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Abstract 

The increasing pressure on companies to balance economic efficiency with environmental 

sustainability has made fleet management a critical challenge. In the context of a leading of a 

leading supermarket company, optimizing truck and cooler configurations under different fuel 

types and operational constraints is essential to meeting both cost and carbon reduction goals. 

This thesis develops a multi-objective optimization model for sustainable fleet management, 

aimed at minimizing operational costs and carbon emissions for a leading supermarket 

company. The research focuses on optimizing truck and cooler configurations under various 

operational constraints and fuel types. By employing the epsilon-constraint method and 

exploring diverse scenarios, including regulatory, risk management, and operational events, the 

study evaluates trade-offs between economic and environmental objectives. The analysis offers 

actionable insights and recommendations tailored to the company’s current business 

environment, supporting its sustainability and budget goals for 2030. 

Key findings highlight that the trade-off between environmental and economic performance is 

unbalanced, with cost reductions often conflicting with sustainability improvements. Pareto 

frontiers generated for both baseline scenarios, those incorporating potential technological 

innovations and those showing the effects of potential exogenous events. These scenarios 

consider the company’s existing fleet and requirements, future EU regulations, and strategies to 

address compliance challenges. Additionally, alternative scenarios account for external effects, 

acknowledging their potential to significantly influence decision-making. Time-series models 

were also developed to predict fuel prices, enhancing the strategic value of the 

recommendations. 

From a theoretical perspective, this research contributes to the academic discourse on 

sustainable fleet optimization by integrating multi-objective optimization with real world 

operational constraints and regulatory frameworks into decision-making models, offering a 

methodology that can be adapted to face similar challenges. 

The results from the study provide practical solutions for fleet mix allocation, equipping the 

supermarket company with strategies to achieve its sustainability objectives while aligning with 

regulatory mandates and mitigating operational risks. 

  



1 Introduction 

The transportation sector is vital for the global economic activity, as it facilitates trade, supply 

chain and the movement of people and goods. Nearly every aspect of modern life depends on 

transportation. On the same way it is related to activities that run the daily life of a society, it 

has a substantial impact on the environment. Transportation is the only sector where greenhouse 

gas emissions have increased over the past three decades, rising by 33.5% between 1990 and 

2019, and in this last year, it was responsible for approximately 25% of the European Union’s 

total CO2 emissions, with 71.7% attributed to road transportation (European Environment 

Agency, 2023). With this information it is possible to depict that the reliance on internal 

combustion engine vehicles (ICEVs), fuelled by diesel and gasoline, is addressing immediate 

needs but compromising future priorities. As 68% of the world population projects to live in 

urban areas by 2050 (UN, 2018), it is possible to say that towards the future, there will be an 

increase in the road transportation services demand to the cities (Krause et al., 2024). To ensure 

long-term sustainability, businesses must adapt their supply chain and operations to align to the 

demands of the modern world and turn their operations greener. This transition could represent 

a strategic economic advantage on top of mitigating environmental harm, ultimately benefitting 

the society. Environmental pressure was put on this topic due to the severity and urgency of the 

climate issue; the United Nations has emphasized the urgency of achieving carbon neutrality by 

2050 to address the climate crisis (Guterres, 2020). Taking action today positions the firms to 

remain competitive in a future where sustainability is a key driver of success. 

1.1 Context and Societal Importance 

Society is gradually shifting towards prioritizing environmental sustainability. After the Paris 

Agreement, a turning point was marked, which made many firms have set objectives for 2030 

and 2050 to reduce greenhouse gas emissions (GHG) and limit global warming (European 

Environment Agency, 2024). As consumers are shifting their spending their spending towards 

products with ESG-related claims (McKinsey & Company, 2023), this has become essential in a 

strategic point for businesses. Notably, consumer’s willingness to pay for sustainably sources 

product has risen 9.7% on average, despite the cost-of-living concerns and weigh (PwC, 2024).  

Beyond environmental consequences, GHG emissions have severe implications for public 

health. The air that allows substances and chemicals to be transported around the world, and 

evidence suggests that air pollution and GHG emissions almost always go hand in hand 

(European Environment Agency, 2020). The emission of gases like CO2, CH4, N2O, HFC and 

SF6 is strongly correlated the Disability adjusted life years (DALY) metric, that represents the 

loss of the equivalent of one year of full health (Gavurova, 2021). As a result of this, the 



increasing number of diseases linked to poor air quality remarks the urgent need for integrated 

solutions not to address only climate change but also to protect public health on a global scale. 

Many businesses have aligned with the global environmental agreements made by committing 

to net-zero targets and undercoming the barriers that are needed to take to make this happen. 

Overtaking these barriers will not be that easy. While the transition would create opportunities, 

sectors with high-emissions products or operations, that generate around the 20 % of the global 

GDP, would face substantial effects on demand, production costs and employment (McKinsey 

& Company, 2022). The logistics sector is clearly involved and must be one of the first movers 

of the carbon neutrality global transition as from the 71.7% percent of the emissions attributed 

to road transportations, 11% are related to light duty trucks and 27.1% to heavy duty trucks as 

seen on Figure 1.1. Carbon neutrality requires fundamental modifications in firms’ internal and 

supply chain operations and the wider business environment (Zhang et al., 2022). 

 

Figure 1: CO₂ emissions from cars in the EU. 

Source: European Environment Agency, "CO2 Emissions from Cars: Facts and Figures (Infographics)," March 22, 

2019, updated February 14, 2023, https://www.eea.europa.eu/highlights/co2-emissions-from-cars-facts 

Innovation could play a critical role in addressing these challenges and advancing sustainable 

practices. The industry 4.0 has introduced technologies that enable firms to enhance their 

operations in relation to sustainability objectives. In the logistics sector, solutions such as route 

optimization, smart freight management and real-time emissions tracking using blockchain are 

transforming traditional transportation and distribution processes. Blockchain-enabled systems, 

for example, provide transparency in carbon emissions across multi-tier supply chains, while 

AI-driven predictive analytics optimize fleet utilization, reducing fuel consumption and costs 

(Lee et al., 2023). These advancements can not only be the correct track to mitigate 

environmental impact but to drive competitiveness and long-term resilience for businesses 

strategically. 

https://www.eea.europa.eu/highlights/co2-emissions-from-cars-facts


1.2 Environmental Sustainability Challenges in Logistics 

The transportations sector’s push towards sustainability brings significant operational 

challenges, especially for the companies that rely on ICEVs. Firms are facing a primary issue 

that lies in transitioning types of freight to drive their daily operations. Green logistics (GL) is 

becoming a way of doing business, but it also represents the next stage in the development of 

the concept of logistics (Larina et al., 2021). The aim of GL is to supply goods and services 

sustainably without hindering the long-run economic performance of the industry (Ibrahim,2 

024). This future phase of transitions involves various substantial changes to the fleet mix, 

introducing electric vehicles (EVs), hybrid vehicles or alternative fuel-powered trucks. The 

process of fleet mix optimization is crucial as firms must balance their operational needs such as 

cost-effectiveness, capacity and efficiency with the adoption of the newer and cleaner 

technologies. From an economical point of view this represents an interesting path as well to 

follow as approximately the 30% of shippers are willing to pay from 10% to 20% more for 

carbon-neutral shipments in the logistics sector, represented on Figure 1.2 (McKinsey & 

Company, 2024). 

 

Figure 2: Willingness to pay for carbon-neutral shipments. 

Source: McKinsey & Company "Decarbonizing Logistics: Charting the Path Ahead," June 19, 2024, 

https://www.mckinsey.com/capabilities/operations/our-insights/decarbonizing-logistics-charting-the-path-ahead 

 

To account some practical examples of successful green logistics, several companies have 

implemented sustainable strategies with notable outcomes: 

• UPS has incorporated hybrid vehicles to its fleet. The company has made a $130 

million investment adding more than 700 vehicles to their natural gas fuelled fleet as 

well as on-site natural gas fuelling stations throughout the US. These vehicles consume 

35% less fuel compared to conventional ones, leading to a 42% reduction in CO2 

emissions annually (UPS, 2024). 

https://www.mckinsey.com/capabilities/operations/our-insights/decarbonizing-logistics-charting-the-path-ahead


• Maersk has partnered with Danone, one of the world's leading food and beverages 

companies to reduce GHG emissions by using Maersk ECO Delivery Ocean. This is a 

product based on reduced emissions fuels such as bio-diesel and bio-methanol, 

produced solely from waste feedstocks. With the application of this program, emissions 

could be reduced by more than 40% compared to conventional fossil fuels (Maersk, 

2024). 

• DHL Group, part of the Deutsche post and leader in the door-to-door delivery industry 

has introduced the GoGreen program, which tracks and calculates the CO2 emissions 

from each shipment. It offers customers the option to offset emissions by paying 3% 

more. In 2022, they offset over 2 million tons of CO2 emissions through GoGreen 

Offsetting and added more than 28,000 electric vehicles to their fleet (DHL, 2024). 

For the logistics companies, one of the major complications is the financial burden of acquiring 

and maintaining greener vehicles (Mohammed & Villegas, 2023). The initial investment to be 

made as well as the alignment with the strategic fit of the companies are a point to take in 

account despite the long-term environmental and economic benefits. In the actual scenario, the 

limits in the availability of specific charging infrastructure, particularly for electric vehicles and 

the supply for alternative fuels introduces another key point to consider when depicting business 

transition to sustainable logistics (Singh, Wen, Palu, & Sachan, 2022). This is why vertical and 

horizontal cooperations between stakeholders from the different stages of the supply chain are 

so important to reach the goal of more efficient operations and higher responsiveness to 

consumer demands (Plazier et al., 2024). 

Fleet mix optimization emerges as a strategy within the logistics sector to deal with both 

operational demands and sustainability goals. A multi-objective framework adoption uprises 

from the need to handle the demand in a cost-efficient way while contributing to long-term 

societal and environmental goals. The strategy takes in account critical decisions, such as 

transitioning to alternative fuels and evaluating investment scenarios while meeting with 

regulatory standards. By using computational methods to determine an optimal fleet mix, 

companies can quantitatively and qualitatively assess truck requirements, building the way to 

the transition toward sustainable logistics. 

  



1.3 Thesis Scope and Structure 

This thesis focuses on determining the optimal fleet mix for a major supermarket company 

operating in Italy (for practical purposes we will name it Ginobili), using operations and 

environmental data provided by the firm and the work previously being done on this topic by 

Poropat (2024). The study examines the introduction of various truck types and fuel alternatives 

to assess which is the best option to align with the company’s environmental and economic 

goals for 2030. With the development of an optimization mathematical model, the aim is to 

provide a recommendation, studying the space of feasible solutions, that minimizes operational 

costs as well as CO2 emissions, taking in account constraints such as truck maintenance, budget 

limits and emissions caps. 

In parallel, diverse scenarios are going to be analysed, including future EU regulations, possible 

exogenous events and the company’s requirements. A fuel price forecasting model will be 

constructed to simulate and anticipate to future cost trends of the considered fuel types. This 

model will be used to support the strategic decision-making process accounting for possible 

market volatility and the assessing long-term planning that is required for Ginobili’s operations. 

The research begins with an exploration of the available literature (Section 2) on fleet mix 

optimization and feasibility, possible exogenous scenarios that could affect the project, fuel 

price modelling techniques and the economic and environmental context within the logistics 

sector. From there, the mathematical optimization model is proceeded to be developed while 

detailing the key decision variables, objectives and constraints (Section 3). After this, the study 

applies results and the framework to Ginobili’s data, generating recommendations to their 

reality and objectives for 2030 (Section 4). With this we get an approach that involves realistic 

data for the decision-making process, the mathematical modelling of the problem and a level of 

stochasticity related to the prediction of future economic scenarios. 

 

 

  



2 Literature Review 

The literature review process provides a foundation for understanding the scenario in which the 

problem is going to be modelled. In this way, the exploration of existing research on fleet 

optimization, sustainability and methods for forecasting fuel prices and emissions can be 

combined with the theoretical and practical advancements already made. Insights are going to 

be studied to guide the development of the models and methodologies applied in this thesis. The 

keywords searched in the main research platforms were fleet management, fleet mix, green 

logistics, sustainable logistics, green vehicle routing problem, multi objective optimization, time 

series forecasting and decarbonization strategies. The searches were done by combining 

keywords with AND, OR and NOT Boolean operators. 

2.1 Sustainability Barriers and Opportunities 

The literature on sustainability barriers and opportunities addresses the substantial challenges of 

green logistics, its impact in modern society and the implemented strategies to drive change. 

This field is broad, as the definition of logistics varies vastly depending on the area of focus. A 

common factor of this field of study is the efficient and effective implementation of complex 

operations for either forward or reverse flow of goods and services to conform customer 

requirements (Ibrahim, 2024).  

However, in the context of supply chain decarbonization, many barriers are identified as: major 

upfront investment cost, lack of awareness, lack of expertise and a resistant mindset (Zhang, 

2022). Despite these challenges, studies indicate that while the initial cost for Carbon Efficient 

Practices (CEP) may be significant, the practices are financially successful on the long-term, 

having a direct impact on firm’s economic performance and product redesign capability 

(Subramanian & Abdulrahman, 2017). 

A growing body of work from management consulting firms highlights how more companies 

are now managing sustainability to improve processes, pursuing growth and adding value not 

just focusing on their reputation alone (McKinsey & Company, 2011). Strategies are being 

developed on how to overcome with the barriers that a green project can pose such as securing 

commercial advantages, achieving execution excellence, establishing ecosystem partnerships 

and solidifying financial strengths (BCG, 2024). In the actual economic scenario, an investment 

of this kind could reflect a high initial cost for a company but as 72% of Europeans are willing 

to pay more for products that are considered environmentally friendly, the barriers could mean 

also a potential business opportunity (Morone et al., 2021). 

There is a shift happening as companies work to meet the sustainability targets as these set to 

comply with global agreements and enhance their value chain. Many companies have their own 



environmental objectives, but sometimes the alignment with their strategy complicates. 

According to Lichtenau et al. (2023), 60% of businesses that have set a target to reduce 

upstream Scope 3 emissions do not have a dedicated strategy to deliver. However, more than 

6,000 companies, representing close to 50 different sectors, had set Science-Based Targets for 

emissions reduction. 

Among the key sustainability challenges in logistics, transportation accounts for a significant 

share of the global carbon output. The companies that seek to decarbonize their supply chains 

must explore the complex trade offs between operational efficiency, cost management and 

environmental responsibility. The choice of fleet composition, vehicle types, fuel sources and 

route optimization become crucial in mitigating emissions while maintaining service levels. 

Emerging technologies such as electric and hydrogen powered vehicles present viable pathways 

for firms to align their fleet strategies with sustainability goals, in spite that some considerations 

have to be made as the investment planning of the new infrastructures such as the charging one 

(Alp, Tan, & Udenio, 2022). 

2.2 Fleet Mix Optimization 

The fleet mix optimization field has been an area of research focused on optimizing routes, 

loading strategies (homogeneous and heterogeneous) and more recently, its adaptation to new 

technologies such as fleet electrification. It aims to determine the minimum cost for a fleet of 

vehicles or vessels of a certain type required to cover a set of routes in a given period of time 

(Silva et al., 2024). These optimization problems and models have been applied across many 

transportation methods that account from sea freight (ships) to land freight (trucks and trains) 

and even buses. 

The optimization of fleet composition in trucking has developed progressively. Early research 

by Powell (1986) introduced a stochastic dynamic programming approach to truckload carrier 

operations, addressing real-time demand fluctuations and uncertainty in freight allocation. This 

work established the need for decision models that account for both operational constraints and 

long-term strategic planning. On the same track, Crainic and Laporte (1997) conducted a review 

of freight transportation models, emphasizing the necessity of integrating fleet sizing, routing, 

and load management to optimize overall efficiency. 

In subsequent years, Wu et al. (2005) developed an integrated approach that linked operational 

decisions, such as demand allocation and empty truck repositioning, with tactical choices, 

including asset procurement and resale. Their linear programming model proved highly 

effective in optimizing fleet utilization across different logistical phases, reinforcing the role of 

structured mathematical techniques in solving complex transportation problems. 



More recent advancements have expanded the scope of fleet mix optimization to incorporate 

managerial priorities and environmental considerations. Sarangi et al. (2023) addressed this shift 

by formulating a multi-objective fleet composition model that balances profitability, cost, and 

service efficiency within distribution networks. Their research introduced two distinct decision-

making frameworks: the Competing method, treating all objectives as equally important, and 

the Compensatory method, which prioritizes synergies between them. 

In the same way, Islam and Gajpal (2021) integrated sustainability concerns into optimization 

models using ant colony algorithms. Their findings indicated that incorporating green vehicles 

alongside traditional fleets led to a 6.9% reduction in carbon emissions, demonstrating the 

feasibility of environmentally conscious fleet management. Meanwhile, Malladi et al. (2022) 

explored electromobility in urban logistics, focusing on the impact of planned versus realized 

driving ranges of electric vehicles (EVs) on fleet composition. Expanding on these perspectives, 

Zhao et al. (2021) introduced a bi-objective programming model for vehicle routing, 

incorporating carbon emissions and charging constraints for both electric and conventional 

vehicles. 

2.3 Operational Optimization Problems 

The literature mostly focuses on the operational advances on fleet planning, particularly through 

the vehicle routing problem (VRP), which optimizes routes for a given set of vehicles. As an 

operational problem, VRP deals with determining the most efficient way to use the available 

fleet. In contrast, fleet mix optimization is a tactical decision-making process that focuses on 

selecting the most suitable combination of vehicles to meet operational needs. Over time, the 

green vehicle routing problem (G-VRP) has emerged as an important area of research. It aims to 

design cost efficient delivery routes while considering the limited driving range of vehicles, its 

loading capacity and fuel constraints. The objective is to minimize overall costs or total travel 

distance while integrating sustainability considerations. To achieve this, vehicles must navigate 

their routes with access to a limited number of refuelling stations (Koç & Karaoglan, 2016). The 

G-VRP becomes particularly relevant when the fleet includes alternative fuel vehicles, aligning 

with the objective of this thesis. 

Most studies in G-VRP considered a single objective, being his distance, cost, emissions or fuel 

consumption. However, to evaluate the possible trade-offs between multiple objectives, some 

other works have incorporated these objectives as constraints controlled by an epsilon such as 

emissions limits, customer requirements or fuel consumption thresholds. This procedure 

requires the use of multi-objective optimization programming to allow an evaluation of possible 

trade-offs between different objectives in the Pareto efficient frontier (Mohammadbagher & 

Torabi, 2022). 



Studies have also focused on optimizing fleets for various types of vehicles, including ships and 

land ones by solving the problem of route optimization, fleet composition and the number 

designated for each vehicle type to provide the input data necessary for the decision-making 

process of the logistics management sector.  

In the context of electric vehicles, that were taken in consideration in innovative scenarios, the 

electric vehicle routing problem (EVRP) has been developed to address the challenges of 

serving customers with a fleet of EVs. These vehicles require trips to charging stations (CS), as 

well as studies on urban infrastructure, such as the availability of CS and the impact of non-

linear charging times on route planning (Wang et al., 2024, Pelletier et al., 2019). 

In sea logistics, dynamic programming routing algorithms have been used to address these 

challenges (Fagerholt, 2006) as well as optimization techniques such as Two-phase Tabu Search 

(Zeng & Yang, 2005) and mixed integer linear programming (Wu et al., 2021) to model real life 

sea freight fleet mix scenarios. Anyways, the studies highlighted the need for more accurate 

decision support models to integrate the fluctuations in the shipping market and the frequent 

mismatches between fleet capacities and demands (Silva et al., 2024).  

In land logistics, available studies on emission models show the significant impact that the 

vehicle type has on fuel consumption (Koç et al., 2014). Demir et al. (2011), has made 

significant contributions in this matter, categorizing the factors influencing fuel consumptions 

into four groups: vehicle, driver and environmental and traffic conditions. Their work also 

introduced various models for fuel consumption and GHG in road transportation, addressing the 

pollution-routing problem (PRP) with an extended adaptive large neighbourhood search 

heuristic (ALNS). This methodology involves two stages: vehicle route planning and a speed 

optimization algorithm that determines the optimal speed for each route segment. 

Further advancements in the literature have focused on multi objective approaches to the PRP. 

Some studies developed a bi-objective PRP that minimized both fuel consumption and driving 

time. Others incorporated the concept of heterogeneous fleets categorizing vehicles into light 

duty, medium duty and heavy duty as each vehicle has its own costs and emission parameters to 

solve the PRP (Koç et al., 2014).  

The literature also explores several a posteriori optimization methods, that most of these match 

with those used in sea logistics. These optimization methods include epsilon-constraint 

methods, weighted-sum approaches and hybrid techniques combined with adaptive large 

neighbourhood search (ALNS). These methods enable researchers to analyse the trade-offs 

along the Pareto frontier effectively. Amiri et al. (2022) reported in their study, integrating the 

epsilon constraint method, that doubling the number of refuelling stations within an area could 



reduce transportations costs by 2% and emissions by 18%. These findings remark the potential 

of integrating operational strategies with environmental objectives in the land logistics field. 

The principal optimization method to study accordingly the Pareto frontier and the trade-offs in 

the decision-making process is the one with the epsilon-constraint-based algorithm (Mavrotas, 

2009). The computational experiments conducted have proved the effectiveness in providing 

valuable insights into sensitivity analyses, particularly regarding the impacts of various 

disruption types and fluctuating unit fuel costs (Elmi et al., 2023). Complementing this, 

Ghasemi et al. (2023) extended the application to the location routing problem (LRP) 

incorporating both cost minimization and reliability maximization, addressing customer time 

windows and probabilistic travel times. In this work they combined epsilon-constraint methods 

with metaheuristic algorithms, such as NSGA-II, used for large dimensionality data, to tackle 

complex supply chain challenges.  

This method displays an interesting approach for the objective pursued in this thesis to 

determine the optimal fleet mix for the major supermarket company, optimizing considering 

both operational and environmental objectives. 

2.4 Forecasting Fuel Prices 

Reliable gasoline demand forecasting is essential for petroleum supply chain planning 

(Mardiana et al., 2020). To forecast fuel prices, the literature uses time series statistical models. 

These are classified into univariate time series models and multivariate time series models. 

Univariate time models use historical price data as its only input, indicating that only past trends 

are indicative of the future price behaviour (He, 2023). The simplest techniques like moving 

averages (MA) and simple exponential smoothing (SES) are the most commonly used by their 

simplicity, but they may struggle to provide reliable predictions in complex scenarios (Lusk, 

2019). Introducing time series work approach, more advanced methods, such as Autoregressive 

Integrated Moving Average (ARIMA) are used due to its accuracy, mathematical soundness and 

flexibility by including the autoregressive (AR) and moving average terms (MA). Additionally, 

the errors in the ARIMA models are smaller than in Simple Exponential Smoothing (SES), 

Double Exponential Smoothing (DES) and Triple Exponential Smoothing (TES) (Zulu et al., 

2022). ARIMA was compared to other methods such as Holt Winters to forecast electricity 

demand (Taylor, 2003) and the conclusion was that ARIMA had a superior performance. 

Oliveira and Oliveira (2018) as well conducted a study of electricity consumption in developed 

countries of 24 months in advance. They made the analysis comparing ARIMA and exponential 

smoothing, where ARIMA provided the most accurate results. 



Multivariate time series models can include trend and seasonality in addition to predictor 

variables while training the model. Several works have compared the performance of ARIMA, 

Holt-Winters, and multivariate regression models, with this generally obtaining better results. In 

the study done by He (2023), a multivariate time series model captured better the variability of 

the historical data to perform future predictions due to its ability to take in account external 

variables such as GDP, CPI and Oil Prices. Gosasang et al. (2011) compared traditional 

techniques with neural networks for a container throughput at a Bangkok Port using GDP, 

exchange rate, inflation and fuel price as explanatory variables. Similarly, Moscoso-Lopez et al. 

(2021) proposed a machine learning based forecasting system to predict cargo flow at the port 

of Algeciras. These models not only improve forecasting accuracy but are as well useful to 

interpret managerial and policy implications, as they introduce connections between petroleum 

prices, natural gas, heating oil and gasoline and other independent macroeconomic variables 

(Chinn et al., 2005). 

As technology is evolving, so are the prediction methods. In some cases, innovative approaches 

were proposed such as the one in Qin et al. (2023) in which crude oil price was forecast with 

machine learning and Google Search data. In this case, the trends provided by Google were 

introduced as exogenous variables and it was concluded that multiple-model methods 

outperform several popular single-model methods in terms of prediction accuracy. The 

comparison between machine learning models was made in Sofianos et al. (2024), evaluating 

the performance of fuel price forecasting models with the introduction of non-linear exogenous 

variables, with models like XGBoost and Random Forest (RF) with RF having a lower Mean 

Absolute Percentage Error (MAPE) of them all. Shaik S. et al. (2019) provided a similar 

exploration process and emphasized the challenge that forecasting crude oil prices and fuels in 

general means due to the high volatility of oil prices.  

Hybrid models have also shown remarkable potential. These models were proposed in the 

following way: one of the selected models forecasts the trend part of the curve while another 

model is trained to forecast the residuals. In Wang (2024), US Gasoline prices were forecasting 

with this method, firstly doing comparisons between the single-models approach actually 

available and then showing the effectiveness of a hybrid Linear-ARIMA model. 

Given that the objective of this thesis requires a stochastic level of input data for the alternative 

Fuel Price Forecast Scenario based on market data for the optimization model, the analysis on 

the literature of the most performing methods is crucial. This review of current methodologies 

provides a foundation for the forecasting of alternative fuel prices in base to historical data and 

exogenous variables. 



2.5 Research Gap 

In spite of the significant advancements that have been made in fleet optimization, sustainability 

and fuel price forecasting, several key gaps remained unaddressed and these form the basis for 

this thesis. While most of the methods take in account the Green Vehicle Routing Problem (G-

VRP), the majority of the studies on fleet mix optimization focus on singular objectives such as 

cost, emissions or distance. There is a lack of exploration into simultaneous objective 

optimization, especially of environmental and operational factors. By adding another level of 

research in the fleet mix optimization topic, there is not much literature available on multi-

objective optimization for truck fleets. Most of the studies have been made for other types of 

freight such as sea or even buses. Moreover, epsilon-constraint method and metaheuristic 

algorithms have not been extensively applied to practical fleet planning scenarios. 

Another challenge is shown in the difficulty to forecast fuel prices due to their high volatility. 

Although models like ARIMA and machine learning approaches have shown robust 

capabilities, they often fail to capture the stochastic nature of the fluctuations involved in this 

type of time series variable. When this analysis is down to alternative fuels, as most of this 

technologies are relatively new, the forecasting process and price trend evaluation on these is 

not much addressed by the literature, that concentrates in the most conventional type of fuels. 

Hybrid models, such as the Linear-ARIMA approach, offer a new potential opportunity but 

remains underutilized in decision-support systems for logistics. Additionally, most of the 

research is done by comparing and evaluating models fitting on historical data and not by doing 

long-term forecasting processes. Many models, such as ARIMA, have great short-term results 

but have to be refined when predicting longer periods of study. 

The literature also highlights an insufficient focus on sustainability in fleet optimization studies. 

While the economic and long-term benefit of Carbon Efficient Practices (CEPs) have been 

documented, there is a lack of support by reliable decision models combining sustainability 

targets and fleet operations. Many companies and papers have set objectives based on CEP but 

not in forecasting and planning models with algorithms or optimization approaches. The 

potential trade-offs between fleet costs and achieving emission-reduction targets has been 

poorly addressed, especially under dynamic and uncertain market conditions, which remarks the 

novelty of the current work to the actual literature. 

 

While recent and innovative forecasting methods such as the one that incorporate new machine 

learning techniques or Google Search trends demonstrate potential, their integration to fleet 

optimization problems remains minimal. The possibilities on the combination of forecasting 

techniques and optimization algorithms have not been fully explored, like it could be using fuel 

price predictions as inputs to optimize fleet compositions. 



It is useful to say that most of the literature is applied to theoretical or historical scenarios, 

which introduces some limitations in its applicability to real-world contexts. The complexities 

that real-world problems incur such as fuel availability, maintenance structures, country’s 

infrastructure, vehicle requirements are often overlooked leaving a gap that is needed to be 

handled. 

This thesis seeks to address the existing gaps by developing a multi-objective optimization 

(MOO) framework that integrates economic and environmental goals for fleet mix decisions. By 

incorporating forecasts of fuel prices with statistical techniques, it aims to bridge that exists 

between forecasting and the theory on MOO and decision-making processes by companies. This 

research explores the trade-offs as well between environmental and economic efficiency 

through scenario analysis and Pareto optimization, evaluating the best set of feasible solutions 

for a major supermarket company. Through this approach, the thesis contributes a real practical 

world application to a sustainable logistics challenge. 

 

  



3 Methodology 

3.1 Problem description 

The problem focuses on optimizing a major supermarket’s fleet of trucks and cooling systems to 

enhance efficiency while aligning with sustainability objectives. The goal is to determine the 

optimal fleet composition required to meet the company’s annual distribution mileage in Italy 

while transitioning toward greener logistics. This optimization must strike a balance between 

operational costs, CO₂ emissions, and energy efficiency, considering both the power generation 

system and the refrigeration requirements necessary for perishable goods. The solution must 

account as well for long-term fleet adaptability, infrastructure readiness for alternative fuels, and 

regulatory compliance to support a sustainable supply chain. 

3.2 Assumptions and hypotheses 

This problem, along with the deterministic data from the supermarket company was provided by 

Poropat (2024) and this thesis is an extension of the analysis conducted in that study. 

The total distance expected to be covered in a year of operations is 70,000,000 km, assuring 

daily delivery of goods from distribution centres to the stores. Another critical aspect for the 

company is the budget, that must be lower than €131,000,000 for its entire fleet. 

In line with the environmental sustainability goals for the business, there is the need to cap 

transportation-related CO₂ emissions at a maximum of 22,400,000 kg and providing a diesel-

free truck fleet for the year 2030. Meeting environmental objectives highlights the need of 

considering alternative fuels to shift the company into a greener structure.  

Striking a balance between cost efficiency with emissions reduction represents a critical step for 

the major supermarket company’s future in turn to their objectives for the year 2030. 

To develop the fleet optimization model, the following assumptions and hypotheses were made: 

• All the trucks have the same load capacity, creating a homogeneous fleet. 

• Transportations costs include variable costs based on fuel prices and fixed costs 

according to vehicle depreciation, insurance, registration, overhead and financial 

charges. 

• Each truck covers a certain quantity of kilometres per year: 

o Diesel: 140,000 km. 

o LNG: 130,000 km. 

o BioLNG: 130,000 km. 

o HVO100: 140,000 km. 

o Electric: 70,000 km. 



o Hydrogen: 100,000 km. 

• CO₂ emissions are directly proportional to the fuel consumed per kilometre per type of 

truck. 

• Cold chain requirements must be maintained throughout the transportation process, with 

daily operations lasting six hours for each cooler. 

• Based on the assumptions of Poropat (2024), the number of annual operating hours for 

the truck refrigeration units is determined based on an average daily usage of 6 hours 

over 316 working days per year, resulting in a total of 1,896 hours per year. 

• It is assumed that there is an adequate infrastructure in Italy for the daily use of the 

vehicles in the fleet. 

3.3 Research Overview 

The research follows a step-by-step approach looking forward to addressing the optimization of 

a sustainable fleet mix under operational, budget and environmental constraints.  

The methodology used includes deterministic components based on data to achieve results that 

model real world uncertainties. The research design is shown in Figure 3.3. 

 

Problem Definition and Scope 

The research begins taking in account the problems of the actual situation in the supermarket 

logistics field: Minimizing fleet costs and reducing CO2 emissions, while addressing specific 

constraints such as emission caps and truck-cooler compatibility. An optimization procedure was 

essential to advance towards the definition of an optimal sustainable fleet mix for a major 

supermarket company based in Italy to meet its 2030 sustainability goals. 

Literature review 

Existing works in fleet optimization, optimization models, stochastic statistical modelling for fuel 

prices in the actual economic and social environment and sustainability reports in the 

transportation sector in relation to emissions were reviewed to contextualize the study and adapt 

the literature to the model to be developed. 

Data Collection and Analysis 

Relevant data on fuel costs, including conventional and alternative ones that were collected from 

industry sources and historical records that would serve as inputs for the model to cover both the 

truck and the cooler fuel. An analysis was conducted in base of the data provided by the major 

supermarket company regarding the deterministic fuel prices, costs and the truck-cooler 

combinations used. 



Optimization Mathematical Model Formulation 

Based on the data available in the literature, an optimization mathematical model utilizing the 

epsilon constraint method was constructed in Python to capture the relationships between decision 

variables, such as truck types and cooling systems, the objectives like minimizing costs and 

emissions and the constraints in the truck-cooler combinations, budget and emissions. The model 

was designed in a two-step approach, first to be trained and validated with historical data of actual 

fuel prices, actual fuel prices provided by the company and a posteriori evaluation incorporating 

data through different quantitative and qualitative scenarios that could be involved in the decision-

making prices. 

Optimization Model Implementation 

The epsilon-constraint method was applied in Python to generate a Pareto-efficient frontier, that 

would balance costs and emissions by means of the epsilon values used in each iteration. In this 

way, it would be possible to take in account the environmental and economic variables to 

determine, in each case and for those cost-emission values, the optimal fleet mix. The parameters 

used were deterministic fuel costs initially provided by a major supermarket company for each 

one of the fuels in 2024. The type of fuels used, to be introduced in the trucks and coolers, were 

both of conventional and alternative sources. After running the model, each solution on the Pareto 

Frontier was evaluated and after an iterative process in analysis if the model met the requirements, 

the configurations that were best aligned for the sustainability goals and the budget cap were 

identified. 

Future Scenarios Analysis 

With the model already being tested with base data, the base case scenarios were developed and 

introduced to the model with criteria based on EU Regulations, company data and 

recommendations and Risk Management perspectives. 

As well, when these were validated, alternative scenarios were developed as an additional analysis 

of potential future cases, in a quantitative and qualitative approach. 

For the quantitative approach, fuel price prediction models were developed to introduce to the 

model an alternative scenario based on market data and statistics. A review of statistical time 

series models from the literature was conducted to identify the solutions being used for this 

purpose and assess the adaptability to the fleet mix optimization problem. These models, trained 

and tested by the historical fuel price data available, were evaluated with performance metrics to 

determine in this way the most accurate method to forecast fuel prices up to the date required to 

be used in the model as an alternative quantitative (Fuel Price Forecasting) scenario. 



For the qualitative approach, exogenous scenarios were constructed around potential supply chain 

challenges, macroeconomic events, and market or technological innovations. These scenarios 

provided new data inputs to the model, enabling an analysis of the optimal fleet mix for the major 

supermarket company under varying economic and operational conditions. This approach ensured 

a comprehensive understanding of how external factors could influence decision-making and fleet 

optimization outcomes. 

Optimization Model Solution Using Epsilon-Constraint Method 

The epsilon-constraint model was employed to solve the problem and provide a solution to the 

fleet mix optimization problem evaluating the possible solutions set. This ensured a systematic 

exploration of the trade-offs required to minimize costs and emissions with fluctuating fuel costs. 

Each solution represented a potential fleet configuration that satisfied all constraints, such as the 

truck-cooler combinations, budget cap and emission limitations. 

Results Analysis and Conclusions 

Demonstration of the viability of the epsilon-constraint method to meet cost and emission 

objectives under constraints. The Pareto-efficient frontier developed by the Python model enables 

actionable insights to provide recommendations in the selection of fleet mix configurations that 

would align with the 2030 sustainability goals of the supermarket company, including the 

transition to a diesel-free fleet. The analysis reported the importance of balancing conventional 

and alternative fuel sources to achieve long term-cost effectiveness and environmental 

compliance. The base case scenario analysis as well as the possible alternative scenarios in 

changing atmospheres are used to provide data for the company to make a decision. 



 

Figure 4: Methodology workflow 

3.4 Conceptual Framework 

Objective of the Conceptual Framework 

The conceptual framework provides a qualitative representation of the sustainable fleet mix 

optimization problem. It defines the elements involved in the study of problem’s objective, 

constraints and relationships between variables. The model is structured around core processes 

and decisions of the approach used in order to optimize fleet and cooling configuration around 

economic, operational and environmental constraints. 

Objectives 

The model has dual objectives defined for this problem regarding determining the optimal fleet 

mix that are: 

• Minimize total operational costs from fuel and cooling sources. 

• Minimize CO₂ emissions from transportation activities. 



Decision variables 

• 𝒙𝒙𝒊𝒊: Number of trucks of type i in the fleet. 

• 𝒚𝒚𝒋𝒋: Number of coolers of type j in the fleet. 

Inputs 

• Truck and cooler data: 

o Maximum yearly kilometres allowed per truck. 

o Truck and cooler types available, including their compatibility. 

• Fuel cost data. 

o Historical and forecasted costs for conventional and alternative fuels, being 

these: 

 Trucks: Diesel, LNG, BioLNG, HVO100, Electric and Hydrogen. 

 Cooler: Diesel, HVO100, Nitrogen and Electric. 

• Budget cap. 

• Emission cap. 

Constraints 

• Distance: The fleet must collectively cover the required mileage to fulfil the distribution 

activities of the company. This corresponds to 70 million kilometres annually in the 

case study. 

• Truck-cooler compatibility: 

Coolers Trucks 

Diesel LNG 

HVO100 HVO100, BioLNG 

Nitrogen BioLNG 

Electric Hydrogen, BioLNG 

Table 1: Truck-cooler compatibility 

  



3.5 Epsilon-Constraint Method and Model Bases 

The Epsilon-Constraint Method is a technique used for solving multi-objective optimization 

problem (Ji et al., 2018). It optimizes one of the functions up, maximizing or minimizing it 

while treating the other objectives as constraints, bounded by an epsilon. This method generates 

a representative Pareto-frontier set of solutions as different ranges of epsilon values are selected 

in each iteration to build the curve. 

In this type of problem, the decision makers have to seek a solution that is the most preferred by 

them, as it is impossible to satisfy and optimize all of the objectives simultaneously. When 

changing the epsilon values, the whole possible set of solutions is explored, providing a 

comprehensive approach of the trade-offs when there are conflicting objectives (Chircop & 

Zammit-Mangion, 2013). This is why this method is especially useful in situations where the 

decision-makers need to take in account a complete set of alternatives before selecting their 

solution (Mavrotas, 2009). 

Theoretical model 

Mathematically, the method focuses on optimizing one primary objective function 𝑓𝑓1(𝑥𝑥) while 

treating the remaining objectives 𝑓𝑓2(𝑥𝑥),𝑓𝑓3(𝑥𝑥), … , 𝑓𝑓𝑛𝑛(𝑥𝑥) bounded by an epsilon value. 

As shown in Mavrotas (2009): 

 min𝑓𝑓1(𝑥𝑥) , 𝑥𝑥 𝜖𝜖 𝑆𝑆,𝑓𝑓2(𝑥𝑥) ≤ 𝜀𝜀2 ,   … , 𝑓𝑓𝑛𝑛(𝑥𝑥) ≤ 𝜀𝜀𝑝𝑝 (1) 

 

Model application 

To apply this technique to the fleet mix optimization problem, a code in Python was made using 

Pyomo. In this way it was possible to explore the trade-offs between cost minimization and 

emissions reduction in the transport operations of the major supermarket company. The 

economic function, representing the cost of the trucks and coolers is treated as the main 

objective and the environmental function is treated as a constraint bounded with an epsilon. This 

approach involves generating a Pareto frontier by solving the optimization problem, with its 

respective constraints, by bounding its level of emissions per iteration with an epsilon. The 

model integrates data on truck and cooler types, operational distances, costs, emissions and uses 

predicted fuel prices to provide the decision maker a range of solutions to be taken in account. 

  



Objective function 

 min ( � 𝐶𝐶𝐶𝐶𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖 ∗ 𝑘𝑘𝑘𝑘𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

+ � 𝐶𝐶𝐶𝐶𝑗𝑗 ∗ 𝑦𝑦 ∗ 𝑘𝑘𝑘𝑘𝑗𝑗)
𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

 (2) 

 

 

being: 

• 𝐶𝐶𝐶𝐶𝑖𝑖:𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝 𝑘𝑘𝑘𝑘 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖 [ €
𝑘𝑘𝑘𝑘

] 

• 𝑘𝑘𝑘𝑘𝑖𝑖:𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖 

• 𝐶𝐶𝐶𝐶𝑗𝑗:𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝 𝑘𝑘𝑘𝑘 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖 [ €
𝑘𝑘𝑘𝑘

] 

• 𝑘𝑘𝑘𝑘𝑗𝑗:𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖 

• 𝑥𝑥𝑖𝑖:𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖 

• 𝑦𝑦𝑗𝑗:𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑗𝑗 

Constraints 

Emissions constraint: 

 � 𝐸𝐸𝐸𝐸𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖 ∗ 𝑘𝑘𝑘𝑘𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

+ � 𝐸𝐸𝐸𝐸𝑗𝑗 ∗ 𝑥𝑥𝑗𝑗 ∗ 𝑘𝑘𝑘𝑘𝑗𝑗
𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

≤ 𝜀𝜀 

 

(3) 

 

being: 

• 𝐸𝐸𝐸𝐸𝑖𝑖:𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 [ €
𝑘𝑘𝑘𝑘

] 

• 𝐸𝐸𝐸𝐸𝑗𝑗:𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑗𝑗 𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 [ €
𝑘𝑘𝑘𝑘

] 

 

Total annual distance constraint: 

 � 𝑥𝑥𝑖𝑖 ∗ 𝑘𝑘𝑘𝑘𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

≥ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (4) 

 

Truck-cooler balance: 

 � 𝑥𝑥𝑖𝑖 =
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

� 𝑦𝑦𝑗𝑗
𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

 

 

(5) 

 

With all this being introduced to the model, a range of epsilon is selected to impose emission 

level restrictions.  

To account the range of epsilon possible to provide feasible solutions for the model, an 

environmental single objective optimization was done, to know the epsilon minimum emissions 



and additionally, to know the maximum epsilon value, an economical single objective 

optimization was done (where the emissions constraint was taken).  

𝜀𝜀 𝜖𝜖 (𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒;  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) (6) 

Single Environmental Objective Function 

 min ( � 𝐸𝐸𝐸𝐸𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖 ∗ 𝑘𝑘𝑘𝑘𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

+ � 𝐸𝐸𝐸𝐸𝑗𝑗 ∗ 𝑥𝑥𝑗𝑗 ∗ 𝑘𝑘𝑘𝑘𝑗𝑗
𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

) (7) 

 

 

Single Economic Objective Function 

 min ( � 𝐶𝐶𝐶𝐶𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖 ∗ 𝑘𝑘𝑘𝑘𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

+ � 𝐶𝐶𝐶𝐶𝑗𝑗 ∗ 𝑦𝑦 ∗ 𝑘𝑘𝑘𝑘𝑗𝑗)
𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

 (2) 

 

Note: In this iteration the emission constraint was deactivated so the model could explore the 

most economically efficient solution. 

With this minimum and maximum epsilon constraint in the iterations, it is possible to explore 

the feasible solution set of the fleet mix. As well, between this minimum and maximum 

emission values, a number of intermediate points was chosen between the emissions’ minimum 

and maximum to construct the optimal Pareto frontier, capturing the trade-off between cost and 

emissions. 

For the actual needs of the problem, for an accurate resolution of the curve and definition of the 

results 50 points were selected between the environmental objective emissions solution and the 

economic objective emissions solution. 

Outputs 

• Optimal fleet mix for each iteration: this determines the number of trucks and the 

number of coolers. 

• Total costs and emissions for each iteration. 

  



3.6 Scenarios 

For all scenarios, the baseline prices used to account for truck and cooler investments were 

derived from data provided by a major supermarket company. These figures were previously 

utilized in Poropat (2024), which this work continues to build upon and expand. 

The pricing structure was designed to detail the costs per kilometre for each truck type. It 

encompasses purchase costs, fuel expenses, maintenance, tire costs, road taxes, insurance, 

depreciation, salaries, tolls, structural costs, and specific fees as provided by the supermarket 

company due to the studies done on their current operations. The base costs can be seen in the 

Appendix 7.1 section. It is important to highlight that, building on Poropat's 2024 work on this 

topic, incentives for hydrogen trucks have now been incorporated into the cost structure, similar 

to how they were previously considered for electric trucks. 

The scenarios are divided into base case and alternative scenarios to examine the factors that 

Ginobili will address under current trends, as well as potential hypothetical situations the 

company may encounter by 2030. 

The study explores three base case scenarios (A, B, and C), each built on a different approach to 

truck-cooler allocation. One method (.1 Scenarios) uses on predetermined truck-cooler pairings 

as stated in section 3.5. The alternative (.2 Scenarios) introduces truck-cooler coefficients as 

decision variables, giving the model the flexibility to determine the most suitable cooler for 

each truck type based on fleet capabilities and technological constraints. While all scenarios 

maintain the core model constraints from Section 3.5, additional constraints are introduced in 

each case to reflect specific operational conditions. 

For the initial scenarios, with a fixed coefficient for the truck-cooler combination a linear 

optimization model is used (Cplex Direct) while a nonlinear one is used (Ipopt) in the cases 

with BioLNG truck-cooler coefficients as decision variables.  

The base case scenarios that were analysed are presented in the table below: 

  



 

Scenario Identification Characteristics Truck-Cooler 
Allocation 

A 
A.1 

EU Guidelines 
Risk Management 

Base 
(Linear) 

A.2 Optimized  
(Non-Linear) 

B 
B.1 

Current fleet composition 
Risk Management 

Base 
(Linear) 

B.2 Optimized 
(Non-Linear) 

C 
C.1 

Current fleet composition 
Company constraints 

Base 
(Linear) 

C.2 Optimized 
(Non-Linear) 

Table 2: Base case scenarios 

For the hypothetical situations that were sighted as possible alternatives, reflected operationally 

by changing the constraints of the model. All alternatives were based on the A.1 scenario, as the 

EU Regulations are a current problem that Ginobili will have to face according to the European 

Comission, 2018.  

The different alternatives are reported in the next table: 

Scenario Group Identification Characteristics Truck Cooler 
Allocation 

Fuel Pricing Forecast Scenario Fuel price 
prediction model 

Base 
(Linear) 

Qualitative 

Supply chain and 
Resource 
Scarcity 

Scenarios 

Scarcity of 
Raw Materials 
for HVO100 

30% HVO100 
fuel price 
increase 

Base 
(Linear) 

Gas Crisis in 
Europe 

200% Diesel, 
LNG and 

Electricity price 
increase 

Base 
(Linear) 

Macroeconomic 
and Policy 
Scenarios 

LNG Ban LNG trucks 
excluded 

Base 
(Linear) 

Renewable 
Content 

Mandates 
Increase 

25% fleet 
minimum 

renewable energy 
content and 7.5% 
minimum biofuel 

share 

Base 
(Linear) 

Table 3: Alternative scenarios 



3.6.1 Base case scenarios 

The base case scenarios serve as the foundation for the fleet mix optimization model analysis, 

integrating EU regulatory guidelines, operational constraints and risk management strategic 

considerations explained in the next sections. These scenarios are designed to reflect a set of 

realistic operational conditions, adapting the constraints stated in section 3.4 according to the 

actual structure and recommendations of the major supermarket company. Different minimum 

and maximum truck numbers for each type are going to be reviewed for each scenario to 

consider diverse approaches. As these conditions to be analysed are the most feasible 

considering the company’s actual situation, they are going to be the basis of the investigation to 

provide information for the decision-making process to attain 2030 sustainability goals. 

3.6.1.1 A Scenarios 

This scenario is designed to target compliance requirements with the EU RED II Targets 

(European Commission, 2018), published in November 2016 and revised in December 2018, 

entering into force in 2023 in a trial period. As an overall target, in RED II, member states must 

require fuel suppliers to supply a minimum of 14% of the energy consumed in road and rail 

transport by 2030 as renewable energy. Additionally, it states that the contribution of advanced 

biofuels and biogas produced from the feedstocks listed in the regulation as a share of final 

consumption of energy in the transport sector shall be at least 0.2 % in 2022, at least 1 % in 

2025 and at least 3.5 % in 2030. This regulation, for what concerns the fleet optimization 

model, introduces a constraint on the minimum truck quantity for certain truck types. 

From a risk management perspective, a maximum share of trucks constraint is introduced, as it 

is excessively risky to have all the trucks of the same type in an environment with varying 

operating conditions. As different trucks have different kilometric range, the constraint is 

written for each truck type not to cover more than the 50% of the total kilometric range 

specified by Ginobili.  

This scenario is proposed in two ways, one with fixed cooler-truck combinations, as specified 

by the company and another version with this coefficients as decision variables to let the model 

choose which would be the optimal cooler to be used for the BioLNG according to emission and 

economic targets in each iteration. As the objective and the emission and budget targets remain 

the same to what explained in section 3.5, the only point that changes are the constraints. 

  



Scenario A.1 

Truck-cooler combination constraints 

• Total Truck-Cooler Balance: 

 
� 𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖∈𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

= � 𝑦𝑦𝑗𝑗

𝑚𝑚

𝑗𝑗∈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

   (5) 

• Diesel cooler constraint: 

 𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 +  𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿 (8) 

• HVO100 cooler constraint: 

 𝑦𝑦𝐻𝐻𝐻𝐻𝐻𝐻100 =  𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻100 + 0.25 ∗ 𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (9) 

• Nitrogen cooler constraint: 

 𝑦𝑦𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 0.5 ∗ 𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (10) 

• Electric cooler constraint: 

 𝑦𝑦𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + 0.25 ∗ 𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (11) 

• Diesel free fleet truck constraint: 

 𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ≤ 0 

 

(12) 

Environmental regulation minimum truck constraints 

• EU RED II Target: At Least 3.5% Advanced Biofuels by 2030 

 
𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ∗ 𝑘𝑘𝑘𝑘𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻100 ∗ 𝑘𝑘𝑘𝑘𝐻𝐻𝐻𝐻𝐻𝐻100 ≥ 0.035 ∗  � (𝑥𝑥𝑖𝑖 ∗ 𝑘𝑘𝑘𝑘𝑖𝑖)

𝑛𝑛

𝑖𝑖∈𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

 
(13) 

• EU RED II Target: At Least 14% Renewables by 2030 

 𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ∗ 𝑘𝑘𝑘𝑘𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻100 ∗ 𝑘𝑘𝑘𝑘𝐻𝐻𝐻𝐻𝐻𝐻100  +  𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ∗ 𝑘𝑘𝑘𝑘𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  + 𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

∗ 𝑘𝑘𝑘𝑘𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ≥ 0.14 ∗  � (𝑥𝑥𝑖𝑖 ∗ 𝑘𝑘𝑘𝑘𝑖𝑖)
𝑛𝑛

𝑖𝑖∈𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

 

 

(14) 

Risk Management maximum truck limit constraints: Limit Each Truck Type to Less Than 

50% of Total Kilometres 

• Total truck kilometre variable definition: 

 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐾𝐾𝐾𝐾 =  � (𝑥𝑥𝑖𝑖 ∗ 𝑘𝑘𝑘𝑘𝑖𝑖)

𝑛𝑛

𝑖𝑖∈𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

 
(15) 

 

  



• Constraints for each truck type: 

 𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∗  𝑘𝑘𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ≤  0.5 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐾𝐾𝐾𝐾 (16) 

 𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿 ∗  𝑘𝑘𝑘𝑘𝐿𝐿𝐿𝐿𝐿𝐿 ≤  0.5 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐾𝐾𝐾𝐾 (17) 

 𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ∗  𝑘𝑘𝑘𝑘𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ≤  0.5 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐾𝐾𝐾𝐾 (18) 

 𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻100 ∗  𝑘𝑘𝑘𝑘𝐻𝐻𝐻𝐻𝐻𝐻100 ≤  0.5 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐾𝐾𝐾𝐾 (19) 

 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ∗  𝑘𝑘𝑘𝑘𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ≤  0.5 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐾𝐾𝐾𝐾 (20) 

 𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ∗ 𝑘𝑘𝑘𝑘𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ≤  0.5 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐾𝐾𝐾𝐾 (21) 

 

Scenario A.2 

In this scenario three additional decision variables are added. These represent the coefficients as 

a percentage of the coolers of Nitrogen, HVO100 and Electric that would be used for BioLNG 

trucks in each case. As each iteration has a different epsilon value, thus, a different 

environmental target, this coefficients will vary, telling the analyst which the optimal cooler 

type is to be used in each case. 

Coefficient variables definition 

 BioLNGHVO100coef ∈ [0,1] (22) 

 BioLNGNitrogencoef ∈ [0,1] (23) 

 BioLNGElectriccoef ∈ [0,1] (24) 

 

Coefficient initial percentage constraint 

 BioLNGHVO100coef + BioLNGNitrogencoef + BioLNGElectriccoef = 1 (25) 

The only constraints that change in respect to scenario A.1 are the ones that state truck-cooler 

combinations for BioLNG trucks. 

• HVO100 cooler constraint: 

 𝑦𝑦𝐻𝐻𝐻𝐻𝐻𝐻100 =  𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻100 + BioLNGHVO100coef ∗ 𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (26) 

• Nitrogen cooler constraint: 

 𝑦𝑦𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = BioLNGNitrogencoef ∗ 𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (27) 

• Electric cooler constraint: 

 𝑦𝑦𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + BioLNGElectriccoef ∗ 𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  (28) 

 

  



B Scenarios 

The current fleet composition of the major supermarket company also represents an important 

information to be accounted for. Ginobili’s existing fleet, categorized by truck type, was 

provided as key information to use in the model. By incorporating the existing truck types in the 

fleet as a constraint on the minimum number of trucks to be selected for specific power 

generation systems, these could be used in the company’s supply chain model and involved in 

the feasible solution set for the fleet mix optimization process. Current owned cooler quantity 

information was not provided by Ginobili, so the number of coolers to be introduced was 

considered by the optimization model. 

In regard to the maximum number of trucks constraint, the perspective was similar to the one 

used in A Scenarios for the company’s risk management. The truck maximum per type was 

limited to less than 50% of the total kilometres ran in the company’s supply chain operations. 

This scenario is as well proposed in two ways, one with fixed cooler-truck combinations, as 

specified by the company (B.1) and another version with this coefficients as decision variables 

to let the model choose which would be the optimal cooler to be used for the BioLNG according 

to emission and economic targets in each iteration (B.2). As the objective function and the 

emission and budget targets remain the same as in Scenarios A, only additional constraints will 

be displayed. 

  



Scenario B.1 

Truck-cooler combination constraints 

• Total Truck-Cooler Balance: 

 
� 𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖∈𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

= � 𝑦𝑦𝑗𝑗

𝑚𝑚

𝑗𝑗∈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 
(5) 

• Diesel cooler constraint: 

 𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 +  𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿 (6) 

• HVO100 cooler constraint: 

 𝑦𝑦𝐻𝐻𝐻𝐻𝐻𝐻100 =  𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻100 + 0.25 ∗ 𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (7) 

• Nitrogen cooler constraint: 

 𝑦𝑦𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 0.5 ∗ 𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (8) 

• Electric cooler constraint: 

 𝑦𝑦𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + 0.25 ∗ 𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (9) 

• Diesel free fleet truck constraint: 

 𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ≤ 0 (10) 

Current fleet composition minimum truck constraints 

 𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ≥  52 (29) 

 𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻100 ≥ 5 (30) 

 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ≥  3 (31) 

Risk Management maximum truck limit constraints: Limit Each Truck Type to Less Than 

50% of Total Kilometres 

• Total truck kilometre variable definition: 

 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐾𝐾𝐾𝐾 =  � (𝑥𝑥𝑖𝑖 ∗ 𝑘𝑘𝑘𝑘𝑖𝑖)

𝑛𝑛

𝑖𝑖∈𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

 
(15) 

• Constraints for each truck type: 

 𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∗  𝑘𝑘𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ≤  0.5 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐾𝐾𝐾𝐾 (16) 

 𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿 ∗  𝑘𝑘𝑘𝑘𝐿𝐿𝐿𝐿𝐿𝐿 ≤  0.5 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐾𝐾𝐾𝐾 (17) 

 𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ∗  𝑘𝑘𝑘𝑘𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ≤  0.5 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐾𝐾𝐾𝐾 (18) 

 𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻100 ∗  𝑘𝑘𝑘𝑘𝐻𝐻𝐻𝐻𝐻𝐻100 ≤  0.5 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐾𝐾𝐾𝐾 (19) 

 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ∗  𝑘𝑘𝑘𝑘𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ≤  0.5 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐾𝐾𝐾𝐾 (20) 

 𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ∗ 𝑘𝑘𝑘𝑘𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ≤  0.5 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐾𝐾𝐾𝐾 (21) 

 



Scenario B.2 

This scenario mirrors Scenario A.2 as three decision variables are added. These represent the 

coefficients as a percentage of the coolers of Nitrogen, HVO100 and Electric that would be used 

for BioLNG trucks in each case. As each iteration has a different epsilon value, thus, a different 

environmental target, this coefficients will vary, telling the analyst which the optimal cooler 

type is to be used in each case. 

Coefficient variables definition 

 BioLNGHVO100coef ∈ [0,1] (22) 

 BioLNGNitrogencoef ∈ [0,1] (23) 

 BioLNGElectriccoef ∈ [0,1] (24) 

Coefficient initial percentage constraint 

 BioLNGHVO100coef + BioLNGNitrogencoef + BioLNGElectriccoef = 1 (25) 

 

The only constraints that change in respect to scenario A.1 are the ones that state truck-cooler 

combinations for BioLNG trucks. 

• HVO100 cooler constraint: 

 𝑦𝑦𝐻𝐻𝐻𝐻𝐻𝐻100 =  𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻100 + BioLNGHVO100coef ∗ 𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (26) 

• Nitrogen cooler constraint: 

 𝑦𝑦𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = BioLNGNitrogencoef ∗ 𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (27) 

• Electric cooler constraint: 

 𝑦𝑦𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + BioLNGElectriccoef ∗ 𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  (28) 

 

  



C Scenarios 

These scenarios represent an even more realistic approach than the previous ones. This is 

because it incorporates constraints defined directly by the company’s management. These 

constraints include a minimum number of trucks based on Ginobili’s existing fleet composition, 

ensuring that the current operational capacity is maintained. Additionally, a maximum cap is 

introduced for LNG, BioLNG, HVO100, Electric and Hydrogen trucks, reflecting the 

company’s strategic preferences for these vehicle types, accounting for the maturity of 

technologies and expected infrastructural development for alternative fuels in Italy. 

Similarly to previous scenarios, this scenario is as well proposed in two ways, one with fixed 

cooler-truck combinations (C.1), as specified by the company and another version with this 

coefficients as decision variables to let the model choose which would be the optimal cooler to 

be used for the BioLNG according to emission and economic targets in each iteration (C.2). As 

the objective and the emission and budget targets remain the same, the only point that changes 

are the constraints. 

Scenario C.1 

Truck-cooler combination constraints 

• Total Truck-Cooler Balance: 

 
� 𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖∈𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

= � 𝑦𝑦𝑗𝑗

𝑚𝑚

𝑗𝑗∈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 
(5) 

• Diesel cooler constraint: 

 𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 +  𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿 (6) 

• HVO100 cooler constraint: 

 𝑦𝑦𝐻𝐻𝐻𝐻𝐻𝐻100 =  𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻100 + 0.25 ∗ 𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 

 

(7) 

• Nitrogen cooler constraint: 

 𝑦𝑦𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 0.5 ∗ 𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (8) 

• Electric cooler constraint: 

 𝑦𝑦𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + 0.25 ∗ 𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (9) 

• Diesel free fleet truck constraint: 

 𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ≤ 0 (10) 

Current fleet composition minimum truck constraints 

 𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ≥  52 (29) 



 𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻100 ≥ 5 (30) 

 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ≥  3 (31) 

Company management defined maximum truck constraints 

 𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿 ≤  101 (32) 

 𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ≤  350 (33) 

 𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻100 ≤ 350 (34) 

 𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ≤ 5 (35) 

 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ≤ 26 

 

(36) 

Scenario C.2 

In this scenario three decision variables are added. These represent the coefficients as a 

percentage of the coolers of Nitrogen, HVO100 and Electric that would be used for BioLNG 

trucks in each case. As each iteration has a different epsilon value, thus, a different 

environmental target, this coefficients will vary, telling the analyst which the optimal cooler 

type is to be used in each case. 

Coefficient variables definition 

 BioLNGHVO100coef ∈ [0,1] (22) 

 BioLNGNitrogencoef ∈ [0,1] (23) 

 BioLNGElectriccoef ∈ [0,1] (24) 

Coefficient initial percentage constraint 

 BioLNGHVO100coef + BioLNGNitrogencoef + BioLNGElectriccoef = 1 (25) 

The only constraints that change in respect to scenario A.1 are the ones that state truck-cooler 

combinations for BioLNG trucks. 

• HVO100 cooler constraint: 

 𝑦𝑦𝐻𝐻𝐻𝐻𝐻𝐻100 =  𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻100 + BioLNGHVO100coef ∗ 𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (26) 

• Nitrogen cooler constraint: 

 𝑦𝑦𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = BioLNGNitrogencoef ∗ 𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (27) 

• Electric cooler constraint: 

 𝑦𝑦𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + BioLNGElectriccoef ∗ 𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  (28) 

 



3.6.2 Alternative scenarios 

3.6.2.1 Fuel Price Forecast Scenario 

In this scenario, an alternative approach based on market data is introduced. Using statistical 

econometric models on time series, fuel prices for 2030 were forecasted to be integrated into the 

optimization model as inputs. This allows analysis on how market-based data could influence 

the decision-making process of the major supermarket company, serving as a sensitivity 

analysis within the optimisation method. To achieve this, an analysis of fuel price forecasting 

was done, along with a detailed examination of the specific characteristics and trends of the 

different fuel types. 

Fuel price forecasting model 

To align with the company’s the sustainability goals for 2030, a fuel price forecasting model 

became essential to be developed in order to provide input data for the optimization model to be 

used. This forecasting model ensures the meeting of the defined constraints and objectives. 

Based on the literature analysed, several potential approaches were considered. This includes 

multivariate linear regression models, seasonal ARIMA models, machine learning models and 

hybrid methods that combine trend modelling with a separate time series model for residuals 

(Wang, 2024). These methodologies were evaluated, being trained and tested with the historical 

fuel price data available from 2020 onwards. 

The variable to be explained by the model is: 

𝑧𝑧𝑖𝑖:𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖 (𝐸𝐸𝐸𝐸𝐸𝐸). 

It has to be taken in account that the historical fuel prices in the past years have been influenced 

not just by the COVID-19 pandemic (2020-2022) but also because of the war between Russia-

Ukraine (2022-), the OPEC+ decisions (2020-) and the macroeconomic policies of the 

countries. 

Theorical models analysed 

To develop the fuel price forecasting model, various time series statistical models were analysed 

from the theoretical information available and previous investigation being done on the topic. 

Multivariate linear regression model 

The multivariate linear regression model analysed to capture the fluctuations in the fuel prices 

by using exogenous variables. This type of models is used to study extremely volatile gasoline 

price and to improve the forecasting accuracy. Given that macroeconomic factors such as 

inflation, USD/EUR exchange rates, global crude oil priced and the consumer price index are 



linked to transportation costs (He, 2023), this model was proposed initially to capture these 

dynamics. Since petroleum products are traded around the world in dollars, the exchange rate 

became part of the analysis as this is done particularly in the context of Italy. Integrating 

external factors to model fuel price in a specific date is a contextually relevant approach for the 

subsequent optimization model. 

To evaluate whether these contextual macroeconomic variables were representative of the fuel 

price historical data available, a correlation analysis was developed (Data: ISTAT, European 

Central Bank, Trading Economics). The analysis was done comparing initially the Diesel price, 

which is the most used type of fuel used in logistics operations. 

 

 

Figure 5: Correlation analysis 

After conducting the correlation matrix analysis, it is possible to state that there is a very strong 

positive correlation with the Brent Oil spot price and a very strong negative correlation with the 

USD/EUR exchange rate.  

When assessing multivariate linear regression models, there is the need to execute the Variance 

Inflation Factor (VIF) to measure the severity of multicollinearity in the analysis. 

VIF ≥ 10 states for severe multicollinearity, indicating that the variable might be redundant or 

problematic in the model. 

Variable VIF 

Brent Spot Price 2.11 

Inflation 309.6 

USD/EUR 2.53 

IPC 308.13 

Table 4: First iteration’s variance inflation factor 



From the results presented in Table 4, it could be seen that Inflation and IPC are strongly 

correlated with one or more variables in the model. One of these variables might be redundant 

or problematic, so the decision was to proceed taking out the IPC from the analysis. As IPC is a 

direct indicator of inflation and run another VIF. 

Variable VIF 

Brent Spot Price 2.02 

Inflation 1.84 

USD/EUR 2.45 

Table 5: Second iteration’s variance inflation factor 

After taking out IPC from the analysis, there is no sign of severe multicollinearity, and the 

multivariate linear regression model is constructed. 

As highlighted in the literature, fuel price time series often exhibit seasonal patterns. To capture 

this seasonality in the analysis, it was incorporated into the model by introducing monthly 

dummy variables, adding them alongside the previously seen contextual variables (He., 2023). 

The seasonality, trend and residual analysis of the Diesel Price historical data from 2020 

onwards can be seen on Figure 6. 

 

Figure 6: Trend, seasonality and residuals of the Diesel Price historical data 

The resulting multivariate linear regression curve is the following: 

𝑍𝑍 = 𝛽𝛽0 + 𝛽𝛽1 ∗ 𝑡𝑡 + Σ𝑆𝑆𝑗𝑗 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 + 𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 + 𝜀𝜀 

Explanation of terms: 

• 𝑍𝑍𝑖𝑖:𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖 (𝐸𝐸𝐸𝐸𝐸𝐸) 

• 𝛽𝛽0: 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧. 

• 𝛽𝛽1 ∗ 𝑡𝑡:𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 

• Σ𝑆𝑆𝑗𝑗: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑠𝑠 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦. 



• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂, 𝐼𝐼𝐼𝐼𝐼𝐼,𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈:𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣. 

SARIMAX 

To improve the prediction accuracy of fuel prices introducing seasonality terms, due to the time-

dependent nature of fuel prices, the SARIMAX (Seasonal Autoregressive Integrated Moving 

Average), an extension of the ARIMA model, was considered. This model, differently from the 

previous described one, focuses on the temporal structure of the data, capturing trend and 

seasonality patterns (Ntare, 2023). 

The general ARIMA model is defined by three primary components: autoregressive (AR), 

differencing (I), and moving average (MA) as shown in the formula ARIMA (p,d,q): 

 𝑧𝑧𝑡𝑡 =  𝛿𝛿 + 𝜙𝜙1𝑧𝑧𝑡𝑡−1 + 𝜙𝜙2𝑧𝑧𝑡𝑡−2 + ⋯+ 𝜙𝜙𝑝𝑝𝑧𝑧𝑡𝑡−𝑝𝑝 + 𝛼𝛼𝑡𝑡 − 𝜃𝜃1𝛼𝛼𝑡𝑡−1 −⋯− 𝜃𝜃𝑞𝑞𝛼𝛼𝑡𝑡−𝑞𝑞 

 

(36) 

where 𝑧𝑧𝑡𝑡 is level of differencing of the time series, the constant is notated by δ, while φ is an 

autoregressive operator, a is a random shock corresponding to time period t, and θ is a moving 

average operator (Permanasari et al., 2013). 

The Seasonal ARIMA (SARIMAX) (𝑝𝑝,𝑑𝑑, 𝑞𝑞) ∗ (𝑃𝑃,𝐷𝐷,𝑄𝑄)𝑠𝑠 is then composed of six primary 

terms: 

p: Captures the relationship between the observation and a number of lagged observations in the 

dataset, explaining how the lagged values of fuel prices can predict future values. 

d: Introduces the technique of differencing the data, subtracting the previous value from the 

current one, to transform it into a stationary series. 

q: This is the moving average term, that models the relationship between the observation and 

the residual errors from lagged observations. 

P, D, Q: Seasonal components that represent the same concepts as p, d, and q, but specifically 

for seasonal patterns in the data. 

XGBoost 

As seen in the literature, XGBoost was used as one of the possible machine learning approaches 

to model time series. It is an advanced supervised technique in which there are n decision trees 

and iteratively, each new tree is iteratively refined using a gradient-based algorithm. As this 

process continues, each tree considers the residual errors of the previous one until the most 

accurate result is produced. The objective function of XGBoost consists of training loss and a 

regularization term (Yang et al., 2023). 



 
𝐿𝐿(𝑡𝑡) = �𝑙𝑙(𝑏𝑏𝑖𝑖,

𝑚𝑚

𝑖𝑖=1

 𝑏𝑏𝑖𝑖∗) + �𝜔𝜔(𝑓𝑓𝑡𝑡

𝑇𝑇

𝑡𝑡=1

) 
 

(37) 

 

• ∑ 𝑙𝑙(𝑏𝑏𝑖𝑖,𝑚𝑚
𝑖𝑖=1  𝑏𝑏𝑖𝑖∗) 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. 

• ∑ 𝜔𝜔(𝑓𝑓𝑡𝑡𝑇𝑇
𝑡𝑡=1 ) 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.  

This leads to the result of the model in the equation below, that is the sum of all the output 

values of the trees produced: 

 
𝑏𝑏 = �𝑓𝑓𝑡𝑡(𝑣𝑣𝑖𝑖)

𝑇𝑇

𝑡𝑡=1

 
 

(38) 

Hybrid Models 

To combine the strength of different predictive time series techniques, hybrid modelling is 

proposed. This type of models show often more accuracy than the standard ones (Wang, 2024). 

The first model is applied over the base case and the model added is applied to model the 

residuals between the predicted value from the first model and the historical data. 

Two hybrid models are explored in this analysis: 

• Multivariate linear regression + SARIMAX. 

o This model addresses global trends with the linear regression by means of 

macroeconomic factors and temporal patterns due to SARIMAX.  

• Multivariate linear regression + XGBoost. 

o This combination brings together statistical and machine learning techniques to 

lead with predictive accuracy.  

Linear regression identifies global trends with the macroeconomic factors and 

XGBoost uses gradient-boosting algorithms to model residual errors. 

Model selection and application 

Each of the models proposed was structured and developed in Python. These were trained and 

tested for each fuel to evaluate their performance with the historical data available. Train data 

was selected as prior to 2024 while the test data is defined as from 2024 onwards. 

In the models, the parameters for the SARIMAX model were determined using the auto_arima 

Python library. This library uses the Akaike Information Criterion (AIC) as well in each of the 

iterations evaluating model performance and selecting the parameters that show the lowest AIC 

value as a result. 



Consistent with the literature (He, 2023), each one of the models is ranked based on their Mean 

Absolute Percentage Error (MAPE) and Root Mean Squared Error (RMSE). 

Diesel 

Diesel fuel remains one of the most used energy sources in the logistics industry due to its 

efficiency and availability. The historical prices for diesel fuel from 2017 onward are shown in 

Figure 7 below, obtained from Ministero dello Sviluppo Economico (n.d.). 

 

 

Figure 7: Diesel price historical data 

From 2021 onward, diesel prices presented an upward trend. This was because the global 

economy was recovering from the COVID-19 pandemic and as well geopolitical tensions 

between Russia and Ukraine were emerging. 

The alignment of the time series statistical model in the training step to the test data from 2024 

is shown in Figure 8. Among the models evaluated, it is possible to see that the hybrid Linear + 

SARIMAX model is the one that best follows the historical data of Diesel Prices shown in blue. 

 

Figure 8: Diesel Price model prediction comparison versus Diesel test data 



After analysing visually, the calibration of the model to the historical data, a quantitative 

evaluation was conducted to assess the different model’s predictive accuracy. The MLR + 

SARIMAX achieves the best performance of the four, with the lowest MAPE and RMSE, 

confirming it ability to cover both macroeconomic and seasonal factors. 

Model MAPE (%) RMSE Ranking 

SARIMAX 1.302 0.027 2 

MLR 1.697 0.034 3 

MLR + XGBoost 1.713 0.034 4 

MLR + SARIMAX 1.092 0.025 1 

Table 6: Diesel model accuracy and validation 

When selecting the top-ranked model, the forecast is made up to 2030 generate results to input 

into the optimization model. The projected Diesel price values up to 2030 are be shown in the 

figure below. To account for potential errors in the predictions, one standard deviation of the 

residuals was added to the forecasted Diesel price that is shown represented by the orange-

shaded area above and below the predicted points. 

 
Figure 9: Diesel price prediction up to 2030 

LNG 

Liquified Natural Gas (LNG) has become a key source in the logistics industry. It offers a 

cleaner alternative to the most traditional fossil fuels like diesel. The war and the recent 

geopolitical changes in the European region had a substantial impact in LNG prices, that is why 

for convenience the range of the selected historical data is bigger to evaluate trends and 

seasonality with a better accuracy. 

The historical prices for LNG from 2017 onwards are shown below, obtained from Mercato 

Elettrico (n.d.). 



 
Figure 10: LNG price historical data 

The figure highlights an all-time high in LNG prices during August 2022. This spike could be 

attributed to the geopolitical tensions and sanctions imposed to Russia because of the Russia-

Ukraine war, that disrupted global energy markets. 

After analysing the historical data, the statistical models were trained and fitted with data from 

2017 onward due to the significant price spikes in 2022 because of the war. The availability of 

an extensive data source fulfilled model requirements, as having more data makes the peak price 

less impactful for future price predictions. These were subsequently tested on data from 2024 to 

evaluate their performance. 

 
Figure 11: LNG Price model prediction comparison versus LNG test data 

After analysing visually, the calibration of the model to the historical data, a quantitative 

evaluation was conducted to assess the different model’s predictive accuracy. The MLR + 

SARIMAX achieves the best performance of the four, with the lowest MAPE and RMSE, 

confirming its ability to cover both macroeconomic and seasonal factors. 

 



Model MAPE (%) RMSE Ranking 

SARIMAX 12.901 0.069 2 

MLR 16.076 0.081 4 

MLR + XGBoost 14.914 0.079 3 

MLR + SARIMAX 12.357 0.069 1 

Table 7: LNG model accuracy and validation 

When selecting the top-ranked model, the forecast is made up to 2030 generate results to input 

into the optimization model. The projected LNG price values up to 2030 are be shown in the 

figure below. To account for potential errors in the predictions, one standard deviation of the 

residuals was added to the forecasted LNG price that is shown represented by the orange-shaded 

area above and below the predicted points. 

 
Figure 12: LNG price prediction up to 2030 

BioLNG 

BioLNG is an innovative fuel derived from renewable sources. It is LNG but from a non-fossil 

origin. It is a fuel produces from biogas, developed from the treatment of organic waste flows 

such as agricultural waste, sewage sludge or landfills. This renewable energy source offers a 

carbon-neutral alternative as its production and use can reduce GHG emissions in comparison to 

fossil fuels. 

In the last years, BioLNG has gained attention in the logistics and transportation industries 

because of its high potential to decarbonize supply chain operations. As regulations on the 

environment increase, this fuel type provides an environmentally friendly alternative without 

compromising operational efficiency, as it is even used in heavy-duty trucking and shipping 

operations. Historical development and market adoption of this type of fuel is tied to 

advancements and investments in technology, joined to policy shifts and promotion of 



renewable energy sources. The challenge of increasing the availability of the infrastructure for 

the availability of this fuel remains, but advances are made as years pass by. 

Historical prices for BioLNG from the data available from 2022 onward are presented below, 

retrieved from Agriportance (n.d.) representing its recent market evolution.  

 
Figure 13: BioLNG price historical data 

Figure 13 highlights a price peak during the year 2022, likely driven by the war in Ukraine and 

the world’s geopolitical context. In the next years, as technological advances in production and 

infrastructure improved and market conditions stabilized, prices steadily lowered. 

After analysing the historical data, statistical models were trained and fitted with data from 2022 

onwards to capture trends and seasonality. Model performance was tested using data from 2024 

to look for their predictive accuracy on recent trends. 

 
Figure 14: BioLNG Price model comparison versus BioLNG test data 

After analysing visually, the calibration of the model to the historical data, a quantitative 

evaluation was conducted to assess the different model’s predictive accuracy. The MLR + 

SARIMA achieves the best performance of the four, with the lowest MAPE and RMSE, 

confirming its ability to cover both macroeconomic and seasonal factors. 



Model MAPE (%) RMSE Ranking 

SARIMAX 3.705 0.069 2 

MLR 4.028 0.077 4 

MLR + XGBoost 4.2 0.079 3 

MLR + SARIMAX 3.014 0.055 1 

Table 8: BioLNG model accuracy and validation 

When selecting the top-ranked model, the forecast is made up to 2030 generate results to input 

into the optimization model. The projected BioLNG price values up to 2030 are be shown in the 

figure below. To account for potential errors in the predictions, one standard deviation of the 

residuals was added to the forecasted BioLNG price that is shown represented by the orange-

shaded area above and below the predicted points. 

 

 

Figure 15: BioLNG price prediction up to 2030 

HVO100 

HVO100 is a renewable diesel fuel derived from various vegetable oils or animal fats using a 

hydro-treating process. The process indicated removes oxygen from the raw materials, creating 

compatibility with modern diesel engines and offering GHG reduction (Suarez-Bertoa et al. 

2019). 

In the recent year, this fuel type has gained popularity due to its high performance and strict 

environmental regulations. It provides an efficient alternative for decarbonizing read 

transportation. Currently, the production of HVO100 is largely based on feedstocks such as 

palm oil and other vegetable oils, raising concerns about its sustainability due to the 

environmental and social impacts associated with palm oil cultivation. 

Historical prices for HVO100 are presented in the figure below, retrieved from Vespertool (n.d.) 

showcasing its price evolution from 2021 onwards. 



 

Figure 16: HVO100 price historical data 

 

The graph highlights the impacts of geopolitical and market events on HVO100 pricing such as 

price peaks during the energy crisis in 2022, where the demand for this type of fuel was growing. 

Within the years, this fuel is improving its production capacity and supply chain resilience, 

while stabilizing in prices. 

 

To better understand market behaviour and predict future trends, statistical models were trained 

using historical data from Vespertool (n.d.). The models included SARIMA, MLR, MLR 

combined with XGBoost and MLR combined with SARIMA, with their performance evaluated 

on data from 2024. 

 

 

Figure 17: Model prediction comparison versus HVO100 test data 

  



 

Model MAPE (%) RMSE Ranking 

SARIMA 6.231 0.087 4 

MLR 6.373 0.085 3 

MLR + XGBoost 4.987 0.077 2 

MLR + SARIMA 4.695 0.066 1 

Table 9: HVO100 model accuracy and validation 

As seen on table 9, the best performing model is MLR + ARIMA and therefore it was selected 

for long-term forecasting. The forecast of HVO100 prices up to 2030, represented in the figure 

below, includes an uncertainty band to account for potential errors by incorporating one 

standard deviation of residuals. 

 

Figure 18: HVO100 price prediction up to 2030 

Green Electricity 

As the world moves towards a sustainable future, electricity generation is shifting away from 

fossil fuels and towards renewable sources such as wind, solar and hydropower. This transition 

to green electricity is critical for reducing GHG and achieving energy security. However, as 

demand for electricity demanding products increases, so does its renewable and non-renewable 

sourcing. The variability of its price remains a challenge, as it depends on production capacity, 

city electrification, geopolitical factors and weather conditions. 

In this model, it is important to distinguish between grid electricity (which may still rely on non-

renewable sources) and green electricity, which directly supports sustainability goals for 2030. 

To align with the goals for the major supermarket company, the model incorporates GO 

(Guarantees of Origin) prices into the electricity cost. This approach emphasizes the promotion 

of renewable energy sources like wind, solar, and hydropower in Italy.  



Over a third of the electricity produced in Italy comes from green sources: hydroelectric power 

has always dominated, followed by solar photovoltaic, bioenergy, wind power, and geothermal 

(Enel, 2023). In this country, mountainous regions, particularly in the Alps and the Apennines, 

provide excellent opportunities for hydroelectric plants. The panorama in this aspect is evolving 

as of 2021, 40.91% of the country's electricity comes from renewables, compared to 27.68% in 

2011 (HivePower, 2021). 

For Ginobili, this would represent a new initiative, and the most practical solution lies in 

purchasing both GO certificates and electricity from the grid, thus reinforcing their commitment 

to green energy objectives. 

Historical data on grid electricity prices and GO prices were analysed, as illustrated in Figures 

19 and 20 below. The GO price data was sourced from Gestore Mercati Elettrici (n.d.). This 

data included details such as the type of energy source (wind, solar, hydroelectric), the volume 

available per source, and the corresponding price. To account for the availability and variability 

of different sources, a weighted monthly average price was calculated based on the data 

available from GME and the energy sources available per date. The weighting was based on the 

total volume of electricity produced and the contribution of each energy source on a given date, 

ensuring a comprehensive and accurate representation of GO prices in the model. 

 

Figure 19: Electricity historical price 



 

Figure 20: GO historical price 

The figure illustrates price volatility, with peaks resembling those of LNG during the 2022 

energy crisis when electricity costs surged due to gas supply disruptions and rising demand. 

Stability followed as infrastructure improvements, supply chain adaptability, and market 

adjustments helped reshape the landscape. A similar trend is visible in GO prices, which saw 

significant spikes during the energy shortages caused by the Russia-Ukraine war. 

To forecast electricity prices, statistical models were developed and tested using Gestore 

Mercati Elettrici (n.d.) historical data to capture trends and seasonality. These models include 

SARIMAX, MLR and hybrid models as MLR + XGBoost and MLR + SARIMAX. 

Their performance was evaluated using 2024 data and can be seen in the figure below. 

 
Figure 21: Model prediction comparison versus green electricity test data 

The table below summarized the quantitative evaluation of these models with the MAPE and 

RMSE metrics, with MLR + SARIMAX achieving the best performance. 

  



 

Model MAPE (%) RMSE Ranking 

SARIMAX 7.193 9.079 2 

MLR 12.915 15.445 4 

MLR + XGBoost 12.801 15.443 3 

MLR + SARIMAX 5.826 8.286 1 

Table 10: Green electricity model accuracy and validation 

The prediction made with the model can be seen in the figure below, that captures linear trends 

as well as seasonality patterns. 

 

Figure 22: Electricity + GO historical price 

Hydrogen 

Green hydrogen faces major challenges, especially in transportation due to high costs and safety 

risks. Its low energy density requires intensive compression or liquefaction, making distribution 

inefficient as well as introducing safety concerns (GenHydro, 2023). 

Deciding between in-house production or external sourcing remains uncertain. Hybrid models 

may also develop. As a result, green hydrogen is excluded from quantitative analysis for now, 

given the lack of reliable data needed for a complete evaluation. Studies show that current 

production, transport and storage costs are higher than fossil fuels with carbon capture (The 

Wall Street Journal, 2024). 

To offset costs, financial support is crucial. The European Union funds hydrogen projects 

through the Connecting Europe Facility for Energy, the Innovation Fund, and Horizon Europe 

(EU Hydrogen Observatory, 2023). Research, policy support and subsidies are essential for 

green hydrogen to compete with traditional energy sources. 



3.6.2.2 Qualitative Scenarios 

In a dynamic context, multiple exogenous scenarios could emerge, significantly influencing the 

outcomes of the fleet mix optimization model. These scenarios encompass a wide rage of 

uncertainties, including shifts in resources supply chain, technological advancements, economic 

conditions and regulatory frameworks representing different macroeconomic and policy 

scenarios. 

The inclusion of qualitative scenarios allows for a comprehensive exploration of the potential 

challenges and opportunities that could surge in the world. Exogenous events such as the war 

between Ukraine and Russia and the COVID-19 pandemic showed that external factors 

significantly affect the way of doing business in certain contexts and involve a different process 

of decision-making for the companies. The major supermarket company should also take into 

consideration its ability to adapt to external factors that could happen on the way to 2030 and 

how would these affect their decision to be taken to comply with their sustainability goals. In 

this way, a sensitivity analysis is provided to the model, based on possible real and accountable 

situations in the future. 

Through this analysis, the model not only offers optimized solutions but also equips decision-

makers with a deeper understanding of the contextual drivers that may affect the project 

implementation. These insights are critical for ensuring that the proposed fleet configurations 

remain resilient and aligned with long-term economic, environmental, and operational 

objectives. 

3.6.2.2.1 Supply chain and Resource Scarcity Scenarios 

Global supply chains are highly susceptible to disruptions, with resource scarcity and 

geopolitical instability being critical factors that could significantly impact fuel availability and 

pricing (Rasshyvalov et al., 2024). These scenarios explore how constraints in the supply key of 

raw materials and energy resources could influence the supermarket company’s fleet mix 

optimization set of solutions. 

The scarcity of raw materials, such as those required for the HVO100 production with the palm 

oil export restrictions, exemplify how domestic policies can ripple though global markets (Lin, 

2025). For instance, Indonesia’s brief palm oil export ban in 2022 caused a sharp increase in 

prices, illustrating the potential for such disruption to inflate production costs and create 

reliance on fossil fuels like diesel (Medina, 2022), what would differ from Ginobili’s 

sustainability goals in the fleet mix for 2030. 

In a similar way, the gas crisis in Europe during 2022-2023 showed the volatility of energy 

markets in the face of geopolitical conflicts. Russian gas supply disruptions, compounded by 



EU’s sanctions let to an unprecedented LNG price volatility and cascading effects on electricity 

and diesel prices (Chen et al., 2023). 

Scarcity of Raw Materials for HVO100 

Global production capacity for biogenic fuels is expanding rapidly. By 2025, global HVO 

production is expected to surpass 30 million tonnes, offering a potential reduction in carbon 

emissions of up to 90% compared to fossil diesel (CLAAS, 2023). In the current market trends, 

about 70% of biodiesel is based on vegetable oils (14% rapeseed oil, 23% soybean oil, and 29% 

palm oil) and used cooking oils (25%) (OECD &FAO, 2023). This contextual information 

shows that palm oil is and was the dominant feedstock for HVO production, but this trend could 

shift following the 2023 ban on palm oil in Germany and other EU countries due to concerns 

over deforestation linked to Indonesia and Malaysia. Together, Indonesia and Malaysia account 

for 85% of global palm oil production, making them leaders in biodiesel production (Mai, 

2024). The EU's Renewable Energy Directive, which seeks to reduce the use of palm oil-based 

biofuels, has sparked significant criticism from both Indonesia and Malaysia, with their leaders 

stating the EUDR as “regulatory imperialism” (Mai, 2024). In relation to this, it is possible to 

say that the actual environment around this regulation is tense and could make changes towards 

the future following the complaints from the Asian countries’ leaders. 

It is useful to add as well that a potential rise in the HVO price can be accounted for due to the 

anticipated increase in palm oil prices, driven by Indonesia’s plan to implement a 40% biodiesel 

blending mandate (B40) by 2025. This mandate requires a certain share of diesel fuel, 

particularly in the transportation sector, to be blended with 40% palm oil, replacing the current 

B35 blend (Biofuels International, 2024). This policy is expected to support palm oil prices, 

possibly pushing them 10 to 15 percent higher in early 2025 (Sun & Palma, 2024). 

The tighter supply of palm oil in the EU, combined with Indonesia’s subsidy structure and plans 

to increase blending mandates could result in higher costs for palm oil, which is currently a key 

feedstock for HVO production. 

As a sensitivity analysis to account for this palm-oil resource scarcity as a mean of HVO100 

production, a 30% price increase was introduced in the model for this fuel type, to simulate an 

extreme situation, following the magnitude of the maximum limit amount of the rise of palm-oil 

prices. In this way, the model offers an insight for the major supermarket’s company decision 

making process in order to account with a possible HVO100 price rise in the future years. 

Gas Crisis in Europe 

The gas crisis scenario is a perfect example of how a geopolitical situation as a war can affect 

the fuel prices and therefore the results of the fleet mix optimization process. The European gas 



crisis of 2022-2023 revealed the fragility of energy markets when reliant on unstable supply 

chains. Following significant Russian gas supply disruptions, LNG prices exhibited 

unprecedented volatility, increasing approximately 14-fold from 2019 to 2022, peaking at 

$70/MMBtu in August 2022 (IMF, 2022).  

This price increase was driven by European sanctions on Russia, increased dependence on U.S. 

and Qatari LNG (which accounted for nearly 50% of EU imports in 2023), and insufficient gas 

storage infrastructure (IMF, 2022). Simultaneously, electricity prices in key EU markets rose by 

200-300% due to the region's heavy reliance on natural gas, which represented 20-25% of its 

energy mix (IEA, 2022). 

This volatile context underscores the importance of resilience in energy market decision-

making. For instance, to consider possible geopolitical events as crisis in the model developed, a 

sensitivity adjustment was applied to simulate a 200% increase in LNG and electricity prices as 

price spikes, based in the historical data of what happened in the case of the gas crisis because 

of the Russia-Ukraine war (Chen et al., 2023). This is introduced a posteriori for the epsilon 

constraint model, performed as a sensitivity analysis to provide an attainable solution set in this 

context. 

3.6.2.2.2 Macroeconomic and Policy Scenarios 

Understanding macroeconomic shifts and policy developments is crucial for evaluating fleet 

mix optimization strategies. By analysing historical trends and as well projecting the impact of 

possible future events, key scenarios can be simulated that could affect energy markets and thus 

fuel prices, having an impact in the major supermarket company’s decision-making process. 

These insights provide valuable information for the sensitivity study to assess potential risks and 

opportunities for Ginobili under changing economic and policy scenarios. 

LNG Ban 

The potential for an LNG truck ban in urban areas across certain EU countries in the coming 

years is examined as a possible scenario for the European continent, particularly in light of the 

2030 sustainability goals. Following the removal of diesel vehicles from cities like Paris, 

Madrid, and Athens by 2025 (UNFCCC, 2020) to improve air quality, similar regulations could 

be implemented for LNG trucks as part of a broader transition to more sustainable fuel 

alternatives in the future. This scenario is incorporated as a sensitivity test to assess the model's 

response in the event that LNG trucks are excluded from the optimal fleet mix within the 

feasible solution set. 

 

 



Renewable Content Mandates Increase 

In the A Scenarios, the minimum number of trucks is determined based on the EU RED II 

regulation, which mandates that by 2030, at least 14% of the transport fleet must be powered by 

renewable fuels, with a minimum of 3.5% derived from biofuels. As part of the sensitivity 

evaluation, analysing variations in the optimal fleet mix by adjusting these percentages offers 

valuable insights. Considering that European mandates may be updated or revised in the future, 

this analysis provides a realistic perspective for assessing the viability of the project within the 

context of evolving regulations. 

For this scenario, two new inputs will be used for the model to show an extreme situation of a 

possible revision made in the RED II mandate: the fleet's minimum renewable energy content is 

set at 25% and its minimum biofuel share is set to 7.5%.  



4 Results and Discussion 

The results section illustrates the optimal fleet mix for the major supermarket company, 

depicting the trade-off between costs and emissions that emerges in the decision-making 

process of making an investment of this kind. The company has to fit their sustainability 2030 

goals while covering its operations costs generating a surplus profit margin to justify the 

investment. 

The solution of each scenario (Base and Alternative case scenarios) is visualised through a 

Pareto frontier to visualize the decision process trade-off, a cost and emission graph to show the 

impact across iterations because of the truck and cooler choices and by depicting the truck and 

cooler quantities selected by the model in each case. 

Initial and advanced subcases are detailed in each case, with the initial having fixed truck-cooler 

combinations and, in the advanced subcase, the possible combinations are introduced as 

decision variables, to let the model decide which cooler to select for the truck types that are not 

reliant in one specific fuel technology for their operation. 

The Pareto frontier represents the range of feasible cost and emission values, enabling Ginobili 

to visualize their operational trade-offs. This visualization identifies fleet mix solutions that 

align with both budgetary and emissions constraints. 

  



4.1 Base Case Results 

The results of the evaluation of these scenarios are presented in the Section 7.2 of this thesis. 

4.1.1 A Scenarios 
As mentioned in section 3.5.2, the A scenarios align with the EU RED II directive, which was 

revised in October 2023. This directive requires at least 14% of the fleet to be powered by 

renewable energy and at least 3.5% by biofuels (European Commission, 2018). Additionally, 

these scenarios introduce a risk management approach by setting a maximum truck usage limit, 

ensuring that no single truck accounts for more than 50% of the annual distance. 

Scenario A.1 

The pathway to analysing the initial approach for the regulation-compliant, risk-managed 

scenario revealed the Pareto frontier shown in Figure 23. 

 

Figure 23: Scenario A.1: Eco-efficient Pareto Frontier 

The pareto frontier graph highlighted the trade-off between total emissions in Kg CO2e and the 

total costs in euro for Ginobili’s fleet mix decisions. The curve is developed in the range of 

5,568,548 Kg CO2e as single environmental objective and of 55,025,819 Kg CO2e as the single 

economic objective. The steep decline in the leftmost portion of the curve (with a gradient of -

13 €/kgCO2) indicated that achieving low emissions incurred significantly higher costs, 

reflecting the adoption of expensive low-emission technologies or fuels. As the curve flattened 

in the middle, the cost reduction slowed, suggesting a more balanced trade-off where moderate 

emissions reductions can be achieved without disproportionate increases in cost. Towards the 

right, the curve showed a plainer structure, showing that beyond the 24,640,000 kg CO2e 

emission level (where the gradient passes from -4.13 €/kgCO2 to -0.215€/kgCO2 according to 

the calculations seen in the Appendix 7.2) further increases in emissions yield minimal cost 



savings, likely due to reliance on more cost-efficient but higher-emission options like LNG 

could be. 

A truck-cooler cost and emissions comparison provided valuable insights by visualizing the 

distribution of total costs across each solution set, highlighting the individual contributions of 

both trucks and coolers to the overall expenses. 

 

Figure 24: Scenario A.1: Cost and emissions comparison 

It becomes evident in figure 24 that trucks dominated the cost curve, contributing the majority 

of the expenses. However, when analysing emissions, coolers exhibited a slightly higher relative 

impact compared to their cost contribution, though their overall emissions impact remained 

much lower than that of trucks. 

To evaluate the solution set provided by the epsilon constraint optimization process it is useful 

to examine the figure 25 below, separating the truck quantities between two different bounds: 

Under and over budget. 

 

Figure 25: Scenario A.1: Truck quantities 

In Figure 4.1.3, the initial iterations (up to iteration 30, focused on environmental priorities) 

show a clear emphasis on selecting environmentally friendly alternatives, particularly Hydrogen 

and Electric trucks. During the early iterations, where the emissions cap was set very low, these 

trucks dominated the fleet composition. However, as the emissions cap gradually increased, the 



number of Hydrogen trucks decreased, while the model began to incorporate more BioLNG 

trucks. 

Electric trucks, on the other hand, were consistently chosen by the model up to the 20th 

iteration, corresponding to an emissions cap of 14,000,000. Beyond this point, the model shifted 

its focus, prioritizing BioLNG and HVO100 trucks due to their favourable balance of cost and 

emissions. 

By the 33rd iteration, when the emissions cap exceeded 25,000,000, the model began to favour 

the most cost-efficient option, LNG trucks, while maintaining a steady number of BioLNG 

trucks. At the same time, it progressively reduced the number of HVO100 trucks, eventually 

phasing them out completely.  

In the under-budget part of the curve, Ginobili has the possibility to evaluate the truck quantities 

to be chosen for their project to be established into their economically constrained structure. The 

trade-off relied in a constant quantity of 268 BioLNG trucks and, according to the emissions cap 

desired, a choice between adding a specific number of LNG or HVO100 trucks.  

The graph in figure 26 illustrates the evolution of cooler quantities across iterations, driven by 

the model’s constraints, linking cooler choices to truck types. 

 

Figure 26: Scenario A.1: Cooler quantities 

Electric coolers dominated early iterations (they start in 818 coolers) due to their association 

with Electric and Hydrogen trucks. However, as the model transitioned toward iterations with a 

higher emissions cap and a stronger focus on cost-efficiency, the quantity of Electric coolers 

steadily decreased up to the constant number of 67 coolers.  



HVO100 coolers, represented in the red line, gradually rise, peaking around iteration 30, with 

313 coolers, as they are tied to HVO100 trucks and partially tied to BioLNG trucks, but their 

number declined as the model’s focus shifts to LNG trucks and cost-effective solutions.  

Diesel coolers started to rise around the same iteration number that the HVO100 coolers peaked 

and started to fall. In the model’s greatest economic approach, the number of Diesel coolers had 

its peak in 268 coolers. Nitrogen coolers, remain relatively constant (132 coolers) but limited in 

quantity, reflecting their connection to the BioLNG trucks’ number shown in the previous 

analysis. 

In the budget efficient portion of the graph, the major supermarket company’s choice would be 

selecting a constant number of 132 nitrogen coolers and 67 electric coolers and a decision 

between a number of Diesel and HVO100 coolers. 

Scenario A.2 

This scenario advanced Scenario A.1 by considering the coefficients that represent the 

combinations of different cooler types and BioLNG trucks as decision variables. This 

introduced an additional degree of freedom to the model, allowing for a more advanced 

approach that enabled the model to select the best possible solution in each case using a non-

linear optimization method. 

The pareto frontier of this advanced configuration is shown in the figure 27 below. 

 

Figure 27: Scenario A.2: Pareto Frontier 

The pareto frontier for scenario A.2 demonstrated a different cost-emissions relationship 

compared to the one of scenario A.1. The curve started from an environmental single objective 

on 5,403,631 kgCO2 ended on the economic single objective of 56,049,844 kgCO2. In figure 

4.1.5, the initial steep decline (average gradient -17.43€/kgCO2) is heavier than the one of 



scenario A.1, indicating a stronger focus on minimizing emissions at the expense of higher costs 

for the actual situation. The degree of freedom that having the BioLNG coefficients as decision 

variables involves is that the curve started in both slightly lower cost and emission points. With 

respect to scenario A.1, the steep is similar in the midsection part of the curve. 

At the tail end of both scenarios, the behaviour converged, as both frontiers flattened and 

reached similar low-cost solutions for higher emissions caps. However, A.2 (average gradient    

-0.218 €/kgCO2) higher flexibility allowed the curve to reach lower cost values than the 

previous scenario. While A.1 adopted a more balanced approach with lower gradients in the 

curve, A.2 had higher gradients due to the model’s higher adaptability to the objectives to be 

searched. 

 

Figure 28: Scenario A.2: Cost and emissions comparison 

In figure 28, a cost and emissions breakdown were developed. The results from these graphs 

were very similar to the ones from A.1, with the trucks incurring most of the costs for the 

different fleet solution sets. It can be seen in the emissions graph, that due to the coolers’ 

coefficient adaptability, the coolers represented a relatively lower cost than in A.1 in respect to 

the trucks. 

 

Figure 29: Scenario A.2: Truck quantities 



While evaluating figure 29, the review is very similar to the one of scenario A.1, with almost no 

impact in truck choices with the insertion of the cooler coefficients as decision variables in the 

model. However, the importance of this coefficient-varying alternatives, relied in the cooler 

quantities that the model chooses, that can be seen in the figure 30. 

 

Figure 30: Scenario A.2: Cooler quantities 

As seen in figure 30, in this scenario, the cooler selection under non-linear optimization showed 

a more abrupt progression compared to the linear approach in Scenario A.1. Electric coolers 

started at 834 units and declined steeply to just 47 by iteration 32, while in A.1, they began at 

818 and decreased more gradually to 83.  

HVO100 coolers remained unused until iteration 16 in A.2, then rapidly increased to 513 by 

iteration 33, contrasting with A.1, where they started at 5 units and grew steadily to 310 by the 

same point. Nitrogen coolers were only selected in the final iterations of A.2, reflecting a clear 

preference for HVO100 over Nitrogen, unlike A.1, which consistently integrated 134 Nitrogen 

coolers from iteration 10 onward. Diesel coolers in A.2 were introduced later but peak at the 

same 269 units as A.1, illustrating the non-linear model's flexibility and efficiency focus. The 

breakdown of coolers for BioLNG trucks is depicted in figure 4.1.9. It is observable that the 

model chose optimally Electric coolers for its BioLNG trucks in the environmentally efficient 

segment of the graph while then selected HVO100 and Nitrogen coolers in economically 

efficient solution sets. The freedom of choice of different coolers to connect with BioLNG 

trucks makes Nitrogen coolers appear in the end of the curve of Figure 4.1.8 what shows the 

impact of having a non-linear model in the optimization process. 

  



 

 

Figure 31: Scenario A.2: BioLNG coefficients 

4.1.2 B Scenarios 
B Scenarios, following the approach depicted in section 3.5.1, have a constraint in the minimum 

number of trucks based on the existing fleet available at the supermarket company. The 

maximum number of trucks constraint is defined as in scenario A based on the mileage of the 

trucks following a risk-based approach, not allowing any of the truck types to cover more than 

the 50% of the total yearly distance travelled. 

The trucks available in the major supermarket’s company fleet at the time the information was 

provided are: 

• BioLNG Trucks: 52. 

• HVO100 Trucks: 5. 

• Electric Trucks: 3. 

So, in each of the solution sets provided, the model will consider these trucks as part of the final 

composition. 

  



Scenario B.1 

The pathway to analysing the initial approach for the current fleet, risk-managed scenario 

reveals the Pareto frontier shown in Figure 32, as done in scenario A. 

 

Figure 32: Scenario B.1: Pareto Frontier 

In this case, the initial value of emission starts in 6,527,783 kgCO2 and it ends in 55,227,486 

kgCO2 for the single economic objective. As part of the curve interpretation, the initial steep 

decline zone (with an average gradient of -13.29€/kgCO2), which prioritizes environmental 

objectives, had a slightly lower duration than the one from scenario A.1, indicating that the 

significant cost reductions were achievable over a shorter emission range. This could show this 

case offered a lower selection of cost-saving transitions, likely through a different mix of trucks. 

The single objective environmental optimization (the first point in the pareto frontier) reported 

an emissions value 17.22% higher than the one in scenario A.1, that is seen on Appendix 7.2 

results and that showed the effect on the degree of freedom taken from the A models as using 

the trucks existing in the actual fleet and not having the possibility to select the max quantity of 

eco-efficient trucks. Comparatively, the Scenario A.1 offered consistently lower emissions 

throughout iterations. 

In the mid part of the curve (with an average gradient of -4.1 €/kgCO2) the model did a 

transition between the environmental and the economical approach, particularly doing a trade-

off between the quantity of BioLNG and Electric trucks, that can be seen as well in figure X. 

With respect to A.1 scenario, the model needed one less iteration to arrive to the tail of the 

curve, this means the adjustment is made a faster in term of cost and emissions. 

In the tail of the curve, it is useful to consider, that with an average gradient of -0.212€/kgCO2, 

the model arrived to a higher cost economic single objective solution in respect to A.1 

(127,245,918€ vs. 126,841,320€). This outcome is understandable from the perspective that this 



model had an initial fixed truck number. This reflects an initial cost increase as the model can’t 

use the most efficient solution in each case because of the lower degree of freedom. 

Figure 33: Scenario B.1: Cost and emissions comparison 

As examined in previous scenarios, the trucks take most of the cost and emissions structure, 

shown in figure 33. 

 

Figure 34: Scenario B.1: Truck quantities 

In Scenario B.1, as shown in figure 34, the transition towards alternative fuels is evident, with a 

complete absence of diesel trucks across all iterations. LNG trucks emerged only after iteration 

31, steadily increasing to 269 units by the end, while BioLNG trucks started with 52 and rapidly 

grew to dominate the fleet with 268 units by iteration 19, maintaining this count throughout. 

Electric trucks, initially prominent at 394 units, were gradually phased out, reaching just three 

units by iteration 31. Similarly, hydrogen trucks started strong with 350 units but declined 

steadily, disappearing completely after iteration 20. HVO100 trucks showed a sharp rise, 

peaking at 250 units by iteration 31, but this was followed by a significant drop, leaving only 11 

units by the last iteration. 

The methodology in Scenario B.1 suggests a strategic focus on BioLNG as a primary fuel 

source, with the initial 52 trucks present in the actual fleet, with LNG as a late addition to the 



mix. Electric and hydrogen trucks, despite their early dominance, are deprioritized as iterations 

progress, reflecting a shift away from these technologies. HVO100 trucks also experience a 

temporary surge but were ultimately phased out, indicating their limited role in the long-term 

fleet composition.  

 

Figure 35: Scenario B.1: Cooler quantities 

In figure 35 it is possible to see, as in scenario A.1, the cooler selection began with Electric 

coolers as the dominant choice, starting at 757 units in the Environmental Single Objective (A.1 

started with 818) and steadily decreasing to just 70 units by the later multi-objective stages. 

HVO100 exhibited a sharp upward trend, growing from 18 units in the initial stages to a peak of 

317 units in the final multi-objective stage. Nitrogen coolers usage also increased gradually, 

peaking at 134 units, while Diesel coolers were introduced late in the process, beginning at 9 

units and reaching 269 units under the Economic Single Objective strategy. 

Comparing to Scenario A.1, the trends aligned in general, but there were differences in 

magnitude and pace. For instance, Electric coolers started higher in A.1 at 818 units and 

decreased more gradually to 67 units in the final stages. The transition in HVO100 coolers was 

more abrupt in B.1, where its peak of 317 units was higher than A.1’s peak of 310. This 

indicated a stronger emphasis on biofuels in Scenario B.1. Additionally, Diesel coolers appear 

slightly later in B.1 and grew more aggressively, reaching the same final value of 269 units as in 

A.1 but over a shorter range of optimization steps. The truck-cooler connections previously 

depicted are maintained in the models and this is why the cooler selection only differed in 

magnitude between scenarios, but the trends were similar. 

  



Scenario B.2 

 

Figure 36: Scenario B.2: Pareto Frontier 

In the analysis of scenario B.2 Pareto frontier, visualized in figure 36, the curve began with a 

steep initial decline phase characterized by an average gradient of approximately -

17.83€/kgCO2. This segment is much steeper than the one provided in figure X, for scenario 

B.1 (average gradient -13.29€/kgCO2). This indicates that B.2 offered more significant 

opportunities for cost-effective emission reductions. 

The single-objective environmental optimization points in B.2 achieved an emissions value of 

6,139,589.96 kgCO2, which represented a 5.95% reduction compared to the B.1 equivalent 

value of 6,527,782.91 kgCO2. However, this improvement came at nearly the same cost 

(269,836,470€ in B.2 vs. 269,871,155€ in B.1), demonstrating the efficiency of the additional 

decision variables in achieving environmental objectives without significant cost penalties. 

In the middle section of the curve, B.2 spanned a smaller range of emissions reductions 

compared to B.1, with the same gradient, suggesting a faster adaptation to cost-effective 

solutions as more degrees of freedom are introduced. 

In the tail of the curve, the slope resembled that of B.1. However, the final economic solution in 

B.2 achieved a cost of 126,947,212€ with emissions of 56,091,471.88 kgCO2, compared to 

127,245,918.9€ and 55,227,486.48 kgCO2 in B.1. The difference is primarily attributed to the 

steeper slopes observed in B.2 during the earlier iterations. 



 

Figure 37: Scenario B.2: Cost and emissions comparison 

In figure 37, a cost and emissions breakdown were developed. The results from these graphs 

were very similar to the ones from B.1, with the trucks incurring most of the costs for the 

different fleet solution sets, whereas cooler impact more on the emissions profile. 

 

Figure 38: Truck quantities Scenario B.2 

To perform the truck quantities analysis in this scenario, comparisons were developed between 

the fixed coefficient scenario to give an overview to the effect of adding truck-cooler 

coefficients as decision variables. 

To start, LNG trucks, absent in the initial iterations of both scenarios, emerged earlier in 

Scenario B.2, appearing at iteration 32 compared to iteration 33 in Scenario B.1. They reached 

the same peak of 269 units by the end. BioLNG trucks showed similar initial behaviour in both 

scenarios, starting at 52 units.  

In Scenario B.2, they reach stability at 269 units by iteration 14, two iterations earlier than in 

Scenario B.1, where they stabilized at iteration 16. This earlier stabilization underlines the 

efficiency of Scenario B.2 in allocating resources to the most promising technology sooner. 

Electric trucks displayed a more gradual decline in Scenario B.2, beginning at 393 units and 

phasing out completely by iteration 30. In Scenario B.1, the phase-out occurred at iteration 31. 

Hydrogen trucks disappear entirely by iteration 14 in Scenario B.2, compared to iteration 17 in 



Scenario B.1. For example, at iteration 12, hydrogen trucks counted 49 units in Scenario B.2, 

while in Scenario B.1, they count 111, showing a sharper reduction in Scenario B.2. This earlier 

phase-out further highlights the non-linear optimization's capacity to streamline the adoption of 

alternative fuels by deprioritizing less favourable options in anticipation.  

HVO100 trucks exhibited a distinctive trend in Scenario B.2. Starting with 5 units, they 

incrementally rise to a peak of 248 units at iteration 30, before tapering off. By contrast, 

Scenario B.1 showed a sharp rise to 250 units at iteration 31, followed by a rapid decline. For 

instance, at iteration 25, Scenario B.2 has 163 HVO100 trucks compared to 129 in Scenario B.1, 

suggesting that Scenario B.2 allowed for a more sustained use of this technology, aligning 

operational choices with long-term fleet objectives. This can be attributed to the introduction of 

real-time decision variables as the cooler selection, which enable the model to make cleaner and 

more sustainable fleet transition decisions by dynamically adjusting allocation based on 

evolving constraints. 

 

Figure 39: Cooler quantities Scenario B.2 

Cooler quantities were the most affected by means of this non-linear optimization process. As 

seen in figure 39, HVO100 coolers exhibited distinct trends in both scenarios. In Scenario B.2, 

they gradually increased to a peak of 511 units at iteration 33 before tapering off to just 5 units 

by iteration 52. 

In Scenario B.1, the allocation was more abrupt, stabilizing at 134 units by iteration 18 and 

maintaining this level until a sharp decline after iteration 30. In contrast, Scenario B.2 

introduced nitrogen coolers, which are the most economical option, at higher levels. Starting 

from 0 units, they reached a steady count of 262 units from iteration 50 onward. This outcome, 

driven by the non-linear optimization model, highlighted a cost advantage by selecting nitrogen 

coolers over HVO100, which was previously chosen as the economic alternative. The slight cost 

difference between diesel and nitrogen played a key role in this selection. Meanwhile, Scenario 



B.1 stabilized nitrogen coolers at a lower level of 134 units by iteration 17. At iteration 20, 

Scenario B.2 allocated 604 electric coolers compared to 442 in Scenario B.1, with these coolers 

being prioritized in scenarios that favoured more environmentally sustainable approaches for 

building the BioLNG truck fleet. 

The number of electric coolers gradually declined in both scenarios, though at different rates. 

Scenario B.2 saw a reduction from 795 units at the beginning to only 3 units by iteration 32, 

indicating a more controlled transition. In contrast, Scenario B.1 retained 67 coolers through the 

latest iterations, with this count still present by iteration 31. The decrease in electric coolers 

occurred when the model did not consider them a cost-efficient option under the epsilon 

constraint approach, despite their lower environmental impact. This trend is illustrated in Figure 

40. 

 

Figure 40: Scenario B.2: BioLNG coefficients. 

  



4.1.3 C Scenarios 
These scenarios were designed to incorporate constraints defined directly by the company’s 

management. These constraints included a minimum number of trucks based on Ginobili’s 

existing fleet composition, ensuring that the current operational capacity is maintained. 

Additionally, a maximum cap was introduced for LNG, BioLNG, HVO100 and Electric trucks, 

reflecting the company’s strategic limitations and preferences for these vehicle types. 

The trucks available in the major supermarket’s company fleet at the time the information was 

provided are, involved as minimum truck constraints: 

• BioLNG Trucks: 52. 

• HVO100 Trucks: 5. 

• Electric Trucks: 3. 

The maximum number of trucks per type disposed for some trucks by the company manager 

are: 

• LNG Trucks: 101. 

• BioLNG Trucks: 350. 

• HVO100 Trucks: 350. 

• Electric Trucks: 26. 

• Hydrogen Trucks: 5. 

Scenario C.1  

The Pareto frontier analysis for Scenario C.1 provided valuable insights into the trade-off 

between cost and emissions.  

 

Figure 41: Scenario C.1: Pareto Frontier 

The emission range in this Pareto curve is significantly narrower than in Scenarios A and B. 

This constraint is primarily due to the strict limitations on the maximum number of LNG, 



BioLNG, HVO100, and Electric Trucks that can be selected in Scenario C. Emissions span from 

21,804,410 kgCO₂ in the most environmentally focused solution to a peak of 33,966,526 kgCO₂. 

The rigid constraints imposed on the model result in a more compressed emission range, making 

the data more restricted in comparison. 

Initially, the curve exhibited an average gradient of -4.1 €/kgCO₂, which is considerably lower 

than the starting gradients observed in Scenarios A and B. This suggests that the model is 

operating within a more restrictive emission space. As the curve progresses through its middle 

and final sections, it flattens, reflecting a gradual trade-off between cost and emissions. Over 

time, costs decline from €131,898,112 to €129,760,699, while emissions increase from 

23,510,255 kgCO₂ to 33,966,526 kgCO₂. In this phase, incremental cost savings become less 

pronounced, with an average gradient of -0.4 €/kgCO₂. 

While Scenarios A and B reach emission levels close to 50,000,000 kgCO₂, the constraints 

applied in this case enforce a much tighter solution space. By introducing upper limits on truck 

selections, Ginobili's constraints significantly restrict the model’s ability to explore alternative 

configurations. As a result, the potential for identifying optimal pathways to meet 2030 

environmental targets is considerably reduced. 

 

Figure 42: Scenario C.1: Cost and emissions comparison 

In figure 42, a cost and emissions breakdown were developed. The results from these graphs 

were very similar to the ones from the previous scenarios, with the trucks incurring most of the 

costs for the different fleet solution sets. 

Continuing the analysis, as seen in figure 43, it is possible to evaluate the model’s optimal fleet 

mix decision with the constraints provided by Ginobili. 



 

Figure 43: Scenario C.1: Truck quantities 

In the early iterations, the model prioritized environmental goals, leading to a fleet composed 

mainly of BioLNG and HVO100 trucks, along with a few electric and hydrogen trucks. As the 

optimization continued, adjustments reflected a shift toward balancing emissions and cost while 

maintaining BioLNG Trucks. Hydrogen trucks were quickly phased out, likely due to their high 

costs despite their low emissions. At the same time, HVO100 trucks increased, peaking at 174 

units, indicating the model saw them as a viable middle ground between sustainability and 

affordability. 

A turning point came around iteration 23, when LNG trucks started to appear. This marked a 

move toward more cost-efficient solutions, as LNG offers a compromise between operational 

feasibility and emissions reduction. By the final iterations, the model had completely eliminated 

hydrogen trucks, while LNG trucks grew steadily, reaching 100 units in the most cost-driven 

solution. HVO100 trucks declined, dropping to 82 units, signalling the increasing preference for 

more economical options. 

The results suggest that initial environmental selections prioritized technologies with lower 

carbon footprints, but high costs or infrastructure constraints led to their reduction as cost 

efficiency became a bigger factor. Hydrogen trucks, despite their emissions benefits, were likely 

too expensive or impractical, while BioLNG remained stable throughout, likely due to its 

balance of sustainability and cost. 



 

Figure 44: Scenario C.1: Cooler quantities 

The evolution of cooler allocation in Scenario C.1 reflects a gradual shift from environmentally 

driven choices to cost-effective solutions. When emissions were the main concern, Electric 

coolers dominated, starting strong at 117 units. HVO100 coolers followed closely with 248 

units, while Nitrogen coolers held steady at 174 units. It is useful to say that as the BioLNG 

truck quantity stayed still, the cooler selection for the technologically available types for the 

BioLNG truck remained stable as well through the iterations. Initially, Diesel coolers were 

completely absent, reinforcing the initial preference for lower-emission technologies. 

As the iterations progressed and economic factors began to carry more weight, Electric coolers 

saw a steady decline. By iteration 3, their numbers had dropped to 103 units, and within a few 

more steps, they settled at 90 units, where they remained largely unchanged. Meanwhile, 

HVO100 coolers briefly increased, reaching a peak of 261 units, before gradually losing 

ground. Nitrogen coolers, in contrast, remained a constant presence at 174 units, with only 

minor fluctuations. 

Around iteration 12, a clear shift took place and Diesel coolers entered the mix. By iteration 30, 

their presence had grown to 50 units, signalling a move toward more cost-effective alternatives. 

Electric coolers continued their downward trend, while HVO100 units also started to decline, 

slipping from 256 to 215 units. 

In the later stages, when economic efficiency became the priority, the fleet composition changed 

significantly. Diesel coolers surged, reaching 100 units in the final economic single-objective 

solution. At the same time, HVO100 coolers dropped to 169 units, and Electric coolers, once the 

clear favourite in early iterations, dwindled to just 91 units. Throughout the entire process, 

Nitrogen coolers remained strikingly stable, holding at 174 units, reinforcing their role as a 

reliable, balanced option, selected because of being part of BioLNG truck composition. 

 



Scenario C.2 

As part of the advanced scenario, that relied on setting the BioLNG cooler-truck coefficients as 

decision variables, the analysis of the pareto frontier was performed. 

 

Figure 45: Scenario C.2: Pareto Frontier 

As shown in Scenario C.1, the emissions range for Scenario C.2 is also significantly more 

constrained than those of Scenarios A and B. In this case, emissions vary between 19,143,040 

kgCO2 and 33,966,526 kgCO2. This confirms that the non-linear model, once again, provides 

better solutions at both extremes compared to Scenario C.1, making it more optimized. 

The initial section of the Pareto frontier had an average gradient of -4.1 €/kgCO2, similar to 

Scenario C.1. The limited number of points in this region highlights the model’s difficulty in 

finding environmentally optimized solutions, as the cost difference between iterations 1 and 5 is 

nearly €3 million. Given the minimal changes between iterations, this is a substantial amount in 

the context of this problem as the normal change amount between iterations remains under 

€50,000. 

As the curve transitions through its middle and final sections, cost reductions slow down, with 

the gradient softening to -0.212 €/kgCO2. Costs decreased from €131,966,704 to €130,283,815, 

while emissions rose from 22,244,808 kgCO2 to 30,037,524 kgCO2. Toward the end, the curve 

stabilized, showing a steady decline toward the economically optimized solutions. Observing 

the curve’s behaviour, it is evident that the model struggles more to optimize for the 

environmentally preferred solution than for the economic optimum. This is expected due to the 

constraints imposed in this scenario. 



 

Figure 46: Scenario C.2: Cost and emissions comparison 

As seen on previous scenarios, the trend kept the same, with the cooler costs and emissions 

being very low compared to the ones of trucks. 

To continue the analysis in this non-linear optimization scenario, the truck quantities study is 

performed in the figure 47 below. 

 

Figure 47: Scenario C.2: Truck quantities 

As this is a non-linear optimized scenario with respect to C.1, it is notable to spot the key 

distinctions in the model truck selection. At first, the distinction is in the rate of LNG truck 

adoption. In C.1, LNG trucks appeared earlier at iteration 5 and steadily grew to 100 units by 

the final iteration. In C.2, LNG trucks only appeared at iteration 14 and then increased at a much 

faster rate, reaching 101 units by the last iteration. This suggests that C.2 delayed the 

introduction of LNG but ultimately committed to it more strongly in the cost-driven phase. 

Another notable difference is how HVO100 trucks declined. In C.1, they peaked slightly higher 

at 174 units and started decreasing earlier, reaching 82 units by the final iteration. In contrast, in 

C.2, HVO100 trucks peaked at 173 but held that level for longer, only declining to 80 units at 

the end. This indicates that C.2 sustained its reliance on HVO100 for a longer period before a 

sharper reduction in favour of LNG. 



 

Figure 48: Scenario C.2: Cooler quantities 

Scenario C.2 demonstrates a clear shift in cooler optimization, particularly in its approach to 

BioLNG truck refrigeration. Unlike C.1, where nitrogen-cooled systems were consistently used 

alongside electric and HVO100 coolers, C.2 initially relied mostly on HVO100 coolers and an 

initial quantity of electric coolers, phasing out nitrogen until iteration 48. This suggests a 

strategic delay in integrating nitrogen-cooled units, likely to maximize efficiency. HVO100 

cooler use increased significantly in C.2, peaking at 523 units before gradually decreasing, 

while electric coolers saw a sharp decline from 381 to just 3 units. This indicates a more 

aggressive transition toward HVO100-cooled trucks before reintroducing nitrogen coolers at the 

later stages of optimization. 

In contrast, C.1 maintained a more balanced distribution of nitrogen, electric, and HVO100 

coolers throughout, with nitrogen units consistently present in all iterations. The nitrogen-cooled 

units remained stable at 174 for most of the iterations, whereas in C.2, nitrogen cooling only 

appeared in iteration 48, growing rapidly to 350 units by the final stage. This suggests that C.2 

optimized the use of nitrogen-based cooling specifically for BioLNG trucks at the final stage, 

whereas C.1 relied on a constant nitrogen presence throughout. Additionally, C.2 showed a 

sharper increase in HVO100 cooler utilization, surpassing C.1's more gradual shifts. 

The choices performed by the non-linear model in regard to the coefficient used as decision 

variables are reported below in figure 49. 



 

Figure 49: Scenario C.2: BioLNG coefficients 

4.2 Combined Results 

To compare the different scenarios from both cost and emissions perspectives, the curves were 

overlaid on various graphs. Initially, it was useful to examine their Pareto frontiers, highlighting 

the solution sets selected by the model in each case. This approach revealed the trade-offs, 

slopes, and most efficient truck-cooler configurations. Subsequently, a detailed breakdown of 

costs and emissions was provided for each scenario and the graph with the Pareto Frontiers of 

the base scenarios for their comparison. 

  Best Environmental Best Economic 
Scenario Cost (€) Emissions (kgCO2) Cost (€) Emissions (kgCO2) 

A.1 276,838,224 5,568,548 126,841,321 55,025,819 
A.2 277,041,285 5,403,631 126,532,096 56,049,844 
B.1 269,871,155 6,527,783 127,245,919 55,227,486 
B.2 269,836,470 6,139,590 126,947,212 56,091,472 
C.1 135,594,775 21,804,410 129,760,699 33,966,526 
C.2 136,248,191 19,143,040 129,370,041 35,344,079 

Table 11: Comparison of Base Scenarios Tail Solutions 

 



 

Figure 50: Comparison of Pareto Frontiers across Scenarios 

The Pareto analysis in Figure 4.2.1 illustrates the cost-emission trade-offs for different fleet 

scenarios, highlighting key insights for adapting Ginobili’s operations to 2030 sustainability 

goals. Each scenario follows a distinct pattern, showing how emissions increase as costs 

decrease, but the degree of this trade-off varies across the A, B, and C series. Understanding 

these differences is essential for logistics managers aiming to balance economic and 

environmental priorities. 

The A-series offers the most stable and efficient solutions. Scenario A.1 shows emissions 

ranging from 5,568,548 kg CO2e to 55,025,819 kg CO2e, with costs decreasing from €276.8 

million to €126.8 million. A.2 follows a similar trend, starting at 5,403,631 kg CO2e and 

reaching 56,049,844 kg CO2e while costs drop from €277.0 million to €126.5 million. The 

results suggest that A-series scenarios allow for an optimal cost-emission balance while 

complying with RED II regulations. A.2, in particular, emerges as the most effective 

configuration, delivering the lowest costs and emissions due to its lack of operational 

constraints. 

The B-series follows a similar trajectory but under additional constraints, requiring a minimum 

number of trucks from the existing fleet. While cost and emission values remain close to those 

in the A-series, these limitations reduce optimization flexibility. The presence of pre-existing 

fleet requirements makes B-series solutions slightly less efficient, yet still viable for companies 

needing to integrate current assets into their transition plans. From the evidence shown in the 

table, in the case of emissions in the most environmental solution, the A-Scenarios outperform 

B-Scenarios on 17.2% while only a 0.3% on cost. This shows that the operational constraint that 

B-Scenarios face affects more to the most environmental solutions, as the fleet mix is set to 

have a set of base trucks even before the optimization process started. In the case of A-



Scenarios, the degree of freedom the model has on operational causes, enhances better 

environmental results. 

C-series scenarios present a different challenge, as the model operates within a much smaller set 

of feasible solutions. The initial emissions range is significantly higher, spanning from nearly 

20,000,000 kg CO2e to 35,000,000 kg CO2e. Unlike the A and B scenarios, the C-series 

struggles to offer a broad range of cost-effective solutions. Budget constraints limit investment 

in cleaner technologies, and operational restrictions, such as the cap on 26 electric and 5 

hydrogen trucks, prevent further environmental optimization. While some cost advantages 

appear in certain ranges, the trade-off is a smaller fleet, constrained by strategic company 

decisions rather than pure optimization potential. 

At the extreme points of the Pareto front, logistics managers must consider the implications of 

these trade-offs. Lower-cost solutions tend to come with high emissions, posing challenges for 

sustainability commitments, while the most environmentally friendly setups require substantial 

financial investment. The slopes of the Pareto curves quantify how much cost must be sacrificed 

for each unit of emissions reduction. The A-series represents a much steeper decline in the 

initial part of the curve, which evidences the facility of this model to search for environmentally 

optimized solutions. 

Examining the limits of each scenario helps define realistic strategies. The A-series presents an 

optimal benchmark, offering maximum efficiency under regulatory guidelines and a higher 

degree of freedom. The B-series provides a practical middle ground, maintaining a balance 

between compliance and real-world operational constraints. It is known that the company would 

clearly want to use the actual fleet of truck it has in its operations, so for the development of a 

2030 environmental transition, in most of the cases, to be into budget, they would make use of 

the trucks that are already part of the fleet. The C-series, despite some cost advantages, remains 

limited by structural restrictions, making it less flexible for long-term planning. Logistics 

managers must weigh these findings carefully, ensuring that strategic decisions align with both 

budget constraints and sustainability goals. 

  



4.3 Alternative Scenario Results 

The results of the analysis performed in each of the scenarios is shown in section 7.4 of this 
work. 

4.3.1 Fuel Pricing Forecast Scenario 

Based on the time-series analysis presented in Section 3.5.2.1, various fuel price prediction 

models were developed to forecast prices for 2030. These predictions were then integrated into 

the truck cost structure provided by the supermarket company to calculate the marginal costs per 

truck. The resulting values, detailed in Section 7.3 of the Appendix, served as inputs for price 

adjustments in Scenario A. This is part of a sensitivity analysis, for Ginobili to have the 

possibility to see the feasible solution sets considering potential prices for 2030, following a 

quantitative approach.  

Comparisons will focus on the A.1 scenario as it is the base scenario, aligned with future EU 

RED II regulations and adopting a risk management perspective. The comparison maintains the 

same model structure and constraints but substitutes the base pricing structure outlined in 

Appendix 7.1 with the updated prices from the tables in Section 7.3. This approach ensures an 

evaluation of the impact of the predicted fuel prices on the scenario. 

 

Figure 51: Fuel Pricing Forecast Scenario: Comparison of Pareto Frontiers 

The cost reductions predicted by the fuel price models, based on historical trends and time-

series analysis, result in a decrease in costs along the Pareto Frontier. The Scenario A.1 curve, 

shown in blue, followed a similar slope to the red dotted line of the Fuel Price Forecast Scenario 

up to 13,000,000 kg CO2e. Beyond this point, the red curve became significantly steeper. This 

indicated that the new costs provide greater reductions per kg of CO2e emitted, presenting a 

positive outlook for achieving the company’s 2030 goals. At the far end of the curve, cost 

differences reached up to €2.5 million, reinforcing this optimistic perspective. If costs continue 

to follow historical trends, the project could prove viable for the supermarket company, 



supporting fleet mix decisions that comply with EU RED II regulations while maintaining a risk 

management approach. As well, the tail of the blue curve showed a steeper gradient compared 

to the red one, suggesting that, at these points, the cost reductions for the base alternative were 

much higher. Despite this, the overall costs in the Fuel Price Forecast Scenario remained 

significantly lower, as previously mentioned. 

 

Figure 52: Fuel Pricing Forecast Scenario: Comparison of Truck Quantities 

As part of the sensitivity analysis, the truck quantities selected by the different models are 

shown in Figure 4.3.1.2. It is perceptible that the Fuel Price Forecast Scenario model shifted the 

truck quantity curves to the left compared to the original Scenario A. In spite of this, the trend 

changed in the final iterations, where the model, using the updated price structure, opted to 

replace BioLNG trucks with HVO100 and LNG trucks in the fleet for the most economical 

approach. This decision highlighted an important consideration for the major supermarket 

company: based on historical prices, HVO100 trucks appeared to be more cost-efficient than 

BioLNG trucks for 2030. 

 

Figure 53: Fuel Pricing Forecast Scenario: Comparison of Cooler Quantities 

For cooler quantities, the relationship between scenarios mirrored the trend observed in Figure 

52 for trucks. In Figure 53, the cooler quantity curves were shifted to the left across all 



iterations, except those that reflected an economical objective approach. In these iterations, the 

model prioritized HVO100 coolers as more efficient than those using Nitrogen or Electricity, 

reducing their quantities from 134 and 67 to zero, respectively, in the final stages. This aspect of 

the sensitivity analysis further supported the conclusion that HVO100 fuel is more efficient than 

Nitrogen and Electricity for cooler operations under the projected fuel price changes for 2030. 

4.3.2 Qualitative Scenarios 

4.3.2.1 Supply chain and Resource Scarcity Scenarios: Scarcity of Raw Materials for 

HVO100 

An analysis was conducted to evaluate the potential impact of a 30% increase in HVO100 fuel 

prices, driven by supply chain limitations stemming from palm oil regulations and scarcity. This 

study was included as part of the sensitivity analysis for the scenario-based modelling and was 

compared to Scenario A in terms of emissions and costs. The analysis provided useful points of 

view for the model and the company, highlighting the possible effects that such regulatory 

measures, rooted in environmental policies, such as the ones mentioned in Indonesia and 

Malaysia (Mai, 2024) could have on the supply chain structure for materials required to produce 

HVO100 biodiesel. 

 

Figure 54: Scarcity of Raw Materials for HVO100: Comparison of Pareto Frontiers 

In Figure 54, which compared the Pareto Frontier between the HVO100 Resource Scarcity 

Scenario and the base case Scenario A.1, most points on the curve showed higher costs for 

equivalent emission levels. This was expected due to the increased costs of HVO100 fuel but 

also highlighted that the model could not identify cost-effective solutions for these points, 

reinforcing the critical role of HVO100 trucks. The A-Scenario curve dominated in most of the 

points to the HVO100 curve. In the environmental-focused approach, the price difference had 

minimal impact initially. However, around 12,000,000 kg CO2, there was a detectable shift, 

with the gradient decreasing (average gradient: -2.3 €/kgCO2) and costs rising under the 



HVO100 Resource Scarcity Scenario. The green line's slope is shallower than the blue line, 

reflecting the model's challenges in reducing costs for the same level of emissions. Interestingly, 

at the tail of the graph, the gradient of the green curve (-0.95 €/kgCO2) became steeper than in 

the blue curve, while the environmental single-objective solution remained the same for both 

scenarios. From a sensitivity analysis perspective, it is significant that the model continued to 

select, from iteration 20 to 35, HVO100 trucks despite their price increase, underscoring the 

importance of taking in account this potential event. The optimization model reflects then than 

this price increase and effect on the HVO100 truck selection has been balanced with the 

selection BioLNG, LNG and electric trucks from the pool of choices available. 

 

Figure 55: Scarcity of Raw Materials for HVO100: Comparison of Truck Quantities 

When comparing the truck quantities selected by the model, it could be seen that an increase in 

HVO100 fuel prices significantly reduced the number of these trucks selected for the optimal 

solution set. In response, the model substituted them with electric, BioLNG and LNG trucks, 

creating a trade-off depending on the objectives pursued. Electric trucks saw a sharp rise in 

quantity compared to Scenario A.1. While Scenario A.1 phased out electric trucks entirely by 

iteration 33, the HVO100 Scarcity case, shown in the dotted lines, resulted in the model 

selecting 347 electric trucks to meet its goals. BioLNG truck quantities remained constant, 

highlighting that the trade-off primarily occurred between other types of trucks. 

 



Figure 56: Scarcity of Raw Materials for HVO100: Comparison of Cooler Quantities 

In regard to the cooler quantities chosen in this scenario, it could be seen that HVO100 powered 

coolers stabilize at 68 coolers while they peaked 313 in base case scenario A.1. The exchange of 

the HVO100 coolers was done with electric coolers, following similar trends to the ones seen in 

the truck quantities. Also, here there was a trade-off between these cooler types and the diesel 

ones. By iteration 33, in scenario A.1, electric coolers were 68 while by iteration 33, in this 

HVO100 resource scarcity scenario, the model selected 414 of this kind. The efficient solution 

set for the budget of the company deals with a trade-off between more or less the same quantity 

of Nitrogen, Electric, HVO100 and Diesel coolers, already shown in Scenario A.1 but with a 

slight change in the Resource Scarcity Scenario, where nearly 100 of the HVO100 coolers were 

traded from this type to Diesel and Electric coolers. 

4.3.2.2 Supply chain and Resource Scarcity Scenarios: Gas Crisis in Europe 

The supply chain and resource scarcity scenario drew from the recent geopolitical events, which 

caused significant spikes in LNG and electricity prices. These fluctuations created a volatile 

market environment, highlighting how geopolitical crises could directly impact the model. To 

reflect this, a 200% price increase for Diesel (effect only on coolers), LNG and electricity was 

introduced into the model as part of the sensitivity analysis, simulating the extreme price surges 

seen in the past (IEA, 2022). This allows the major supermarket company to understand how 

such events could influence future operations. By considering a scenario that mirrors past 

disruptions, the company gains valuable insights for making more resilient investment decisions 

moving forward. 

 

Figure 57: Gas Crisis in Europe: Comparison of Pareto Frontiers 

The impact of this price increase was evident in the differences between the Pareto Frontiers 

shown in Figure 57. The effect was most pronounced in the environmentally feasible solution 

set, particularly in the iterations up to 24,000,000 kg CO2. The red curve, with an average 



gradient of -13.29 €/kg CO2, was significantly steeper than the blue curve in the early iterations, 

illustrating how the price surge affects the environmental portion of the graph. This outcome, 

further analysed in the truck quantity breakdown, stemmed from the reduced selection of 

electric trucks due to their higher costs under this scenario. Towards the tail of the curve, the 

model consistently identified BioLNG and HVO100 trucks as the most cost-efficient option 

under the given constraints. This suggested that, in the most cost-focused iterations, the EU 

RED II regulations had a relatively limited impact on the optimal solutions. 

The impact of this alternative can be highlighted in figure 58 below analysing the truck 

quantities chosen for each feasible solution set in the optimization model. 

 

Figure 58: Gas Crisis in Europe: Comparison of Truck Quantities 

The truck quantities shown in Figure 58 provided many elements to be studied into the model's 

sensitivity during a simulated gas crisis. With rising electricity prices, the model began 

favouring hydrogen trucks over electric ones in the environmental section of the curve, 

reflecting the shifting cost dynamics. BioLNG trucks maintained a similar trend to Scenario 

A.1, though their adoption progressed more slowly. A similar pattern was observed with 

HVO100 trucks, which remained part of the feasible solution set but at a reduced rate. It is 

reliable to state that BioLNG trucks and HVO100 trucks replaced LNG trucks in the 

economically driven set of iterations. The model, in spite of the assumptions made on Hydrogen 

prices by the information provided by Ginobili, selected this technology as possible cost-

efficient choice in some of the last iterations. 



 

Figure 59: Comparison of Cooler Quantities 

The gas crisis also affected cooler selection, as shown in Figure 59. Up to the transition between 

the most environmental and most economical approaches, the trends resembled those of the 

base case scenario. In spite of this, with rising diesel prices, the model shifted away from diesel-

powered coolers, as LNG trucks are not being selected (results of the model shown in section 

7.4), favouring HVO100 and electric coolers instead, even though with the lastly named type of 

cooler experiences a 2x price increase. Nitrogen coolers maintained the same constant quantity 

as in Scenario A.1. It is useful to say that HVO100 coolers took on a larger share in the cost-

optimal solutions, surpassing the role diesel coolers played in Scenario A.1, as Gas Crisis 

Scenario is basing its choices in BioLNG and HVO100 trucks specially. This shift underscored 

the significant impact of a gas crisis on the model's outcomes, offering valuable insights for 

Ginobili to consider in future planning. 

  



4.3.2.3 Macroeconomic and Policy Scenarios: LNG Ban 

The potential for an LNG truck ban in urban areas across certain EU countries in the coming 

years was examined as a possible scenario for the European continent, particularly in light of the 

2030 sustainability goals. This scenario was incorporated as a sensitivity test to assess the 

model's response in the event that LNG trucks are excluded from the optimal fleet mix within 

the feasible solution set. The effect of this possible resolution can be seen in figure 60. 

 

Figure 60: LNG Ban: Comparison of Pareto Frontiers 

The Pareto frontiers in the graph showed that the LNG ban scenario incurred costs similar to 

Scenario A.1, though slightly higher across all points on the curve compared to the base case. 

The red curve, representing the LNG ban, had a smaller solution range, spanning emissions 

from 5,568,547 kg CO2 to 24,032,345 kg CO2, with its most cost-efficient solution at 

€140,281,405. The cost barrier in this scenario arose because the model, constrained by the 

LNG ban and risk management requirements, maximized BioLNG and HVO100 truck 

quantities up to their 50% limit in the final iterations. This sensitivity analysis highlighted that 

an LNG ban increased costs and complicated optimization. BioLNG and HVO100 served as the 

primary substitutes for LNG, offering relatively more economic alternatives, while electric 

trucks are the type that remains as a possible choice, that the model could use but it would 

represent a higher cost alternative. This whole situation creates a barrier for the model to seek 

more cost-optimal solutions. 



 

Figure 61: LNG Ban: Comparison of Truck Quantities 

The truck quantities in Figure 61 highlighted how the model adapts to constraints such as the 

LNG ban, offering insights into the shifting fleet composition. In the environmentally focused 

solutions, Hydrogen trucks dominated alongside Electric trucks, with initial quantities of 350 

and 463, respectively. As iterations progressed, the share of Hydrogen trucks declined steadily, 

reaching just one truck in cost-focused solutions. Electric trucks exhibited a similar pattern, 

starting at 463 in environmental scenarios and gradually decreasing as cost considerations 

became more prominent, ending with only one unit in the most economical solution. 

BioLNG trucks displayed a clear upward trajectory throughout the iterations, reflecting their 

role as a stable and cost-effective alternative under the LNG ban. Starting with just 20 trucks in 

the initial solutions, their quantity raised steadily to 268 in cost-optimized scenarios. HVO100 

trucks appeared sparingly in the environmentally focused iterations but gained prominence in 

later stages, increasing from negligible quantities to 250 in the most cost-driven solutions. This 

pattern demonstrated the model’s prioritization of HVO100 trucks as a replacement for LNG in 

cost-sensitive contexts. By maintaining a constant number of BioLNG trucks and gradually 

phasing in HVO100 as costs dominated, the analysis highlighted the trade-offs and strategic 

adjustments necessary for Ginobili to navigate a potential LNG ban effectively. The actual 

geopolitical scenario, including many new environmental regulations taking effect in the future 

years is pretty much irregular, so considering a situation like this when investing on a new truck 

fleet is important for the decision-making process to take place. 



 

Figure 62: Comparison of Cooler Quantities 

When studying the cooler quantities graph, it is possible to evaluate that the LNG Ban made the 

model choose Electric coolers the most (initially over 800), that were the ones that are used with 

Hydrogen and Electric trucks, following the information provided by the major supermarket 

company. These high quantity numbers that this type of coolers had relate to the choices made 

by the truck quantity model, by selecting high quantities of Hydrogen and Electric Trucks. An 

uprising trend looking forward to cost-effective solutions was made by HVO100 coolers, 

reaching in the last solutions a number of 317 coolers. Diesel coolers, used only with LNG 

trucks were obviously not selected by the optimization model. BioLNG cooler quantity 

remained constant.  

This perception is valuable as part of the sensitivity analysis because in a possible LNG Ban, 

Electric and Hydrogen trucks would be undoubtedly considered in the most environmental 

approaches, while HVO100 and BioLNG coolers would be present in a constant trade-off for 

cost-efficient solutions.  



4.3.2.4 Macroeconomic and Policy Scenarios: Renewable Content Mandates Increase 

Considering that European mandates like the EU RED II might be updated or revised in the 

future, this analysis provides a realistic perspective for assessing the viability of the project 

within the context of evolving regulations. 

For this scenario, two new inputs were used for the model to show an extreme situation of a 

possible revision made in the RED II mandate: the fleet's minimum renewable energy content 

was set at 25% and its minimum biofuel share was set to 7.5%. 

The effect of a percentage increase in the renewables content could be seen in the figure 63 

below. 

 

Figure 63: Renewable Content Mandates Increase: Comparison of Pareto Frontiers 

The overview of the effect of a possible review of the EU RED II reflected that an increase in 

the renewables and biofuels percentage would shift the Pareto Frontier to the right with respect 

of the A.1 Scenario, representing price differences up to 3.5% in some of the cases, as it is 

possible to depict in the transition zone in the middle. Initially, in the environmental cases, the 

effect of the regulation only showed cost differences near to 1 or 2%, while this increase as the 

focus of the optimization included economical objective solutions. The overall takeaway for the 

decision-making process that Ginobili has to take, as part of the sensitivity analysis is that this 

regulation could only make them incur more costs, something to consider in a risk management 

approach before taking the investment decision. 

The overview of the potential impact of a revision of the EU RED II suggested that increasing 

the share of renewables and biofuels would shift the Pareto Frontier to the right compared to 

Scenario A.1. This shift reflected price differences of up to 3.5% in some cases, particularly in 

the transition zone. In the initial environmental scenarios, the regulation's effect is relatively 



minor, with cost differences of around 1–2%. However, as the optimization incorporated 

economic objectives, these cost differences became more pronounced. 

For Ginobili, the key insight from this sensitivity analysis is that the proposed regulation could 

lead to higher costs. This is an important factor to consider as part of a broader risk management 

strategy before making an investment decision. 

 

Figure 64: Renewable Content Mandates Increase: Comparison of Truck Quantities 

The truck quantities curves as well exhibited shifts in figure 64. All of the curves shifted left in 

the trends for the truck types when comparing the increased renewables scenario (in the dotted 

lines) to the original Scenario A (solid lines). This leftward shift indicated an earlier adoption of 

greener alternatives such as BioLNG, Electric, and Hydrogen trucks. 

 

Figure 65: Renewable Content Mandates Increase: Comparison of Cooler Quantities 

The cooler quantity curves, in figure 65, also reflected the same trend as the previous cases. All 

of the cooler curves shifted to the right, showing an earlier adoption of each cooler type, being 

these Diesel, HVO100, Nitrogen or Electric. 

The effect, as part of the sensitivity analysis to be incurred, was that the impact would be the 

most on costs and not on trucks or cooler quantities, so Ginobili would have to evaluate their 



budget constraint of € 131,000,000 while considering the potential revision of the EU RED II 

regulation. 

4.4 Discussion and Recommendation 

Building on the analysis outlined in Section 4, this subchapter focuses on aligning the results 

with the company’s current situation while providing a clear recommendation for their 2030 

sustainability investment goals. Alongside environmental objectives, the company has also set a 

strict budget of €130,000,000. However, it is crucial to account for potential risks in this 

investment, including regulatory changes, geopolitical instability, and macroeconomic 

fluctuations. These uncertainties require a cautious approach to decision-making, ensuring that 

any recommendations remain viable under different future conditions. 

To address this, the analysis was divided into three scenarios: a base case that assumes minimal 

changes in external factors (A.1 and B.1 solutions together) and a scenario driven by modelling 

techniques previously discussed, where it was possible for the model to select optimally the 

truck-cooler parameters (A.2 and B.2 solutions together). The C-series scenarios were not 

considered as part of the recommendations as the objective of this study was to examine the 

current situation of the company and matching the external factors that could affect the 

decision-making process as a whole and not to use the pre-imposed strategies of the company 

previous to perform the optimization model. The focus of the study relies in which is the 

optimal fleet mix with the current conditions of the company through different scenarios based 

on the data provided.  

Within each of these scenarios, the most suitable solutions were evaluated from the feasible sets 

that align with the budget that the company provided, stated in section 3.2 and then order the 

solutions by emissions.  In this way, a quantitative initial threshold is introduced as a financial 

burden for the choices to take and then these solutions are filtered by their emissions level. As 

well, the solutions have to comply with the EU RED II Directive, as this regulation acts for 

companies from 2023 on (European Commission, 2018) and also use the trucks that the Ginobili 

does actually have in their fleet. 

For each scenario, two tailored solutions are presented: one prioritizing environmental impact 

and the other emphasizing cost-efficiency, grabbed from the pareto frontiers presented. 

To provide further clarity, descriptive statistics such as the mean, standard deviation, and 

relevant quantiles were included for each alternative. This statistical analysis demonstrates the 

model’s outputs and serves as a foundation for the recommendations. 

 



Base Case Scenario 

When combining the feasible solution sets for scenario A.1 and B.1 under Ginobili’s budget, as 

determined by the optimization studies, a descriptive statistical analysis was conducted to assess 

the quantities of trucks and coolers selected by the model in all the possible outcomes of A.1 

and B.1 Scenarios, shown in Table 4.4.1 below. This analysis provided valuable insight into the 

characteristics of the solutions generated, allowing for a better evaluation of their practicality 

and alignment with the company’s goals. Detailed results of the combined feasible solution sets 

are presented in Appendix section 7.5 for reference. 

 

Table 12: Base Case Scenarios under budget constraints (A.1 and B.1): Descriptive Statistics 

Table 12 highlighted that the mean of the solutions under the budget constraint remained 

approximately €2 million below the limit, though the standard deviation indicates that some 

solutions could approach the maximum budget threshold. The table showed that the model 

frequently selected 268 BioLNG trucks, as evidenced by its low standard deviation, suggesting 

consistency in this choice across solutions. Conversely, the highest standard deviation was 

observed in the selection of LNG trucks, with 40 units, and HVO100 trucks, reflecting the 

model’s tendency to alternate between different strategies to reach the objectives of the model in 

the feasible solution sets for A.1 and B.1 Scenarios. 

For the coolers, Electric and Nitrogen coolers were consistently selected in nearly all 

alternatives, as demonstrated by their minimal standard deviation. On the other hand, Diesel and 

HVO100 coolers exhibited greater variability, indicating a trade-off situation where their 

selection depended more heavily on the specific scenario and solution. 

When analysing the solutions provided that are under the major supermarket company budget, 

that can be found in Appendix 7.5, two solutions were selected to recommend to the company in 

a base case, depending in the approach the managers want to take. These solutions were selected 

from the list being evaluated in the criteria used both for A-series and B-series scenarios 

modelling, being useful to comply with future EU RED II directives and that also used in the 

solutions the trucks that the company does actually have in their fleet. With all this being said, 



two solutions from different parts of the pareto frontier were grabbed, from the under-budget 

side, one that had a lower number of emissions but a higher costs and another one with a higher 

emission value and lower costs. 

 
Table 13: Base Case Scenarios under budget constraints (A.1 and B.1): Solutions Proposed 

Understanding the economic approach in the base optimization case helps clarify how the model 

selects the most cost-effective fleet composition. The combination of LNG trucks and Diesel 

coolers emerges as the most economically efficient solution. BioLNG trucks follow as the 

second most viable option, while HVO100 trucks rank last due to their slightly higher costs. 

This outcome highlights the cost-effectiveness of biodiesel, showing that the marginally greater 

expense of HVO100 gives BioLNG the advantage in the economic trade-off. 

In the environmentally optimized scenario, HVO100 trucks play a much more significant role, 

outperforming LNG trucks, which have the highest environmental impact. The shift in truck 

selection also influences the choice of coolers, leading to a more balanced distribution in the 

model. 

Scenario with Optimal Cooler Parameters 

When examining the feasible solution sets, it was crucial to account for the modelling procedure 

detailed in Section 4, in the advanced base case models considering optimal truck-cooler 

parameters and a non-linear process optimization. This process incorporated coefficients as 

decision variables to represent various truck-cooler combinations effectively. The results of 

scenarios A.2 and B.2, developed under Ginobili’s budget as defined by the optimization 

studies, were combined to present a comprehensive solution for the major supermarket company 

and can be also visualized in Appendix 7.5. 

Additionally, a descriptive statistical analysis was performed to evaluate the truck and cooler 

quantities selected by the model for all the possible outcomes of the A.2 and B.2 Scenarios, 

providing insights into the distribution and consistency of the solutions. The outcomes of this 

analysis were summarized in Table 4.4.2 below. 



 
Table 14: Base Case Scenarios under budget constraints (A.2 and B.2): Descriptive Statistics 

In the table 14 provided, the joint selection of under budget alternatives for the optimized 

parameter cooler-truck advancements approach were showed together with their statistical 

measures. At first, it is possible to see that BioLNG trucks stand out for their consistent 

inclusion, with a mean of 269 units and a negligible standard deviation of 1, indicating they 

were almost always chosen in the same quantity across all solutions. In contrast, LNG trucks 

exhibited significant variability, with a mean of 176 units and a standard deviation of 64, 

reflecting the model’s tendency to adjust their selection based on the part of the curve that was 

iterating. This type of truck was selected in the economic-oriented part of the curve and then 

had a null value in the environmental-oriented part of the curve. HVO100 trucks also showed a 

notable range, suggesting they were included in some solutions but excluded in others, likely as 

part of a trade-off. Hydrogen trucks consistently remained unselected, indicating they were not 

competitive under the model’s constraints. Electric trucks, while consistently included, are 

adopted in very low quantities, as demonstrated by their mean of 2. 

 

For coolers, the model’s choices showed a mix of consistency and variability. Electric coolers 

were consistently selected, in small numbers, with a mean of 2. In contrast, Diesel coolers and 

HVO100 coolers demonstrated significant variability, suggesting their inclusion depended 

heavily on the specific trade-offs required by the solution. Nitrogen coolers, while present in 

some solutions, showed high variability, indicating their selection is scenario-dependent and 

less favoured overall. From a cost perspective, the mean remained just below the budget 

threshold, at €127.8 million, but the standard deviation of €1.5 million suggested some solutions 

closely approached the limit that Ginobili provided, of €130 million. 

 

With all of this being said, the solutions provided by the Pareto Frontiers were joined, and by 

maintaining the most important constraints considered in the solutions selection, complying 

with EU RED II Regulation and also using the current trucks available in the fleet, an 

environmental and an economical solution was presented. 



 

 
Table 16: Base Case Scenarios under budget constraints (A.2 and B.2): Solutions Proposed 

To make a comparison between the base case environmental and economic solutions presented 

in the last section and those generated under the parameter optimization model, key differences 

emerged in fleet composition, cooler selection, and overall efficiency. The introduction of 

optimized truck-cooler parameters influenced both cost and environmental performance in 

interesting ways. 

In regard to the economic solutions, the model with optimized cooler parameters achieved costs 

nearly €2 million lower than the base case, demonstrating the impact of polishing the 

combination of BioLNG trucks and various cooler types. The selection of coolers changed, with 

only 5 HVO100 cooler units chosen compared to 75 units in the base case. To compensate for 

this shift, the model introduced nearly 100 additional Nitrogen coolers, prioritizing their cost-

effectiveness. When left unrestricted in its selection, the parameter-optimized model assigned 

Nitrogen coolers exclusively to BioLNG trucks, reinforcing their economic advantage. 

Following the environmental solutions, the parameter optimization model achieved a reduction 

of approximately 10 million kg CO₂ compared to the base case. This outcome highlights the 

effectiveness of refining fleet parameters to minimize emissions. The selection of HVO100 

trucks increased by 89 units, emphasizing their role in reducing the fleet’s overall carbon 

footprint. On the other hand, the base case relied more heavily on LNG trucks, despite being 

configured for an environmental approach. The optimization process also led to the complete 

elimination of Nitrogen coolers, which were prevalent in the economic scenario, and resulted in 

a substantial increase in HVO100 coolers to 460 units. The shift toward biodiesel-powered 

coolers also caused a notable reduction in the number of diesel and electric coolers, aligning 

with emissions reduction goals. 

 



A useful consideration, given Ginobili’s position as a major supermarket company, is the 

relationship between cost and emission reductions when comparing the economic and 

environmental solutions. The analysis shows that a 4% increase in costs can lead to a 44% 

reduction in emissions. Since supermarkets operate on tight margins, this trade-off becomes 

relevant. Moving from a purely economic approach to a strongly environmental one achieves 

significant CO₂ reductions, which could become valuable if ETS Trading Scheme prices rise, or 

regulatory requirements become stricter. Strategically planning for these potential shifts allows 

for better long-term decision-making, ensuring both compliance and operational efficiency.  

 

With the optimization process that the model performs in both cases, it is useful to evidence 

that: 

 

• Lower costs in the economic approach due to the optimized mix of BioLNG trucks and 

Nitrogen coolers. 

• Increased presence of HVO100 trucks in the environmental scenario, reinforcing their 

role in emissions reduction. 

• Shift from Nitrogen coolers to HVO100 coolers in the environmental approach, with a 

reduction in diesel and electric coolers. 

• Cost-emission trade-off shows that a 4% cost increase results in a 44% emission 

reduction, a critical factor for future regulatory and financial planning, as supermarkets 

work in narrow business margins. 

  



5 Conclusion 

5.1 Summary of Research 

The analysis conducted in this thesis explored diverse optimal scenarios aimed at achieving the 

2030 sustainable logistics objectives of a major supermarket company. With a multi-objective 

approach, a sustainable fleet-mix optimization process was performed through a mixed-integer 

programming method and epsilon-constraint technique combined with linear and non-linear 

optimization algorithms. To accomplish the goal of finding a fleet mix that meets both the 

budget and the emissions objectives for the company for 2030, evidence-based scenarios and 

possibilities were analysed in Pareto Frontiers, evaluating the whole possible range of fleet mix 

combinations that could be selected in the operational, financial and regulatory panorama. 

The scenarios analysed considered potential regulatory changes by 2030, the current fleet 

composition of Ginobili, risk management perspectives, and time-series modelling to project 

price trends. Furthermore, the model considers the impact of exogenous events, such as fuel 

crises and resource scarcity, on decision-making. The study addressed the complex problem of 

fleet mix optimization, encompassing both truck and truck-cooler combinations, allowing 

technology and cost evaluation of LNG, BioLNG, HVO100, Electric and Hydrogen trucks 

combined with Diesel, Nitrogen, HVO100 and Electric coolers, including an innovative 

approach for the sustainable logistics problem. By leveraging data provided by the company, the 

analysis included scenarios with technological advancements that allowed for greater freedom 

in selecting optimal truck-cooler combinations to achieve superior results. 

This work contributed to logistics decision-making processes by concurrently optimizing 

economic and environmental objectives, providing actionable insights for the supermarket’s 

truck fleet investments in Italy. It came at a critical time, as EU countries transition away from 

diesel and fossil fuels toward renewable alternatives like biofuels, including BioLNG and 

HVO100, and emerging options such as hydrogen and electric technologies. The base case (A.1 

and B.1 Scenarios) and optimized parameter scenarios (A.2 and B.2 Scenarios) results, taken 

from the respective Pareto frontiers, support the decision-making process of the company. 

Unlike prior studies that primarily focused on bus and sea fleet optimization, this research added 

valuable insights into truck fleets by addressing costs, emissions, and the potential influence of 

exogenous factors, including fuel bans and renewable energy mandates. The findings 

underscored the growing importance of biofuels for 2030, particularly BioLNG and HVO100, 

while highlighting the future potential of hydrogen trucks, despite current infrastructure 

challenges. For coolers, the study emphasized the transition from diesel to HVO100 and electric 

options, while balancing trade-offs with nitrogen-powered alternatives. Ultimately, it is useful 

to say that this research equips the supermarket company with a robust framework for 



navigating the complex landscape of fleet mix optimization in a rapidly evolving regulatory and 

technological environment. 

5.2 Contributions 

This thesis contributes to the literature by exploring fleet mix optimization for truck fleets in the 

food supply chain, an area that has received little attention. Unlike most studies, which focus on 

vehicle routing or fleet mix optimization in urban mobility systems like buses and maritime 

transport, this research introduces a new perspective by integrating truck and cooler 

combinations into the optimization process. Instead of relying on generic assumptions, the 

model as well incorporates real company data for both base parameters and their optimization, 

ensuring practical relevance. 

A novel method was taking in account environmental policies such as the EU RED II 

Regulation, that represents the involvement of the new regulatory processes that sustainable 

logistics is facing, as this is applied from 2023 on (European Commission, 2018). From the start 

of the optimization process, the model factors in biofuel requirements and the percentage of 

sustainable-powered vehicles, including electric and hydrogen trucks, making the fleet mix 

compliant with actual and future regulations. These findings add a layer to decision-making, 

supporting companies in their long-term strategic planning. 

A dedicated Fuel Price Prediction model enhances the cost analysis, integrating Guarantees of 

Origin costs into electricity pricing. This model also applies statistical forecasting methods with 

fuel-specific prediction variables, improving the accuracy of cost projections. The inclusion of 

Pareto Frontiers and epsilon-constraint techniques in the optimization process presents an 

innovative approach to sustainable logistics, offering valuable insights for future research.  

Another key innovation lied in the incorporation of exogenous events, such as geopolitical 

conflicts and resource shortages, into the optimization model. This approach highlighted how 

these factors could influence fuel trends and regulatory changes, providing a realistic framework 

for future scenarios. The study as well accentuated the importance of considering structural 

costs alongside dynamic fuel price variations, offering a comprehensive methodology that 

accounts for both current fleet capabilities and future regulatory challenges. By addressing these 

multifaceted aspects, this research not only filled a critical gap in the literature but also 

established a foundation for further studies in truck fleet investment and optimization, 

particularly for industries requiring stringent cold chain management. 

 



5.3 Limitations 

The study faced several limitations, primarily due to data scarcity for emerging fuel 

technologies such as BioLNG, HVO100, and Hydrogen. These fuels were still in the early 

stages of adoption, with rapidly evolving trends influenced by regulatory developments and 

market dynamics. For example, the ongoing palm oil controversy in Asia significantly impacted 

the price structure of biofuels like HVO100, introducing considerable uncertainty and risk for 

long-term investment planning. Hydrogen fuel presented even greater challenges, as its supply 

chain remains underdeveloped, with limited historical data and insufficient infrastructure 

compared to in-house renewable energy sources like solar or wind. Furthermore, the Levelized 

Cost of Energy (LCOE) for hydrogen production and the associated transportation costs were 

not well-documented, making comprehensive evaluation difficult. These technological and 

market uncertainties represented key barriers to fully integrating these fuels into fleet 

investment decisions. 

The volatile nature of fuel markets, exacerbated by geopolitical events like the Russia-Ukraine 

war, posed challenges for accurate price forecasting, further complicating the analysis. Despite 

these constraints, the model yielded strong results and actionable recommendations for the 

company, demonstrating its robustness and potential for addressing the complexities of fleet 

mix optimization in a challenging and evolving landscape. 

5.4 Future Research Direction 

Future research directions could focus on the integration of emerging technologies, which are 

now more advanced, into optimization models. This includes incorporating autonomous 

vehicles, advanced fuel technologies, and real-time decision-making systems to better address 

the evolving landscape of transport supply chains. Additionally, a more detailed analysis of the 

EU regulatory framework could provide insights into how specific policies and mandates 

impact fleet composition and operations in a rapidly changing environment. As well, a valuable 

integration to the study could be the incorporation of EU ETS carbon contract prices to account 

for the cost of emissions in the different alternatives. 

Another promising avenue is the exploration of diverse loading strategies for trucks, aiming to 

reduce the number of trips and consequently lower emissions. Investigating heterogeneous fleet 

compositions instead of homogeneous fleets could open new possibilities, as it would allow for 

more tailored solutions based on varying demands and operational constraints. Further, 

optimizing truck load rates in conjunction with route planning could be an impactful area of 

study. Employing machine learning or AI techniques to analyse and improve load efficiency, 

while accounting for specific legal restrictions on various routes, could yield region-specific 

insights and enhance operational effectiveness across the country. 



Simulation tools like AnyLogic could play a pivotal role in these studies. By introducing trucks 

as agents within a simulation, researchers could model their interactions with distribution 

centres, visualized through GIS maps. This approach could generate heatmaps to identify the 

required infrastructure for each fuel type in different regions, facilitating more strategic 

planning. Such analyses would not only benefit the specific company studied but also provide 

valuable insights for other transport operators across the EU, ultimately helping to optimize 

operations while minimizing environmental and social impacts. 
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Table 18: Cost structure for LNG Trucks 

 

Table 19: Cost structure for BioLNG Trucks 



 

Table 20: Cost structure for HVO100 Trucks 

 

Table 21: Cost structure for Electricity Trucks 



 

Table 22: Cost structure for Hydrogen Trucks 

7.2 Base Case Scenario Results 

 
Table 23: Scenario A.1 Results 

 



 

Table 24: Scenario A.2 Results

 

Table 25: Scenario B.1 Results 

 



 

Table 26: Scenario B.2 Results 

 

Table 27: Scenario C.1 Results 



 

Table 28: Scenario C.2 Results 

 



7.3 Fuel Price Forecast Scenario Cost Structure 

 

Table 29: Quantitative scenario cost structure of LNG trucks 

 

Table 30: Quantitative scenario cost structure of BioLNG trucks 



 

Table 31: Quantitative scenario cost structure of HVO100 trucks 

 

 

Table 32: Quantitative scenario cost structure of Electric trucks 



7.4 Alternative Scenarios Results 

 
Table 33: Results from HVO100 Scarcity Scenario 

 
Table 34: Results from Gas Crisis Scenario 



 
Table 35: Results from LNG Ban Scenario 

 

Table 36: Results from EU RED II Scenario 



7.5 Discussion and Recommendation 

 

Table 37: Joint results from A.1 and B.1 Scenarios 

 

Table 38: Joint results from A.2 and B.2 Scenarios 
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