customizable by the device manufacturer.
Crucially, the entries within a device’s Object Dictionary can be accessed and modified
by other devices over the CAN network using services such as Service Data Objects
(SDOs). For example, this allows an application master to configure parameters on a
slave node, such as enabling or disabling data logging from a specific sensor input or
adjusting the frequency at which the slave transmits heartbeat messages.

Link to Electronic Data Sheet and Device Configuration File

To better comprehend the structure and content of the Object Dictionary, it is useful
to consider its ‘human-readable’ representations: the Electronic Data Sheet (EDS) and
the Device Configuration File (DCF).

N\

@) DCF

R —Qp
p— aQ—

m— [ (@) =)

1111

Object Dictionary

Figure 3.14: CANopen OD human-readable form
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The Electronic Data Sheet (EDS)

In practice, the configuration and management of complex CANopen networks are
performed using specialized software tools. To facilitate this process, the CiA 306
standard defines a human-readable and machine-friendly INI file format that serves as a
"template” for a device’s Object Dictionary. This Electronic Data Sheet (EDS), typically
provided by the device vendor, contains detailed information about all device objects,
excluding their runtime values.

Device Configuration File (DCF)

Consider a scenario where a factory acquires a new component for integration into
their conveyor belt system. The operator modifies the device’s Electronic Data Sheet
(EDS) by adding specific parameter values and, if necessary, renaming objects described
within the EDS. Through this process, the operator generates what is known as a Device
Configuration File (DCF). With the DCF completed, the new device is fully prepared for
seamless integration into the particular CANopen network deployed on-site.

3.5 SDO - configuring the CANopen network

The Service Data Object (SDO) service enables a CANopen node to read from or
write to the Object Dictionary of another node over the CAN network. As previously
described in the communication models section, SDO communication follows a client-
server paradigm. Specifically, an SDO client initiates communication with a designated
SDO server. This interaction can serve two main purposes: updating an Object Dictionary
entry, known as an SDO download, or retrieving an entry, referred to as an SDO upload.
In typical master-slave configurations, the node performing the Network Management
(NMT) master role acts as the client, accessing the Object Dictionaries of all NMT slave
nodes for reading or writing operations.
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Figure 3.15: CANopen SDO coomunication

3.6 PDO - operating the CANopen network

The CANopen Process Data Object (PDO) service is designed for efficient real-time
exchange of operational data between CANopen nodes. For example, a PDO might
carry pressure readings from a pressure transducer or temperature measurements from a
temperature sensor.

While the Service Data Object (SDO) service could theoretically be used for similar
data transfers, it has limitations. Due to protocol overhead—such as the command byte
and Object Dictionary addressing—each SDO response can only carry up to 4 data bytes.
For instance, if a master node needs two parameter values from Node 35, retrieving this
data via SDO would require four complete CAN frames: two request frames and two
response frames.

(a) SDO data message (b) PDO data message

Figure 3.16: SDO and PDO message comparison

In contrast, a PDO message can carry up to 8 bytes of data within a single frame
and may include multiple object parameter values simultaneously. Consequently, a data
transfer that would require at least four frames using the SDO service can often be
accomplished with just one PDO frame. Due to its efficiency and role in transmitting
the majority of real-time data, the PDO service is widely regarded as the most essential
protocol within the CANopen stack.
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3.6.1 How does the CANopen PDO service work

In the context of PDO communication, the terms producer and consumer are em-
ployed. A producer node generates data and transmits it to a consumer node (typically
the master) using a Transmit PDO (TPDO). Conversely, the producer can receive data
from the consumer via a Receive PDO (RPDO). Producer nodes are often configured to
respond to a SYNC trigger broadcast by the consumer at fixed intervals, such as every
100 ms.

For example, Node 5 may transmit the following TPDO with a COB-ID of 0x185:

DATA BYTES

VALUE OF VALUE OF
DATA DATA

PARAMETER 1 PARAMETER 2

Byte 0- Byte 2-3 Byte 4

Figure 3.17: CANopen PDO message

Note that the data bytes are densely packed with three parameter values, which
represent real-time data corresponding to specific Object Dictionary entries of Node
5. The nodes consuming this information must be configured to correctly interpret the
contents of the PDO data bytes.

3.7 CANopen network set up in this specific applycation

In this specific project the CANopen network is the basic for the communication
between STM32F303RE and Micro digital One for the monitoring and the set up of the
test bench.

3.7.1 CANopen in STM32F303RE

Specifically the CANopen network and all the required configuration take place in
the main.c file. A monolitic approach is avoided in order to have a more favorable debug
session and an easier approach to coding.

CANopen initialization

The CANopen initialization is placed in a separate file called canopen_config.c
and its header file canopen_config.h, they are allocated in

STM32F303RE_CANopen/Core/Src/canopen_config.c and

STM32F303RE_CANopen/Core/Inc/canopen_config.h respectively.
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InFigure 3.18 is presented canopen_config. c andin Figure 3.19 the canopen_config.h
file.

) o

node 5
node.CANHandle = &hcan;
node.HWInitFunction = MX_CAN_Init;
node.timerHandle = &htim7;
node.desiredNodeID = 1;
node.baudrate = 5

canopenNodeSTM32 = &node;
canopen_app_init(&node);

Figure 3.18: canopen_config. c source file

CANOPEN_CONFIG_H

Figure 3.19: canopen_config.h source file

In the source file the function: CANopen_Node_Setup() is created, the aim is to recall
it in the main.c file instead of having the initial set up directly in the main.c file.
For the STM32F303RE the CANopen network operate on the CAN buses already pressent
on the board, as already mentioned in Chapter2 section 2.1.5 a specific timer TIM7 is
dedicated to the correct execution of the CANopen network, noreover is necessary to
specify with which node number the board will be visible on the network and set an
appropriate baudrate (500 kBaud /s work just fine fine for CANopen) that must be the
same for every node present on the network.

The task of the header file is to make visibile to all the part of the code the source file.

59



CANopen and Control strategy implementations

CANopen SDO messages in STM32F303RE

The source file CO_SDOclient_utils.c and its header CO_SDOclient_utils.h
are not part of the original CANopenNode library but are specifically created for this
bench test application in order to simply manage the SDO messages, which cover a very
relevant role in the inital set up of the CANopen configuration paramters for the Micro
digital One and the control of the associated motor.
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) node
inde: ut
* buf, bufsize,

DO_ret = CO_SDOclient_setup(SDO_C, CO_CAN_ID_SDO_CLI + nodeld,

X SRV + nodeld, noc

(SDO_ret CO_SDO_RT_ok. {
CO_SDO_AB_GENERAL ;

3}

}

SDO_ret d , false);
(SDO_ret

CO_SDO_AB_NONE;

t = CO_SDOclientUpload(SDO_C, timeDi ce_us, false,
&abortCode, NULL, NULL, NULL);
(SDO_ret <

}

€0_SDOclientUploadBufRead(SDO_C, buf, bu

CO_SDO_AB_NONE;

nodeld,

{

SDO_ret 5D0_C, CO_CAN_ID_SDO_CLI + nodeld,
CO_CAN_ID_SDO_SRV + nodeld, nodeId);
(SDO_ret != CO_SDO
CO_SDO_AB_GENERAL ;

ritten < £
bufferPartial

C0_SDO_AB_NONE;

SDO_ret = CO_SDOclientDownload(SDO_C, timeDifference_ us, false,
bufferPartial, &abortCode, NULL, NULL)
(SDO_ret < 0) {
abortCode

¥

HAL_Delay(timeDiffere
(SDO_ret > 0)

C0_SDO_AB_NONE;

write_SDO
t == CO_SDO_RT.
HAL_Delay(5);
(++at

Figure 3.20: CO_SDOclient_utils.c source file
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In this source file are reported the two main SDO function, read_SDO and write_SDO
already provided by CANopenNode library and another function is implemented here:
safe_write_SDO. The only diffrence from a classic write_SDO is that if the the commu-
nication fails the function is not stopped but retires to send the message.

CO_301 SDOCLIENT UTILS H

* SDO C, nodeld,
index, subIndex,
* buf, bufSize, * readSize);

* SDO_C, nodeld,
index, subIndex,
* data, dataSize);

* client, nodeld,
index, subIndex,
* data, datalen, retries);

Figure 3.21: CO_SDOclient_utils.h source file

As before the header file associted to the its source file contains the function declaration
in order to be used in every other file.
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CANopen network process

The CANopen network must always be processed in order to ensure the correct
communication between every node. The easier solution is to place the core of the
process in the while (1) of the nucleo board that a part form the ISR is always processed.

(1)

ENABLE_CANOPEN
canopen_app_process();

(Can) {
OFF:

handle_off_state();

)
PAUSE :
handle_pause_state();

)
ON:
handle_on_state();

3

Figure 3.22: while (1) from main.c

Inthewhile (1) mustbe present withoit any interruption the funciotion canopen_app_process(),
present in the CANopenNode library ensure the processing of the CAnopen network. The
switch is used to handle the dirrente state of the motor drive by Micro digital One.
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CANopen network interrupt

In order to visualize the messages in the network the canopen_app_process(),
must be stopped when the TIM7 timer riuns out with a specific function:
HAL_TIM_PeriodElapsedCallback().

ENABLE_CANOPEN
*htim) {

(htim->Instance == TIM3) {

HAL_GPIO_TogglePin(LD3_GPIO Port, LD3 Pin);
canopenNodeSTM32->canOpenStack->CANmodule[0].firstCANtxMessage = true;
CO_SYNCsend(canopenNodeSTM32->canOpenStack->SYNC) ;

(htim->Instance == TIM7) {
HAL_IncTick();

(htim == canopenNodeSTM32->timerHandle) {
canopen_app_interrupt();

Figure 3.23: HAL_TIM_PeriodElapsedCallback function

In this function is present the code for generate a SYNC message for the node of the
network with its dedicate timer TIM3 and the function:
canopen_app_interrupt () necessary to stop the flow of the canopen_app_process()
in order to monitoring the network via PCAN-View software.
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3.7.2 CANopen in Micro digital One

As already reported in the Chapter 1, the Micro digital One is capable of communicate
via CANopen (as one the possible conncetion). The goal is to correctly sut up the Micro
digital One in order to drive the S1601B303 Brushless Servomotor tahnks to a velocity
control mode. This control must be enabled by the STM32F303RE.

Micro digital One CANopen set up

All the drive paramters present in the in the "Parameters Configuration" ofthe software
Drive Watcher as well as the "Register Configuration" can be set via CANopen form
another node as long as the node of the Micro digital One is a slave node. In this
test bench configuration all the necessary parameters are imposed via CANopen at the
start of the code. The most important parameters for Micro digital One in CANopen
configuration are:

- ¢7: node number;

c9: set to 5 for CANopen mode;

d8: set the motor;

nl: CANopen bit rate (6 for 500 k Bit/s);
This parameters can be set via STM32F303RE or as in this case via specific software

Drive Watcher give by Microphase to program the Micro digital One as a stand alone
product.

/- 1/0 Debugger
()

E CAN Debugger

- o
T Impulse Debugger & _ CAM Configuration
-

Figure 3.24: Drive Watcher software
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The interface is simple as can be seen in Figure 3.24but from the section Parmeters
Configuration and Register Configuration is possible to monitoring in real time every
state of the Micro digital One moreover the setting of all the paramters presented could
be rewrite and set before the start up. Many other functions are present but not useful for

this application.

37 Parameters Configuration
D parameters

> € a0 wwle o
= F aw0 700 |
P @500 #8050

AH d5/59 v
N dsg:e T

=

®

Registers - page 1
ROO: Control Word

RO1: Modes of Operation
RO2: Feed Constant

RO3: Following Error Window
RO4: Following Eor Time Out
ROS: Status Word

RO6: Postion Actual Value
RO7: Latched Postion

ROS: Velocty Actual Value
RO3: Target Postion

R10: Profle Acceleration
R11: Profle Deceleration
R12: Profle Velocty

R13: Target Velocty

R14: Velocity Window

R15: Velocty Window Time:
R16: Velocty Thveshold
R17: Velocty Threshold time
R18: Homing Method

R19: Home Offset

R20: Homing Fast Speed
R21: Homing Slow Speed

CO00000000000000000009

R22: Homing Acceleration
R23: Velosty Master Sensor
R24: Master Encoder Increments
R25: Gear Ratio Numerator
R26: Gear Ratio Divisor
R27: Motion Profle Type
R28: Accsleration Jerk

R29: Deceleration Jerk

R0: Auxin 1

R3: A In 2

R32 A Out 1

RI3: A Out 2

RY: Ax16n 3

R35: A6 4

R36: Ax160u 3

RI7: Ax160u 4

R38: Axn 5

R39: Axn 6

RAO: Auxn 7

RéT: Axin 8

Ri2 Ax16n 9

R43: A6 10

COO0000000000000000009

P

9

@® [Decimal

O Hexadecimal

(=)
4 )

Q|| A

(a) Parameters configuration

Figure 3.25: Parameters and Regeisters configuration sections

(b) Registers configuration

As can be seen in Figure 3.25, there are many parametrs and even more registers that
can be modified due to specific request upon the Mirco digital One. In the user manual are
present many tables where every specific parameters and registers are accuratly descripted.

All the other parameters needed to set up the motor and drive it in a speed control
loop are set via Nucleo board by CANopenNode command found in the library.

66



3.7 — CANopen network set up in this specific applycation

3.7.3 Micro digitl One set up via STM32F303RE

In 3.7.1 was presented the code in the main.c specifically the while(1) section
where three diffrent function were called. A more in depth analisys is required.

) 1
(!nmt_stop) {
safe_write_SDO(canopenNodeSTM32->canOpenStack->SDOclient, o (0 *)&disableTorque, (disableTorque),3);
CO_NMT_sendInternalCommand(canopenNodeSTM32- >ranOanStark >IIF’\T CO_i N/‘IT ENTE/\’ PRE_OPERATIONAL);
CO_NMT_sendCommand (canopenNodeSTM32->canOpenStack->NMT, CO_NMT_RESET_NODE, )
nmt_stop = 1;

(State == READY) {
Can = PAUSE;

(void) {
(!'nmt_po) {
CO_NMT_sendInternalCommand(canopenNodeSTM32->canOpenStack->NMT, CO_NMT_ENTER_OPERATIONAL);
CO_NMT_sendCommand (canopenNodeSTM32->canOpenStack->NMT, CO NMT_ENTER PRE OPERATIONAL,

safe_write_SDO(canopenNodeSTM32->c ck->SDoclient, ( *)&feedConst, (feedConst), 3);
safe_write_SDO(canopenNodeSTM32->canOpenStack->SDOclient, ( *)&homingMethod, (homingMethod), 3);
safe_write_SDO(canopenNodeSTM32->canOpenStack->SDoclient, ( )&home0ffset, (homeOffset), 3);
safe_write_SDO(canopenNodeSTM32->canOpenStack->SD ( *)&markerSpeed, (markerSpeed),
safe_write_SDO(canopenNodeSTM32->canOpenStack->SDOclient, ( *)&homingMode, (homingMode), 3);

¢ =0; i< (ctrlSeq)/ (ctrlseq[@]); i++) {
safe_ wr1te _SDO(canopenNodeSTM32->canOpenStack->SD0Oclient, 4 *)&ctrlSeq[i], (ctrlseq[i]), 3);
HAL_Delay(5);
¥
safe_write_SDO(canopenNodeSTM32->canOpenStack->SDOclient, 4 *)&startHoming, (startHoming), 3);
nmt_po = 1;
¥

Can = ON;

) {

(!nmt_op) {
CO_NMT_sendCommand ( canopenNodeSTM32->canOpenStack->NMT, CO_NMT_ENTER_OPERATIONAL, );
nmt_op = 1;

safe_write_SDO(canopenNodeSTM32->canOpenStack->SD i *)&time, (time),3);

safe_write_SDO(canopenNodeSTM32->canOpenStack->SD ) *)&heartbeatTime, (heartbeatTime), 3);
safe_write_SDO(canopenNodeSTM32->canOpenStack->SDoclient, B *)&feedConstant, (feedConstant), 3);
safe_write_SDO(canopenNodeSTM32->canOpenStack->SDOclient, 5 *)&acceleration, (acceleration), 3);
safe_write_SDO(canopenNodeSTM32->canOpenSta ) *)&deceleration, (deceleration), 3);
safe_write_SDO(canopenNodeSTM32->canOpenStack->SDOclient, ) *)&speedControlMode, (speedControlMode), 3);

( ;1< (controlWordSeq)/ (controlWordSeq[@]);
safe_write_SDO(canopenNodeSTM32->canOpenStack->SDOclient, 5 *)&controlWordSeq[i], (controlWordSeq[i]),
HAL_Delay(5);

1

+

write_SDO(canopenNodeSTM32->canOpenStack->SDOclient, getVelocity, (targetVelocity));
L_GPIO_TogglePin(LD2_GPIO_Port, LD2_Pin);

(HAL_GetTick() - lastTPDOtime > ) {
OD_PERSIST_COMM.x6000_counter++;

CO_TPDOsendRequest (&canopenNodeSTM32->canOpenStack->TPDO[0]);
lastTPDOtime = HAL_GetTick();

Figure 3.26: canopen_config.c
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handle_off state

This function is recalled in the main. c but is defined in canopen_config.c source
file, paired with canopen_state.h header file.

( ) 1
(!'nmt_stop) {

safe_write_SDO(canopenNodeSTM32->canOpenStack->SDOclient, 5 RO *)&disableTorque, (disableTorque),3);
CO_NMT_sendInternalCommand(canopenNodeSTM32->canOpenStack->NMT, CO_NMT_ENTER_PRE_OPERATIONAL);

CO_NMT_sendCommand (canopenNodeSTM32->canOpenStack->NMT, CO_NMT_RESET_NODE, )5

nmt_stop = 1;

(State == READY) {
Can = PAUSE;

Figure 3.27: handle_off_state

All the line present in the if must be executed only once after the Black Button is
pressed namely the Nucleo Board reset so the motor drive by the Micro digital One first
the motor must be stopped via SDO then the node 1 (STM32F303RE) must enter in
pre-operational state while node 2(Micro digital One) is stopped. The state of the node
are not managed via SDO with specific command in the CANopenNode library. Once
the code is executed the State must be updated to the next.

handle_pause_state

The pause state is a transition state, is duty is to manages the homing operations of
the Micro digital One, setting the encoder and resetting eventual alarms. Moreover the
node 1 is set operational and the node 2 preoperational. Once these setting (via SDOs)
are completed this state is concluded and the next one is started.

(void) {
(!'nmt_po) {
CO_NMT_sendInternalCommand(canopenNodeSTM32->canOpenStack->NMT, CO_NMT_ENTER_OPERATIONAL);
CO_NMT_sendCommand (canopenNodeSTM32->canOpenStack->NMT, CO_NMT_ENTER _PRE_OPERATIONAL, D)8

safe_write_SDO(canopenNodeSTM32->canOpenStack->SDOclient, 5 o iks *)&feedConst, (feedConst), 3);
safe_write_SDO(canopenNodeSTM32->canOpenStack->SDOclient, , 5 @ *)&homingMethod, (homingMethod), 3);
safe_write_SDO(canopenNodeSTM32->canOpenStack->SDOclient, s o (2 *)&homeOffset, (homeOffset), 3);

safe_write_SDO(canopenNodeSTM32->canOpenStack->SDOclient, 5 2, *)&markerSpeed, (markerSpeed), 3);
safe_write_SDO(canopenNodeSTM32->canOpenStack->SDOclient, 5 5 9, *)&homingMode, (homingMode), 3);

( el ik (ctrlSeq)/ (ctrlSeq[0]); i++) {
safe_write_SDO(canopenNodeSTM32->canOpenStack->SDOclient, *)&ctrlSeq[i], (ctrlseq[i]), 3);
HAL_Delay(5);

¥

safe_write_SDO(canopenNodeSTM32->canOpenStack->SDOclient, *)&startHoming, (startHoming), 3);
nmt_po = 1;

}

Can = ON;

}

Figure 3.28: handle_pause_state

As for the handle_off_state also the handle_pause_state must be executed
once then afetr the set up is not needed anymore.
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3.7 — CANopen network set up in this specific applycation

handle_on_state

The last state is the handle_on_state where node 2 is set operational, the first
SDO is used to give a time refencence to TPDO 4 of the Micro digital One that manage
to transmit data about the actual velocity of the shaft. Then with the other block of
SDOs all the parameters needed for a proper control are set feed constant, accelaration,
deceleration and mode of operation (Velocity Control Mode) while in ’for’ eventual alarm
are reset. Once these operations are concluded the target velocity is set and therefore the
motor motion is started. For debugging puporse the LED2 (LD2) is on during this state
meanwhile a TPDO used as a counter continuosly transmit its information in the network.

(void) {
(!'nmt_op) {
CO_NMT_sendCommand (canopenNodeSTM32->canOpenStack->NMT, CO_NMT_ENTER_OPERATIONAL, );
nmt_op = 1;

safe_write_SDO(canopenNodeSTM32->canOpenStack->SDOclient, 7 1 *)&time, (time),3);

safe_write_SDO(canopenNodeSTM32->canOpenStack->SD0client, B *)&heartbeatTime, (heartbeatTime), 3);
safe_write_SDO(canopenNodeSTM: 5 2; 1 *)&feedConstant, (feedConstant), 3);
safe_write_SDO(canopenNodeSTM: Ope e 4 *)&acceleration, (acceleration), 3);
safe_write_SDO(canopenNodeSTM32->canOpen: SDoclient, o *)&deceleration, (deceleration), 3);
safe_write_SDO(canopenNodeSTM32->canOpenS >SDOclient, o *)&speedControlMode, (speedControlMode), 3);

{ Sk < (controlWordSeq)/ (controlWordSeq[@]);
safe_write_SDO(canopenNodeSTM32->canOpenStack->SDOclient, , , 0, ( *)&controlWordSeq[i], (controlWordSeq[i]),
HAL_Delay(5);

}

write_SDO(canopenNodeSTM32->canOpenStack->SDOclient, . *)&targetVelocity, (targetVelocity));
1
}

HAL_GPIO_TogglePin(LD2_GPIO_Port, LD2_Pin);

(HAL_GetTick() - lastTPDOtime >= ) {

OD_PERSTST_COMM. x6000_counter++;

CO_TPDOsendRequest (&canopenNodeSTM32->canOpenStack->TPDO[@]) ;
lastTPDOtime = HAL_GetTick();

i

Figure 3.29: handle_on_state
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Chapter 4

Control code implementation

4.1 Control strategy for the Nucleo Board

In the code section triggered by the TIM1 ISR, two different control algorithms for
the S1402B353 Brushless Servomotor are implemented, as described in Chapter 2: the
I-Hz control and Field-Oriented Control (FOC). For this specific application, the primary
focus is on FOC, while the I-Hz control is implemented but not actively used—it remains
available for debugging purposes.

More specifically, two variations of FOC are present in the code, identified by
Ctrl_type values 2 and 3. Only Ctrl_type 3 is effectively utilized in the application,
whereas Ctrl_type 2 is reserved for debugging.

4.1.1 Field-Oriented Control (FOC)

A briefly theorical introduction to FOC is needed.

»d

Figure 4.1: Induction Motor Diagrams
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A common characteristic of all vector control schemes is the regulation of current
in the rotating dg reference frame, which is established by the orientation angle 6,
representing the phase of the rotor flux vector.

Therefore, by analyzing the stator and rotor models within the dq frame, the voltage
equations can be expressed as follows:

. da,
Vidg = Rslsaq + =5 + Jodsag 4.1)
. da, .
Vidg = 0= err,dq + d—’tdq + J(w - pwr)/lr,dq
While, the flux linkage equations are:
/ls,d = kr/lr,‘d + O-Lsis,d (42)
As,g = 0Ll
The electromagnetic torque is defined in the dg FOC frame as follows:
3 :
T==p-kedr-igy 4.3)

2
Specifically, the d-axis current is used to regulate the rotor excitation level, while the
torque is controlled through the i ,current component. This relationship is illustrated in
Figure 4.2 and is defined by the steady-state correlation between rotor flux and currents,
as expressed in equation (4.4).

Lmis ap
Arap = . 4.4
nP T T Jj(w-pw,) 1, “44)
Excitation . 1
i > i r
I 1+s- 7,
Torque Z%’—* T
; 3
bsqg——¥ =p -k

Figure 4.2: Torque Generation

The implemented FOC schemes operate as closed-loop speed controllers that utilize
encoder feedback to measure rotor speed. The measured speed is filtered and compared
to the reference speed to generate a torque reference signal within the speed control
loop, as illustrated in Figur 4.3. This torque reference is then converted into a reference
current along the g-axis, enabling rapid dynamic response and accurate tracking of
torque changes. In contrast, the current reference on the d-axis is maintained constant at
its nominal value to ensure proper excitation of the machine, as variations on this axis
would not contribute effectively to dynamic torque control.
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l Vic (k )
n"(k) [ 30 Torque | dapc (k)
I control ’
,9(;{)]‘ Lapc(K)
o ()] g 8, (k) Benc (k)
— LPF < - ReadLut() enooder
(a) Speed Control
vgc (k)
ic*i,nom

+ ‘ )
O e ITON W i
idq -jo 2 iabc(k)

(k)

(b) Torque Control

Figure 4.3: Block Diagram of FOC

The reference angle 8, which defines the orientation of the rotating dq reference frame,
is determined differently depending on whether the control strategy follows Indirect FOC
or Direct FOC principles.

Figure 4.4 presents the block diagram of the Indirect FOC scheme, which does
not require flux estimation. In this approach, the orientation angle is computed in a
feedforward manner using encoder feedback and is derived from the reference current

components i:’ dg-

73



Control code implementation

«

ldq

v d k
253 abc PWMduty _)abc( )

iabc(k)

2+3

3 (k)

Wgii p&)\slip ﬁr (k) Benc(k)
Lot | ) ot

Figure 4.4: Block Diagram of the IFOC

Conversely, as shown in Figure 4.5, the orientation angle @ for the dq reference frame
in Direct FOC corresponds to the phase angle of the rotor flux linkage vector. As a result,
this control strategy requires the implementation of a reliable and accurate flux estimator
or observer to determine the rotor flux position in real time.

Vgc (k)
gl + v — v Vabc
da| 7 PIReg() |—23| e /BN P S pwMduty() | dape (k)
i [
dq ei0|—2E 5 T2/ abc(k)
o(k)
Flux Benc (k)
é estimator Readlut() [¢——————
/observer encoder

Figure 4.5: Block Diagram of the DFOC

The reference angle 4 is then computed from the estimated flux components in the
af stationary reference frame using the following expression:

A

Arop = A, - (cos @ + jsinf)

A A (4.5)
cosh=—=2 _ sind= f’ﬂ
Ay A,
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4.1 — Control strategy for the Nucleo Board

Indirect Field-Oriented Control

Figure 4.6 illustrates the block diagram scheme of the simplest FOC implementation:
the Indirect Field-Oriented Control (IFOC).

Vac(k)

g )

i (k . Vig  Yap  Vap
‘i(_) lag 1 dape (k)
ty (k) PWMduty ———>

iabc(k)

(351' |_| 19,— k Qenc(k)
™ 1/t + Plstiv }Cg p | (k) Readlut() [¢«——
encoder

Figure 4.6: Block Diagram of the Indirect FOC

To define the dg-axes, a forward estimation of the rotor flux phase is performed using
the steady-state rotor equation:
PR (4.6)
PWslip * Tr
From (4.6), the phase angle of the rotor flux is indirectly estimated using the encoder
readings (first corrected via software 6., — 6,) and the estimated rotor slip phase angle,
as expressed by (4.7):

0=0,+ [ (o) di

( i;‘kq ) “4.7)
= po, +/ — | dt
T gy

The rotor slip frequency is estimated using the reference dg stator currents instead of
the measured ones, following a forward model approach.
This estimation relies on a single motor parameter, the rotor time constant 7, = 1Le_:’ which
must be accurately identified.
Despite this method is simple to implement, its accuracy is affected by variations in 7,
due to temperature changes, as rotor resistance R, increases with heating.
Additionally, the rotor inductance L, depends on the magnetizing inductance L,,, which
varies with saturation, making the estimation sensitive to the operating point.

In this approach, the speed controller compares the reference mechanical speed with
the filtered speed obtained from the encoder readings. The error between these two
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signals is then used to generate a torque reference through a PI regulator.

This torque reference is then converted into a current reference along the g-axis, as
defined by the (4.9).

Since iy 4 1s used to keep the rotor excited at the nominal flux A2°", torque is regulated
solely by varying the current along the g-axis.

3
T = Ep ki Ay iy 4.8)
From which:
ok T* . 3 nom
ls,q = E with kT = Ep : kr/lr (49)

The orientation angle defining the dg reference frame for Field-Oriented Control
(FOC) is computed as previously described and constrained within the range 0, 27 to
avoid numerical overflow during long-term execution. Once this angle is available, the
measured phase currents are transformed into the dg frame and processed by the current
control loop, which calculates the corresponding voltage references. These voltage
references are then used to determine the appropriate duty cycles for the inverter leg
modulation.
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4.1 — Control strategy for the Nucleo Board

4.1.2 FOC implemented in the Nucelo Board

(counter <
Tref =
counter++;

Tref

isdq_ref. i
isdq_ref. Tref * INV_KT;

_rot(isab, SinCos_r_elt, isdq);

omega_r_filt_elet = PP * omega_r_ filt;
vsdq_ref_ffw.d = RS * isdq_ref.d - omega_r_filt_elet * LS * isdq_ref.q;
vsdq_ref ffw.q = RS * isdq_ref.q + omega_r_ filt elet * (LS * isdq _ref.d + LAMBDA M);

id_var.ref = isdq_ref.d;

id_var.fbk = isdq.d;

id_par.lim = SQRT1OVER3 * vdc - vsdq_ref_ffw.d;
PIReg(&id_par, &id_var);

vsdq_ref.d = id_var.out;

ig_var.ref = isdq_ref.q;

ig_var.fbk = isdq.q;

ig_par.lim = sqrtf(id_par.lim * id_par.lim - id_var.out * id_var.out) - vsdq_ref ffw.q;
PIReg(&iqg_par, &iq_var);

vsdq_ref.q = iq_var.out;

vsdg_ref.d += vsdq_ref_ffw.d;
vsdq_ref.q += vsdq_ref_ffw.q;

_invrot(vsdq_ref, SinCos_r_elt, vsab_ref);

>

Figure 4.7: FOC Code, Ctrl_type 3

The previuos Figure 4.7 represents the specific code used in this application.

The torque provided to the control is constant after an initial step variation controlled
by the counter variables. The reference current for d and q axis are set immediately after,
isdg_ref.d is equal to 0, isdq_ref.q is calculated from the refence torque and the
constant INV_KT.

The currents in alpha-beta refence coordiantes are switched to dq thanks to a custom
macro, after the feed-forward voltages are computed (dq axis) with the omega_r_filt_elet
obtained by oreviuos calcutation from omega_r_£filt.Then the d-axis current loop is
computed followed by the g-axis. In the ened off the script the voltages are computed
from dg-axis to the alpha-beta in order to correct the error in the loop.
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Control code implementation

4.2 Control configuration for Micro digital One

As already mention the Micro digital One is set with a velocity control, unfortunately
from the refence manual there are no detailed infomation about the code implementation
from Microphase. Only few paramters can be changed from the software Drive Watcher
or via SDOs, like accelration and deceleration ramp and the feed constant has mentioned
in Chapter 3 (3.7.3)
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Chapter 5

Motors control results

This chapter discusses the results of several tests conducted on the developed test
bench. The primary focus is on evaluating the performance of the Field-Oriented Control
(FOC) algorithm implemented using STM32CubelDE. This emphasis is justified by the
fact that the speed control provided by the Micro Digital One allows for only limited
parameter adjustments, thereby constraining the scope of the tests that can be performed
with that system. It is important to note that achieving a perfectly tuned and optimized
FOC was not the primary objective of this thesis. Instead, the main goal was the
successful implementation of the CANopen communication network between the two
microcontrollers. That said, the FOC must still meet certain requirements to ensure proper
motor control. These include the ability to accurately track the reference speed, maintain
system stability, and respond effectively to dynamic changes in operating conditions.

5.1 Data retrived from speed control

This section focuses on the speed control system managed by the Micro Digital
One. The S1601B303 Brushless Servomotor is actively controlled using a speed control
strategy, while the S1402B353 Brushless Servomotor operates as a passive mechanical
load. Unfortunately, no direct data were acquired from the Micro Digital One; only
indirect measurements, obtained via the STM32F303RE, are available. As a result, no
data are presented in this section due to their limited relevance. Nonetheless, the available
waveforms confirm the correct operation of the motor control algorithm implemented on
the Micro Digital One. The controller reaches and maintains steady-state conditions,
with minimal current ripple and no observable instability. For a more comprehensive
performance evaluation, it would be advisable to include both the actual motor speed and
its reference signal, in order to directly assess the dynamic behavior of the speed control
loop.
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Motors control results

5.2 Data acquired by speed and FOC control over the
test bench

After a brief analysis of the speed control system in isolation, it is now appropriate to
evaluate the behavior of the complete test bench. The following results are obtained from
the combined operation of both control strategies: the speed control handled by the Micro
Digital One and the Field-Oriented Control (FOC) executed by the STM32F303RE.

This integrated assessment provides a more comprehensive understanding of the
system’s overall performance and its ability to manage coordinated motor control via the
CANopen communication network.

Duty Cycles

Duty Cycles

1
dy
09} dy 4 09}
E—
0.8 F 0.8F
0.7 0.7}
0.6 - 0.6 RS PR
e ; N ]
o5t ki N‘ ‘ —osp. i i hY
bl Y Sy S
0.4 f——— 04} - -]
0.3} E 0.3}
0.2 4 0.2+
d,
0.1t 1 01} dy
—d,
0 . . . 0 s . . . . 4
0 0.5 1 1.5 2 1.705 1.71 1.715 1.72 1.725 1.73
Time [s] Time [s]
15 Motor Phase Currents 15 Motor Phase Currents
10 A 1 10 HH TR
= = sf
s s
; § I
= S ik ‘ \I-‘H\M\
QO QO (’ “””,” w it
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i
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0.4 0.6 0.8 1
Time [s]

Figure 5.1: Mesuremets for speed control and FOC control

The figure displays two measurements related to the speed control of two motors
connected in a back-to-back configuration, using Field-Oriented Control (FOC). Here are

80



5.2 — Data acquired by speed and FOC control over the test bench

represented the duty cycles and a consequent zoom over 2 periods and the motors phase
currents with particular attention towarrds the start of the FOC control. The control
strategy aims to maintain a desired speed and current profile under dynamic conditions.
The plots can be interpreted as follows:

- Duty Cycles The duty cycles d,, d; and d, exhibit a transient response at around
t = 0.5 s, followed by stabilization. This transition corresponds to the engagement
of the second motor in the back-to-back scheme. Specifically the cotrol switch
from the speed control alone to the speed and FOC combined. The stable PWM
modulation after the transient suggests that the inverter is maintaining steady-state
switching signals effectively.

- Motor Phase Currents The currents i,, i, and i, show a clear transition around
t = 0.5s, followed by balanced three-phase sinusoidal waveforms. This indicates
that after an initial adjustment period, the FOC controller successfully regulates
the motor currents, achieving phase balance and current ripple control. The initial
high amplitude may reflect motor start-up or torque synchronization.

5.2.1 Analisys of bench test speed

Mechanical speed 120 Mechanical speed

= 120 : T - . . .
= R omega_r_filt = ‘{“ omega_r_filt
Zus Z1s \ 1
~ ~ [\ \
g < 110 ‘
£ 110 g 1 1
2 e ] |
< 105 < 105 ‘ ‘ ‘ 4
: -
& £
< 100 < 100 L L L L L

0 R k 0 0.5 1 1.5 2 2.5 3

Time [s] Time [s]
01 Torquereference 02 Torquereference
Trey Trey
= of 1 = o1}
S 3
£-01 S
&~ &~
0.2 s L L L L 0.1 L L L L L
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3
Time [s] Time [s]

Figure 5.2: Test bench speed confrontation

The Figure 5.2 illustrates the angular velocity profiles of the test bench paired with
the torque reference of the FOC control. A couple observations can be done:

- At the beginning of the plot, a transient peak is observed, corresponding to the
activation of FOC control and therefore of the torque reference. Following this,
omega_r_filt stabilizes quickly at a nearly constant value, indicating effective dy-
namic performance and stability of the speed control loop.
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- The spikes in the omega_r_filt represent the loading from the step variation of the
refence torque of the FOC control. A positive spike is bond with a positive step
in torque while a negative spike is bond with a nrgtive step in torque. In both the
scenario the gain of the speed loop act quickly in order to maintain the reference
speed.

5.3 Fault Test

A critical test is performed on the test bench to assess its behavior under fault con-
ditions. The worst-case fault scenario occurs when Field-Oriented Control (FOC) is not
active, resulting in a sudden drop of the shaft speed to zero.

DC Link Voltage
30.65 T T T

*

30.6 -

30.55

30.5 |- -

o 30.45 | .

30.4 |

Voltage [V

30.35

30.3 F i

30.25

30.2 i

3015 1 1 1 1 1
2.66 2.68 2.7 2.72 2.74

Time [s]

Figure 5.3: Test bench speed confrontation

Figure 5.3 shows the DC link voltage of the generator supplying the test bench. This
parameter is a crucial aspect when evaluating the safety of the bench. Under normal
operating conditions, the DC link voltage remains approximately constant. However,
during this type of fault, the kinetic energy released by the abrupt stop of the shaft is
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converted into reverse current flowing back into the generator. Since the generator is not
capable of energy regeneration, its only response to this backflow is a rise in the DC link
voltage (Vpc). The Vpc value must remain within a specific range, with any voltage spike
not exceeding 15 V. The test demonstrates a very good resilience of the system against
this type of fault. Cause as soon as the Vp starts rising drops back to a stady value.
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Chapter 6

Additional software

In this chapter will be briefly discussed the auxiliary software to the main tools. They
are two, the PCAN-View and the Drive Watcher already mentioned before for some
aspects.

6.1 Drive Watcher

Drive Watcher is a software developed by Salema for Microphase.

Parameters

Lab tools Communication
Configuration

Settings

) Registers Password
! Drive View
N Configuration Management

) Motor

] Drive Axis Test Drive Easy Set-Up E:;';:e’ Liilig] Dimensioning Taol

]‘g /0 Debugger SAP Configuration & Enc/Res Alignment %eucluunic Label

Tyt

CAN Debugger ¥ \45Q Configuration Absolute encoder Drive Programmer
alignment

L

—~ Impulse Debugger % _ CAM Configuration Troubleshooting
-

Node: 2

Figure 6.1: Drive Watcher
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In Figure 6.1 is visible the software in its integrity. There are many functions in
foreground, but not all of these are completebly accessible without specific keys.

The following functions are not accessible without a specific password/ID:

- 1/O deubber;

- Lab tools;

- Password Management;
- Electroic label tool;

- Drive programmer.

All the other functions can be used but only few of them were useful for this specific
application.

The most relevant functions are:
- Parameters Configuration;

- Registers Configuration;

- Drive Easy Set-Up;

- Communication Settings.
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6.1 — Drive Watcher

6.1.1 Functions description and usage

In the followiong part all the relevant functions will be discussed and explained with
a focus on their role in the project and possible use.

Paramters configuration

An example as this section of the program as it shows, was prevously reveals in Figure

3.25.

The crucial function of this part of the program was already mentioned in Chapter 3.
Now the goal is to give a more specific description of all the parameters and how can be set.

The portion Parmaters Configuration appears as in Figure 6.2

D
E
|

(o

S Parameters Configuration @

E
P
H

D parameters

d1/20/2 @ d6[99|2 @
d2(50/5@ d7/0/5@ |,
d3(50/5@ dg0[5@
d4/50]2 @ VLS
d5(99/> @

W

Figure 6.2: Drive Watcher

It’s possible to identify three sections in this view.

lw)

C
F
| P
H

(a) Parameters

menu

D parameters

d1{20/> @ d699|S @ o ||

d250v@ d70v0 L ),

d3|50 5@ d8/o0 |- @ =T

d4(50 5 @ V||

d599 5 O w || 8
(b) Parameters values (¢) Drive ac-

tions

Figure 6.3: Sections
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In the Paramters menu every letter regoup a certain numbers of paramters that
manange a specific portion of the Micro digital One.

- D paramters:In this menu, it is possible to view and modify: the motor selec-
tion, certain current-related parameters, and parameters related to speed and its
control loops. It is important to note that when the motor is selected, the Drive
automatically sets the correct scaling factors and all the data related to the current
loops. Therefore, the parameters to be set are exclusively application-dependent
(e.g., moment of inertia, etc.). WARNING! Parameters d5, d6, d7, and d8 must not
be modified while TEN is active and the axis is in regulation mode (either locked
or in motion);

- C paramters:This menu allows modification of the drive control parameters. This
menu is extremely important and must be used with great caution and only after fully
understanding the details of each parameter. Here, you select the operating modes
(analog setpoint, digital setpoint, or integrated mechatronic functions, and finally,
the implemented fieldbus networks). Furthermore, a very important parameter to
be set is the motor rotation direction, which is, of course, application-dependent;

- E paramters:This menu allows modification of the following three specific drive
parameters. Two of them (E1 and E2) affect the speed setpoint, and the third affects
the operational behavior of certain Drive conditions;

- F paramters:This menu enables the setting of the ramp parameters for the speed
setpoint;

- I paramters:In this menu, it is possible to view and modify the main parameters of
the drive’s positioning system section (position loop). This menu is available in all
options involving the space loop and allows only limited parameter modification
of the Drive’s Positioning section. For maximum flexibility, it is advisable to use
the Drive Watcher software or operate through the FIELDBUS by accessing the
REGISTERS section as well;

- P paramters: all these paramters contain the values for Pulse posistion (not used
in this specific application);

- A paramters: Axis paramters define all the aspects about the axis motion and
error for mesurements (default value not changed for this application);

- H paramters:This section describes the various methods by which the drive
searches for the axis zero position. You can use two limit switches placed at the
stroke ends or a home switch placed at any point along the path. Some methods,
after finding the switch, search for the encoder’s index pulse (marker) to achieve
higher precision. The user can specify both the homing speeds and acceleration,
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bearing in mind that the method uses a higher speed to search for the switch and a
lower speed for the potential index pulse search;

- N paramters: only one parameter to set CANbus Baud rate.

This is a brief description of the group of paramters and what aspect they cover, mre
details are present in the manual of the Micro digital One.

Parameters value section is pretty much self explenatory, here are listed all the
paramters of a certain group were they value can be changed and more detailed informa-
tion about the single paramters are given clicking on the info buttuno (the blue one near

the paramters’ value).

The Driver actions section is not proper of the Parameters Configuration view. It
appears in many other view because its role is to give the possiblity to user to interact
with the the Micro digital One directly.

Ls

Figure 6.4:
Open con-

figuration
file

Figure 6.5:
Save  con-
figuration
file

Open configuration file: Once pressed, if present you can
open a configuration file for all your parmaters and instantly

apply it.

Save configuration file: Once pressed, permits to create a
configuration file that can be later upload.
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L

Figure 6.6:
Read from
device

-

Figure 6.7:
Write from
device

X
¥

Figure 6.8:
Save config-
uration

.

Figure 6.9:
Load default
configura-
tion

Read from device: Once pressed, the paramters that are pre-
viously uploaded to the Micro digital One are write to the
section Parameters value.

Write from device: Once pressed, the paramters that are write
in the section Parameters value are uploaded to the Micro
digital One.

Save configuration: Once pressed, the paramters that are
write in the section Parameters value are saved to the Micro
digital One; in contrast to uploaded that can be erased after
the Micro is switch off the saved parameters are permanent.

Load default configuration: Once pressed, the paramters are
restored to the defaul value.
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Figure 6.10:
Start com-
munication
with device

i

\,

A

Figure 6.11:
Stop com-
munication
with device

Registers configuration

Start communication with device: Once pressed, the com-
munication with the device is started.

Stop communication with device: Once pressed, the com-
minication with the device is stopped.

The Register configuration panel is conceptually similar to the Parametrs configuration
one, as is shown in Figure 6.12.
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b4 Registers Configuration |E|
Registers - page 1
R00: Control Word 2 0 R22: Homing Acceleration 100 0
RO1: Modes of Operation 0 R23: Velocity Master Sensor 0 0
R02: Feed Constant 60 o R24: Master Encoder Increments | 2048 o
R03: Following Eror Window - o R25: Gear Ratio Numerator 1 o () Hexadecimal
R04: Following Emor Time Out 100 o R26: Gear Ratio Divisor 1 o
RO5: Status Word 36464 &) R27: Motion Profile Type 0 (9 ] = G
RO6: Position Actual Value 9401 0 R28: Acceleration Jerk 10 0 '
RO7: Latched Posttion 0 &) R29: Deceleration Jerk 10 (5 ] L 3
RO08: Velocity Actual Value 0 @ R30Axn1 0 (9§ ] ‘
R09: Target Position 0 @ R Axn2 0 (7 A —
R10: Profile Acceleration 5 @ R32AxOu1 0 (9§ ] 9
R11: Profile Deceleration 5 @ R33AxOw2 0 (9 ] —
R12: Profile Velocity £0 @ R34 AXIEN3 0 (9 ] SN -
R13: Target Velocity 0 & R AxIEN4 0 (9 ]
R14: Velocity Window 65535 € R36:AXIE0u3 0 9§ ] W %
R15: Velocity Window Time 10 € R37 Ax160ut 4 0 9§ ]
R16: Velocity Threshold 65535 & R3BAxIS 0 (9 ]
R17: Velocity Threshold time 10 & R3%AxnE 0 o
R18: Homing Method 34 @ R4O:AxIn7 0 o
R19: Home Offset 1000 & R4:AxIng 0 o
R20: Homing Fast Speed 0 & R42AX1EIN9 0 o
R21: Homing Slow Speed 1000 & R4 Ax1EI 10 0 o

Figure 6.12: Register configuration panel

The section of the panel are only two this time. One where the value of the registers
can be setted (with a proper ’info’ button) and a second where are present all the button
descibed before and three new.

Back button: Once pressed, the panel goes back to the previ-

Figure 6.13: uos page .
Load default

configura-

tion
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-

Figure 6.14:
Forward but-
ton

Start communication with device: Once pressed, the panel
goes to the next page.

o
Figure 6.15:

Continuously
reading

Stop communication with device: Once pressed, the registers
of the device are continuously reading.

Directly under the back and foward button another small section is present.

() Hexadecimal
Figure 6.16: Data format

Here can be set the data format for the registers between decimal or hexadecimal.
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Drive easy set-up

In this section of the program the Micro digital One can be set up from the start
without compiling the Parametrs and Register configuration portions. It is presented as
in Figure 6.17.

[

Easy SetUp
The following wizard will%elp you configure the main parameters of Selema drives.

Select the type of drive to configure and press 'Next' to begin.

ECO

0 “« 9 v

Figure 6.17: Driver Easy set-up panel

A series of direct question are asked to the user, who can navigate throu the question
with the back and forward button, in order to set the essential paramters of the driver.
Once the configuration is over with the "tick’ button in the bottom right corner the changes
are saved and the drive is ready to operate.

Communication Settings

The Communication Settings can be seen as the most important portion of the pro-
gram; beacuse if are not correctly set there is no communication between the Micro
digital One and the PC. As already mentioned the Micro digital One has no USB
port, so it’s only way to communicate to a PC is to utilized the CN5S or CN6 port. An
RJ45 to DBY cable is required with a specific DB9 to USB interface provided by Moxa,
the Uport 1130I. To ensure a correct connection in the Device Manager of Windows
under serial Multiport, Port Settings, Port Number and Intrface must be set properly as
reported in Figure 6.18
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;...; Gestione dispositivi - [} X

File Azione Visualizza ? i
o T E HE B BX® \

i} Input e output audio
i3 IntelR) Dynamic Platform and Thermal Framewor X
¥ Modem Generale Ports Configuration  Driver Dettagli Eventi

=3 Monitor I%

8 Mouse e altri dispositivi di puntamento Port] COM No. | Fast Flush | nterface

i Porte COMe LPT) 1  COM1  Enable  RS-422
u Processori

v [ Schede di rete
I Bluetooth Device (Personal Area Nety "
? Intel(R) Dual Band Wireless-AC 8265
| [E Kaspersky Security Data Escort Adapi
| 7 Realtek PCle GBE Family Controller RortiNUmber COM1 (current) :I'
[ Realtek USB GbE Family Controller O uto Enumerating COM Murmber
' WAN Miniport (IKEv2)
I WAN Miniport (IP)
? WAN Miniport (Pv6) Fast Flush (e Enable -
- (" Disable aaieating
' WAN Miniport (L2TP)
? WAN Miniport (Network Monitor) [ Set the change to all ports
= WAN Miniport (PPPOE)
I WAN Miniport (PPTP)
& WAN Miniport (SSTP) Interface [Rsa22 +]
v ﬁ Schede seriali Multiport
& UPort 11301 [ s
[Ed Schede video OK Annulla

— )
=2 Tastiere R |

Proprieta - UPort 1130l X A

he change to all port

Cancel | v

|

— LInitA dicen

Figure 6.18: USB configuration

Port Number is the current PC port where the DB9 to USB interface is connected
and Interface is which type of communication protocol is desired. Once this preliminary
steps are completed the same setting must be reported in Communication Settings in
Drive Watcher.
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Com Settings X
Node selection ComPort
Node ID 2 ComPort 1 v
Com mode

(3) Even parity [default)
(O RS 485 ) RS 422 O No paiiy

S ' ‘_ :'_3. “\7’?

Figure 6.19: Communication settings

% ComPort communication test: Once pressed, is possible to
- test the PC and driver connection with three simple button:
start, reset and stop.

Figure 6.20:
Com-test
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& com Settings
Node selection

ComPort

Node ID 2

ComPort 1 v

Com mode

~ -
Com test

CAR AR
Comm failed:
0/0

(0%)

(%) Even parity [default)

O RS 435 & RS 422 S,

7
V,’

Figure 6.21: Communication settings and test section
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6.2 CANopenEditor - EDS editor

This specific software can be found and download paired with the CANopenNode open
source library. Object Dictionary Editor is an external graphical tool used to configure
and edit the CANopen Object Dictionary of a custom device. It automatically generates
the corresponding C source code, the Electronic Data Sheet (EDS), and the associated
documentation required for the device’s integration within a CANopen network.

Figure 6.22: OD editor first look

At first sight the software is empty, only a toolbar in the top is present. In order to
have access to modify the EDS file of the STM32F303RE is necessary to press File on
toolbar then Open and select the .xpd file present in the CANopenNode_STM32 folder.
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File InsertProfile  Reports  Tools

1+ B CustomBoard lopenNode_STM32

Nuova cartella

4 Ultima modifica Tipo

File XPD

B Immagini
A

W Oggetti 30

£ Video

= 05 (C)

= DATA (D)

Nome file: | DS301_profilexpd All supported files (*xdd;"xdc;

Figure 6.23: OD editor opening file .xpd

The software will appears as shown in Figure 6.24.

&
File InsertProfile Reports Tools
m 7] Device Info [EE Object Dictionary [ TX PDO Mapping !\[(- RXPDO Mapping Modules
Communication Specfic Parameters S Name ObjType  Data Type SDO  PDO  SRDO  Defaut Value
Index Name A
1000 Devicetype
1001 Erorregiter
1003 Pre-defined emorfield
1005 COBAD SYNC message
(1006 Communication cycle period
1007 Synchronous window length
< >
Mandfacturer Spechic Parameters Index Sub Index
Name
Index Name
Denotation
Description
Device Profie Specic Parameters
Object settngs
I N
index Name Object Type HighLimt Count Label -
6000 counter
B6001  SW_received Deta Type O] Lowtmt Storage Group v
06002 MdO_speed_received Access SDO O] Actual Value Enabled m]
Access PDO ©|  StingLen Min
Access SRDO v
Defaut value SaveChanges Il [ Autosave changes
< >

Figure 6.24: OD editor with file .xpd open

A new set of tabs are avaliable now, each of them cover a specific aspect of the .xpd
file.
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Device Info

Inn this tab all the relevant information about the EDS file are reported organized in
specific subsections. The only field that is modified is the projct name.

&% Object Dictionary Editor v4.2.3-0-gc1071ab

File Insert Profile Tools

Back_to_Back_CANop
= [ Device Info [EB Object \)d»oLary [® TXPDO Mapping [€ RX PDO Mapping Modules

Device Info Baudrates General and Master Features
Product name Back_to_Back_CANopen 10kbps Granularty 8
20kbps.
Product ID SOkbps RPDOcount 1
Vendor name 125kbps TPDO count 1
250kbps
Vendor ID
500 kbps LSS Slave
File Info 800kbps [ LSS Master
1000 kbps
Fie version 1 O ao [ Node guarding Slave
Description [ Node guarding Master

No of monitored nodes |0
Creation Date/Time 23/11/2020 13:00.00

Created By
Modfication Date/Time [18/06/2025 16:06:28

Modfied by
Device commissioning
Project Info Concrete node 1D [0

Project file (version) DS301_profile xpd via

Node name [
XDD v1.1fie - stipped Baudrate [0
EDSfle Net number [0
DCFfie Net name [
CANopenNode file (ver) CANopen Manager [
Documentation fie LSS Serial no [0

Figure 6.25: ODE - Device Info
Object Dictionary

This tab is devided in four parts, thrre iion the left side and one bigger on the right.
On the left are reported all the parameters of a specific device:

- Communication Specific Paramters: only communication ones are present here;

- Manufactuer Specifi Pramters: here are set all the paramters created by manu-
factuer;

- Device Profile SPecific Paramters: here are placed alle the prameters defined by
user and the ones editable by the user.

On the right side are presented a series of information bonded with the paramter
selected. The most relevant in this application are the ones under the Object settings.
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&
File InsentProfile Reports Tools
‘Back_to_Back_CANop —
—en [] Device Info [EB Object Dictionary [ TX PDO Mapping [€ RXPDO Mapping Modules

Communication Speckic Parameters “Sub  Name ObjType  Data Type SDO  PDO  SRDO  Defaut Value

index  Name A

01000 Device type

01001 Erorregiter

01003 Predefined eror feld

01005 COBAD SYNC message

01006 Communication cycle perod

01007 Synchronous window length

< >

Manfacturer Spechic Parameters Index Sub Index
Name

Index Name
Denctation
Descrption

Device Profle Specic Parameters

Object settings

I N:

dex ame Object Type HghLimt Court Label v

6000 counter

B6001  SW_received Data Type o Lowlmt Storage Growp v

(6002 MdO_speed_eceived Access SDO v Actual Vaive Enabled [}
Access PDO v|  sunglenn
Access SRDO S
S Save Changes | (] Autosave changes

< >

Figure 6.26: ODE - Object Dictionary

Once created a new Device Profile Specific Paramters (by right click of the mouse
in the specific sesion), all the voices, beside Object Type, can be set by the user. The
following list contains the must set paramters, meanwhile the other can be left empty.

- Data type: define the type of data;

- Access SDO: define how this paramter can interact via SDOs (no, ro, wo, rw ->
no, read only, write only, read and write);

- Access PDo: define how the paramter can interact via PDOs (no, ro, wo, rw -> no,
read only, write only, read and write);

- Storage Group: indicate where the paramter is stored;

- Deaful value: here the deafult value defined by user is set.
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TX PDO Mapping
In this tab the TPDO are created.

&
File InsertProfile Reports Tools

[F] Device Ifo [ Obiect Dictionary [ TXPDO Mapping [€ RX PDO Mapping Modules

Available Objects for PDO Communice ation parameters

Index  Sub  Name Datatype Bts Communic: ation | (x1800

01001 (x00  Eror register UNSIGNEDS 8 Mapping Ox1A00

x1200 x01 COB-D client to server {x) UNSIGNED32 2

1200 0«02 COBHD serverto cient &x) [\ANSIGNED32 2 cos 0181

01280 0«01  COBHD chent to server x) UNSIGNED32 2 e 5 Add new PDOF

x1280 x02 COB-ID serverto client {x) UNSIGNED32 32

6000 Ox00 counter UNSIGNED32 2 Inhibit 0 Delete PDO =
Event Tmer [0
Syne stat 0 [ invaiid Save W

111111111122222222223323333333444444434
ID COB Index 01234567%89¢07234667890123456789012345678301234567
Byte 0 Byte 1 Byte2 Byte 3 Byted Byte 5
1 181 1800  (x600000counter Empty
< >

Zoom In Zoom Out

Figure 6.27: ODE - TX PDO Mapping

Three main sections are present in this tab:

- Avaliable Objects for PDO: list of all the objects for PDO;
- Communications paramters: editable paramters of the TPDO;

- TPDO message: graphical rapresentation of the TPDO message COB-ID, INdex,
and data bytes.

By clicking the button "Add new PDO" a new TPDO is created in the specific section,

alle the Coomunication paramters can be set accordingly and the objects to be inserted
are avaliable in the list. Ny clicking the "Save" button the TPDO is saved.
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RX PDO Mapping

This tab works in the exact same way as the TX PDO Mapping described in the
previous section.

“%,

File InsertProfile Reports Tools
LR RN ] Device Info [EB Object Dictionary [ TX PDO Mapping [€ RXPDO Mapping  Modules
Avaiable Objects for PDO Communication parameters
Index  Sub  Name Datatype L Bts Communication ~[5x1400
01280 0«01  COBHD chent to server &) UNSIGNED32 2 Mapping [oxt600
01280 0«02 COBHD serverto clent fx) UNSIGNED32 2
0<1600 (x01  Application object 1 UNSIGNED32 2 cos [0x0481
1600 0«02 Applcation obiect 2 UNSIGNED32 2 Type = Add new PDOF
06001 000 SW_received UNSIGNED16 1
06002 (00  MdO_speed received INTEGER22 2 bt Dalta PDO =
Evert Tmer [0
Sync start 0 [ nvald Swe
. 491111111 1112222222222332333333344444444
ID COB Index 01234567%89¢072346678901234567890123456783012346567
Byte0 Byte 1 Byte2 Byte3 Byted Byte5
II 481 1400  0x6001/00/SW_received 0x6002/00/MdO_speed_received £
< >
Zoomin Zoom Out

Figure 6.28: ODE - RX PDO Mapping

Modules

For this application this part of the code is not involved and therefore there is no point
in discribing it.
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6.3 PCAN-View

PCAN-View is a Windows-based diagnostic and monitoring software developed by
PEAK-System Technik GmbH. It serves as a lightweight, standalone application designed
to interface with Controller Area Network (CAN) and CAN FD buses through PEAK-
System hardware.This tool is widely used in both research and industry for the real-time
inspection, transmission, and logging of CAN messages.

PCAN-View allows users to observe the traffic on a CAN network by displaying
received and transmitted messages in a structured format. The software supports standard
CAN (11-bit identifiers) as well as extended CAN (29-bit identifiers), and it also provides
compatibility with CAN FD (Flexible Data-Rate) frames.

Key features include:

- Real-time CAN message monitoring: Messages are timestamped and shown in a
continuous stream, allowing for dynamic analysis of network activity.

- Message transmission: Users can manually construct and send CAN messages with
custom identifiers, data lengths, and payloads.

- Filter configuration: Acceptance filters can be applied to limit the scope of received
messages, enhancing readability and focus.

- Logging capabilities: Sessions can be saved to log files in various formats for
offline analysis.

- Bus load measurement: Provides statistics on message rate and bus utilization.

Internally, PCAN-View communicates with the CAN controller via PEAK’s device
drivers, enabling low-latency data exchange with the hardware interface. It operates
in user space without requiring programming, making it suitable for both engineering
validation and troubleshooting tasks.
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™ PCAN-View

File CAN Edit Transmit View Trace Window Help
~" ey ik 2"

B Receive/Transmit @ Trace & PCAN-USBFD [ Busload = 4\ Error Generator

Type Length
1

O can-ip
000h

@ Connected to hardware PCAN-USB FD, Device ID Oh %  Bit rate: 500 kbit/s  Status:

Cycle Time
Wait

Overruns: 0 QXmitFulk: 0

Cycle Time

Figure 6.29: PCAN-View main page

Trigger Comment
Operational STM32

P Micro
stato HB pre-operational

intervallo heartbeat

ndi intervallo heartbeat

As shown on Figure 6.29 the PCAN in its main view is basically spilt in two main
sections: Receive and Transmit.
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6.3.1 Receive

In this section can be seen all the messages transmitted by every node in the CANopen
network.

Figure 6.30: PCAN-View Receive section

Here are present the messages transmitted and received by the two nodes of this
applcation specifically node 1 and node 2. The different type of messages SDOs ,
TPDOs, ecc. are discriminated by their COB-ID (called CAN-ID).
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6.3.2 Transmit

Figure 6.31:

Here are present all the messages not directly transmitted in the CANopen network
but these messages are created by the user and then transmitted in the network by clicking

on them.

PCAN-View Transmit section

ID: (hex)

Length: Data: (hex)

|602

Cycle Time:

[JPraused

o m

| [__~] [28][17][10] o] [ao] oF [ oo} oo]
0 1 2 3 4 5 6 7

Message Type
[] extended Frame

[[JRemote Request

Comment: \4 secondi intervallo heartbeat

Cancel

© res

Figure 6.32: Example of a creation of a message in PCAN-View

This function is very uselful specifically for debugging puporse and controlo over the
network. Beacuse these messages can be sent anytime during network usage.

In conclusion PCAN-View is a very powerful software not only for scan the network

but also to intervein on it in a very simple way.
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Chapter 7

Conclusions

The primary objective of this thesis was to implement a back-to-back configuration
for two motors, each controlled by its own microcontroller, providing proper control
of speed and Field-Oriented Control (FOC) torque respectively. The selection of both
the microcontrollers and motors was constrained by the availability of equipment in the
Politecnico di Torino’s laboratory.

Despite these constraints, the positive results obtained from the test bench validate its
effectiveness and potential for further applications. In fact, the developed setup can now
serve as a case study for additional experiments, such as generating a magnetic flux map
for the motors or integrating the system into educational programs.

The proposed test bench offers several strengths. All the necessary instrumentation
is already available in the laboratory, minimizing the need for additional hardware. The
STM32F303RE microcontroller is widely used in course curricula, while the introduction
of the Micro Digital One requires only minor integration, some of which has already been
addressed in Chapters 1, 2, 3, and 6 of this thesis.

Moreover, the use of commercially available, industry-relevant components bridges
the gap between academic study and real-world engineering practice. The inclusion of
the CANopen communication protocol, a widely adopted standard in industrial automa-
tion, further enhances the educational value of the setup. Its correct integration enables
flexible communication between the two microcontrollers, making the system not only
useful for teaching purposes but also adaptable for future enhancements.

In conclusion, the developed back-to-back motor configuration offers a versatile,

accessible, and pedagogically valuable platform that can serve both academic and research
needs.
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