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Abstract

Infrastructure relies on periodic monitoring to maintain functionality and reduce
risks. Developing strategies for monitoring and managing aged infrastructure as-
sets while respecting time-efficient methods has become a challenge in developed
countries. This research presents a novel approach for infrastructure health mon-
itoring by introducing a dataset developed on Italian concrete tunnels concerning
defect detection, suitable for training state-of-the-art deep learning computer vi-
sion algorithms. The database contains five types of defects suggested by Italian
regulations, including Seepage, Spalling, Damaged Joints, Cracks, and Corrosion,
and three non-defect classes presenting the tunnel equipment, repair parts, and
signs. Consequently, the database was evaluated and compared with three deep
learning instance segmentation algorithms to check the efficacy. Additionally, the
database was evaluated with semantic segmentation methods to represent the com-
patibility of multiple usages to distinguish between defect and non-defect classes.
Subsequently, a damage report interface was developed to help specialists generate
the tunnel defects report satisfactorily. This database was developed to help pro-
fessionals overcome the problems related to the scarcity of data in the tunnel asset
monitoring methods and enhance time efficiency and accuracy.

Keywords: Defect detection, Tunnel, Structural health monitoring, Deep learning,
Instance segmentation, Semantic Segmentation
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Chapter 1

Introduction

Transportation infrastructure plays a vital role in everyday human life. While these
kinds of structures are designed to serve for a long period, periodic maintenance
and monitoring of them is significantly important to enhance their functionality
and also decrease the risk of any incident and probable dangers. Among different
kinds of transportation infrastructures, the importance of tunnels in mountainous
areas is undeniable. Turning to Italy, with its Alps and Apennine mountains role
of tunnels is crucial in transportation.

The Italian road network is hierarchically structured, from a managerial and
administrative point of view, into motorways, state roads, regional, provincial, and
municipal roads. Part of the Italian road network belongs to the Trans-European
Transport Network (TEN-T), which is a planned network of roads, railways, air-
ports, and water infrastructure in the European Union [1]. TEN-T demonstrates
plans and guidelines for managing and maintaining the transportation network,
including tunnels. The extension of the TEN-T falling within the national Italian
level is equal to 9481 km since the last update; it therefore has an extension of
less than 1% of the entire Italian road network. Across Europe, Italy is the EU
country with the highest number of tunnels belonging to the TEN-T network, with
a total of 465 tunnels. However, just about 19% (49 tunnels) of them in operation
are categorized as "compliant" based on minimum safety requirements suggested
by Legislative Decree no. 264 of 5 October 2006 [2]. Although the total number
of Italian tunnels belonging to the TEN-T is limited compared to all the tunnels
in Italy, it reflects the critical condition of the Italian tunnels and the necessity for
their maintenance.
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Introduction

1.1 Context and Background

1.1.1 Infrastructure Asset Management
Infrastructure Asset Management (IAM) is the methodical, coordinated process of
carrying out all necessary procedures and activities for an organization to effectively
and sustainably manage its infrastructure assets throughout the course of their full
life cycles. This includes the methods of acquisition, execution, maintenance, and
disposal, all aimed at enhancing performance at the lowest possible cost and risk.
It also contains financial, engineering, and environmental considerations that assist
firms in making proper decisions on their assets. It is crucial to remember that
different companies and sectors may have varying definitions of IAM [3].

The idea of IAM is crucial for addressing several issues that governments and
organizations face around the world, particularly in metropolitan areas where more
responsive and sustainable structures must be developed. Additionally, IAM in-
tegrates all of these, including risk control and technology utilization to improve
asset performance and lifetime [4].

Over the past few years, IAM has grown in importance for a number of reasons.
First of all, in many affluent nations, deteriorating infrastructure leads to regular
failures that endanger public safety and result in significant losses. The American
Society of Civil Engineers estimates that by 2029, engineers estimate that the US
will require an additional $2.59 trillion for infrastructure [5]. Second, the impact
of climate change on infrastructure resiliency and life expectancy is understood,
and this situation emphasizes the importance of IAM strategies in this era. Severe
flooding, sea level rise, extreme weather events, and an increase in the instances of
severe and more frequent weather occurrences have a huge impact on the longevity
and functionality of several systems and services, and that could jeopardize the
usability and security of any infrastructure. IAM plays a vital role as a systematic
monitoring and improvement approach in the face of climate change and also any
severe natural disaster [6, 7].

IAM encompasses more than just maintenance; it also involves taking care of
all aspects of infrastructure systems. It includes determining the assets’ present
condition, determining future needs, and making decisions based on assessment
data. As mentioned, IAM applies to all types of infrastructure, such as public
facilities, utilities, and transportation networks, highlighting the significance of the
overall framework that should accommodate various asset types and their conditions
[8].

Among different kinds of infrastructure, the transportation network has long
been regarded as a vital part of a society’s infrastructural development because it
provides essential services necessary for economic growth, in addition to ensuring
security and the safety of individuals and property. IAM served as an essential
function in monitoring, periodic maintenance, and optimization of the functional

10



1.1 – Context and Background

physical transportation entities such as roads, bridges, tunnels, and rail lines. Ef-
fective management of transport assets guarantees availability and reliability, and
at the same time lowers the overall cost of interventions, reduces the risks of any
hazardous incidents, and increases the safety of users and operators [9].

Transportation assets and facilities are extremely susceptible to slow degrada-
tion and sometimes catastrophic loss due to natural disasters. As a result, IAM
strategies are crucial for managing the risks associated with asset failure within
the construction and service process. Systematic periodic inspections of bridges
and tunnels can detect areas of weakness that may cause devastating collapses by
providing evidence for maintenance and replacement. In the same way, taking pre-
ventive measures to extend the life of the transport asset can significantly reduce
costly repairs and unscheduled downtime [10].

Transportation infrastructure is exposed to the consequences of climate change
disasters such as storms, frequent flooding, and sea level rise. According to the Eu-
ropean Environment Agency (EEA), it is calculated that in the period 1980-2022,
the losses in the economy due to the consequences of weather related natural disas-
ters in the European Union (EU) amounted to 650 billion euros, the consequences
of which threaten critical infrastructure [11]. To overcome these risks, IAM de-
velops plans and strategies for risk management and resiliency approaches. In this
way, asset managers can determine which link in the transport network is most sus-
ceptible to climate change impacts by completing a vulnerability assessment. This
information allows them to allocate resources for adaptation strategies like build-
ing flood defense structures, promoting better drainage systems, using advanced
materials, real-time data gathering and analyzing, etc.

Therefore, IAM is relevant to transportation systems because it ensures the
safety, functionality, and resilience of transportation networks in the face of climate
change, population growth, and aging infrastructure.

1.1.2 Transportation Asset Management
Transportation Asset Management (TAM) is essential for maintaining, operating,
and improving transportation infrastructure throughout its life cycle. Transporta-
tion infrastructure plays a fundamental role in a country’s economic growth and
quality of life, including highways, bridges, tunnels, transit systems, etc. The
purpose of TAM is to maximize the value of serviceability, safety, and utilization
for transportation assets while minimizing their life cycle cost [12]. TAM can be
thought of as the tool for regulating the productivity of physical assets, establish-
ing service requirements, and determining the best prices for maintenance, repair,
and replacement programs. It comprises choosing from a wide variety of decision-
making methods within the scope of risk management, performance evaluation, and
life-cycle cost analysis. One of the key tenets of TAM is the application of condition-
based metrics, which assess the present condition of assets to inform maintenance
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Introduction

choices. TAM offers concrete proof of how improved resource utilization and ef-
ficient use of available resources may be accomplished while lowering the overall
life-cycle cost and further extending the life of these systems through the ongoing
evaluation of the current state of transportation systems [13].

The recognition of infrastructure management’s importance in modern busi-
nesses was the primary factor in TAM’s rise to prominence. Particularly in the US,
TAM’s adoption has been caused by the necessity that all transportation agencies
include the value of infrastructure on their financial balance sheets to comply with
modern regulations. This rule forced agencies to concentrate on evaluating asset
performance and incorporate quantitative financial management techniques into
future infrastructure development. Several nations with varying economic standing
have realized the potential of TAM concepts for expansion and modification to fit
and improve the current and future local and international demand for transporta-
tion [14].

Developed countries around the world are investigating various platforms to
maintain TAM strategies for their assets. Like KUBA for road management in
Switzerland, DANBRO for bridge management system in Denmark, BaTMan bridge
and tunnel management in Sweden, and MRWA and NSW for bridge management
systems in Australia [15]. Infrastructure managers progressively rely on infrastruc-
ture management platforms to enhance their decision-making procedures. Those
responsible for developing and owning these systems stand to gain valuable insights
into the latest capabilities of the most advanced systems and a comparative analy-
sis of their system against others. This understanding serves as a valuable resource
for shaping the future development of their systems. Additionally, it facilitates the
identification of contacts who can provide in-depth insights into how others have
successfully executed or are in the process of implementing plans similar to their
own [16].

This research mainly focuses on the tunnels as part of transportation assets,
and in the following parts, key challenges and opportunities for the development of
the tunnel asset management will be discussed.

1.1.3 Tunnel Asset Management
Tunnel Asset Management (TuAM) can be identified as a subcategory of Infras-
tructure and Transportation Asset Management. TuAM has unique complications
mainly because tunnels are highly specific structures with complex environments
and with considerable consequences in the event of their failure. This is because
tunnels serve as the foundation for transportation networks, particularly in moun-
tainous areas where utilities and goods are transported by rail and roads. Due to
the aging tunnel infrastructure and the increasing effects of climate change, which
affect natural hazards like earthquakes, landslides, and floods, TuAM is compara-
tively important. Assessing condition, maintaining, controlling risk, and integrating
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technology to improve tunnel performance and safety, as well as longevity, are the
main components of an efficient TuAM.

Tunnels are built to function in conditions that are highly stressful and include
forces like the earth pressure, hydrostatic pressure, and dynamic loads from the
vehicles. Thus, more frequent inspections and more rigorous maintenance regimes
are necessary. A major problem specific to TuAM is the interaction between soil
and structure. Increasing urbanization and the need to use space more efficiently
have resulted in the construction of more tunnels.

Tunnels are built on a heterogeneous soil matrix, which means that their struc-
tural behavior is influenced by surrounding geological conditions. Because of these
dynamics, it is difficult to assess tunnel response to loading conditions, which re-
quires complex simulation tools during tunnel design, as well as geological explo-
rations [17].

The ingress of ground and underground water is one of the main issues in tunnel
design and maintenance. Insufficient drainage systems or high groundwater levels
can accelerate tunnel lining degradation. Without proper control, it can lead to
failure, expansion, cracks, and complete collapse of a building. As a result, drainage
systems and waterproof membranes need to be built and installed properly, and
moisture seeping into tunnel structures must be monitored periodically to ensure
the safety [18].

To ensure the safety and serviceability of tunnels during their service life to-
wards the mentioned risks, a strategic plan for periodic monitoring is essential. In
addition, real-time monitoring for the prevention of unpredictable incidents such as
fire outbreaks and traffic accidents is significantly needed. Therefore, stakeholders
recognize and develop technologies to monitor tunnel assets and also plan strate-
gies for periodic monitoring and maintenance to prevent and mitigate the risk of
any hazardous incident. In the following sections, challenges and opportunities for
tunnel monitoring strategies will be discussed.

Periodic Monitoring and Maintenance Strategies for Tunnel Assets

Tunnel maintenance aims to respond to the current tunnel problems, as well as
prevent future and probable problems with assets. As a result of so many assets, a
comprehensive monitoring strategy is required in order to manage them effectively
in terms of ordering, decision making, and budget allocation. Current development
in data acquisition methods and technology opens up a new era for monitoring
strategies for transportation assets, including tunnels [19]. These emerging acqui-
sition technologies ease the use of tools such as Building Information Modeling
(BIM) [20], Digital Twin (DT) [21] and Artificial Intelligence (AI) [22] approaches.
These technological tools facilitate efficient management of the tunnel infrastruc-
ture since they provide details information from digital images and spatial data,
respectively.
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From various kinds of monitoring, Structural Health Monitoring (SHM) has a
significant role in ensuring the long life of infrastructure assets. In the case of
tunnels, SHM acts as a preventive method that will help to minimize the risk of
structural failure in tunnels. SHM methodology, by exploring various data and
information, can suggest the optimum and efficient time for intervention and main-
tenance of the assets. This activity can be dynamic, and it occurs both internally as
a result of traffic loads and externally because of weather conditions, among others.
SHM systems, in particular, allow providing constant updates on the state of the
structure and thus minimizing operational risks since the structure is monitored
via different methodologies such as real-time sensors or non-destructive techniques.

Consequently, SHM plays an important role in identifying infrastructure asset
problems at an early stage before they turn into deformity, cracking, stress, or even
collapse.

The next section is focused on machine learning- and deep learning-based struc-
tural health monitoring approaches in more detail.

1.1.4 Italian Guidelines and Standards
In 2022, the Italian Ministry of Infrastructure and Sustainable Mobility introduced
new guidelines for the classification and management of risk, safety assessment, and
monitoring of existing tunnels through Ministerial Decree 247/22 [23]. The Guide-
line illustrates a procedure for the management of activities aimed at the safety
of existing road tunnels in order to prevent inadequate levels of damage, such as
affecting the safety of the work and, more generally, of the entire infrastructure,
making the risk acceptable. The approach aims to pursue a conduct of preven-
tion with respect to the emergence of potentially dangerous situations, to plan the
adoption of preventive maintenance interventions without incurring conditions of
emergency intervention. The goal of the guideline is developing an adoption of
awareness and prevention conducts for the entire area of road tunnels in operation,
it being understood that if conditions that require the adoption of immediate inter-
ventions are already recognized, the operator will proceed with the identification
and implementation of the interventions recognized as necessary regardless of the
application of the procedures provided for by the guidelines.

The primary objective of these guidelines is to establish a quantifiable level
of safety to guide maintenance decision-making, aiming to minimize the risk of
hazardous situations and avoid the need for urgent interventions. The document
proposes a framework structured into three main steps: collecting existing data
(e.g., tunnel length, location, previous maintenance interventions, etc.), risk classi-
fication, and safety assessment. The guidelines divide tunnels into segments called
"Conci", each 20 meters long. Every segment is analyzed and assigned a specific
risk level called the "Class of Attention". These classes serve as the foundation for
decision-making in planning maintenance interventions.
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As described in the guidelines, the Classes of Attention are determined through a
simplified assessment of the risk factors associated with tunnels based on available
knowledge and inspections. However, the recording and labeling process of the
defects to acquire the class of attention remains primarily manual and is done by
experienced technicians.

1.2 Problem Statement and Objectives
In this thesis, I introduce a methodology for creating a multi-type defect dataset
suitable for instance segmentation tasks derived from Panoramic Ultra High Res-
olution (UHR) images captured from Italian concrete tunnels, and consequently,
benchmark this dataset using various state-of-the-art Convolutional Neural Net-
works (CNNs) and Transformer-based algorithms.

The work was conducted in collaboration with Tecne, part of "Autostrade per
l’Italia", which, as the manager of the tunnel infrastructure, has had to adapt to
the new directives since 2022 by completing the analyses and inspections described
in the guidelines for all the tunnels under its management. Among the documents
provided by Tecne, the primary resources included .TIFF images, which were used
as the basis for developing the dataset. Additional documents provided by the
Tecne team were collected during on-site inspections conducted by experts, includ-
ing detailed data and information on all defects identified within the tunnels. All
documents were prepared for each 20-meter segment, with defects coded accord-
ing to the defect classification system outlined in Ministerial Decree 247/22. Each
defect was assigned a unique numerical code, allowing retrieval of detailed infor-
mation from various documents, including: 1- Shape and position on the segment
(via inspection sheets), 2- Geometric details (via Excel files), and 3- Photographic
documentation (via photo reports).

An overview of the proposed methodology is represented in Figure 1.1. The first
part demonstrates the data acquisition process and available reports from on-site
inspection, including an illustration of the data capturing technique, an example of
unprocessed raw images, and related reports. The second section details the image
processing workflow and the SAM-based annotation technique used for labeling
the defects, and lastly formats the dataset in compliance with the COCO standard.
Finally, the last section describes the training and benchmarking procedures, uti-
lizing various State-of-the-Art instance segmentation and semantic segmentation
algorithms.
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Introduction

Figure 1.1: Overview of proposed framework
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Chapter 2

Deep Learning Algorithms

The structure of DL networks is comparable to that of the human brain. These
networks use several hidden layers to learn or identify patterns and extract features
from the training data. In the DL architecture, an input is sent to each hidden layer,
travels through the layers, and then gives the output in the last layer. DL’s benefit
is that it can automatically extract features during training, which allows the deep
neural network to achieve its goal. This network’s accuracy rises as the amount
of training data increases. Advances in technology and the enhanced performance
of graphic processing units (GPUs) and their parallel computing capabilities made
this highly computational procedure possible.

DL has assumed a prominent position in the field of SHM in recent years. This
change is a reaction to the growing difficulties that contemporary civil infrastruc-
ture presents. With sensors producing large, complex datasets, DL provides a
potent remedy by automatically deriving insightful information. Furthermore, the
capabilities of SHM have been enhanced by DL’s incorporation of computer vision,
which allows the analysis of 1D data, such as vibration or strain measurements,
to 4D data, like RGB videos for damage assessment. These advancements, along
with improvements in technology and user-friendly frameworks, have made DL a
crucial instrument for improving structural safety and democratized its application
in SHM.

In this chapter, different learning modes will be discussed in section 2.1, and
after that, various deep learning networks used in DL-based SHM will be presented
in section 2.2.

2.1 Different Learning Modes
Deep Learning (DL) networks are mostly regarded as a subfield of machine learning.
Deep neural networks can learn in four different ways: supervised, unsupervised,
semi-supervised, and reinforcement learning.
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In supervised learning modes, the network’s learnable parameters are changed
via backpropagation by calculating a loss function that represents the discrepancy
between the actual output and labeled target values or ground truth training data.
The learnable parameters are updated via backpropagation based on the chain rule
in order to minimize the computed gap. As a result, by using labeled data for
training, the networks in this supervised mode have an opportunity to discover the
patterns of the target objects. As a result, the network often needs a significant
quantity of labeled data to train because of the nature of this learning mode. SHM
uses these supervised modes to detect and localize damage from vibrations, and to
detect and segment cracks and segment problems.

However, it can be difficult to gather ground truth data from actual structures
that represent different damage scenarios. Every piece of civil infrastructure has
different characteristics, such as material properties and associated dynamic behav-
iors, as well as unique boundary conditions. Consequently, information gathered
for supervised learning from diverse damage scenarios could not be transferable to
different training models [24]. Therefore, unsupervised learning has been employed
to overcome these limitations.

In unsupervised learning, the network examines the data and unlabeled datasets.
Without the assistance of an outside human, these models uncover hidden patterns
in the data. Only data from the baseline structures is used to train the networks
for SHM applications. The challenges of supervised learning can be addressed by
this unsupervised DL model. The input data can be successfully reproduced by
the well-trained network using only data from the baseline structure. The input
data may be regarded as outliers in comparison to the learned data if the trained
network is unable to faithfully replicate the input. The autoencoder is one of the
representative unsupervised DL networks [25–27].

Another mode of learning is semi-supervised learning. Both labeled and un-
labeled data are used in the training dataset for semi-supervised learning. When
there is a small quantity of ground truth labeled data or when preparing a large
number of ground truth data for training requires less work, this semi-supervised
mode can be used. Thus, to accomplish the network designer’s objective, both
supervised and unsupervised modes are used in combination.

The last mode is Reinforcement Learning. In order to accomplish a goal in a
complicated or unpredictable environment, the algorithms in reinforcement learning
use a series of decisions derived from the rewards through initial random trials and
errors. To solve an issue, trial-and-error methods are used, and either rewards
or punishments are applied for the activities taken. In reinforcement learning,
maximizing the reward is the main objective.
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2.2 Various Deep Learning networks
Over the years, specifically the last 10 years, many advanced DL algorithms have
been developed to overcome the limitations of traditional Machine Learning (ML)
methods. In the Figure 2.1, an overview of the most popular ML and DL networks
over the years is described.

These influential research papers and architectures include LeNet [28], AlexNet
[29], ZFNet [30], Generative Adversarial Network (GAN) [31], GoogleNet [32], VG-
GNet [33], R-CNN [34], ResNet [35], Unet [36], FCN [37], fast R-CNN [38], faster R-
CNN [39], YOLO [40], SegNet, Mask R-CNN [41], MS R-CNN [42], Cascade Mask
R-CNN [43], HTC [44], ViT [45], PointRend [46], SOLOv2 [47], CondInst [48],
SWIN Transformer [49], QueryInst [50], Mask2Former [51]. Some of the most
famous DL methods have also been adopted for DL- based structural health mon-
itoring. In this section, some core DL algorithms, including algorithms that were
employed in this research, will be reviewed.

Figure 2.1: Evolution of the benchmark network over the years. The blue rectangles
model is used in this research to benchmark the proposed dataset.

2.2.1 Convolutional Neural Network
The convolutional neural network (CNN), which was first created to identify hand-
written zip code digits supplied by the USPS, is the most representative initial
DL network [52]. Inspired by biological processes, a CNN’s neuronal connection
patterns mimic the structure of the animal visual cortex, which has shown promise
in solving a variety of image recognition issues. CNNs effectively extract informa-
tion from input images and require less computation and pooling because of their
sparse connectivity. CNNs may also be able to distinguish between a wide range
of classes. CNNs are an effective technique for image recognition because of these
special benefits.
With CNNs, the main challenge was the need for a large amount of labeled data,
but this challenge was overcome through pretraining for transfer learning using well-
annotated databases, such as ImageNet [53], CIFAR-10, and CIFAR-100 datasets,
and the MNIST Database [54].
The CNN architecture consists of three parts including convolution, pooling, and
fully connected layers. Cha et al. [55] designed a new CNN for crack detection as
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Figure 2.2: First CNN architecture for concrete crack detection [55,56]

with use of CNN architecture. The number of layers and sequences depends on
the types of data and the level of accuracy. In most cases, the filter size is smaller
than the input size. In the pooling layer, down-sampling is used to reduce the
dimensions of the inputs and reduce the computational cost.

2.2.2 Faster R-CNN
The faster R-CNN was proposed by Ren et al. [39] and consists of two parts: the
region proposal network (RPN) and the fast R-CNN. Figure 2.3 shows the architec-
ture of Faster R-CNN. Using input and object proposals from selective searches [57],
a region-based CNN (R-CNN) [34] was created for multiple object detection and
localization. A CNN was then utilized to extract features. Accuracy was greatly in-
creased by the R-CNN in comparison to CNN-based techniques. However, because
there were three distinct training procedures—a CNN, a regressor, and SVMs—it
was computationally expensive and time-consuming.

Background of faster R-CNN enriched with creation of fast R-CNN [38] to over-
come the drawbacks of R-CNNs, and it performed better in terms of speed and
accuracy. Fast R-CNN’s accuracy and speed remained poor despite the improve-
ment because of the laborious external selective search strategy. Ren et al. [39]
created the faster R-CNN by combining an RPN and fast R-CNN to enhance train-
ing accuracy to address these problems. The quick R-CNN uses region of interest
(RoI) pooling to extract features from the candidate bounding boxes that the RPN
suggests. Classification and bounding box regression are then performed. Through
end-to-end network training and feature sharing between the RPN and fast R-CNN,
the faster R-CNN improves accuracy. Faster R-CNN enables researchers to investi-
gate real-time object detection and has found applications in various fields. In the
field of SHM, for the first time, Cha et al. [58] utilized this architecture to detect
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multiple structural damages.

Figure 2.3: Faster R-CNN architecture [56]

2.2.3 Mask R-CNN
An expanded form of the faster R-CNN, the Mask R-CNN [41], is produced by
including an additional branch, as illustrated in Figure 2.4. In parallel with the
current branch for bounding box regression, this additional branch makes predic-
tions about the object mask. The Mask R-CNN has a third branch called a fully
convolutional network (FCN) that gives the object mask, whereas the faster R-CNN
just produces two outputs: a class label and a bounding box offset. Pixel-to-pixel
alignment, which was absent from the faster R-CNN, is introduced by the Mask
R-CNN. The features and ROI are not aligned because Faster R-CNN harvests fea-
tures with coarse spatial quantization. When compared to classification tasks, this
misalignment has a major impact on pixel-to-pixel mask predictions. The Mask
R-CNN suggests the RoIAlign layer, which is quantization-free, as a solution to
this problem [59]. Bilinear interpolation is used in place of crude quantization to
achieve ROIAlign.

The introduction of Mask R-CNN marked a significant breakthrough in the
field of computer vision, as it enabled precise object detection at the pixel level by
generating segmentation masks for individual objects.

2.2.4 Mask Scoring R-CNN
The Mask Scoring R-CNN (MS R-CNN) [42] is an enhanced variant of the Mask
R-CNN framework that addresses a fundamental inconsistency between mask qual-
ity and classification confidence. As illustrated in Figure X, the standard Mask
R-CNN assigns the same classification score to both the predicted class and the
corresponding segmentation mask. However, this approach assumes a direct cor-
relation between classification confidence and mask quality, which often does not
hold in practice. Poor-quality masks may receive high scores, negatively impacting
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Figure 2.4: Architecture of Mask R-CNN for instance segmentation [41]

the overall performance of instance segmentation metrics such as Average Precision
(AP).

To overcome this limitation, MS R-CNN introduces an additional branch—termed
the MaskIoU head—which is designed to predict the Intersection over Union (IoU)
between the predicted mask and the ground truth. This component operates in
parallel with the original mask head and is trained to estimate the quality of the
predicted mask independently of the classification confidence. The final mask score
is computed as the product of the classification score and the predicted MaskIoU,
providing a more reliable measure of mask accuracy.

This decoupling of classification and mask quality assessment leads to more
accurate ranking of instance predictions, especially under strict IoU thresholds.
By integrating the MaskIoU prediction branch, MS R-CNN effectively refines the
scoring mechanism of Mask R-CNN, resulting in improved performance on standard
instance segmentation benchmarks.

2.2.5 Cascade Mask R-CNN
Cascade Mask R-CNN [60] is an extension of the Mask R-CNN framework that ad-
dresses the limitations of single-stage object detection and segmentation pipelines,
particularly in terms of localization accuracy and detection quality at higher Inter-
section over Union (IoU) thresholds. As illustrated in Figure 2.5, Cascade Mask R-
CNN introduces a multi-stage refinement process by sequentially connecting several
detection heads, each trained with an increasingly strict IoU threshold. This cas-
cading structure enables the model to progressively improve the quality of bounding
box regression and classification across stages.
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Each stage in the cascade leverages the output of the previous stage as input,
refining object proposals more precisely. The final mask prediction branch remains
structurally similar to that of Mask R-CNN but benefits from the improved object
localization provided by the cascade of detectors. Importantly, the use of multiple
stages mitigates overfitting to lower-quality proposals and enhances robustness to
localization errors.

To maintain alignment between features and regions of interest throughout the
stages, Cascade Mask R-CNN also adopts the RoIAlign operation, as introduced
in Mask R-CNN, ensuring accurate pixel-level mask prediction. Overall, Cascade
Mask R-CNN achieves state-of-the-art performance on challenging benchmarks by
combining the strengths of multi-stage detection refinement and high-quality in-
stance segmentation.

Figure 2.5: Architecture of Cascade Mask R-CNN. The "C" is classification, "B" is
bounding box, and “S” denotes a segmentation branch.

2.2.6 Hybrid Task Cascade
Hybrid Task Cascade (HTC) [44] is an advanced instance segmentation framework
that extends the Cascade R-CNN architecture by introducing a deeply integrated
multi-task learning strategy. As illustrated in Figure 2.6, HTC enhances the tra-
ditional cascade design by not only performing progressive refinement of detection
results across stages but also by interleaving mask prediction branches within each
cascade stage. This interleaving enables simultaneous optimization of object detec-
tion and instance segmentation in a tightly coupled manner.

Unlike Cascade Mask R-CNN, where the segmentation task is treated as a
parallel branch disconnected from the cascade structure, HTC introduces stage-wise
mask information flow—each mask head receives inputs not only from the current
detection features but also from the refined mask features of previous stages. This
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design encourages rich feature reuse and enhances the quality of mask predictions
by incorporating contextual and hierarchical cues across stages.

In addition to this architectural refinement, HTC incorporates a semantic seg-
mentation branch that operates globally over the image, producing a semantic fea-
ture map that is fused with both bounding box and mask branches. This semantic
context helps to guide both object localization and mask refinement, particularly
in complex scenes where visual ambiguity exists.

By combining cascade regression, interleaved mask prediction, and global se-
mantic segmentation, HTC achieves a higher level of cross-task synergy. This hy-
brid strategy leads to significant improvements in both detection and segmentation
accuracy, particularly under challenging conditions where precise localization and
mask quality are critical.

Figure 2.6: The architecture evolution from Cascade Mask R-CNN to Hybrid Task
Cascade [44].

2.2.7 PointRend
PointRend (Point-based Rendering) [46] is an extension to conventional instance
segmentation frameworks such as Mask R-CNN, designed to address the limita-
tions of coarse, low-resolution mask predictions typically generated by standard
fully convolutional networks (FCNs). As illustrated in Figure 2.7, traditional mask
heads operate on fixed-resolution feature maps (e.g., 28×28), which leads to overly
smooth and imprecise object boundaries, particularly for objects with fine-grained
structures or high-frequency details.

To overcome this challenge, PointRend formulates mask prediction as a render-
ing problem, inspired by techniques in computer graphics. Rather than predicting
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masks over a regular grid, PointRend iteratively selects and refines a set of points
based on prediction uncertainty. Specifically, the algorithm begins by producing a
coarse, low-resolution mask and then progressively samples points with high uncer-
tainty—often located near object boundaries—for fine-grained refinement.

Each selected point is processed using point-wise feature extraction, combining
coarse features from the backbone and fine-grained features from earlier convolu-
tional layers. These features are then passed through a shared multilayer perceptron
(MLP) to predict the final mask logits at each point. This adaptive and resolution-
agnostic approach allows PointRend to produce high-quality masks with crisp and
accurate boundaries.

By decoupling mask resolution from the fixed grid structure and dynamically
focusing computational resources on ambiguous regions, PointRend significantly im-
proves segmentation quality while maintaining computational efficiency. Its modu-
lar design allows seamless integration with existing detection frameworks like Mask
R-CNN, enabling enhanced boundary accuracy without major architectural modi-
fications.

Figure 2.7: Architecture of PointRend [46]
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2.2.8 SOLOv2
SOLOv2 (Segmenting Objects by Locations v2) [47] is a refined instance segmen-
tation framework that builds upon the original SOLO architecture by further op-
timizing the process of object segmentation without relying on region proposals,
bounding box regression, or post-processing steps such as non-maximum suppres-
sion. As illustrated in Figure 2.8, SOLOv2 adopts a fully convolutional, single-stage
design that formulates instance segmentation as a category-aware, per-pixel classi-
fication problem over spatial locations.

In contrast to two-stage approaches like Mask R-CNN, which decouple detec-
tion and segmentation, SOLOv2 directly predicts instance masks by treating each
grid cell as responsible for segmenting an object at a specific spatial location and
scale. The feature map is dynamically partitioned into grids of different sizes across
pyramid levels, enabling scale-aware prediction. For each cell that falls within an
object’s center region, SOLOv2 predicts both the object category and the corre-
sponding segmentation mask using a mask kernel branch and a dynamic convolution
mechanism.

A key innovation in SOLOv2 is the introduction of dynamic instance-aware ker-
nels that are generated per instance and applied to a shared, high-resolution feature
map. This design allows the model to produce high-quality, detailed instance masks
with sharp boundaries and strong spatial consistency. Additionally, SOLOv2 intro-
duces an improved alignment strategy and a simplified loss formulation, enhancing
training stability and mask accuracy.

By eliminating the reliance on predefined anchors, region proposals, and post-
processing heuristics, SOLOv2 achieves a more elegant and computationally effi-
cient pipeline. It demonstrates competitive performance on standard instance seg-
mentation benchmarks while offering significant speed advantages over traditional
region-based methods.

2.2.9 CondInst
CondInst (Conditional Convolutions for Instance Segmentation) [48] is a proposal-
free instance segmentation framework that departs from the traditional paradigm
of using static, per-category mask heads. As illustrated in Figure 2.9, CondInst
introduces a novel mechanism where instance-specific dynamic convolution kernels
are generated on-the-fly, enabling the model to condition the mask prediction on
each detected instance dynamically, without requiring a separate mask head for
each category.

Built upon a standard object detection backbone such as FCOS, CondInst re-
tains a fully convolutional structure and avoids region-wise operations like RoIAlign,
which are typically used in methods like Mask R-CNN. The framework consists of
two major components: first, a detection branch that predicts category labels and
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Figure 2.8: Architecture of SOLOv2 [47]

bounding boxes using dense anchors or anchor-free approaches, and secondly, a dy-
namic mask branch that outputs convolutional weights (referred to as conditional
kernels) for each instance.

These dynamic kernels are applied to a shared, high-resolution feature map,
using convolution operations to produce an instance-specific mask. This design al-
lows the network to generate flexible and expressive masks tailored to the geometry
of each object, while maintaining a compact and efficient architecture. Moreover,
CondInst enables end-to-end training without explicit mask supervision at interme-
diate stages, reducing complexity compared to cascaded or multi-branch designs.

By combining dense object detection with conditional convolution-based mask
generation, CondInst achieves a strong balance between accuracy and efficiency.
Its fully convolutional nature and the elimination of hand-crafted post-processing
steps like RoI pooling or proposal selection contribute to its superior scalability and
simplicity, making it well-suited for real-time and large-scale applications.

2.2.10 Transformer
Multi-head self-attention (MHA), the most important part of the transformer net-
work, is an attention mechanism used by the feed-forward neural network-based
model known as the transformer [45]. When creating the output feature map,
the network should concentrate on the pertinent area of the input feature map,
which is determined by this attention mechanism. As shown in Figure 2.10, the
transformer’s encoder-decoder architecture uses additional methods in addition to
self-attention, such as positional encoding and layer normalization.

In short, attention functions as a crucial operator inside the transformer model,
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Figure 2.9: The overall architecture of CondInst [48]

which is the fundamental model. The transformer is used in many different fields,
such as sound signals, pictures, and natural language processing (NLP). An input
is transformed into two sequences by the transformer network upon receipt: a
sequence of positional encodings and a sequence of vector embeddings. The inputs
and outputs are essentially converted into dense vectors first. Since the model lacks
an RNN that can remember how it learned the input sequences, it is essential to
assign each word in a sentence a specific position in a sequence [61].

Figure 2.10: Architecture of a typical transformer [56]
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2.2.11 Vision Transformer

The Vision Transformer (ViT) is a pioneering deep learning architecture that
adapts the transformer model—originally developed for natural language processing
(NLP)—to the domain of computer vision [45]. Unlike conventional convolutional
neural networks (CNNs), which use local receptive fields to capture spatial hierar-
chies, ViT relies solely on the multi-head self-attention (MHA) mechanism to model
global context across the entire image. As illustrated in Figure 2.11, this approach
enables ViT to capture long-range dependencies between image regions from the
earliest layers of the network.

To process image data in a transformer framework, ViT first divides the input
image into a sequence of fixed-size non-overlapping patches (e.g., 16×16 pixels),
which are then flattened and linearly projected into embedding vectors. These
patch embeddings are analogous to word embeddings in NLP and serve as the
input tokens for the transformer encoder. To retain spatial information—otherwise
lost due to the permutation-invariant nature of self-attention—ViT adds learnable
positional encodings to each patch embedding.

The core of ViT consists of a series of transformer encoder blocks, each composed
of MHA and feed-forward layers, along with residual connections and layer normal-
ization. Unlike CNNs, which inherently impose an inductive bias of locality and
translation equivariance, ViT learns spatial relationships through self-attention,
allowing greater flexibility in modeling complex visual patterns but requiring sig-
nificantly more data to train effectively.

ViT has demonstrated competitive and often superior performance on large-
scale vision benchmarks, especially when trained on massive datasets. Its architec-
ture reflects a shift toward general-purpose, attention-based models in computer
vision, capable of unifying modeling approaches across modalities such as text,
audio, and images.

2.2.12 SWIN Transformer

The Swin Transformer (Shifted Window Transformer) is a hierarchical vision trans-
former architecture that introduces locality and scalability into the transformer de-
sign, addressing key limitations of the original Vision Transformer (ViT) [49]. While
ViT treats an image as a flat sequence of patches and models global dependencies
from the beginning, the Swin Transformer incorporates a shifted window-based
self-attention mechanism that enables both local feature modeling and efficient
computation, making it more suitable for dense prediction tasks such as object
detection and semantic segmentation.

As shown in Figure 2.12, the Swin Transformer first partitions the input image
into non-overlapping patches, which are projected into patch embeddings. These
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Figure 2.11: Vision Transformer model overview [45]

embeddings are then processed through multiple stages, forming a hierarchical rep-
resentation that is structurally similar to CNN-based backbones. Within each stage,
self-attention is applied within local windows—fixed-size subregions of the feature
map—rather than across the entire image. This window-based attention signifi-
cantly reduces computational complexity, scaling linearly with image size as op-
posed to quadratically.

To allow cross-window connections and enhance information flow between local
regions, the Swin Transformer introduces a shifted window scheme in alternating
layers. This design enables the model to capture long-range dependencies while
maintaining computational efficiency. Each stage doubles the number of channels
and halves the spatial resolution, creating a multi-scale feature hierarchy akin to
traditional convolutional architectures.

The Swin Transformer also integrates patch merging layers for downsampling
and layer normalization throughout the network. These architectural choices make
it highly adaptable as a unified backbone for a variety of computer vision tasks,
including classification, detection, and segmentation. Unlike ViT, which requires
extensive pretraining on large datasets, the Swin Transformer demonstrates strong
performance even with limited data, due to its built-in inductive biases and hier-
archical structure.

Overall, the Swin Transformer bridges the gap between transformers and CNNs
by combining the flexibility of attention mechanisms with the efficiency and induc-
tive strength of convolutional hierarchies.
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Figure 2.12: overview of Swin Transformer architecture [49]

2.2.13 QueryInst

QueryInst (Query-Based Instance Segmentation) is a transformer-inspired instance
segmentation framework that unifies object detection and mask prediction through
a query-based paradigm, eliminating the need for region-wise operations such as
RoIAlign. Introduced as an extension to the dynamic instance segmentation fam-
ily, QueryInst integrates the strengths of conditional convolution and query-driven
modeling to improve mask quality and inference efficiency [50].

As illustrated in Figure 2.13, QueryInst builds upon a standard object detector
such as FCOS, where object proposals are generated in a dense, anchor-free manner.
For each proposal, a learnable query feature is dynamically generated and used to
guide the instance segmentation process. These query features serve as tokens in a
transformer-style decoder, which attends to multi-scale features extracted from the
backbone using multi-head attention, enabling each query to capture rich semantic
context and instance-level details.

A key innovation in QueryInst is its use of iterative query refinement. Rather
than predicting masks in a single forward pass, the model refines both detection
and segmentation predictions across multiple stages. At each stage, the query
feature is updated based on attended features from the previous step, allowing for
progressive enhancement of object localization and mask accuracy. This mechanism
is conceptually analogous to the cascade refinement used in Cascade R-CNN, but
implemented through attention-guided updates instead of static feature pooling.

The mask head in QueryInst adopts a dynamic convolutional approach, similar
to CondInst, where instance-specific kernels are predicted and applied to a shared,
high-resolution feature map. This allows the framework to generate high-quality
segmentation masks without requiring a fixed mask head for each object.

By combining query-based reasoning, transformer-style attention, and dynamic
mask generation, QueryInst achieves a powerful balance between flexibility, accu-
racy, and computational efficiency. Its architecture demonstrates the potential of
fully end-to-end, proposal-free instance segmentation pipelines and represents a
shift toward unified, attention-driven models in vision tasks.
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Figure 2.13: Architecture of QueryInst. The red arrows indicate mask branches [50].

2.2.14 Mask2Former
Mask2Former (Mask Transformer for Universal Segmentation) is a unified frame-
work that re-casts instance, semantic, and panoptic segmentation as a common
mask-classification problem, bridging the gap between region-based and dense-
prediction paradigms [51]. Inspired by DETR-style [62] transformers yet tailored
for dense tasks, Mask2Former couples a multi-scale pixel decoder with a trans-
former decoder to achieve high-resolution detail and long-range reasoning within a
single architecture.

As sketched in Figure 2.14, the pixel decoder first ingests a hierarchical CNN—or
Swin-Transformer—backbone and produces scale-aware feature maps using multi-
scale deformable attention. These refined feature maps preserve fine spatial cues
while remaining computationally tractable. The transformer decoder then operates
on a fixed set of learned mask queries; through multi-head cross-attention, each
query attends to the pixel-decoder features and iteratively generates two outputs:
a class prediction and a binary mask embedding. The final segmentation map
is obtained by linearly projecting each mask embedding onto the high-resolution
feature grid, followed by a softmax-based bipartite matching loss that enforces a
one-to-one assignment between ground-truth masks and queries.

Crucially, Mask2Former’s design dispenses with hand-engineered post-processing
(e.g., RoIAlign, NMS) and task-specific heads. A single set of parameters, trained
end-to-end, seamlessly adapts to disparate segmentation tasks by merely changing
the label space—“thing” classes for instance segmentation, “stuff” classes for seman-
tic segmentation, or both for panoptic segmentation. Empirically, this task-agnostic
formulation achieves state-of-the-art accuracy across COCO [63], ADE20K [64], and
Cityscapes [65], while its modular pixel-and-query decoders maintain efficiency suit-
able for large-scale vision applications.
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Figure 2.14: Overview of Mask2Former [51]
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Chapter 3

Structural Health Monitoring

3.1 Overview and background
The broad topic of structural health monitoring (SHM) of civil infrastructures
is concerned with identifying structural flaws, tracking structural conditions, and
evaluating a structure’s safety using long-term data from different kinds of sensors
incorporated into the structural systems or during periodic inspection for moni-
toring of the assets. Through structural repair and disaster management, SHM
is a crucial procedure for maintaining, identifying anomalies, and enhancing the
serviceability of civil infrastructures. Continuous use causes civil infrastructures to
gradually degrade and lose their intended function. The significance of early and
routine maintenance is increased by this inevitable process [56].
Through vibration testing and ongoing measurements of the audio frequency dy-
namic modulus and damping of specimens subjected to tensile loading, researchers
found that structural damage frequently appears as changes in various structural
properties, such as strength (stiffness) and damping, in the early stages of SHM [66].
Dynamic modal features, such as natural frequencies, mode shapes, and damping,
are also affected by these structural changes. Various global and local damage iden-
tification techniques have been developed in order to recognize these changes and
evaluate damage.
Since these changes have significant effects on the dynamic vibration characteristics
of the structure, global techniques concentrate on identifying changes in the mon-
itored system’s modal properties. Local approaches, on the other hand, include
localized nondestructive testing (NDT) techniques and visual inspections. To fur-
ther determine the extent of localized harm, local approaches typically rely on data
gathered from global approaches [56].
Generally, global methods, due to their heavy reliance on vibration measurements,
are frequently referred to as vibration-based approaches. There are three subfields
of vibration-based approaches: hybrid approaches, physics model-based approaches,
and data-driven approaches. The majority of these methods use established finite
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element models (FEM) or observed vibrations to determine the modal character-
istics in both the damaged and intact (baseline) structures. For example, some
research [67] extracted natural frequencies from measured acceleration time series,
while others [68] employed mode shapes for structural damage identification.
In order to extract damage-sensitive features from observed vibrations, a variety
of techniques have since been put forth in vibration measurement-based damage
detection systems. These damage-sensitive characteristics include spatiotemporal
characteristics within the vibration time series for a variety of applications, such
as buildings, rotating mechanical systems, offshore structures, civil bridges, and
tunnels, in addition to changes in modal properties and their subsequent process-
ing [56].
Therefore, the traditional damage identification process has three main stages:
measurement, feature extraction, and classification using various machine learn-
ing (ML) and classification methods. Detailed investigations of traditional ML and
classification methods have also been conducted to classify the extracted features,
transitioning from an intact state to a damaged state. Number of pioneering and
advanced application can be represent as artificial neural networks (ANN) [69],
Bayesian probabilistic approaches [70], fuzzy logics [71], simple genetic algorithm
(GA) [72], multiobjectgive GA [73], and support vector machines (SVM) [74].
However, in real-world settings, where a variety of disturbances and uncertain-
ties, such as temperature variations, may exist, damage diagnosis based on modal
properties and damage-sensitive features retrieved from different signal processing
approaches may not be effective. Although a number of studies have tried to use
algorithms such as curve fitting methods to solve these issues, these methods are
not very effective in detecting minor but significant damage. Because of this, these
conventional techniques often only perform effectively for straightforward structures
or idealized numerical Finite Element Methods (FEM) with low measurement un-
certainties and errors [75].
Comparatively, computer vision-based approaches have gained significant interest
since they provide explicit, clear visual proof of damage within images [76]. Various
image processing techniques have been utilized for crack detection in red, green,
and blue (RGB) images [77]. Moreover, different image processing techniques have
been employed for the extraction of damage-sensitive features related to different
types of structural damage in RGB images [78,79].
Moreover, computer vision-based approaches have been developed for measuring
vibrations [80, 81] and strains [82]. Using these methods, it is possible to measure
strain and reliable structural responses, such as displacements and accelerations,
without the need for a physical reference point. Vibration-based damage detection
uses the measured responses as input.
In spite of this, damage-sensitive features cannot be automatically extracted or
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formulated, even when using computer vision approaches. Furthermore, these ap-
proaches often detect only one type of damage, and their performance is heav-
ily influenced by lighting conditions. Traditional image processing techniques can
struggle to extract damage-sensitive features from blurry, shadowed, or unevenly
lit images, which is made worse by the limited classification abilities of traditional
machine learning techniques [56].
Consequently, for over a quarter of a century, the field of SHM has struggled to
formulate and extract damage-sensitive features that are robust to changes in am-
bient temperature, noise, and lighting conditions. In addition, there is a growing
demand for more efficient and robust machine learning algorithms capable of clas-
sifying damage-sensitive features accurately.

3.2 Deep Learning Based Structural Health Mon-
itoring

In order to overcome the limitations and difficulties inherent in manually identifying
damage-sensitive features and classifying them with traditional machine learning
methods, in 2017, Cha et al. [55] proposed a deep learning (DL)-based approach
for damage detection utilizing a deep Convolutional Neural Network (CNN). The
deep learning method involves the extraction of features from raw input data and
passing them along to deeper modules as higher-level representations through a
combination of simple yet nonlinear modules. A variety of applications of deep
learning have been demonstrated, including speech recognition, object detection,
genomics, and many more.
Because of its nature, DL can automatically extract robust multilevel damage-
sensitive features from raw input images by training on large labeled datasets. The
CNN method in Cha et al. research [55] was developed to detect concrete cracks
using a defined size of a sliding window to localize the detected cracks in RGB
images. The results were almost satisfactory, with a detection accuracy of 97%.
Despite issues in RGB image conditions, such as blurriness, spot-lighting, shadows,
etc., the trained CNN still detected cracks, showing its ability to address different
environmental and sensing uncertainties and noise.

3.3 Computer Vision-based Approaches for Sur-
face Damage Detection

After the revolutionary paper of Cha et al. [55] that represented the feasibility of
automatically extracting damage-sensitive features from RGB image inputs using
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CNN methods, numerous subsequent studies focused on damage detection using
DL algorithms. The accelerated progression of computer vision and DL, along
with improvements in camera resolution, computational capabilities, and SHM,
contributed to the rapid adoption of vision-based damage detection. Contactless
cameras can be easily integrated into UAVs, Unmanned Ground Vehicles (UGVs),
or vehicle-mounted systems for data collection. Generally, the development of com-
puter vision-based damage detection using DL algorithms involves three stages. The
first is image classification-based damage identification, the second is bounding box
level object detection-based damage identification, and the third is pixel-wise seg-
mentation. These stages are discussed in the following Sections respectively. Each
approach has been extensively reviewed in the context of various infrastructure
types, including bridges, buildings, dams, pavements, tunnels, and sewer systems.

3.3.1 Damage Classification
In this context, classification refers to how the DL model categorizes an input image
as damaged or intact, or how it identifies certain types of damage. As a result, the
entire input image is grouped into one of the desired categories as the output of
the DL process.
As an example, as previously mentioned, Cha et al. [55] developed a CNN composed
of four convolution layers, two pooling layers, a dropout layer with ReLU activation
function, a fully connected layer, and SoftMax to classify intact and crack images.
The CNN employed a sliding window concept to screen large input images and
localize the damage. The sliding window size in this study was 256 × 256 × 3 pixel
resolution. As a result, a total of 40,000 images, with the size of the sliding window,
were prepared from 277 images of dimensions 4928 × 3264 × 3 and used for training
and validation. The well-trained CNN was then tested on another set of 55 images,
with dimensions 5888 × 3584 × 3, achieving an impressive accuracy of 97%.
Furthermore, the CNN’s performance was compared with traditional edge detection-
based crack detection methods, such as Sobel and Canny edge detection. The
CNN consistently demonstrated superior performance, significantly outperforming
the traditional methods, even under challenging conditions like shadows, blurri-
ness, and strong spot lighting. Notably, the designed CNN was integrated with
autonomous UAVs for crack detection in GPS-denied areas, effectively simulating
scenarios beneath a bridge deck or indoors [83].
The concept of image classification in DL has been employed to different civil
infrastructure applications, including buildings [84], sewer systems [85], and pave-
ments [86], to detect various types of damages, such as cracks in concrete members,
obstacles, joint openings, faults, debris, and silty conditions in sewers, and tile de-
terioration in buildings.
For instance, Li et al. [87] proposed a ResNet-18 model with a hierarchical Soft-
Max approach for defect detection in sewer lines, concerning imbalanced data,
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which reduced the network’s overall performance. The hierarchical method over-
saw the learning process at various levels throughout training, with the upper-level
task aimed at distinguishing between normal images and those with defects, while
the lower-level task assessed the likelihood of defects in the image. The ultimate
classification outcomes were established by applying the chain rule of conditional
probability.
Hassan et al. [85] developed an AlexNet [88] model for defect classification in CCTV
videos obtained from underground CCTV models. Data augmentation techniques,
including transformation, flipping, rotation, translation, and deformation, were uti-
lized. The original AlexNet model, initially used for the classification of 1000 natu-
ral objects in the ImageNet dataset [53], was modified and fine-tuned with transfer
learning specifically for sewer defect detection.
There is also an initiative to enhance the performance of CNNs by utilizing proba-
bilistic methods. For instance, Chen et al. [89] developed the NB-CNN, which uses
a CNN and a Naive Bayes data fusion scheme to improve the performance of crack
classification. Adam et al. [90] utilized a combined method for precise crack detec-
tion in RGB images of concrete structures. They combined a CNN with an SVM
classifier and proposed a noise reduction technique to minimize classifier issues.
It is important to note that civil infrastructures are typically located in complex
background scenes (CBSs), so the detection of damages can be challenging purely
based on the CBSs. Among these studies, no method considered CBSs in their
training or testing datasets. Therefore, bounding box level object detection meth-
ods were adopted to detect damages more efficiently.

3.3.2 Bounding Box Level Damage Detection
Bounding box level object detection methods of DL can resolve the limitations of
the fixed sizes of sliding window techniques in damage detection and localization
problems. For example, the faster R-CNN [39] provides flexible sizes of bounding
boxes to localize the detected damages in input images.
[58] introduced various damage datasets and trained the faster R-CNN with four
separate steps. The trained faster R-CNN architecture achieved 89.7% accuracy
to detect structural damage in bridges by considering CBS. In addition to vehicle
load and extreme weather conditions, bridge structures are subjected to physical
changes that can be represented as damage, such as cracks, corrosion, loosening
bolts, settlement, deflections, excessive vibration, internal defects, spalling, and de-
lamination.
Numerous studies utilizing bounding box level DL networks using R-CNN [?], faster
R-CNN [38], single-shot multi-box detector (SSD) [91], DINN [92], and different ver-
sions of YOLO series. Studies in this field employed bounding box level damage
detection for different types of defects, including delamination and peeled paint [58],
ceiling damage [93], steel cracks, steel corrosion, and loosened bolts [94].
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Furthermore, Yeum et al. [95] utilized AlexNet for the detection and localization of
welded connections of steel bridges using images collected from a UAV. Zhang et
al. [96] introduced a novel approach for detecting multiple types of defects in con-
crete highway bridges by using YOLOv3. Li et al. [91] employed transfer learning
from a convolution-based autoencoder to SSD for the training of images of build-
ings after Hurricane Sandy to detect the damages. The transfer learning approach
improves approximately 10% damage detection performance.
In another study, Cheng et al. [97] developed using faster R-CNN for defect de-
tection in sewer lines, utilizing 3000 images from CCTV videos for model training.
The study achieved concrete results and suggested that increasing the dataset size,
adjusting filter dimensions, and adding convolution layers can improve and enhance
the performance.
Overall, damage detection at the bounding box level shows a better performance
in terms of localization compared to image classification-based approaches, and it
is comparatively less expensive to establish data and hardware compared to pixel-
wise segmentation approaches, which will be discussed in the following section.
Although this approach is highly used in SHM, it is still insufficient for performing
damage analysis, which is the final step of SHM’s reliability assessment.

3.3.3 Pixel Level Damage Segmentation
Several methods for segmenting detected damages at the pixel level have been de-
veloped to quantify and compare the damages. These approaches employed DL
techniques to identify defects and damages on a pixel-by-pixel basis. This ap-
proach is more precise than just identifying approximate bounding box positions of
the damage. The main benefit of pixel-level damage segmentation is its ability to
offer a more detailed method for determining a defect’s shape, size, and location.
This enables researchers to better determine and measure the degree of damage.
The majority of segmentation networks use the encoder-decoder design. This struc-
ture aids in extracting damage features and restoring the original spatial dimensions
of the input image. In order to do this, it marks the object pixel by pixel, displaying
the damage that has been detected pixel by pixel. In this area, numerous thorough
research projects have been carried out.
Most of the research in this area has focused on modifying open-source networks
that were initially created for purposes unrelated to structural damage segmen-
tation. For example, the underlying architecture for these techniques has been
chosen from networks like SegNet [98], UNet [99], FCN [100], Mask R-CNN [41],
DeepLapV3+ [101], and PANet [102], which are frequently paired with faster R-
CNN [39], ResNet series [35], DenseNet series [103], and VGG series [33]. Dong et
al. [104] used the SegNet technique to propose a pixel-wise segmentation network
for crack and spalling as an example. In order to detect cracks and spalling prob-
lems, the researchers in this study incorporated the focal loss (FL) function into
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the FL-SegNet model.
In one successful study, PANet was combined with the A* algorithm for crack width
and length calculation [105]. The proposed approach was compared to UNet, Mask
R-CNN, and DeepCrack [106], achieving an mIoU of 50.28%, outperforming Mask
R-CNN by 2%, DeepCrack by 19%, and UNet by 23%. In another study, zhao
et al. [107] employed Mask R-CNN for tunnel crack instance segmentation. Liu
et al. [108] developed an architecture based on UNet for the crack segmentation
by integrating VGG19, InceptionRexNetv2, and ENetb3. In another study, Ji et
al. [109] also leveraged DeepLapV3+ for crack segmentation with the use of 3D
reconstruction of point cloud data. Xi et al. [110] in a similar approach, created
YDRSNet by integrating DeepLabV3+ and YOLOv5 to solve the problem of real-
time gear-fitting measurement.
Although most of these studies mainly focus on crack detection, DL techniques have
been utilized to identify other defects, including concrete spalling, seepage, and in-
ternal damages of infrastructures. Beckman et al. [111] introduced a DL network
for the detection of spalling of concrete using depth camera data for volumetric
damage quantification utilizing faster R-CNN, and achieved an average precision
of over 90%.
As a result, numerous studies have been conducted on SHM for different purposes.
These goals include improving network performance by focusing on enhancing met-
rics such as mean intersection over union (mIoU), F-score, recall, and precision for
the semantic segmentation task, and Average Precision (AP) and Average Recall
(AR) for instance segmentation tasks. Existing network-based and hybrid segmen-
tation methods have been extensively researched for damage detection tasks.
DL approaches have been applied to segment concrete and pavement cracks in SHM,
but some limitations have been noted. The majority of these methods are based
on existing networks developed for different purposes, resulting in many learnable
parameters that may make them less suitable for real-time image processing. There
are several factors that can be affected by the size of input images, including the
computational resources required for image processing and the accuracy of the
methods [112].
Increasing the input size may result in more detailed representations of the struc-
ture and, therefore, increased accuracy, but it may also increase the computational
resources required to process the images and the size of the images. Moreover,
the number of data samples and the separation of training, validation, and testing
data can also influence the results and generalizability of the methods. Instead of
focusing just on clean concrete and pavement surfaces, it is crucial to take into
account the CBS that are frequently seen while creating computer vision-based
damage segmentation techniques for real-world SHM applications. This is required
to guarantee more reliable damage detection techniques that function in a variety
of visual contexts.
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Table 3.1 represents a brief comparison between three computer vision-based ap-
proaches for surface damage detection discussed in the sections 3.3.1, 3.3.2, and
3.3.3.

Table 3.1: CV-based method comparative analysis.

Network Advantage Limitation
Image classification with less
computational cost, and con-
venient to establish a ground
truth dataset

Difficulties in damage localization
and quantification

Bounding box level detection Better damage localization and
quantification than image classifica-
tion approaches, and convenient to
establish a ground truth dataset

Still less effective than pixelwise seg-
mentation methods in damage local-
ization and quantification

Pixelwise segmentation High accuracies in damage loca-
tion and quantification; through an
object-specific design of networks,
real-time, efficient processing is pos-
sible (e.g., SDDNet, STRNet)

More computational cost if existing
heavy segmentation networks are
used, and tedious labeling of ground
truth data
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Chapter 4

Methodology

4.1 Methodology
In this chapter, the methodology used for completing the research will be discussed.
The chapter consists of five parts, including 4.1.1-Data Acquisition Method, which
discusses the approach for collecting the data from Italian tunnels and discusses
detailed information about the equipment used during the data collection. Next
section, 4.1.2-Image Processing, discusses image processing methods, which describe
how original raw images are processed to first overcome the lightning issues and
eventually become prepared for the labeling phase. 4.1.3-The Labeling and Cre-
ation of the Dataset introduced the defects and non-defects part investigated in
this research and proposed the methodology on how the images are labeled, and
eventually getting how to create the dataset. The first part, 4.1.4-Neural Net-
work Training, discussed and introduced the deep learning models discussed in this
research and gave a comparison between these different approaches. Lastly, the
4.1.5-Evaluation Methods describe the metrics used in this thesis to address the
efficacy of the dataset by comparing this with the standard metrics present in this
field of study.

4.1.1 Data Acquisition Method
Overview

For collecting data in this research, the Laser Scanner technique, combined with
thermography, is applied as a non-destructive investigation methodology with the
following objectives:
1. Precision survey of the geometry of the tunnel
2. Survey of the installations and all the protection devices (wave panels, wire
mesh, etc.)
3. Survey of the surface crack pattern Survey of cavities and surface wear
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4. Mapping of wet areas and water infiltrations Survey of the deformation pattern
The Laser Scanner is a very useful technology for surveying complex and large
works, such as a tunnel. Compared to traditional topographic surveying, the com-
petitive advantage of a laser survey is the ability to obtain both geometric and
photographic information that is continuous, complete, and metrically rigorous by
nature of the object. The large amount of data acquired in a short time allows
for the geometric survey of the structure and its features with a remarkable level
of detail and completeness. It is also a direct measurement system as it allows
for measurements correlated to an instrumental accuracy certified by a calibration
certificate, which officially documents the measurement results.

The speed of acquisition, the rapidity in the processing and utilization phase of
geometric data, also testify to the flexibility of this surveying technique aimed at the
three-dimensional modeling of infrastructures. This also allows for the scheduling
of a systematic survey to be repeated periodically on tunnels in order to carry out
an important precision comparison between the geometries measured at different
times. The possibility of acquiring topographically referenced three-dimensional
shapes allows for instrumental monitoring to assess the structure’s response over
time, keeping any ongoing evolutionary phenomena under control.

Figure 4.1: Schematic of data acquisition equipment
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Investigation Methodology

The laser scanner is an electro-optical mechanical device that, through the tech-
nique of successive scans, allows for the automatic detection of an object in its
three dimensions. It uses a structured light beam that does not damage or alter
the material consistency of the measured surfaces.

In detail, the tool used, by generating a pair of sinusoidal laser pulses, detects
the distance through specific algorithms that measure the measurement via the
phase difference between the emitted wave and the received wave. These laser
scanners are particularly fast and have a very dense point grid. However, their
possibility of phase shift limits the maximum range to 15 meters, which is still
sufficient for surveys in tunnels, even with 3 lanes. At the same time, each point
is associated with a reflectance value, which depends on the characteristics of the
detected materials and is identified through a color parameter called RGB.

Being a light signal, the laser strikes the surface to be detected at the angle
dictated by the instrument’s point of view, which is why a complete description
of the object generally requires multiple scans, which are then unified through a
network of appropriately positioned targets, to each of which coordinates referring
to the chosen system are assigned through a classic precision topographic survey.
However, since laser scanners can also be installed on motorized vehicles, it is
also possible to ensure continuity in data acquisition, especially for the shape of
tunnels, and to measure a significant number of points on the surface of the object
in a relatively short time.

The product of a laser scanner scan is a point cloud of coordinates x, y, z, which
can be viewed directly on a computer monitor as a "three-dimensional photograph"
made up of millions of points that detail the surface of the detected object, from
which dimensional and colorimetric information can be derived.
The laser scanner used in the survey campaign is also equipped with a thermal
camera and is therefore able to detect the intensity of radiation emitted by objects in
the infrared spectrum and convert it into a temperature. Since the characteristics of
the thermal camera are influenced by the type of sensor used, an integrated cooling
system and environmental temperature measurement are essential for making the
necessary correlations.

In detail, the operating principle of a thermal camera is as follows: the infrared
energy emitted by an object is focused by optical components onto an infrared
detector, which then sends the information to the electronic sensor for image pro-
cessing, which can be immediately displayed on an LCD or monitor. Thermography
thus transforms an infrared image into a radiometric image on which temperature
values can be read. Each pixel of the radiometric image is a temperature measure-
ment obtained through complex algorithms present in the thermal camera. The
temperature maps of the exposed surfaces obtained from this type of investiga-
tion are highly useful during inspections to identify any material inconsistencies
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and areas of moisture concentration, as well as to monitor, through the compar-
ison of measurements taken at subsequent times, the evolution of wetting/drying
phenomena on the surfaces.

Equipment Information and Executive Details

Specifically, the laser scanner used in this research has been specially developed
by the German company ’Spacetec’ [113] and optimized for surveys in railway
and road tunnels. The instrument operates using phase-shift technology, emitting
appropriately calibrated sinusoidal waves to ensure maximum surveying accuracy
over distances typical of the curvature radii of 2/3 lane tunnels. The scanner head,
with continuous rotation, is capable of reaching frequencies of 300 Hz and acquiring
up to 10,000 points per section.

The scanning specifications used during the survey are listed below:
• 200 revolutions/second
• 5,000 points/section
• 5 km/h forward speed
For the survey, the laser scanner tool, consisting of a cylindrical device with a
rotating head, was mounted on a vehicle in order to obtain a millimeter-level three-
dimensional definition of individual scans in a single reference system quickly and
efficiently.

The vehicle moves at a speed of about 5 km/h, and both the acquisition of the
survey by the laser scanner, which occurs with 200 rotations per second of the in-
strument’s head, and the acquisition of data from the thermal sensor are activated.
The measurement operations are carried out until the survey is completed without
the need to materialize reference points or identify homologous points among the
various scans, thus allowing maximum freedom of movement of the vehicle, while
the geo-referencing of the survey itself can take place at a later time, integrating
the data returned by the laser scanner with the absolute coordinates collected on
specific easily identifiable points of the gallery (e.g., lighting fixtures, signage, etc.).

The width of the instrument’s field of view, which reaches almost 360°, allows
for scanning the entire vault of the tunnel and also the highway lane, except for
the shadow area created by the instrument’s mounting plate, which in any case
measures a few dozen centimeters.

Methods of Captured Data Analysis

The output obtained from a laser scanner survey consists of geometric and pho-
tographic information that is much more complete and significant than a ’simple’
photographic report, as it reproduces the topology of the work with extreme accu-
racy and in three dimensions.
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Figure 4.2: Vehicle equipped with Spacetec laser scanner collecting data in tunnels

The laser beam also has different reflectance values depending on the type of ma-
terial it encounters, and these different values result in a variation of the chromatic
value of the acquired points. Thanks to this property, if a grayscale visualization
is set, it provides a perception of the point cloud as if it were mapped with a pho-
torealistic high-resolution black and white texture, making interpretative reading
extremely easy and enhanced, as shown in the following images.

The processing of the survey carried out with laser scanning technology allows
for the automatic generation of traditional documents such as plans, elevations,
and sections from any plane of section and projection, as well as axonometric and
perspective views. It is also possible to create photoplans and digital orthophotos
by applying photographic documentation directly onto the model with excellent
graphic rendering. Finally, it is possible to use the laser scanner survey to perform
virtual navigation inside the gallery, focusing, where of interest, on details at a scale
specifically calibrated for that purpose.

The ability to query the 3D point cloud at any moment and to navigate and
visualize the survey in three dimensions allows the inspector/designer to carry out
measurement, investigation, and cataloging operations of elements of interest. The
generated model can also be used for all "data mining" operations, that is, for the
automatic or semi-automatic extraction of information from vast amounts of data.

This research used the Ultra-High-Resolution RGB images derived from point
clouds captured using laser scanners described above. The thermal images and
specific point clouds were not included in the main research investigations.
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Figure 4.3: Methodology of image capturing

4.1.2 Image Processing

The dataset was created from images captured in two road tunnels in Italy, both
constructed from concrete and in operation for over 50 years. Their locations pro-
vide geographic diversity: one is situated in the Abruzzo region in east-central
Italy, while the other is in the Liguria region in the northwest. The Figure 4.4
represents the region of two tunnels under investigation in Italy. As mentioned
in the section 4.1.1, the images in this study were acquired using a Mobile Laser
Scanner, as laser point clouds are commonly used for data collection in the tun-
nel’s limited lighting conditions. The scanner used was the TS4 model developed
by the Spacetec company [113]. This instrument utilizes advanced technology to
achieve high-accuracy surveys in 2- or 3-lane tunnels. Its 360-degree laser scanner
captures the entire tunnel vault and roadway by measuring distances through phase
difference calculations. With a rotating head acquiring up to 10,000 points per full
rotation, it collects data while mounted on a vehicle moving at around 5 km/h.
The scanner’s head rotates at 200 revolutions per second, generating detailed point
clouds that represent the tunnel’s surface and provide reflectance data for material
analysis. While the primary output of this instrument is a point cloud, various
outputs can be derived from this, including tunnel panoramic unwrapped images
used for this study. These images are generated from a rigorous three-dimensional
representation, which ensures precision and reliability in analysis. The images ob-
tained represent the full length of the tunnels, and due to the different lengths of
each tunnel, every image has a unique dimension. For example, the images of two
tunnels discussed in this paper have 10.000 × 158.679 and 10.000 × 212.414 pixels.
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The images were stored in the .TIFF format as 8-bit gray-scale. Afterward, the
panoramic unwrapped view is obtained, and the real-world size corresponding to
each pixel is calculated according to the tunnel dimensions described in the tunnel
documentation.

Figure 4.4: Location of the tunnels under investigation in Italy

Each tunnel has a report file defining a description of different defects based on
the Italian guidelines - [23] - represented in every 20-meter section, by experienced
engineers through visual inspection. Figure 4.5 shows the one section captured
image as well as the report file. Accordingly, the tunnel images were divided into
20-meter longitudinal sections along the tunnel direction, and pavement parts on
both sides were removed, leaving the tunnel lining for further investigations.

In the images, the crown part of the tunnels and the side walls have a noticeable
color difference. The crown part is significantly darker, while the side walls are
lighter. To decrease color differences in the images, to facilitate the labeling phase,
and also to have better training performance, a gamma correction [114] equal to
0.5 was applied for both tunnels and enhanced the quality of the images as shown
in 4.6.
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Figure 4.5: a) Report file of one section annotated by experienced engineers through
visual inspection. b) The captured image of the corresponding section.

Figure 4.6: comparison of a tunnel section before and after processing. The raw
captured image is shown on the left, while the processed version, after applying
gamma correction and removing the road section, is on the right.

4.1.3 Labeling and Creation of the Dataset
To make the labeling phase more efficient, each 20-meter tunnel section is divided
into six equal-sized patches, three columns, and two rows, to increase the efficiency
of the labeling phase. The size of these cropped images varies depending on the
tunnel; the first tunnel’s images were 2155×3539, while the second tunnel’s images
were 2144×3821. The labeling technique is applied to these pictures. The Segment
Anything Model (SAM) is the basis for a semi-automatic annotation tool used for
the labeling phase [115] [116]. This software greatly improves labeling efficiency
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by providing a prompt-based way to create object masks with a small number of
points, which can then be manually refined by adjusting the boundaries. The user
environment of the ISAT software is shown in Figure 4.7. The photographs were
annotated by two specialists; one person did the initial labeling, while the other
was in charge of going over the annotations to ensure that the various classifications
were consistent and reliable.

Figure 4.7: The ISAT software user environment used during the labeling phase.

Eight different classes, including defect parts and non-defect parts, are included
in the dataset. While non-defect portions deal with tunnel equipment, repaired
areas, and traffic signs, defect parts concentrate on the kinds of tunnel problems
recommended by Italian regulation. The labeling phase is completed in the first
stage by identifying the exact kinds of defects that the guideline introduced. This
guideline presents 61 different kinds of defects in 12 categories. Following some
testing, the team decided to combine subcategories in the defect section and created
five classes for defect labeling because of the poor performance in differentiating
the various defect classes. Table 4.1 shows the taxonomy of defects, while 4.8 shows
an example of these classes taken from the dataset.

A JSON file created by labeling software connects each image and the cor-
responding annotation. As a result, a Python script was used to transform the
annotated JSON file into a Microsoft COCO dataset [63]. The annotation consists
of a dictionary containing two ”main” keys: info, where the image is described, and
”objects”, which contains the list of things that have been categorized.

The dataset’s original photos were 2155 × 3539 and 2144 × 3821 in size, respec-
tively. A preprocessing step was used to standardize the models’ input size. Each
image was cropped into six patches in this step, which were placed in three rows
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Table 4.1: Taxonomy of Defects

Guidelines Categories Code Defects Description New Class

Defects caused by water presence

1.1 Drippings
1.2 Water Ingress
1.3 Concretions – Deposits – Encrustations Seepage
1.4 Effects of frost - traces of salts
1.5 Efflorescence on mortar or concrete

Defects in the coating materials (concrete) 1.19 Cracks and spalling due to reinforcement corrosion Corrosion

Defects related to the structural
elements and geometry of the tunnel

3.1 Presence of longitudinal cracks along the coating
3.2 Diagonal cracks
3.3 Vertical cracks Cracks
3.4 Shrinkage cracks
3.5 Curvilinear cracks

Defects relating to the structural elements and
geometry of the tunnel- Construction Defects

3.14 Deterioration of concrete joints Damaged Joint
3.15 Surface defects in concrete Spalling

Figure 4.8: Example of categories represent: a) Equipment, b) Repair part, c)
Traffic Sign, d) Seepage, e) Spalling, f) Corrosion, g) Damaged joint, h) Crack

and two columns. After that, each of these patches was further cropped centrally
to create square images that were 1024 × 1024 in size. The COCO annotation files
were changed to appropriately reflect the increased image dimensions to account
for these changes.

The dataset consists of 1800 photos after being cropped to 1024 × 1024. Even
though there were 100 photos among them that lacked annotations, they were not
included in the collection. To sum up, the dataset includes 1700 photos with 6821
comments in five different categories. The dataset was separated into training and
validation sets for the purpose of training the model. Eighty percent of the pho-
tos were randomly assigned to the training set, and the remaining twenty percent
were assigned to the validation set, following standard practices. Figure 4.9 repre-
sents the whole procedure of image processing from the original raw image to the
processed labeled one.

52



4.1 – Methodology

Figure 4.9: Overall process of image processing from a large ultra-high resolution
image obtained directly during the inspection to a labeled processed image for the
dataset.

4.1.4 Neural Network Training and Evaluation

In this research, instance and semantic segmentation tasks were used to benchmark
the introduced dataset. The instance segmentation experiments tackled distinguish-
ing eight different defect and non-defect categories, while the semantic segmentation
task just focused on investigating between two categories, defect and non-defect, as
well as background. The models used in this research are described briefly in 2.2.
The table 4.2 shows the information regarding the instance segmentation models
utilized to benchmark the dataset, and table 4.3 represents the semantic segmen-
tation models. The model used in this research can be categorized as CNN- and
Transformer-based. We benchmark and evaluate our proposed dataset using these
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two methods for comparison with different approaches in deep learning algorithms.

Table 4.2: Instance segmentation models under investigation.

Model type Method Backbone Params (Million) Flops(1 × 1012)

CNN-Based Mask R-CNN ResNet50 44.009 0.263

MS R-CNN ResNet50 60.349 0.302

Cascade Mask R-CNN ResNet50 77.048 1.785

HTC ResNet50 77.456 1.719

PointRend ResNet50 59.846 0.214

SOLOv2 ResNet50 46.593 0.249

CondInst ResNet50 34.164 0.350

Trasnformer-Based Mask R-CNN SWIN L 215.253 0.938

Mask R-CNN ViT B 111.000 0.840

QueryInst SWIN L 344.152 0.829

Mask2Former SWIN L 216.156 0.991

Table 4.3: Semantic segmentation models under investigation.

Model type Method Backbone Params (Million) Flops(1 × 109)

CNN-Based BiSeNetV1 ResNet50 56.857 0.396

UperNet ResNet50 64.051 0.948

DeepLabV3+ ResNet50 65.74 1.079

PSPNet ResNet50 46.603 0.714

Trasnformer-Based SegFormer MIT 44.604 0.239

Segmenter ViT B 101.609 0.504

Mask2Former SWIN L 216.156 0.991

4.1.5 Evaluation Metrics
The damage identification task was implemented using instance segmentation meth-
ods. As a result, their mainstream assessment will also be presented. The widely
accepted COCO (Microsoft Common Objects in Context) official evaluation criteria
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are typically followed using the segmentation evaluation method. If the projected
category matches the Ground Truth (GT) category and the IoU between the an-
ticipated instance’s result and the GT surpasses a predetermined threshold τ , the
prediction is deemed accurate. The following is a related evaluation approach.

IoU = TP

TP + FP + FN
(4.1)

where TP , FN , and FP denote the true positive, false negative, and false positive.
A schematic overview of IoU explanation is shown in 4.10

Figure 4.10: Explanation of the Intersection Over Union (IoU)

Recalli = TPi

TPi + FNi

(4.2)

Precisioni = TPi

TPi + FPi

(4.3)

AR(τ) = 1
N

N∑︂
i=1

TPi(τ)
TPi(τ) + FNi(τ) (4.4)

AP = 1
101 ×

∑︂
r∈0,0.01,...,1

pinterpolation(r) (4.5)

where TPi, FNi, and FPi denote the true positive, false negative, and false posi-
tive instances i, and pinterpolation(r) is the precision obtained through interpolation
at the given maximum recall level r. Here, i = 1, 2, 3, . . . , n, where n represents the
total number of instances. The Average Recall (AR) measures the average recall
across a dataset and is computed as the mean recall over a set of predefined IoU
thresholds τ or a single IoU level. It quantifies the model’s ability to detect or seg-
ment objects, considering both true positives and missed detections. The Average
Precision (AP) quantifies the area under the precision-recall curve and is computed
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Figure 4.11: Precision-recall curves for AP: (a) the area under the curve (AUC)
represents the AP. (b) The larger AUC represents the higher AP. In this curve blue
line has a higher AP than the orange line.

as the mean precision over 101 equally spaced recall levels: [0.0, 0.01, 0.02, . . . , 1.0].
The evaluation of instance segmentation encompasses both bounding boxes and
masks, with the results presented as APb for bounding boxes and APm for masks.
Overall, we provide AP at IoU thresholds of 0.5, 0.75, and the average over 0.5 to
0.95 with a 0.05 interval. Accordingly, the ARm represents the average recall for
masks and the ARb shows the average recall for bounding boxes at the average IoU
thresholds over 0.5 to 0.95 with a 0.05 interval. Figure 4.11 shows the concept of
Average Precision concerning the precision-recall curve. Mathematically, AP is the
area under the precision-recall curve, calculated either by integrating over all recall
points or using specific interpolation methods.

Accuracy = TPi

TPi + FPi + FNi

(4.6)

Fβ − Score = (1 + β2) × Precision × Recall
β2 × Precision + Recall , β = 1,2 (4.7)

Detection and segmentation tasks are highly dependent on substantial volumes
of labeled image data and considerable computational resources. Historically, one of
the primary challenges in utilizing convolutional neural networks (CNNs) was their
reliance on extensive labeled datasets and the significant computational costs in-
volved. However, advancements in labeling techniques and the adoption of parallel
computation using graphics processing units (GPUs) have largely mitigated these
limitations. Despite these developments, there remains a scarcity of well-annotated,
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open-source datasets containing information on tunnel defects. Consequently, it is
essential to gather a diverse and sufficient collection of images depicting various
tunnel defects to facilitate accurate defect segmentation.
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Chapter 5

Result and Discussion

Detection and segmentation tasks are highly dependent on substantial volumes of
labeled image data and considerable computational resources. Historically, one of
the primary challenges in utilizing convolutional neural networks (CNNs) was their
reliance on extensive labeled datasets and the significant computational costs in-
volved. However, advancements in labeling techniques and the adoption of parallel
computation using graphics processing units (GPUs) have largely mitigated these
limitations. Despite these developments, there remains a scarcity of well-annotated,
open-source datasets containing information on tunnel defects. Consequently, it is
essential to gather a diverse and sufficient collection of images depicting various
tunnel defects to facilitate accurate defect segmentation.

5.1 Parameter Setting and Hardware
All experiments were conducted using NVIDIA Tesla V100 SXM2 Tensor Core
GPUs. The software environment consists of MMCV 2.0.1 and PyTorch 2.0.0 with
CUDA version 11.8. For each experiment, the official configuration files for all
algorithms from MMDetection [117] and MMSegmentation [118] were used. Data
augmentation strategies configured in the official setup were applied. For all models,
the strategies described below were used. The model input is standardized to
1024×1024. The model has been trained for 100 epochs with the AdamW optimizer
[119]. The learning rate schedule follows a cosine annealing strategy [120]. Training
begins with a linear warm-up phase lasting 1000 iterations, after which the learning
rate is set to le − 4 and gradually reduced to le − 7.

5.2 Result of instance segmentation algorithms
For instance segmentation tasks nine state-of-the-art models, including Mask R-
CNN [41], Ms RCNN [42], Cascade Mask R-CNN [43], HTC [44], PointRend [46],

59



Result and Discussion

SOLOv2 [47], CondInst [48], QueryInst [50],and Mask2Former [51], were used.
These models have been chosen based on their architectural features, concerning
CNN-based and Transformer-based approaches, to highlight a comparison between
these methodologies as well. All models were trained to start from weights pre-
trained on the ImageNet-1k dataset [53] except for Swin-Base and Swin-Large,
which were pre-trained on ImageNet-22k. The result of the instance segmentation
models presented in 5.1. All models generate bounding boxes and continue with
creating masks for each instance. Except for the SoloV2 model, which directly
obtains instance segmentation results without calculating bounding boxes. The
confusion matrix of these models is represented in Figure 5.3. Some examples of
model predictions are visualized in Figure 5.1 and Figure 5.2.

Table 5.1: Instance segmentation models result

Method Backbone APb AP 50
b AP 75

b APm AP 50
m AP 75

m ARb ARm

Mask R-CNN ResNet50 0.293 0.424 0.313 0.299 0.429 0.322 0.358 0.357

MS R-CNN ResNet50 0.295 0.413 0.307 0.301 0.422 0.322 0.361 0.360

Cascade M R-CNN ResNet50 0.333 0.448 0.364 0.326 0.457 0.342 0.398 0.385

HTC ResNet50 0.347 0.468 0.380 0.339 0.469 0.363 0.417 0.406

PointRend ResNet50 0.296 0.416 0.313 0.309 0.430 0.327 0.362 0.371

SOLOv2 ResNet50 - - - 0.293 0.433 0.297 - 0.358

CondInst ResNet50 0.284 0.408 0.306 0.295 0.422 0.308 0.365 0.371

Mask R-CNN SWIN L 0.316 0.437 0.343 0.310 0.435 0.327 0.386 0.378

Mask R-CNN ViT B 0.316 0.447 0.337 0.313 0.453 0.333 0.392 0.382

QueryInst SWIN L 0.358 0.494 0.388 0.348 0.500 0.369 0.507 0.459

Mask2Former SWIN L 0.396 0.526 0.419 0.398 0.559 0.414 0.555 0.522

5.2.1 Detailed Analysis
Also, a deeper analysis with various backbones for three models including Mask
R-CNN, Cascade Mask R-CNN and Mask2Former have been utilized for a better
investigation. The result of all these three models with different backbones is de-
scribed in the Tables 5.4, 5.5, and 5.6. Confusion matrix of these three mentioned
models are represented in Figure 5.4. For the calculation of the confusion matri-
ces, the models with Swin-Large backbone were used. Confusion matrices were
calculated in the four different confidence thresholds of 0.1, 0.2, 0.3, and 0.5.

Consequently, the Table 5.7 presented an comparative analysis of the three
mentioned models based on each categories. Some examples of visualized prediction
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Figure 5.1: Prediction visualization of instance segmentation models with confi-
dence score of 0.3

of the models presented in 5.5. For these visualization confidence thresholds of 0.3
were utilized.

5.2.2 Discussion

After a comprehensive comparison, we found that under the conditions of our cur-
rent dataset, Mask2Former performs the best, followed by QueryInst and HTC.
The reason for this is that Mask2Former has a better Transformer-based architec-
ture [51]. Overall, the transformer-based architectures show slightly better per-
formance than CNN-based on our dataset, which can be derived from their novel
architecture.

In terms of specific defect categories, it’s important to note the following:
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Figure 5.2: Prediction visualization of instance segmentation models with confi-
dence score of 0.3

• Seepage: For this defect category, all the models demonstrate high per-
formance, but Mask2Former achieves the highest APmask of 0.450, indicat-
ing its efficiency in identifying this class of defects. Cascade mask R-CNN
has APmask= 0.395 and, Mask R-CNN has the lowest performance with
APmask= 0.395.

• Spalling: Mask2Former also shows the highest performance in this case as
well, outperforming other models with APmask = 0.466, which indicates su-
perior precision in segmenting spalling defects. While Mask R-CNN and
Cascade Mask R-CNN show a good performance, they have lower results
compared to Mask2Former.

• Corrosion: Cascade Mask R-CNN had an APmask of 0.125, this is a slight
improvement over both Mask R-CNN (0.101) and Mask2Former (0.116). This
shows that all models struggle with the accurate identification and delineation

62



5.2 – Result of instance segmentation algorithms

Figure 5.3: Confusion matrix of instance segmentation models with confidence score
of 0.3

of corrosion-related instances.

• Damaged Joints: In this category, Mask2Former achieves the highest APmask

score, of 0.178. The results reveal that Mask R-CNN and Cascade Mask R-
CNN performances are lower compared to other models, indicating an overall
difficulty in detecting and segmenting damaged joints.

• Cracks: All three algorithms exhibit a poor performance in detecting cracks,
the highest APmask of Mask R-CNN was only 0.006, and Mask2Former and
Cascade Mask R-CNN both obtained lower results of 0.005 and 0.008 respec-
tively.

As a result of these findings, Mask2Former generally performed better across
the dataset and excelled in segmenting Seepage and Spalling, but all models had

63



Result and Discussion

Table 5.2: Comparative Analysis of CNN-based Instance Segmentation Algorithms
on Our Dataset

Algorithm Metric Equipment Repair
Part

Sign Seepage Corrosion Damaged
Joint

Spalling Crack

Mask R-CNN
(ResNet-50)

APb 0.431 0.619 0.395 0.336 0.119 0.104 0.337 0.004
AP 50

b 0.594 0.810 0.567 0.493 0.216 0.268 0.429 0.015
AP 75

b 0.485 0.684 0.437 0.360 0.109 0.050 0.376 0.000
APm 0.461 0.668 0.386 0.336 0.125 0.072 0.344 0.000
AP 50

m 0.609 0.829 0.567 0.493 0.240 0.253 0.436 0.000
AP 75

m 0.514 0.746 0.446 0.370 0.109 0.010 0.381 0.000

MS R-CNN
(ResNet-50)

APb 0.437 0.652 0.412 0.337 0.092 0.093 0.332 0.002
AP 50

b 0.595 0.809 0.582 0.486 0.179 0.235 0.414 0.003
AP 75

b 0.469 0.694 0.454 0.359 0.070 0.047 0.363 0.003
APm 0.468 0.673 0.413 0.341 0.105 0.068 0.339 0.000
AP 50

m 0.608 0.819 0.603 0.488 0.221 0.230 0.410 0.000
AP 75

m 0.513 0.728 0.475 0.368 0.097 0.013 0.379 0.000

Cascade Mask
R-CNN

(ResNet-50)

APb 0.553 0.693 0.430 0.353 0.100 0.171 0.351 0.014
AP 50

b 0.699 0.809 0.583 0.502 0.204 0.317 0.440 0.031
AP 75

b 0.639 0.765 0.474 0.382 0.088 0.158 0.392 0.015
APm 0.574 0.714 0.395 0.353 0.106 0.113 0.348 0.007
AP 50

m 0.713 0.828 0.583 0.508 0.211 0.346 0.433 0.031
AP 75

m 0.657 0.786 0.395 0.384 0.104 0.019 0.394 0.000

HTC
(ResNet-50)

APb 0.565 0.696 0.482 0.365 0.120 0.174 0.375 0.002
AP 50

b 0.725 0.817 0.629 0.536 0.239 0.321 0.467 0.010
AP 75

b 0.633 0.761 0.546 0.391 0.118 0.174 0.415 0.000
APm 0.586 0.720 0.426 0.364 0.124 0.114 0.376 0.002
AP 50

m 0.739 0.837 0.629 0.539 0.225 0.298 0.473 0.010
AP 75

m 0.660 0.804 0.456 0.395 0.125 0.041 0.425 0.000

PointRend
(ResNet-50)

APb 0.415 0.669 0.384 0.339 0.110 0.096 0.339 0.017
AP 50

b 0.581 0.805 0.538 0.507 0.182 0.248 0.430 0.040
AP 75

b 0.446 0.746 0.412 0.358 0.115 0.040 0.386 0.000
APm 0.451 0.714 0.394 0.352 0.117 0.079 0.353 0.008
AP 50

m 0.593 0.833 0.538 0.517 0.208 0.264 0.445 0.040
AP 75

m 0.520 0.791 0.388 0.388 0.120 0.011 0.401 0.000

SOLOv2
(ResNet-50)

APm 0.580 0.658 0.344 0.332 0.090 0.073 0.269 0.000
AP 50

m 0.777 0.817 0.524 0.492 0.189 0.257 0.412 0.000
AP 75

m 0.673 0.686 0.293 0.368 0.088 0.004 0.268 0.000

CondInst
(ResNet-50)

APb 0.413 0.614 0.407 0.338 0.092 0.082 0.330 0.000
AP 50

b 0.590 0.780 0.574 0.485 0.187 0.197 0.426 0.000
AP 75

b 0.444 0.676 0.509 0.355 0.076 0.034 0.367 0.000
APm 0.473 0.672 0.365 0.338 0.091 0.058 0.330 0.000
AP 50

m 0.612 0.810 0.546 0.496 0.215 0.200 0.433 0.000
AP 75

m 0.532 0.729 0.392 0.362 0.091 0.008 0.368 0.000

limited performance in detecting Cracks. There are many data sets in literature
that focus primarily on Crack defects like MCrack1300 [121]. This performance
gap can be filled by combining our data set with existing ones.

Figure 5.5 shows some visualized results derived from experiments. A qualitative
assessment of the models’ performance is possible with these visualizations, which
help understand where the algorithms succeed or fail. Mask2Former, for example,
correctly identifies large seepage regions, while sometimes underestimating smaller
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Table 5.3: Comparative Analysis of Transformer-based Instance Segmentation Al-
gorithms on Our Dataset

Algorithm Metric Equipment Repair
Part

Sign Seepage Corrosion Damaged
Joint

Spalling Crack

Mask R-CNN
(SWIN L)

APb 0.417 0.647 0.425 0.399 0.098 0.151 0.371 0.017

AP 50
b 0.545 0.832 0.541 0.553 0.188 0.339 0.473 0.021

AP 75
b 0.465 0.718 0.481 0.440 0.110 0.098 0.411 0.021

APm 0.441 0.682 0.374 0.395 0.101 0.108 0.372 0.006

AP 50
m 0.548 0.832 0.536 0.562 0.185 0.318 0.476 0.021

AP 75
m 0.498 0.747 0.410 0.433 0.100 0.015 0.411 0.000

Mask R-CNN
(ViT-B)

APb 0.477 0.626 0.419 0.361 0.105 0.156 0.363 0.024

AP 50
b 0.643 0.786 0.534 0.525 0.209 0.308 0.462 0.109

AP 75
b 0.547 0.696 0.418 0.396 0.097 0.143 0.391 0.005

APm 0.514 0.657 0.371 0.355 0.115 0.112 0.369 0.011

AP 50
m 0.656 0.825 0.529 0.536 0.238 0.324 0.482 0.033

AP 75
m 0.582 0.718 0.412 0.401 0.119 0.026 0.401 0.000

QueryInst
(SWIN L)

APb 0.634 0.717 0.369 0.386 0.102 0.245 0.348 0.065

AP 50
b 0.825 0.846 0.546 0.532 0.177 0.478 0.45 0.098

AP 75
b 0.728 0.778 0.453 0.424 0.089 0.206 0.377 0.047

APm 0.454 0.241 0.245 0.387 0.087 0.271 0.438 0.076

AP 50
m 0.681 0.813 0.771 0.458 0.148 0.29 0.407 0.070

AP 75
m 0.539 0.740 0.774 0.471 0.184 0.290 0.439 0.070

Mask2Former
(SWIN L)

APb 0.664 0.734 0.529 0.434 0.099 0.247 0.435 0.027
AP 50

b 0.841 0.851 0.676 0.592 0.202 0.422 0.558 0.044
AP 75

b 0.739 0.775 0.572 0.461 0.092 0.208 0.472 0.034
APm 0.686 0.774 0.505 0.450 0.116 0.178 0.466 0.005

AP 50
m 0.888 0.908 0.680 0.634 0.271 0.476 0.603 0.016

AP 75
m 0.792 0.840 0.525 0.489 0.107 0.052 0.504 0.001

ones. It has decent performance in spalling, but struggles with accuracy when the
texture or contrast is significantly different. Compared to Cascade Mask R-CNN
and Mask2Former, Mask R-CNN displays a consistent but moderate performance.

5.3 Result of semantic segmentation algorithm
To display the compatibility of our database, we conducted semantic segmentation
experiments with multiple State-of-The-Art architectures as shown in Table 4.3,
considering dividing the dataset into two classes, Defect and Non-defect parts. The
defect part includes the seepage, spalling, damaged joint, cracks, and corrosion,
while the non-defect part represents the equipment, repair part, and sign classes.
The pixel-level evaluations are described in Table 5.8. A comprative analysis of
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Figure 5.4: Normalized Confusion Matrix of Instance Segmentation models with
Swin-Large backbone with multiple confidence Thresholds

semantic segmentation algorithms concering the each class introduced in Table 5.9.
Also, some prediction examples are represented in Figure 5.6, and Figure 5.7.

5.3.1 Discussion
After a comprehensive comparison of semantic segmentation algorithms,we found
that under the conditions of our current dataset,Mask2Former performs the best
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Table 5.4: Result of Mask R-CNN across different backbone sizes.

Backbone APb AP 50
b AP 75

b APm AP 50
m AP 75

m ARb ARm

ResNet-50 0.293 0.424 0.313 0.299 0.429 0.322 0.358 0.357

ResNet-101 0.300 0.421 0.326 0.300 0.434 0.312 0.367 0.366

ResNeXt-101-64x4d 0.301 0.410 0.328 0.291 0.402 0.316 0.359 0.349

ResNeXt-101-32x8d 0.313 0.424 0.350 0.307 0.427 0.333 0.380 0.368

Swin-T 0.326 0.468 0.351 0.324 0.453 0.337 0.396 0.387

Swin-S 0.311 0.438 0.332 0.313 0.449 0.330 0.379 0.377

Swin-B∗ 0.315 0.432 0.340 0.309 0.431 0.320 0.378 0.368

Swin-L∗ 0.316 0.437 0.343 0.310 0.435 0.327 0.386 0.378
* Swin-B and Swin-L backbones are pre-trained on the ImageNet-22k dataset.

Table 5.5: Result of Cascade Mask R-CNN across different backbone sizes.

Backbone APb AP 50
b AP 75

b APm AP 50
m AP 75

m ARb ARm

ResNet-50 0.333 0.448 0.364 0.326 0.457 0.342 0.398 0.385

ResNet-101 0.330 0.443 0.357 0.319 0.441 0.337 0.390 0.375

ResNeXt-101-64x4d 0.343 0.453 0.378 0.330 0.460 0.347 0.407 0.391

ResNeXt-101-32x8d 0.329 0.439 0.355 0.319 0.442 0.343 0.392 0.376

Swin-T 0.352 0.461 0.387 0.339 0.458 0.359 0.410 0.394

Swin-S 0.351 0.474 0.383 0.335 0.474 0.351 0.414 0.394

Swin-B∗ 0.351 0.475 0.379 0.341 0.468 0.354 0.415 0.400

Swin-L∗ 0.355 0.468 0.381 0.346 0.478 0.360 0.416 0.399
* Swin-B and Swin-L backbones are pre-trained on the ImageNet-22k dataset.

considering the IoU metric,followed by Segformer and Segmenter. The reason for
this is because Mask2Former has a better Transformer based architecture [51].
Overall, the transformer-based architectures shows slightly better performance than
CNN-based on our dataset, it can be derived from their novel architecture.

In terms of specific categories, it’s important to note the following:

• Defect: For this category, all the models demonstrate reliable performance,
but Mask2Former achieves the highest IoU of 70.89, indicating its efficiency
in identifying class of defects. SegFormer has second best performance with
IoU= 67.11 and, BISeNetV1 has the lowest performance with IoU= 44.98.

• Non-defect: Mask2Former also shows the highest performance in this case as
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Table 5.6: Result of Mask2Former across different backbone sizes.

Backbone APb AP 50
b AP 75

b APm AP 50
m AP 75

m ARb ARm

ResNet-50 0.388 0.527 0.402 0.386 0.551 0.399 0.527 0.500

ResNet-101 0.388 0.516 0.408 0.378 0.543 0.396 0.533 0.492

Swin-T 0.388 0.526 0.408 0.390 0.551 0.407 0.554 0.518

Swin-S 0.391 0.523 0.401 0.400 0.557 0.412 0.544 0.511

Swin-B∗ 0.381 0.504 0.398 0.383 0.537 0.401 0.516 0.491

Swin-L∗ 0.396 0.526 0.419 0.398 0.559 0.414 0.555 0.522
* Swin-B and Swin-L backbones are pre-trained on the ImageNet-22k dataset.

Table 5.7: Comparative Analysis of Instance Segmentation Algorithms with Swin-
Large Backbone on Our Dataset

Algorithm Metric Equipment Repair
Part

Sign Seepage Corrosion Damaged
Joint

Spalling Crack

Mask R-CNN

APb 0.417 0.647 0.425 0.399 0.098 0.151 0.371 0.017

AP 50
b 0.545 0.832 0.541 0.553 0.188 0.339 0.473 0.021

AP 75
b 0.465 0.718 0.481 0.440 0.110 0.098 0.411 0.021

APm 0.441 0.682 0.374 0.395 0.101 0.108 0.372 0.006

AP 50
m 0.548 0.832 0.536 0.562 0.185 0.318 0.476 0.021

AP 75
m 0.498 0.747 0.410 0.433 0.100 0.015 0.411 0.000

Cascade Mask
R-CNN

APb 0.563 0.672 0.431 0.425 0.113 0.240 0.374 0.021

AP 50
b 0.703 0.841 0.539 0.559 0.182 0.429 0.453 0.036

AP 75
b 0.626 0.716 0.438 0.467 0.129 0.248 0.407 0.015

APm 0.578 0.700 0.396 0.419 0.125 0.159 0.380 0.008
AP 50

m 0.711 0.841 0.567 0.571 0.222 0.416 0.462 0.036
AP 75

m 0.656 0.758 0.422 0.467 0.138 0.021 0.417 0.000

Mask2Former

APb 0.664 0.734 0.529 0.434 0.099 0.247 0.435 0.027
AP 50

b 0.841 0.851 0.676 0.592 0.202 0.422 0.558 0.044
AP 75

b 0.739 0.775 0.572 0.461 0.092 0.208 0.472 0.034
APm 0.686 0.774 0.505 0.450 0.116 0.178 0.466 0.005

AP 50
m 0.888 0.908 0.680 0.634 0.271 0.476 0.603 0.016

AP 75
m 0.792 0.840 0.525 0.489 0.107 0.052 0.504 0.001

well, outperforming other models with IoU = 91.15, which indicates superior
precision in segmenting non-defect classes. While other models show a overall
good performance, they have lower results compared to Mask2Former.
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Figure 5.5: Some example of the instance segmentation models prediction with
Swin Large backbone with confidence score of 0.3
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Table 5.8: Semantic segmentation models under investigation.

Method Backbone IoU Accurcay Precision Recall F1 − score

BiSeNetV1 ResNet50 73.300 79.860 87.210 79.860 82.800

UperNet ResNet50 82.470 94.690 91.300 88.400 89.760

DeepLabV3+ ResNet50 83.260 89.470 91.270 89.470 90.320

PSPNet ResNet50 83.210 89.260 91.530 89.260 90.300

SegFormer MIT b3 84.230 89.960 92.160 89.960 90.990

Segmenter ViT B 83.510 89.790 91.390 89.790 80.32

Mask2Former SWIN L 85.650 91.470 92.37 91.470 91.910

Figure 5.6: Example of prediction of the Semantic Segmentation test on our dataset.
Green instances represent the Non-defect class while the red ones show the Defects.
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Table 5.9: Comparative Analysis of Semantic Segmentation Algorithms on Our
Dataset

Algorithm Categories IoU Accurcay Precision Recall F1 −
score

BiSeNetV1
Defect 44.98 52.12 76.64 52.12 62.05

Non-Defect 84.15 89.22 93.67 89.22 91.39

Background 90.91 97.45 93.12 97.45 95.24

UperNet
Defect 63.56 73.63 82.29 73.63 77.72

Non-Defect 90.08 94.03 95.54 94.03 94.78

Background 93.77 97.53 96.05 97.53 96.78

DeeplabV3+
Defect 65.52 75.87 82.76 75.87 79.17

Non-Defect 90.23 95.11 94.62 95.11 94.86

Background 94.05 97.44 96.43 97.44 96.93

PSPNet
Defect 65.72 74.89 84.29 74.89 79.31

Non-Defect 89.8 95.28 93.98 95.28 94.62

Background 94.11 97.62 96.32 97.62 96.97

SegFormer
Defect 67.94 76.89 85.37 76.89 80.91

Non-Defect 90.24 95.22 94.53 95.22 94.87

Background 94.50 97.78 96.58 97.78 97.17

Segmenter
Defect 67.11 77.23 83.66 77.23 80.32

Non-Defect 89.17 94.64 93.91 94.64 94.28

Background 94.26 97.5 96.59 97.5 97.04

Mask2Former
Defect 70.89 81.45 84.54 81.45 82.97

Non-Defect 91.15 95.33 95.41 95.33 95.37

Background 94.92 97.63 97.16 97.63 97.39
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Figure 5.7: Example of prediction of the Semantic Segmentation test on our dataset.
Green instances represent the Non-defect class while the red ones show the Defects.
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Chapter 6

Damage Report

The widely used Gradio [122] is used to build the front-end interactive interface
as shown in the Figure 6.1. Users have the ability to view boundary map legends,
change between different visualization modes, export/download COCO format an-
notation files and PDF reports, batch upload images, and modify unified confidence
thresholds (as previously discussed, with a dedicated threshold of 0.05 for "crack"
and a unified threshold of 0.2 applied to all other categories). The original image
and four chosen visualization analysis maps—binary, border, probability, and seg-
mentation maps—are shown simultaneously in the visualization area. The dialogue
space for the statistical findings of natural language queries is located beneath the
visualization. The question area and the statistical findings that were returned are
on the left, and the statistical charts are on the right.

PDF report generation is based on FPDF2 [123] and PyPDF2 [124]. First,
we produced a template.pdf file with the required legends and empty tables for
data entry. The boundary maps are then subjected to secondary processing, which
involves drawing a coordinate system with the top of the vertical axis set to 20m and
the bottom to 0m. The coordinate grid is drawn using this as a guide. According
to the format used in the manual report displayed in 6.1, we set the image’s center
to 0 and its right side to be positive for the horizontal axis. The template.pdf file
then contains the processed image embedded within it. Lastly, the relevant table
is printed with the required text content.

For inference at three scales (50% overlap), roughly 270 cropped photos are
needed for every 20m section. Each UHR image requires about 40 seconds of
inference on an NVIDIA A100 Tensor Core GPU. The entire process, including
pre-processing and post-processing, takes less than a minute. Our method provides
consistent, objective, and repeatable results by automating damage identification
for a 300m tunnel (15 sections of 20m) in about 15 minutes, in contrast to hand
labeling approaches that are subjective and time-consuming. Figure 6.2 and Figure
6.3 are examples of two pages from separate tunnels. Overall, both tunnels exhibit
exceptionally good segmentation performance, clearly defining damage areas and
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Damage Report

Figure 6.1: Interactive interface for tunnel panoramic image damage detection.

successfully differentiating between various damage kinds. Additionally, a large
number of possible cracks were recorded, which is highly advantageous.
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Risk level
Low Intensity (0,20)

Medium Intensity (20,80)
High Intensity (80,100)

Class
Seepage
Corrosion

Damaged joint
Spalling
Crack

Figure 6.2: First example of automatically generated damage report from two dif-
ferent tunnels based on 20m tunnel local panoramic images.
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Risk level
Low Intensity (0,20)

Medium Intensity (20,80)
High Intensity (80,100)

Class
Seepage
Corrosion

Damaged joint
Spalling
Crack

Figure 6.3: Second example of automatically generated damage report from two
different tunnels based on 20m tunnel local panoramic images.
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Chapter 7

Conclusion

In this paper, we present a novel method to process high-resolution panoramic im-
ages from concrete road tunnels to develop a database suitable for computer vision
models to enhance the defect detection process concerning structural health mon-
itoring criteria to satisfy the new Italian regulation concerns regarding to guide
maintenance decision-making, aiming to minimize the risk of dangerous situations
and prevent the need for urgent interventions. Subsequently, a damage report inter-
face was introduced to show the compatibility of our proposed dataset in real-world
scenarios. The database consists of eight different categories of concrete defects and
tunnel equipment, based on Italian regulations, including seepage, spalling, crack,
damaged joint, and corrosion for defect classes and equipment, repair part, and
traffic sign. Lately, the database has been trained and evaluated with instance
segmentation and semantic algorithms to verify the efficacy and performance.
For instance segmentation experiments the Mask2Former has shown the overall
best performance with APmask equal to 0.396. Regarding the categories, seep-
age and spalling have a satisfactory result, while the damaged joint and corrosion
have shown slightly moderate performance. For the cracks, the performance was
not satisfactory. It may have been caused due to the lack of subsequent data on
this category in the database. In semantic segmentation experiments, we convert
our categories into two parts, defects and non-defect parts. Also in this term,
Mask2Former shows best performance with overall mIoU equal to 85.650.
There are some limitations in our research. Firstly, dataset imbalance across dif-
ferent classes affects the model’s performance and efficacy. Additionally, more
state-of-the-art architectures could be explored to better evaluate the dataset and
enhance performance analysis.
In future work, we aim to address class imbalance by introducing more instances
in underrepresented classes. Furthermore, we plan to incorporate diverse architec-
tures to gain deeper insights into dataset performance. Lastly, integrating multi-
modal data sources, such as thermal and RGB-D cameras, as well as data-driven
Ground-Penetrating Radar (GPR) methodologies, could further enhance overall
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model performance.
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