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Abstract 
This research explores the application of deep learning techniques to improve prediction 

accuracy of project cost and time at completion in response to limitations of traditional methods 
due to growing complexity of modern projects. An accurate forecast is key for effective project 
management, reducing the risk of budget overruns and schedule delays.  

The proposed multilayer perceptron (MLP)-based deep learning model is compared against 
an established benchmark in a form of a proven high-performing machine learning model 
(XGBoost) and Earned Value Management (EVM). This study uses two datasets: Dynamic 
Scheduling Library, containing 181 projects, and 8 additional projects from Project Portfolio 
Dataset for more diverse context. Mean Absolute Percentage Error serve as key metric along with 
Normalized Root Mean Squared Error, Standard Deviation, and Mean Lags, to evaluate 
forecasting accuracy across different project stages: early, mid, and late. 

The central hypothesis is that well-trained and tuned deep learning architectures can 
produce more accurate predictions of project cost and time at completion than conventional 
machine learning approaches and EVM, especially during the early project phases when 
uncertainty is the highest. 

Experimental results showed that while the optimized benchmark model performed well 
overall, it struggled to make accurate predictions in the early stages of a project. On the other hand, 
the MLP model consistently delivered comparable or even better forecasts, particularly in the early 
and mid stages. However, in the later stages, its performance fell slightly behind the benchmark 
models. 

The aim of the research is to contribute to the expanding body of knowledge on artificial 
intelligence applications in project management. The potential success of the proposed MLP 
models could offer improved predictive ability, enabling project managers to make better 
decisions. 
  



 5 

Chapter 1. Introduction  
1.1 Background  
In recent years, project management has become increasingly complex, particularly in 

terms of cost and schedule forecasting. Organizations across construction, infrastructure, 
information technology, and other sectors frequently struggle with escalating project scales, tighter 
deadlines, and rapidly shifting resource demands. As these pressures accelerate, inaccurate 
forecasting can severely impair an organization’s ability to achieve its objectives, leading to budget 
overruns, delayed milestones, and strained stakeholder relationships. [1] 

Project managers have consistently relied on traditional forecasting methods in the form of 
Earned Value Management (EVM). Such approaches tend to assume that future trends will reflect 
historical patterns, which may not be accurate in today's dynamic project environments. [2] In 
addition, linear or near-linear models might not be able to account for the non-linear 
interdependencies and complex risks that affect cost and schedule variability. These limitations 
can lead to overly conservative or dangerously optimistic forecasts. This is especially true in 
industries with fast-paced technological change, fluctuating resource availability, or evolving 
regulatory frameworks. [3] 

Recent advances in digitalization and data collection open new opportunities to solve 
challenges associated with forecasting. Modern projects generate extensive data [4], which has 
motivated both practitioners and researchers to explore machine learning (ML) and, increasingly, 
deep learning (DL) methods to identify correlations that traditional techniques tend to miss. Neural 
network architectures have the capacity to model non-linear relationships and learn from 
unstructured or partially incomplete datasets, providing better and more adaptive predictions. [5] 

DL adoption for project cost and duration forecasting is still in its early stages. Researchers 
still need to solve issues with data quality, interpretability, and the demand for significant 
computing resources. [6] In spite of these obstacles, as industry practices evolve toward more data-
driven project management, there is an increasing awareness that advanced analytics, especially 
when combined with solid domain knowledge, can provide a competitive advantage. 
Organizations with reliable forecasting capabilities are better equipped to effectively allocate 
resources, anticipate risks, and make decisions that keep projects within budget and on schedule. 
[5] 

This study explores how DL models can improve project forecasting accuracy, precision, 
and stability. The research aims to bridge the gap between traditional methods and emerging 
analytical paradigms by experimenting with neural network architectures and established 
performance metrics. This approach can pave the way for more resilient, data-centric project 
management practices. 
 

1.2 Problem Statement 
Traditional forecasting methods, including EVM, continue to be widely used in project 

management. However, the evolving complexity of modern projects has posed challenges for these 
techniques in dynamically adapting to modern project ecosystems. Some of these techniques often 
assume fixed starting points and a straightforward timeline, which could be misleading since the 
evolving requirements and new risks can appear during the project. Consequently, project teams 
could potentially mitigate cost overruns and time delays by employing more reliable early warning 
signals that take into consideration dynamically changing nature of a project. [3] 

Emerging studies suggest that, unlike traditional methods, ML can enhance forecasting 
accuracy by identifying non-linear correlations that are often overlooked. [6] Within the ML 
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domain itself, there is a gap between simpler methods and advanced DL architectures. If used 
effectively, these architectures may reveal subtle, higher-order patterns that basic ML models miss. 
[7] 

Despite the impressive capabilities of DL, its application to forecasting project cost and 
duration is currently limited, with few well-known standards and guidelines. Researchers have yet 
to establish guidelines on neural network architectures that are best suited for varying types of 
project data. [7] 

Thus, this study shows the need to take advantage of the potential of DL given the 
increasing complexity and data-richness of modern projects. This study clarifies when and how 
DL provides a real advantage by examining neural network performance across various project 
datasets and comparing it to established ML baselines. The goal is to guide project managers, data 
scientists, and academic researchers toward more accurate and adaptive forecasting solutions that 
leverage the rich data available in modern project environments. 

 
1.3 Research Aim and Objectives 
The aim of this research is to determine the extent to which DL models can further improve 

the accuracy and reliability of project cost and time at completion forecasting beyond what 
established ML approaches can offer. By experimenting with different neural network 
architectures and comparing their performance to recognized methods (EVM and ML), the study 
seeks to provide insights into which predictive methods are most effective. 

To reach this goal, the research is focused on the following objectives and key 
considerations: 

§ Review current forecasting approaches. Examine the strengths and limitations of 
traditional EVM methods and modern machine learning techniques. 

§ Design and implement Deep Learning Models. Develop and configure suitable 
neural network architectures for cost and time at completion forecasts. 

§ Benchmark against baseline. Compare the predictive accuracy of these DL models 
with the traditional EVM method and widely used ML algorithms, focusing on XGBoost as a 
robust reference point. 

By addressing these objectives, the research aims not only to expand the academic 
understanding of applying DL to project forecasting but also to offer practical strategies for 
organizations seeking to enhance their predictive capabilities in cost and schedule management. 
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1.4 Scope and Boundaries 
This research focuses on developing and evaluating DL models for accurately predicting 

the total project expenses and completion times. It places particular emphasis on comparing their 
performance to traditional approaches. To ensure the study remains both achievable and coherent, 
several delimitations and constraints have been established to focus the research on the most 
relevant and manageable aspects of the problem: 

§ Data Sources. The data used in the analysis primarily comes from two of EVM-
focused datasets: the Dynamic Scheduling Library (DSLIB) [8] and a smaller Project Portfolio 
(Australian) Dataset [9]. These datasets were selected since they all have extensive time-phased 
cost and schedule information which fits perfectly with the EVM metrics. It is important to note 
that the study does not include private company records or specialized industry reports, which 
limits its scope. 

§ Predictive Techniques. We evaluate multiple different DL architectures, however, 
the focus of our study is on the Multilayer-perceptron (MLP), which has been preferred based on 
the nature of the data as well as optimal complexity trade-offs. Other architectures, such as Long 
Short-Term Memory (LSTM) and Convolutional Neural Network (CNN), are mentioned but not 
tested. The dataset's short length and heterogeneity limit the effectiveness of sequential models, 
which typically require longer and more homogeneous data sequences to perform well. This choice 
balances the complexity of the model with the dataset's characteristics and structure. 

 
1.5 Significance of the Study 
This study investigates the application of DL for project cost and duration forecasting, 

offering both academic and practical contributions: 
§ Academic Contribution. From a scholarly perspective, the research contributes to AI 

literature in project management by benchmarking performance of neural networks against other 
predictive models such as XGBoost. Though extensive research has been done covering DL in 
image processing and speech recognition, fewer studies have rave truly evaluated the advantage 
of DL in forecasting project metrics. [10] 

§ Practical Implications. An efficient DL model that provides better performance 
compared to traditional methods can enhance resource allocation, risk mitigation, and project 
success. Even when DL does not outperform simpler models, understanding its limitations allows 
project managers to adapt forecasting strategies to their operational constraints. [11] By describing 
model-building steps such as data preprocessing, feature engineering, and hyperparameter tuning, 
the research provides a framework that practitioners can adapt to their own project environments. 

Collectively, these contributions highlight the strategic value of modern AI methods in 
enhancing decision-making and efficiency in project management. Traditional approaches struggle 
to capture intricate or rapidly changing conditions, particularly in the early phases of a project. On 
the other hand, well-tuned DL models give invaluable foresight that helps avert expensive 
disruptions and lead to a new era of proactive, data-informed decision-making. 
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1.6 Thesis Structure 
The remainder of this thesis is organized into the following chapters: 
§ Chapter 2: Literature Review. Presents an exploration of existing project forecasting 

methods. It begins by discussing traditional techniques (EVM) and then examines more advanced 
ML approaches. The chapter concludes with an overview of DL architectures. 

§ Chapter 3: Methodology. Details the research design and used tools (software), data 
selection process, feature engineering, and preprocessing steps. The chapter also describes the 
model setup, training procedures, and evaluation metrics. 

§ Chapter 4: Results. Reports the empirical results of the study, including performance 
metrics for both the benchmark models and the DL architectures. The results are further analyzed 
by project stage (early, mid, late) to highlight where each model type excels or struggles. 

§ Chapter 5: Discussion. Interprets the results in the context of the research objectives, 
comparing DL outcomes to ML baseline, and explores reasons for observed performance 
differences. 

§ Chapter 6: Limitations and Future Research Directions. 
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Chapter 2. Literature review 
2.1 Earned Value Management (EVM) 
Project forecasting forms the backbone of successful project management. It informs 

decisions about budgeting, the allocation of resources and schedule changes, and influences a 
project’s likelihood of meeting cost and timeline targets. EVM and regression/time-series 
modeling have been the main traditional methods for project forecasting. EVM integrates cost, 
schedule, and scope to provide a comprehensive view of project performance, while 
regression/time-series modeling uses statistical techniques to predict future project outcomes 
based on historical data. [12, 13, 14] While these methods have shown their worth, the rapidly 
evolving complexity of modern projects exposes certain limitations that call for more advanced 
approaches.  

EVM has evolved into a global best practice applied across various industries and nations; 
consequently, its basic principles and use in practice have been comprehensively described in 
many sources. The Project Management Institute issued a guidebook on EVM. [2] To summarize, 
EVM combines cost, schedule, and scope into a single framework that enables project managers 
to monitor performance in a more systematic manner than simple budget-vs-actual comparisons. 
Through key metrics, EVM enables project teams to derive performance indices (Table 1) that 
help identify early variances and trends. [1] 

 
Table 1. Key EVM metrics 
Key EVM metrics 

Planned Value (PV) 

The planned value is often called the budgeted cost of work 
scheduled (BCWS). It is the time-phased budget baseline and an 
immediate result of the schedule constructed from the project 
network.  

Earned Value (EV) 

It is often called the budgeted cost of work performed (BCWP). 
It represents the amount budgeted for performing the 
accomplished work by a given point in time. EV is the 
cumulative measure of the work performed. 

Actual Cost (AC) 
The actual cost is often referred to as the actual cost of work 
performed (ACWP). It represents the cumulative actual cost 
spent at a given point in time.  

Budget at Completion 
(BAC) The total agreed budget of the project. 

Planned Duration  
(PD) The total agreed project duration. 

Performance measures 
 

Cost Performance Index 
(CPI) 

Assesses how efficiently the project’s BAC is utilized.  
 𝐶𝑃𝐼 = 𝐸𝑉/𝐴𝐶 (1) 

A CPI of 1.0 indicates that cost performance is on target; more 
than 1.0 indicates the project is running under budget, and less 
than 1.0 indicates cost overruns. 

Cost Variance (CV) Difference between EV and AC 
 𝐶𝑉 = 𝐸𝑉 − 𝐴𝐶 (2) 
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Schedule Performance 
Index (SPI) 

Shows how effectively time is spent. 
 𝑆𝑃𝐼 = 𝐸𝑉/𝑃𝑉 (3) 

A value greater than 1.0 suggests that the project is ahead of 
schedule, while a value below 1.0 reveals delays. 

Schedule Variance (SV) Difference between EV and PV 
 𝑆𝑉 = 𝐸𝑉 − 𝑃𝑉 (4) 

 

 
The main advantage of EVM is the early warning capability; if CPI or SPI deviates far 

from 1.0, it serves as a signal for corrective actions, providing objective information instead of 
subjective estimates. [15] Since EVM examines work accomplished in the context of cost and 
time, it offers a more complete picture than methods that focus solely on budget or schedule alone. 
[16] 

Although EVM has been set up to follow up both time and cost, the majority of the research 
has been focused on the cost aspect. [1] This resonates with the idea that EVM was originally 
developed for cost management, with less emphasis on forecasting a project's duration. [15] 

The Earned Schedule (ES) method extends the projection of EV onto the PV curve. It 
addresses limitations of traditional EVM schedule indicators, as SV and SPI provide unreliable 
time forecasts near project completion, offering a time-based alternative. [17, 18] ES is found by 
comparing the cumulative EV earned to the performance baseline. The time associated with EV is 
derived from the PV S-curve. The ES metric translates the monetary value of EV into a time-based 
value. The cumulative value for the ES is found by using the EV to identify in which time 
increment t of PV the cost value for EV occurs. [19, 20] 

 

 𝐸𝑆 = 𝑐 +
𝐸𝑉 − 𝑃𝑉!
𝑃𝑉!"# − 𝑃𝑉!

 (5) 

 
where, 
𝑐 – time instance such that 𝑃𝑉! ≤ 𝐸𝑉 < 𝑃𝑉!"# 
 
Performance indicators can then be calculated using ES: 
 
 𝑆𝑉(𝑡) = 𝐸𝑆 − 𝐴𝑇 (6) 
 𝑆𝑃𝐼(𝑡) = 𝐸𝑆/𝐴𝑇 (7) 

where, 
AT – actual time 
 
The SPI(t) is similar to the traditional SPI formula, but this new performance measure is 

reliable over the complete horizon of the project. 
EVM has been widely adopted, however, it assumes a stable baseline and consistent 

reporting of actual data. [21] If a project is subject to scope creep, changing requirements, or 
sudden disruptions, EVM metrics may become disconnected from reality.  Traditional EVM 
calculations assume linear progress, making them unreliable when project tasks overlap or risks 
skew the conventional 'planned vs actual' approach to risk management. [2] Such limitations 
emphasize the necessity of more flexible forecasting models considering that current digital project 
environments generate more complex and frequent data changes. [22] 
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2.2 Machine Learning in Project Forecasting 
ML is an expanding domain within AI that has garnered significant attention in project 

management research and practice due to its ability to enhance forecasting accuracy and adapt to 
dynamic project conditions. Unlike traditional statistical approaches that rely on static assumptions 
and linear models, ML learns from historical data, recognizes patterns, and adapts to changing 
project conditions. This flexibility makes ML particularly effective for project forecasting, as it 
can adapt to dynamic environments, process vast datasets, and handle unexpected disruptions. [6] 

ML encompasses a broad set of algorithms, including classical regression for trend 
analysis, decision trees for decision-making processes, neural networks for complex pattern 
recognition, and clustering approaches for grouping similar project data, each offering unique 
advantages for analyzing and predicting project outcomes. [23] The unifying principle across these 
ML models is that they learn by example; they detect correlations and patterns within training 
datasets and then use that knowledge to forecast outcomes such as project cost or schedule 
duration. [5] As projects generate more data, ML’s data-driven nature processes this information 
efficiently. By doing so, ML can continuously improve its forecasts through iterative training, thus 
offering greater resilience to all the uncertainties and complexities present in many project 
environments. [6] 

A wide spectrum of ML algorithms addresses the varying needs of project forecasting. For 
example:  

§ Random Forests and Gradient Boosting employ ensembles of decision trees, 
combining multiple weak learners to improve predictive accuracy and manage messy or partially 
missing datasets. [5] 

§ Artificial Neural Networks (ANNs) are inspired by the human brain and consist of 
layers of connected nodes (neurons) that recognize patterns and make predictions for complex 
data. [25] 

ML models can combine EVM metrics like CPI and SPI with other project data to improve 
estimates. [22] By addressing the assumption of linear cost growth in EVM, ML-based 'growth 
modeling' improves forecasts by capturing the complexities of actual project dynamics. It clarifies 
how real-world performance indicators are expected to change during project execution. This 
approach highlights a common trend in technology adoption: rather than replacing existing 
methodologies completely, ML enriches EVM by offering more accurate and data-driven insights. 
[6]  

In line with its role in improving estimates, ML applications can span various phases of the 
project lifecycle, including planning, execution, and monitoring. In the early stages, it enhances 
the accuracy of initial cost estimates, reducing the risk of underbidding or overestimating the 
project's requirements. As a project progresses, ML-based forecasting tools can integrate real-time 
data such as updated costs and schedule metrics, to refine predictions and assess potential risk 
factors. [24] Researchers have reported that ML applications can reduce budget overruns in 
construction and optimize sprint planning in software projects by providing precise cost analysis 
and accurately predicting resource needs. [5] 

By analyzing historical data and identifying patterns, ML can bring an evidence-driven 
approach to predicting delays or cost increases, enabling proactive measures to be taken. This 
analysis allows project managers to take proactive measures, such as reallocating resources or 
adjusting timelines, before minor delays escalate into significant budget overruns. 
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Despite the significant benefits ML offers for project forecasting, it is important to consider 
several challenges that may limit its effectiveness and adoption.  

§ Many organizations do not have comprehensive project databases. This limitation 
reduces ML's effectiveness, as models trained on insufficient data do not generalize well. [1]  

§ The black box nature of certain algorithms, particularly neural networks, presents 
additional complications, as project managers may have difficulty knowing how or why a model 
reached a certain cost predictor. Interpretation difficulties may undermine the practical adoption 
of ML solutions. [4]  

§ Additionally, some ML techniques require significant computational resources and 
careful hyperparameter tuning, which demand specialized expertise. [10] Hyperparameter tuning 
adjusts parameters to prevent underfitting, where the model fails to capture patterns, and 
overfitting, where it is excessively tailored to the training data. This aspect will be examined 
thoroughly in the Methodology chapter, establishing our benchmark ML model.  

Despite these constraints, ML is a promising tool for predicting cost and schedule more 
accurately than traditional EVM methods, allowing for the development of specialized 
architectures that capture complex project dynamics. ML often offers a better alternative to EVM 
when handling modern project complexities. However, as project environments continue to 
produce increasingly voluminous and unstructured data, some practitioners and researchers are 
turning to DL to uncover higher-order dependencies and further improve forecasting precision. [5] 
 

2.3 Deep Learning for Project Cost and Duration Forecasting 
2.3.1 Evolution and Core Concepts of Deep Learning 
The history of neural networks dates back to the 1940s, when the first models were 

developed to simulate the way the human brain processes information. The initial limitations of 
small training datasets and slow processing speeds of early computing hardware also hindered 
progress in DL. These restrictions were progressively transcended with the growth of larger 
datasets and faster processing technologies. In 2006, researchers proposed new approaches to train 
deep neural networks that tackled the vanishing gradient issue: the introduction of activation 
functions, such as ReLU, and optimization methods, like Adam, both of which improved the 
training process. Since then, DL has been progressing rapidly, propelled by advancements in 
algorithms and the availability of large compute resources. These breakthroughs rekindled the 
interest of researchers in neural networks, leading to their adoption in many fields over the 
subsequent years, including computer vision (image recognition), natural language processing 
(machine translation), and time series forecasting (stock market prediction), to name just a few. 
(Figure 1) [26] 
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Figure 1. Key breakthroughs in Deep Learning 

 
At its core, DL relies on the concept of ANNs, which are inspired by the way neurons 

communicate and transmit signals in the human brain. Traditional ANNs typically have a single 
hidden layer, which limits their ability to model complex patterns. In contrast, deep neural 
networks utilize multiple layers, allowing them to capture intricate patterns and relationships in 
data, making them more suitable for complex tasks. Each neuron calculates the sum of its inputs, 
adjusts them by weights, and then applies a non-linear activation function, such as ReLU, sigmoid, 
or tanh. This process allows the network to learn complex patterns and better understand the input 
data. (Figure 2) [27] 

 

 
Figure 2. Artificial Neural Network base architecture 

 
 
 
 
 
 
 

input layer

hidden layers

output layer
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The key to this multilayered approach is the backpropagation algorithm, which adjusts 
neuron weights based on the errors between the network’s predictions and the actual target values. 
During this process, deep neural networks learn to associate inputs with desired outputs, such as 
predicting project costs or estimating delivery times. This training process is enhanced by large 
datasets, which enable the layers to identify patterns and characteristics in the data. [28] 

A defining trait of DL is its ability to automate feature extraction, reducing manual 
engineering and helping the model discover complex patterns in raw data. Instead of depending 
on domain experts to specify which attributes to use, deep neural networks learn directly from raw 
data, identifying the features that are most effective for making accurate predictions. The 
versatility of DL allows for flexibility with various input formats, including numerical time series, 
unstructured text, and images. [27] 

As promising as DL is, its multi-layer architecture presents specific challenges. Training 
deep networks entails high computational costs and specialized hardware (e.g., GPUs or TPUs). 
[7] The proliferation of parameters in these networks can lead to overfitting if data is scarce or if 
hyperparameters are poorly chosen. While DL excels at identifying hidden correlations, it can be 
difficult for end users to understand. The complexity of deep learning models raises concerns about 
result interpretability and stakeholder confidence. [25] 

 
2.3.2 Types of Deep Learning Approaches 
DL includes various architectures and learning methods, each designed to meet specific 

data characteristics and domain needs. These architectures are categorized based on their learning 
paradigms: supervised learning for labeled data, unsupervised learning for unlabeled data, and 
semi-supervised learning for partially labeled data. Furthermore, these approaches vary in their 
treatment of temporal and spatial relationships within the input data, which influences their 
application in different contexts. [26] 

 
Supervised Learning 
Supervised learning involves training models on labeled datasets, where each input sample 

is paired with a corresponding output (or target). In DL, supervised learning is particularly 
effective when there is an abundance of well-structured and accurately annotated historical data, 
such as true cost values or project completion times. During training, a supervised model maps 
input features to their known outputs, measures errors, adjusts weights to minimize them, and 
learns the patterns and relationships between input features and known outputs. As such, 
supervised DL forms the backbone of many forecasting and classification tasks, where both the 
predictions (cost, schedule) and input data are well defined. [26] 

In project management, labeled datasets often include detailed descriptions of completed 
projects, such as interim milestones, budget entries, and final outcomes. When combined with an 
appropriate supervised DL architecture, these records form the basis for forecasting models that 
are more accurate than simpler methods. Deep Neural Networks (DNNs) perform well with 
structured, multi-dimensional data. In contrast, Convolutional Neural Networks (CNNs) are most 
effective when the input can be mapped to spatial or grid-like formats. Additionally, Recurrent 
Neural Networks (RNNs), particularly Long Short-Term Memory (LSTM) networks, are 
advantageous in situations where sequential updates or event logs significantly influence the final 
outputs. (Table 2) [29] 
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Table 2. Popular Deep Learning models for supervised learning 

Deep  
Neural Networks  

(DNNs) 

A foundational supervised architecture commonly used for tabular data, 
DNNs consist of multiple layers of interconnected neurons, each 
transforming input data into a more abstract representation. With every 
pass of the backpropagation algorithm, these networks adjust their 
weights to reduce errors. 

Convolutional 
Neural Networks  

(CNNs) 

Initially designed for visual tasks, CNNs use small filters, called 
convolutions, which gradually detect patterns such as edges or geometric 
shapes. This process continues through multiple layers, resulting in more 
advanced feature maps that reflect higher-level abstractions. 

Recurrent  
Neural Networks  

(RNNs) 

RNNs effectively tackle challenges such as sentiment analysis in text, 
speech recognition in voice commands, and predicting stock prices in 
time-series data. They have an internal memory of previous inputs, 
which is stored as hidden states that are transferred from one time step to 
the next. This internal memory enables the network to seamlessly 
connect past information with future predictions.  
LSTM networks enhance this concept by adding gating mechanisms, 
which help to solve the problem of vanishing gradients. They can retain 
relevant signals from several previous time steps. 

 
Semi-Supervised Learning 
A semi-supervised learning method combines elements of both supervised and 

unsupervised learning by using a small amount of labeled data to guide the learning process while 
leveraging a larger pool of unlabeled data to improve model performance. In this setting, part of 
the training data is labeled while the other part is unlabeled. The model’s task is to leverage both 
labeled and unlabeled samples to learn robust representations and make accurate predictions even 
when limited ground-truth information is available. This is especially useful when annotated data 
is scarce or expensive to generate but unlabeled data may be abundant. [26] 

The core challenge in semi-supervised scenarios is to learn as much as possible from 
unlabeled data without steering the model in the wrong direction. In semi-supervised learning, a 
DL model initially learns basic relationships between input and output functions using the labeled 
subset. It then refines these mappings by analyzing unlabeled samples to identify patterns that 
complement the labeled data, enhancing its predictive capabilities. This iterative process allows 
the model to generate more confident predictions on unlabeled data, effectively broadening its 
understanding of the entire dataset. [26] 

 
Table 3. Popular Deep Learning models for semi-supervised learning 

Generative 
Adversarial 

Networks (GANs) 

The main components are a generator and a discriminator. The generator 
learns to create synthetic examples that replicate real data, and the 
discriminator attempts to distinguish between these synthetic and 
authentic samples. Both the generator and discriminator are 
continuously improved via a dynamic training process. 

Deep 
Reinforcement 

Learning (DRL) 

Unlike conventional ML that rely on a large set of explicit input-output 
pairs, DRL is based on learning by taking actions and receiving 
feedback from the environment. The model gradually improves by 
updating parameters of the deep network. 
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Unsupervised Learning 
In unsupervised learning, the algorithm identifies patterns in a dataset without access to 

labeled data or guidance on the correct output. In project forecasting scenarios, such methods can 
be extremely valuable when detailed labeled information (such as actual final costs or completion 
times) is missing. [26] These approaches analyze the data to uncover hidden patterns, identify 
latent representations, detect outliers, and reduce dimensionality. This helps project managers or 
analysts draw conclusions that may be obscured in a setting where labeled data is unavailable. [23] 

The model is fed raw data on which it learns without being supervised. It reveals subtle 
correlations within the data and simplifies complex measures such as multidimensional 
relationships. In unsupervised learning, algorithms perform feature extraction by analyzing the 
data's internal structure and distribution patterns. Unsupervised learning serves as a suitable 
preprocessing step or anomaly detector by identifying discrepancies in cost or schedule logs that 
may suggest overruns or other issues. [26] 

 
Table 3. Popular Deep Learning models for unsupervised learning 

Auto-Encoders 
(AEs) 

Best for reducing dimensions by identifying relevant features and 
encoding the input data into a lower dimensional latent space, thus 
preserving key information. AEs are also great for detecting anomalies. 

Restricted 
Boltzmann 

Machines  
(RBMs) 

Energy-based models composed of visible and hidden layers, and links 
within a layer. RBMs learn a joint probability distribution over input 
variables by iteratively refining weights between these layers, hence 
applied to collaborative filtering and feature learning. 

Deep Belief 
Networks  

(DBNs) 

Multi-layer generative models that successively learn hierarchical 
representations of the input. Each layer refines the abstraction gleaned 
from the previous one, capturing increasingly complex data structures. 

 
  



 17 

Chapter 3. Methodology 
This chapter presents the research design and methodology followed to develop, train, and 

evaluate the DL models for project cost and duration prediction. It starts by describing the high-
level research approach before describing the data sources and preprocessing steps, model 
architectures, and evaluation metrics. These details provide a clear, reproducible framework that 
other researchers or practitioners can use to replicate or build upon the experiments outlined in this 
research. 

 
3.1 Research Design and Tools 
Given the aim of this thesis, which is to compare the performance of a DL model against a 

conventional machine learning benchmark, the study adopts the following research design (Figure 
3). The key steps in the research design include: 

• Data Acquisition. Gathering project data from two publicly available, EVM-focused 
datasets. 

• Data Preprocessing and Feature Engineering. Ensuring consistency across datasets 
by cleaning, transforming, and augmenting feature sets. 

• Model Development. Constructing the DL architecture and configuring the benchmark 
model for fair comparison. 

• Model Training and Validation. Using standardized procedures to assess predictive 
performance. 

• Performance Comparison. Employing relevant metrics to compare predictive 
accuracy, precision, and stability at different project stages (early, mid, and late).  

By applying the same data and evaluation metrics to different forecasting methods, this 
study ensures that any performance differences can be attributed primarily to differences in the 
modeling techniques. 

By incorporating hyperparameter tuning and feature engineering, the method refines 
models in a systematic manner. 

 

 
Figure 3. Thesis research design sequence 

 
Although the datasets are domain-specific, the methodology for data preprocessing, model 

training and evaluation can be adapted to other project contexts if comparable data is available. 
All experiments in this research were conducted using the Python programming language 

(version 3.10.7). Python’s extensive ecosystem of libraries provides robust capabilities for data 
analysis, ML, and DL. Python scripts in Jupyter notebooks were primarily run in a local 
development environment (Microsoft Visual Studio Code), with occasional use of cloud platforms 
(Google Colab) for sharing and additional computational resources. Below are the key tools and 
modules employed (Table 4). 
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Table 4. Key tools and modules 
Data Handling and Manipulation 

Pandas   reading, merging, transforming, and cleaning tabular data 
files [30] 

Numpy handling numerical arrays and performing vectorized 
computations [31] 

Os directory and file operations (e.g., navigating file paths) 
[32] 

Re pattern matching and data cleaning tasks involving regular 
(text) expressions [32] 

Scipy.interpolate interpolating intermediate data points, used in calculating 
regularity indicator [33] 

NetworkX 
used for any potential analysis or visualization of project 
task dependencies in a network structure, used in 
calculating series/parallel indicator [34] 

Visualization and Exploratory Analysis 

Matplotlib static plots and figures to illustrate data distributions and 
results [35] 

Plotly (graph objects, plotly 
express) 

generates interactive charts and dashboards, offering 
dynamic data exploration [36] 

Seaborn provides advanced statistical graphics and correlation 
heatmaps [37] 

Phi_K correlation matrix assists in identifying both linear and non-linear 
relationships [38] 

Machine Learning (Scikit-learn modules) 
Optuna employed for automated hyperparameter tuning [39] 

Xgboost Regressor gradient boosting library for regression tasks, serves as the 
baseline ML model [40] 

Cross_val_score and Kfold systematic model evaluation and data partitioning [41] 
OneHotEncoder and 

StandardScaler 
transforming categorical features and normalizing numeric 
variables [41] 

Metrics (r2_score, 
mean_absolute_percentage_error, 

root_mean_squared_error) 

model performance measurement [41] 

Deep Learning (Keras with TensorFlow as a backend) 

Sequential, Model build various neural network architectures (MLP, LSTM, 
CNN layers) [42] 

Dense, LSTM, Dropout, 
Conv1D, MaxPooling1D 

layers for creating and experimenting with feed-forward or 
recurrent models [42] 

Optimizers (Adam) manage the learning process [42] 
Callbacks (ModelCheckpoint, 

EarlyStopping) 
automatically saving the best model and early stopping 
during training [42] 
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3.2 Data Sources and Description 
The Dynamic Scheduling Library (DSLIB) consists of 181 real-life project datasets 

explicitly designed for scheduling, project control, and EVM research. As highlighted in prior 
studies [8], each dataset includes comprehensive details. (Table 5) 

 
Table 5. Overview of the parameters used to classify the empirical projects of DSLIB 

Completeness indicates the completeness of the baseline schedule, schedule risk 
analysis and project control information 

Authenticity authenticity of all project progress data for each tracking period 

General Information number of activities in the project, planned duration and planned 
costs (budget at completion) of the project schedule 

Resource details whether the resource information is available, renewable 
and/or consumable 

Tracking Data updates on project status, including intermediate milestones or 
performance metrics 

Network Topology 
includes serial/parallel indicator, activity distribution indicator, 
length of arcs indicator, topological float indicator, regularity 
indicator and its classification index 

Time, Cost and Resource 
Sensitivity 

contains information about cruciality indices. Indicators show 
how changes in schedule or expenses might impact overall 
performance 

Performance Metrics actual duration and cost incurred, as well as EVM-based measures 
such as EV, PV, AC, CPI, SPI, CV, SV, p-factor 

Project Control Data 
comprehensive EVM performance measures recorded at each 
tracking period, enabling a granular analysis of project 
progression 

 
In contrast to DSLIB, the Project Portfolio Dataset (Australian dataset) comprises eight 

project data subsets, each fully describing a completed project’s original baseline plan and actual 
progression. [9] Smaller in size than DSLIB, these datasets do not offer as much comprehensive 
information, but still contain crucial information about project timelines, budgets, and outcomes: 

• Essential EVM Metrics – EV, PV, AC, BAC alongside planned and actual duration data. 
• Baseline cost estimates, schedule breakdowns, and final performance outcomes for each 

project. 
The dataset offers an alternative viewpoint on project evolution under different 

organizational or regional norms. Inclusion of these additional cases gives the research 
comparative depth and model testing robustness. 

While they are well-suited for EVM-based research, both the DSLIB and Australian 
datasets have their own unique challenges: 

• Incomplete or Missing Fields. Not all projects in DSLIB or the Australian datasets 
provide the full range of possible attributes (e.g., some may lack detailed resource data or 
intermediate progress information). 

• Non-Uniform Metrics. DSLIB has duration represented in terms of days, while the 
Australian projects have duration measured in terms of tracking periods with different durations. 
To address these discrepancies, it is crucial to implement extensive data cleaning and to combine 
all the data into a common format before performing any comparative analysis. 
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These limitations emphasize the need for a systematic pre-processing step that takes care 
of unit conversions, renaming attributes, and potentially adding derived variables (for example, 
converting from periods to days or the other way around). These steps guarantee that both datasets 
are comparable and can be passed into the same modeling pipeline seen in sections 3.6 Data 
Preprocessing and 3.9 Model Development. 

 
3.3 Data Filtering (Complete and Authentic Projects) 
In this study, accurate project forecasting relies heavily on the quality of the data provided. 

[24] To ensure the data used in this study is both complete and valid, we have adopted a filtering 
method. 

All eight project subsets in the Australian collection are complete and authentic, reporting 
all baseline plans and ongoing progress for each project from start to finish, including EV, PV, 
AC, and BAC). [9] 

In the DSLIB collection, Completeness is defined by having data in the Real Duration and 
Real Cost columns, as well as Project Control parameters (EVM indicators for all tracking 
periods).  

The Project and Tracking columns are used to validate authenticity, ensuring that each 
dataset contains actual, not simulated, project records. [8]  

Applying the criteria of completeness and authenticity reduced the total number from 181 
to 98 valid projects, comprising 54% of the original library. Since all Australian projects met the 
same requirements, they were included in the final dataset, resulting in a combined total of 106 
projects (98 from DSLIB + 8 from the Australian dataset). 

All Australian projects belong to the Construction (civil) sector. Figure 4 illustrates the 
sector distribution of the filtered projects from DSLIB, highlighting the construction sector as the 
largest contributor. 

 
Sector Count 

Construction (residential) 38 
IT 19 

Construction (civil) 16 
Construction (commercial) 8 
Construction (institutional) 7 

Construction (industrial) 3 
Event Management 3 

Mobility 2 
Engineering 1 

Education 1 
TOTAL 98 

 
Figure 4. Sector distribution of filtered projects from DSLIB 

 
Furthermore, it is important to note that, sectors containing only one, two, or three projects 

complicate the process of achieving a balanced split for training and testing subsets. This issue 
will be addressed in detail in the relevant section (3.6 Preprocessing). 
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3.4 Feature Selection and Feature Engineering 
3.4.1 Feature Selection 
Accurate prediction models for project cost and duration forecasting rely on well-chosen 

and systematically engineered features representing various project performance factors. [25] 
Overly narrow feature sets may exclude relevant variables, which can lead to underfitting due to 
the model's inability to capture the underlying patterns in the data. Conversely, too many or 
unfiltered features may inject noise or redundant information into the model, which can obscure 
the true relationships in the data and lead to unreliable predictions.  

We formed a combined dataset of 1 252 tracking periods by merging the filtered DSLIB 
and Australian project datasets, which are significant due to their comprehensive coverage of 
project performance metrics, providing a robust sample size for analysis. Each project-level and 
tracking-period attribute was evaluated for its relevance to cost and duration forecasting. This 
evaluation resulted in a refined set of features, summarized in Table 6, which details core project 
descriptors and dynamic EVM metrics. Together, they enable the models to incorporate cost 
baselines, schedule performance, and activity structures into their predictive framework. 

 
Table 6. Selected features 
Project-Level Features 

code 
unique project ID, facilitates merging and cross-referencing 
of data across multiple tables or worksheets 
(not used as a predictive variable) 

name descriptive name of the project, useful for documentation 
(not used as a predictive variable) 

sector 
industry or domain to which the project belongs (e.g., 
Construction, IT), potentially relevant for modeling if 
certain sectors exhibit unique cost/schedule patterns. 

bac (Budget at Completion) the total planned budget for the project, used for cost 
normalization and feature engineering 

pd (Planned Duration) the initially scheduled timeline for project completion, used 
as the basis for time-based normalization 

sp (Serial/Parallel Indicator) 
reflects the degree to which project activities are arranged 
sequentially versus concurrently, calculated from project 
network and baseline schedule data 

ri (Regularity Indicator) measures the consistency or “smoothness” of the activity 
network, indicating how uniformly tasks are distributed 

Tracking-Period Features 
period time-step reference indicating the specific tracking interval 

pv (Planned Value) the budgeted value of work scheduled at the given tracking 
period 

ev (Earned Value) the budgeted value of work actually completed by the 
tracking period 

ac (Actual Cost) the real cost incurred at the given tracking period 

cpi (Cost Performance Index) a ratio of EV to AC, indicating cost efficiency at each 
tracking period 

spi (Schedule Performance 
Index) 

a ratio of EV to PV, reflecting schedule efficiency over time 
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spi_t (Schedule Performance at 
Period t) 

a time-based schedule performance measure derived from 
Earned Schedule principles 

cv (Cost Variance) EV − AC, expressing how much the project is under or over 
budget at each period 

sv (Schedule Variance) EV − PV, indicating how far ahead or behind schedule the 
project is in cost terms 

sv_t (Schedule Variance at 
Period t) 

a variant of schedule variance that incorporates time-based 
factors 

Target Features 
ceac (Cost Estimate at 

Completion) 
total projected cost upon project completion 

teac (Time Estimate at 
Completion) 

total duration by which the project will finish 

 
3.4.2 Data Harmonization Across Sources 
The DSLIB dataset contained extensive EVM indicators, whereas the Australian datasets 

were missing many advanced metrics such as CPI, SPI, Serial/Parallel Indicator (SP), and 
Regularity Indicator (RI). Manual calculation and feature engineering techniques were used to 
backfill missing fields. 

One of the main challenges in this process was to maintain consistency across all the 
datasets, particularly while recomputing and validating the features derived from DSLIB. The 
proprietary software used in DSLIB, ProTrack (inaccessible at the time of conducting research at 
https://www.protrack.be/), often produced results that deviated from standard theoretical formulas 
(see Section 2.1 Earned Value Management) and outputs generated by the Earned Schedule 
Calculator [43]. Furthermore, the Earned Schedule Calculator itself was unable to process the 
numerous tracking periods on large DSLIB projects. In order to standardize calculations and 
minimize discrepancies that may occur between tools, all performance metrics of interest were 
recalculated using base EVM equations based on the metrics EV, PV and AC. This standardization 
ensured consistency across both data sources, reinforcing the validity of the forecasting models. 

Another major consideration in feature engineering (which was already mentioned in 
section 3.2 Data Sources and Description) was non-uniform measurement units across datasets. 
As an example, DSLIB usually describes durations as a number of days, whereas Australian 
projects describe durations in tracking periods that are of differing lengths. The differences 
highlighted the need for extensive data cleaning and conversion of units into a common format – 
the first step to allow for comparative analysis. We maintained the consistency of cost and schedule 
performance indicators across various project environments by going through this preprocessing. 
 

3.4.3 Graph-Based Features (SP, RI) 
In this research, Serial/Parallel Indicator (SP) and Regularity Indicator (RI) were integrated 

into project-level features, in addition to the standard cost and schedule metrics. These indicators 
provide structural insights into project execution patterns and require graph-based analyses of 
baseline schedules. Directed acyclic graphs were constructed to model project task dependencies, 
and algorithms were implemented to quantify network seriality (SP) and schedule uniformity (RI). 
[19] 
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The RI measures scheduling irregularities, quantifying how much a project’s PV curve 
deviates from a perfectly linear trajectory. The calculation process is as follows: [19, 44] 

 

 𝑅𝐼 =
∑ 𝑚$
%
$&# − ∑ 𝑎$%

$&#
∑ 𝑚$
%
$&#

 (8) 

where, 
𝑚$ – maximal possible deviation from a perfectly linear PV curve 
𝑎$ – actual deviation of the project’s PV-curve from a perfectly linear curve 
𝑟 – number of equidistant evaluation points 
 
 𝑚$ = max	{𝐵𝐴𝐶 − 𝑃𝑉'$(! , 𝑃𝑉'$(! − 0} (9) 
 𝑎$ = |𝑃𝑉%)*'! − 𝑃𝑉'$(!| (10) 

where, 
𝑃𝑉'$(! – linear PV curve at point 𝑖 
𝑃𝑉%)*'! – actual PV curve at point 𝑖 
 
The 𝑟 is determined by the PV curve rather than the number of tracking periods. As PV 

trajectories become more complex, larger values of 𝑟 are necessary to accurately characterize these 
trajectories. [19] In this study, 𝑟 ranged from 50 to 120 across projects. Figure 5 illustrates an 
example of RI calculation for one of the analyzed projects.  
 

 
Figure 5. Example of calculating Regularity Indicator for one of the projects 

 
The SP is used to measure the extent of task parallelization in a project schedule. The 

calculation is as follows: [19] 
 

 𝑆𝑃 =
𝑛+ − 1
𝑛, − 1

 (11) 

where, 
𝑛+ – maximum number of subsequent activities in the network (or the maximum 

progressive level) 
𝑛, – total number of activities 
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This measure reflects how closely the structure of a project resembles a strictly serial or 
parallel workflow. Figure 6 demonstrates an example of SP computation using the NetworkX 
module. [34] 

 
Gantt Chart

 
 

Sequence Graph     Sequence Length 

  
Figure 6. Example of calculating Series/Parallel Indicator for one of the projects using NetworkX module 

 
The calculation of SP and RI was computationally intensive, as it involved parsing, 

validating, and measuring the baseline network of each project. The complexity of these 
computations is part of the reason other potentially useful metrics (e.g., topology network, p-
factor) were excluded from the study’s focus. Despite their computational demands, SP and RI 
provide fundamental insights into structural dynamics. They reveal patterns of task parallelization 
and schedule uniformity that directly impact cost and duration risks.  

By applying uniform formulas and preprocessing techniques across both data sources, we 
successfully integrated DSLIB and Australian datasets into a single, coherent dataset for modeling. 
This approach ensured: 

§ Consistency across projects. 
§ Elimination of data inconsistencies specifically from different practices of data 

collection or software-extracted outputs.  
§ Uniform contribution of tracking periods to model training and validation, preventing 

bias in predictive outputs. 
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3.5 Outlier Detection and Normalization 
The next step of the process was to refine the data further by removing outliers with 

statistical approach. This process helps ensure that abnormally high or low values do not 
disproportionately affect the forecasting models, and that cost and time metrics are comparable 
across projects. [11] 

 
3.5.1 Outlier Detection 
The distributions of the BAC and PD of each project were reviewed to detect potential 

outliers. Using histograms and box plots, the range of project values was visualized to determine 
thresholds for outlier detection (Figure 7). The analysis identified projects with budgets exceeding 
3.5 million and planned durations surpassing 475 days as outliers. 

 

 
Figure 7. Box plots and histograms highlighting BAC and PD outliers 

 
From these visualizations, 11 projects (accounting for 431 tracking periods) were identified 

as falling outside the statistically determined boundaries for budget and duration. All of these 
outliers originated from the DSLIB dataset. After their removal, the dataset was reduced to 95 
projects, consisting of 87 projects from DSLIB and 8 from the Australian dataset. 

 
3.5.2 Correlation Analysis with Фk (phi k) Matrix 
To further analyze feature relationships, a Фk (phi k) correlation matrix was generated to 

detect both linear and non-linear dependencies, as illustrated in Figure 8: [38]  
§ Strong clustering among cost-related features (BAC, AC, EV, PV, CEAC) indicates 

high degree of interdependence. 
§ High correlations between time-based variables (PD, TEAC) reflect the interconnected 

nature of project scheduling. 
§ The dominance of BAC and PD in multiple correlations suggests that larger projects 

with higher budgets could overshadow smaller projects if left unscaled. 
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The findings emphasize the need to normalize cost and time variables to ensure fair 
comparisons across projects of different sizes. [11] 

 
Figure 8. Фk correlation matrix before normalization 
 

3.5.3 Normalization Strategy 
To address the impact of variations in project size and duration, we implemented a 

structured normalization approach. For cost normalization, key financial metrics such as CEAC, 
PV, EV, and AC were adjusted by dividing them by each project’s BAC. This transformation 
normalized each project's planned budget to a baseline value of 1, effectively eliminating 
discrepancies caused by varying project sizes. After using BAC as a scaling reference, it was 
removed from the dataset to avoid redundancy. 
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Similarly, for time normalization, all time-related features were standardized by dividing 
them by each project’s PD. This process aligned the planned schedule of each project to a uniform 
scale of 1, so it allowed for meaningful comparisons across projects with different timeframes. As 
PD was used exclusively as a normalization factor, it was also excluded from the dataset after 
processing.  

This dual-step approach reduced the focus on large-scale projects while maintaining clear 
relationships between cost and time variables. After normalization, the updated Фk correlation 
matrix (Figure 9) revealed: 

§ A continued strong correlation of target features with sector, SP and RI. 
§ TEAC exhibiting strong correlation with SV and period. 
§ CEAC maintaining strong associations with CV, CPI, and AC. 

 
Figure 9. Фk correlation matrix after normalization 
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3.6 Preprocessing 
After normalizing cost and time variables, the last step of data preparation consists of 

splitting the dataset into train and test subsets, as well as encoding and scaling procedures. These 
steps ensure that all models are trained and evaluated in the same way to enable direct comparison 
amongst scenarios. 

 
3.6.1 Train-Test Split 
Because the dataset merges both DSLIB and Australian projects, it was important to split 

the merged dataset into train and test subsets in a balanced manner, such that exactly 2 out of 8 
Australian projects were included in the test subset. 

Several constraints guided the train-test split: (Table 7) 
§ A pseudo-random sampling approach was taken using a pre-determined random state 

parameter to ensure reproducibility of these experiments. [45] 
§ Each sector, described in section 3.2 Data Sources and Description, was guaranteed at 

least one representative in the training set to assure that all sector-specific characteristics were 
available for model learning.  

§ Tracking periods within each project were not separated from each other between train 
and test subsets, ensuring the model encounters an entirely new project in the test subset rather 
than partial data from already-seen projects in the train subset.  

§ The test set size was constrained to range between 20% to 25% of the unified dataset.  
§ Due to the small size of the dataset, a separate validation subset was omitted. Instead, 

the model evaluates its performance using cross-validation on the training set, so robust evaluation 
occurs without needing to split the data further. 

 
Table 7. Train-test split distribution 
 Train Test 

Projects 75 (6 Au) 20 (2 Au) 
Tracking Periods 628 (76,49%) 193 (23,51%) 
 
The dataset contains two target features – CEAC (cost) and TEAC (time). Although 

modern deep neural networks can predict multiple outputs simultaneously, these targets were 
modeled separately to improve interpretability and isolate cost-forecasting from schedule-
forecasting performance. Models with the same architecture will be trained twice: once for cost 
and once for time. 

 
3.6.2 Encoding and Final Scaling 
The single categorical feature – sector, which identifies each project’s domain (e.g., 

Construction, IT), is significant for understanding domain-specific patterns. OneHotEncoder was 
used to convert this categorical variable into a numerical one. This approach creates binary 
columns for each unique sector and assigns it a value 1 if the project belongs to that sector and 0 
otherwise. [46] OneHotEncoder avoids creating an artificial ordinal relationship that could mislead 
the model. [47] 

Although cost and time variables were normalized with respect to their BAC and PD (see 
section 3.5 Outlier Detection and Normalization), DL models also benefit from additional standard 
scaling, which adjusts each numerical feature to have a mean of zero and a standard deviation of 
one, thus, reducing biases in neural network training (particularly in the initial layers). [26]  
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Most importantly, encoder and scaler were fitted on the training subset, and only then 
applied to the test subset separately, ensuring that the test data remained unseen during the fitting 
process and preventing data leakage. [46] 
 

3.7 Baseline models  
Before developing the DL model, it is essential to establish reliable reference points that 

will serve as a baseline for a comparing traditional, easily interpretable methods with more 
complicated ones. EVM was selected as a foundational method due to its widespread use. 
Additionally, XGBoost serves as a ML benchmark, known for its strong performance. [24] By 
measuring how well deep neural networks can outperform these two baselines, the research will 
demonstrate whether DL really represents a step forward in project forecasting. 

 
3.7.1 EVM Forecasting 
Despite the limitations noted in Section 2.1, EVM remains one of the most widely adopted 

techniques for project control and performance monitoring. It has a rather straightforward 
implementation, requiring only most common periodic measurements of EV, PV, and AC. With a 
few simple formulas, EVM can calculate forecast estimates. The method enhances transparency 
and helps position more complex approaches, such as XGBoost and deep neural networks, within 
a familiar project management framework. 

EVM cost forecast formula: [4] 
 

 𝐶𝐸𝐴𝐶 = 𝐴𝐶, +
𝐵𝐴𝐶 − 𝐸𝑉,

𝑃𝐹  (12) 

where, 
𝐶𝐸𝐴𝐶 – cost estimate at completion 
𝐴𝐶,	 – actual cost at tracking period 𝑡 
𝐵𝐴𝐶 – budget at completion of the baseline schedule 
𝐸𝑉, – earned value at tracking period 𝑡 
𝑃𝐹 – performance factor, capturing assumptions about how future progress will evolve 
 
Time-based forecasts follow a similar logic: 
 

 𝑇𝐸𝐴𝐶 = 𝑡 +
𝑃𝐷 − 𝐸𝑆,

𝑃𝐹  (13) 

where, 
𝑇𝐸𝐴𝐶 – time estimate at completion 
𝑡 – tracking period at question 
𝑃𝐷 – planned duration pf the project in the baseline schedule 
𝐸𝑆, – earned schedule at tracking period 𝑡 
𝑃𝐹 – performance factor, used to adjust the remaining duration 

 
The choice of performance factor (PF) has a critical impact on cost and time prediction. PF 

determines the extent to which past performance trends are expected to persist in the future project 
phases. The common options for PF are: 
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§ 𝑃𝐹 = 1 – assumes that past problems or opportunities will not affect future work, 
meaning that the project will revert to a baseline plan for the remaining tasks. According to the 
studies, this choice is the best for time forecasting, and will be used in this research. [48] 

§ 𝑃𝐹!-+, = 𝐶𝑃𝐼 and 𝑃𝐹,$.) = 𝑆𝑃𝐼(𝑡) – uses observed performance to indicate future 
efficiency or inefficiency. This scenario best matches real-world conditions, when the project team 
would continue to work at approximately the same efficiency with which it had been working up 
to that point. This option is the best choice for cost forecasting. [24] 

§ 𝑃𝐹 = 𝐶𝑃𝐼 ∗ 𝑆𝑃𝐼(𝑡) – assumes a strong interdependence between cost and schedule 
performance, suggesting that past variances in either will compound and affect the project's future. 
 

3.7.2 XGBoost 
A central objective of this research is to compare the performance of DL methods with a 

robust, well-regarded ML benchmark. Previous studies have repeatedly identified XGBoost as one 
of the top-performing algorithms for structured data tasks, including project cost forecasting. It 
outperforms many traditional models such as linear regression, random forests, and simple time-
series approaches. [24] Consequently, XGBoost was selected as the baseline mode. 

Establishing a high-quality baseline is essential for providing a meaningful reference point 
against which the performance of proposed models can be measured. [48] By using XGBoost, a 
proven model, the study sets a high standard that DL models must exceed to show real advantages. 

While XGBoost often performs well in its default configuration, hyperparameter tuning 
can significantly improve predictive accuracy. [23] In this research, an advanced optimization 
framework Optuna systematically explores the hyperparameter space to achieve a balance between 
model complexity and overfitting prevention. [39] Through a sequence of 100 trials for each target 
variable (cost and time), Optuna evaluates candidate configurations using tenfold cross-validation 
on the training subset. At each iteration, it collects performance metrics and refines its estimates 
of the best hyperparameter set (Table 8). 

 
Table 8. Key hyperparameters tuned for XGBoost 
Hyperparameter Description 

learning_rate Controls speed of the model's learning. A smaller value results in slower 
convergence, but improves overall precision. 

n_estimators Specifies the number of boosting iterations (trees). Increased values can 
improve accuracy, but they may also lead to overfitting. 

min_child_weight 
Sets the minimum sum of instance weights required in a leaf, which 
helps control overfitting by ensuring that leaves have enough instances, 
thus preventing the model from learning overly specific patterns. 

 
These parameters were chosen because they significantly impact model performance, 

especially for imbalanced or multi-dimensional datasets. [40] 
For the baseline model, domain expertise plays an especially pivotal role, given that 

conventional ML algorithms do not perform automated feature extraction as neural networks do. 
[5] A curated set of essential features, namely PV, EV, AC, period, and sector, was selected based 
on established project management practices and prior research indicating their predictive value. 
[22] By focusing on these high-impact variables, the XGBoost baseline can concentrate on proven 
cost and schedule drivers, potentially raising the performance bar for the DL approaches even 
higher. 
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3.8 Neural Network Setup 
3.8.1 DL Type Consideration  
MLP was chosen as the principal DL architecture for this study due to its suitability for 

tabular datasets. Unlike specialized networks such as CNNs, which excel at image-like data, or 
RNNs, which are geared toward sequential information, an MLP provides a more straightforward 
but still powerful approach for cost and duration forecasting in project management. [29] 

Early exploration included testing LSTM networks, which are designed for longer, 
uniformly spaced sequences. However, the current dataset is not well-suited for a recurrent-only 
approach, as some projects contain as few as three tracking periods, while many others have a 
relatively short duration. These factors negate the advantages of LSTM or similar RNN variants. 
[10] 

MLP design emerges as a simpler and more robust solution for project forecasting in this 
context. Although specialized networks can excel in domains with rich sequence data, the sparse 
and irregular time steps in the present dataset favor the MLP's ability to combine static project-
level features with dynamic performance metrics. Consequently, MLP, with its fully connected 
layers and ability to capture non-linear interactions, strikes a practical balance between simplicity 
and predictive capacity. [10] 

 
3.8.2 Core Architecture Decisions 
Three key decisions dictate the configuration of MLP architecture: how many hidden 

layers, how many neurons in each layer, and whether or not to enable a dropout layer to combat 
overfitting. While other hyperparameters (e.g., activation functions or optimizers) also influence 
performance, they typically have well-established default values or recommended practices. [7] 

§ Hidden Layers. The term “deep” learning usually means multiple hidden layers, in 
contrast to “shallow” approaches with one or zero hidden layers. Issues with high abstraction like 
computer vision or long time-series sequences, may require three or more hidden layers. [26] A 
few hidden layers (0, 1, or 2) are often sufficient for moderate complexity of project data. 
Configurations with up to 20 hidden layers were also tested to explore the benefits of deeper 
representations, while still being cautious of overfitting when working with relatively small 
datasets. 

§ Number of Neurons in Each Layer. Neurons in the hidden layers critically determine 
the MLP’s representational power or “width”. The network must have enough capacity to model 
the patterns governing cost and duration but should not become so large as to risk overfitting or 
prolonged training times. A typical heuristic suggests setting the number of neurons in the first 
hidden layer to approximately the sum of the input features and output targets, although this value 
often adjusts based on domain knowledge and preliminary experiments. Too few neurons can miss 
important signals in the data, leading to underfitting, whereas too many can needlessly inflate 
model complexity and training duration. [50] 

§ Dropout Layer. Dropout regularization selectively disables a fraction of neurons 
during training. This process reduces their co-adaptation and decreases the risk of overfitting. A 
dropout rate of 0.2 was tested as part of the architecture grid, a common value in research and 
industry. [51] 

Table 9 outlines the core components of the MLP architecture explored in this study, 
detailing the number of neurons and activation functions for each layer, as well as the choice of 
optimizer and training parameters. [7] 
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Table 9. Core components of the MLP used in the research 
Input Layer 
 
Number of neurons The input layer typically contains a neuron for each input feature, plus 

one additional bias node. 
Input Dim Refers to the dimensionality of the input feature vector, ensuring the 

network correctly interprets the number of input features. 
Hidden Layers 
 
Layer Count Parameter defines the depth of a model. In addition to investigating 

shallow models, alternative setups with up to 20 hidden layers were 
examined allowing for a comprehensive analysis of how depth affects 
model performance. 

Number of neurons “Width” of a model. The number of neurons in each hidden layer was 
systematically varied from 10 to 200, which influences the model's 
capacity to learn complex patterns and generalize from the data. 

Activation Functions The Rectified Linear Unit (ReLU) was selected as the activation 
function because it is robust and helps prevent the vanishing gradient 
problem seen in other functions. 

Dropout Optionally inserted between layers to randomly “turn off” 20% of 
neurons (dropout rate set to 0.2) during training, which helps in reducing 
overfitting by preventing the model from becoming too reliant on any 
particular set of neurons, thus promoting robustness.  

Output Layer 
 
Number of nodes Contains 1 node, because the target variable (either cost or time at 

completion) is a single value. 
Activation Function Since cost and time are continuous variables, the final layer uses a linear 

activation. 
Other parameters 
 
Kernel initializer Weights in each layer are initialized from a small Gaussian distribution 

centered around zero (“normal”). This method, combined with ReLU 
activations, encourages smoother gradient flow, and avoids extremes, 
facilitating more stable and efficient training. 

Optimizer The Adam optimizer adaptively adjusts learning rates (default settings), 
offering advantages such as efficient handling of sparse gradients and 
requiring less tuning compared to other optimizers. 

Number of epochs  Each configuration of parameters was permitted to train for a maximum 
of 1000 epochs.  

Early stopping This callback stops the training if the validation score fails to improve 
for a certain number of consecutive epochs (set to 200). This method 
prevents unnecessary further training, reducing overfitting and 
computational complexity. 
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Validation split A 20% cross-validation split during the training is used to ensure that 
adjustments to hyperparameters do not bias performance results. 

Batch size Optimal batch size (32) balances frequency of gradient updates (to 
capture subtle patterns) and stability of gradient estimates (to avoid 
erratic swings in weight updates). If the batch size is too big, the risk of 
missing subtle variations in the data increases, conversely, small batch 
sizes can inflate training variance. 

Model checkpoint The utility saves best configurations whenever the validation score 
improves, allowing for the reuse of optimal model states without 
recalibrating from scratch. This approach is especially important given 
the random nature of DL models, such as weight initialization, which 
can produce different outcomes each time the training runs.  

 
3.8.3 Hyperparameter Tuning and Architecture Search 
A structured grid-like approach enabled the exploration of varying parameters of the MLP 

structure, reflecting both manual experimentation and a systematic enumeration of key parameters. 
We explicitly tested each combination of layer counts and neuron quantities with/without dropout 
layers to evaluate their effect on predictive performance, rather than relying on automated 
hyperparameter optimizers. [49] The variations included: 

§ Layer Depth – 0, 1, 2, 3, 5, 8, 10, 15, and 20 hidden layers. 
§ Number of Neurons ranges from 10 to 200 per hidden layer (10, 12, 14, 15, 16, 18, 

20, 24, 30, 40, 50, 60, 70, 80, 90, 100, 200). 
§ Dropout is either present with a fixed 0.2 dropout rate or absent. 
Values for other hyperparameters are discussed in Table 9. 
While conventional ML models allow for deterministic seeding (assigning a pseudo-

random generator), DL often introduces additional sources of variability that are harder to control.  
The experiment tested 306 unique MLP configurations several times for both cost and 

duration targets. Results for each unique configuration were averaged to obtain a more stable and 
representative measure of performance. Many more preliminary exploratory trials, which helped 
refine the training pipeline and identify pitfalls, were also conducted in the early stages of the 
research.  

Although taking a lot of time, this grid-like search provided clear insights into which 
architectures performed well. 
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3.9 Model Evaluation 
3.9.1 Metrics Overview 
Once all models are trained and fitted, they must be assessed with consistent and 

meaningful criteria to determine their suitability for EVM forecasting. Metrics provide assessment 
of model performance, but their significance varies with domain factors, data quality, and project 
complexity. [11] To form a balanced picture of model effectiveness, this study employs five key 
metrics: 

§ Mean Absolute Percentage Error (MAPE) – a widely used accuracy metric for 
measuring how closely forecasts match actual values, often considered primary due to its ability 
to express errors as a percentage, making it easy to interpret. [8] 

§ Normalized Root Mean Squared Error (NRMSE) – an alternative accuracy 
measure that highlights the magnitude of errors in the same units as the target variable, providing 
a clear sense of scale and making it useful for comparing different models. [24] 

§ Standard Deviation (SD) – an indicator of precision in model evaluation, 
demonstrating how consistently the model’s errors cluster around the mean, thus reflecting the 
reliability of the model's predictions. [13] 

§ Mean Lags – a measure of stability that quantifies the extent to which forecasts shift 
between consecutive predictions, indicating the consistency of the model over time. [52] 

While these metrics complement one another, none of them can be considered perfect. 
MAPE can skew when actual values approach zero. 𝑅/ can inflate performance for complex 
models. NRMSE is sensitive to outliers, which can distort the overall error measurement. SD 
focuses on the spread of errors, potentially missing systematic bias. Mean lags measure the amount 
of fluctuation over time but do not consider whether a prediction was correct. By relying on 
multiple metrics, we mitigate limitations presented by individual metric. 

Models are also evaluated for timeliness at three different project stages, which are defined 
by the percentage of work completed (the ratio of AC to BAC), as summarized in Table 10. 

 
Table 10. Breakdown of project phases 

Early stage Mid stage Late stage 
1% – 29% 30% – 69% 70% – 95% 

 
This breakdown recognizes that traditional forecasting methods often perform best in the 

mid to late stages of the project, because project data tends to stabilize during these stages, whereas 
early forecasts are more volatile. Managers often depend on early and mid-stage predictions to 
adjust budgets or refine project scopes. [24] By applying the chosen metrics to each segment 
separately, the study offers nuanced insights into which approaches excel or struggle at various 
points in a project’s lifecycle. 

Assessing performance through multiple lenses reduces the risk of overemphasizing one 
dimension of model quality. 
 

3.9.2 MAPE 
In this study, MAPE is utilized as the primary indicator of forecasting accuracy. It 

expresses deviations between predicted and actual values in percentage terms, which facilitates 
easy interpretation. Mathematically, it sums the absolute deviations expressed as percentages of 
the real data points, then divides by the number of data points, resulting in a single figure, a 
percentage, that tells us, on average, how “off” a model is in relative terms. 
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where: 
𝑦$ – actual value 
𝑦0M  – predicted value 
 
A lower MAPE value implies greater accuracy, since it means the model’s predictions stay 

closer A lower MAPE value implies greater accuracy, since it means the model’s predictions stay 
closer to actual project data (cost or duration). A higher MAPE suggests that the model misjudges 
project outcomes, which can be costly or disruptive in EVM, where financial and scheduling 
decisions rely heavily on accurate estimates. [4] 

MAPE provides a clear, percentage-based snapshot of where forecasts stand, helping EVM 
practitioners quickly spot and address potential inaccuracies. Because MAPE is relative, it tends 
to be intuitive for managers who want a quick read on how closely their forecasts align with actual 
results. However, MAPE has notable flaws. When actual values are extremely small or zero, 
MAPE produces disproportionately large error percentages. Additionally, MAPE does not account 
for whether predictions are higher or lower than actual value, only how large the difference is. 

 
3.9.3 NRMSE 
While the MAPE spotlights relative forecasting accuracy, the NRMSE offers a clear 

measure of prediction errors, normalized to for easier interpretation. By keeping the units 
consistent (e.g., cost in euros or time in days) and scaling the error relative to actual values, 
NRMSE helps stakeholders understand how large typical deviations can be, without 
overemphasizing projects with larger budgets or longer durations.  

NRMSE is an adaptation of the RMSE that normalizes the error term, usually by dividing 
it by the mean of the actual data. A common formula is:  
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 (15) 

 
where, 
𝑦$ – actual value 
𝑦0M  – predicted value 
𝑦P – normalization method, for this research it is corresponding BAC 
 
A lower NRMSE signifies smaller deviations relative to the typical scale of the data, 

signaling better overall accuracy. In EVM, projects vary widely in size and complexity. A one-
million-dollar budget overrun means something very different for a billion-dollar infrastructure 
project than for a smaller IT implementation. By expressing errors as a ratio, NRMSE ensures that 
the measurement of error scales appropriately to each project’s scope. This aspect is crucial when 
comparing multiple models or projects, as it prevents large-scale projects from dominating the 
analysis simply due to their absolute numerical magnitudes. 
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NRMSE squares larger errors (carries over from RMSE), making it sensitive to outliers. In 
addition, the choice of normalization method can influence the results, potentially complicating 
direct comparisons if different methods are used. 

 
3.9.4 SD 
In this research, SD is a measure for precision of prediction. SD informs about the 

consistency of the model performance by taking the square root of variance (average of the squared 
differences between absolute percentage error and MAPE). [13] 

 

 𝑆𝐷 = Q∑ (𝐴𝑃𝐸$ −𝑀𝐴𝑃𝐸)/(
$&#

𝑛  (16) 

where, 
𝐴𝑃𝐸$ – absolute percentage error 
𝑀𝐴𝑃𝐸 – mean absolute percentage error 
 
SD indicates how spread are the errors around their mean. A higher SD means greater 

variation among errors, resulting in unpredictable swings in forecasts and instability in project 
planning. On the other hand, a low SD shows that the model predictions are more consistent 
(where it predicts the same output for the same input) even if there is an overall skew or bias in 
one direction. Although SD clarifies how spread out errors are, it does not indicate whether the 
forecasts are systematically too high or too low (i.e., whether there is an overall bias). A model 
can consistently overshoot actual costs yet still maintain a small SD if it does so by a nearly 
uniform margin each time. 

 
3.9.5 Mean Lags 
Mean Lags measures stability by looking at how much a forecast changes from one period 

to the next. For each pair of adjacent time steps, the metric calculates how much the forecasted 
value has shifted and expresses it relative to the previous forecast. Summing these deviations 
across the entire forecasting horizon, then dividing by the number of intervals, yields a measure of 
how “smooth” the model’s predictions tend to be. [52]  
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where, 
𝑦R$ – predicted value 
 
A lower Mean Lags value suggests more stable forecasts, meaning the model’s estimates 

do not swing from one tracking period to another. This consistency can be valuable in EVM. A 
high Mean Lags indicates frequent or large changes between consecutive forecasts, which may 
complicate management decisions, even if the model is ultimately accurate over the long run. 

Because Mean Lags focuses on temporal fluctuations, it does not consider whether those 
forecasts are correct in an absolute or relative sense. A model might be very stable but consistently 
off-target, or it could occasionally produce large errors yet maintain minimal shifts between 
successive predictions.   
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Chapter 4. Results 
This chapter presents the results of the forecasting models developed in this research. 

Building on the methodologies detailed in Chapter 3, this chapter examines how both the baseline 
methods and the proposed MLP architectures perform on two specific forecasting targets: cost at 
completion and time at completion. 

Results, based on metrics established in Section 3.9, are reported both overall and 
segmented into early, mid, and late stages of work completed. The chapter’s organization parallels 
the two forecasting targets and offers a thorough comparison of baseline (EVM and XGBoost) and 
MLP methods for each.  

Tables 11 and 12 present a summary of the final outcomes for cost and time forecasts. The 
full tables contain 310 rows and 22 columns, only the results of EVM and XGBoost baseline 
models, the best shallow MLP, the best deep MLP, and the worst MLP are shown in this chapter. 
Full details of all 308 model configurations appear in the appendices for readers desiring complete 
technical reference. 

Each MLP configuration is labeled in the format “layer count – neuron count – T/F for 
dropout”, where “layer count” indicates the number of layers, “neuron count” specifies the number 
of neurons per layer, and “T/F for dropout” denotes whether dropout is applied (True or False). 
Alongside every model in the condensed table, its ranking among all 308 models indicates how 
well it fares relative to the entire set of tested configurations. 

 
4.1 Cost Estimate At Completion 
Before evaluating model performance, it helps to first understand the overall cost behavior 

in the dataset. A simple but informative metric is the Mean Deviation of cost at completion 
(𝑀𝐷!-+,), comparing each project’s actual cost at completion to its budget (BAC). This metric 
highlights how much, on average, projects deviate from their planned budgets. Formally, MD_cost 
is defined as: [24] 
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where, 
𝑦$ – actual value (cost at completion) 
𝐵𝐴𝐶 – budget of the project 
 
The training set shows an 𝑀𝐷!-+, of 15,05%, whereas the test set yields a noticeably lower 

8,47%. This discrepancy implies that the randomly selected test subset, on average, contains 
projects with smaller cost overruns. From a methodological point of view, such a difference may 
pose a challenge, as the test data only partially align with the more pronounced overruns seen in 
training, potentially affecting the generalization of the models’ learned patterns. 

Despite the difference in cost profiles, the baseline models EVM and XGBoost, both 
achieve MAPE scores under 10% (6,68% and 5,72%, respectively), as shown in Table 11. 
However, the best shallow MLP (a simpler architecture) and the best deep MLP (with multiple 
layers) outperform these baselines, attaining 4,98% and 4,35% MAPE, respectively. They also 
surpass EVM and XGBoost on virtually every metric at each project stage, with the sole exception 
of the late-stage predictions. 
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Even the worst-performing MLP tested maintains a 10,13% MAPE score, slightly above 
the 10% threshold, which is often considered competitive in management. In the overall cost-
forecast ranking, the EVM baseline positioned in the 154th place, whereas XGBoost sits at 53rd, 
meaning that out of 306 different configurations of MLP, 52 performed better than ML benchmark, 
and 153 – better than EVM benchmark. MLP configurations clearly demonstrate the added value 
of using deeper neural network architectures, which can capture complex patterns and interactions 
in the data, in predicting cost at completion. 

 
Table 11. Final ranking table for cost prediction 
 

EVM 
(154) 

XGB 
(53) 

MLP 
shallow 
1-12-T  

(13) 

MLP  
deep 

5-16-T 
(1) 

MLP  
worst 

10-40-F 
(308) 

MAPE 6,68% 5,72% 4,98% 4,25% 10,13% 
early 13,83% 10,00% 6,65% 6,33% 8,79% 
mid 9,95% 7,05% 5,46% 4,88% 11,73% 
late 2,31% 3,42% 4,03% 3,26% 10,45% 

RMSE 0,1259 0,0946 0,0730 0,0664 0,1438 
early 0,2100 0,1570 0,1019 0,0963 0,1197 
mid 0,1480 0,1032 0,0768 0,0700 0,1661 
late 0,0364 0,0505 0,0553 0,0488 0,1472 
SD 10,31% 6,93% 5,23% 4,96% 8,92% 

early 15,98% 10,46% 8,11% 7,39% 8,92% 
mid 9,88% 7,08% 5,21% 4,86% 9,68% 
late 2,57% 3,73% 3,35% 3,45% 8,55% 

MeanLags 8,56% 6,03% 5,76% 5,08% 9,00% 
early 16,74% 16,90% 7,42% 5,92% 10,25% 
mid 7,71% 5,45% 4,82% 3,78% 8,66% 
late 8,29% 4,81% 6,33% 5,94% 10,11% 

 
4.2 Time Estimate At Completion 
Similar to cost forecasting, it is instructive to begin by examining the overall time patterns 

in the dataset provides a foundational understanding necessary for analyzing the Mean Deviation 
of time at completion (𝑀𝐷,$.)). A formal definition reflects that of cost deviation: 
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where, 
𝑦$ – actual value (time at completion) 
𝑃𝐷 – planned duration 
 
𝑀𝐷,$.) for the training set is 17,81%. The test set displays a near-identical value of 

17,63%. This implies that, in contrast to cost forecasting, the sampled test projects are broadly 
consistent with the overall distribution of schedule deviations in the training data. 

Despite this relative alignment, Table 12 reveals that baseline and MLP models still vary 
in their predictive power. The EVM approach forecasts final durations with a 12,41% MAPE, 
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while XGBoost performs slightly better with MAPE of 11,78%. Yet both baselines are surpassed 
by the best shallow MLP (1–15–T), which attains an 8,22% MAPE, and the best deep MLP (20–
10–F) at 8,50%. This performance gap suggests that even basic neural architectures can more 
effectively capture the complex patterns inherent in real-world scheduling data, compared to 
baseline models. 

Despite being the worst MLP tested, model with 15 layers and 30 neurons in each layer 
still achieves MAPE of a 17,41%, which is worse than the baselines and best MLPs, but 
nonetheless remains within the 20% threshold. Examining the stage-specific columns in Table 11 
reveals that MLP-based forecasts generally outperform both EVM and XGBoost in early and mid 
stages, reflecting better adaptability to partial project progress data. However, in some late-stage 
scenarios, the baselines remain competitive, possibly because cost or time overruns become more 
predictable as projects near completion. 

Collectively, these findings show that, while baseline methods offer a solid reference for 
time estimation, MLP models, whether shallow or deep, often provide more accurate predictions, 
particularly when uncertainty is still high as in early-stage forecasting. The near-matching 𝑀𝐷,$.) 
values for train and test sets highlight that all models are learning and evaluating on a relatively 
uniform set of schedule conditions, increasing confidence that these gains are not solely a product 
of the test subset’s composition. 

 
Table 12. Final ranking table for time prediction 
 

EVM 
(162) 

XGB 
(129) 

MLP 
shallow 
1-15-T 

(1) 

MLP  
deep 

20-10-F 
(4) 

MLP  
worst 

15-30-T 
(308) 

MAPE 12,41% 11,78% 8,22% 8,50% 17,41% 
early 9,40% 10,03% 8,11% 8,04% 11,11% 
mid 12,27% 9,40% 8,60% 9,23% 23,32% 
late 12,37% 11,25% 8,29% 8,18% 18,16% 

RMSE 0,2396 0,2303 0,1802 0,1966 0,2985 
early 0,1860 0,1872 0,1527 0,1745 0,2187 
mid 0,2457 0,2300 0,2219 0,2455 0,3943 
late 0,2473 0,2339 0,1832 0,1912 0,2825 
SD 13,71% 14,29% 11,02% 11,44% 19,61% 

early 10,96% 12,34% 13,65% 13,02% 16,76% 
mid 11,50% 11,80% 11,74% 13,04% 25,57% 
late 14,21% 13,81% 10,14% 10,31% 15,47% 

MeanLags 10,55% 15,64% 10,93% 13,62% 10,00% 
early 8,32% 14,42 2,84% 9,90% 8,21% 
mid 8,84% 11,37% 7,40% 10,90% 7,43% 
late 13,02% 15,49% 15,94% 17,81% 12,00% 

 
Overall, the final results indicate that MLPs equipped with 1, 2, or 5 hidden layers, each 

containing around 14 to 30 neurons, consistently yield the most accurate cost and time forecasts. 
This finding suggests that project management scenarios do not necessarily require extremely deep 
or large networks for effective forecasting; moderate architectures suffice to capture the underlying 
complexities of cost and schedule data. By contrast, models with zero hidden layers, essentially 
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linear approaches, performed noticeably worse, landing in the bottom half of all tested 
configurations and underscoring the need for some level of non-linearity to address the varied 
dynamics of real-world projects. 
 

Chapter 5. Discussion 
In our research, we found that medium-sized MLPs (2 or 5 hidden layers with 14-30 

neurons per layer) are consistently good predictors of both cost and time at completion, hitting an 
ideal compromise in both cases. By simply providing the network with a single hidden layer, 
populated with enough neurons, it was able to learn subtle, non-linear trends in the data. They 
also didn’t scale up so much as to overfit the training set or require too much computational power. 

Although MLPs improved accuracy for both cost and time estimates consistently, we saw 
some distinct differences in performance between the two targets. Some MLP configurations were 
particularly effective in predicting final cost, whilst others appeared to be more adept at handling 
schedule elements. This is perhaps due to the fact that cost data and schedule data have different 
forms and patterns. 

Another key observation is that the early stages of a project, when little information is 
available and uncertainty runs high, tend to pose the greatest difficulties for all forecasting 
methods. Here, MLPs really shine, consistently outperforming baseline models and providing a 
noticeable edge in proactive risk management. For instance, if a network can flag potential 
overruns or schedule slips at 20% completion, teams can make far-reaching corrections well before 
problems spiral. However, by the late stages, when the project has stabilized and much of the major 
spending or scheduling hurdles are behind it, traditional baselines like EVM or XGBoost kept pace 
with or even surpassed neural networks. In that context, with fewer unknowns in play, the 
advantage of capturing non-linear patterns becomes less critical, and simpler methods can hold 
their own just fine. 

Another important factor beyond accuracy is forecast stability, in other words, how 
smoothly predicted values move from one reporting period to another. This is especially desirable 
as we saw by looking at Mean Lags and the Standard Deviation of model errors. In many cases, 
MLPs of moderate depth and neuron count tended to produce relatively smooth updates without 
the erratic jumps sometimes seen when models overfit to small sets of data. Lower Mean Lags 
meant that revisions were more gradual between stages, and smaller Standard Deviation of errors 
showed that the network consistently landed close to its targets from step to step, thus solidifying 
project managers’ faith in the forecasts. 

Additionally, we observed that some models even though achieving excellent accuracy 
metrics, can still introduce higher volatility if a model aggressively recalibrates on fresh inputs. 
Decision-makers therefore need to strike a balance between raw accuracy and forecast steadiness, 
recognizing that a perfectly precise model is not always the best fit if it causes the project team to 
see-saw on important decisions. 

One of the most valuable takeaways from this research is the systematic process we 
developed for configuring MLPs, deciding on the number of layers, selecting how many neurons 
go into each layer, and fine-tuning core training hyperparameters. While our efforts targeted EVM 
specifically, that same approach can easily carry over into other fields that also demand a careful 
balance between accuracy, interpretability, and efficiency. Organizations that focus on resource 
planning, supply chain optimization, or demand forecasting can follow the same fundamentals, 
start with a moderate network size, incrementally adjust depth and neuron counts, and fine-tune 
hyperparameters until they start to build a configuration showing sturdy predictions. By adopting 
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these methods, teams across various industries can make more informed, data-driven decisions, 
ultimately extending the framework’s real-world impact well beyond EVM. 
 

Chapter 6. Limitations and Future Research Directions 
The data itself may not represent the entire range of complexity that all project types can 

have in the real world, as projects can differ significantly in size, domain and data quality. That 
begs the question of how well does the model generalize to extreme or special and rare scenarios. 

Second, while our tuning framework balances depth and width effectively for most data 
conditions, we did not experiment extensively with novel architectures, which might capture 
certain dependencies more effectively. Future research could compare these architectures with the 
moderate MLP approach, especially when faced with more heterogeneous or large-scale project 
datasets. 

Finally, although we explored hyperparameter tuning in a systematic yet manual fashion, 
advanced optimization techniques (e.g., Bayesian search or population-based training) could 
further refine network configurations and potentially uncover combinations we did not 
exhaustively investigate.  

Moving forward, there is ample room to extend this work to more diverse project 
environments, to integrate domain-specific knowledge directly into the model, and to experiment 
with semi-supervised or unsupervised approaches for cases where labeled EVM data is limited. 
By continuing to expand the training data, exploring next-generation neural architectures, and 
refining evaluation methods, future research can further advance our understanding of how deep 
learning can improve project cost and time forecasting in EVM and well beyond. 
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