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Nomenclature

x (i): Truck quantity of type i [units]

y (j): Cooler quantity of type j [units]

Et;: Emissions of the fueli for truck type i [&]

km;: Annual kilometers to be covered by a truck type i [km].
km;: Annual kilometers to be covered by a cooler type j [km].
Ct;: Operational cost per km for truck type i [%]

Ccj: Operational cost per km for truck type j [%].

BioLNG, : Truck — Cooler Coef ficient of BioLNG Trucks for Cooler type t.

TOTKM: Total annual kilometers covered by all trucks [km].



El pasado es arcilla que el presente labra a su antojo.
El futuro no es lo que va a suceder sino aquello que vas a hacer.

Jorge Luis Borges
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Abstract

The increasing pressure on companies to balance economic efficiency with environmental
sustainability has made fleet management a critical challenge. In the context of a leading of a
leading supermarket company, optimizing truck and cooler configurations under different fuel

types and operational constraints is essential to meeting both cost and carbon reduction goals.

This thesis develops a multi-objective optimization model for sustainable fleet management,
aimed at minimizing operational costs and carbon emissions for a leading supermarket
company. The research focuses on optimizing truck and cooler configurations under various
operational constraints and fuel types. By employing the epsilon-constraint method and
exploring diverse scenarios, including regulatory, risk management, and operational events, the
study evaluates trade-offs between economic and environmental objectives. The analysis offers
actionable insights and recommendations tailored to the company’s current business

environment, supporting its sustainability and budget goals for 2030.

Key findings highlight that the trade-off between environmental and economic performance is
unbalanced, with cost reductions often conflicting with sustainability improvements. Pareto
frontiers generated for both baseline scenarios, those incorporating potential technological
innovations and those showing the effects of potential exogenous events. These scenarios
consider the company’s existing fleet and requirements, future EU regulations, and strategies to
address compliance challenges. Additionally, alternative scenarios account for external effects,
acknowledging their potential to significantly influence decision-making. Time-series models
were also developed to predict fuel prices, enhancing the strategic value of the

recommendations.

From a theoretical perspective, this research contributes to the academic discourse on
sustainable fleet optimization by integrating multi-objective optimization with real world
operational constraints and regulatory frameworks into decision-making models, offering a

methodology that can be adapted to face similar challenges.

The results from the study provide practical solutions for fleet mix allocation, equipping the
supermarket company with strategies to achieve its sustainability objectives while aligning with

regulatory mandates and mitigating operational risks.



1 Introduction

The transportation sector is vital for the global economic activity, as it facilitates trade, supply
chain and the movement of people and goods. Nearly every aspect of modern life depends on
transportation. On the same way it is related to activities that run the daily life of a society, it
has a substantial impact on the environment. Transportation is the only sector where greenhouse
gas emissions have increased over the past three decades, rising by 33.5% between 1990 and
2019, and in this last year, it was responsible for approximately 25% of the European Union’s
total CO2 emissions, with 71.7% attributed to road transportation (European Environment
Agency, 2023). With this information it is possible to depict that the reliance on internal
combustion engine vehicles (ICEVs), fuelled by diesel and gasoline, is addressing immediate
needs but compromising future priorities. As 68% of the world population projects to live in
urban areas by 2050 (UN, 2018), it is possible to say that towards the future, there will be an
increase in the road transportation services demand to the cities (Krause et al., 2024). To ensure
long-term sustainability, businesses must adapt their supply chain and operations to align to the
demands of the modern world and turn their operations greener. This transition could represent
a strategic economic advantage on top of mitigating environmental harm, ultimately benefitting
the society. Environmental pressure was put on this topic due to the severity and urgency of the
climate issue; the United Nations has emphasized the urgency of achieving carbon neutrality by
2050 to address the climate crisis (Guterres, 2020). Taking action today positions the firms to

remain competitive in a future where sustainability is a key driver of success.

1.1 Context and Societal Importance

Society is gradually shifting towards prioritizing environmental sustainability. After the Paris
Agreement, a turning point was marked, which made many firms have set objectives for 2030
and 2050 to reduce greenhouse gas emissions (GHG) and limit global warming (European
Environment Agency, 2024). As consumers are shifting their spending their spending towards
products with ESG-related claims (McKinsey & Company, 2023), this has become essential in a
strategic point for businesses. Notably, consumer’s willingness to pay for sustainably sources

product has risen 9.7% on average, despite the cost-of-living concerns and weigh (PwC, 2024).

Beyond environmental consequences, GHG emissions have severe implications for public
health. The air that allows substances and chemicals to be transported around the world, and
evidence suggests that air pollution and GHG emissions almost always go hand in hand
(European Environment Agency, 2020). The emission of gases like CO,, CH4, N>O, HFC and
SFsis strongly correlated the Disability adjusted life years (DALY metric, that represents the
loss of the equivalent of one year of full health (Gavurova, 2021). As a result of this, the



increasing number of diseases linked to poor air quality remarks the urgent need for integrated

solutions not to address only climate change but also to protect public health on a global scale.

Many businesses have aligned with the global environmental agreements made by committing
to net-zero targets and undercoming the barriers that are needed to take to make this happen.
Overtaking these barriers will not be that easy. While the transition would create opportunities,
sectors with high-emissions products or operations, that generate around the 20 % of the global
GDP, would face substantial effects on demand, production costs and employment (McKinsey
& Company, 2022). The logistics sector is clearly involved and must be one of the first movers
of the carbon neutrality global transition as from the 71.7% percent of the emissions attributed
to road transportations, 11% are related to light duty trucks and 27.1% to heavy duty trucks as
seen on Figure 1.1. Carbon neutrality requires fundamental modifications in firms’ internal and

supply chain operations and the wider business environment (Zhang et al., 2022).
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Figure 1: CO: emissions from cars in the EU.
Source: European Environment Agency, "CO2 Emissions from Cars: Facts and Figures (Infographics),” March 22,

2019, updated February 14, 2023, https://www.eea.europa.eu/highlights/co2-emissions-from-cars-facts

Innovation could play a critical role in addressing these challenges and advancing sustainable
practices. The industry 4.0 has introduced technologies that enable firms to enhance their
operations in relation to sustainability objectives. In the logistics sector, solutions such as route
optimization, smart freight management and real-time emissions tracking using blockchain are
transforming traditional transportation and distribution processes. Blockchain-enabled systems,
for example, provide transparency in carbon emissions across multi-tier supply chains, while
Al-driven predictive analytics optimize fleet utilization, reducing fuel consumption and costs
(Lee et al., 2023). These advancements can not only be the correct track to mitigate
environmental impact but to drive competitiveness and long-term resilience for businesses

strategically.


https://www.eea.europa.eu/highlights/co2-emissions-from-cars-facts

1.2 Environmental Sustainability Challenges in Logistics

The transportations sector’s push towards sustainability brings significant operational
challenges, especially for the companies that rely on ICEVs. Firms are facing a primary issue
that lies in transitioning types of freight to drive their daily operations. Green logistics (GL) is
becoming a way of doing business, but it also represents the next stage in the development of
the concept of logistics (Larina et al., 2021). The aim of GL is to supply goods and services
sustainably without hindering the long-run economic performance of the industry (Ibrahim,2
024). This future phase of transitions involves various substantial changes to the fleet mix,
introducing electric vehicles (EVs), hybrid vehicles or alternative fuel-powered trucks. The
process of fleet mix optimization is crucial as firms must balance their operational needs such as
cost-effectiveness, capacity and efficiency with the adoption of the newer and cleaner
technologies. From an economical point of view this represents an interesting path as well to
follow as approximately the 30% of shippers are willing to pay from 10% to 20% more for
carbon-neutral shipments in the logistics sector, represented on Figure 1.2 (McKinsey &

Company, 2024).

Willingness to pay extra for shipments to be carbon-neutral,’ % survey responses

Mothing more <109 more M 10-20% more M >20% more 70%
Logistics 29 H _
CPG/retail 36 3B _

Figure 2: Willingness to pay for carbon-neutral shipments.
Source: McKinsey & Company "Decarbonizing Logistics: Charting the Path Ahead," June 19, 2024,

https.//www.mckinsey.com/capabilities/operations/our-insights/decarbonizing-logistics-charting-the-path-ahead

To account some practical examples of successful green logistics, several companies have

implemented sustainable strategies with notable outcomes:

e UPS has incorporated hybrid vehicles to its fleet. The company has made a $130
million investment adding more than 700 vehicles to their natural gas fuelled fleet as
well as on-site natural gas fuelling stations throughout the US. These vehicles consume
35% less fuel compared to conventional ones, leading to a 42% reduction in CO2

emissions annually (UPS, 2024).


https://www.mckinsey.com/capabilities/operations/our-insights/decarbonizing-logistics-charting-the-path-ahead

e Maersk has partnered with Danone, one of the world's leading food and beverages
companies to reduce GHG emissions by using Maersk ECO Delivery Ocean. This is a
product based on reduced emissions fuels such as bio-diesel and bio-methanol,
produced solely from waste feedstocks. With the application of this program, emissions
could be reduced by more than 40% compared to conventional fossil fuels (Maersk,
2024).

e DHL Group, part of the Deutsche post and leader in the door-to-door delivery industry
has introduced the GoGreen program, which tracks and calculates the CO2 emissions
from each shipment. It offers customers the option to offset emissions by paying 3%
more. In 2022, they offset over 2 million tons of CO2 emissions through GoGreen

Offsetting and added more than 28,000 electric vehicles to their fleet (DHL, 2024).

For the logistics companies, one of the major complications is the financial burden of acquiring
and maintaining greener vehicles (Mohammed & Villegas, 2023). The initial investment to be
made as well as the alignment with the strategic fit of the companies are a point to take in
account despite the long-term environmental and economic benefits. In the actual scenario, the
limits in the availability of specific charging infrastructure, particularly for electric vehicles and
the supply for alternative fuels introduces another key point to consider when depicting business
transition to sustainable logistics (Singh, Wen, Palu, & Sachan, 2022). This is why vertical and
horizontal cooperations between stakeholders from the different stages of the supply chain are
so important to reach the goal of more efficient operations and higher responsiveness to

consumer demands (Plazier et al., 2024).

Fleet mix optimization emerges as a strategy within the logistics sector to deal with both
operational demands and sustainability goals. A multi-objective framework adoption uprises
from the need to handle the demand in a cost-efficient way while contributing to long-term
societal and environmental goals. The strategy takes in account critical decisions, such as
transitioning to alternative fuels and evaluating investment scenarios while meeting with
regulatory standards. By using computational methods to determine an optimal fleet mix,
companies can quantitatively and qualitatively assess truck requirements, building the way to

the transition toward sustainable logistics.



1.3 Thesis Scope and Structure

This thesis focuses on determining the optimal fleet mix for a major supermarket company
operating in Italy (for practical purposes we will name it Ginobili), using operations and
environmental data provided by the firm and the work previously being done on this topic by
Poropat (2024). The study examines the introduction of various truck types and fuel alternatives
to assess which is the best option to align with the company’s environmental and economic
goals for 2030. With the development of an optimization mathematical model, the aim is to
provide a recommendation, studying the space of feasible solutions, that minimizes operational
costs as well as CO2 emissions, taking in account constraints such as truck maintenance, budget

limits and emissions caps.

In parallel, diverse scenarios are going to be analysed, including future EU regulations, possible
exogenous events and the company’s requirements. A fuel price forecasting model will be
constructed to simulate and anticipate to future cost trends of the considered fuel types. This
model will be used to support the strategic decision-making process accounting for possible

market volatility and the assessing long-term planning that is required for Ginobili’s operations.

The research begins with an exploration of the available literature (Section 2) on fleet mix
optimization and feasibility, possible exogenous scenarios that could affect the project, fuel
price modelling techniques and the economic and environmental context within the logistics
sector. From there, the mathematical optimization model is proceeded to be developed while
detailing the key decision variables, objectives and constraints (Section 3). After this, the study
applies results and the framework to Ginobili’s data, generating recommendations to their
reality and objectives for 2030 (Section 4). With this we get an approach that involves realistic
data for the decision-making process, the mathematical modelling of the problem and a level of

stochasticity related to the prediction of future economic scenarios.



2 Literature Review

The literature review process provides a foundation for understanding the scenario in which the
problem is going to be modelled. In this way, the exploration of existing research on fleet
optimization, sustainability and methods for forecasting fuel prices and emissions can be
combined with the theoretical and practical advancements already made. Insights are going to
be studied to guide the development of the models and methodologies applied in this thesis. The
keywords searched in the main research platforms were fleet management, fleet mix, green
logistics, sustainable logistics, green vehicle routing problem, multi objective optimization, time
series forecasting and decarbonization strategies. The searches were done by combining

keywords with AND, OR and NOT Boolean operators.

2.1 Sustainability Barriers and Opportunities

The literature on sustainability barriers and opportunities addresses the substantial challenges of
green logistics, its impact in modern society and the implemented strategies to drive change.
This field is broad, as the definition of logistics varies vastly depending on the area of focus. A
common factor of this field of study is the efficient and effective implementation of complex
operations for either forward or reverse flow of goods and services to conform customer

requirements (Ibrahim, 2024).

However, in the context of supply chain decarbonization, many barriers are identified as: major
upfront investment cost, lack of awareness, lack of expertise and a resistant mindset (Zhang,
2022). Despite these challenges, studies indicate that while the initial cost for Carbon Efficient
Practices (CEP) may be significant, the practices are financially successful on the long-term,
having a direct impact on firm’s economic performance and product redesign capability

(Subramanian & Abdulrahman, 2017).

A growing body of work from management consulting firms highlights how more companies
are now managing sustainability to improve processes, pursuing growth and adding value not
just focusing on their reputation alone (McKinsey & Company, 2011). Strategies are being
developed on how to overcome with the barriers that a green project can pose such as securing
commercial advantages, achieving execution excellence, establishing ecosystem partnerships
and solidifying financial strengths (BCG, 2024). In the actual economic scenario, an investment
of this kind could reflect a high initial cost for a company but as 72% of Europeans are willing
to pay more for products that are considered environmentally friendly, the barriers could mean

also a potential business opportunity (Morone et al., 2021).

There is a shift happening as companies work to meet the sustainability targets as these set to

comply with global agreements and enhance their value chain. Many companies have their own



environmental objectives, but sometimes the alignment with their strategy complicates.
According to Lichtenau et al. (2023), 60% of businesses that have set a target to reduce
upstream Scope 3 emissions do not have a dedicated strategy to deliver. However, more than
6,000 companies, representing close to 50 different sectors, had set Science-Based Targets for

emissions reduction.

Among the key sustainability challenges in logistics, transportation accounts for a significant
share of the global carbon output. The companies that seek to decarbonize their supply chains
must explore the complex trade offs between operational efficiency, cost management and
environmental responsibility. The choice of fleet composition, vehicle types, fuel sources and
route optimization become crucial in mitigating emissions while maintaining service levels.
Emerging technologies such as electric and hydrogen powered vehicles present viable pathways
for firms to align their fleet strategies with sustainability goals, in spite that some considerations
have to be made as the investment planning of the new infrastructures such as the charging one

(Alp, Tan, & Udenio, 2022).

2.2 Fleet Mix Optimization

The fleet mix optimization field has been an area of research focused on optimizing routes,
loading strategies (homogeneous and heterogeneous) and more recently, its adaptation to new
technologies such as fleet electrification. It aims to determine the minimum cost for a fleet of
vehicles or vessels of a certain type required to cover a set of routes in a given period of time
(Silva et al., 2024). These optimization problems and models have been applied across many
transportation methods that account from sea freight (ships) to land freight (trucks and trains)

and even buses.

The optimization of fleet composition in trucking has developed progressively. Early research
by Powell (1986) introduced a stochastic dynamic programming approach to truckload carrier
operations, addressing real-time demand fluctuations and uncertainty in freight allocation. This
work established the need for decision models that account for both operational constraints and
long-term strategic planning. On the same track, Crainic and Laporte (1997) conducted a review
of freight transportation models, emphasizing the necessity of integrating fleet sizing, routing,

and load management to optimize overall efficiency.

In subsequent years, Wu et al. (2005) developed an integrated approach that linked operational
decisions, such as demand allocation and empty truck repositioning, with tactical choices,
including asset procurement and resale. Their linear programming model proved highly
effective in optimizing fleet utilization across different logistical phases, reinforcing the role of

structured mathematical techniques in solving complex transportation problems.



More recent advancements have expanded the scope of fleet mix optimization to incorporate
managerial priorities and environmental considerations. Sarangi et al. (2023) addressed this shift
by formulating a multi-objective fleet composition model that balances profitability, cost, and
service efficiency within distribution networks. Their research introduced two distinct decision-
making frameworks: the Competing method, treating all objectives as equally important, and

the Compensatory method, which prioritizes synergies between them.

In the same way, Islam and Gajpal (2021) integrated sustainability concerns into optimization
models using ant colony algorithms. Their findings indicated that incorporating green vehicles
alongside traditional fleets led to a 6.9% reduction in carbon emissions, demonstrating the
feasibility of environmentally conscious fleet management. Meanwhile, Malladi et al. (2022)
explored electromobility in urban logistics, focusing on the impact of planned versus realized
driving ranges of electric vehicles (EVs) on fleet composition. Expanding on these perspectives,
Zhao et al. (2021) introduced a bi-objective programming model for vehicle routing,
incorporating carbon emissions and charging constraints for both electric and conventional

vehicles.

2.3  Operational Optimization Problems

The literature mostly focuses on the operational advances on fleet planning, particularly through
the vehicle routing problem (VRP), which optimizes routes for a given set of vehicles. As an
operational problem, VRP deals with determining the most efficient way to use the available
fleet. In contrast, fleet mix optimization is a tactical decision-making process that focuses on
selecting the most suitable combination of vehicles to meet operational needs. Over time, the
green vehicle routing problem (G-VRP) has emerged as an important area of research. It aims to
design cost efficient delivery routes while considering the limited driving range of vehicles, its
loading capacity and fuel constraints. The objective is to minimize overall costs or total travel
distance while integrating sustainability considerations. To achieve this, vehicles must navigate
their routes with access to a limited number of refuelling stations (Kog¢ & Karaoglan, 2016). The
G-VRP becomes particularly relevant when the fleet includes alternative fuel vehicles, aligning

with the objective of this thesis.

Most studies in G-VRP considered a single objective, being his distance, cost, emissions or fuel
consumption. However, to evaluate the possible trade-offs between multiple objectives, some
other works have incorporated these objectives as constraints controlled by an epsilon such as
emissions limits, customer requirements or fuel consumption thresholds. This procedure
requires the use of multi-objective optimization programming to allow an evaluation of possible
trade-offs between different objectives in the Pareto efficient frontier (Mohammadbagher &

Torabi, 2022).



Studies have also focused on optimizing fleets for various types of vehicles, including ships and
land ones by solving the problem of route optimization, fleet composition and the number
designated for each vehicle type to provide the input data necessary for the decision-making

process of the logistics management sector.

In the context of electric vehicles, that were taken in consideration in innovative scenarios, the
electric vehicle routing problem (EVRP) has been developed to address the challenges of
serving customers with a fleet of EVs. These vehicles require trips to charging stations (CS), as
well as studies on urban infrastructure, such as the availability of CS and the impact of non-

linear charging times on route planning (Wang et al., 2024, Pelletier et al., 2019).

In sea logistics, dynamic programming routing algorithms have been used to address these
challenges (Fagerholt, 2006) as well as optimization techniques such as Two-phase Tabu Search
(Zeng & Yang, 2005) and mixed integer linear programming (Wu et al., 2021) to model real life
sea freight fleet mix scenarios. Anyways, the studies highlighted the need for more accurate
decision support models to integrate the fluctuations in the shipping market and the frequent

mismatches between fleet capacities and demands (Silva et al., 2024).

In land logistics, available studies on emission models show the significant impact that the
vehicle type has on fuel consumption (Kog et al., 2014). Demir et al. (2011), has made
significant contributions in this matter, categorizing the factors influencing fuel consumptions
into four groups: vehicle, driver and environmental and traffic conditions. Their work also
introduced various models for fuel consumption and GHG in road transportation, addressing the
pollution-routing problem (PRP) with an extended adaptive large neighbourhood search
heuristic (ALNS). This methodology involves two stages: vehicle route planning and a speed

optimization algorithm that determines the optimal speed for each route segment.

Further advancements in the literature have focused on multi objective approaches to the PRP.
Some studies developed a bi-objective PRP that minimized both fuel consumption and driving
time. Others incorporated the concept of heterogeneous fleets categorizing vehicles into light
duty, medium duty and heavy duty as each vehicle has its own costs and emission parameters to

solve the PRP (Kog et al., 2014).

The literature also explores several a posteriori optimization methods, that most of these match
with those used in sea logistics. These optimization methods include epsilon-constraint
methods, weighted-sum approaches and hybrid techniques combined with adaptive large
neighbourhood search (ALNS). These methods enable researchers to analyse the trade-offs
along the Pareto frontier effectively. Amiri et al. (2022) reported in their study, integrating the

epsilon constraint method, that doubling the number of refuelling stations within an area could



reduce transportations costs by 2% and emissions by 18%. These findings remark the potential

of integrating operational strategies with environmental objectives in the land logistics field.

The principal optimization method to study accordingly the Pareto frontier and the trade-offs in
the decision-making process is the one with the epsilon-constraint-based algorithm (Mavrotas,
2009). The computational experiments conducted have proved the effectiveness in providing
valuable insights into sensitivity analyses, particularly regarding the impacts of various
disruption types and fluctuating unit fuel costs (Elmi et al., 2023). Complementing this,
Ghasemi et al. (2023) extended the application to the location routing problem (LRP)
incorporating both cost minimization and reliability maximization, addressing customer time
windows and probabilistic travel times. In this work they combined epsilon-constraint methods
with metaheuristic algorithms, such as NSGA-II, used for large dimensionality data, to tackle

complex supply chain challenges.

This method displays an interesting approach for the objective pursued in this thesis to
determine the optimal fleet mix for the major supermarket company, optimizing considering

both operational and environmental objectives.

2.4 Forecasting Fuel Prices

Reliable gasoline demand forecasting is essential for petroleum supply chain planning
(Mardiana et al., 2020). To forecast fuel prices, the literature uses time series statistical models.

These are classified into univariate time series models and multivariate time series models.

Univariate time models use historical price data as its only input, indicating that only past trends
are indicative of the future price behaviour (He, 2023). The simplest techniques like moving
averages (MA) and simple exponential smoothing (SES) are the most commonly used by their
simplicity, but they may struggle to provide reliable predictions in complex scenarios (Lusk,
2019). Introducing time series work approach, more advanced methods, such as Autoregressive
Integrated Moving Average (ARIMA) are used due to its accuracy, mathematical soundness and
flexibility by including the autoregressive (AR) and moving average terms (MA). Additionally,
the errors in the ARIMA models are smaller than in Simple Exponential Smoothing (SES),
Double Exponential Smoothing (DES) and Triple Exponential Smoothing (TES) (Zulu et al.,
2022). ARIMA was compared to other methods such as Holt Winters to forecast electricity
demand (Taylor, 2003) and the conclusion was that ARIMA had a superior performance.
Oliveira and Oliveira (2018) as well conducted a study of electricity consumption in developed
countries of 24 months in advance. They made the analysis comparing ARIMA and exponential

smoothing, where ARIMA provided the most accurate results.



Multivariate time series models can include trend and seasonality in addition to predictor
variables while training the model. Several works have compared the performance of ARIMA,
Holt-Winters, and multivariate regression models, with this generally obtaining better results. In
the study done by He (2023), a multivariate time series model captured better the variability of
the historical data to perform future predictions due to its ability to take in account external
variables such as GDP, CPI and Oil Prices. Gosasang et al. (2011) compared traditional
techniques with neural networks for a container throughput at a Bangkok Port using GDP,
exchange rate, inflation and fuel price as explanatory variables. Similarly, Moscoso-Lopez et al.
(2021) proposed a machine learning based forecasting system to predict cargo flow at the port
of Algeciras. These models not only improve forecasting accuracy but are as well useful to
interpret managerial and policy implications, as they introduce connections between petroleum
prices, natural gas, heating oil and gasoline and other independent macroeconomic variables

(Chinn et al., 2005).

As technology is evolving, so are the prediction methods. In some cases, innovative approaches
were proposed such as the one in Qin et al. (2023) in which crude oil price was forecast with
machine learning and Google Search data. In this case, the trends provided by Google were
introduced as exogenous variables and it was concluded that multiple-model methods
outperform several popular single-model methods in terms of prediction accuracy. The
comparison between machine learning models was made in Sofianos et al. (2024), evaluating
the performance of fuel price forecasting models with the introduction of non-linear exogenous
variables, with models like XGBoost and Random Forest (RF) with RF having a lower Mean
Absolute Percentage Error (MAPE) of them all. Shaik S. et al. (2019) provided a similar
exploration process and emphasized the challenge that forecasting crude oil prices and fuels in

general means due to the high volatility of oil prices.

Hybrid models have also shown remarkable potential. These models were proposed in the
following way: one of the selected models forecasts the trend part of the curve while another
model is trained to forecast the residuals. In Wang (2024), US Gasoline prices were forecasting
with this method, firstly doing comparisons between the single-models approach actually

available and then showing the effectiveness of a hybrid Linear-ARIMA model.

Given that the objective of this thesis requires a stochastic level of input data for the alternative
Fuel Price Forecast Scenario based on market data for the optimization model, the analysis on
the literature of the most performing methods is crucial. This review of current methodologies
provides a foundation for the forecasting of alternative fuel prices in base to historical data and

exogenous variables.



2.5 Research Gap

In spite of the significant advancements that have been made in fleet optimization, sustainability
and fuel price forecasting, several key gaps remained unaddressed and these form the basis for
this thesis. While most of the methods take in account the Green Vehicle Routing Problem (G-
VRP), the majority of the studies on fleet mix optimization focus on singular objectives such as
cost, emissions or distance. There is a lack of exploration into simultaneous objective
optimization, especially of environmental and operational factors. By adding another level of
research in the fleet mix optimization topic, there is not much literature available on multi-
objective optimization for truck fleets. Most of the studies have been made for other types of
freight such as sea or even buses. Moreover, epsilon-constraint method and metaheuristic

algorithms have not been extensively applied to practical fleet planning scenarios.

Another challenge is shown in the difficulty to forecast fuel prices due to their high volatility.
Although models like ARIMA and machine learning approaches have shown robust
capabilities, they often fail to capture the stochastic nature of the fluctuations involved in this
type of time series variable. When this analysis is down to alternative fuels, as most of this
technologies are relatively new, the forecasting process and price trend evaluation on these is
not much addressed by the literature, that concentrates in the most conventional type of fuels.
Hybrid models, such as the Linear-ARIMA approach, offer a new potential opportunity but
remains underutilized in decision-support systems for logistics. Additionally, most of the
research is done by comparing and evaluating models fitting on historical data and not by doing
long-term forecasting processes. Many models, such as ARIMA, have great short-term results

but have to be refined when predicting longer periods of study.

The literature also highlights an insufficient focus on sustainability in fleet optimization studies.
While the economic and long-term benefit of Carbon Efficient Practices (CEPs) have been
documented, there is a lack of support by reliable decision models combining sustainability
targets and fleet operations. Many companies and papers have set objectives based on CEP but
not in forecasting and planning models with algorithms or optimization approaches. The
potential trade-offs between fleet costs and achieving emission-reduction targets has been
poorly addressed, especially under dynamic and uncertain market conditions, which remarks the

novelty of the current work to the actual literature.

While recent and innovative forecasting methods such as the one that incorporate new machine
learning techniques or Google Search trends demonstrate potential, their integration to fleet
optimization problems remains minimal. The possibilities on the combination of forecasting
techniques and optimization algorithms have not been fully explored, like it could be using fuel

price predictions as inputs to optimize fleet compositions.



It is useful to say that most of the literature is applied to theoretical or historical scenarios,
which introduces some limitations in its applicability to real-world contexts. The complexities
that real-world problems incur such as fuel availability, maintenance structures, country’s
infrastructure, vehicle requirements are often overlooked leaving a gap that is needed to be

handled.

This thesis seeks to address the existing gaps by developing a multi-objective optimization
(MOO) framework that integrates economic and environmental goals for fleet mix decisions. By
incorporating forecasts of fuel prices with statistical techniques, it aims to bridge that exists
between forecasting and the theory on MOO and decision-making processes by companies. This
research explores the trade-offs as well between environmental and economic efficiency
through scenario analysis and Pareto optimization, evaluating the best set of feasible solutions
for a major supermarket company. Through this approach, the thesis contributes a real practical

world application to a sustainable logistics challenge.



3 Methodology

3.1 Problem description

The problem focuses on optimizing a major supermarket’s fleet of trucks and cooling systems to
enhance efficiency while aligning with sustainability objectives. The goal is to determine the
optimal fleet composition required to meet the company’s annual distribution mileage in Italy
while transitioning toward greener logistics. This optimization must strike a balance between
operational costs, CO2 emissions, and energy efficiency, considering both the power generation
system and the refrigeration requirements necessary for perishable goods. The solution must
account as well for long-term fleet adaptability, infrastructure readiness for alternative fuels, and

regulatory compliance to support a sustainable supply chain.

3.2 Assumptions and hypotheses

This problem, along with the deterministic data from the supermarket company was provided by

Poropat (2024) and this thesis is an extension of the analysis conducted in that study.

The total distance expected to be covered in a year of operations is 70,000,000 km, assuring
daily delivery of goods from distribution centres to the stores. Another critical aspect for the

company is the budget, that must be lower than €131,000,000 for its entire fleet.

In line with the environmental sustainability goals for the business, there is the need to cap
transportation-related CO2 emissions at a maximum of 22,400,000 kg and providing a diesel-
free truck fleet for the year 2030. Meeting environmental objectives highlights the need of

considering alternative fuels to shift the company into a greener structure.

Striking a balance between cost efficiency with emissions reduction represents a critical step for

the major supermarket company’s future in turn to their objectives for the year 2030.
To develop the fleet optimization model, the following assumptions and hypotheses were made:

o All the trucks have the same load capacity, creating a homogeneous fleet.

e Transportations costs include variable costs based on fuel prices and fixed costs
according to vehicle depreciation, insurance, registration, overhead and financial
charges.

e Each truck covers a certain quantity of kilometres per year:

o Diesel: 140,000 km.

o LNG: 130,000 km.

o BioLNG: 130,000 km.
o HVO100: 140,000 km.
o Electric: 70,000 km.



o Hydrogen: 100,000 km.

o (CO: emissions are directly proportional to the fuel consumed per kilometre per type of
truck.

e Cold chain requirements must be maintained throughout the transportation process, with
daily operations lasting six hours for each cooler.

e Based on the assumptions of Poropat (2024), the number of annual operating hours for
the truck refrigeration units is determined based on an average daily usage of 6 hours
over 316 working days per year, resulting in a total of 1,896 hours per year.

e [t is assumed that there is an adequate infrastructure in Italy for the daily use of the

vehicles in the fleet.

3.3 Research Overview

The research follows a step-by-step approach looking forward to addressing the optimization of
a sustainable fleet mix under operational, budget and environmental constraints.
The methodology used includes deterministic components based on data to achieve results that

model real world uncertainties. The research design is shown in Figure 3.3.

Problem Definition and Scope

The research begins taking in account the problems of the actual situation in the supermarket
logistics field: Minimizing fleet costs and reducing CO2 emissions, while addressing specific
constraints such as emission caps and truck-cooler compatibility. An optimization procedure was
essential to advance towards the definition of an optimal sustainable fleet mix for a major

supermarket company based in Italy to meet its 2030 sustainability goals.
Literature review

Existing works in fleet optimization, optimization models, stochastic statistical modelling for fuel
prices in the actual economic and social environment and sustainability reports in the
transportation sector in relation to emissions were reviewed to contextualize the study and adapt

the literature to the model to be developed.
Data Collection and Analysis

Relevant data on fuel costs, including conventional and alternative ones that were collected from
industry sources and historical records that would serve as inputs for the model to cover both the
truck and the cooler fuel. An analysis was conducted in base of the data provided by the major
supermarket company regarding the deterministic fuel prices, costs and the truck-cooler

combinations used.



Optimization Mathematical Model Formulation

Based on the data available in the literature, an optimization mathematical model utilizing the
epsilon constraint method was constructed in Python to capture the relationships between decision
variables, such as truck types and cooling systems, the objectives like minimizing costs and
emissions and the constraints in the truck-cooler combinations, budget and emissions. The model
was designed in a two-step approach, first to be trained and validated with historical data of actual
fuel prices, actual fuel prices provided by the company and a posteriori evaluation incorporating
data through different quantitative and qualitative scenarios that could be involved in the decision-

making prices.
Optimization Model Implementation

The epsilon-constraint method was applied in Python to generate a Pareto-efficient frontier, that
would balance costs and emissions by means of the epsilon values used in each iteration. In this
way, it would be possible to take in account the environmental and economic variables to
determine, in each case and for those cost-emission values, the optimal fleet mix. The parameters
used were deterministic fuel costs initially provided by a major supermarket company for each
one of the fuels in 2024. The type of fuels used, to be introduced in the trucks and coolers, were
both of conventional and alternative sources. After running the model, each solution on the Pareto
Frontier was evaluated and after an iterative process in analysis if the model met the requirements,
the configurations that were best aligned for the sustainability goals and the budget cap were

identified.
Future Scenarios Analysis

With the model already being tested with base data, the base case scenarios were developed and
introduced to the model with criteria based on EU Regulations, company data and

recommendations and Risk Management perspectives.

As well, when these were validated, alternative scenarios were developed as an additional analysis

of potential future cases, in a quantitative and qualitative approach.

For the quantitative approach, fuel price prediction models were developed to introduce to the
model an alternative scenario based on market data and statistics. A review of statistical time
series models from the literature was conducted to identify the solutions being used for this
purpose and assess the adaptability to the fleet mix optimization problem. These models, trained
and tested by the historical fuel price data available, were evaluated with performance metrics to
determine in this way the most accurate method to forecast fuel prices up to the date required to

be used in the model as an alternative quantitative (Fuel Price Forecasting) scenario.



For the qualitative approach, exogenous scenarios were constructed around potential supply chain
challenges, macroeconomic events, and market or technological innovations. These scenarios
provided new data inputs to the model, enabling an analysis of the optimal fleet mix for the major
supermarket company under varying economic and operational conditions. This approach ensured
a comprehensive understanding of how external factors could influence decision-making and fleet

optimization outcomes.
Optimization Model Solution Using Epsilon-Constraint Method

The epsilon-constraint model was employed to solve the problem and provide a solution to the
fleet mix optimization problem evaluating the possible solutions set. This ensured a systematic
exploration of the trade-offs required to minimize costs and emissions with fluctuating fuel costs.
Each solution represented a potential fleet configuration that satisfied all constraints, such as the

truck-cooler combinations, budget cap and emission limitations.
Results Analysis and Conclusions

Demonstration of the viability of the epsilon-constraint method to meet cost and emission
objectives under constraints. The Pareto-efficient frontier developed by the Python model enables
actionable insights to provide recommendations in the selection of fleet mix configurations that
would align with the 2030 sustainability goals of the supermarket company, including the
transition to a diesel-free fleet. The analysis reported the importance of balancing conventional
and alternative fuel sources to achieve long term-cost effectiveness and environmental
compliance. The base case scenario analysis as well as the possible alternative scenarios in

changing atmospheres are used to provide data for the company to make a decision.
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Figure 4: Methodology workflow

3.4 Conceptual Framework

Objective of the Conceptual Framework

The conceptual framework provides a qualitative representation of the sustainable fleet mix
optimization problem. It defines the elements involved in the study of problem’s objective,
constraints and relationships between variables. The model is structured around core processes
and decisions of the approach used in order to optimize fleet and cooling configuration around

economic, operational and environmental constraints.
Objectives

The model has dual objectives defined for this problem regarding determining the optimal fleet

mix that are:

e Minimize total operational costs from fuel and cooling sources.

e Minimize CO: emissions from transportation activities.



Decision variables

e x;: Number of trucks of type i in the fleet.

e yj: Number of coolers of type j in the fleet.
Inputs

e Truck and cooler data:
o Maximum yearly kilometres allowed per truck.
o Truck and cooler types available, including their compatibility.
e Fuel cost data.
o Historical and forecasted costs for conventional and alternative fuels, being
these:
= Trucks: Diesel, LNG, BioLNG, HVO100, Electric and Hydrogen.
= Cooler: Diesel, HVO100, Nitrogen and Electric.
e Budget cap.

e Emission cap.

Constraints

e Distance: The fleet must collectively cover the required mileage to fulfil the distribution

activities of the company. This corresponds to 70 million kilometres annually in the
case study.

e Truck-cooler compatibility:

Coolers Trucks
Diesel LNG
HVO100 HVO100, BioLNG
Nitrogen BioLNG
Electric Hydrogen, BioLNG

Table 1: Truck-cooler compatibility



3.5 Epsilon-Constraint Method and Model Bases

The Epsilon-Constraint Method is a technique used for solving multi-objective optimization
problem (Ji et al., 2018). It optimizes one of the functions up, maximizing or minimizing it
while treating the other objectives as constraints, bounded by an epsilon. This method generates
a representative Pareto-frontier set of solutions as different ranges of epsilon values are selected

in each iteration to build the curve.

In this type of problem, the decision makers have to seek a solution that is the most preferred by
them, as it is impossible to satisfy and optimize all of the objectives simultaneously. When
changing the epsilon values, the whole possible set of solutions is explored, providing a
comprehensive approach of the trade-offs when there are conflicting objectives (Chircop &
Zammit-Mangion, 2013). This is why this method is especially useful in situations where the
decision-makers need to take in account a complete set of alternatives before selecting their

solution (Mavrotas, 2009).
Theoretical model

Mathematically, the method focuses on optimizing one primary objective function f; (x) while

treating the remaining objectives f,(x), f3(x), ..., f(x) bounded by an epsilon value.

As shown in Mavrotas (2009):

min f;(x),x €S, f,(x) <&, . fa(x) < & €9)

Model application

To apply this technique to the fleet mix optimization problem, a code in Python was made using
Pyomo. In this way it was possible to explore the trade-offs between cost minimization and
emissions reduction in the transport operations of the major supermarket company. The
economic function, representing the cost of the trucks and coolers is treated as the main
objective and the environmental function is treated as a constraint bounded with an epsilon. This
approach involves generating a Pareto frontier by solving the optimization problem, with its
respective constraints, by bounding its level of emissions per iteration with an epsilon. The
model integrates data on truck and cooler types, operational distances, costs, emissions and uses

predicted fuel prices to provide the decision maker a range of solutions to be taken in account.



Objective function

min ( Z Ct; * x; x km; + Z Ccj*y x km;) )

ieTrucks jeCoolers

being:
e (t;: Operational cost per km for truck type i [%]
o km;: Annual kilometers to be covered by a truck type i
e C(cj: Operational cost per km for for cooler type i [&]
e km;: Annual kilometers to be covered by a cooler type i
o x;: Quantity of trucks type i
e y;:Quantity of coolers type j

Constraints

Emissions constraint:

z Eti*xi*kml-+ z Ecj*x]*km] <¢ (3)

ieTrucks jeCoolers

being:

e FEt;: Emissions for truck type i due to operations [ﬁ]

e Etj: Emissions for truck type j due to operations [%]

Total annual distance constraint:

x; * km; > TOTKM (4)

ieTrucks

Truck-cooler balance:

EE

ieTrucks jeCoolers

With all this being introduced to the model, a range of epsilon is selected to impose emission

level restrictions.

To account the range of epsilon possible to provide feasible solutions for the model, an

environmental single objective optimization was done, to know the epsilon minimum emissions



and additionally, to know the maximum epsilon value, an economical single objective

optimization was done (where the emissions constraint was taken).

€€ (Eenvironmental; Eeconomic) (6)
Single Environmental Objective Function

min ( Z Et; »x; x km; + Z Ecj * x; x km;) ™

ieTrucks jeCoolers

Single Economic Objective Function
i (2)
min ( Ct; * x; * km; + Ccj*y x km;)
ieTrucks jeCoolers
Note: In this iteration the emission constraint was deactivated so the model could explore the

most economically efficient solution.

With this minimum and maximum epsilon constraint in the iterations, it is possible to explore
the feasible solution set of the fleet mix. As well, between this minimum and maximum
emission values, a number of intermediate points was chosen between the emissions’ minimum
and maximum to construct the optimal Pareto frontier, capturing the trade-off between cost and

emissions.

For the actual needs of the problem, for an accurate resolution of the curve and definition of the
results 50 points were selected between the environmental objective emissions solution and the

economic objective emissions solution.
Outputs

e Optimal fleet mix for each iteration: this determines the number of trucks and the
number of coolers.

e Total costs and emissions for each iteration.



3.6 Scenarios

For all scenarios, the baseline prices used to account for truck and cooler investments were
derived from data provided by a major supermarket company. These figures were previously

utilized in Poropat (2024), which this work continues to build upon and expand.

The pricing structure was designed to detail the costs per kilometre for each truck type. It
encompasses purchase costs, fuel expenses, maintenance, tire costs, road taxes, insurance,
depreciation, salaries, tolls, structural costs, and specific fees as provided by the supermarket
company due to the studies done on their current operations. The base costs can be seen in the
Appendix 7.1 section. It is important to highlight that, building on Poropat's 2024 work on this
topic, incentives for hydrogen trucks have now been incorporated into the cost structure, similar

to how they were previously considered for electric trucks.

The scenarios are divided into base case and alternative scenarios to examine the factors that
Ginobili will address under current trends, as well as potential hypothetical situations the

company may encounter by 2030.

The study explores three base case scenarios (A, B, and C), each built on a different approach to
truck-cooler allocation. One method (.1 Scenarios) uses on predetermined truck-cooler pairings
as stated in section 3.5. The alternative (.2 Scenarios) introduces truck-cooler coefficients as
decision variables, giving the model the flexibility to determine the most suitable cooler for
each truck type based on fleet capabilities and technological constraints. While all scenarios
maintain the core model constraints from Section 3.5, additional constraints are introduced in

each case to reflect specific operational conditions.

For the initial scenarios, with a fixed coefficient for the truck-cooler combination a linear
optimization model is used (Cplex Direct) while a nonlinear one is used (Ipopt) in the cases

with BioLNG truck-cooler coefficients as decision variables.

The base case scenarios that were analysed are presented in the table below:



Scenario | Identification Characteristics Truck-C?oler
Allocation
Base
Al g :
A EU Guidelines (Linear)
A2 Risk Management Optimized
’ (Non-Linear)
Base
B.1 . :
B Current fleet composition (Linear)
B2 Risk Management Optimized
) (Non-Linear)
Base
C.1 .. .
C Current fleet composition (Linear)
ca Company constraints Optimized
) (Non-Linear)

Table 2: Base case scenarios

For the hypothetical situations that were sighted as possible alternatives, reflected operationally
by changing the constraints of the model. All alternatives were based on the A.1 scenario, as the
EU Regulations are a current problem that Ginobili will have to face according to the European

Comission, 2018.

The different alternatives are reported in the next table:

Scenario Group Identification | Characteristics Truck C(?oler
Allocation
Fuel Pricing Forecast Scenario pre(liiléfiloinr;i) del (L]?r?:zr)
Scarcity of 30% HVO100
. ) Base
Supply chain and Raw Materials fuel price (Linear)
for HVO100 increase
Resource
Scarcity 200% Diesel,
Scenarios Gas Crisis in LNG and Base
Europe Electricity price (Linear)
increase
Qualitative LNG truck B
LNG Ban TIes ase
excluded (Linear)
Macroecor}omic 25% floct
and PO],ICY Renewable minimum
Scenarios Content renewable energy Base
Mandates content and 7.5% (Linear)
Increase minimum biofuel
share

Table 3: Alternative scenarios




3.6.1 Base case scenarios

The base case scenarios serve as the foundation for the fleet mix optimization model analysis,
integrating EU regulatory guidelines, operational constraints and risk management strategic
considerations explained in the next sections. These scenarios are designed to reflect a set of
realistic operational conditions, adapting the constraints stated in section 3.4 according to the
actual structure and recommendations of the major supermarket company. Different minimum
and maximum truck numbers for each type are going to be reviewed for each scenario to
consider diverse approaches. As these conditions to be analysed are the most feasible
considering the company’s actual situation, they are going to be the basis of the investigation to

provide information for the decision-making process to attain 2030 sustainability goals.

3.6.1.1 A Scenarios

This scenario is designed to target compliance requirements with the EU RED II Targets
(European Commission, 2018), published in November 2016 and revised in December 2018,
entering into force in 2023 in a trial period. As an overall target, in RED II, member states must
require fuel suppliers to supply a minimum of 14% of the energy consumed in road and rail
transport by 2030 as renewable energy. Additionally, it states that the contribution of advanced
biofuels and biogas produced from the feedstocks listed in the regulation as a share of final
consumption of energy in the transport sector shall be at least 0.2 % in 2022, at least 1 % in
2025 and at least 3.5 % in 2030. This regulation, for what concerns the fleet optimization

model, introduces a constraint on the minimum truck quantity for certain truck types.

From a risk management perspective, a maximum share of trucks constraint is introduced, as it
is excessively risky to have all the trucks of the same type in an environment with varying
operating conditions. As different trucks have different kilometric range, the constraint is
written for each truck type not to cover more than the 50% of the total kilometric range

specified by Ginobili.

This scenario is proposed in two ways, one with fixed cooler-truck combinations, as specified
by the company and another version with this coefficients as decision variables to let the model
choose which would be the optimal cooler to be used for the BioLNG according to emission and
economic targets in each iteration. As the objective and the emission and budget targets remain

the same to what explained in section 3.5, the only point that changes are the constraints.



Scenario A.1

Truck-cooler combination constraints

e Total Truck-Cooler Balance:

n m
> x= )y (5)
i€TruckVector j€CoolerVector
e Diesel cooler constraint:
YDiesel = Xpiesel T XLNG 3)
e HVOI100 cooler constraint:
Yuvo100 = Xpvoioo + 0.25 * Xpiorne 9)
e Nitrogen cooler constraint:
YNitrogen = 0.5 * XgjoLnG (10)
e Electric cooler constraint:
YElectric = XElectric T xHydrogen +0.25 = XBioLNG (11)

e Diesel free fleet truck constraint:

XDiesel <0 (12)

Environmental regulation minimum truck constraints

e FEURED II Target: At Least 3.5% Advanced Biofuels by 2030
C (13)

XpioLnG * KMpiornG + Xuvo100 * KMuyo100 = 0.035 * Z (x; * kmy)

i€TruckVector

e EU RED II Target: At Least 14% Renewables by 2030

XgioLnG * KMpiong + Xuvotoo * KMuvoioo + Xetectric * KMegtectric + Xuyarogen  (14)

n

* kaydrogen =0.14 = Z (xi * kml)

i€TruckVector

Risk Management maximum truck limit constraints: Limit Each Truck Type to Less Than

50% of Total Kilometres

e Total truck kilometre variable definition:
= (15)
Total Km = Z (x; * km;)

i€TruckVector



e Constraints for each truck type:

Xpiesel * kMpieser < 0.5 * Total Km (16)
Xing * kmpng < 0.5 Total Km (17)
XBioLNG * KMpiorng < 0.5 * Total Km (18)
Xuvoioo * kMyyo100 < 0.5 x Total Km (19)
XElectric * KMgleceric < 0.5 * Total Km (20)
Xuydrogen * KMuyyarogen < 0.5 * Total Km (21)

Scenario A.2

In this scenario three additional decision variables are added. These represent the coefficients as
a percentage of the coolers of Nitrogen, HVO100 and Electric that would be used for BioLNG
trucks in each case. As each iteration has a different epsilon value, thus, a different
environmental target, this coefficients will vary, telling the analyst which the optimal cooler

type is to be used in each case.

Coefficient variables definition

BioLNGpyo100,,,, € [0,1] (22)
BioLNGitrogen, oo € [0,1] (23)
BiOLNGElectriccoef € [0,1] (24)

Coefficient initial percentage constraint

BiOLNGHV0100c0ef + BiOLNGNitrogencoef + BiOLNGElectriccoef =1 (25)

The only constraints that change in respect to scenario A.1 are the ones that state truck-cooler

combinations for BioLNG trucks.

e HVOI100 cooler constraint:
Yuvoio0 = Xgvoioo T BIOLNGHY0100.0e¢ * XBioLNG (26)
e Nitrogen cooler constraint:
YNitrogen = BiOLNGNitrogencoef * XBioLNG (27)
e Electric cooler constraint:

YElectric = XElectric T xHydrogen + BIOLNGElectriccoef * XBioLNG (28)



B Scenarios

The current fleet composition of the major supermarket company also represents an important
information to be accounted for. Ginobili’s existing fleet, categorized by truck type, was
provided as key information to use in the model. By incorporating the existing truck types in the
fleet as a constraint on the minimum number of trucks to be selected for specific power
generation systems, these could be used in the company’s supply chain model and involved in
the feasible solution set for the fleet mix optimization process. Current owned cooler quantity
information was not provided by Ginobili, so the number of coolers to be introduced was

considered by the optimization model.

In regard to the maximum number of trucks constraint, the perspective was similar to the one
used in A Scenarios for the company’s risk management. The truck maximum per type was

limited to less than 50% of the total kilometres ran in the company’s supply chain operations.

This scenario is as well proposed in two ways, one with fixed cooler-truck combinations, as
specified by the company (B.1) and another version with this coefficients as decision variables
to let the model choose which would be the optimal cooler to be used for the BioLNG according
to emission and economic targets in each iteration (B.2). As the objective function and the
emission and budget targets remain the same as in Scenarios A, only additional constraints will

be displayed.



Scenario B.1

Truck-cooler combination constraints

Total Truck-Cooler Balance:

n m
§ X = E Yj
i€TruckVector j€CoolerVector

e Diesel cooler constraint:

YDiesel = Xpiesel T XLNG
e HVO100 cooler constraint:
Yuvoioo = Xgvoioo T 0.25* Xpijorng
e Nitrogen cooler constraint:
YNitrogen = 0.5 * xpjornG

e Electric cooler constraint:

YElectric = XElectric T xHydrogen +0.25 = XBioLNG

e Diesel free fleet truck constraint:

XDiesel <0

Current fleet composition minimum truck constraints

XBioLNG = 52
Xpvo100 = 5

XElectric =3

()

(6)

()

(8)

)

(10)

(29)

(30)
(31)

Risk Management maximum truck limit constraints: Limit Each Truck Type to Less Than

50% of Total Kilometres

e Total truck kilometre variable definition:

Total Km = z (x; * km;)

i€ETruckVector

e Constraints for each truck type:
Xpiesel * kMpieser < 0.5 * Total Km
Xing * kmpyg < 0.5 x Total Km
XgiornG * KMpiorne < 0.5 * Total Km
Xpvo100 * KMyyo100 < 0.5 * Total Km
XElectric * kmElectric < 0.5 *Total Km

XHydrogen * KMuyarogen < 0.5 x Total Km

(15)

(16)
(17)
(18)
(19)
(20)
(21)



Scenario B.2

This scenario mirrors Scenario A.2 as three decision variables are added. These represent the
coefficients as a percentage of the coolers of Nitrogen, HVO100 and Electric that would be used
for BioLNG trucks in each case. As each iteration has a different epsilon value, thus, a different
environmental target, this coefficients will vary, telling the analyst which the optimal cooler

type is to be used in each case.

Coefficient variables definition

BioLNGpyo100,,,; € [0,1] (22)
BioLNGyitrogen, oo € [0,1] (23)
BiOLNGElectriccoef € [011] (24)

Coefficient initial percentage constraint

BiOLNGHVOIOOC(,ef + BiOLNGNitrogencoef + BiOLNGElectriccoef =1 (25)

The only constraints that change in respect to scenario A.1 are the ones that state truck-cooler

combinations for BioLNG trucks.

e HVOI100 cooler constraint:
Yuvoio0 = Xgvoioo T BIOLNGHY0100.0e¢ * XBioLNG (26)
e Nitrogen cooler constraint:
YNitrogen = BiOLNGNitrogencoef * XBioLNG (27)
e Electric cooler constraint:

YElectric = XElectric T xHydrogen + BIOLNGElectriccoef * XBioLNG (28)



C Scenarios

These scenarios represent an even more realistic approach than the previous ones. This is
because it incorporates constraints defined directly by the company’s management. These
constraints include a minimum number of trucks based on Ginobili’s existing fleet composition,
ensuring that the current operational capacity is maintained. Additionally, a maximum cap is
introduced for LNG, BioLNG, HVO100, Electric and Hydrogen trucks, reflecting the
company'’s strategic preferences for these vehicle types, accounting for the maturity of

technologies and expected infrastructural development for alternative fuels in Italy.

Similarly to previous scenarios, this scenario is as well proposed in two ways, one with fixed
cooler-truck combinations (C.1), as specified by the company and another version with this
coefficients as decision variables to let the model choose which would be the optimal cooler to
be used for the BioLNG according to emission and economic targets in each iteration (C.2). As
the objective and the emission and budget targets remain the same, the only point that changes

are the constraints.

Scenario C.1

Truck-cooler combination constraints

Total Truck-Cooler Balance:

n m (5)
X = Z Yj
i€TruckVector j€CoolerVector
e Diesel cooler constraint:
YDiesel = Xpiesel T XLNG (6)
e HVO100 cooler constraint:
YHvo1o0 = Xuvoioo T 0.25* Xpiorng @)
e Nitrogen cooler constraint:
YNitrogen = 0.5 * XpjornG 3
e Electric cooler constraint:
YElectric = XElectric T xHydrogen +0.25 * XBioLNG (9)

e Diesel free fleet truck constraint:

Xpieset = 0 (10)

Current fleet composition minimum truck constraints

XBioLNG = D2 (29)



Xpvo100 = 5 (30)

XElectric = 3 (31)

Company management defined maximum truck constraints

Xing < 101 (32)
Xpiong = 350 (33)
Xnvo1o0 < 350 (34)
XHydrogen < 5 (35)
Xglectric < 26 (36)

Scenario C.2

In this scenario three decision variables are added. These represent the coefficients as a
percentage of the coolers of Nitrogen, HVO100 and Electric that would be used for BioLNG
trucks in each case. As each iteration has a different epsilon value, thus, a different
environmental target, this coefficients will vary, telling the analyst which the optimal cooler

type is to be used in each case.

Coefficient variables definition

BiOLNGHVOIOOCOEf € [0,1] (22)
BioLNGnitrogen ger € [0,1] (23)
BiOLNGElectriccoef € [0,1] (24)

Coefficient initial percentage constraint

BiOLNGHV0100c0ef + Bi0]-‘I\]GNitrogencoef + BiOLNGElectriccoef =1 (25)

The only constraints that change in respect to scenario A.1 are the ones that state truck-cooler

combinations for BioLNG trucks.

e HVOI100 cooler constraint:

Yuvoio00 = Xgvoioo T BIOLNGHY0100.0e¢ * XBioLNG (26)

e Nitrogen cooler constraint:

YNitrogen = BiOLNGNitrogencoef * XBioLNG (27)

e Electric cooler constraint:

YEtectric = XEtectric T XHydrogen + BiOLNGElectriccoef * XBioLNG (28)



3.6.2 Alternative scenarios

3.6.2.1 Fuel Price Forecast Scenario

In this scenario, an alternative approach based on market data is introduced. Using statistical
econometric models on time series, fuel prices for 2030 were forecasted to be integrated into the
optimization model as inputs. This allows analysis on how market-based data could influence
the decision-making process of the major supermarket company, serving as a sensitivity
analysis within the optimisation method. To achieve this, an analysis of fuel price forecasting
was done, along with a detailed examination of the specific characteristics and trends of the

different fuel types.
Fuel price forecasting model

To align with the company’s the sustainability goals for 2030, a fuel price forecasting model
became essential to be developed in order to provide input data for the optimization model to be

used. This forecasting model ensures the meeting of the defined constraints and objectives.

Based on the literature analysed, several potential approaches were considered. This includes
multivariate linear regression models, seasonal ARIMA models, machine learning models and
hybrid methods that combine trend modelling with a separate time series model for residuals
(Wang, 2024). These methodologies were evaluated, being trained and tested with the historical

fuel price data available from 2020 onwards.
The variable to be explained by the model is:
z;: Fuel price in the date i (EUR).

It has to be taken in account that the historical fuel prices in the past years have been influenced
not just by the COVID-19 pandemic (2020-2022) but also because of the war between Russia-
Ukraine (2022-), the OPEC+ decisions (2020-) and the macroeconomic policies of the

countries.
Theorical models analysed

To develop the fuel price forecasting model, various time series statistical models were analysed

from the theoretical information available and previous investigation being done on the topic.
Multivariate linear regression model

The multivariate linear regression model analysed to capture the fluctuations in the fuel prices
by using exogenous variables. This type of models is used to study extremely volatile gasoline
price and to improve the forecasting accuracy. Given that macroeconomic factors such as

inflation, USD/EUR exchange rates, global crude oil priced and the consumer price index are



linked to transportation costs (He, 2023), this model was proposed initially to capture these
dynamics. Since petroleum products are traded around the world in dollars, the exchange rate
became part of the analysis as this is done particularly in the context of Italy. Integrating
external factors to model fuel price in a specific date is a contextually relevant approach for the

subsequent optimization model.

To evaluate whether these contextual macroeconomic variables were representative of the fuel
price historical data available, a correlation analysis was developed (Data: ISTAT, European
Central Bank, Trading Economics). The analysis was done comparing initially the Diesel price,

which is the most used type of fuel used in logistics operations.

Correlation matrix between variables

100
Diesel Price I:D 75
Brent Spot Price - 0.50
-0.25

Inflation =
- 0.00

--0.25

-0.50
l—ﬂ 75

USD/EUR

Diesel Price -

Brent Spot Price _.
Inflation

USD/EUR -

Figure 5: Correlation analysis

After conducting the correlation matrix analysis, it is possible to state that there is a very strong
positive correlation with the Brent Oil spot price and a very strong negative correlation with the

USD/EUR exchange rate.

When assessing multivariate linear regression models, there is the need to execute the Variance

Inflation Factor (VIF) to measure the severity of multicollinearity in the analysis.

VIF = 10 states for severe multicollinearity, indicating that the variable might be redundant or

problematic in the model.

Variable VIF
Brent Spot Price 2.11
Inflation 309.6
USD/EUR 2.53
IPC 308.13

Table 4: First iteration’s variance inflation factor



From the results presented in Table 4, it could be seen that Inflation and IPC are strongly
correlated with one or more variables in the model. One of these variables might be redundant

or problematic, so the decision was to proceed taking out the IPC from the analysis. As IPC is a

direct indicator of inflation and run another VIF.

Variable VIF
Brent Spot Price 2.02
Inflation 1.84
USD/EUR 2.45

Table 5: Second iteration’s variance inflation factor

After taking out IPC from the analysis, there is no sign of severe multicollinearity, and the

multivariate linear regression model is constructed.

As highlighted in the literature, fuel price time series often exhibit seasonal patterns. To capture
this seasonality in the analysis, it was incorporated into the model by introducing monthly
dummy variables, adding them alongside the previously seen contextual variables (He., 2023).
The seasonality, trend and residual analysis of the Diesel Price historical data from 2020

onwards can be seen on Figure 6.

Diesel Price

Figure 6: Trend, seasonality and residuals of the Diesel Price historical data

The resulting multivariate linear regression curve is the following:
Z =Py + By *t+ZS; + OILPRICE + INF + USDEUR + ¢

Explanation of terms:

o Z;:Fuelpricein the date i (EUR)
o [3: Intercept where all explanatory variables are zero.

o [y xt:Time trend.

e 1§j:Seasonality monthly dummies corresponding to the months of the year.



e OILPRICE,INF,USDEUR: Exogenous variables.
SARIMAX

To improve the prediction accuracy of fuel prices introducing seasonality terms, due to the time-
dependent nature of fuel prices, the SARIMAX (Seasonal Autoregressive Integrated Moving
Average), an extension of the ARIMA model, was considered. This model, differently from the
previous described one, focuses on the temporal structure of the data, capturing trend and

seasonality patterns (Ntare, 2023).

The general ARIMA model is defined by three primary components: autoregressive (AR),
differencing (I), and moving average (MA) as shown in the formula ARIMA (p,d,q):

Ze =86+ 12 1+ Paze 2+ Ppzep tar — 0100 — -~ 0gae g (36)

where z; is level of differencing of the time series, the constant is notated by 6, while ¢ is an
autoregressive operator, a is a random shock corresponding to time period t, and 6 is a moving

average operator (Permanasari et al., 2013).

The Seasonal ARIMA (SARIMAX) (p,d, q) * (P, D, Q) is then composed of six primary

terms:

p: Captures the relationship between the observation and a number of lagged observations in the

dataset, explaining how the lagged values of fuel prices can predict future values.

d: Introduces the technique of differencing the data, subtracting the previous value from the

current one, to transform it into a stationary series.

g: This is the moving average term, that models the relationship between the observation and

the residual errors from lagged observations.

P, D, Q: Seasonal components that represent the same concepts as p, d, and g, but specifically

for seasonal patterns in the data.
XGBoost

As seen in the literature, XGBoost was used as one of the possible machine learning approaches
to model time series. It is an advanced supervised technique in which there are n decision trees
and iteratively, each new tree is iteratively refined using a gradient-based algorithm. As this
process continues, each tree considers the residual errors of the previous one until the most
accurate result is produced. The objective function of XGBoost consists of training loss and a

regularization term (Yang et al., 2023).



m T
L® = Z I(b; b)) + ; w(ft) (37)

o L, l(b; bi)represents the training loss.

e YT, w(f;) represents the regularization term.

This leads to the result of the model in the equation below, that is the sum of all the output

values of the trees produced:

T
b= filw)
38
& (38)
Hybrid Models

To combine the strength of different predictive time series techniques, hybrid modelling is

proposed. This type of models show often more accuracy than the standard ones (Wang, 2024).

The first model is applied over the base case and the model added is applied to model the

residuals between the predicted value from the first model and the historical data.
Two hybrid models are explored in this analysis:

e Multivariate linear regression + SARIMAX.
o This model addresses global trends with the linear regression by means of
macroeconomic factors and temporal patterns due to SARIMAX.
e Multivariate linear regression + XGBoost.
o This combination brings together statistical and machine learning techniques to
lead with predictive accuracy.
Linear regression identifies global trends with the macroeconomic factors and

XGBoost uses gradient-boosting algorithms to model residual errors.
Model selection and application

Each of the models proposed was structured and developed in Python. These were trained and
tested for each fuel to evaluate their performance with the historical data available. Train data

was selected as prior to 2024 while the test data is defined as from 2024 onwards.

In the models, the parameters for the SARIMAX model were determined using the auto_arima
Python library. This library uses the Akaike Information Criterion (AIC) as well in each of the
iterations evaluating model performance and selecting the parameters that show the lowest AIC

value as a result.



Consistent with the literature (He, 2023), each one of the models is ranked based on their Mean
Absolute Percentage Error (MAPE) and Root Mean Squared Error (RMSE).

Diesel

Diesel fuel remains one of the most used energy sources in the logistics industry due to its
efficiency and availability. The historical prices for diesel fuel from 2017 onward are shown in

Figure 7 below, obtained from Ministero dello Sviluppo Economico (n.d.).

Diesel Price Historical Data

= Real Diesel Price

Diesel Price [€/kg]
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Date

Figure 7: Diesel price historical data

From 2021 onward, diesel prices presented an upward trend. This was because the global
economy was recovering from the COVID-19 pandemic and as well geopolitical tensions

between Russia and Ukraine were emerging.

The alignment of the time series statistical model in the training step to the test data from 2024
is shown in Figure 8. Among the models evaluated, it is possible to see that the hybrid Linear +

SARIMAX model is the one that best follows the historical data of Diesel Prices shown in blue.
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Figure 8: Diesel Price model prediction comparison versus Diesel test data



After analysing visually, the calibration of the model to the historical data, a quantitative
evaluation was conducted to assess the different model’s predictive accuracy. The MLR +
SARIMAX achieves the best performance of the four, with the lowest MAPE and RMSE,

confirming it ability to cover both macroeconomic and seasonal factors.

Model MAPE (%) RMSE Ranking
SARIMAX 1.302 0.027 2
MLR 1.697 0.034 3
MLR + XGBoost 1.713 0.034 4
MLR + SARIMAX 1.092 0.025 1

Table 6: Diesel model accuracy and validation

When selecting the top-ranked model, the forecast is made up to 2030 generate results to input
into the optimization model. The projected Diesel price values up to 2030 are be shown in the
figure below. To account for potential errors in the predictions, one standard deviation of the
residuals was added to the forecasted Diesel price that is shown represented by the orange-

shaded area above and below the predicted points.

Diesel Price Prediction (Linear + SARIMAX)
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Figure 9: Diesel price prediction up to 2030
LNG

Liquified Natural Gas (LNG) has become a key source in the logistics industry. It offers a
cleaner alternative to the most traditional fossil fuels like diesel. The war and the recent
geopolitical changes in the European region had a substantial impact in LNG prices, that is why
for convenience the range of the selected historical data is bigger to evaluate trends and

seasonality with a better accuracy.

The historical prices for LNG from 2017 onwards are shown below, obtained from Mercato

Elettrico (n.d.).



LNG Price Historical Data
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Figure 10: LNG price historical data

The figure highlights an all-time high in LNG prices during August 2022. This spike could be
attributed to the geopolitical tensions and sanctions imposed to Russia because of the Russia-

Ukraine war, that disrupted global energy markets.

After analysing the historical data, the statistical models were trained and fitted with data from
2017 onward due to the significant price spikes in 2022 because of the war. The availability of
an extensive data source fulfilled model requirements, as having more data makes the peak price
less impactful for future price predictions. These were subsequently tested on data from 2024 to

evaluate their performance.
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Figure 11: LNG Price model prediction comparison versus LNG test data

After analysing visually, the calibration of the model to the historical data, a quantitative
evaluation was conducted to assess the different model’s predictive accuracy. The MLR +
SARIMAX achieves the best performance of the four, with the lowest MAPE and RMSE,

confirming its ability to cover both macroeconomic and seasonal factors.



Model MAPE (%) RMSE Ranking
SARIMAX 12.901 0.069 2
MLR 16.076 0.081 4
MLR + XGBoost 14.914 0.079 3
MLR + SARIMAX 12.357 0.069 1

Table 7: LNG model accuracy and validation

When selecting the top-ranked model, the forecast is made up to 2030 generate results to input
into the optimization model. The projected LNG price values up to 2030 are be shown in the
figure below. To account for potential errors in the predictions, one standard deviation of the
residuals was added to the forecasted LNG price that is shown represented by the orange-shaded

area above and below the predicted points.
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Figure 12: LNG price prediction up to 2030
BioLNG

BioLNG is an innovative fuel derived from renewable sources. It is LNG but from a non-fossil
origin. It is a fuel produces from biogas, developed from the treatment of organic waste flows
such as agricultural waste, sewage sludge or landfills. This renewable energy source offers a
carbon-neutral alternative as its production and use can reduce GHG emissions in comparison to

fossil fuels.

In the last years, BioLNG has gained attention in the logistics and transportation industries
because of its high potential to decarbonize supply chain operations. As regulations on the
environment increase, this fuel type provides an environmentally friendly alternative without
compromising operational efficiency, as it is even used in heavy-duty trucking and shipping
operations. Historical development and market adoption of this type of fuel is tied to

advancements and investments in technology, joined to policy shifts and promotion of



renewable energy sources. The challenge of increasing the availability of the infrastructure for

the availability of this fuel remains, but advances are made as years pass by.

Historical prices for BioLNG from the data available from 2022 onward are presented below,

retrieved from Agriportance (n.d.) representing its recent market evolution.
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Figure 13: BioLNG price historical data

Figure 13 highlights a price peak during the year 2022, likely driven by the war in Ukraine and
the world’s geopolitical context. In the next years, as technological advances in production and

infrastructure improved and market conditions stabilized, prices steadily lowered.

After analysing the historical data, statistical models were trained and fitted with data from 2022
onwards to capture trends and seasonality. Model performance was tested using data from 2024

to look for their predictive accuracy on recent trends.
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Figure 14: BioLNG Price model comparison versus BioLNG test data

After analysing visually, the calibration of the model to the historical data, a quantitative
evaluation was conducted to assess the different model’s predictive accuracy. The MLR +
SARIMA achieves the best performance of the four, with the lowest MAPE and RMSE,

confirming its ability to cover both macroeconomic and seasonal factors.



Model MAPE (%) RMSE Ranking
SARIMAX 3.705 0.069 2
MLR 4.028 0.077 4
MLR + XGBoost 4.2 0.079 3
MLR + SARIMAX 3.014 0.055 1

Table 8: BioLNG model accuracy and validation

When selecting the top-ranked model, the forecast is made up to 2030 generate results to input
into the optimization model. The projected BioLNG price values up to 2030 are be shown in the
figure below. To account for potential errors in the predictions, one standard deviation of the
residuals was added to the forecasted BioLNG price that is shown represented by the orange-

shaded area above and below the predicted points.
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Figure 15: BioLNG price prediction up to 2030

HVO100

HVO100 is a renewable diesel fuel derived from various vegetable oils or animal fats using a
hydro-treating process. The process indicated removes oxygen from the raw materials, creating
compatibility with modern diesel engines and offering GHG reduction (Suarez-Bertoa et al.

2019).

In the recent year, this fuel type has gained popularity due to its high performance and strict
environmental regulations. It provides an efficient alternative for decarbonizing read
transportation. Currently, the production of HVO100 is largely based on feedstocks such as
palm oil and other vegetable oils, raising concerns about its sustainability due to the

environmental and social impacts associated with palm oil cultivation.

Historical prices for HVO100 are presented in the figure below, retrieved from Vespertool (n.d.)

showcasing its price evolution from 2021 onwards.
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Figure 16: HVO100 price historical data

The graph highlights the impacts of geopolitical and market events on HVO100 pricing such as
price peaks during the energy crisis in 2022, where the demand for this type of fuel was growing

Within the years, this fuel is improving its production capacity and supply chain resilience,
while stabilizing in prices.

To better understand market behaviour and predict future trends, statistical models were trained
using historical data from Vespertool (n.d.). The models included SARIMA, MLR, MLR

combined with XGBoost and MLR combined with SARIMA, with their performance evaluated
on data from 2024.
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Figure 17: Model prediction comparison versus HVO100 test data



Model MAPE (%) RMSE Ranking
SARIMA 6.231 0.087 4
MLR 6.373 0.085 3
MLR + XGBoost 4.987 0.077 2
MLR + SARIMA 4.695 0.066 1

Table 9: HVO100 model accuracy and validation
As seen on table 9, the best performing model is MLR + ARIMA and therefore it was selected

for long-term forecasting. The forecast of HVO100 prices up to 2030, represented in the figure
below, includes an uncertainty band to account for potential errors by incorporating one

standard deviation of residuals.
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Figure 18: HVOI100 price prediction up to 2030

Green Electricity

As the world moves towards a sustainable future, electricity generation is shifting away from
fossil fuels and towards renewable sources such as wind, solar and hydropower. This transition
to green electricity is critical for reducing GHG and achieving energy security. However, as
demand for electricity demanding products increases, so does its renewable and non-renewable
sourcing. The variability of its price remains a challenge, as it depends on production capacity,

city electrification, geopolitical factors and weather conditions.

In this model, it is important to distinguish between grid electricity (which may still rely on non-
renewable sources) and green electricity, which directly supports sustainability goals for 2030.
To align with the goals for the major supermarket company, the model incorporates GO
(Guarantees of Origin) prices into the electricity cost. This approach emphasizes the promotion

of renewable energy sources like wind, solar, and hydropower in Italy.




Over a third of the electricity produced in Italy comes from green sources: hydroelectric power
has always dominated, followed by solar photovoltaic, bioenergy, wind power, and geothermal
(Enel, 2023). In this country, mountainous regions, particularly in the Alps and the Apennines,
provide excellent opportunities for hydroelectric plants. The panorama in this aspect is evolving
as 0f' 2021, 40.91% of the country's electricity comes from renewables, compared to 27.68% in

2011 (HivePower, 2021).

For Ginobili, this would represent a new initiative, and the most practical solution lies in
purchasing both GO certificates and electricity from the grid, thus reinforcing their commitment

to green energy objectives.

Historical data on grid electricity prices and GO prices were analysed, as illustrated in Figures
19 and 20 below. The GO price data was sourced from Gestore Mercati Elettrici (n.d.). This
data included details such as the type of energy source (wind, solar, hydroelectric), the volume
available per source, and the corresponding price. To account for the availability and variability
of different sources, a weighted monthly average price was calculated based on the data
available from GME and the energy sources available per date. The weighting was based on the
total volume of electricity produced and the contribution of each energy source on a given date,

ensuring a comprehensive and accurate representation of GO prices in the model.
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Figure 19: Electricity historical price
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Figure 20: GO historical price

The figure illustrates price volatility, with peaks resembling those of LNG during the 2022
energy crisis when electricity costs surged due to gas supply disruptions and rising demand.
Stability followed as infrastructure improvements, supply chain adaptability, and market
adjustments helped reshape the landscape. A similar trend is visible in GO prices, which saw

significant spikes during the energy shortages caused by the Russia-Ukraine war.

To forecast electricity prices, statistical models were developed and tested using Gestore
Merecati Elettrici (n.d.) historical data to capture trends and seasonality. These models include

SARIMAX, MLR and hybrid models as MLR + XGBoost and MLR + SARIMAX.

Their performance was evaluated using 2024 data and can be seen in the figure below.
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Figure 21: Model prediction comparison versus green electricity test data

The table below summarized the quantitative evaluation of these models with the MAPE and

RMSE metrics, with MLR + SARIMAX achieving the best performance.



Model MAPE (%) RMSE Ranking
SARIMAX 7.193 9.079 2
MLR 12.915 15.445 4
MLR + XGBoost 12.801 15.443 3
MLR + SARIMAX 5.826 8.286 1

Table 10: Green electricity model accuracy and validation

The prediction made with the model can be seen in the figure below, that captures linear trends

as well as seasonality patterns.
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Figure 22: Electricity + GO historical price
Hydrogen

Green hydrogen faces major challenges, especially in transportation due to high costs and safety
risks. Its low energy density requires intensive compression or liquefaction, making distribution

inefficient as well as introducing safety concerns (GenHydro, 2023).

Deciding between in-house production or external sourcing remains uncertain. Hybrid models
may also develop. As a result, green hydrogen is excluded from quantitative analysis for now,
given the lack of reliable data needed for a complete evaluation. Studies show that current
production, transport and storage costs are higher than fossil fuels with carbon capture (The

Wall Street Journal, 2024).

To offset costs, financial support is crucial. The European Union funds hydrogen projects
through the Connecting Europe Facility for Energy, the Innovation Fund, and Horizon Europe
(EU Hydrogen Observatory, 2023). Research, policy support and subsidies are essential for

green hydrogen to compete with traditional energy sources.




3.6.2.2 Qualitative Scenarios

In a dynamic context, multiple exogenous scenarios could emerge, significantly influencing the
outcomes of the fleet mix optimization model. These scenarios encompass a wide rage of
uncertainties, including shifts in resources supply chain, technological advancements, economic
conditions and regulatory frameworks representing different macroeconomic and policy

scenarios.

The inclusion of qualitative scenarios allows for a comprehensive exploration of the potential
challenges and opportunities that could surge in the world. Exogenous events such as the war
between Ukraine and Russia and the COVID-19 pandemic showed that external factors
significantly affect the way of doing business in certain contexts and involve a different process
of decision-making for the companies. The major supermarket company should also take into
consideration its ability to adapt to external factors that could happen on the way to 2030 and
how would these affect their decision to be taken to comply with their sustainability goals. In
this way, a sensitivity analysis is provided to the model, based on possible real and accountable

situations in the future.

Through this analysis, the model not only offers optimized solutions but also equips decision-
makers with a deeper understanding of the contextual drivers that may affect the project
implementation. These insights are critical for ensuring that the proposed fleet configurations
remain resilient and aligned with long-term economic, environmental, and operational

objectives.

3.6.2.2.1 Supply chain and Resource Scarcity Scenarios

Global supply chains are highly susceptible to disruptions, with resource scarcity and
geopolitical instability being critical factors that could significantly impact fuel availability and
pricing (Rasshyvalov et al., 2024). These scenarios explore how constraints in the supply key of
raw materials and energy resources could influence the supermarket company’s fleet mix

optimization set of solutions.

The scarcity of raw materials, such as those required for the HVO100 production with the palm
oil export restrictions, exemplify how domestic policies can ripple though global markets (Lin,
2025). For instance, Indonesia’s brief palm oil export ban in 2022 caused a sharp increase in
prices, illustrating the potential for such disruption to inflate production costs and create
reliance on fossil fuels like diesel (Medina, 2022), what would differ from Ginobili’s

sustainability goals in the fleet mix for 2030.

In a similar way, the gas crisis in Europe during 2022-2023 showed the volatility of energy

markets in the face of geopolitical conflicts. Russian gas supply disruptions, compounded by



EU’s sanctions let to an unprecedented LNG price volatility and cascading effects on electricity

and diesel prices (Chen et al., 2023).
Scarcity of Raw Materials for HYO100

Global production capacity for biogenic fuels is expanding rapidly. By 2025, global HVO
production is expected to surpass 30 million tonnes, offering a potential reduction in carbon
emissions of up to 90% compared to fossil diesel (CLAAS, 2023). In the current market trends,
about 70% of biodiesel is based on vegetable oils (14% rapeseed oil, 23% soybean oil, and 29%
palm oil) and used cooking oils (25%) (OECD &FAO, 2023). This contextual information
shows that palm oil is and was the dominant feedstock for HVO production, but this trend could
shift following the 2023 ban on palm oil in Germany and other EU countries due to concerns
over deforestation linked to Indonesia and Malaysia. Together, Indonesia and Malaysia account
for 85% of global palm oil production, making them leaders in biodiesel production (Mai,
2024). The EU's Renewable Energy Directive, which seeks to reduce the use of palm oil-based
biofuels, has sparked significant criticism from both Indonesia and Malaysia, with their leaders
stating the EUDR as “regulatory imperialism” (Mai, 2024). In relation to this, it is possible to
say that the actual environment around this regulation is tense and could make changes towards

the future following the complaints from the Asian countries’ leaders.

It is useful to add as well that a potential rise in the HVO price can be accounted for due to the
anticipated increase in palm oil prices, driven by Indonesia’s plan to implement a 40% biodiesel
blending mandate (B40) by 2025. This mandate requires a certain share of diesel fuel,
particularly in the transportation sector, to be blended with 40% palm oil, replacing the current
B35 blend (Biofuels International, 2024). This policy is expected to support palm oil prices,
possibly pushing them 10 to 15 percent higher in early 2025 (Sun & Palma, 2024).

The tighter supply of palm oil in the EU, combined with Indonesia’s subsidy structure and plans
to increase blending mandates could result in higher costs for palm oil, which is currently a key

feedstock for HVO production.

As a sensitivity analysis to account for this palm-oil resource scarcity as a mean of HVO100
production, a 30% price increase was introduced in the model for this fuel type, to simulate an
extreme situation, following the magnitude of the maximum limit amount of the rise of palm-oil
prices. In this way, the model offers an insight for the major supermarket’s company decision

making process in order to account with a possible HVO100 price rise in the future years.
Gas Crisis in Europe

The gas crisis scenario is a perfect example of how a geopolitical situation as a war can affect

the fuel prices and therefore the results of the fleet mix optimization process. The European gas



crisis of 2022-2023 revealed the fragility of energy markets when reliant on unstable supply
chains. Following significant Russian gas supply disruptions, LNG prices exhibited
unprecedented volatility, increasing approximately 14-fold from 2019 to 2022, peaking at
$70/MMBtu in August 2022 (IMF, 2022).

This price increase was driven by European sanctions on Russia, increased dependence on U.S.
and Qatari LNG (which accounted for nearly 50% of EU imports in 2023), and insufficient gas
storage infrastructure (IMF, 2022). Simultaneously, electricity prices in key EU markets rose by
200-300% due to the region's heavy reliance on natural gas, which represented 20-25% of its

energy mix (IEA, 2022).

This volatile context underscores the importance of resilience in energy market decision-
making. For instance, to consider possible geopolitical events as crisis in the model developed, a
sensitivity adjustment was applied to simulate a 200% increase in LNG and electricity prices as
price spikes, based in the historical data of what happened in the case of the gas crisis because
of the Russia-Ukraine war (Chen et al., 2023). This is introduced a posteriori for the epsilon
constraint model, performed as a sensitivity analysis to provide an attainable solution set in this

context.

3.6.2.2.2 Macroeconomic and Policy Scenarios

Understanding macroeconomic shifts and policy developments is crucial for evaluating fleet
mix optimization strategies. By analysing historical trends and as well projecting the impact of
possible future events, key scenarios can be simulated that could affect energy markets and thus
fuel prices, having an impact in the major supermarket company’s decision-making process.
These insights provide valuable information for the sensitivity study to assess potential risks and

opportunities for Ginobili under changing economic and policy scenarios.
LNG Ban

The potential for an LNG truck ban in urban areas across certain EU countries in the coming
years is examined as a possible scenario for the European continent, particularly in light of the
2030 sustainability goals. Following the removal of diesel vehicles from cities like Paris,
Madrid, and Athens by 2025 (UNFCCC, 2020) to improve air quality, similar regulations could
be implemented for LNG trucks as part of a broader transition to more sustainable fuel
alternatives in the future. This scenario is incorporated as a sensitivity test to assess the model's
response in the event that LNG trucks are excluded from the optimal fleet mix within the

feasible solution set.



Renewable Content Mandates Increase

In the A Scenarios, the minimum number of trucks is determined based on the EU RED II
regulation, which mandates that by 2030, at least 14% of the transport fleet must be powered by
renewable fuels, with a minimum of 3.5% derived from biofuels. As part of the sensitivity
evaluation, analysing variations in the optimal fleet mix by adjusting these percentages offers
valuable insights. Considering that European mandates may be updated or revised in the future,
this analysis provides a realistic perspective for assessing the viability of the project within the

context of evolving regulations.

For this scenario, two new inputs will be used for the model to show an extreme situation of a
possible revision made in the RED II mandate: the fleet's minimum renewable energy content is

set at 25% and its minimum biofuel share is set to 7.5%.



4 Results and Discussion

The results section illustrates the optimal fleet mix for the major supermarket company,
depicting the trade-off between costs and emissions that emerges in the decision-making
process of making an investment of this kind. The company has to fit their sustainability 2030
goals while covering its operations costs generating a surplus profit margin to justify the

investment.

The solution of each scenario (Base and Alternative case scenarios) is visualised through a
Pareto frontier to visualize the decision process trade-off, a cost and emission graph to show the
impact across iterations because of the truck and cooler choices and by depicting the truck and

cooler quantities selected by the model in each case.

Initial and advanced subcases are detailed in each case, with the initial having fixed truck-cooler
combinations and, in the advanced subcase, the possible combinations are introduced as
decision variables, to let the model decide which cooler to select for the truck types that are not

reliant in one specific fuel technology for their operation.

The Pareto frontier represents the range of feasible cost and emission values, enabling Ginobili
to visualize their operational trade-offs. This visualization identifies fleet mix solutions that

align with both budgetary and emissions constraints.



4.1 Base Case Results

The results of the evaluation of these scenarios are presented in the Section 7.2 of this thesis.
4.1.1 A Scenarios

As mentioned in section 3.5.2, the A scenarios align with the EU RED II directive, which was

revised in October 2023. This directive requires at least 14% of the fleet to be powered by

renewable energy and at least 3.5% by biofuels (European Commission, 2018). Additionally,

these scenarios introduce a risk management approach by setting a maximum truck usage limit,

ensuring that no single truck accounts for more than 50% of the annual distance.
Scenario A.1

The pathway to analysing the initial approach for the regulation-compliant, risk-managed

scenario revealed the Pareto frontier shown in Figure 23.
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Figure 23: Scenario A.1: Eco-efficient Pareto Frontier

The pareto frontier graph highlighted the trade-off between total emissions in Kg CO2e and the
total costs in euro for Ginobili’s fleet mix decisions. The curve is developed in the range of
5,568,548 Kg CO2e¢ as single environmental objective and of 55,025,819 Kg CO2e as the single
economic objective. The steep decline in the leftmost portion of the curve (with a gradient of -
13 €/kgCO2) indicated that achieving low emissions incurred significantly higher costs,
reflecting the adoption of expensive low-emission technologies or fuels. As the curve flattened
in the middle, the cost reduction slowed, suggesting a more balanced trade-off where moderate
emissions reductions can be achieved without disproportionate increases in cost. Towards the
right, the curve showed a plainer structure, showing that beyond the 24,640,000 kg CO2e
emission level (where the gradient passes from -4.13 €/kgCO2 to -0.215€/kgCO2 according to

the calculations seen in the Appendix 7.2) further increases in emissions yield minimal cost



savings, likely due to reliance on more cost-efficient but higher-emission options like LNG

could be.

A truck-cooler cost and emissions comparison provided valuable insights by visualizing the
distribution of total costs across each solution set, highlighting the individual contributions of

both trucks and coolers to the overall expenses.
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Figure 24: Scenario A.1: Cost and emissions comparison

It becomes evident in figure 24 that trucks dominated the cost curve, contributing the majority
of the expenses. However, when analysing emissions, coolers exhibited a slightly higher relative
impact compared to their cost contribution, though their overall emissions impact remained

much lower than that of trucks.

To evaluate the solution set provided by the epsilon constraint optimization process it is useful

to examine the figure 25 below, separating the truck quantities between two different bounds:

Under and over budget.
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Figure 25: Scenario A.1: Truck quantities

In Figure 4.1.3, the initial iterations (up to iteration 30, focused on environmental priorities)
show a clear emphasis on selecting environmentally friendly alternatives, particularly Hydrogen
and Electric trucks. During the early iterations, where the emissions cap was set very low, these

trucks dominated the fleet composition. However, as the emissions cap gradually increased, the



number of Hydrogen trucks decreased, while the model began to incorporate more BioLNG

trucks.

Electric trucks, on the other hand, were consistently chosen by the model up to the 20th
iteration, corresponding to an emissions cap of 14,000,000. Beyond this point, the model shifted
its focus, prioritizing BioLNG and HVO100 trucks due to their favourable balance of cost and

emissions.

By the 33rd iteration, when the emissions cap exceeded 25,000,000, the model began to favour
the most cost-efficient option, LNG trucks, while maintaining a steady number of BioLNG
trucks. At the same time, it progressively reduced the number of HVO100 trucks, eventually

phasing them out completely.

In the under-budget part of the curve, Ginobili has the possibility to evaluate the truck quantities
to be chosen for their project to be established into their economically constrained structure. The
trade-off relied in a constant quantity of 268 BioLNG trucks and, according to the emissions cap

desired, a choice between adding a specific number of LNG or HVO100 trucks.

The graph in figure 26 illustrates the evolution of cooler quantities across iterations, driven by

the model’s constraints, linking cooler choices to truck types.
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Figure 26: Scenario A.1: Cooler quantities

Electric coolers dominated early iterations (they start in 818 coolers) due to their association
with Electric and Hydrogen trucks. However, as the model transitioned toward iterations with a
higher emissions cap and a stronger focus on cost-efficiency, the quantity of Electric coolers

steadily decreased up to the constant number of 67 coolers.



HVO100 coolers, represented in the red line, gradually rise, peaking around iteration 30, with
313 coolers, as they are tied to HVO100 trucks and partially tied to BioLNG trucks, but their

number declined as the model’s focus shifts to LNG trucks and cost-effective solutions.

Diesel coolers started to rise around the same iteration number that the HVO100 coolers peaked
and started to fall. In the model’s greatest economic approach, the number of Diesel coolers had
its peak in 268 coolers. Nitrogen coolers, remain relatively constant (132 coolers) but limited in
quantity, reflecting their connection to the BioLNG trucks’ number shown in the previous

analysis.

In the budget efficient portion of the graph, the major supermarket company’s choice would be
selecting a constant number of 132 nitrogen coolers and 67 electric coolers and a decision

between a number of Diesel and HVO100 coolers.

Scenario A.2

This scenario advanced Scenario A.1 by considering the coefficients that represent the
combinations of different cooler types and BioLNG trucks as decision variables. This
introduced an additional degree of freedom to the model, allowing for a more advanced
approach that enabled the model to select the best possible solution in each case using a non-

linear optimization method.

The pareto frontier of this advanced configuration is shown in the figure 27 below.
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Figure 27: Scenario A.2: Pareto Frontier

The pareto frontier for scenario A.2 demonstrated a different cost-emissions relationship
compared to the one of scenario A.1. The curve started from an environmental single objective
on 5,403,631 kgCO2 ended on the economic single objective of 56,049,844 kgCO2. In figure
4.1.5, the initial steep decline (average gradient -17.43€/kgCO?2) is heavier than the one of



1e8

scenario A.l, indicating a stronger focus on minimizing emissions at the expense of higher costs
for the actual situation. The degree of freedom that having the BioLNG coefficients as decision
variables involves is that the curve started in both slightly lower cost and emission points. With

respect to scenario A.1, the steep is similar in the midsection part of the curve.

At the tail end of both scenarios, the behaviour converged, as both frontiers flattened and
reached similar low-cost solutions for higher emissions caps. However, A.2 (average gradient
-0.218 €/kgCO02) higher flexibility allowed the curve to reach lower cost values than the
previous scenario. While A.1 adopted a more balanced approach with lower gradients in the
curve, A.2 had higher gradients due to the model’s higher adaptability to the objectives to be

searched.

Cost Comparison Across Iterations 1e7 Emissions Comparison Across lterations

— Total Cost
== Btal Truck Cost
—-- Ttal Cooler Cost

—— Ttal Emissions
Tuck Emissions
—-- Coaler Emissions

=

Emissions (Kg CO2e)
w

30 40 50 0 10 20

Iteration

Figure 28: Scenario A.2: Cost and emissions comparison

In figure 28, a cost and emissions breakdown were developed. The results from these graphs
were very similar to the ones from A.1, with the trucks incurring most of the costs for the
different fleet solution sets. It can be seen in the emissions graph, that due to the coolers’
coefficient adaptability, the coolers represented a relatively lower cost than in A.1 in respect to

the trucks.
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Figure 29: Scenario A.2: Truck quantities



While evaluating figure 29, the review is very similar to the one of scenario A.1, with almost no
impact in truck choices with the insertion of the cooler coefficients as decision variables in the
model. However, the importance of this coefficient-varying alternatives, relied in the cooler

quantities that the model chooses, that can be seen in the figure 30.
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Figure 30: Scenario A.2: Cooler quantities

As seen in figure 30, in this scenario, the cooler selection under non-linear optimization showed
a more abrupt progression compared to the linear approach in Scenario A.1. Electric coolers
started at 834 units and declined steeply to just 47 by iteration 32, while in A.1, they began at
818 and decreased more gradually to 83.

HVO100 coolers remained unused until iteration 16 in A.2, then rapidly increased to 513 by
iteration 33, contrasting with A.1, where they started at 5 units and grew steadily to 310 by the
same point. Nitrogen coolers were only selected in the final iterations of A.2, reflecting a clear
preference for HVO100 over Nitrogen, unlike A.1, which consistently integrated 134 Nitrogen
coolers from iteration 10 onward. Diesel coolers in A.2 were introduced later but peak at the
same 269 units as A.1, illustrating the non-linear model's flexibility and efficiency focus. The
breakdown of coolers for BioLNG trucks is depicted in figure 4.1.9. It is observable that the
model chose optimally Electric coolers for its BioLNG trucks in the environmentally efficient
segment of the graph while then selected HVO100 and Nitrogen coolers in economically
efficient solution sets. The freedom of choice of different coolers to connect with BioLNG
trucks makes Nitrogen coolers appear in the end of the curve of Figure 4.1.8 what shows the

impact of having a non-linear model in the optimization process.
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Figure 31: Scenario A.2: BioLNG coefficients

4.1.2 B Scenarios

B Scenarios, following the approach depicted in section 3.5.1, have a constraint in the minimum
number of trucks based on the existing fleet available at the supermarket company. The
maximum number of trucks constraint is defined as in scenario A based on the mileage of the
trucks following a risk-based approach, not allowing any of the truck types to cover more than

the 50% of the total yearly distance travelled.

The trucks available in the major supermarket’s company fleet at the time the information was

provided are:

e BioLNG Trucks: 52.
e HVO100 Trucks: 5.

e FElectric Trucks: 3.

So, in each of the solution sets provided, the model will consider these trucks as part of the final

composition.



Scenario B.1

The pathway to analysing the initial approach for the current fleet, risk-managed scenario

reveals the Pareto frontier shown in Figure 32, as done in scenario A.
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Figure 32: Scenario B.1: Pareto Frontier

In this case, the initial value of emission starts in 6,527,783 kgCO2 and it ends in 55,227,486
kgCO2 for the single economic objective. As part of the curve interpretation, the initial steep
decline zone (with an average gradient of -13.29€/kgCQ2), which prioritizes environmental
objectives, had a slightly lower duration than the one from scenario A.1, indicating that the
significant cost reductions were achievable over a shorter emission range. This could show this

case offered a lower selection of cost-saving transitions, likely through a different mix of trucks.

The single objective environmental optimization (the first point in the pareto frontier) reported
an emissions value 17.22% higher than the one in scenario A.1, that is seen on Appendix 7.2
results and that showed the effect on the degree of freedom taken from the A models as using
the trucks existing in the actual fleet and not having the possibility to select the max quantity of
eco-efficient trucks. Comparatively, the Scenario A.1 offered consistently lower emissions

throughout iterations.

In the mid part of the curve (with an average gradient of -4.1 €/kgC0O2) the model did a
transition between the environmental and the economical approach, particularly doing a trade-
off between the quantity of BioLNG and Electric trucks, that can be seen as well in figure X.
With respect to A.1 scenario, the model needed one less iteration to arrive to the tail of the

curve, this means the adjustment is made a faster in term of cost and emissions.

In the tail of the curve, it is useful to consider, that with an average gradient of -0.212€/kgCO2,
the model arrived to a higher cost economic single objective solution in respect to A.1

(127,245,918€ vs. 126,841,320€). This outcome is understandable from the perspective that this



model had an initial fixed truck number. This reflects an initial cost increase as the model can’t

use the most efficient solution in each case because of the lower degree of freedom.
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Figure 33: Scenario B.1: Cost and emissions comparison

As examined in previous scenarios, the trucks take most of the cost and emissions structure,

shown in figure 33.

Truck Quantities Across |terations with Budget Constraint

500 — Diesel T
LNG T
BioLNG_T
HVO100_T
00 Electric T
Hydrogen T
Under Budget
Over Budget
0 Under Budget
= 300
g \ N
k=] \
T AN
2 .
™
E 200 \\
\t
™
\\
100 N
0 —
o 10 20 30 40 50

Iterations

Figure 34: Scenario B.1: Truck quantities

In Scenario B.1, as shown in figure 34, the transition towards alternative fuels is evident, with a
complete absence of diesel trucks across all iterations. LNG trucks emerged only after iteration
31, steadily increasing to 269 units by the end, while BioLNG trucks started with 52 and rapidly
grew to dominate the fleet with 268 units by iteration 19, maintaining this count throughout.
Electric trucks, initially prominent at 394 units, were gradually phased out, reaching just three
units by iteration 31. Similarly, hydrogen trucks started strong with 350 units but declined
steadily, disappearing completely after iteration 20. HVO100 trucks showed a sharp rise,
peaking at 250 units by iteration 31, but this was followed by a significant drop, leaving only 11

units by the last iteration.

The methodology in Scenario B.1 suggests a strategic focus on BioLNG as a primary fuel

source, with the initial 52 trucks present in the actual fleet, with LNG as a late addition to the



mix. Electric and hydrogen trucks, despite their early dominance, are deprioritized as iterations
progress, reflecting a shift away from these technologies. HVO100 trucks also experience a
temporary surge but were ultimately phased out, indicating their limited role in the long-term

fleet composition.

Cooler Quantities Across Iterations with Budget Constraint

800 o~ —— Diesel_C
—— HVO100_C
700 h Nltrug.en_t
Electric_C
Under Budget
B00 Over Budget
; 9 Under Budget
500
N

400 N

300

Number of Coolers

200

100

Iterations

Figure 35: Scenario B.1: Cooler quantities

In figure 35 it is possible to see, as in scenario A.1, the cooler selection began with Electric
coolers as the dominant choice, starting at 757 units in the Environmental Single Objective (A.1
started with 818) and steadily decreasing to just 70 units by the later multi-objective stages.
HVO100 exhibited a sharp upward trend, growing from 18 units in the initial stages to a peak of
317 units in the final multi-objective stage. Nitrogen coolers usage also increased gradually,
peaking at 134 units, while Diesel coolers were introduced late in the process, beginning at 9

units and reaching 269 units under the Economic Single Objective strategy.

Comparing to Scenario A.1, the trends aligned in general, but there were differences in
magnitude and pace. For instance, Electric coolers started higher in A.1 at 818 units and
decreased more gradually to 67 units in the final stages. The transition in HVO100 coolers was
more abrupt in B.1, where its peak of 317 units was higher than A.1’s peak of 310. This
indicated a stronger emphasis on biofuels in Scenario B.1. Additionally, Diesel coolers appear
slightly later in B.1 and grew more aggressively, reaching the same final value of 269 units as in
A.1 but over a shorter range of optimization steps. The truck-cooler connections previously
depicted are maintained in the models and this is why the cooler selection only differed in

magnitude between scenarios, but the trends were similar.



Scenario B.2
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Figure 36: Scenario B.2: Pareto Frontier

In the analysis of scenario B.2 Pareto frontier, visualized in figure 36, the curve began with a
steep initial decline phase characterized by an average gradient of approximately -
17.83€/kgCO2. This segment is much steeper than the one provided in figure X, for scenario
B.1 (average gradient -13.29€/kgCQO2). This indicates that B.2 offered more significant

opportunities for cost-effective emission reductions.

The single-objective environmental optimization points in B.2 achieved an emissions value of
6,139,589.96 kgCO2, which represented a 5.95% reduction compared to the B.1 equivalent
value of 6,527,782.91 kgCO2. However, this improvement came at nearly the same cost
(269,836,470€ in B.2 vs. 269,871,155€ in B.1), demonstrating the efficiency of the additional

decision variables in achieving environmental objectives without significant cost penalties.

In the middle section of the curve, B.2 spanned a smaller range of emissions reductions
compared to B.1, with the same gradient, suggesting a faster adaptation to cost-effective

solutions as more degrees of freedom are introduced.

In the tail of the curve, the slope resembled that of B.1. However, the final economic solution in
B.2 achieved a cost of 126,947,212€ with emissions of 56,091,471.88 kgCO2, compared to
127,245,918.9€ and 55,227,486.48 kgCO?2 in B.1. The difference is primarily attributed to the

steeper slopes observed in B.2 during the earlier iterations.
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Figure 37: Scenario B.2: Cost and emissions comparison

In figure 37, a cost and emissions breakdown were developed. The results from these graphs
were very similar to the ones from B.1, with the trucks incurring most of the costs for the

different fleet solution sets, whereas cooler impact more on the emissions profile.
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Figure 38: Truck quantities Scenario B.2

To perform the truck quantities analysis in this scenario, comparisons were developed between
the fixed coefficient scenario to give an overview to the effect of adding truck-cooler

coefficients as decision variables.

To start, LNG trucks, absent in the initial iterations of both scenarios, emerged earlier in
Scenario B.2, appearing at iteration 32 compared to iteration 33 in Scenario B.1. They reached
the same peak of 269 units by the end. BioLNG trucks showed similar initial behaviour in both

scenarios, starting at 52 units.

In Scenario B.2, they reach stability at 269 units by iteration 14, two iterations earlier than in
Scenario B.1, where they stabilized at iteration 16. This earlier stabilization underlines the
efficiency of Scenario B.2 in allocating resources to the most promising technology sooner.
Electric trucks displayed a more gradual decline in Scenario B.2, beginning at 393 units and
phasing out completely by iteration 30. In Scenario B.1, the phase-out occurred at iteration 31.

Hydrogen trucks disappear entirely by iteration 14 in Scenario B.2, compared to iteration 17 in



Scenario B.1. For example, at iteration 12, hydrogen trucks counted 49 units in Scenario B.2,
while in Scenario B.1, they count 111, showing a sharper reduction in Scenario B.2. This earlier
phase-out further highlights the non-linear optimization's capacity to streamline the adoption of

alternative fuels by deprioritizing less favourable options in anticipation.

HVO100 trucks exhibited a distinctive trend in Scenario B.2. Starting with 5 units, they
incrementally rise to a peak of 248 units at iteration 30, before tapering off. By contrast,
Scenario B.1 showed a sharp rise to 250 units at iteration 31, followed by a rapid decline. For
instance, at iteration 25, Scenario B.2 has 163 HVO100 trucks compared to 129 in Scenario B.1,
suggesting that Scenario B.2 allowed for a more sustained use of this technology, aligning
operational choices with long-term fleet objectives. This can be attributed to the introduction of
real-time decision variables as the cooler selection, which enable the model to make cleaner and
more sustainable fleet transition decisions by dynamically adjusting allocation based on

evolving constraints.
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Figure 39: Cooler quantities Scenario B.2

Cooler quantities were the most affected by means of this non-linear optimization process. As
seen in figure 39, HVO100 coolers exhibited distinct trends in both scenarios. In Scenario B.2,
they gradually increased to a peak of 511 units at iteration 33 before tapering off to just 5 units

by iteration 52.

In Scenario B.1, the allocation was more abrupt, stabilizing at 134 units by iteration 18 and
maintaining this level until a sharp decline after iteration 30. In contrast, Scenario B.2
introduced nitrogen coolers, which are the most economical option, at higher levels. Starting
from O units, they reached a steady count of 262 units from iteration 50 onward. This outcome,
driven by the non-linear optimization model, highlighted a cost advantage by selecting nitrogen
coolers over HVO100, which was previously chosen as the economic alternative. The slight cost

difference between diesel and nitrogen played a key role in this selection. Meanwhile, Scenario



B.1 stabilized nitrogen coolers at a lower level of 134 units by iteration 17. At iteration 20,
Scenario B.2 allocated 604 electric coolers compared to 442 in Scenario B.1, with these coolers
being prioritized in scenarios that favoured more environmentally sustainable approaches for

building the BioLNG truck fleet.

The number of electric coolers gradually declined in both scenarios, though at different rates.
Scenario B.2 saw a reduction from 795 units at the beginning to only 3 units by iteration 32,
indicating a more controlled transition. In contrast, Scenario B.1 retained 67 coolers through the
latest iterations, with this count still present by iteration 31. The decrease in electric coolers
occurred when the model did not consider them a cost-efficient option under the epsilon
constraint approach, despite their lower environmental impact. This trend is illustrated in Figure
40.
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Figure 40: Scenario B.2: BioLNG coefficients.



4.1.3 C Scenarios
These scenarios were designed to incorporate constraints defined directly by the company’s
management. These constraints included a minimum number of trucks based on Ginobili’s
existing fleet composition, ensuring that the current operational capacity is maintained.
Additionally, a maximum cap was introduced for LNG, BioLNG, HVO100 and Electric trucks,

reflecting the company’s strategic limitations and preferences for these vehicle types.

The trucks available in the major supermarket’s company fleet at the time the information was

provided are, involved as minimum truck constraints:

e BioLNG Trucks: 52.
e HVO100 Trucks: 5.

e FElectric Trucks: 3.

The maximum number of trucks per type disposed for some trucks by the company manager

arc:

e LNG Trucks: 101.

e BioLNG Trucks: 350.
e HVOI100 Trucks: 350.
e Electric Trucks: 26.

e Hydrogen Trucks: 5.
Scenario C.1

The Pareto frontier analysis for Scenario C.1 provided valuable insights into the trade-off

between cost and emissions.
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Figure 41: Scenario C.1: Pareto Frontier

The emission range in this Pareto curve is significantly narrower than in Scenarios A and B.

This constraint is primarily due to the strict limitations on the maximum number of LNG,



BioLNG, HVO100, and Electric Trucks that can be selected in Scenario C. Emissions span from
21,804,410 kgCO:2 in the most environmentally focused solution to a peak of 33,966,526 kgCO..
The rigid constraints imposed on the model result in a more compressed emission range, making

the data more restricted in comparison.

Initially, the curve exhibited an average gradient of -4.1 €/kgCO-, which is considerably lower
than the starting gradients observed in Scenarios A and B. This suggests that the model is
operating within a more restrictive emission space. As the curve progresses through its middle
and final sections, it flattens, reflecting a gradual trade-off between cost and emissions. Over
time, costs decline from €131,898,112 to €129,760,699, while emissions increase from
23,510,255 kgCO= to 33,966,526 kgCOs-. In this phase, incremental cost savings become less
pronounced, with an average gradient of -0.4 €/kgCO..

While Scenarios A and B reach emission levels close to 50,000,000 kgCO-, the constraints
applied in this case enforce a much tighter solution space. By introducing upper limits on truck
selections, Ginobili's constraints significantly restrict the model’s ability to explore alternative
configurations. As a result, the potential for identifying optimal pathways to meet 2030

environmental targets is considerably reduced.

Cost Comparison Across lterations 1 Ermission: 5 Comparison Across Iterations

Figure 42: Scenario C.1: Cost and emissions comparison

In figure 42, a cost and emissions breakdown were developed. The results from these graphs
were very similar to the ones from the previous scenarios, with the trucks incurring most of the

costs for the different fleet solution sets.

Continuing the analysis, as seen in figure 43, it is possible to evaluate the model’s optimal fleet

mix decision with the constraints provided by Ginobili.
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Figure 43: Scenario C.1: Truck quantities

In the early iterations, the model prioritized environmental goals, leading to a fleet composed
mainly of BioLNG and HVO100 trucks, along with a few electric and hydrogen trucks. As the
optimization continued, adjustments reflected a shift toward balancing emissions and cost while
maintaining BioLNG Trucks. Hydrogen trucks were quickly phased out, likely due to their high
costs despite their low emissions. At the same time, HVO100 trucks increased, peaking at 174
units, indicating the model saw them as a viable middle ground between sustainability and

affordability.

A turning point came around iteration 23, when LNG trucks started to appear. This marked a
move toward more cost-efficient solutions, as LNG offers a compromise between operational
feasibility and emissions reduction. By the final iterations, the model had completely eliminated
hydrogen trucks, while LNG trucks grew steadily, reaching 100 units in the most cost-driven
solution. HVO100 trucks declined, dropping to 82 units, signalling the increasing preference for

more economical options.

The results suggest that initial environmental selections prioritized technologies with lower
carbon footprints, but high costs or infrastructure constraints led to their reduction as cost
efficiency became a bigger factor. Hydrogen trucks, despite their emissions benefits, were likely
too expensive or impractical, while BioLNG remained stable throughout, likely due to its

balance of sustainability and cost.
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Figure 44: Scenario C.1: Cooler quantities

The evolution of cooler allocation in Scenario C.1 reflects a gradual shift from environmentally
driven choices to cost-effective solutions. When emissions were the main concern, Electric
coolers dominated, starting strong at 117 units. HVO100 coolers followed closely with 248
units, while Nitrogen coolers held steady at 174 units. It is useful to say that as the BioLNG
truck quantity stayed still, the cooler selection for the technologically available types for the
BioLNG truck remained stable as well through the iterations. Initially, Diesel coolers were

completely absent, reinforcing the initial preference for lower-emission technologies.

As the iterations progressed and economic factors began to carry more weight, Electric coolers
saw a steady decline. By iteration 3, their numbers had dropped to 103 units, and within a few
more steps, they settled at 90 units, where they remained largely unchanged. Meanwhile,
HVO100 coolers briefly increased, reaching a peak of 261 units, before gradually losing
ground. Nitrogen coolers, in contrast, remained a constant presence at 174 units, with only

minor fluctuations.

Around iteration 12, a clear shift took place and Diesel coolers entered the mix. By iteration 30,
their presence had grown to 50 units, signalling a move toward more cost-effective alternatives.
Electric coolers continued their downward trend, while HVO100 units also started to decline,

slipping from 256 to 215 units.

In the later stages, when economic efficiency became the priority, the fleet composition changed
significantly. Diesel coolers surged, reaching 100 units in the final economic single-objective
solution. At the same time, HVO100 coolers dropped to 169 units, and Electric coolers, once the
clear favourite in early iterations, dwindled to just 91 units. Throughout the entire process,
Nitrogen coolers remained strikingly stable, holding at 174 units, reinforcing their role as a

reliable, balanced option, selected because of being part of BioLNG truck composition.



Scenario C.2

As part of the advanced scenario, that relied on setting the BioLNG cooler-truck coefficients as

decision variables, the analysis of the pareto frontier was performed.
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Figure 45: Scenario C.2: Pareto Frontier

As shown in Scenario C.1, the emissions range for Scenario C.2 is also significantly more
constrained than those of Scenarios A and B. In this case, emissions vary between 19,143,040
kgCO2 and 33,966,526 kgCO2. This confirms that the non-linear model, once again, provides

better solutions at both extremes compared to Scenario C.1, making it more optimized.

The initial section of the Pareto frontier had an average gradient of -4.1 €/kgCO2, similar to
Scenario C.1. The limited number of points in this region highlights the model’s difficulty in
finding environmentally optimized solutions, as the cost difference between iterations 1 and 5 is
nearly €3 million. Given the minimal changes between iterations, this is a substantial amount in
the context of this problem as the normal change amount between iterations remains under

€50,000.

As the curve transitions through its middle and final sections, cost reductions slow down, with
the gradient softening to -0.212 €/kgCO2. Costs decreased from €131,966,704 to €130,283,815,
while emissions rose from 22,244,808 kgCO?2 to 30,037,524 kgCO2. Toward the end, the curve
stabilized, showing a steady decline toward the economically optimized solutions. Observing
the curve’s behaviour, it is evident that the model struggles more to optimize for the
environmentally preferred solution than for the economic optimum. This is expected due to the

constraints imposed in this scenario.
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Figure 46: Scenario C.2: Cost and emissions comparison

As seen on previous scenarios, the trend kept the same, with the cooler costs and emissions

being very low compared to the ones of trucks.

To continue the analysis in this non-linear optimization scenario, the truck quantities study is

performed in the figure 47 below.
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Figure 47: Scenario C.2: Truck quantities

As this is a non-linear optimized scenario with respect to C.1, it is notable to spot the key
distinctions in the model truck selection. At first, the distinction is in the rate of LNG truck
adoption. In C.1, LNG trucks appeared earlier at iteration 5 and steadily grew to 100 units by
the final iteration. In C.2, LNG trucks only appeared at iteration 14 and then increased at a much
faster rate, reaching 101 units by the last iteration. This suggests that C.2 delayed the

introduction of LNG but ultimately committed to it more strongly in the cost-driven phase.

Another notable difference is how HVO100 trucks declined. In C.1, they peaked slightly higher
at 174 units and started decreasing earlier, reaching 82 units by the final iteration. In contrast, in
C.2, HVOI100 trucks peaked at 173 but held that level for longer, only declining to 80 units at
the end. This indicates that C.2 sustained its reliance on HVO100 for a longer period before a

sharper reduction in favour of LNG.
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Figure 48: Scenario C.2: Cooler quantities

Scenario C.2 demonstrates a clear shift in cooler optimization, particularly in its approach to
BioLNG truck refrigeration. Unlike C.1, where nitrogen-cooled systems were consistently used
alongside electric and HVO100 coolers, C.2 initially relied mostly on HVO100 coolers and an
initial quantity of electric coolers, phasing out nitrogen until iteration 48. This suggests a
strategic delay in integrating nitrogen-cooled units, likely to maximize efficiency. HVO100
cooler use increased significantly in C.2, peaking at 523 units before gradually decreasing,
while electric coolers saw a sharp decline from 381 to just 3 units. This indicates a more
aggressive transition toward HVO100-cooled trucks before reintroducing nitrogen coolers at the

later stages of optimization.

In contrast, C.1 maintained a more balanced distribution of nitrogen, electric, and HVO100
coolers throughout, with nitrogen units consistently present in all iterations. The nitrogen-cooled
units remained stable at 174 for most of the iterations, whereas in C.2, nitrogen cooling only
appeared in iteration 48, growing rapidly to 350 units by the final stage. This suggests that C.2
optimized the use of nitrogen-based cooling specifically for BioLNG trucks at the final stage,
whereas C.1 relied on a constant nitrogen presence throughout. Additionally, C.2 showed a

sharper increase in HVO100 cooler utilization, surpassing C.1's more gradual shifts.

The choices performed by the non-linear model in regard to the coefficient used as decision

variables are reported below in figure 49.



BioLNG Coefficients Over Iterations

100

= BioLNG-HVO100
BioLNG-Nitrogen
—— BiolNG-Electric

Coefficient Value (%)

20

1

0 0
Iteration

Figure 49: Scenario C.2: BioLNG coefficients

4.2 Combined Results

To compare the different scenarios from both cost and emissions perspectives, the curves were

overlaid on various graphs. Initially, it was useful to examine their Pareto frontiers, highlighting

the solution sets selected by the model in each case. This approach revealed the trade-offs,

slopes, and most efficient truck-cooler configurations. Subsequently, a detailed breakdown of

costs and emissions was provided for each scenario and the graph with the Pareto Frontiers of

the base scenarios for their comparison.

Best Environmental

Best Economic

Scenario Cost (€) Emissions (kgC0O2) Cost (€) Emissions (kgCO2)
Al 276,838,224 5,568,548 126,841,321 55,025,819
A2 277,041,285 5,403,631 126,532,096 56,049,844
B.1 269,871,155 6,527,783 127,245,919 55,227,486
B.2 269,836,470 6,139,590 126,947,212 56,091,472
C.1 135,594,775 21,804,410 129,760,699 33,966,526
C.2 136,248,191 19,143,040 129,370,041 35,344,079

Table 11: Comparison of Base Scenarios Tail Solutions
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Figure 50: Comparison of Pareto Frontiers across Scenarios

The Pareto analysis in Figure 4.2.1 illustrates the cost-emission trade-offs for different fleet
scenarios, highlighting key insights for adapting Ginobili’s operations to 2030 sustainability
goals. Each scenario follows a distinct pattern, showing how emissions increase as costs
decrease, but the degree of this trade-off varies across the A, B, and C series. Understanding
these differences is essential for logistics managers aiming to balance economic and

environmental priorities.

The A-series offers the most stable and efficient solutions. Scenario A.1 shows emissions
ranging from 5,568,548 kg CO2e to 55,025,819 kg CO2e, with costs decreasing from €276.8
million to €126.8 million. A.2 follows a similar trend, starting at 5,403,631 kg CO2e and
reaching 56,049,844 kg CO2e while costs drop from €277.0 million to €126.5 million. The
results suggest that A-series scenarios allow for an optimal cost-emission balance while
complying with RED II regulations. A.2, in particular, emerges as the most effective
configuration, delivering the lowest costs and emissions due to its lack of operational

constraints.

The B-series follows a similar trajectory but under additional constraints, requiring a minimum
number of trucks from the existing fleet. While cost and emission values remain close to those
in the A-series, these limitations reduce optimization flexibility. The presence of pre-existing
fleet requirements makes B-series solutions slightly less efficient, yet still viable for companies
needing to integrate current assets into their transition plans. From the evidence shown in the
table, in the case of emissions in the most environmental solution, the A-Scenarios outperform
B-Scenarios on 17.2% while only a 0.3% on cost. This shows that the operational constraint that
B-Scenarios face affects more to the most environmental solutions, as the fleet mix is set to

have a set of base trucks even before the optimization process started. In the case of A-



Scenarios, the degree of freedom the model has on operational causes, enhances better

environmental results.

C-series scenarios present a different challenge, as the model operates within a much smaller set
of feasible solutions. The initial emissions range is significantly higher, spanning from nearly
20,000,000 kg CO2e to 35,000,000 kg CO2e. Unlike the A and B scenarios, the C-series
struggles to offer a broad range of cost-effective solutions. Budget constraints limit investment
in cleaner technologies, and operational restrictions, such as the cap on 26 electric and 5
hydrogen trucks, prevent further environmental optimization. While some cost advantages
appear in certain ranges, the trade-off is a smaller fleet, constrained by strategic company

decisions rather than pure optimization potential.

At the extreme points of the Pareto front, logistics managers must consider the implications of
these trade-offs. Lower-cost solutions tend to come with high emissions, posing challenges for
sustainability commitments, while the most environmentally friendly setups require substantial
financial investment. The slopes of the Pareto curves quantify how much cost must be sacrificed
for each unit of emissions reduction. The A-series represents a much steeper decline in the
initial part of the curve, which evidences the facility of this model to search for environmentally

optimized solutions.

Examining the limits of each scenario helps define realistic strategies. The A-series presents an
optimal benchmark, offering maximum efficiency under regulatory guidelines and a higher
degree of freedom. The B-series provides a practical middle ground, maintaining a balance
between compliance and real-world operational constraints. It is known that the company would
clearly want to use the actual fleet of truck it has in its operations, so for the development of a
2030 environmental transition, in most of the cases, to be into budget, they would make use of
the trucks that are already part of the fleet. The C-series, despite some cost advantages, remains
limited by structural restrictions, making it less flexible for long-term planning. Logistics
managers must weigh these findings carefully, ensuring that strategic decisions align with both

budget constraints and sustainability goals.



4.3 Alternative Scenario Results

The results of the analysis performed in each of the scenarios is shown in section 7.4 of this
work.

4.3.1 Fuel Pricing Forecast Scenario

Based on the time-series analysis presented in Section 3.5.2.1, various fuel price prediction
models were developed to forecast prices for 2030. These predictions were then integrated into
the truck cost structure provided by the supermarket company to calculate the marginal costs per
truck. The resulting values, detailed in Section 7.3 of the Appendix, served as inputs for price
adjustments in Scenario A. This is part of a sensitivity analysis, for Ginobili to have the
possibility to see the feasible solution sets considering potential prices for 2030, following a

quantitative approach.

Comparisons will focus on the A.1 scenario as it is the base scenario, aligned with future EU
RED II regulations and adopting a risk management perspective. The comparison maintains the
same model structure and constraints but substitutes the base pricing structure outlined in
Appendix 7.1 with the updated prices from the tables in Section 7.3. This approach ensures an

evaluation of the impact of the predicted fuel prices on the scenario.
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Figure 51: Fuel Pricing Forecast Scenario: Comparison of Pareto Frontiers

The cost reductions predicted by the fuel price models, based on historical trends and time-
series analysis, result in a decrease in costs along the Pareto Frontier. The Scenario A.1 curve,
shown in blue, followed a similar slope to the red dotted line of the Fuel Price Forecast Scenario
up to 13,000,000 kg CO2e. Beyond this point, the red curve became significantly steeper. This
indicated that the new costs provide greater reductions per kg of CO2e¢ emitted, presenting a
positive outlook for achieving the company’s 2030 goals. At the far end of the curve, cost
differences reached up to €2.5 million, reinforcing this optimistic perspective. If costs continue

to follow historical trends, the project could prove viable for the supermarket company,



supporting fleet mix decisions that comply with EU RED Il regulations while maintaining a risk
management approach. As well, the tail of the blue curve showed a steeper gradient compared
to the red one, suggesting that, at these points, the cost reductions for the base alternative were
much higher. Despite this, the overall costs in the Fuel Price Forecast Scenario remained

significantly lower, as previously mentioned.
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Figure 52: Fuel Pricing Forecast Scenario: Comparison of Truck Quantities

As part of the sensitivity analysis, the truck quantities selected by the different models are
shown in Figure 4.3.1.2. It is perceptible that the Fuel Price Forecast Scenario model shifted the
truck quantity curves to the left compared to the original Scenario A. In spite of this, the trend
changed in the final iterations, where the model, using the updated price structure, opted to
replace BioLNG trucks with HVO100 and LNG trucks in the fleet for the most economical
approach. This decision highlighted an important consideration for the major supermarket
company: based on historical prices, HVO100 trucks appeared to be more cost-efficient than

BioLLNG trucks for 2030.
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Figure 53: Fuel Pricing Forecast Scenario: Comparison of Cooler Quantities

For cooler quantities, the relationship between scenarios mirrored the trend observed in Figure

52 for trucks. In Figure 53, the cooler quantity curves were shifted to the left across all



iterations, except those that reflected an economical objective approach. In these iterations, the
model prioritized HVO100 coolers as more efficient than those using Nitrogen or Electricity,
reducing their quantities from 134 and 67 to zero, respectively, in the final stages. This aspect of
the sensitivity analysis further supported the conclusion that HVO100 fuel is more efficient than

Nitrogen and Electricity for cooler operations under the projected fuel price changes for 2030.

4.3.2 Qualitative Scenarios

4.3.2.1 Supply chain and Resource Scarcity Scenarios: Scarcity of Raw Materials for

HVO0100

An analysis was conducted to evaluate the potential impact of a 30% increase in HVO100 fuel
prices, driven by supply chain limitations stemming from palm oil regulations and scarcity. This
study was included as part of the sensitivity analysis for the scenario-based modelling and was
compared to Scenario A in terms of emissions and costs. The analysis provided useful points of
view for the model and the company, highlighting the possible effects that such regulatory
measures, rooted in environmental policies, such as the ones mentioned in Indonesia and
Malaysia (Mai, 2024) could have on the supply chain structure for materials required to produce

HVO100 biodiesel.
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Figure 54: Scarcity of Raw Materials for HVO100: Comparison of Pareto Frontiers

In Figure 54, which compared the Pareto Frontier between the HVO100 Resource Scarcity
Scenario and the base case Scenario A.1, most points on the curve showed higher costs for
equivalent emission levels. This was expected due to the increased costs of HVO100 fuel but
also highlighted that the model could not identify cost-effective solutions for these points,
reinforcing the critical role of HVO100 trucks. The A-Scenario curve dominated in most of the
points to the HVO100 curve. In the environmental-focused approach, the price difference had
minimal impact initially. However, around 12,000,000 kg CO2, there was a detectable shift,
with the gradient decreasing (average gradient: -2.3 €/kgCO2) and costs rising under the



HVO100 Resource Scarcity Scenario. The green line's slope is shallower than the blue line,
reflecting the model's challenges in reducing costs for the same level of emissions. Interestingly,

at the tail of the graph, the gradient of the green curve (-0.95 €/kgCO2) became steeper than in

the blue curve, while the environmental single-objective solution remained the same for both

scenarios. From a sensitivity analysis perspective, it is significant that the model continued to

select, from iteration 20 to 35, HVO100 trucks despite their price increase, underscoring the

importance of taking in account this potential event. The optimization model reflects then than

this price increase and effect on the HVO100 truck selection has been balanced with the

selection BioLNG, LNG and electric trucks from the pool of choices available.
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Figure 55: Scarcity of Raw Materials for HVO100: Comparison of Truck Quantities

When comparing the truck quantities selected by the model, it could be seen that an increase in

HVO100 fuel prices significantly reduced the number of these trucks selected for the optimal

solution set. In response, the model substituted them with electric, BioLNG and LNG trucks,

creating a trade-off depending on the objectives pursued. Electric trucks saw a sharp rise in

quantity compared to Scenario A.1. While Scenario A.1 phased out electric trucks entirely by

iteration 33, the HVO100 Scarcity case, shown in the dotted lines, resulted in the model

selecting 347 electric trucks to meet its goals. BioLNG truck quantities remained constant,

highlighting that the trade-off primarily occurred between other types of trucks.
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Figure 56: Scarcity of Raw Materials for HVO100.: Comparison of Cooler Quantities

In regard to the cooler quantities chosen in this scenario, it could be seen that HVO100 powered
coolers stabilize at 68 coolers while they peaked 313 in base case scenario A.1. The exchange of
the HVO100 coolers was done with electric coolers, following similar trends to the ones seen in
the truck quantities. Also, here there was a trade-off between these cooler types and the diesel
ones. By iteration 33, in scenario A.1, electric coolers were 68 while by iteration 33, in this
HVO100 resource scarcity scenario, the model selected 414 of this kind. The efficient solution
set for the budget of the company deals with a trade-off between more or less the same quantity
of Nitrogen, Electric, HVO100 and Diesel coolers, already shown in Scenario A.1 but with a
slight change in the Resource Scarcity Scenario, where nearly 100 of the HVO100 coolers were

traded from this type to Diesel and Electric coolers.

4.3.2.2 Supply chain and Resource Scarcity Scenarios: Gas Crisis in Europe

The supply chain and resource scarcity scenario drew from the recent geopolitical events, which
caused significant spikes in LNG and electricity prices. These fluctuations created a volatile
market environment, highlighting how geopolitical crises could directly impact the model. To
reflect this, a 200% price increase for Diesel (effect only on coolers), LNG and electricity was
introduced into the model as part of the sensitivity analysis, simulating the extreme price surges
seen in the past (IEA, 2022). This allows the major supermarket company to understand how
such events could influence future operations. By considering a scenario that mirrors past
disruptions, the company gains valuable insights for making more resilient investment decisions

moving forward.
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Figure 57: Gas Crisis in Europe: Comparison of Pareto Frontiers
The impact of this price increase was evident in the differences between the Pareto Frontiers

shown in Figure 57. The effect was most pronounced in the environmentally feasible solution

set, particularly in the iterations up to 24,000,000 kg CO2. The red curve, with an average



gradient of -13.29 €/kg CO2, was significantly steeper than the blue curve in the early iterations,
illustrating how the price surge affects the environmental portion of the graph. This outcome,
further analysed in the truck quantity breakdown, stemmed from the reduced selection of
electric trucks due to their higher costs under this scenario. Towards the tail of the curve, the
model consistently identified BioLNG and HVO100 trucks as the most cost-efficient option
under the given constraints. This suggested that, in the most cost-focused iterations, the EU

RED II regulations had a relatively limited impact on the optimal solutions.

The impact of this alternative can be highlighted in figure 58 below analysing the truck

quantities chosen for each feasible solution set in the optimization model.
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Figure 58: Gas Crisis in Europe: Comparison of Truck Quantities

The truck quantities shown in Figure 58 provided many elements to be studied into the model's
sensitivity during a simulated gas crisis. With rising electricity prices, the model began
favouring hydrogen trucks over electric ones in the environmental section of the curve,
reflecting the shifting cost dynamics. BioLNG trucks maintained a similar trend to Scenario
A.1, though their adoption progressed more slowly. A similar pattern was observed with
HVO100 trucks, which remained part of the feasible solution set but at a reduced rate. It is
reliable to state that BioLNG trucks and HVO100 trucks replaced LNG trucks in the
economically driven set of iterations. The model, in spite of the assumptions made on Hydrogen
prices by the information provided by Ginobili, selected this technology as possible cost-

efficient choice in some of the last iterations.
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Figure 59: Comparison of Cooler Quantities

The gas crisis also affected cooler selection, as shown in Figure 59. Up to the transition between
the most environmental and most economical approaches, the trends resembled those of the
base case scenario. In spite of this, with rising diesel prices, the model shifted away from diesel-
powered coolers, as LNG trucks are not being selected (results of the model shown in section
7.4), favouring HVO100 and electric coolers instead, even though with the lastly named type of
cooler experiences a 2x price increase. Nitrogen coolers maintained the same constant quantity
as in Scenario A.1. It is useful to say that HVO100 coolers took on a larger share in the cost-
optimal solutions, surpassing the role diesel coolers played in Scenario A.1, as Gas Crisis
Scenario is basing its choices in BioLNG and HVO100 trucks specially. This shift underscored
the significant impact of a gas crisis on the model's outcomes, offering valuable insights for

Ginobili to consider in future planning.



4.3.2.3 Macroeconomic and Policy Scenarios: LNG Ban

The potential for an LNG truck ban in urban areas across certain EU countries in the coming
years was examined as a possible scenario for the European continent, particularly in light of the
2030 sustainability goals. This scenario was incorporated as a sensitivity test to assess the
model's response in the event that LNG trucks are excluded from the optimal fleet mix within

the feasible solution set. The effect of this possible resolution can be seen in figure 60.
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Figure 60: LNG Ban: Comparison of Pareto Frontiers

The Pareto frontiers in the graph showed that the LNG ban scenario incurred costs similar to
Scenario A.1, though slightly higher across all points on the curve compared to the base case.
The red curve, representing the LNG ban, had a smaller solution range, spanning emissions
from 5,568,547 kg CO2 to 24,032,345 kg CO2, with its most cost-efficient solution at
€140,281,405. The cost barrier in this scenario arose because the model, constrained by the
LNG ban and risk management requirements, maximized BioLNG and HVO100 truck
quantities up to their 50% limit in the final iterations. This sensitivity analysis highlighted that
an LNG ban increased costs and complicated optimization. BioLNG and HVO100 served as the
primary substitutes for LNG, offering relatively more economic alternatives, while electric
trucks are the type that remains as a possible choice, that the model could use but it would
represent a higher cost alternative. This whole situation creates a barrier for the model to seek

more cost-optimal solutions.
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Figure 61: LNG Ban: Comparison of Truck Quantities

The truck quantities in Figure 61 highlighted how the model adapts to constraints such as the
LNG ban, offering insights into the shifting fleet composition. In the environmentally focused
solutions, Hydrogen trucks dominated alongside Electric trucks, with initial quantities of 350
and 463, respectively. As iterations progressed, the share of Hydrogen trucks declined steadily,
reaching just one truck in cost-focused solutions. Electric trucks exhibited a similar pattern,
starting at 463 in environmental scenarios and gradually decreasing as cost considerations

became more prominent, ending with only one unit in the most economical solution.

BioLNG trucks displayed a clear upward trajectory throughout the iterations, reflecting their
role as a stable and cost-effective alternative under the LNG ban. Starting with just 20 trucks in
the initial solutions, their quantity raised steadily to 268 in cost-optimized scenarios. HVO100
trucks appeared sparingly in the environmentally focused iterations but gained prominence in
later stages, increasing from negligible quantities to 250 in the most cost-driven solutions. This
pattern demonstrated the model’s prioritization of HVO100 trucks as a replacement for LNG in
cost-sensitive contexts. By maintaining a constant number of BioLNG trucks and gradually
phasing in HVO100 as costs dominated, the analysis highlighted the trade-offs and strategic
adjustments necessary for Ginobili to navigate a potential LNG ban effectively. The actual
geopolitical scenario, including many new environmental regulations taking effect in the future
years is pretty much irregular, so considering a situation like this when investing on a new truck

fleet is important for the decision-making process to take place.
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Figure 62: Comparison of Cooler Quantities

When studying the cooler quantities graph, it is possible to evaluate that the LNG Ban made the
model choose Electric coolers the most (initially over 800), that were the ones that are used with
Hydrogen and Electric trucks, following the information provided by the major supermarket
company. These high quantity numbers that this type of coolers had relate to the choices made
by the truck quantity model, by selecting high quantities of Hydrogen and Electric Trucks. An
uprising trend looking forward to cost-effective solutions was made by HVO100 coolers,
reaching in the last solutions a number of 317 coolers. Diesel coolers, used only with LNG
trucks were obviously not selected by the optimization model. BioLNG cooler quantity
remained constant.

This perception is valuable as part of the sensitivity analysis because in a possible LNG Ban,
Electric and Hydrogen trucks would be undoubtedly considered in the most environmental
approaches, while HVO100 and BioLNG coolers would be present in a constant trade-off for

cost-efficient solutions.



4.3.2.4 Macroeconomic and Policy Scenarios: Renewable Content Mandates Increase

Considering that European mandates like the EU RED II might be updated or revised in the
future, this analysis provides a realistic perspective for assessing the viability of the project

within the context of evolving regulations.

For this scenario, two new inputs were used for the model to show an extreme situation of a
possible revision made in the RED II mandate: the fleet's minimum renewable energy content

was set at 25% and its minimum biofuel share was set to 7.5%.

The effect of a percentage increase in the renewables content could be seen in the figure 63

below.
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Figure 63: Renewable Content Mandates Increase: Comparison of Pareto Frontiers

The overview of the effect of a possible review of the EU RED II reflected that an increase in
the renewables and biofuels percentage would shift the Pareto Frontier to the right with respect
of the A.1 Scenario, representing price differences up to 3.5% in some of the cases, as it is
possible to depict in the transition zone in the middle. Initially, in the environmental cases, the
effect of the regulation only showed cost differences near to 1 or 2%, while this increase as the
focus of the optimization included economical objective solutions. The overall takeaway for the
decision-making process that Ginobili has to take, as part of the sensitivity analysis is that this
regulation could only make them incur more costs, something to consider in a risk management

approach before taking the investment decision.

The overview of the potential impact of a revision of the EU RED II suggested that increasing
the share of renewables and biofuels would shift the Pareto Frontier to the right compared to
Scenario A.1. This shift reflected price differences of up to 3.5% in some cases, particularly in

the transition zone. In the initial environmental scenarios, the regulation's effect is relatively



minor, with cost differences of around 1-2%. However, as the optimization incorporated

economic objectives, these cost differences became more pronounced.

For Ginobili, the key insight from this sensitivity analysis is that the proposed regulation could
lead to higher costs. This is an important factor to consider as part of a broader risk management

strategy before making an investment decision.
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Figure 64: Renewable Content Mandates Increase: Comparison of Truck Quantities

The truck quantities curves as well exhibited shifts in figure 64. All of the curves shifted left in
the trends for the truck types when comparing the increased renewables scenario (in the dotted
lines) to the original Scenario A (solid lines). This leftward shift indicated an earlier adoption of

greener alternatives such as BioLNG, Electric, and Hydrogen trucks.
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Figure 65: Renewable Content Mandates Increase: Comparison of Cooler Quantities

The cooler quantity curves, in figure 65, also reflected the same trend as the previous cases. All
of the cooler curves shifted to the right, showing an earlier adoption of each cooler type, being

these Diesel, HVO100, Nitrogen or Electric.

The effect, as part of the sensitivity analysis to be incurred, was that the impact would be the

most on costs and not on trucks or cooler quantities, so Ginobili would have to evaluate their



budget constraint of € 131,000,000 while considering the potential revision of the EU RED II

regulation.

4.4 Discussion and Recommendation

Building on the analysis outlined in Section 4, this subchapter focuses on aligning the results
with the company’s current situation while providing a clear recommendation for their 2030
sustainability investment goals. Alongside environmental objectives, the company has also set a
strict budget of €130,000,000. However, it is crucial to account for potential risks in this
investment, including regulatory changes, geopolitical instability, and macroeconomic
fluctuations. These uncertainties require a cautious approach to decision-making, ensuring that

any recommendations remain viable under different future conditions.

To address this, the analysis was divided into three scenarios: a base case that assumes minimal
changes in external factors (A.1 and B.1 solutions together) and a scenario driven by modelling
techniques previously discussed, where it was possible for the model to select optimally the
truck-cooler parameters (A.2 and B.2 solutions together). The C-series scenarios were not
considered as part of the recommendations as the objective of this study was to examine the
current situation of the company and matching the external factors that could affect the
decision-making process as a whole and not to use the pre-imposed strategies of the company
previous to perform the optimization model. The focus of the study relies in which is the
optimal fleet mix with the current conditions of the company through different scenarios based

on the data provided.

Within each of these scenarios, the most suitable solutions were evaluated from the feasible sets
that align with the budget that the company provided, stated in section 3.2 and then order the
solutions by emissions. In this way, a quantitative initial threshold is introduced as a financial
burden for the choices to take and then these solutions are filtered by their emissions level. As
well, the solutions have to comply with the EU RED II Directive, as this regulation acts for
companies from 2023 on (European Commission, 2018) and also use the trucks that the Ginobili

does actually have in their fleet.

For each scenario, two tailored solutions are presented: one prioritizing environmental impact

and the other emphasizing cost-efficiency, grabbed from the pareto frontiers presented.

To provide further clarity, descriptive statistics such as the mean, standard deviation, and
relevant quantiles were included for each alternative. This statistical analysis demonstrates the

model’s outputs and serves as a foundation for the recommendations.



Base Case Scenario

When combining the feasible solution sets for scenario A.1 and B.1 under Ginobili’s budget, as
determined by the optimization studies, a descriptive statistical analysis was conducted to assess
the quantities of trucks and coolers selected by the model in all the possible outcomes of A.1
and B.1 Scenarios, shown in Table 4.4.1 below. This analysis provided valuable insight into the
characteristics of the solutions generated, allowing for a better evaluation of their practicality
and alignment with the company’s goals. Detailed results of the combined feasible solution sets

are presented in Appendix section 7.5 for reference.

Variable 1] o 25% 50% 75%
Diesel Trucks 0 0 0 0 0
LNG Trucks 209 40 177 209 242
BioL NG Trucks 207 3 268 268 268
HVO100 Trucks 57 35 27 57 86
Electric Trucks 2 2 0 2 3
Hydrogen Trucks 0 0 0 0 0
Diesel Coolers 209 40 177 209 242
HVO100 Coolers 124 36 94 124 153
Nitrogen Coolers 133 2 134 134 134
Electric Coolers 68 2 67 68 70
Cost 128,397,380 936,607 127,658,764 128,401,839 129,188,274
Emissions 48,190,033 4,599,318 44,355,314 48,130,928 51,921,300

Table 12: Base Case Scenarios under budget constraints (A.1 and B.1): Descriptive Statistics

Table 12 highlighted that the mean of the solutions under the budget constraint remained
approximately €2 million below the limit, though the standard deviation indicates that some
solutions could approach the maximum budget threshold. The table showed that the model
frequently selected 268 BioLNG trucks, as evidenced by its low standard deviation, suggesting
consistency in this choice across solutions. Conversely, the highest standard deviation was
observed in the selection of LNG trucks, with 40 units, and HVO100 trucks, reflecting the
model’s tendency to alternate between different strategies to reach the objectives of the model in

the feasible solution sets for A.1 and B.1 Scenarios.

For the coolers, Electric and Nitrogen coolers were consistently selected in nearly all
alternatives, as demonstrated by their minimal standard deviation. On the other hand, Diesel and
HVO100 coolers exhibited greater variability, indicating a trade-off situation where their

selection depended more heavily on the specific scenario and solution.

When analysing the solutions provided that are under the major supermarket company budget,
that can be found in Appendix 7.5, two solutions were selected to recommend to the company in
a base case, depending in the approach the managers want to take. These solutions were selected
from the list being evaluated in the criteria used both for A-series and B-series scenarios
modelling, being useful to comply with future EU RED II directives and that also used in the
solutions the trucks that the company does actually have in their fleet. With all this being said,



two solutions from different parts of the pareto frontier were grabbed, from the under-budget
side, one that had a lower number of emissions but a higher costs and another one with a higher

emission value and lower costs.

Variable Approach
Economic Environmental
Diesel Trucks 0 0
LNG Trucks 269 159
Biol NG Trucks 256 268
HVO100 Trucks 11 102
Electric Trucks 3 3
Hydrogen Trucks 0 0
Diesel Coolers 269 159
HVO100 Coolers 75 169
Nitrogen Coolers 128 134
Electric Coolers 67 70
Cost 127,245,919 129,717,751
Ermnissions 55,227,486 42,328,791

Table 13: Base Case Scenarios under budget constraints (A.1 and B.1): Solutions Proposed

Understanding the economic approach in the base optimization case helps clarify how the model
selects the most cost-effective fleet composition. The combination of LNG trucks and Diesel
coolers emerges as the most economically efficient solution. BioLNG trucks follow as the
second most viable option, while HVO100 trucks rank last due to their slightly higher costs.
This outcome highlights the cost-effectiveness of biodiesel, showing that the marginally greater

expense of HVO100 gives BioLNG the advantage in the economic trade-off.

In the environmentally optimized scenario, HVO100 trucks play a much more significant role,
outperforming LNG trucks, which have the highest environmental impact. The shift in truck
selection also influences the choice of coolers, leading to a more balanced distribution in the

model.
Scenario with Optimal Cooler Parameters

When examining the feasible solution sets, it was crucial to account for the modelling procedure
detailed in Section 4, in the advanced base case models considering optimal truck-cooler
parameters and a non-linear process optimization. This process incorporated coefficients as
decision variables to represent various truck-cooler combinations effectively. The results of
scenarios A.2 and B.2, developed under Ginobili’s budget as defined by the optimization
studies, were combined to present a comprehensive solution for the major supermarket company

and can be also visualized in Appendix 7.5.

Additionally, a descriptive statistical analysis was performed to evaluate the truck and cooler
quantities selected by the model for all the possible outcomes of the A.2 and B.2 Scenarios,
providing insights into the distribution and consistency of the solutions. The outcomes of this

analysis were summarized in Table 4.4.2 below.



Variable V1 o 25% 50% 75%
Diesel Trucks 0 0 0 0 0
LNG Trucks 176 64 133 177 229
Biol NG Trucks 269 1 269 269 269
HVO100 Trucks 86 59 37 85 126
Electric Trucks 2 1 0 3 3
Hydrogen Trucks 0 0 0 0 0
Diesel Coolers 176 64 133 177 229
HVO100 Coolers inn 118 306 354 395
Nitrogen Coolers 24 78 0 0 0
Electric Coolers 2 1 0 3 3
Cost 127,787,869 1,501,594 126,699,464 127,927,739 128,981,247
Emissions 44408,663 7,518,339 39,347,663 44,452,533 50,456,038

Table 14: Base Case Scenarios under budget constraints (A.2 and B.2): Descriptive Statistics

In the table 14 provided, the joint selection of under budget alternatives for the optimized
parameter cooler-truck advancements approach were showed together with their statistical
measures. At first, it is possible to see that BioLNG trucks stand out for their consistent
inclusion, with a mean of 269 units and a negligible standard deviation of 1, indicating they
were almost always chosen in the same quantity across all solutions. In contrast, LNG trucks
exhibited significant variability, with a mean of 176 units and a standard deviation of 64,
reflecting the model’s tendency to adjust their selection based on the part of the curve that was
iterating. This type of truck was selected in the economic-oriented part of the curve and then
had a null value in the environmental-oriented part of the curve. HVO100 trucks also showed a
notable range, suggesting they were included in some solutions but excluded in others, likely as
part of a trade-off. Hydrogen trucks consistently remained unselected, indicating they were not
competitive under the model’s constraints. Electric trucks, while consistently included, are

adopted in very low quantities, as demonstrated by their mean of 2.

For coolers, the model’s choices showed a mix of consistency and variability. Electric coolers
were consistently selected, in small numbers, with a mean of 2. In contrast, Diesel coolers and
HVOI100 coolers demonstrated significant variability, suggesting their inclusion depended
heavily on the specific trade-offs required by the solution. Nitrogen coolers, while present in
some solutions, showed high variability, indicating their selection is scenario-dependent and
less favoured overall. From a cost perspective, the mean remained just below the budget
threshold, at €127.8 million, but the standard deviation of €1.5 million suggested some solutions

closely approached the limit that Ginobili provided, of €130 million.

With all of this being said, the solutions provided by the Pareto Frontiers were joined, and by
maintaining the most important constraints considered in the solutions selection, complying
with EU RED II Regulation and also using the current trucks available in the fleet, an

environmental and an economical solution was presented.



Variable Approach
Economic Environmental
Diesel Trucks 0 0
LNG Trucks 269 62
Biol NG Trucks 262 269
HV0O100 Trucks 5 191
Electric Trucks 3 3
Hydrogen Trucks 0 0
Diesel Coolers 269 62
HVO100 Coolers 5 460
Nitrogen Coolers 262 0
Electric Coolers 3 3
Cost 125,003,199 129,978,818
Emissions 56,091,472 31,189,040

Table 16: Base Case Scenarios under budget constraints (A.2 and B.2): Solutions Proposed

To make a comparison between the base case environmental and economic solutions presented
in the last section and those generated under the parameter optimization model, key differences
emerged in fleet composition, cooler selection, and overall efficiency. The introduction of
optimized truck-cooler parameters influenced both cost and environmental performance in
interesting ways.

In regard to the economic solutions, the model with optimized cooler parameters achieved costs
nearly €2 million lower than the base case, demonstrating the impact of polishing the
combination of BioLNG trucks and various cooler types. The selection of coolers changed, with
only 5 HVO100 cooler units chosen compared to 75 units in the base case. To compensate for
this shift, the model introduced nearly 100 additional Nitrogen coolers, prioritizing their cost-
effectiveness. When left unrestricted in its selection, the parameter-optimized model assigned
Nitrogen coolers exclusively to BioLNG trucks, reinforcing their economic advantage.
Following the environmental solutions, the parameter optimization model achieved a reduction
of approximately 10 million kg CO: compared to the base case. This outcome highlights the
effectiveness of refining fleet parameters to minimize emissions. The selection of HVO100
trucks increased by 89 units, emphasizing their role in reducing the fleet’s overall carbon
footprint. On the other hand, the base case relied more heavily on LNG trucks, despite being
configured for an environmental approach. The optimization process also led to the complete
elimination of Nitrogen coolers, which were prevalent in the economic scenario, and resulted in
a substantial increase in HVO100 coolers to 460 units. The shift toward biodiesel-powered
coolers also caused a notable reduction in the number of diesel and electric coolers, aligning

with emissions reduction goals.



A useful consideration, given Ginobili’s position as a major supermarket company, is the
relationship between cost and emission reductions when comparing the economic and
environmental solutions. The analysis shows that a 4% increase in costs can lead to a 44%
reduction in emissions. Since supermarkets operate on tight margins, this trade-off becomes
relevant. Moving from a purely economic approach to a strongly environmental one achieves
significant CO2 reductions, which could become valuable if ETS Trading Scheme prices rise, or
regulatory requirements become stricter. Strategically planning for these potential shifts allows

for better long-term decision-making, ensuring both compliance and operational efficiency.

With the optimization process that the model performs in both cases, it is useful to evidence

that:

e Lower costs in the economic approach due to the optimized mix of BioLNG trucks and
Nitrogen coolers.

e Increased presence of HVO100 trucks in the environmental scenario, reinforcing their
role in emissions reduction.

e Shift from Nitrogen coolers to HVO100 coolers in the environmental approach, with a
reduction in diesel and electric coolers.

e Cost-emission trade-off shows that a 4% cost increase results in a 44% emission
reduction, a critical factor for future regulatory and financial planning, as supermarkets

work in narrow business margins.



5 Conclusion

5.1 Summary of Research

The analysis conducted in this thesis explored diverse optimal scenarios aimed at achieving the
2030 sustainable logistics objectives of a major supermarket company. With a multi-objective
approach, a sustainable fleet-mix optimization process was performed through a mixed-integer
programming method and epsilon-constraint technique combined with linear and non-linear
optimization algorithms. To accomplish the goal of finding a fleet mix that meets both the
budget and the emissions objectives for the company for 2030, evidence-based scenarios and
possibilities were analysed in Pareto Frontiers, evaluating the whole possible range of fleet mix

combinations that could be selected in the operational, financial and regulatory panorama.

The scenarios analysed considered potential regulatory changes by 2030, the current fleet
composition of Ginobili, risk management perspectives, and time-series modelling to project
price trends. Furthermore, the model considers the impact of exogenous events, such as fuel
crises and resource scarcity, on decision-making. The study addressed the complex problem of
fleet mix optimization, encompassing both truck and truck-cooler combinations, allowing
technology and cost evaluation of LNG, BioLNG, HVO100, Electric and Hydrogen trucks
combined with Diesel, Nitrogen, HVO100 and Electric coolers, including an innovative
approach for the sustainable logistics problem. By leveraging data provided by the company, the
analysis included scenarios with technological advancements that allowed for greater freedom

in selecting optimal truck-cooler combinations to achieve superior results.

This work contributed to logistics decision-making processes by concurrently optimizing
economic and environmental objectives, providing actionable insights for the supermarket’s
truck fleet investments in Italy. It came at a critical time, as EU countries transition away from
diesel and fossil fuels toward renewable alternatives like biofuels, including BioLNG and
HVO100, and emerging options such as hydrogen and electric technologies. The base case (A.1
and B.1 Scenarios) and optimized parameter scenarios (A.2 and B.2 Scenarios) results, taken
from the respective Pareto frontiers, support the decision-making process of the company.
Unlike prior studies that primarily focused on bus and sea fleet optimization, this research added
valuable insights into truck fleets by addressing costs, emissions, and the potential influence of
exogenous factors, including fuel bans and renewable energy mandates. The findings
underscored the growing importance of biofuels for 2030, particularly BioLNG and HVO100,
while highlighting the future potential of hydrogen trucks, despite current infrastructure
challenges. For coolers, the study emphasized the transition from diesel to HVO100 and electric
options, while balancing trade-offs with nitrogen-powered alternatives. Ultimately, it is useful

to say that this research equips the supermarket company with a robust framework for



navigating the complex landscape of fleet mix optimization in a rapidly evolving regulatory and

technological environment.

5.2 Contributions

This thesis contributes to the literature by exploring fleet mix optimization for truck fleets in the
food supply chain, an area that has received little attention. Unlike most studies, which focus on
vehicle routing or fleet mix optimization in urban mobility systems like buses and maritime
transport, this research introduces a new perspective by integrating truck and cooler
combinations into the optimization process. Instead of relying on generic assumptions, the
model as well incorporates real company data for both base parameters and their optimization,

ensuring practical relevance.

A novel method was taking in account environmental policies such as the EU RED I1
Regulation, that represents the involvement of the new regulatory processes that sustainable
logistics is facing, as this is applied from 2023 on (European Commission, 2018). From the start
of the optimization process, the model factors in biofuel requirements and the percentage of
sustainable-powered vehicles, including electric and hydrogen trucks, making the fleet mix
compliant with actual and future regulations. These findings add a layer to decision-making,

supporting companies in their long-term strategic planning.

A dedicated Fuel Price Prediction model enhances the cost analysis, integrating Guarantees of
Origin costs into electricity pricing. This model also applies statistical forecasting methods with
fuel-specific prediction variables, improving the accuracy of cost projections. The inclusion of
Pareto Frontiers and epsilon-constraint techniques in the optimization process presents an

innovative approach to sustainable logistics, offering valuable insights for future research.

Another key innovation lied in the incorporation of exogenous events, such as geopolitical
conflicts and resource shortages, into the optimization model. This approach highlighted how
these factors could influence fuel trends and regulatory changes, providing a realistic framework
for future scenarios. The study as well accentuated the importance of considering structural
costs alongside dynamic fuel price variations, offering a comprehensive methodology that
accounts for both current fleet capabilities and future regulatory challenges. By addressing these
multifaceted aspects, this research not only filled a critical gap in the literature but also
established a foundation for further studies in truck fleet investment and optimization,

particularly for industries requiring stringent cold chain management.



5.3 Limitations

The study faced several limitations, primarily due to data scarcity for emerging fuel
technologies such as BioLNG, HVO100, and Hydrogen. These fuels were still in the early
stages of adoption, with rapidly evolving trends influenced by regulatory developments and
market dynamics. For example, the ongoing palm oil controversy in Asia significantly impacted
the price structure of biofuels like HVO100, introducing considerable uncertainty and risk for
long-term investment planning. Hydrogen fuel presented even greater challenges, as its supply
chain remains underdeveloped, with limited historical data and insufficient infrastructure
compared to in-house renewable energy sources like solar or wind. Furthermore, the Levelized
Cost of Energy (LCOE) for hydrogen production and the associated transportation costs were
not well-documented, making comprehensive evaluation difficult. These technological and
market uncertainties represented key barriers to fully integrating these fuels into fleet

investment decisions.

The volatile nature of fuel markets, exacerbated by geopolitical events like the Russia-Ukraine
war, posed challenges for accurate price forecasting, further complicating the analysis. Despite
these constraints, the model yielded strong results and actionable recommendations for the
company, demonstrating its robustness and potential for addressing the complexities of fleet

mix optimization in a challenging and evolving landscape.

5.4 Future Research Direction

Future research directions could focus on the integration of emerging technologies, which are
now more advanced, into optimization models. This includes incorporating autonomous
vehicles, advanced fuel technologies, and real-time decision-making systems to better address
the evolving landscape of transport supply chains. Additionally, a more detailed analysis of the
EU regulatory framework could provide insights into how specific policies and mandates
impact fleet composition and operations in a rapidly changing environment. As well, a valuable
integration to the study could be the incorporation of EU ETS carbon contract prices to account

for the cost of emissions in the different alternatives.

Another promising avenue is the exploration of diverse loading strategies for trucks, aiming to
reduce the number of trips and consequently lower emissions. Investigating heterogeneous fleet
compositions instead of homogeneous fleets could open new possibilities, as it would allow for
more tailored solutions based on varying demands and operational constraints. Further,
optimizing truck load rates in conjunction with route planning could be an impactful area of
study. Employing machine learning or Al techniques to analyse and improve load efficiency,
while accounting for specific legal restrictions on various routes, could yield region-specific

insights and enhance operational effectiveness across the country.



Simulation tools like AnyLogic could play a pivotal role in these studies. By introducing trucks
as agents within a simulation, researchers could model their interactions with distribution
centres, visualized through GIS maps. This approach could generate heatmaps to identify the
required infrastructure for each fuel type in different regions, facilitating more strategic
planning. Such analyses would not only benefit the specific company studied but also provide
valuable insights for other transport operators across the EU, ultimately helping to optimize

operations while minimizing environmental and social impacts.
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7 Appendix

7.1 Base cost structure

CATEGORY Annual Cost | Years of Use | Annual KM | Cost perKM
PURCHASE
Vehicle Purchase 110,000 6 140,000 0.13
Semi-Trailer Purchase 55,000 10 100,000 0.10
FUEL
Diesel 0.60
MAINTENANCE
Vehicle Maintenance 3,500 0.8 100,000 0.03
Semi-Trailer 1,500 100,000 0.02

Maintenance
TIRES

Tires for Wehicle and

Semi-Trailer 5,000 100,000 0.05
ROAD TAXES

Vehicle Road Tax 2,500 100,000 0.03
INSURANCE 5,000 100,000 0.05
DEPRECIATION

Vehicle Depreciation 110,000 6 100,000 -0.18
Semi-Trailer 95,000 10| 100,000 0.10
Depreciation

SALARY

Base Salary 55,000 1.5 100,000 0.83
Overtime/Night/Holiday 3,500 100,000 0.04
TOLLS 15,000 100,000 0.19
STRUCTURE 6,000 100,000 0.06
FEES 8,000 100,000 0.08
TOTAL £ 1.80

Table 17: Cost structure for Diesel Trucks
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CATEGORY Annual Cost | Years of Use | Annual KM | Cost per KM
PURCHASE
Vehicle Purchase 150,000 6 130,000 0.19
Semi-Trailer Purchase §5,000 10 100,000 0.10
FUEL
LNG 0.42
MAINTENANCE
Vehicle Maintenance 3,500 0.8 100,000 0.03
Semi-Trailer 1,500 100,000 0.02
Maintenance
TIRES
Tires_'for\.u‘ehicle and 5.000 100.000 0.05
Semi-Trailer
ROAD TAXES
Vehicle Road Tax 2,300 100,000 0.02
Towable Mass Tax 300 100,000 0.00
INSURANCE 8,500 100,000 0.09
DEPRECIATION
Vehicle Depreciation 150,000 6 100,000 -0.25
semi-Traler 95,000 10| 100,000 010
Depreciation
SALARY
Base Salary 55,000 1.5 100,000 0.83
Overtime/Night/Holiday 3,500 100,000 0.04
TOLLS 19,000 100,000 0.19
STRUCTURE 8,000 100,000 0.08
FEES 7,000 100,000 0.07
TOTAL € 1.76
Table 18: Cost structure for LNG Trucks
CATEGORY Annual Cost | Yearsof Annual | CostperkKM
PURCHASE
Vehicle Purchase 150,000 6| 130,000 0.15
Semi-Trailer Purchase 135,000 10| 100,000 0.14
FUEL
BiolLNG 042
MAINTENANCE
Vehicle Maintenance 3,500 0.8| 100,000 0.03
Semi-Trailer Maintenance 1,500 100,000 0.02
TIRES
TlrE.-sforVehmleand Semi- 5.000 100,000 0.05
Trailer
ROAD TAXES
Vehicle Road Tax 2,300 100,000 0.02
Towable Mass Tax 300 100,000 0.00
INSURANCE 8,500 100,000 0.09
DEPRECIATION
Vehicle Depreciation 150,000 G| 100,000 -0.25
Semi-Trailer Depreciation 95,000 10 100,000 -0.10
SALARY
Base Salary 55,000 1.5 100,000 0.83
Overtime/Night/Holiday 3,500 100,000 0.04
TOLLS 15,000 100,000 0.15
STRUCTURE 2,000 100,000 0.08
FEES 7,000 100,000 0.07
TOTAL £ 1.80

Table 19: Cost structure for BioLNG Trucks




CATEGORY Annual Cost | Years of Annual | CostperKM
PURCHASE
Vehicle Purchase 110,000 6| 140,000 0.13
Semi-Trailer Purchasze 135,000 10| 100,000 0.14
FUEL
HVO100 0.60
MAINTENANCE
Vehicle Maintenance 3,500 0.2 100,000 0.03
Semi-Trailer Maintenance 1,500 100,000 0.02
TIRES
T|rEl-5f0r1u'eI'||clea|1d Semi- 5.000 100,000 0.05
Trailer
ROAD TAXES
Vehicle Road Tax 2,500 100,000 0.03
INSURANCE 5,000 100,000 0.05
DEPRECIATION
Vehicle Depreciation 110,000 G| 100,000 -0.18
Semi-Trailer Depreciation 85,000 10| 100,000 -0.10
SALARY
Baze Salary 55,000 1.5 100,000 0.83
Qvertime/Might/Holiday 3,500 100,000 0.04
TOLLS 15,000 100,000 0.19
STRUCTURE 6,000 100,000 0.06
FEES 7,000 100,000 0.07
TOTAL £ 1.93

Table 20: Cost structure for HVO100 Trucks

CATEGORY Annual Cost|Years of Use|Annual KM| Cost per KM
PURCHASE
Vehicle Purchase 400,000 5 70,000 1.14
Semi-Trailer Purchase 135,000 10 70,000 0.19
Incentives 24,000 5 70,000 -0.07
FUEL
Electricity 0.14
MAINTENANCE
Vehicle Maintenance 2450 0.7 70,000 0.02
Semi-Trailer Maintenance 1,500 70,000 0.02
TIRES
Tlre_sfaneIucleand Semi- 2500 5 20.000 0.07
Trailer
ROAD TAXES
Vehicle Road Tax 0 70,000 0.00
Towable Mass Tax 0 70,000 0.00
INSURANCE 4,000 70,000 0.13
DEPRECIATION
Vehicle Depreciation 0 6 70,000 0.00
Semi-Trailer Depreciation 0 10 70,000 0.00
SALARY
Base Salary 55,000 1.5 70,000 1.18
Overtime/Night/Holiday 2,450 70,000 0.04
TOLLS 13,300 70,000 0.18
STRUCTURE 7,700 70,000 0.11
FEES 13,300 70,000 0.18
TOTAL € 3.36

Table 21: Cost structure for Electricity Trucks




7.2 Base Case Scenario Results

CATEGORY Annual Cost|Years of Use[Annual KM| Cost per KM
PURCHASE
Vehicle Purchase S50,000 5| 100,000 1.58
Semi-Trailer Purchase 135,000 10 100,000 0.14
Incentives 24,000 5 70,000 -0.07
FUEL
Hydrogen 1.04
MAINTENANCE
Vehicle Maintenance 4,000 0.7] 100,000 0.03
Semi-Trailer Maintenance 1,500 100,000 0.02
TIRES
T|re_5faneh|cleand Semi- 2500 s| 100.000 0.05
Trailer
ROAD TAXES
Vehicle Road Tax 0 100,000 0.00
Towable Mass Tax 0 100,000 0.00
INSURANCE 23,000 100,000 0.23
DEPRECIATION
Vehicle Depreciation 0 §| 100,000 0.00
Semi-Trailer Depreciation 0 10] 100,000 0.00
SALARY
Base Salary 55,000 1.5( 100,000 0.83
Overtime/Night/Haliday 3,500 100,000 0.04
TOLLS 159,000 100,000 0.18
STRUCTURE 11,000 100,000 0.11
FEES 159,000 100,000 0.18
TOTAL £ 4.76

Table 22: Cost structure for Hydrogen Trucks

gy [ Diesel Trucks [LNG Trucks | BioLNG Trucks [ HVO100 Trucks | Electric Trucks | Hydrogen Trucks | Diesel Coolers | HVO100 Coolers | Nitrogen Coolers | Electric Coolers|  Cost Emissions

(O] o 0 20 463 350 0 5 10 818 276,838,224 5,568,548
1 o 0 20 0 463 350 0 5 10 818 276,838,224 5,568,548
T o 0 24 0 500 319 0 6 12 825 271,752,567 5,791,207
E o 0 36 0 492 309 0 9 18 810 268,048,212 6,106,915
4 0 0 44 1 208 203 0 2 2 802 264,082,083 6,402,042
E o 0 56 0 499 278 0 14 28 791 259,829,051 6,692,500
6 o 0 68 0 498 263 0 17 34 778 255,389,706 7,028,318
7 o 0 80 0 498 248 0 20 40 766 251,181,866 7,370,721
1 o 0 92 0 500 231 0 23 46 754 246,494,826 7,715,900
) 0 0 104 0 500 215 0 % 52 741 241815881 8,053,106
E o 0 120 0 490 201 0 30 60 721 236,717,008 8,474,974
11 o 0 132 1 496 180 0 34 66 709 231,348,265 8,884,236
E o 0 148 0 500 158 0 37 74 695 225,444,925 9,298,189
E o 0 164 0 500 137 0 41 82 678 219,363,367 9,749,530
1 0 0 180 0 500 116 0 5 20 661 213,281,808 10,200,870
E o 0 196 1 500 94 0 50 98 643 207,005,842 10,705,543
16 o 0 216 0 499 70 0 54 108 623 199,955,679 11,216,297
E o 0 236 0 492 49 0 59 118 600 193,206,497 11,761,661
E o 0 256 0 492 23 0 64 128 579 185,722,325 12,327,136
19 0 0 268 4 295 0 0 7 134 562 179,546,940 12,881,837
E o 0 268 18 467 0 0 85 134 534 176,938,566 13,516,872
21 o 0 268 32 439 0 0 99 134 506 174,330,184 14,151,908
E o 0 268 47 409 0 0 114 134 476 171,535,488 14,832,303
E Multi Objective o 0 268 63 377 0 0 130 134 444 168,554,479 15,558,058
24| Multi Objective 0 0 268 79 345 0 0 146 134 412 165573471 16,283,813
E Multi Objective o 0 268 97 307 1 o 164 134 375 162,227,931 17,092,314
|26] Multi Objective o 0 268 115 273 0 o 182 134 340 158,866,201 17,916,762
27| Multi Objective 0 0 268 134 233 1 0 201 134 301 155,334,348 18,770,623
E Multi Objective o 0 268 153 195 1 o 220 134 263 151,794,401 19,632,457
|29] Multi Objective o 0 268 174 155 0 o 241 134 222 147,873,732 20,592,983
30| Multi Objective 0 0 268 19 11 0 0 263 134 178 143,774,845 21,590,896
E Multi Objective o 0 268 219 65 0 o 286 134 132 139,489,645 22,634,169
|32] Multi Objective o 0 268 243 15 1 o 310 134 83 135,026,227 23,714,828
33| Multi Objective 0 5 268 246 1 0 s 313 134 68 133,306,249 24,640,542
E Multi Objective o 16 264 240 0 0 16 306 132 66 133,018,283 26,007,185
|35] Multi Objective o 26 268 227 0 0 26 294 134 67 132,698,345 27,081,441
36| Multi Objective 0 39 268 215 0 0 39 282 134 67 132,300,456 28,582,615
; Multi Objective o 50 268 205 0 0 50 272 134 67 132,189,119 29,861,843
E Multi Objective o 63 268 193 0 0 63 260 134 67 131,890,231 31,363,017
39| Multi Objective 0 75 268 181 1 0 75 248 134 68 131,500426 32,701,273
E Multi Objective o 89 268 168 1 0 89 235 134 68 131,247,261 34,313,420
E Multi Objective o 103 268 155 1 0 103 222 134 68 130,904,097 35,925,566
42| Multi Objective 0 119 268 141 0 0 119 208 134 67 130,517,572 37,811,602
E Multi Objective o 135 268 126 0 0 135 193 134 67 130,085,856 39,645,694
E Multi Objective o 151 268 111 0 0 151 178 134 67 129,654,140 41,479,785
|45] Multi Objective o 166 268 97 0 0 166 164 134 67 129,266,700 43,202,904
46| Multi Objective 0 187 268 77 1 0 187 144 134 68 128,845,109 45,598,444
E Multi Objective o 206 268 60 0 0 206 127 134 67 128,325,758 47,817,398
|48 | Multi Objective o 222 268 45 0 0 222 112 134 67 127,894,041 49,651,489
49| Multi Objective 0 246 268 23 0 0 246 90 134 67 127,384,816 52,431,892
E Multi Objective o 268 264 6 0 0 268 72 132 66 126,841,321 55,025,819
51| Economic Single Objective o 268 264 6 0 0 268 72 132 66 126,841,321 55,025,819

Table 23: Scenario A.1 Results




Diesel Trucks | LNG Trucks | BioLNG Trucks | HVO100 Trucks | Electric Trucks | Hydrogen Trucks | Diesel Coolers | HVO100 Coolers | Nitrogen Coolers | Electric Coolers | Cost | Emissions
0 |Environmental Single Objective 0 0 19 0 465 350 0 0 0 834 277,041,285 5,403,631
1 |Multi Objective 0 0 19 0 65 350 0 0 0 834 277,041,283 5,403,631
2 |Multi Objective 0 0 27 0 500 315 0 0 0 842 270,720,745 5,667,847
3 |Multi Objective 0 0 40 0 500 208 0 0 0 838 265,779,083 5,944,982
4| Multi Objective 0 0 54 0 500 280 0 0 0 834 260,595,794 6,235,667
5 |Multi Objective 0 0 68 0 500 261 0 0 0 829 255,159,063 6,540,567
6 | Multi Objective 0 0 84 0 500 241 0 0 0 825 249,456,498 6,860,374
7 |Multi Objective 0 0 100 0 500 220 0 0 0 820 243,475,100 7,195,819
8 | Multi Objective 0 0 117 0 500 198 0 0 0 815 237,201,236 7,547,665
9 |Multi Objective 0 0 134 0 500 175 0 0 0 810 230,620,605 7,916,716
10 |Multi Objective 0 0 153 0 500 151 0 0 0 804 223,718,208 8,303,811
11 |Multi Objective 0 0 172 0 500 126 0 0 0 798 216,478,311 8,709,835
12 |Multi Objective 0 0 103 0 500 99 0 0 0 792 208,884,412 9,135,710
13 |Multi Objective 0 0 214 0 500 72 0 0 0 786 200,919,202 9,582,410
14 |Multi Objective 0 0 237 0 500 2 0 0 0 779 192,564,525 10,050,951
15 |Multi Objective 0 0 260 0 500 12 0 0 0 772 183,801,338 10,542,403
16 |Multi Objective 0 0 269 7 486 0 0 7 0 755 179,063,296 11,057,884
17 |Multi Objective 0 0 269 19 462 0 0 19 0 731 176,842,450 11,598,570
18 |Multi Objective 0 0 269 32 437 0 0 32 0 706 174513013 12,165,693
19 | Multi Objective 0 0 269 5 211 0 0 5 0 680 172,069,677 12,760,547
20 | Multi Objective 0 0 269 58 383 0 0 58 0 652 160,506,871 13,384,486
21 |Multi Objective 0 0 269 73 354 0 0 73 0 623 166,818,754 14,038,934
22 |Multi Objective 0 0 269 88 324 0 0 88 0 503 163,999,199 14,725,382
23 |Multi Objective 0 0 269 104 202 0 0 104 0 561 161,041,779 15,445,394
24 |Multi Objective 0 0 269 121 259 0 0 121 0 528 157,939,753 16,200,611
25 | Multi Objective 0 0 269 138 224 0 0 138 0 493 154,686,050 16,992,756
26 | Multi Objective 0 0 269 156 187 0 0 156 0 457 151,273,255 17,823,634
27| Multi Objective 0 0 269 176 149 0 0 176 0 218 147,603,587 18,695,138
28| Multi Objective 0 0 269 19 100 0 0 19 0 378 143,938,888 19,609,255
29 |Multi Objective 0 0 269 217 66 0 0 217 0 336 140,000,599 20,568,069
30 |Multi Objective 0 0 269 239 2 0 0 239 0 201 135,869,744 21,573,765
31 | Multi Objective 0 0 269 250 0 0 0 324 0 195 133,639,230 22,628,636
32 |Multi Objective 0 0 269 250 0 0 0 a2 0 47 133,283,089 23,735,085
33 |Multi Objective 0 7 269 243 0 0 7 513 0 0 132,997,648 24,895,635
34 |Multi Objective 0 18 269 234 0 0 18 503 0 0 132,738532 26,112,932
35 | Multi Objective 0 29 269 223 0 0 29 493 0 0 132,466,746 27,389,750
36 |Multi Objective 0 40 269 213 0 0 40 482 0 0 132,181,671 28,728,998
37 | Multi Objective 0 53 269 201 0 0 53 470 0 0 131,882,657 30,133,731
38 |Multi Objective 0 65 269 189 0 0 65 459 0 0 131,569,022 31,607,150
39 |Multi Objective 0 79 269 177 0 0 79 446 0 0 131,240,052 33,152,612
40 |Multi Objective 0 93 269 164 0 0 93 433 0 0 130,894,997 34,773,642
41 |Multi Objective 0 108 269 150 0 0 108 219 0 0 130,533,069 36,473,933
42| Multi Objective 0 123 269 136 0 0 123 405 0 0 130,153,445 38,257,362
43 |Multi Objective 0 139 269 121 0 0 139 390 0 0 129,755,259 40,127,994
44| Multi Objective 0 156 269 105 0 0 156 374 0 0 129,337,603 42,090,092
45 | Multi Objective 0 174 269 88 0 0 174 357 0 0 128,809,526 44,148,128
46 |Multi Objective 0 103 269 7 0 0 103 340 0 0 128,440,028 46,306,794
47| Multi Objective 0 213 269 53 0 0 213 322 0 0 127,958,062 48,571,011
48 |Multi Objective 0 233 269 33 0 0 233 303 0 0 127452531 50,945,938
49 |Multi Objective 0 255 269 13 0 0 255 283 0 0 126922281 53,436,990
50 | Multi Objective 0 269 269 0 0 0 269 0 269 0 126,532,096 56,049,844
51 |Economic Single Objective 0 269 269 0 0 0 269 0 269 0 126,532,096 56,049,844

Table 24: Scenario A.2 Results

Diesel Trucks | LNG Trucks | BioLNG Trucks | HVO100 Trucks | Electric Trucks | Hydrogen Trucks| Diesel Coolers | HVO100 Coolers | Nitrogen Coolers | Electric Coolers|  Cost Emissions
0 |Environmental Single Objective 0 0 52 5 394 350 0 18 26 757 269,871,155 6,527,783
1 |Multi Objective 0 0 52 5 304 350 0 18 26 757 269,871,155 6,527,783
2 |Multi Objective 0 0 52 5 492 281 0 18 26 786 260,052,404 6,814,525
3 |Multi Objective 0 0 60 6 500 264 0 2 30 779 256,078,180 7,117,625
4| Multi Objective 0 0 72 5 500 250 0 23 36 768 252,064,748 7,406,695
5 |Multi Objective 0 0 84 5 500 234 0 26 2 755 247,385,803 7,743,901
6 | Multi Objective 0 0 9% 5 499 219 0 29 8 742 242,046,458 8,079,719
7 |Multi Objective 0 0 108 6 499 202 0 33 54 728 238,073,105 8,470,258
8 |Multi Objective 0 0 124 5 494 186 0 36 62 711 232,912,850 8,856,128
9 |Multi Objective 0 0 136 5 499 167 0 39 68 700 227,978,115 9,210,668
10 |Multi Objective 0 0 152 5 498 147 0 3 76 683 222,136,157 9,660,620
11 |Multi Objective 0 0 168 5 491 131 0 47 84 664 216,789,588 10,091,850
12 |Multi Objective 0 0 184 5 490 m 0 51 92 647 210,947,630 10,541,803
13 |Multi Objective 0 0 200 5 496 86 0 55 100 632 204,370,682 11,011,865
14 |Multi Objective 0 0 216 5 499 63 0 59 108 616 198,041,429 11,472,567
15 |Multi Objective 0 0 232 6 500 40 0 64 116 508 191,525,863 11,978,628
16 |Multi Objective 0 0 252 6 500 1 0 69 126 577 184,041,691 12,544,102
17 |Multi Objective 0 0 268 9 485 0 0 76 134 552 178,615,383 13,108,635
18 | Multi Objective 0 0 268 2 457 1 0 89 134 525 176,201,409 13,690,338
19 | Multi Objective 0 0 268 35 433 0 0 102 134 500 173,771,244 14,287,987
20 | Multi Objective 0 0 268 49 405 0 0 116 134 a2 171,162,862 14,923,023
21 |Multi Objective 0 0 268 64 375 0 0 131 134 442 168,368,166 15,603,418
22 |Multi Objective 0 0 268 79 345 0 0 146 134 212 165573471 16,283,813
23 |Multi Objective 0 0 268 95 313 0 0 162 134 380 162,502,462 17,009,568
24 |Multi Objective 0 0 268 112 279 0 0 179 134 346 150,425,140 17,780,683
25 | Multi Objective 0 0 268 129 25 0 0 19 134 312 156,257,819 18,551,797
26| Multi Objective 0 0 268 147 209 0 0 214 134 276 152,904,184 19,368,272
27| Multi Objective 0 0 268 167 167 1 0 234 134 235 149,186,018 20,267,492
28 |Multi Objective 0 0 268 186 131 0 0 253 134 198 145,637,975 21,137,299
29 |Multi Objective 0 0 268 207 89 0 0 274 134 156 141,725,402 22,089,853
30 |Multi Objective 0 0 268 229 5 0 0 296 134 112 137,626,515 23,087,766
31 |Multi Objective 0 0 268 250 3 0 0 317 134 70 133,713,941 24,040,319
32 |Multi Objective 0 9 264 25 3 0 9 311 132 69 133469335 25,133,072
33 |Multi Objective 0 19 268 232 3 0 19 299 134 70 133,149,397 26,207,328
34 |Multi Objective 0 30 268 222 3 0 30 289 134 70 132,939,060 27,486,557
35 |Multi Objective 0 40 268 212 4 0 40 279 134 7 132,727,807 28,602,868
36 |Multi Objective 0 51 264 206 3 0 51 272 132 69 132,439,841 29,969,511
37 |Multi Objective 0 61 268 103 3 0 61 260 134 70 132,119,903 31,043,767
38 |Multi Objective 0 75 268 180 3 0 75 247 134 70 131,776,739 32,655,914
39 |Multi Objective 0 88 268 168 3 0 88 235 134 70 131,477,850 34,157,087
40 |Multi Objective 0 101 268 156 3 0 101 23 134 70 131178961 35,658,261
41 |Multi Objective 0 115 268 143 3 0 115 210 134 70 130,835,797 37,270,407
42| Multi Objective 0 129 268 130 3 0 129 197 134 70 130492632 38,882,554
43| Multi Objective 0 144 268 116 3 0 144 183 134 70 130,105,192 40,605,673
44| Multi Objective 0 159 268 102 3 0 159 160 134 70 120,717,751 42,328,791
45 |Multi Objective 0 173 268 89 3 0 173 156 134 70 120,374,587 43,940,938
46 |Multi Objective 0 194 268 69 4 0 194 136 134 7 128,952,997 46,336,477
47__|Multi Objective 0 212 268 53 3 0 212 120 134 70 128477921 48,444,459
48 |Multi Objective 0 229 268 37 3 0 229 104 134 70 128,001,929 50,389,523
49 |Multi Objective 0 250 268 17 4 0 250 84 134 7 127,580,338 52,785,063
50 | Multi Objective 0 269 256 1 3 0 269 75 128 67 127245919 55,227,486
51 |Economic Single Objective 0 269 256 1 3 0 269 75 128 67 127245919 55,227,486

Table 25: Scenario B.1 Results




Diesel Trucks | LNG Trucks | BioLNG Trucks | HVO100 Trucks | Electric Trucks | Hydrogen Trucks | Diesel Coolers | HVO100 Coolers | Nitrogen Coolers | Electric Coolers Cost Emissions
52

Environmental Single Objective 0 0 5 303 350 0 5 0 795 269,836,470 6,139,500

Multi Objective 0 0 52 5 393 350 0 5 0 795 269,836,468 6,139,590

Multi Objective 0 0 52 5 490 283 0 5 0 824 260,382,266 6,423,129

Multi Objective 0 0 65 5 500 259 0 5 0 824 254,619,127 6,719,763

Multi Objective 0 0 80 5 500 240 0 5 0 819 249,085,504 7,030,096

Multi Objective 0 0 95 5 500 219 0 5 0 814 243,296,327 7,354,761

Multi Objective 0 0 m 5 500 198 0 5 0 810 237,239,793 7,694,419

Multi Objective 0 0 128 5 500 176 0 5 0 804 230,903,555 8,049,764

Multi Objective 0 0 146 5 500 153 0 5 0 799 224,274,697 8,421,519

Multi Objective 0 0 165 5 500 120 0 5 0 794 217,339,703 8810443

Multi Objective 0 0 184 5 500 103 0 5 0 788 210,084,437 9,217,328

Multi Objective 0 0 205 5 500 77 0 5 0 782 202,494,108 9,643,004

Multi Objective 0 0 226 5 500 49 0 5 0 775 194,553,240 10,088,338

Multi Objective 0 0 248 5 500 20 0 5 0 768 186,245,647 10,554,239

Multi Objective 0 0 269 7 486 0 0 7 0 756 179129951 11,041,656

Multi Objective 0 0 269 18 464 0 0 18 0 733 177,035,446 11,551,583

Multi Objective 0 0 269 30 440 0 0 30 0 710 174844213 12,085,060

Multi Objective 0 0 269 2 416 0 0 2 0 685 172,551,784 12,643,173

Multi Objective 0 0 269 55 390 0 0 55 0 659 170,153,485 13,227,062

Multi Objective 0 0 269 68 363 0 0 68 0 632 167,644,428 13,837,916

Multi Objective 0 0 269 83 335 0 0 83 0 604 165,019,497 14,476,980

Multi Objective 0 0 269 97 305 0 0 97 0 575 162,273,342 15,145,558

Multi Objective 0 0 269 113 275 0 0 113 0 544 150,400,363 15,845,012

Multi Objective 0 0 269 129 242 0 0 129 0 512 156,394,704 16,576,768

Multi Objective 0 0 269 146 209 0 0 146 0 478 153250237 17,342,319

Multi Objective 0 0 269 163 173 0 0 163 0 443 149,960,552 18,143,224

Multi Objective 0 0 269 182 136 0 0 182 0 406 146518942 18,981,116

Multi Objective 0 0 269 201 98 0 0 201 0 367 142918392 19,857,705

Multi Objective 0 0 269 221 57 0 0 221 0 326 139,151,560 20,774,776

Multi Objective 0 0 269 243 15 0 0 243 0 284 135,210,769 21,734,199

Multi Objective 0 0 269 248 3 0 0 346 0 174 133,861,620 22,737,931

Multi Objective 0 0 269 248 3 0 0 487 0 34 133523621 23,788,016

Multi Objective 0 8 269 242 3 0 8 511 0 3 133,264,558 24,886,598

Multi Objective 0 18 269 232 3 0 18 501 0 3 133019913 26035914

Multi Objective 0 28 269 223 3 0 28 492 0 3 132,763,969 27,238,307

Multi Objective 0 39 269 212 3 0 39 482 0 3 132,496,205 28,496,230

Multi Objective 0 50 269 202 3 0 50 471 0 3 132,216,075 29,812,247

Multi Objective 0 62 269 191 3 0 62 460 0 3 131,923,009 31,189,040

Multi Objective 0 75 269 179 3 0 75 448 0 3 131,616,407 32,629,416

Multi Objective 0 88 269 167 3 0 88 436 0 3 131,205,647 34,136,311

Multi Objective 0 102 269 154 3 0 102 423 0 3 130,960,073 35,712,799

Multi Objective 0 116 269 141 3 0 116 410 0 3 130,609,001 37,362,092

Multi Objective 0 131 269 127 3 0 131 396 0 3 130,241,716 39,087,553

Multi Objective 0 147 269 112 3 0 147 382 0 3 129,857,469 40,892,699

Multi Objective 0 163 269 97 3 0 163 366 0 3 120455477 42,781,211

Multi Objective 0 180 269 81 3 0 180 351 0 3 129,034,920 44,756,938

Multi Objective 0 198 269 65 3 0 198 334 0 3 128,504,040 46,823,908

Multi Objective 0 217 269 47 3 0 217 316 0 3 128,134,642 48,986,336

Multi Objective 0 236 269 29 3 0 236 208 0 3 127,653,086 51,248,629

Multi Objective 0 257 269 10 3 0 257 279 0 3 127,149,201 53,615,399

Multi Objective 0 269 262 5 3 0 269 s 262 3 126947212 56,001,472
Economic Single Objective 0 269 262 5 3 0 269 s 262 3 126947212 56,001,472

Table 26: Scenario B.2 Results

Methodology [Diesel_T | LNG_T_|BioLNG_T|HYOI00_T[Electric_Tfiydrogen_] Diesel_C [HYO100_CNitrogen_CElectric_C| Cost  [Emissions]
Erwvironmental Single Obje 1] [1] 348 &1 25 5 [1] 248 174 17 135594775 21804410

ulti Objective 0 348 161 25 5 0 248 174 w 135594775 21804410

it Objective 1} 0 348 164 26 1} 0 291 74 3 134.300.846 21960600

Pulti Objective 1} 0 348 169 1 1} 0 256 74 0z 133,369,281 22187398

F bAulti Objective 1} 0 348 173 8 1} 0 260 174 95 132624028 22,368,837
5 Peulti Objective 1} 1 348 174 4 1} 1 261 174 Ell 132207126 22570523
E bulti Objective 1} 2 348 173 4 1} 2 260 174 Ell 132,162,851 22681502
7 Pulti Objective 1} 4 348 172 3 1} 4 259 174 90 132,119,491 22,955,392
ulti Objective 1] B 348 170 3 1] B 287 174 90 132030939 23177337

Pulti Objective 1} 8 348 68 3 1} 8 255 74 90 1942388 23399.282

bAulti Objective 1} 9 348 167 3 1} 9 254 174 a0 13898112 23.510,255

bAulti Objective 1} 9 348 167 3 1} 9 254 174 a0 13898112 23.510,255

Peulti Objective 1} 13 344 167 3 1} 13 253 172 a3 131,874,885 24,048,145

Pulti Objective 1} & 348 160 4 1} & 247 174 91 131819686 24293648

Multi Objective 1] 16 348 160 4 1] 16 247 174 Ell 131819606 24.293648

ulti Objective 1] 19 348 158 3 1] 19 245 174 90 131732051 24678510

Pulti Objective 1} 21 348 156 3 1} 21 243 74 90 131,643,499 24,900,456

bAulti Objective 1} 23 348 154 3 1} 23 24 174 a0 131.554,947 25122400

Peulti Objective 1} 23 348 154 3 1} 23 24 174 90 131.554,947 25,122,401

Peulti Objective 1} 23 348 154 3 1} 23 24 174 90 131.554,947 25,122,401

2 Pulti Objective 1} 29 348 48 4 1} 29 235 174 91 131520797 25,734,822
2 ulti Objective 1] eli] 348 147 4 1] eli] 234 174 Ell 131476522 25905.794
2 Pulti Objective 1} ex] 348 145 3 1} ex] 232 74 90 131,388,986 26,290,657
2 bAulti Objective 1} 35 348 142 3 1} 35 230 174 a0 131,300,334 26512 602
2 bAulti Objective 1} ar 348 i 3 1} ar 228 174 a0 13211783 26,734,547
2! Peulti Objective 1} ar 348 M 3 1} ar 228 174 90 13211783 26,734 547
2 Pulti Objective 1} 4 344 i 3 1} 4 227 172 a3 131188566 27272437
2 Multi Objective 1] 44 348 134 4 1] 44 221 174 Ell 131133.357  27.517.940
2 ulti Objective 1] 46 348 133 3 1] 46 220 174 90 131089997 27791831
2 Pulti Objective 1} 48 348 1 3 1} 48 218 74 90 1000446 28,013,776
bAulti Objective 1} 0 348 128 3 1} 0 216 174 a0 130,912,894 28,235,721

Peulti Objective 1} 51 348 128 3 1} 51 215 174 90 130,868,618 28,346,693

Peulti Objective 1} 51 348 128 3 1} 51 215 174 90 130,868,618 28,346,693

Pulti Objective 1} 57 348 122 4 1} 57 209 174 91 130,834 468 29.019.114

ulti Objective 1] 59 348 121 3 1] 59 208 174 90 1300791909 29,293,004

35 [Multi Objective 1} E2 348 T2 3 1} E2 208 74 90 130,658,281 29,626,922
6 |MAulti Objective 1} B4 348 16 3 1} B4 203 174 a0 130,569,729 29,847 867
7 |hAulti Objective 1} E5 348 115 3 1} E5 202 174 a0 130,525,454 29,958,840
Peulti Objective 1} ES 348 115 3 1} ES 202 174 90 130,525,454 29,958,840

Pulti Objective 1} 72 348 08 4 1} 72 195 174 91 130,447,028 30,742,233

ulti Objective 1} T4 348 107 3 1} T4 194 174 90 130,403,668 31016123

ulti Objective 1] TG 348 105 3 1] TG 132 174 90 130318117 3.238.068

F Pulti Objective 1} 73 348 o2 3 1} 73 123 74 90 130,782,289 31570986
4 bAulti Objective 1} T3 348 oz 3 1} T3 183 174 a0 130,182,289 31570986
F Peulti Objective 1} a3 344 02 3 1} a3 10e 172 a3 130,159,062 32,108,876
45 [Pulti Objective 1} 86 348 95 4 1} 86 12 174 Ell 130,103,863 32,354,373
46 [Pulti Objective 1} a3 348 93 3 1} a3 180 174 90 130,016,228 32,739,242
47 | Multi Objective 1] 91 348 91 3 1] 91 va 174 90 129927 676 32961087
48 [Multi Objective 1} 93 348 23 3 1} 93 e 74 90 129839124 33183732
49 [Multi Objective 1} 93 348 23 3 1} 93 e 74 90 129839124 33183732
50 [Multi Objective 1} 100 348 a2 4 1} 100 163 174 Ell 129,760,693 33,966,526
51 |Economic Single Objective i} 100 348 a2 4 i} 100 163 174 Ell 129,760,699 33,966,526

Table 27: Scenario C.1 Results




Methodology [Diesel T] LNG_T [BioLNG_T[HVO100_T[Electric_THydrogen_] Diesel_C [H¥O100_CHitrogen_OElectric C[ Cost  [Emissions
Ervironmental Single Obje 1] 1] 250 L] 2B [ 1] ] ] 3 TIE248797 19743040

Multi Objective 1] 1] 350 158 26 5 1] 158 0 3 136,248,130 15,143,041

Multi Objective 1] 1] 350 163 23 1] 1] 163 0 373 134642581 19,384,104
|3 |Multi Objective 1] 1] 350 163 13 1] 1] L] 0 363 133633954 13628203
Multi Objective 1] 1] 350 173 3 1] 1] 177 il 249 132.729.370 19875376

Multi Objective 1] 1] 350 173 ] 1] 1] 21 il ey 132,648,809 20,125 E62

Multi Objective 1] 1] 350 173 ] 1] 1] 245 0 282 132,567,233 20,379,099

Multi Objective 1] 1] 350 173 3 1] 1] 273 0 248 132,484 630 20,635,728

Mulli Objective 1] 1] 350 173 3 1] 1] i) 0 213 132,400,387 20,895,588

Multi Objective 1] 1] 350 173 3 1] 1] 343 il 1w 1323623 2115874

1 Multi Objective 1] 1] 350 173 ] 1] 1] 284 il a2 132230527 2142567
Multi Objective 1] 1] 350 173 ] 1] 1] 420 0 106 132,143,684 21,694,969

2 |Multi Objective 0 0 350 173 3 1] 1] 457 0 T 132,055,748 21968168
Mulli Objective 1] 1] 350 173 3 1] 1] 4534 0 33 131966704 22,244 808

4 | Multi Objective 1] 1 350 173 ] 1] 1 523 il 3 131,882,960 22,524.931
5 | Multi Objective 1] 2 350 il ] 1] 2 521 0 3 13822581 22,809,582
6 |Multi Objective 0 5 350 168 3 1] 5 518 0 3 131761442 23,095,804
7 | Multi Objective 1] 8 350 166 3 1] 8 516 0 3 131639,534  23,386.644
Multi Objective 1] ! 350 164 3 1] ! 514 il 3 131636846 23681146

Multi Objective 1] 13 350 1 ] 1] 13 811 il 3 131673,368  23979.357

Multi Objective 1] 6 350 159 ] 1] 6 508 0 3 13.509.091 24,281,322

Multi Objective 1] 13 350 156 3 1] 13 08 0 3 131444004 24,587,091

2 | Multi Objective 1] el 350 154 3 1] el 504 1] 3 131378.098 24,836,710
Multi Objective 1] 24 350 Bl 3 1] 24 50 il 3 1MIM362 25210228

4 | Multi Objective 1] 27 350 149 ] 1] 27 438 il 3 131,243,796 25,627 634
25 |Multi Objective 0 23 350 48 ] 1] 29 456 0 3 13175,368 25,849,157
6 | Multi Objective 0 32 350 144 3 1] 32 434 0 3 1306063 26,174,689
7 | Mulli Objective 1] 35 350 " 3 1] 35 491 0 3 131035308 26,504.280
Multi Objective 1] iz} 350 138 3 1] iz} 488 il 3 130.954.863  26.838.042

Multi Objective 1] 41 350 136 ] 1] 41 486 il 3 130,892,923 27,176.007

Multi Objective 1] 44 350 133 ] 1] 44 483 0 3 130,820,077 27.518.227

Multi Objective 1] 47 350 130 3 1] 47 480 0 3 130,746,314 27 864,757

2 | Multi Objective 1] 50 350 127 3 1] 50 477 1] 3 130671622 28.215.651
Multi Objective 1] 53 350 124 3 1] 53 474 il 3 130.595.990 28570963

4 | Multi Objective 1] 56 350 11 ] 1] 56 471 il 3 130,513,406 28,930,750
35 |Multi Objective 0 53 380 e ] 1] 53 468 0 3 130,441,855 29,295,068
6 | Multi Objective 0 B3 350 15 3 1] B3 465 0 3 130,363,329 290663973
7 | Mulli Objective 1] EE 350 nz 3 1] EE 462 1] 3 130,283,815 30,037 524
Multi Objective 1] B3 350 109 3 1] B3 453 il 3 130.202.293  30.415.779

Multi Objective 1] 72 350 108 ] 1] 72 456 il 3 130121769 30,799,797

Multi Objective 1] 76 350 03 ] 1] 76 453 0 3 130039212 31186638

4 Multi Objective 1] 74 350 100 3 0 73 450 0 3 129955 676 31,579,364
2 | Multi Objective 1] a3 350 57 3 1] a3 M7 0 3 129,870,967 31977.035
Multi Objective 1] a6 350 94 3 1] a6 444 il 3 129.785.252  32.379.713

4 | Multi Objective 1] g0 350 a0 ] 1] g0 440 il 3 129,698,467 32,787 463
45  |Multi Objective 0 93 380 a7 ] 1] o} 437 0 3 129610570 33,200,247
6 | Mulli Objective 1] 97 380 a4 3 1] 97 434 1] 3 129521576 33,618,430
7 | Multi Objective 1] m 350 a0 3 1] m 430 1] 3 129431461 34041779
8 | Multi Objective 1] m 350 20 ] 1] m 328 L] 3 129,404,893 34,470,458
9 | Multi Objective 0 m 380 a0 ] 1] m 203 227 3 129,387 576 34,904,536
50  |Multi Objective 0 i 350 20 3 1] m a0 350 3 129,370,041 35,344,079
51 |Economic Single Objective 0 m 350 a0 3 0 m a0 350 3 129,370,041 35,344,079

Table 28: Scenario C.2 Results



7.3 Fuel Price Forecast Scenario Cost Structure

LNG Mean Price [€/kg] 0.7221347

LNG per km [kg/km] 0.26

CATEGORY Annual Cost | Years of Use | Annual KM | Costper KM
PURCHASE
Vehicle Purchase 150,000 6 130,000 0.19
Semi-Trailer Purchase 95,000 10 100,000 0.10
FUEL
LNG 0.19
MAINTENANCE
Vehicle Maintenance 3,500 0.8 100,000 0.03
Semi-Trailer 1,500 100,000 0.02

Maintenance

TIRES

Tires forVehicle and

Semi-Trailer 5,000 100,000 0.05
ROAD TAXES

Vehicle Road Tax 2,300 100,000 0.02
Towable Mass Tax 300 100,000 0.00
INSURANCE 8.500 100,000 0.09
DEPRECIATION

Vehicle Depreciation 150,000 6 100,000 -0.25
Semi-Trailer 95,000 10| 100,000 0.10
Depreciation

SALARY

Base Salary 55,000 1.5 100,000 0.83
Cvertime/Might/Holiday 3,500 100,000 0.04
TOLLS 19,000 100,000 0.19
STRUCTURE 8,000 100,000 0.08
FEES 7,000 100,000 0.07
TOTAL £ 1.53

Table 29: Quantitative scenario cost structure of LNG trucks

BioLNG Mean Price [€/kg] 077
BioLNG per km [kg/km] 0.26

CATEGORY Annual Cost | Years of Annual | CostperKM
PURCHASE
Vehicle Purchase 150,000 6| 130,000 0.19
Semi-Trailer Purchase 135,000 10| 100,000 0.14
FUEL
BioL NG 0.20
MAINTENANCE
Vehicle Maintenance 3,500 0.2 100,000 0.03
Semi-Trailer Maintenance 1,500 100,000 0.02
TIRES
T|re_5for\u’el1|clear|d Semi- 5.000 100.000 0.05
Trailer
ROAD TAXES
Vehicle Road Tax 2,300 100,000 0.02
Towable Mass Tax 300 100,000 0.00
INSURANCE 8,500 100,000 0.09
DEPRECIATION
Vehicle Depreciation 150,000 G| 100,000 -0.25
Semi-Trailer Depreciation 45,000 10 100,000 -0.10
SALARY
Base Salary 55,000 1.5| 100,000 0.83
Overtime/Night/Holiday 3,500 100,000 0.04
TOLLS 19,000 100,000 0.1%
STRUCTURE §,000 100,000 0.08
FEES 7,000 100,000 0.07
TOTAL £ 1.59

Table 30: Quantitative scenario cost structure of BioLNG trucks



HVD 100 Mean Price [£/11] 0.43
HVD 100 per km [1t/km] 0.26

CATEGORY Annual Cost | Years of Annual | CostperkM
PURCHASE
Vehicle Purchase 110,000 6| 140,000 0.13
Semi-Trailer Purchase 135,000 10| 100,000 0.14
FUEL
HVO100 0.11
MAINTENANCE
Vehicle Maintenance 3,500 0.8| 100,000 0.03
Semi-Trailer Maintenance 1,500 100,000 0.02
TIRES
T|rE.-5f0r‘u’eI1|cle and Semi- 5.000 100,000 0.05
Trailer
ROAD TAXES
Vehicle Road Tax 2,500 100,000 0.03
INSURANCE 5,000 100,000 0.05
DEPRECIATION
Vehicle Depreciation 110,000 & 100,000 -0.18
Semi-Trailer Depreciatian 95,000 10{ 100,000 -0.10
SALARY
Base Salary 55,000 1.5 100,000 0.83
Cuertime/MNight/Holiday 3,500 100,000 0.04
TOLLS 15,000 100,000 0.19
STRUCTURE 6,000 100,000 0.06
FEES 7,000 100,000 0.07
TOTAL [ 1.45

Table 31: Quantitative scenario cost structure of HVO100 trucks

Electricity Mean Price [€/kWh] 0.08

Electricity per km [kKMWh/km] 1.1

CATEGORY [Annual Cost|Years of Use|Annual KM| Cost per KM
PURCHASE

Vehicle Purchase 400,000 5 70,000 1.14
Semi-Trailer Purchase 135,000 10 70,000 0.18
Incentives 24,000 5 70,000 -0.07
FUEL

Electricity 0.10
MAINTENANCE

Vehicle Maintenance 2450 0.7] 70,000 0.02
Semi-Trailer Maintenance 1,500 70,000 0.02
TIRES

Tlre.sfor‘u’ehlcle and Semi- 2500 5 20.000 0.07
Trailer

ROAD TAXES

Vehicle Road Tax 0 70,000 0.00
Towable Mass Tax 0 70,000 0.00
INSURANCE 5,000 70,000 0.13
DEPRECIATION

Vehicle Depreciation 0 6 70,000 0.00
Semi-Trailer Depreciation 0 10 70,000 0.00
SALARY

Base Salary 55,000 1.5 70,000 1.18
Overtime/Night/Holiday 2,450 70,000 0.04
TOLLS 13,300 70,000 0.18
STRUCTURE 7,700 70,000 0.11
FEES 13,300 70,000 0.19
TOTAL € 3.32

Table 32: Quantitative scenario cost structure of Electric trucks




7.4 Alternative Scenarios Results

[ Diesel Trucks[LnG: Trucks[HVO100 Trucks| Diesel C: c Coolers|Electric Coolers| _ Cost Emissions
0 |Environmental Single Objective 0 0 40 1 424 350 0 1 20 784 278110913 6,070,857
1 |MultiObjective 0 0 40 1 428 350 0 1 20 784 278110913 6,070,857
2 |Multi Objective 0 0 44 0 497 295 0 1 2 803 270632081 6,347,321
3 |Multi Objective 0 0 52 1 500 281 0 14 26 794 267,054,706 6,633,086
4 |Multi Objective 0 0 64 0 500 267 0 16 32 783 263,168,024 6,922,156
5 |Multi Objective 0 0 76 0 499 252 0 19 38 770 258,857,800 7,257,974
6 |Multi Objective 0 0 88 0 498 237 0 2 4 757 254547504 7,593,792
7 |Multi Objective 0 0 100 0 500 220 0 2 50 745 250023494 7,938,971
8 |Multi Objective 0 0 112 0 498 206 0 28 56 732 245941600 8,273,401
9 |Multi Objective 0 0 128 0 488 192 0 32 64 712 240917236 8,695,270
10 |Multi Objective 0 0 140 0 500 168 0 E 70 703 235523151 9,069,921
11 |Multi Objective 0 0 156 0 496 150 0 39 78 685 230,071,008 9,510,512
12 |Multi Objective 0 0 172 0 492 132 0 43 86 667 224618865 9,951,103
13 |Multi Objective 0 0 188 0 404 110 0 47 o 651 218738952 10,410,416
14| Multi Objective 0 0 204 0 500 85 0 51 102 636 212416824 10,880,479
15 |Multi Objective 0 0 220 1 498 64 0 56 110 617 206327262 11377,179
16 |Multi Objective 0 0 240 0 500 38 0 60 120 598 199,272,204 11,897,294
17 |Multi Objective 0 0 260 0 500 12 0 65 130 577 192,022,122 12,462,768
18 |Multi Objective 0 0 268 7 487 1 0 74 134 555 187,715,744 13,009,943
19 |Multi Objective 0 0 268 20 461 1 0 87 134 529 185,178,105 13,599,619
20 | Multi Objective 0 0 268 34 433 1 0 101 134 501 182,445,262 14,234,654
21| Multi Objective 0 0 268 a9 403 1 0 116 134 an 179,517,217 14,915,049
22| Multi Objective 0 0 268 64 373 1 0 131 134 441 176,589,171 15,595,445
23| Multi Objective 0 0 268 80 341 1 0 147 134 409 173465922 16,321,200
24| Multi Objective 0 0 268 9% 300 1 0 163 134 377 170,342,674 17,046,955
25| Multi Objective 0 0 268 114 273 1 0 181 134 341 166,829,019 17,863,429
26 |Multi Objective 0 0 268 132 237 1 0 199 134 305 163315364 18,679,903
27 |Multi Objective 0 0 268 151 199 1 0 218 134 267 150,606,507 19,541,737
28 |Multi Objective 0 0 268 71 150 1 0 238 134 227 155,702,446 20,448,931
29 | Multi Objective 0 0 268 191 119 1 0 258 134 187 151,798,385 21,356,124
30 |Multi Objective 0 0 268 213 75 1 0 280 134 143 147,503,918 22,354,038
31 |Multi Objective 0 0 268 236 2 1 0 303 134 97 143014248 23,397,310
32 |Multi Objective 0 3 268 248 1 0 3 315 134 68 139926870 24,418,596
33 |Multi Objective 0 12 268 240 0 0 12 307 134 67 139,453,110 25,469,295
34__|Multi Objective 0 23 268 230 0 0 23 297 134 67 139,106,273 26,748,523
35 |Multi Objective 0 33 268 220 1 0 33 287 134 68 138,760,789 27,864,834
36 |Multi Objective 0 44 264 214 0 0 44 280 132 66 138,341,854 29,231,478
37__|Multi Objective 0 s4 268 201 0 0 54 268 134 67 137,891,266 30,305,734
38 |Multi Objective 0 68 268 188 0 0 68 255 134 67 137370652 31,917,880
39 |Multi Objective 0 82 268 175 0 0 82 242 134 67 136,850,037 33,530,026
40| Multi Objective 0 o5 268 163 0 0 95 230 134 67 136,387,348 35,031,200
41| Multi Objective 0 109 268 150 0 0 109 217 134 67 135,866,734 36,643,346
42__|Multi Objective 0 124 268 136 0 0 124 203 134 67 135,288,193 38,366,465
43| Multi Objective 0 138 268 123 0 0 138 19 134 67 134,767,579 39,978,611
44| Multi Objective 0 152 268 110 0 0 152 177 134 67 134246964 41,590,758
45| Multi Objective 0 172 268 91 1 0 172 158 134 68 133,621,570 43875325
46| Multi Objective 0 189 268 76 0 0 189 143 134 67 132,974,750 45,872,334
47__|Multi Objective 0 208 268 58 0 0 208 125 134 67 132,164,506 48,039,343
48 | Multi Objective 0 226 264 s 0 0 226 11 132 66 131573864 50,189,380
49| Multi Objective 0 247 268 2 0 0 247 89 134 67 130,776,440 52,542,864
50 |Multi Objective 0 268 264 6 0 0 268 72 132 66 130,012,021 55025819
51 |Economic Single Objective 0 268 264 6 ) 0 268 72 132 66 130,012,021 55025819
Table 33: Results from HVO100 Scarcity Scenario
Diesel Trucks| LNG Trucks| BioLNG Trucks|HV0100 Trucks| Electric Trucks | Hydrogen Trucks| Diesel Coolers [HV0100 Coolers| Nitrogen CoolersElectric Coolers|  Cost | Emissions
0 |Environmental Single Objective 0 0 20 0 463 350 0 5 10 818 386,192,412 5,568,548
1 |Multi Objective 0 0 20 0 463 350 0 5 10 818 386,192,412 5,568,548
2 |Multi Objective 0 0 2 1 455 349 0 7 12 810 383,246,835 5,709,320
3 |Multi Objective 0 0 32 1 440 349 0 9 16 797 378,219,716 5,890,782
4 |Multi Objective 0 0 40 1 224 350 0 1 20 784 373,206,797 6,070,857
5 |Multi Objective 0 0 8 1 409 350 0 13 2 77 368,179,679 6,252,320
6 |Multi Objective 0 0 56 1 304 350 0 15 28 758 363,152,560 6,433,783
7 |Multi Objective 0 0 68 0 374 350 0 17 34 741 356,492,710 6,663,910
8 |Multi Objective 0 0 76 0 359 350 0 19 38 728 351,465,592 6,845,373
9 |Multi Objective 0 0 84 1 342 350 0 2 2 713 345,789,150 7,072,196
10 |Multi Objective 0 0 92 1 330 348 0 2 6 701 341,196,641 7,263,020
11 |Multi Objective 0 0 104 0 307 350 0 26 52 683 334,102,181 7,483,786
12 |Multi Objective 0 0 112 1 290 350 0 29 56 668 328,425,739 7,710,608
13 |Multi Objective 0 0 124 0 270 350 0 31 62 651 321,765,889 7,940,735
14 |Multi Objective 0 0 136 0 249 349 0 34 68 632 314,442,516 8,217,610
15 |Multi Objective 0 0 144 1 232 349 0 37 7 617 308,766,074 8,444,433
16 |Multi Objective 0 0 156 1 210 349 0 40 78 508 301,456,902 8,719,920
17 |Multi Objective 0 0 168 1 186 350 0 3 84 578 203,698,018 8,987,433
18 | Multi Objective 0 0 180 1 164 350 0 6 %0 559 286,389,745 9,262,920
19 |Multi Objective 0 0 192 1 143 349 0 49 9% 540 279,066,372 9,539,795
20 |Multi Objective 0 0 204 1 122 348 0 52 102 521 271,742,999 9,816,670
21| Multi Objective 0 0 220 0 93 349 0 55 110 297 262,352,285 10,132,348
22| Multi Objective 0 0 232 0 72 348 0 58 116 478 255,028,912 10,409,723
23| Multi Objective 0 0 244 2 3 350 0 63 122 454 245,986,483 10,766,568
24| Multi Objective 0 0 260 1 18 348 0 66 130 431 237,016,179 11,093,495
25 |Multi Objective 0 0 268 4 0 346 0 7 134 213 230,475,700 11,420,398
26| Multi Objective 0 0 268 10 1 337 0 77 134 405 228,304,002 11,731,389
27| Multi Objective 0 0 268 18 0 327 0 85 134 304 225,282,467 12,141,072
28| Multi Objective 0 0 268 25 1 316 0 92 134 384 222,433,045 12,500,199
29 |Multi Objective 0 0 268 32 0 307 0 99 134 374 219,612,023 12,856,549
30 |Multi Objective 0 0 268 40 1 205 0 107 134 363 216,562,088 13,269,008
31 |Multi Objective 0 0 268 8 2 283 0 115 134 352 213,512,152 13,681,468
32 |Multi Objective 0 0 268 56 2 272 0 123 134 341 210,476,417 14,092,539
33 |Multi Objective 0 0 268 64 0 262 0 131 134 329 206,991,872 14,495,637
34 |Multi Objective 0 0 268 73 2 248 0 140 134 317 203,727,224 14,962,817
35 |Multi Objective 0 0 268 82 0 237 0 149 134 304 200,042,166 15,419,248
36 |Multi Objective 0 0 268 91 2 223 0 158 134 202 196,777,518 15,886,429
37 | Multi Objective 0 0 268 100 1 211 0 167 134 279 193,078,259 16,344,248
38 |Multi Objective 0 0 268 110 1 197 0 177 134 265 189,164,288 16,856,787
39 |Multi Objective 0 0 268 120 1 183 0 187 134 251 185,250,317 17,369,327
40| Multi Objective 0 0 268 130 1 160 0 197 134 237 181,336,345 17,881,867
41| Multi Objective 0 0 268 141 2 153 0 208 134 222 177,207,661 18,449,128
42__|Multi Objective 0 0 268 152 0 139 0 219 134 206 172,644,366 19,007,028
43| Multi Objective 0 0 268 163 2 122 0 230 134 191 168,501,482 19,575,676
44| Multi Objective 0 0 268 175 1 106 0 242 134 174 163,723,474 20,188,297
45 | Multi Objective 0 0 268 187 0 %0 0 254 134 157 158,945,466 20,800,917
46| Multi Objective 0 0 268 199 0 73 0 266 134 140 154,153,259 21,414,926
47__|Multi Objective 0 0 268 212 0 55 0 279 134 122 149,160,538 22,082,267
48| Multi Objective 0 0 268 225 1 36 0 202 134 104 144,153,617 22,750,996
49 |Multi Objective 0 0 268 239 0 17 0 306 134 84 138,497,373 23,465,085
50 | Multi Objective 0 1 268 250 1 0 1 317 134 68 134,356,321 24,196,651
51 |Economic Single Objective 0 1 268 250 1 0 1 317 134 68 134,356,321 24,196,651

Table 34: Results from Gas Crisis Scenario




Diesel Trucks|LNG Trucks| BioLNG Trucks| HVO100 Trucks| Electric Trucks|Hydrogen Trucks| Diesel Coolers|HV0100 Coolers Nitrogen Coolers| Electric Coolers|  Cost Emissions
0 |Environmental Single Objective 0 0 20 0 463 350 0 5 10 818 282,290,234 5,568,548
1 |Multi Objective 0 0 20 0 463 350 0 5 10 818 282,290,234 5,568,548
2 |Multi Objective 0 0 20 1 498 324 0 6 10 827 278828977 5722433
3 |Multi Objective 0 0 28 0 498 315 0 7 1 820 276,298,109 5,897,368
4 |Multi Objective 0 0 32 1 500 307 0 9 16 815 274304878 6,067,612
5 |Multi Objective 0 0 40 0 500 208 0 10 20 808 271,774,009 6,242,547
6 | Multi Objective 0 0 48 0 498 289 0 12 2 799 269,047,937 6,462,343
7 |Multi Objective 0 0 52 1 500 281 0 1 26 794 267,054,706 6,633,086
8 |Multi Objective 0 0 60 1 498 272 0 16 30 785 264,328,634 6,853,382
9 |Multi Objective 0 0 68 0 498 263 0 17 34 778 261,797,766 7,028,318
10 |Multi Objective 0 0 76 0 499 252 0 19 38 770 258,857,809 7,257,974
11 |Multi Objective 0 0 84 0 500 241 0 2 2 762 255,917,853 7,487,631
12 |Multi Objective 0 0 92 0 498 232 0 23 6 753 253,191,781 7,707,927
13 |Multi Objective 0 0 100 0 500 220 0 25 50 745 250,023494  7,938971
14 |Multi Objective 0 0 108 1 496 211 0 28 54 734 247,102,220 8,204,627
15 |Multi Objective 0 0 116 1 500 198 0 30 58 727 243948378 8,443,644
16 |Multi Objective 0 0 128 0 491 190 0 32 64 713 240,703,351 8,704,631
17 |Multi Objective 0 0 136 0 499 174 0 34 68 707 237,107,295 8,954,398
18 |Multi Objective 0 0 144 1 498 163 0 37 72 607 233,972,135  9,229415
19 |Multi Objective 0 0 156 0 499 148 0 39 78 686 229,857,123 9,519,873
20 |Multi Objective 0 0 164 1 498 137 0 2 82 676 226,721,964 9,794,389
21 |Multi Objective 0 0 176 0 499 122 0 a4 88 665 222,606,952 10,085,347
22 |Multi Objective 0 0 188 0 497 108 0 47 % 652 218,525,067  10419,777
23 |Multi Objective 0 0 200 0 489 98 0 50 100 637 214,870,951 10,735,485
24 |Multi Objective 0 0 208 1 499 79 0 53 104 630 210,637477 11,041,361
25 |Multi Objective 0 0 220 1 498 64 0 56 110 617 206,327,262 11,377,179
26 | Multi Objective 0 0 232 1 500 a7 0 59 116 605 201,803,162 11,722,358
27 |Multi Objective 0 0 248 0 291 34 0 62 124 587 197,202,322 12,097,479
28 |Multi Objective 0 0 260 0 500 12 0 65 130 577 192022122 12,462,768
29 |Multi Objective 0 0 268 3 495 1 0 70 134 563 188,496,557 12,828,504
30 |Multi Objective 0 0 268 1 479 1 0 78 134 547 186,934,932 13,191,382
31 |Multi Objective 0 0 268 20 a61 1 0 87 134 529 185,178,105 13,599,619
32 |Multi Objective 0 0 268 29 443 1 0 9%6 134 511 183,421,278 14,007,856
33 |Multi Objective 0 0 268 39 423 1 0 106 134 491 181,469,247 14,461,453
34 |Multi Objective 0 0 268 8 405 1 0 115 134 473 179,712,420 14,869,690
35 |Multi Objective 0 0 268 58 385 1 0 125 134 453 177,760,389 15,323,287
36__|Multi Objective 0 0 268 69 363 1 0 136 134 431 175,613,156 15,822,243
37| Multi Objective 0 0 268 79 343 1 0 146 134 211 173,661,126 16,275,840
38 |Multi Objective 0 0 268 % 321 1 0 157 134 389 171513892 16,774,796
39 |Multi Objective 0 0 268 101 299 1 0 168 134 367 169,366,650 17,273,753
40| Multi Objective 0 0 268 113 275 1 0 180 134 383 167,024,222 17,818,069
41 | Multi Objective 0 0 268 125 251 1 0 192 134 319 164,681,786 18,362,385
42| Multi Objective 0 0 268 137 227 1 0 204 134 205 162,339,349 18,906,702
43| Multi Objective 0 0 268 150 201 1 0 217 134 269 159,801,710 19,496,377
44| Multi Objective 0 0 268 163 175 1 0 230 134 243 157,264,070 20,086,053
45__|Multi Objective 0 0 268 176 149 1 0 243 134 217 154726431 20,675,729
46| Multi Objective 0 0 268 190 121 1 0 257 134 189 151,093,588 21,310,765
47| Multi Objective 0 0 268 204 03 1 0 271 134 161 149,260,746 21,945,800
48| Multi Objective 0 0 268 219 63 1 0 286 134 131 146,332,700 22,626,196
49| Multi Objective 0 0 268 234 33 1 0 301 134 101 143,404,654 23,306,591
50 |Multi Objective 0 0 268 250 1 1 0 317 134 69 140,281,406 24,032,346
51 |Economic Single Objective 0 0 268 250 1 1 0 317 134 69 140,281,406 24,032,346

Table 35: Results from LNG Ban Scenario

Diesel Trucks| LNG Trucks | BioLNG Trucks| HVO100 Trucks| Electric Trucks|Hydrogen Trucks | Diesel Coolers|HVO100 Coolers| Nitrogen Coolers|Electric Coolers|  Cost Emissions
0 |Environmental Single Objective 0 0 40 1 424 350 0 11 20 784 278110913 6,070,857
1 |Multi Objective 0 0 40 1 424 350 0 1 20 784 278110913 6,070,857
2 |Multi Objective 0 0 44 0 497 205 0 11 2 803 270,632,081 6,347,321
3 |Multi Objective 0 0 52 1 500 281 0 13 26 794 267,054,706 6,633,086
4 |Multi Objective 0 0 64 0 500 267 0 16 32 783 263,168,024 6,922,156
5 |Multi Objective 0 0 76 0 499 252 0 19 38 770 258,857,809 7,257,974
6 | Multi Objective 0 0 88 0 498 237 0 2 14 757 254,547,504 7,593,792
7 |Multi Objective 0 0 100 0 500 220 0 25 50 745 250,023,494 7,938,971
8 |Multi Objective 0 0 112 0 498 206 0 28 56 732 245,941,609 8,273,401
9 | Multi Objective 0 0 128 0 488 192 0 32 64 712 240,917,236 8,695,270
10 |Multi Objective 0 0 140 0 500 168 0 35 70 703 235523151 9,069,921
11 |Multi Objective 0 0 156 0 496 150 0 30 78 685 230,071,008 9510512
12 |Multi Objective 0 0 172 0 492 132 0 43 86 667 224,618,865 9,951,103
13 |Multi Objective 0 0 188 0 494 110 0 47 94 651 218,738,952  10,410416
14 |Multi Objective 0 0 204 0 500 85 0 51 102 636 212,416,824 10,880,479
15 |Multi Objective 0 0 220 1 498 64 0 s6 110 617 206,327,262 11,377,179
16 | Multi Objective 0 0 240 0 500 38 0 60 120 598 199272294 11,897,294
17 |Multi Objective 0 0 260 0 500 12 0 65 130 577 192022122 12,462,768
18 |Multi Objective 0 0 268 7 487 1 0 74 134 555 187,715,744 13,009,943
19 |Multi Objective 0 0 268 20 461 1 0 87 134 529 185,178,105 13,509,619
20 |Multi Objective 0 0 268 34 433 1 0 101 134 501 182,445,262 14,234,654
21 |Multi Objective 0 0 268 49 403 1 0 116 134 471 179,517,217 14,915,049
22 |Multi Objective 0 0 268 64 373 1 0 131 134 441 176,589,171 15,595,445
23| Multi Objective 0 0 268 80 341 1 0 147 134 409 173,465,922 16,321,200
24 |Multi Objective 0 0 268 9% 309 1 0 163 134 377 170,342,674 17,046,955
25 | Multi Objective 0 0 268 114 273 1 0 181 134 341 166,829,019 17,863,429
26 | Multi Objective 0 0 268 132 237 1 0 199 134 305 163,315,364 18,679,903
27| Multi Objective 0 0 268 151 199 1 0 218 134 267 159,606,507 19,541,737
28 |Multi Objective 0 0 268 71 159 1 0 238 134 227 155,702,446 20,448,931
29| Multi Objective 0 0 268 191 119 1 0 258 134 187 151,798,385 21,356,124
30 |Multi Objective 0 0 268 213 75 1 0 280 134 143 147,503,918 22,354,038
31 |Multi Objective 0 0 268 236 29 1 0 303 134 97 143,014,248 23,397,310
32 |Multi Objective 0 3 268 248 1 0 3 315 134 68 139,026,870 24,418,596
33 |Multi Objective 0 12 268 240 0 0 12 307 134 67 139,453,110 25,469,205
34 |Multi Objective 0 23 268 230 0 0 23 207 134 67 139,106,273 26,748,523
35 |Multi Objective 0 33 268 220 1 0 33 287 134 68 138,769,789 27,864,834
36 |Multi Objective 0 a4 264 214 0 0 a4 280 132 66 138,341,854 29,231,478
37 |Multi Objective 0 54 268 201 0 0 54 268 134 67 137,891,266 30,305,734
38 |Multi Objective 0 68 268 188 0 0 68 255 134 67 137,370,652 31,917,880
39 |Multi Objective 0 82 268 175 0 0 82 242 134 67 136,850,037 33,530,026
40| Multi Objective 0 95 268 163 0 0 95 230 134 67 136,387,348 35,031,200
41| Multi Objective 0 109 268 150 0 0 100 217 134 67 135,866,734 36,643,346
42| Multi Objective 0 124 268 136 0 0 124 203 134 67 135,288,193 38,366,465
43| Multi Objective 0 138 268 123 0 0 138 190 134 67 134,767,579 39,978,611
44| Multi Objective 0 152 268 110 0 0 152 177 134 67 134,246,964 41,500,758
45 | Multi Objective 0 172 268 91 1 0 172 158 134 68 133,621,570 43,875,325
46| Multi Objective 0 189 268 76 0 0 189 143 134 67 132,074,750 45872,334
47| Multi Objective 0 208 268 58 0 0 208 125 134 67 132,164,506 48,039,343
48| Multi Objective 0 226 264 5 0 0 226 m 132 66 131573,864 50,189,380
49| Multi Objective 0 247 268 2 0 0 247 89 134 67 130,776,440 52,542,864
50 _|Multi Objective 0 268 264 6 0 0 268 72 132 66 130,012,021 55,025,819
51 |Economic Single Objective 0 268 264 6 0 0 268 72 132 66 130,012,021 55,025,819

Table 36: Results from EU RED II Scenario




7.5 Discussion and Recommendation

Scenario | Diesel Trucks | LNG Trucks | BioLNG Trucks | HVO100 Trucks | Electric Trucks| Hydrogen Trucks | Diesel Coolers | HVO100 Coolers | Nitrogen Coolers | Electric Coolers Cost Emissions
Al 0 268 264 6 0 0 268 72 132 66 126,841,321 | 55,025,819
B1 0 269 256 11 3 0 269 75 128 67 127,245,919 | 55,227,486
Al 0 246 268 23 0 0 246 90 134 67 127,384,816 | 52,431,892
B1 0 250 268 17 4 0 250 84 134 71 127,580,338 | 52,785,063
Al 0 222 268 45 0 0 222 112 134 67 127,894,041 | 49,651,489
B1 0 229 268 37 3 0 229 104 134 70 128,001,929 | 50,389,523
Al 0 206 268 60 0 0 206 127 134 67 128,325,758 | 47,817,398
B1 0 212 268 53 3 0 212 120 134 70 128,477,921 | 48,444,459
Al 0 187 268 77 1 0 187 144 134 68 128,845,109 | 45,598,444
B1 0 194 268 69 4 0 194 136 134 71 128,952,997 | 46,336,477
Al 0 166 268 97 0 0 166 164 134 67 129,266,700 | 43,202,904
B1 0 173 268 89 3 0 173 156 134 70 129,374,587 | 43,940,938
Al 0 151 268 111 0 0 151 178 134 67 129,654,140 | 41,479,785
B1 0 159 268 102 3 0 159 169 134 70 129,717,751 | 42,328,791

Table 37: Joint results from A.1 and B.1 Scenarios

Scenario | Diesel Trucks | LNG Trucks| BioLNG Trucks | HV0100 Trucks | Electric Trucks | Hydrogen Trucks | Diesel Coolers | HV0100 Coolers| Nitrogen Coolers | Electric Coolers Cost Emissions.
B2 0 269 262 5 3 0 269 5 262 3 125,003,199 56,091,472
B2 0 257 269 10 3 0 257 279 0 3 125,168,439 93,615,399
B2 0 236 269 29 3 0 236 298 0 3 125,676,104 | 51,248,629
B2 0 217 269 47 3 0 217 316 0 3 126,161,358 | 48,986,336
A2 0 269 269 0 0 0 269 0 269 0 126,532,096 | 56,049,844
B2 0 198 269 65 3 0 198 334 0 3 126,625,191 | 46,823,908
A2 0 255 269 13 0 0 255 283 0 0 126,922,281 | 53,436,990
B2 0 180 269 81 3 0 180 351 0 3 127,068,550 | 44,756,938
A2 0 233 269 33 0 0 233 303 0 0 127,452,531 50,945,938
B2 0 163 269 97 3 0 163 366 0 3 127,492,337 42,781,211
B2 0 147 269 112 3 0 147 382 0 3 127,897,416 | 40,892,699
A2 0 213 269 53 0 0 213 322 0 0 127,958,062 | 48,571,011
B2 0 131 269 127 3 0 131 396 0 3 128,284,614 | 39,087,553
A2 0 193 269 71 0 0 193 340 0 0 128,440,028 | 46,306,794
B2 0 116 269 141 3 0 116 410 0 3 128,654,719 37,362,092
A2 0 174 269 88 0 0 174 357 0 0 128,899,526 | 44,148,128
B2 0 102 269 154 3 0 102 423 0 3 129,008,487 35,712,799
A2 0 156 269 105 0 0 156 374 0 0 129,337,603 | 42,090,092
B2 0 88 269 167 3 0 88 436 0 3 129,346,638 | 34,136,311
B2 0 75 269 179 3 0 75 448 0 3 129,669,863 | 32,629,416
A2 0 139 269 121 0 0 139 390 0 0 129,755,259 (40,127,994
B2 0 62 269 191 3 0 62 460 0 3 129,978,818 31,189,040

Table 38: Joint results from A.2 and B.2 Scenarios
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