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INTRODUCTION

The goal of this thesis is the assessment of Industry 5.0 approaches and
technologies for the performance of logistic systems.

Being this thesis a research thesis it was decided to adopt the methodology
suggested by Calderon (2010) the Design Research Methodology (DRM). The
DRM is composed of four phases: Research Clarification (RC), Descriptive Study
(DS-I), Prescriptive Study (PS) and Descriptive Study II (PS-II).

The RC phase defines the objective of the research.

The DS-I phase creates the awareness and improves the understanding of the
subject matter that has been defined in the previous phase.

The result of these two phases is the definition of the framework, in which the

execution in the third phase must be carried out.

In this case, the framework was defined by Bottazzi (2024) in her job “Impact of
Industry 5.0 target dimensions on the performance of intra-logistic systems: a

proposed assessment framework”.

The current thesis instead focuses on the execution of the third phase of the Design
Research the Methodology within the framework that was developed by Bottazzi
(2024). Only once this phase is completed it is recommended to move to the next

one Descriptive Studies II, but this is not the object of the current work.

The Prescriptive Study has been carried out by applying the Delphi study, a detailed
description of this Delphi study is the object of the content of the third chapter of
this thesis.

The first chapter focuses on the description of the three pillars of Industry 5.0, the
description of three intra-logistic systems that are considered in this thesis and
explains the methodology that was used the conduct the research of articles within

current literature.

The second chapter describes the initial assessment framework that was developed

by Bottazzi (2024), the Likert scale used to evaluate the relationship between
9



approaches/technology with parameters and highlights the changes needed as a

consequence of the analysis result.

The third chapter can be considered the core of this thesis. It contains the
description of the Delphi study, as already mentioned, and the adopted calculation
methodology of the medians and interquartile range (IQR). In addition, it contains

the panel of participants and the grading sheet.

The results of the Delphi study are also discussed in this chapter. One of the
outcomes, for instance, is that respondents do not fully agree on the impact of
approaches and technologies on the investment and operating costs. This is
particularly evident when talking about storage and material handling systems,
which require more complex and expensive technological infrastructures. On the
other hand, respondents agree on investments and operating cost regarding the
picking systems, but do not fully agree on other aspects such as level of automation

and picking operation time as far as concerned the technologies.

Finally, the fourth chapter describes the innovative contribute brought by this work

to the literature but also describes its limits.

Researches on these topics are crucial because once all outcomes are combined,
they can bring innovative and significant benefits to the manufacturing industry.
Indeed, Industry 5.0 represents the new paradigm towards which the industry is

evolving, following the established experience of Industry 4.0.

10



1 THEORETICAL BACKGROUND

The present chapter explains the term industry 5.0 with its pillars and the different
types of internal logistic systems. Such a knowledge is crucial to understand the

research work.

1.1 INDUSTRY 5.0

Industry 5.0 is a new industrial revolution, which developed gradually with
technological interactions and social-economic changes.

Three important pillars characterize this revolution (Dacre et al., 2024):

1. Human-centricity: Industry 5.0 is focused on workers' well-being, in
particular on improving the quality of working life by reducing repetitive
tasks and reducing workload through intelligent automation.

It aims at making the working place safe, more satisfying where the
contribution of the human being is valuable and promoted.

2. Sustainability: Industry 5.0 focuses on sustainability and circular-economy,
trying to minimize wastes and reduce the environmental impact of
production processes. Therefore, there is a ecological and social
responsibility by integrating eco-friendly practices in each phases of
production.

3. Resilience: Industry 5.0 aims at the designing and manufacturing of robust
and flexible production processes, which enables companies to promptly
react to even traumatic changes without suffering permanent

consequences.

Now, you may wonder what are the differences between Industry 5.0 and Industry
4.0? Why there was a need of creating and defining the new concepts of the
industry?

Industry 4.0 principles were the automation and digitalization of industrial
processes with the scope of interpreting the behaviour of the digital twin to predict

the behaviour of physical twin and therefore prevent inefficiency in the real
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production process. Industry 5.0, instead, completes Industry 4.0 principles
bringing human beings back to the centre of the process (Jefroy et al., 2022) and
considering the sustainability and the circular-economy of the production
processes.

On the light on what was stated here above, we are going to explore what the
applications of Industry 5.0 principals means for internal logistic systems: picking

system, storage system and material handling system.

1.2 INTERNAL LOGISTIC SYSTEM

With the always increasing demand of being faster to the market, efficient and
competitive, the necessity of having high performing internal logistic system

became crucial.

Internal logistic system refers to the whole movements of all supplied material and
to all supporting tasks within a production plant. In other words, this system allows
the control of the movements of the materials within the plant, ensuring the perfect
timing, quantity and position of a certain product. In this thesis we will take into

consideration three different types of internal logistic systems:

a. Automated Picking System
b. Automated Storage System
c. Automated Material Handling System

1.2.1 Automated Picking Systems

With the term picking is intended the task of selection and the taking of material
from storage with the scope of gathering them together and making that ready to

be analysed or delivered to different places.

Picking activities can take place in various ways: from the simplest way in which
the operator manually checks the amount of product units (Figure 1), to the most

sophisticated one based on a fully automated system.

12



Figure 1: The operator manually checks the amount of product units, Source [1]

For example in the picking process, Autonomous Mobile Robots (AMRs) (Figure
2), which are intelligent robots able of moving without pre-defined paths and
therefore very flexible, and Automated Guided Vehicles (AGVs) (Figure 3), which
instead are able to move along pre-defined paths, increase efficiency and reduce
errors by automatically picking products from their shelves and taking them to the
packing or shipping areas. This not only speeds up the process, but also ensures

greater accuracy in identifying and picking items.

Figure 2: Autonomous Mobile Robots, Source [2] Figure 3: Automated Guided Vehicles, Source [3]

13



1.2.2  Automated Storage Systems

With the term storage is intended the aim of storing different kind of product in a
warehouse so that companies ensure the availability to complete their planned

production or distribution processes.
We can distinguish two main types of storages:

1. Manual storage system: it is the traditional storage mode, where there are
no automatic systems and operations are carried out by operators only. In
these facilities, the operator is not only responsible of the picking operation
but also for packing and shipping of the product.

In some cases, the handling of goods can be performed with the help of
lifting equipment such as forklift trucks.

2. Automatic storage: while in the manual storage is the operator that picks
the good, in the automated warehouses is good that moves to the operators
through the automated picking system (the so called goods-to-man

approach) (Figure 4)

Figure 4: Automatic storage system, Source [4]

In the automated warehouses of Industry 5.0, the interaction between humans and
machines becomes crucial, in fact workers collaborate with robots and intelligent

systems to perform tasks that require human skills, such as quality control, process

14



optimization, and exception management. In this way, the automated warehouse of
Industry 5.0 becomes an environment where human and machine capabilities

complement and enhance each other [5].
1.2.3 Automated Material Handling Systems

With Material Handling System we intend not only the movement of materials and
goods within a warehouse, but it also includes the protection, the storage and the

control of materials from manufacturing to distribution.

Material Handling Systems can be simple pallet racking, forklift trucks, but also
sophisticated handling systems such as sorters (Figure 5) and laser-guided vehicles
(LGVs). In addition, this can include handling robots, various types of palletisers,

packaging and wrapping systems (taping, filming, etc.).

Figure 5: Sorters, Source [6]

These more sophisticated Handling Systems can take companies through Transition
5.0 with logistics solutions that are intelligent, responsive and adaptable to the
changing needs of the market as they generate greater efficiency and precision to

warehouse operations, transport and inventory management.

15



1.3 SYSTEMATIC LITERATURE REVIEW

One of the main research methods used in this thesis is the Systematic Literature
Review (SLR). This method fits whit the topic of the thesis as it focuses on the
gathering on the information on papers written by experts of the field and then in
the synthesise of the multiple studies to deliver a comprehensive view of the topic
of interest, which in this case is how performance affects the different internal

logistics systems of Industry 5.0.

The SLR is divided in 5 steps (De Lombaert et al., 2023):

Framing the question
Identifying relevant publications
Assessing study quality

Summarizing the evidence

A o

Interpreting the findings
1.3.1 Methodology of the research

This paragraph describes the methodology used for the research of articles

containing relevant information inherent the topic.

The ultimate goal of this research is to evaluate which Industry 5.0 approaches and
technologies have the greatest impact on the design parameters and performance of
intra-logistics systems. To this end, it is crucial to analyse how the three different
pillars of Industry 5.0 influence the performance of intra-logistics systems

according to the scientific literature.

In the first phase of the research, inclusion and exclusion criteria were defined and
a list of keywords for the literature review was created. The collected papers were
then analysed in three stages: preliminary title analysis, reading of the abstract and

finally in-depth analysis of the full content.

From the analysis of all papers, it was possible to distinguish the pillars of Industry
5.0 and three internal logistics systems, highlighting a gap of information in both

target dimensions of 15.0 and intra-logistic systems.
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1.3.2  Inclusion/exclusion criteria and keywords

The multidisciplinary database chosen for the research is Scopus, which is
internationally recognized. The search was carried out by using queries containing
the selected keywords, combined with Boolean logical operators ('AND' and 'OR").
Queries were usually formulated as 'Keyword A AND Keyword B AND Keyword
C' or 'Keyword A OR Keyword B AND Keyword C'. The papers included in Scopus
were from the database that is made available to students of the Polytechnic of

Turin. Table 1 summarizes the adopted inclusion criteria.

INCLUSION CRITERIA
PUBLISHING YEAR From 2019 to 2024

Journal paper
Conference paper

DOCUMENT TYPE

Book chapter

Review
LANGUAGE English
DATABASE Scopus

Table 1: Research constraints

The initial search strings were:

- 'impact AND industry 5.0 performance AND logistics AND system';

- 'impact AND industry 5.0 resilience AND performance AND logistics
AND system';

- 'impact AND industry 5.0 sustainability AND performance AND logistics
AND system';

- 'impact AND industry 5.0 sustainability OR ecological AND performance
AND logistics AND system';

- 'impact AND industry 5.0 human AND centricity AND logistics AND

system'.

Based on the results these queries produced, the search string was refined by
replacing 'logistics system' with the three types of systems: automated picking

system, automated material handling system and automated storage system.
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Since the results of new search were not so encouraging either, we decided to
replace the operator 'AND' with 'OR' in order to increase the number of papers
filtered by the queries. Many inquires were made to the database by using this setup
and combining the different logistic systems and the three pillars of Industry 5.0.
Unfortunately, this research didn’t generate sufficient good results, so therefore we

decided to reformulate some keywords, for example:

- 'impact' was replaced by 'effect’;
'impact' was replaced by 'industry 5.0';

- 'performance’ was replaced by 'impact'/'effect’;
and many other combinations (150+).
In searching for publications, we also defined the constraints listed in Table 1.

The publication period was set between 2019 and 2024 because the concept of
Industry 5.0 was not introduced by research and experts before 2019. As a matter
of fact before 2019, most of the publications were related to the concept of Industry
4.0 and only few of them to Industry 5.0 which, by the way, were not relevant to
this study.

"nn

As a type of document, the research was extended to "journal papers", "conference
papers", "book chapters" and "review" only, in order to maintain homogeneity in
the definitions of the different contributions and to increase the coherence between

the themes.

The third constraint, the English language, was imposed due to the fact that the
author's professional knowledge is limited to English and Italian and the thesis is

written in English in order to make the thesis globally understandable.

This search produced 257 papers overall (many queries did not produce any results)
but only 14 of them were related to the study since they took into account the impact
of the performances on the logistics systems. Of these 14 articles, only seven
actually considered at least one of the three pillars of Industry 5.0 and one of the
intra-logistic systems (Figure 2a, see Appendix 1A for the complete analysis). The

remaining 243 articles were not taken into consideration because their content was
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either focused on Industry 4.0 and therefore not pertinent to the topic, or they were

lacking of references on the performance of the logistics systems.
1.3.3 “Snowballing” in Systematic Literature Review

Snowballing is a search method used to identify relevant and fundamental articles
of a particular topic of interest. This approach is based on the analysis of the
references listed in a certain article, or the citations received from it, to identify

other relevant papers (Wohlin, 2014).

The process starts with the definition of a small group of significant articles, called
the initial set (Table 2a and Appendix 1A) that represents the starting point of the

search.

The are two types of snowballing:

- Backward snowballing: it focuses on the bibliographic references cited in
the articles of the initial set.
- Forward snowballing: it focuses on looking for subsequent articles starting

from citations included in the initial set of articles.

For the research of this study we adopted both approaches: backward approach we
found six papers (Table 2b, see Appendix 1B for the complete analysis), while with
the forward approach we found thirteen papers (Table 2c, see Appendix 1C for the

complete analysis).
1.3.4 Articles found by snowballing

Table 2b shows the articles founded by using the backward snowballing method
and, as we can see, all articles deal with only one of the target dimensions of
Industry 5.0 (human-centricity) and all related to the picking systems as a topic.
There is only one exception, one article that deals with both picking and material

handling systems.

Table 2¢ shows the articles founded by using the forward snowballing method. As
we can see most of the articles deal with human-centricity, while sustainability and

resilience are both covered by only two articles. On the other hand, as far as intra-
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logistics systems are concerned, the picking system is again the most dealt with,
while the material handling system is the second most dealt with, and last is the

storage systems.

The merge of Table 2a, Table 2b, and Table 2c represents the final corpus of the

literature review.

As a conclusion, it is clear that the literature from 2019 to 2024 focuses on the in-
depth study of human-centricity and picking systems. At the same time, it is
noticeable that there are no articles that considered the three target dimensions and
the three intra-logistic system simultaneously. This research gap was filled-in with

the development of the framework and its application through the Delphi study.
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ﬁtrtrrl%‘:r Title Authors Human centricity Sustainability Resilience Picking system | Storage system | Material Handling system
i " |Passive Exoskeletons to “|Ashta, G., Finco, 5.,
Enhance Warkforce Battini, D, Persana, A
9 Sustainability: Literature X X X X
Review and Future Research
Agenda
In pursuit of humanised order |De Lombaert, T,
picking planning: Braekers, K.,
2 methodological review, De Koster, R, x X
literature classification and Ramaekers, K.
input from practice
Application of supportive and |Grosse, EH.
substitutive technologies in
3 manual warehouse order X X
picking: a content analysis
Human-Centric Assistive Lucchese, A,
Technologies in Manual Mummolao, G.
4 Picking and Assembly Tasks: X X
A Literature Review
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Table 2a: The initial seven articles
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Table 2c: Forwards snowballing articles found
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1.4 DESIGN RESEARCH METHODOLOGY

This paragraph illustrates the methodology used for this the work: the Design
Research Methodology.

This methodology is divided in 4 different parts (Blessing and Chakrabati, 2009):

1. Research Clarification (RC): the RC stage clarifies the overall research
objective, establishes a research plan, and provides a focal point for the
subsequent stages.

2. Descriptive Study I (DS-I): the goal of the DS-I stage is to enhance
comprehension of design and the factors influencing its success through an
examination of the design phenomenon, in order to inform the development
of support.

3. Prescriptive Study (PS): the PS stage aims to systematically develop the
support, taking into account the findings of DS-I.

4. Descriptive Study II (PS-II): the DS-II stage concentrates on assessing the

usability and applicability of the actual support and its effectiveness

This thesis focuses on the Prescriptive Study phase, in which the Delphi study is
used to apply the evaluation framework developed in the previous part of the
research (Bottazzi, 2024). The results of the study will make possible to identify
which 5.0 approaches and technologies have the greatest impact on the design and
performance parameters of intra-logistics systems. This result, in turn, will allow
guidelines to be drawn up for developers of intra-logistics systems so that they can
make such systems compliant with [5.0 and its target dimensions, while at the same

time improving their performance.

Finally, the final phase of Descriptive Study II will be a future research and it will
be consist in a pilot test with intra-logistics system developers to assess the actual

usability of the evaluation framework.
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2 THE ASSESSMENT FRAMEWORK

This chapter illustrates Bottazzi's (2024) framework, explaining in particular the
construction of the Domain Mapping Matrices (DMMs) and their changes over

time.

Furthermore, this part describes the motivation of the Likert rating scale to assess
the relationship between approaches and technologies of all Industry 5.0 target
dimensions and the design and performance parameters of the internal logistics

system.

2.1 DOMAIN MAPPING MATRIX

Domain Mapping Matrix is a tabular tool used to represent the relationship or
correspondence between two collections of elements belonging to different

domains (Danilovic and Browning, 2007). In particular (Table 3):

- The rows (elements of domain A) with columns (elements of domain B)

- The cells define a relationship or a rule of transformation between elements

of A and B.
Element B1 Element B2 Element B3
Element A/
<
g
s Element 42
£
(=)
=
Element 43

Table 3: Example of DDM
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Just like in any other field of applications, the use of tables as is advantages and
disadvantages. In our study it was decided to use this table because of the
advantages of providing visual clarity, facilitating the management of
dependencies, high traceability and improved communication despite the
disadvantages of being complex in management, of being redundant and because

of lack of dynamism.

So, in the end, the DMMs are fundamental tools for achieving ambitious goals,
contributing to greater efficiency in the management and development of complex

projects, but it is also important to consider their limitations for effective use.

2.2 FRAMEWORK SECTIONS AND STRUCTURE

The proposed framework is divided into three parts, each representing one of the

fundamental pillars of Industry 5.0: human-centricity, sustainability and resilience.

For each pillar, two tables are provided for each of the three types of intra-logistics

systems considered:

- The first table puts in a relationship the approaches of the pillar with the
design and performance parameters that were selected from the scientific
literature (Table 4).

- The second table puts in a relationship the technologies of the pillar with
the design and performance parameters that were selected from the

scientific literature (Table 5).
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Table 4: Pillar approaches vs Parameters
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Table 5: Pillar technologies vs Parameters
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2.3 LIKERT EVALUATION SCALE

With the scope of evaluating the relationship between approaches/technology and
parameters the respondents are, as a matter of fact, answering the following

question:

How much does the application of the approach/technology of the intra-logistics

system (row) affect the design/performance parameter (column)?

Respondents should indicate the answer based on their experience by entering the
appropriate number in the cell according to the following 5-point Likert scale

(Table 6):

1 2 3 4 5

Significant decrease Decrease No change Increase Significant increase

Table 6: Likert scale

The Likert scale is an evaluation instrument used to assess attitudes, opinions or
perceptions on a given topic through a series of statements to which the respondent

assigns a level of agreement or disagreement.
2.3.1 Key characteristics of the Likert scale

The main characteristics of this scale, according to G6b et al. (2007), are

- It is an ordinal scale, so it measures the degree of agreement or
disagreement without a precise numerical distance between options.

- It is typically used in surveys and market research, psychology, business
management and industrial engineering to collect quantifiable qualitative

data.
2.3.2 Advantages and disadvantages of Likert scale

Likert scale was adopted because it carries many advantages (O'Neill, 2017) with
it: it is ease-of-use since it is easy to understand the content and offers a complete
picture to both researchers and respondents; it allows the quantification of opinions,

meaning that it is possible to transform those opinions into data that can be further
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analyzed; it is flexible; it facilitates the analysis of the data and it is not a yes-or-no

option but it leaves room for rating.

On the other hand, just like any other tool, it also implies some disadvantages
(Kusmaryono, 2022) such as a tendency towards neutrality as respondents can tend
to choose options in the middle to avoid extremes, and at the same time, the ones
that are perceived more socially acceptable. Plus, in some cases, the cultural and
personal differences can influence the perception of the answers, and it does not
always capture the intensity of the opinions. Finally, a certain bias must always be
kept into account being the Likert scale a 1-to-5 scale, it does not always catch or

correspond to the exact opinion of a responder.

2.4 ABC ANALYSIS

The ABC analysis is a type of statistical analysis based on the Pareto principle,
which is used to divide a set of elements into three different categories (A, B and

C) according to their importance (Graphic 1).

100% p

95%

80%

Contribution

20% 50% 100%
Number of article

Graphic 1: ABC analysis

Its main objective is to evaluate the impact of these elements on the company, for
example in terms of turnover, consumption or stock management, allowing the

identification of the most strategic and the most critical elements.
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In more detail:

- Class A: includes a small number of elements (about 20% of the total) that
generate the majority of value (about 80%).

- Class B: includes items of medium importance (about 30% of the total) that
contribute a more moderate proportion of value (about 15%). They require
less rigorous control than Class A.

- Class C: comprises the majority of elements (about 50%), but with a
marginal impact on total value (about 5%). These elements are less strategic

and can be managed with fewer resources.

With this classification, companies can optimise resource allocation, improve
inventory management and focus on the elements that are most critical to business

success.
2.4.1 Applications of ABC Analysis

As affirmed by Kucera and Suk (2019), the ABC analysis can be used in a variety

of business areas:

- Inventory management: identifying the most critical products to optimise
purchasing and reduce inventory costs.

- Supply chain management: prioritising strategic suppliers to ensure business
continuity and quality.

- Sales and Marketing: focus on the most profitable customers to maximise
profits.

- Cost control: optimise resource allocation for more efficient management.
2.4.2 Steps to perform the ABC analysis

As mentioned, an ABC analysis to find the parameters of the columns of the DDMs

that composed the final frameworks was carried out.
The ABC analysis consists in performing six steps:

1. Collect data: collection of the papers which contained the parameter as a

keyword (Bottazzi, 2024)
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2. Sort the papers in descending order according to the frequency of the
keyword
3. Calculate the total of the papers

N
Total = z N.of papers including the parameter as a keyword,;
i=1

4. Calculate the percentage of the individual performance parameter

Percentage of individual per fomance parameter =

_ N.of papers including the parameter as a keyword;
B Total

5. Calculate the cumulative percentage: the cumulative value of the first
parameters is the same value of the individual performance parameter.
From the second on, the value is calculated as the sum of the current value
and the previous one.

6. Divide the cumulative percentage into three classes (A, B, C), but for the

analysis, we considered only class A and B.

In the following tables (from Table 7 to Table 9), the parameters belonging to Class

A are green coloured, the parameters belonging to Class B are coloured in orange.

We can see the cumulative percentage of Class B is a bit higher than the theoretical
value (95%), but we have considered them because they are very important
realistically describe the intra-logistics system under consideration. In this way, we
have mixed Class A and B (high and moderate importance/value), resulting in a
percentage of 40% instead of 35% and for each intra-logistic system, we

considered:

- 6 out of 11 parameters or 54%, for picking systems
- 13 out of 20 parameters or 65%, for storage systems

- 11 out of 17 parameters or 64%, for material handling systems
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M. of papers Percentage of individual | Cumulated
PICKING SYSTEMS including the | performance parameter | percentage
Parameters parameter as a (= percentage of total)
keyword
Accuracy/Efficiency: getting the right product in the right quantity 141 51,8% 51,8%
Level of automation: degree of human labour required al 22 4% 74,3%
Cycle time picking operation/picking time 28 10,3% 84,6%
Picking lines/h (picking productivity) 20 7,4% 91,9%
Operating costs: energy cost, personnel cost, cleaning cost 15 5,5% a7.4%
Investment cost/Investment cost of a new system to build 4 1,5% a8, 9%
Level of physical strain required: automated picking systems reduce the physical strain an
5 SR 2 2 0,7% 99,6%
workers, leading to fewer injuries and a healthier workforce.
Ability to reduce unnecessary worker movement 1 0,4% 100,0%
Mean time to repair 0 0,0% 100,0%
Mean time between failure: up time/num failure 0 0,0% 100,0%
Mean time to failure: tot time operation/num of units 0 0,0% 100,0%
TOTAL 272

Table 7: ABC analysis of picking systems
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N.of papers |Percentage of individual| Cumulated
STORAGE SYSTEMS including the | performance parameter | percentage
Parameters parameter as | (= percentage of total)
a keyword

Utilisation rate: ratio of actual working time to available working time 48 20,3% 20,3%
Operating costs: energy cost, personnel cost, cleaning cost 47 19.9% 40,3%
Storage system capacit

= H s B o : : 42 17,8% 58,1%
RECEIVABILITY in udc: number of udc that can be stored in the warehouse, an indicator that gives the size of the warehouse
Level of automation: degree of human labour required 29 12,3% 70,3%
Scalability/Flexibility: the ability of a technology to handle an increase in the amount of work or workloads effectively and A S S
efficiently Y '
System lifetime, life cycle, useful life, service life 11 4,7% 85,2%
Storage depth single/double/ftriple o0 multi deep/ depth 10 4,2% 89,4%
Storage density: ratio between the cubic metres of gross stowable goods (including the box if the goods are boxed) and the i G i
square metres of the area occupied by the automation alone. ! :
Horlzlontal speed [m/s] 3 1.7% 94 5%
Vertical speed [m/s]
Investement cost/Investment cost of a new system to build 4 1,7% 96,2%
N order lines/h [Productivity)
Productivity (bubble lines/h): identifies the time required to complete picking operations and thus expresses the efficiency of 3 1.3% 97 55
the system: the different technological solutions are also defined by a range of heights in which the minimum, optimum and ! :
maximum heights are specified.
Storage height: height (minimum, optimum and maximum) [m] 2 0,8% a8, 3%
Selectivity/direct access items 1 0,4% a8,7%
Mean time to repair 1 0,4% 99 2%
Mean time between failures i 0,4% 99,6%
Mean time to failure 1 0,4% 100,0%
Accessibility (to goods in case of plant failure) ] 0,0% 100,0%
Modularity/Expandability: this means the possibility of expanding the system already implemented by lengthening its shelving B
or multiplying its aisles if the conditions exist to do so or if there is space to do =0 0,0% 100,0%
Ridondanza: the capacity of the system with multiple resources or alternatives to ensure that operations can continue despite 0
unforeseen events or technical problems 0,0% 100.0%
Maintenance cost 0 0,0% 100, 0%

TOTAL 236

Table 8: ABC analysis of storage systems
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M. of papers | Percentage of individual | Cumulated
MATERIAL HANDLING SYSTEMS including the | performance parameter | percentage
Parameters parameter as a| (= percentage of total)
keyword
Level of energy consumption 967 44 6% 44 6%
Speed 4405 22 8% 67 4%
Level of automation: degree of human labour required 145 6, 7% 74.1%
Utilization rate: ratio of actual working time to available working time 134 6,2% 80,3%
Battery autonomy 128 5,9% 86,2%
(System lifetime)/ life cycle, useful life, service life a2 3,8% 90,0%
Cycle time 56 2.6% 92 6%
Load capacity: maximum weight moved [kg] 52 2,4% 95,0%
Investment cost/Investment cost of a new system to build a7 2,2% a7,1%
Operation cost: energy cost, personnel cost, cleaning cost 21 1,08 a8 1%
Scalability/Flexibility: advanced material handling systems can adapt more easily to changes in
order volume and product variety, making it easier for warehouses to scale operations up or 18 0,8% a8,9%
down as needed.
Mean time between failures 7 0,3% 99 3%
Obstacle detection ability: minimum time and space required for the system to detect the ; . —_—
presence of obstacles (objects or people) in its vicinity g 2
Maintenance cost Costo di manutenzione 4 0,2% 99,8%
Mean time to repair 3 0,1% 99 9%
Degree of interaction with humans: ability of a system to cooperate with the human ocperator 2 0,1% 100,0%
Mean time to failure 0 0,0% 100,0%
TOTAL 2168

Table 9: ABC analysis of material handling systems
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2.5 FINAL FRAMEWORK STRUCTURE

After applying the ABC analysis, we only considered parameters belonging to

classes A and B.

We can see that each intra-logistic system has two DMMs, whose columns are the
same parameters but whose rows change, representing in one case approaches and

in the other case technologies.

Furthermore, it is clear that for each pillar of Industry 5.0, we would have a different
number of approaches and technologies for each internal logistics system, in fact,
if we look at the tables, the number of rows is different. The number of rows
between approaches and technologies varies, either by keeping one pillar fixed and
looking at different internal logistics systems, or by keeping one internal logistics

system fixed and changing pillars.

Appendix 2 contains the final framework used in the pre-test phase of the Delphi
study.

36



3 DELPHISTUDY

This thesis uses the Delphi study which is a particularly effective method for

reaching expert consensus on complex and poorly structured issues.
The main advantages of this approach are:

1. Involvement of qualified experts: the study allows for the collection of
input from industry experts, ensuring a deep and informed understanding
of relevant approaches, technologies and parameters.

2. Iterative methodology: based on multiple cycles (rounds), the Delphi
process involves the collection and analysis of data with the exchange of
internal feedback which allows participants to review and refine their
responses.

3. Anonymity: the anonymity of participants reduces the risk of cross-
influencing or social pressure, thus encouraging more objective and
authentic responses.

4. Statistical robustness: data is analysed through the calculation of the
median and interquartile range (IQR). These parameters are useful for
assessing consensus, even in the presence of Likert scale responses.

5. Adaptability to complex issues: the Delphi study is ideal for addressing
interdisciplinary or emerging topics, such as the integration of Industry 5.0
in intra-logistics systems, where existing knowledge may be limited or
fragmented.

6. Geographical and thematic flexibility: participants can come from
different geographical areas and fields of specialization, as their physical

presence in the same place is not required.

This methodology is therefore a valuable tool for collecting and synthesizing
knowledge that will allow the definition of common guidelines and strategies,
which are essential for promoting the application of Industry 5.0 in intra-logistics

systems.
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3.1 DELPHI METHOD IMPLEMENTATION STEPS

The Delphi method is a structured methodology designed to gather opinions and

insights from a group of experts to reach a consensus on a specific topic.
The process is generally carried out in four main steps:

1. Objective setting: the first step is to clearly identify the objectives and
scopes of the study. The main questions or topics of interest that require
expert input are outlined, and the key issues to be addressed are identified.
This lays the foundation for the process and ensures that the overall study
is focused and relevant.

2. Selection of experts: the selection of the group of experts is a key step in
ensuring the success of the Delphi method. Experts need to have relevant
skills, knowledge and experience in relation to the topic under analysis.
These qualities may also be influenced by the geographical context in
which the experts operate: as Nair et al. (2024) point out, participants may
come from the same country, while van de Wijdeven et al. (2024) stress the
possibility of including experts from different countries.

In our case study, all participants are based in Italy. Although the group is
composed of experts with the same geographical background, it is still
important to ensure sufficient diversity to ensure a rich variety of
perspectives and opinions. The number of experts involved may vary
depending on the complexity and scope of the study, with a general
recommendation of at least 10-15 participants.

Specifically, 12 experts were invited, but only 8 of them agreed to
participate. As stated by Dillinger et al. (2022), a Delphi study can have
between 5 and 20 participants, including both academic and industry
representatives.

3. Questionnaire design and launch: this phase consists of the design and
distribution of questionnaires to collect input from experts. The
questionnaires can be structured, semi-structured or open-ended, depending
on the specific objectives of the study.

The questionnaire could also have been completed in two different ways:

Offline (Zenezini et al., 2022) or Online (Haidar et al., 2024). In the first
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case, participants respond individually, without direct interaction with the
researchers. This approach is typical of the Delphi method, where experts
receive the material via email or links to dedicated platforms and provide
their assessments independently. In the second case, the questionnaire is
deployed through direct interaction between researchers and experts as
face-to-face meeting, video conference or live interview.

For this thesis, we used both approach in the first round, while in the second
round we used only the offline approach.

Typically, the first round is an open-ended questionnaire that allows
participants to freely express their opinions and insights without external
influence.

o Round 1: in Round 1, the open questionnaire is sent to all experts
who will express their opinions, predictions and suggestions
regarding the pre-defined objectives.

o Round 2: once the responses from Round 1 have been collected, the
facilitator synthesises and organises the expressed opinions while
guaranteeing the anonymity of each participant. This synthesis is
used to engage the same audience in a second, more targeted and
structured questionnaire. Specifically, the audience will receive the
outcome of the first round and the same questionnaire so that the
experts can then check, rethink and, if necessary, modify the
previous answers.

o Subsequent rounds (optional): if the level of consensus is still not
satisfactory, additional rounds might be needed. This process continues
until the predefined level of consensus is reached or the facilitator
decides to out it an end.

In this case, the process ends with the analysis of the data collected
during the second round, since an optimal level of consensus has been
reached.

4. Use of results: at the end of the Delphi process, the results are analysed and
used to support decision making, forecasting, policy development or other
purposes stated in the objectives of the study. The anonymity of the experts
ensures that the final results are unbiased and reflect the collective wisdom

of the group.
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This thesis the four steps indicated above and illustrated in the figure below Figure
6. The only difference is that in the picture, the third step is articulated in two
rounds, each one followed by the corresponding analysis. The calculation of

medians and the interquartile range was executed for both analysis round.

STEP 2

3b. Analysis Round One 3d. Analysis Round Two

Selecting Academics
and Professional
/ Experts \
i |

Analysing and Interpreting
Results

3a. Round One Questions
(Grading Sheet)

3c. Round Two Questions
(Grading Sheet)

\_  Objective setting

Figure 6: Steps of the Delphi study

3.1.1 The interquartile range definition

The interquartile range (IQR) measures the statistical dispersion of a set of data.
It indicates the distance between the first interquartile (Q1) and the third
interquartile (Q3), in other words, the length of the interval that corresponds the
centred 50% of data (Wan et al., 2014).

IQR = 03 - 01

Where:

- QI: the value separating the bottom 25% of the data from the rest.
- Q3: the value separating the bottom 75% of the data from the top 25%.

The IQR is calculated in three steps:

1. Sort the data in ascending order
2. Find Q1 and Q3

3. Calculate the interquartile range using the formula expressed above
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Since the aim of the Delphi method is to achieve a high level of agreement between

participants, we chose the interquartile range as a measure (Keeney et al, 2011).

The overall level of consensus is assessed as the percentage of matrix cells in which
there is a high degree of agreement. Of the various measures of consensus available
for Delphi studies, the IQR was selected because it can be calculated on ratings

using a Likert scale.
3.1.2 Medians definition

The median is a statistical method for determining the central value of an ordered
set of data. The median divides the data set into two equal parts, with 50% of the

lower values and 50% of the upper values.
The calculation of the medians is executed in two steps:

1. Sort the data in ascending order.
2. Determine the central position and:
o If the number of values is odd, the median is the central value.
o If the number of values is even, the median is the arithmetic mean

of the two central values.

We chose to use the median (Diamon et al., 2014) because our goal is the analysis
of the average ratings of the respondents, i.e. the most representative rating given
to each approach/technology and parameter pair. As the ratings were expressed on
a Likert scale, the median was the most appropriate measure to represent the central

value of the responses given for each cell of the matrices.

3.2 BUILDING THE PANEL OF RESPONDENTS

The selection of participants for a Delphi study is a crucial step, as it has a direct

impact on the quality and validity of the results.

The Delphi method is based on the collection of expert judgements and opinions
through a series of structured consultation rounds. The aim is to reach a level of

consensus among the participants, which is usually around 80%.
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The panel of experts was selected on the basis of the knowledge of the researchers
who conducted the Delphi study, and on the authoritativeness of the participants,
assessed both in terms of their professional or academic profile and in terms of the
prestige of the company or university research group to which they belong.

The 12 experts (Xu et al., 2023) from three different categories were invited to
participate in order to obtain a broad and diverse range of knowledge and opinions.

The categories of participants are shown in Graphic 2:

1. Companies producing intra-logistics systems:

o 1 company operating in the field of logistics, distribution and supply
chain management, with applications also in the healthcare sector

o 1 company involved in automation, electrification, robotics and
renewable energy technologies.

o 1 company specialized in warehouse automation, logistics, supply
chain management and industrial robotics.

o 2 companies active in automation and logistics management, one
focused on manual and electric material handling equipment and
the other on automated logistics.

2. Companies using internal logistics systems:

o 2 companies in the food sector that use automated solutions to
manage their logistics processes.

o 1 company in the electrical equipment distribution sector that uses
advanced logistics technologies for supply chain management.

3. Academics and logistics professors:
o 4 logistics professors from different Italian universities who

provided an academic and theoretical perspective on the topic.
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Percentage of partecipants

33% 42%

25%

Companies producing intra-logistics systems
Companies using internal logistics systems

Academics and logistics professors

Graphic 2: Participant categories

However, only 8 of the potential candidates from the three categories agreed to
complete the questionnaire. These 8 participants represent roughly the 80% of the
invited experts, a percentage that is, anyways, in line with what is recommended

for a Delphi study (Sedrakyan et al., 2022).

3.2.1 Role of participants

The eight respondents to the Delphi study questionnaire had different roles
depending on the companies or universities they are working for. This diversity of
professional profiles enriched the comparison and provided a multidisciplinary

view of the analysed topic.

In particular, both respondents from the companies producing intra-logistics
systems are Sales Manager, while those from the two companies using storage
systems were Chief Information Officer and Operations Manager respectively.
In the academic field, the four participants were all experts in the field of logistics
and operations management, covering the following positions: Full Professor of
Logistics, Full Professor of Operations Management & Industrial Systems

Engineering (two participants with this title) and an Assistant Professor (RTDD).
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3.3 GRADING SHEET

Once the questionnaire had been developed, it was tested by having it filled-in by

a professor specialized in logistic automation from the Polytechnic of Turin.

The test is a fundamental step in the research. Scope of the test is the effectiveness
of the questionnaire and how much it is in line with the objectives of the study. Just
like in any other application, the test represents a strategic step that will help

improving the quality and the reliability of the survey.
The pre-test is carried out for several reasons:

1. Validity of the questions: ensure that the questions are understandable,
relevant and aimed at eliciting the necessary information.

2. Clarity: ensure that the language is clear and easily interpreted by the
recipients, avoiding ambiguity.

3. Reasonable duration: assess whether the time necessary to complete the
questionnaire is reasonable and in line with expectations.

4. Reliability: assess the consistency of responses given by different
participants at different times while ensuring reliable results.

5. Error detection: identify and solve any issue, such as poorly worded
questions, unclear sections or format mismatch.

6. Preliminary feedback: gather useful suggestions from participants on
content and structure to improve the questionnaire before large-scale
distribution.

7. Optimise layout and flow: ensure that the structure and format of the
questionnaire makes it easy for respondents to complete without confusion

or struggle.

In the specific case of this thesis, pre-testing proved to be particularly important. In
fact, the professor suggested dividing the parameters of the intra-logistics systems

under consideration into two categories:

- Design parameters: these are characteristics defined during the design

phase of a product or process. These parameters are chosen by the engineer
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to define the configuration and structure of the system, directly influencing
its functionality.

- Performance parameters: these are the measures used to evaluate the
effectiveness and efficiency of the system or product, often in relation to
the design objectives. These parameters are not directly determined at the

design stage, but result from design choices and operating conditions.

The following pages contain the templates of all tables (from Table 10 to Table 27)

that were used to collect and analyse the questionnaire results.
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DESIGN PARAMETERS PERFDHMJ’;NCE PARAMETERS
Picking o A
Level of automation productivity (N. Pl;:_iungﬁ Fabang Invesulnent Operating costs
picking lines/h) operation time accuracy costs

Decentralized decision making

Human-robot co-working

Approaches

Tracking-as-a-Senice (NTaaS)

Table 10: Domain Mapping Matrix between human-centricity approaches and the parameters of picking systems

. _ PICKING SYSTEMS
DESIGN PARAMETERS PERFORMANCE PARAMETERS
Picking szl i
Level of automation productivity (N. Plc-lunﬁi FIE Investrtﬂem Operating costs
picking lines/h) operation time accuracy costs

Artificial Intelligence (Al)

Matural language processing for
interacting with robots

- Intelligent smart wearables (15Ws)
and exoskeletons

Cobots

Matural userinterfaces (NUls)

Human interaction and recognition
technologies (HIRT)

Gesture-tracking devices

Technologies

Augmented Reality [AR)

Sensors

Internet of Everything {loE}

Clothing industrial smart
wearables

Internet of Things (loT)

Edge computing

Table 11: Domain Mapping Matrix between human-centricity technologies and the parameters of picking systems
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STORAGE SYSTEMS

DESIGN PARAMETERS PERFORMANCE PARAMETERS
= Selectivity 3eT o 5
St depth le, System lifeti Lif:
Sdgy e pth fagte, ) Storage (direct Storage Level of Productivity {N. Scalability e e I 0
double, triple, ormulti- | Storage height Speed £ . = i 2HEes cycle, useful life,
density accessto capacity automation orderlines/ h) (Flexibility} L rate costs costs
deep systems) service life}

items)

Decentralized decision making

Human-robot co-working

Appreaches

Tracking-as-a-Senice (NTaaS)

Table 12: Domain Mapping Matrix between human-centricity approaches and the parameters of storage systems

STORAGE SYSTEMS
DESIGN PARAMETERS PERFORMANCE PARAMETERS
2 Selectivity e 3
Storage depth L tem lifeti Lif;
= _eﬂ (sing e: = Storage [direct Storage Level of Productivity [N. Scalability SR |me_{ . Utilisation | Investement | Operating
double, wriple, ormulti- | Storage height Speed 2 x X % T cycle, useful life,
density accessto capacity automation orderlines/ h) (Flexibility) s rate costs costs
deep systems) " ) service life)
ems,

Artificial Intelligence (Al)

Natursllanguage processing for
interacting with robots

Intelligent smart wearables {ISWs)
and exoskeletons

Cobots

Matural userinterfaces (NUIs)

Human interaction and recognition
technologies (HIRT)

Technologies

Gesture-tracking devices

Augmented Reality (AR)

Sensors

Internet of Evenything {IoE)

Clothing industrialsmart
wearables

Internet of Things (loT)

Edge computing

Table 13: Domain Mapping Matrix between human-centricity technologies and the parameters of storage systems
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MATERIAL HANDLING SYSTEMS
DESIGN PARAMETERS PERFORMANCE PARAMETERS
System lifetime s 2
_ - Levelof |Levelofenergy| LT Scalability Operating
Load capacity Battery autonomy Speed Cycle time R R Ilr[e cgr::le‘. ust_’.ful Utilization rate (Flexibility) Investment costs cote
Life, service life)
» Decentralized decision making
T g
3 Human-robot co-working
5 Tracking-as-a-Senvice (NTaaS)
Table 14: Domain Mapping Matrix between human-centricity approaches and the parameters of material handling systems
MATERIAL HANDLING SYSTEMS
DESIGN PARAMETERS PERFORMANCE PARAMETERS
System lifetime - y
Load capacity Battery autonomy Speed Cycle time Level M Level nfem.!rgy (life cyele, useful Utilization rate S{:aiabllny Investment costs Oitcrating
au n 2 Fy {Flexibility) costs
life, service life)
Artificial Intelligence [Al)
Matural language processing for
interacting with robots
Intelligent smart wearables (ISWs)
and exoskeletons
w Cobots
Eﬂ Natural userinterfaces (NUls)
g Human interaction and recognition
5 technologies (HIRT)
1= Gesture-tracking devices
Augmented Reality (AR}
Sensors
Internet of Everything {IoE)
Clothing industrial smart
wearables
Internet of Things (loT)
Edge computing

Table 15: Domain Mapping Matrix between human-centricity technologies and the parameters of material handling systems
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PICKING SYSTEMS

DESIGN PARAMETERS

PERFORMANCE PARAMETERS
Picking
; i-ofautomalion pmdu.ctn:'ny Plr..lclngk Picking | Investment | Operating
(N. picking |operation time accuracy costs costs
lines/h)

Approaches

Circular processes

Reduction of climate
change

Renewable sources

Remanufacturing

6Rs policy

Predictive maintenance

Bioeconomy

Table 16: Domain Mapping Matrix between sustainability approaches and the parameters of picking systems

PICKING SYSTEMS
DESIGN PARAMETERS PERFORMANCE PARAMETERS
Picking
Laval of sbreation promtctifriiy Pil:.king- Picking | Investment | Operating
(N. picking |operation time accuracy costs costs
lines/h)

Technologies

Machine Learning

Intelligent Energy
Management Systems
[IEMS)

Big Data

Artificial Intelligence {Al)

Computaticnal
Intelligence (Cl)

Internet of Things (10T}

Internet of Personalized
Products (loP*2)

Table 17: Domain Mapping Matrix between sustainability technologies and the parameters of picking systems

49




STORAGE SYSTEMS

DESIGN PARAMETERS PERFORMANCE PARAMETERS
= Selectivity it e .
Sturagedeptlh (single, Storage Storage (direct Storage Level of CRinucty Scalability Byten llfel?me “m? Utilisation | Investment | Operating
dotols opie height Speed density | accessto capacity | automation (N order Flexibility Eicie USeRililE, Senice rate costs costs
multi-deep systems) E i lines/ h) { ! life)
items)
Circular processes
n Reduction of climate
2 change
E Renewable sources
E Remanufacturing
BRs policy
Predictive maintenance
Bioeconomy
Table 18: Domain Mapping Matrix between sustainability approaches and the parameters of storage systems
STORAGE SYSTEMS
DESIGN PARAMETERS PERFORMANCE PARAMETERS
; Selectivity i oy :
5t depth y : Producti A System lifeti Lif et =
:?f:lee::tipl{:":?e Storage s Storage (direct Storage Level of :N ': d:"w Scalability cycl:e ‘:::enl:lelifr:eslew‘:ce Utilisation | Investment | Operating
mutti-geep systems) height density at;l:ess to capacity automation lines/ ) (Flexibility) tife) rate costs costs
items)
Machine Learning
Intelligent Energy
Management Systems
o {IEMS)
] Big Data
? Artificial Intelligence [Al}
.‘E Computational
& Intelligence (CI)

Internet of Things (loT)

Internet of Personalized
Products {loP*2)

Table 19: Domain Mapping Matrix between sustainability technologies and the parameters of storage systems

50




MATERIAL HANDLING SYSTEMS

DESIGN PARAMETERS PERFORMANCE PARAMETERS
System
Level of lifetime S - -
. Battery Cycle Level of g Utilization | Scalability Operating
Load Speed s ; o Invest t costs
o capacily autonomy Be time |automation energ].r. tife l:y[:.le, rate (Flexibility) PRI £ costs
consumption | useful life,
service life)
Circular processes
@ Reduction of climate
= change
g Renewable sources
_E.: Remanufacturing
6Rs policy
Predictive maintenance
Bioeconomy
Table 20: Domain Mapping Matrix between sustainability approaches and the parameters of material handling systems
MATERIAL HANDLING SYSTEMS
DESIGN PARAMETERS PERFORMANCE PARAMETERS
System
Level of lifetime R 0 2
7 Battery Cycle Level of : Utilization | Scalability Operating
Load capaci Speed i = ener. 150 Investment costs
pactly autonomy time |automation 8 | (fecycle, | te | (Flexibility) costs
consumption | useful life,
service life)
Machine Learning
Intelligent Energy
Management Systems
[IEMS)
g Big Data
E Artificial Intelligence (Al)
E Computational
K Intelligence (CI)

Internet of Things (loT)

Internet of Personalized
Products (loP*2)

Table 21: Domain Mapping Matrix between sustainability technologies and the parameters of material handling systems
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PICKING SYSTEMS
DESIGN PARAMETERS PERFORMANCE PARAMETERS
Picking i
ickng Picking |Investment| Operating

oductivi
Level of automation = u nrm‘r operation
(N. picking

lines/h)

aceuracy costs costs

time

Organizational
resilience
Cognitive resilience
Psycological resilience
Operator safety
strategies
Biological resilience
Human-machine
systems resilience
Renewable sources
Physical resilience
Table 22: Domain Mapping Matrix between resilience approaches and the parameters of picking systems

PICKING SYSTEMS
DESIGN PARAMETERS PERFORMANCE PARAMETERS
Picking —
e Picking |Investment| Operating

oductivi
Level of automation pr u an operation
(N. picking

lines/h)

accuracy costs costs

time

Big Data

Machine Learning
Artificial Intelligence (Al)
Internet of Things {loT)
Cyber-physical systems

NextG wireless
networks (NGWNs)
Cloud computing
Internet of Everything
{l=E)

Table 23: Domain Mapping Matrix between resilience technologies and the parameters of picking systems
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STORAGE SYSTEMS

DESIGN PARAMETERS

PERFORMANCE PARAMETERS

Selectivity

HifEs d_epth IsmgLe_, Storage Storage (direct Storage Level of ELLAG Scalability SR e_lll[e e Investement| Operating
double, triple, or multi- i Speed 3 5 z (N. order S cycle, useful life, Utilisation rate
height density | accessto capacity automation z (Flexibility) R costs costs
deep systems) z lines/ h) sermvice life)
items)
Organizational
resilience
Cognitive resilience
Psycological resilience
Operator safety
strategies
Biological resilience
Human-machine
systems resilience
Renewable sources
Physical resilience
Table 24: Domain Mapping Matrix between resilience approaches and the parameters of storage systems
STORAGE SYSTEMS
DESIGN PARAMETERS PERFORMANCE PARAMETERS
. Selectivity .. i N
St depth le, Product tem lifet Lif
S _ep (sine e_ Storage Storage (direct Storage Level of Y Scalability SYsen et e_! - e Investement| Operating
double, triple, or multi- s Speed D ] z : 7 (N. order (Flexibility) cycle, useful life, Utilisation rate : 7
o] eigl ensity a:;::ess]o capacity automation lines/ h] exibility’ et costs costs
ems

Big Data

Machine Learning

Artificial Intelligence (Al)

Internet of Things (laT)

Cyber-physical systems

NextG wireless
networks (NGWNs)

Cloud computing

Internet of Everything
(loE)

Table 25: Domain Mapping Matrix between resilience technologies and the parameters of material handling systems
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MATERIAL HANDLING SYSTEMS

DESIGN PARAMETERS PERFORMANCE PARAMETERS
System
: Battery Cycle Level of Levetul Lt Utilization Scalability :
Load capacity Speed = 5 energy cycle, useful T Investment costs Operating costs
autonomy time |automation x i z rate (Flexibility)
consumption | life, sermvice
life)
Organizational
resilience
Cognitive resilience
Psycological resilience
Operator safety
strategies
Biological resilience
Human-machine
systems resilience
Renewable sources
Physical resilience
Table 26: Domain Mapping Matrix between resilience approaches and the parameters of material handling systems
MATERIAL HANDLING SYSTEMS
DESIGN PARAMETERS PERFORMAMNCE PARAMETERS
System
Level of ifetil i
: Battery Cycle | Levelof cvelol | lifctime{lde | \ipation | Scalability :
Load capacity Speed E 5 Energy cycle, useful B Investment costs Operating costs
autonomy time |automation 5 : 7 rate (Flexibility)
consumption | life, service
life)

Big Data

Machine Learning

Artificial Intelligence (Al)

Internet of Things (loT)

Cyber-physical systems

NextG wireless
networks (NGWNs)

Cloud computing

Internet of Everything
{laE)

Table 27: Domain Mapping Matrix between resilience technologies and the parameters of material handling systems
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3.4 CONDUCING THE DELPHI STUDY

Once the parameters were defined, with the scope of clearly organize the
information and facilitate the analysis and comparison of the different internal
logistics systems, we created an Excel file consisting of six sheets. The first sheet
contained the detailed instructions for filling-in the questionnaire; the second and
third sheets contained the definitions of the approaches, technologies and
parameters related to each intra-logistics system. The last three sheets are dedicated
to the three pillars of Industry 5.0 and contain six Domain Mapping Matrices: three
are related to the approaches and related to the technologies. Those matrices are

replicated for each intra-logistics system.

A time frame of four weeks was given for completing the questionnaire for both
rounds, with a reminder email sent to the participants at the end of the second and
third week. However, in order to reach the quota of eight Delphi (Grime and Wright,

2016) participants in both rounds, a further extension of one week was required.

The difference between the first and the second round is that in the first round only
the Excel file to be filled-in was sent to all participants, whereas in the second round

two different files were sent out:

- A file containing the summary of the results obtained in the first round. In
details they could find the medians of the evaluations expressed by the
participating experts, distinguished by Industry 5.0 dimension, and the
interquartile range (IQR) values calculated on these evaluations, again
distinguished by Industry 5.0 dimension, with a coloured scale highlighting
the level of consensus among the participants

- Another file containing the same Excel spreadsheet that they had created,
where they were supposed to highlight the cells that in tier opinion should

have been changed according to the results of the first round.
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3.5 FIRST AND SECOND ROUND COMPARISON

Once we have collected the first and second round questionnaires responses from
all eight participants, we could compare the results by analysing both the
interquartile range and the medians (Von Der Gracht, 2012).

3.5.1 The interquartile range calculation

The interquartile range was calculated for each pillar in both rounds. Specifically,
for each parameter, the interquartile range was determined by considering the

approaches and technologies that influence it in each intra-logistics system.

Once all interquartile ranges were calculated, they were entered into the Domain
Mapping Matrices of each intra-logistics system for each pillar. Conditional
formatting was then applied to visually represent the degree of consensus (Table

28).

IQR Consensus
IQR<1 Strong consensus
1<IQR < 1.5 Moderate consensus
IQR > 1.5 Lack of consensus

Table 28: Interquartile range consensus

The degree of consensus in the interquartile range indicates how much the experts
agree on the parameter evaluations for each pillar of the intra-logistics system. In
order to understand the stability of the assessments and the reliability of the
information for each analysed parameter, we have identified three degrees of

consensus:

1 Strong consensus: the interquartile range is narrow, which means that the
assessments are concentrated in a small range and there is a high
convergence of opinions.

2 Moderate consensus: the interquartile range is wider, indicating greater

variability in ratings, but still some consistency in responses.
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3 Lack of consensus: the interquartile range is very wide or indeterminate,
indicating a high degree of dispersion in the data and a lack of clear

agreement between evaluations.

Then, for both rounds, the sum of the cells with strong consensus and the total sum
of the cells were calculated for each DMM of each pillar. From this data, the ratio

was calculated to determine the consensus percentage.

Total of cells with strong consensus
Total of cells

Consensus percentage =

Thanks to this formula, we can see that from the first to the second round, the

percentage of agreement increased by 8% (Graphic 3).

Consensus rate

100%
90%
80%
70%
60%
50% 97%

0,

40% 89%
30%
20%
10%
0%

PERCENTAGE

round 1 round 2
NUMBER ROUND

round 1 round 2

Graphic 3: Consensus percentage of the two rounds

To determine the number of rounds to be completed in the Delphi study, we use a
consensus percentage of 90%, roughly. Therefore, based on the results we have
obtained, we stopped after the second round, where we reached 97% of consensus

against the 89% achieved after the first round.

Now, let’s go a little bit more into the details and let’s analyse each storage system
individually. By looking at the results it is possible to identify the parameters that
gain full acceptance in both rounds of the Delphi study by comparing the three
pillars, and independently from the adopted approach and technology:

57



1.

Picking systems: in the human-centricity pillar, there is a full agreement on
the level of automation and picking productivity, while in the technology
pillar there is the unanimous agreement on picking accuracy. In the
sustainability pillar, there is full consensus on the level of automation,
picking accuracy, picking time and picking productivity. However, the
latter is not included in the technologies.

On the other hand, in the resilience pillar, there is full consensus in both
approaches and technologies for the level of automation, picking
productivity and picking accuracy. There is also full agreement on
operating costs, but only in the technologies side.

The results show that some parameters, such as the level of automation, the
picking accuracy and the picking productivity, maintain a stable consensus
across all pillars, while others, such as the picking productivity, are
recognised mainly in the approaches and rather than in the technologies.
The level of automation, picking accuracy and picking productivity are
considered essential for improving efficiency and reducing errors, so they
find consensus in all pillars. However, picking productivity is mainly
associated with the approaches, as it depends more on management and
organisational strategies, such as process optimisation, rather than the
adoption of specific technologies.

Storage systems: all three pillars, in both approaches and technologies,
show some parameters that remain in full consensus in both rounds,
including storage depth, storage height, speed, storage density and storage
capacity. However, there are some exceptions. Productivity is only present
in approaches in the resilience pillar, while it is recognised in both
approaches and technologies in the sustainability and human-centricity
pillars. On the other hand, scalability is present in technologies as far as
concerning the resilience pillar, but in both approaches and technologies as
far as concerning the human-centricity pillar. System lifetime is fully
accepted in all approaches in all three pillars, while for technologies it is
only recognised in the human-centricity pillar. Utilisation rate is present in
both approaches and technologies in the sustainability and resilience
pillars, while operating costs are fully accepted in the resilience and human-

centricity approaches and in the resilience and sustainability technologies.
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In general, the full consensus on these parameters reflects their crucial
importance for the operational efficiency and sustainability of storage
systems, regardless the pillar. However, the differences found, such as in
the case of productivity, which is recognised mainly in the approaches in
resilience and in both areas in sustainability and human-centricity, indicate
that some parameters are influenced more by management strategies
(approaches) than by technologies. On the other hand, parameters such as
scalability and system lifetime, which depend heavily on technological
capabilities and the durability of solutions, show divergences between the
pillars according to their emphasis on technological innovation and long-
term management.

Material Handling systems: in the material handling system, parameters
with full consensus in both approaches and technologies are present in the
three pillars in both rounds, including load capacity, speed and operating
costs. Cycle time and system lifetime, on the other hand, are only present
in the Sustainability approaches, but the latter parameter is considered with
full consensus in both approaches and technologies in the resilience pillar.
Other common parameters between sustainability and resilience in both
approaches and technologies include level of consumption, scalability,
utilisation rate and level of automation. However, these last three
characteristics are also shared by technologies in the human-centricity
pillar.

These similarities between the pillars indicate that parameters such as level
of consumption, scalability, utilisation rate and level of automation are
considered crucial to improving the operational efficiency, sustainability
and resilience of material handling systems. Their transversal presence in
all three pillars suggests that these factors are considered crucial from both
an operational and technological perspective to optimise processes, reduce
costs and ensure flexibility to the systems. In contrast, cycle time and
system lifetime are more focused on specific aspects of sustainability and
resilience, and this points out the importance of time management and long-

term durability to ensure an effective implementation of solutions.
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In the first round of the study, there were cells with no or moderate agreement
within the different storage systems for both approaches and technologies.
However, following the submission of the summary, respondents reconsidered
some of their assessments, and this resulted in a greater degree of agreement on
several performance and design parameters. For example, in the human-centred
context of order picking and material handling, investment and operating costs
received strong agreement for all approaches and technologies. Similarly, in the
context of storage systems, resilience-related technologies achieved full consensus

on all design and performance parameters.
3.5.2 Medians calculation

To complete the analysis of Domain Mapping Matrices, we defined five different
ranges of median values (Table 29) to ensure a homogeneous distribution of the
data. Each range was structured so that the distance between the minimum and
maximum values from the median was the same. In addition, to each range was
assigned a specific colour, which was used to highlight the cells of the DMMs

corresponding to each pillars.

MEDIAN VALUES Cell color
1-1.5 Orange

2-25 Light Orange
3 White

35-4 Light Green
45-5 Green

Table 29: Median values colour association

The same format was applied to both rounds of the Delphi study. After calculating
the medians for each relationship between approach/technology and
performance/design parameter, the data were formatted by assigning different
colours to the cells according to the obtained range. Specifically, in the second
round, after formatting, all cells that did not reach full agreement according to the
IQR of the second round, were crossed out in all DMMs of the three pillars. In this
section, the comparison only concerns cells that reached full agreement in both

rounds.
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The following considerations emerge from an analysis of the different storage

systems and a comparison of the three pillars:

1.

Picking systems: in round 1, under human-centricity, neither approach nor
technology had a positive impact on the design and performance
parameters, with the exception of intelligent smart wearables (ISWs) and
exoskeletons, which showed an increase for all parameters considered.
However, in round 2, neither technology nor approach maintained a
positive impact, as ISWs and exoskeletons did not gain full acceptance in
relation to picking operation time.

In terms of sustainability, the 6Rs policy and predictive maintenance
approaches contributed to the reduction of operating costs in both rounds,
with a more pronounced reduction in the second round for the 6Rs policy.
In addition, the level of automation had a positive impact for all
technologies and remained constant in both rounds. In general, the
approaches did not significantly affect the benchmarks in round 2, while
the technologies maintained or increased their impact relative to the
benchmarks.

Within resilience, all technologies had a positive and constant impact on
the level of automation in both rounds, just like it was for the sustainability.
However, the main difference between the two rounds is that in the second
round, a greater number of approaches (cognitive resilience, psychological
resilience and physical resilience) and technologies (Machine Learning,
Artificial Intelligence, cyber-physical systems and IoT) had a positive
impact by leading to a reduction on the picking time.

These results show how the integration of advanced technologies and
robust approaches in round 2 led to an improved operational performance,
to a reduced picking times and optimised automation.

Storage systems: within human-centricity, in round 1 all approaches had a
positive impact on the productivity and utilisation rate parameters.
However, in round 2, while the positive impact on utilisation remained
unchanged, the strong consensus shifted to the investment costs. With
regard to technologies, in both rounds a positive impact was observed on

the level of automation and investment costs, with the difference that
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instead of reducing some operating costs, they remained unchanged or
increased.

For sustainability, the approach with the greatest impact on the design and
performance parameters in round 1 was the 6R policy. In round 2, however,
no approach had a significant impact on the parameters. In addition, most
of the operating costs associated with the approaches decreased in round 1,
whereas they remained the same in round 2. In terms of technologies, a
positive impact on the level of automation was confirmed in both rounds.
However, as with the approaches, the operating costs decreased more in the
first round than in the second.

In the area of resilience, no parameter had a positive impact on all
approaches in both rounds. However, for technologies, the level of
automation and scalability maintained a constant positive impact, with no
major variations between the two rounds.

In conclusion, the analysis of the two rounds shows that the positive impact
of the approaches tends to decrease or stabilise over time, while
technologies continue to play a key role in improving automation and
scalability.

Material Handling systems: within human-centricity, all approaches had a
positive impact on utilisation rate and scalability parameters in round 1.
However, in round 2, the positive impact remained only on the utilisation
rate. For technologies, none of the approaches showed a positive impact on
all design and performance parameters, in both rounds.

For sustainability, no parameter was found to be positively affected by all
technologies or approaches. A similar trend was observed for resilience,
where in the table of approaches no parameter had a positive impact on all
analysed elements. However, in the first round, all technologies in
resilience had a positive impact on scalability and operating costs, by
reducing them. However, this trend was not confirmed in round 2.

The analysis shows how the positive impact of some approaches and
technologies tends to mitigate in the transition between the two rounds,

suggesting greater selectivity in the evaluations.
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3.6 SECOND ROUND RESULTS

In this section, we focus in particular on the results obtained in the second round,
which were decisive in leading us to close the process at the end of this phase of

the Delphi study.
3.6.1 Interquartile range results

From the results of the interquartile range tables (from Table 30 to Table 47), we
can see that by keeping the pillar fixed and by varying the intra-logistics system, a
comparison of the DDMs of approaches and technologies shows a greater or

smaller consensus on approaches versus technologies.

63



DESIGN PARAMETERS PERFORMANCE PARAMETERS
Picking T ey
Picki Pick | tment
Level of automation productivity (N. “:. mgh N G ik Operating costs
L2 operation time accuracy costs
picking lines/h)
@ Decentralized decision making 0,50 1,00 0,00 1,00 1,00 0,50
o =
il Human-robot co-working 0,25 0,00 1.00 025 200 0,25
g Tracking-as-a-Senvice (NTaaS) 0,00 025 0,00 1,00 1.25 0,25

Table 30: DMM between human-centricity approaches and parameters IQR results of picking systems

DESIGN PARAMETERS PERFORMAMNCE PARAMETERS
Picking e ey
Level of automation productivity (M. P'c_h"g_ Rickie e stmiegt Dperating costs
Smaieh operation time accuracy costs
picking lines/h)
Artificial Intelligence (Al) 0,50 0.50 0,50 0,50 1,00 0,50
Natu.ral langl.Jage Frucessing for 195 1.00 195 025 195 0.00
interacting with robots
Intelligent smart wearables (ISWs) 0.95 1.00 2.00 1.00 0.50 1.00
and exoskeletons !
Cobots 0,50 1.00 2,00 | 025 0,75 0,50
‘i Matural userinterfaces (MUls) 0.00 0.25 1,00 0,00 1.00 0.00
'E Human intera CEICI-I'I- and recognition 0.50 0,50 1,50 1.00 1.00 0.00
£ technologies (HIRT)
'E; Gesture-tracking devices 0,00 0,75 0,75 1,00 1,00 0,00
et Augmented Reality (AR) 0,00 0,00 025 0,00 0,50 0,25
Sensors 0.0o0 0,00 1,00 1.00 0.25 0.25
Internet of Everything (loE] 0,50 0,00 0,00 0.75 0,50 0,50
Clothing industrial smart 0,50 0.00 0,00 1.00 0.00 0,50
wearables
Internet of Things (laT) 0,00 1,00 0,25 1,00 1,00 1,00
Edge computing 0,25 0.00 0,00 0,50 0,50 0,50

Table 31: DMM between human-centricity technologies and parameters IQR results of picking systems
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STORAGE SYSTEMS

DESIGN PARAMETERS PERFORMANCE PARAMETERS
: Selectivity =
Storage depth (single, - Sucti 1 System lifetime (life
double, triple, or multi- | Storage height Speed mnrage {d"emm cs;uragie Level of automation ]:rderug{:‘ {Fl.euihill.l‘m‘; cycle, useful life, BT crat et
deepsystems) ity R s pACEY iy service life)
items)
Decentralized decision making 0,50 0,00 0,50 0,00 0,50 0,00 150 0,75 1,00 0,50 1,00 1,00 0,75
Human-robot co-working 0,25 1,00 0,25 1,00 0,00 0,00 1,00 1,00 1,00 1,00 0,00 0,25 1,00
Tracking-as-a-Service (NTaas) 0,25 0,25 1,00 1,00 0,25 0,25 1,00 1,00 1,00 1,00 0,50 1,00 0,75
Table 32: DMM between human-centricity approaches and parameters IQR results of storage systems
STORAGE SYSTEMS
DESIGN PARAMETERS PERFORMANCE PARAMETERS
_ Selectivity L
Storage depth (single, o - Systemlifetime (life - -
Sto direct st | Productivity (N. Scalab . Utilisat Investement | Operati
double, triple, o multi- | Storage height Speed e dm DEEE | vt o automation | o ot iRty cycle, useful life, i e || S
density access to capacity order lines/ h) {Flexibility) s rate costs costs
deepsystems) = service life)
items)
Artificial Intelligance (Al) 0,00 0,50 0,00 0,50 0,50 0,50 0,00 0,00 0,00 0,50 0,00 0,00 1,00
L el 0,00 0,00 1,00 0,25 0,00 0,00 1,00 0,00 0,50 0,50 1,00 0,00 0,50
interactingwith robots
‘”teu'geltnzmm w”m‘:l“ e 0,00 0.00 1,00 0.25 0,00 0.00 1.00 1.00 0.50 0.00 1,00 0.50 1,00
p Cobats 1,00 0.25 1,00 0,00 0,00 0,25 0,25 0,00 0,25 1,25 0,00 0,50 1,00
b Matural userinterfaces [NUls) 0,00 0,00 1,00 0,25 0,25 0,00 0,25 0,00 0,50 0,50 0,50 0,00 1,00
g H”m"lm”mm” 3'::'[;;]“ i 0,00 0.00 1,00 0,50 0,00 0,00 1,00 0,50 0.00 0,00 1,00 0.50 1,00
= Gesture-tracking devices 0,00 0,00 0,00 0,00 0,00 0,00 0,75 0,75 1,00 0,00 1,00 0,00 0,75
Augmented Reality (AR) 1,00 1,00 1,00 1,00 0,25 0,00 0,00 0,00 0,00 1,00 0,00 0,00 0,25
Sensors 1,00 1,00 1,00 1,00 0,00 0,25 0,25 1,00 0,00 1,00 0,25 0,00 0,50
Internet of Everything (16E) 0,00 0,50 0,50 1,00 0,50 0,50 0,50 0,50 0,75 1,00 075 0,00 2,00
LAaitioe nc Ut Smart 0,00 0,00 0,75 0,75 0,00 0,00 1,00 0,75 0,75 0,00 075 0,00 075
wedrables
Internet of Things (1oT) 0,00 0,00 1,00 1,00 0,25 0,00 1,00 1,00 0,25 0,00 1,00 0,00 1,00
Edge computing 0,00 0,00 0,75 0,00 0,00 0,00 1,00 0,75 0,00 0,75 0,75 0,00 0,75

Table 33: DMM between human-centricity technologies and parameters IQR results of storage systems
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MATERIAL HANDLING SYSTEMS
DESIGN PARAMETERS PERFORMANCE PARAMETERS
System lifetime - .
Load capacity Battery autonomy Speed Cycle time LM“_’ Feis nfene_rgy (tife cycle, useful Utilization rate Scaiabi_ﬁ'ly Investment costs R
it tion ption E TS | Flexibility) costs
life, service life)
Decentralized decision making 0,25 0,25 1,00 1,00 1,50 1,00 0,25 0,50 125 D25 1,00
Human-robot co-waorking 050 0,25 0,00 0,25 1,00 1,00 1,00 0,00 0.00 0,25 1,00
Tracking-as-a-Senvice (NTaaS) .00 0,50 1.00 125 100 0,00 0,00 1.00 0.25 1,00 1,00
Table 34: DMM between human-centricity approaches and parameters IQR results of material handling systems
MATERIAL HANDLING SYSTEMS
DESIGN PARAMETERS PERFORMANCE PARAMETERS
System lifetime L .
Load capacity Battery autonomy Speed Cyele time Lw:;;ﬂ L:::::::jlv {I_ilec'ycl{?. usgiul Utilization rate { :i::l Investment costs OD:D::;M
life, service life)
Artificial Intelligence (Al) 0,50 1,00 0,50 0,50 1,00 1,00 0,00 0,00 0,00 0,00 1,00
Matural L ingf
A e e e B.25 0,50 1,00 1,25 0,00 0,25 0,25 1,00 1,00 1,00 0,00
interactingwith robots
st Sman wea ablesl W) 1,00 0,25 1,00 1,25 1,00 1,25 0,00 1,00 1,00 0,25 025
and exoskeletons
Cobots 1,00 0,00 0,25 1,25 025 0,50 .25 0,00 1,00 1,00 0,25
} Natural user interfaces [NUIs) 0,00 1,00 1,00 1,25 1,00 1,00 1,00 0,50 0,25 1,00 0,00
i 1,00 1,00 0,00 0,75 0,75 0,75 0,00 0,75 0,00 0,75 0,75
2 technologies (HIRT)
= Gesture-tracking devices 0,00 0,75 1,00 75 075 0,00 075 1,00 1,00 0,75 0,00
Augmented Reality (AR) 0,00 0,25 1,00 1,00 1,00 0,50 .25 1,00 1,00 1,00 0,00
Sensors 0,25 1,00 1,00 1,256 1,00 0,50 1,00 1,00 1,00 1,00 0,00
Internet of Everything {IoE) 0,00 0,75 0,00 0,00 075 0,00 0,75 1,00 0,00 0,75 1,00
(Atugs el s 8,00 0,00 075 0,00 0.00 0,00 075 075 1,00 0.75 0,00
wearables
Internet af Things {loT) 0,00 1,00 025 2,00 1,00 050 25 1,00 1,00 1,00 100
Edge computing 0,00 0,75 075 0,00 1,00 .00 0,00 75 0,00 1,00 .00

Table 35: DMM between human-centricity technologies and parameters IQR results of material handling systems
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PICKING SYSTEMS

DESIGN PARAMETERS ' PERFORMAMNCE PARAMETERS
Picking
T e P i o pmdr{mr-urry Plcllcmgl Picking |Investment| Operating
{N. picking |operation time | accuracy costs costs
lines/h)
Circular processes 0.25 0,00 0.00 0,00 025 0,50
i oconoicet 0.25 0,00 0,00 0,00 0,25 0,00
B change
i Renewable sources 0,00 0,00 0,00 0.00 0.50 2,00
z Remanufacturing 0,00 0,00 0,00 0,00 0.25 1,25
B6Rs policy 0,00 0,00 0,00 0,00 0,00 1,00
Predictive maintenance 0,25 0,25 0,25 0,00 0,50 0,25
Bioeconomy 0,00 0,00 0.00 0,00 1,00 0.25
Table 36: DMM between sustainability approaches and parameters IQR results of picking systems
) PICKING SYSTEMS
DESIGN PARAMETERS PERFORMANCE PARAMETERS
Picking
foil ol et pmd:[:ttuny Pl::_lnng_ Picking |Investment| Operating
(M. picking |operationtime | accuracy costs costs
linesih)
Machine Learning 0,00 0,00 0.50 1,00 0,50 0,50
Intelligent Energy
Management Systems 025 1,00 1.00 025 1.00 125
" [IEMS)
'% Big Data 1.00 1,00 100 1,00 0.25 0,25
'E Artificial Intelligence (Al) 0,50 0,00 0,50 1,00 0,50 0,50
5 Computational
0,50 1,00 1.00 0,50 1.00 0,00
- Intelligence (Cl) ’
Internet of Things (1aT) 025 1,00 1,00 0,25 1,00 0.25
Internet of Personalized
0,00 0,75 1.00 0,75 0.00 0,00
Products {loP* 2)

Table 37: DMM between sustainability technologies and parameters IQR results of picking systems

67




STORAGE SYSTEMS

DESIGN PARAMETERS PERFORMANCE PARAMETERS
- Selectivity T
Staireets dx_apth {smgte,: Storage Storage {direct Storage Level of Rroticiny Scalability |System lifetime (life cycle, | Utilisation | Investment | Operating
double, triple, or multi{ 2 Speed L _ L (N. order T 5 S
height density | accessto capacity automation 1 (Flexibility) | useful life, service life) rate costs costs
deep systems) 7 lines/ h)
items)
Circular processes 0.00 0.00 0.00 0.00 0:25 0.00 0.00 0,00 0.00 0.00 0.25 025 125
% Seduach :” C'; limete 0,25 025 0,00 0,25 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1,25 0,50
change
E Renewable sources 0,00 0,00 0.00 0,00 0,00 0,00 0,00 0,00 0,25 0,00 0,00 0,25 2,00
E Remanufacturing 0,00 0,25 0,00 0,00 0,00 0,00 0,00 025 0,00 0.25 0,00 1,00 1,00
' 6Rs policy 0,00 0,25 1,00 0,00 0,00 0,25 0.25 0,25 0,25 0,00 0,00 0,25 0,50
Predictive maintenance 0,00 0,00 0,25 0,00 0,00 025 1,00 0.00 1,00 1,00 1,00 1,25 0,25
Bioeconomy 0,00 0,00 0,00 0.00 0,00 0,00 0.00 0,00 0,00 0,00 0.00 0,00 0,25
Table 38: DMM between sustainability approaches and parameters IQR results of storage systems
STORAGE SYSTEMS
DESIGN PARAMETERS PERFORMANCE PARAMETERS
. Selectivity aie
Smragedl_apth !smgiet Storage Storage (direct Storage Level of Finduitnity Scalability |System lifetime (life cycle,| Utilisation | Investment | Operating
double, triple, or multi{ : Speed % 5 2 {N.order A 5 Ve
height density | accessto capacity automation u (Flexibility) | useful life,service life) rate costs costs
deep systems) i ) lines/ h)
ems,
Machine Learning 0,50 0,00 0,00 0,50 1,00 0,50 0,00 0,50 0,00 0,00 0,00 050 0,50
Intelligent Energy
Management Systems 0.00 0,00 1,00 0.25 0,00 0.25 0,25 1.00 1,00 1,00 0.25 1,00 1,00
. (IEMS)
& Big Data 0.00 0.00 1,00 1.00 1,00 0.25 1,00 1,00 125 0.25 0.25 1,00 0.25
E‘ Artificial Intelligence [Al) 0,50 0,00 0,00 1,00 1,00 0,50 0,00 1,00 0,00 0,00 0,00 0,50 0,50
2 :
£ fompidaional 0,50 0,00 1,00 1,00 0,50 1,00 0,50 0,50 0,50 0,50 0,50 0,00 1,00
= Intelligence (C1)
Internet of Things (loT) 0,00 0,00 0,25 0,00 0,00 0,00 1,00 1,00 1,25 0,25 1,00 1,00 0,00
Internet of Personalized
0.75 0,00 0,75 0.00 0,75 0,00 0.00 0.00 0,75 0,75 0,75 0,75 1.00
Products (loP"2)

Table 39: DMM between sustainability technologies and parameters IQR results of storage systems
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MATERIAL HANDLING SYSTEMS

DESIGN PARAMETERS PERFORMANCE PARAMETERS
System
Level of lifetime g oz .
Load capacity Battary Speed C:,'cle Lews! ‘Tf Energy (life cycle, s S“E?h_li_w Investment costs Opseating
autonomy time |automation : : rate [Flexibility) costs
consumption | useful life,
semvice life)
Circular processes 0.00 0,00 0,00 0,00 0,00 0,00 1.00 1,00 0,00 1,00 0,50
R Reduction of climate
o 0,00 0,25 0,00 0,00 0,00 1.00 0,50 0,50 0,00 0,50 0,50
= change
E Renewable sources 0,00 0,25 0,00 0.00 0,00 1.00 0,25 025 0.00 0,00 1,00
E Remanufacturing 0,00 0,00 0,00 0,00 0,00 0,00 0,25 0,50 0,00 1,25 0,25
' GRs policy 0,00 0,25 0,25 0.25 0.25 1,00 0,25 1,00 1,00 1,00 0.25
Predictive maintenance 0,00 1,00 0,25 1,00 050 1,00 1,00 1,00 0,50 1,00 1,00
Bioeconomy 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,25 0.25
Table 40: DMM between sustainability approaches and parameters IQR results of material handling systems
MATERIAL HANDLING SYSTEMS
DESIGN PARAMETERS PERFORMANCE PARAMETERS
System
Level of lifetime feaotiey - :
Loadeapucily Battery Speed C?'::Ee Level rjlf i (life cycle, Utilization Snaifh_lt‘rty (e e Operating
autonomy time | automation ; B rate (Flexibility) costs
consumption | useful life,
senvice life)
Machine Learning 0,50 0,00 0,50 0,50 0.00 1,00 0.00 0,75 0,00 1,00 0,75
Intelligent Energy
Management Systems 0,00 1,00 1,00 0.25 0,00 1,00 0,50 0,50 0.50 1,00 1.50
- (IEMS]
] Big Data 0,00 1,00 1,00 0,00 1,00 0,25 1,00 1,00 1,00 0,25 0,00
E Artificial Intelligence (Al) 0,50 0,00 0,00 0,50 0,00 1,00 0,00 0,50 0.00 0,50 0,50
B
g :
= bameytational 0.50 1,00 1,00 0,00 1,00 0,00 0.50 1,00 0,50 1,00 0,00
2 Intelligence (Cl)
Internet of Things (laT) 0,00 1,00 1,00 0,25 1,00 0,00 1,00 1,00 1,00 1,00 0,50
Internet of Personalized 0,00 0.00 0,00 1,00 0,00 0.00 1,00 0,00 1,00 0.00 0.75
Products (loP*2)

Table 41: DMM between sustainability technologies and parameters IQR results of material handling systems
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PICKING SYSTEMS

DESIGN PARAMETERS

PERFORMANCE PARAMETERS
Picking v =
Picking e r
oductivi Pick Investment | Operati
Level of automation gk % tw operation icking e perating
{N. picking i accuracy costs costs
lines/h)
TR 0,00 0,25 0,25 0,50 0,00 1,25
resilience
Cognitive resilience 1,00 0,00 0,25 0,25 0,00 0,25
Psycological resilience 0,25 0.25 0,25 1,00 1,00 0.25
Oiperator safi
AN 0.00 0.00 0.25 0.25 1.00 0,50
strategies
Biclogical resilience 1,00 1,00 1,00 D25 050 D25
HLEFEIEI'I—H'I‘:‘..B.‘"HTEE 0,00 1,00 0,50 0,25 1,00 0,25
systems resilience
Renewable sources 1,00 0,00 0,00 0,00 ;25 1,00
Physical resilience 1,00 0,25 1,00 1,00 025 0,25

Table 42: DMM between resilience approaches and parameters IQR results of picking systems

DESIGN PARAMETERS PERFORMAMNCE PARAMETERS
Picking MR
Gogl Picking N >
L oduct . Pick Investment | O it
Level of automation o 4 Ff'!l!n‘ operation S presi
{N. picking 3 accuracy costs costs
i time
lines/h)
Big Diata 0,00 1,00 0,00 0,50 1,00 0,00
Machine Learning 0,00 0,50 1,00 0,00 1,00 b.50
Mlﬁ“'al[':;’wgem 0,00 0,00 1,00 0,00 1,00 1,00
Internet of Things [1aT) 0,25 0,25 0,00 1,00 1,00 0,00
Cyber-physical systems 0,25 1,00 1.00 025 1,00 025
MNextc wireless
0,00 1,00 025 1,00 1.0 025
networks [NGWHNs) ! : . ; : .
Cloud computing 0,25 1,00 0,00 1.00 1,25 1,00
ternet of B hi
il “DE]E'“'E i 1,00 0,50 1,00 1,00 0,50 0,00

Table 43: DMM between resilience technologies and parameters IQR results of picking systems
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STORAGE SYSTEMS

DESIGN PARAMETERS PERFORMANCE PARAMETERS
- Selectivity o e
St depth le, Product] = tem lifet i o
S - pth [sing i Storage Storage [direct Storage Level of roductiity Scalability System fife :me_{ © e Investement | Operating
double, triple, or multi- height Speed denia Cais Satbirtic (M. order (Flexibility) cyele, useful life, Uitilisation rate s oot
deepsystems) ity af:cess to pacity lines/ h) service life)
items)
Crganizational
L 0,00 0,00 0,00 0,00 0,50 0.25 0.00 1.00 0,25 1,00 0,00 1.00 0,25
resilience
Cognitive resilience 025 025 0.00 1.00 0.25 0.00 0.00 0.25 1,25 0.00 1,00 1.00 1.00
Psycological resilience 0,00 .00 0.00 0,00 0.25 0.00 0,00 1,00 1.00 0,25 0,00 025 0,50
i éafety 0,00 0,00 0,00 0,00 0,50 0,00 0,00 0,25 0,25 025 0,00 0,50 0,25
strategies
Biological resilience 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0.50 0,00 0.00 0.00 0,50
H - i
Sl 0,25 0,25 1,00 1,00 0,25 0,00 1,00 1,00 1,00 0,25 0,25 125 100
STEMS resilience
Benewable sources 0,00 0,50 0,00 0,00 0,00 0,00 0,25 0,00 0,25 0,25 1,00 1,25 1,25
Physical resilience 0,00 1,00 0,00 0,00 0,25 0,00 0,00 1,00 0,25 0,00 0,50 0,00 0,50
Table 44: DMM between resilience approaches and parameters IQR results of storage systems
STORAGE SYSTEMS
DESIGN PARAMETERS PERFORMAMNCE PARAMETERS
: Selectivity e e 7
St de le, Product LR tem lifeti Liff s
e i pth{smge_ Storage Starage {direct Storage Level of ! Aty Scalability et :me_{ N e Investement | Operating
double, triple, or multi- height Speed densi e capacs aiemation {N. order (Flexibility) cycle, useful life, Utilisation rate e costs
deepsystems) e L _ PICHY lines/h) service life}
items)
BigData 0,50 0,00 1,00 1,00 0,00 0,25 0,25 1,00 1,00 1,00 0,50 1,00 1,00
Machine Learning 0,50 1,00 1,00 0,50 1,00 1,00 1,00 0,00 0,50 0,00 0,00 1,00 0,00
Artificial Intelligence 1,00 1,00 0,50 1,00 1,00 1,00 0,50 0,00 0,00 0,50 0,00 1,00 0,00
Internat of Things {laT) 0,00 0,00 1,00 0,25 0,00 0,25 1,00 1,00 100 025 100 1,00 1,00
Cyber-physical systems 025 1,00 0,50 1,00 1,00 1.00 1,00 1,00 1,00 0,00 1,00 1,00 0,00
NextG wireless
0,00 0,00 1,00 0,00 0,25 0,00 0,25 1,00 1,00 0.25 1,00 1.00 1,00
networks [NGWNs) A
Cloud computing 0,00 0,00 1,00 0,50 0,00 0,25 0,50 1,00 0,50 0,50 1,00 1,00 1,00
ternet of Ev hil
izl :maem e 0,00 0,00 0,00 0,50 050 0,00 1,00 1,00 050 0,50 0,75 1,00 1,00

Table 45: DMM between resilience technologies and parameters IQR results of storage systems

71




MATERIAL HANDLING SYSTEMS

DESIGN PARAMETERS PERFORMAMNCE PARAMETERS
System
Level of lifetime (life — s
- Battery Cycle Levelof Utilization Scalability -
Load 5 I t t s ] ti ts
CHpacly autonomy peed time |automation energy. C‘_’de' "'*‘“f““ rate [Flexibility) nvestment cos perating cos
consumption | life, service
life)
(0] izati L
ol 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1,00 025 025
resilience
Cognitive resilience 0,00 0.00 0,25 0,00 1,00 0,00 0,00 050 0,50 0,00 0,00
Psycological resilience: 0,00 0,00 1.00 0,50 0,25 0.00 0.25 1,00 1,00 0,00 0,00
Hperatarsalcn 0,00 0,00 0,00 0,00 0,25 0,00 0,25 0,00 1,00 1,00 1,00
strategies
Biclogical resilience 0.00 0,00 0,00 0,00 0,00 0,00 0,00 0,50 0.00 0,25 0,25
Hurnan—m@_hma 1.00 0,00 1.00 1,00 1,00 0.00 0.00 1,00 1,00 1,00 0.25
Stems resilience
Benewable sources 0,00 125 0,00 0,00 0,25 025 0,00 0,00 1,00 125 1,00
Physical resilience 0,00 0,00 1.00 0,00 0,00 0,00 0,00 1,00 1,00 1,00 025

Table 46: DMM between resilience approaches and parameters IQR results of material handling systems

MATERIAL HANDLING SYSTEMS
DESIGN PARAMETERS PERFORMANCE PARAMETERS
System
Level of i i
Load capacity Battcey Speed Ewle Lihonot :':rg:l mmlémegfi thelisson Semahty Investment costs Operating costs
Ehe autonomy time | automation ’ c?c .us_ rate {Flexibility) 2
consumption | life, service
life)
Big Data 1,00 0,25 1,00 1.00 1.00 1,00 1,00 0,50 0,25 1,00 125
Machine Learning 1,00 0,00 0,50 000 0,00 0,50 0,00 0,00 0,00 1,00 0,00
Artificial Intelligence 0,00 0,00 0,00 0,50 0,00 000 0,00 0,00 0,00 1,00 0,00
Imternet of Things {loT) 0,00 0,00 1,00 1.00 1.00 0,25 1,00 0,50 0,25 1,00 125
Cyber-physical systems 0,00 1,00 1,00 1,25 1.00 1,00 1,00 1,00 0,25 1,00 1,00
MNextG wireless
networks [NGWNs) 0,00 0,50 1,00 0,50 1,00 0,00 025 025 1.00 1,00 125
Cloud computing 0,80 0.00 1.00 025 1.00 0.00 0.25 1,00 1,60 1.25 1.50
Internet of Everythi
EBETS ;DEJE”‘“ e 0,00 0,00 0.00 1.00 1.00 1,00 0.00 0,00 0.50 0.50 0.75

Table 47: DMM between resilience technologies and parameters IQR results of material handling systems
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By looking at the tables on the target dimension of human-centricity, we can see

that, in the three intra-logistics systems, the relationships between the technologies

and the design and performance parameters receive less acceptance than the

relationships between the approaches and those same parameters (Table 48). The

lower consensus on the relationship between technologies and design and

performance parameters compared to approaches is due to the greater flexibility

and adaptability of the approaches, which are perceived as easier to integrate into

existing processes. Technologies, on the other hand, may present challenges related

to their implementation, resistance to change or lack of maturity just to name few,

that will result in reducing the overall consensus.

HUMAN CENTRICITY

Type of intra-logistics
system

Picking Systems

Approaches/Technologies

Human-robot co-working
Tracking-as-a-Service (NTaas)

Parameters for which no strong consensus

Investment costs
Investment costs

Approaches

Storage Systems

|Decentralized decision making

Level of automation

Material Handling Systems

Decentralized decision making

| Tracking-as-a-Senvice (NTaag)

Level of automation, Scalability
Cycle time

Picking Systems

Matural language processing for interacting with robots
Intelligent smart wearables (ISWs) and exoskeletons
Cobots

Human interaction and recognition technologies (HIRT)

Level of automation, Picking operation time, Investment costs
Picking operation time
Picking operation time
Picking operation time

Storage Systems

|Cobots
|Internet of Everything (loE}

System lifetime
Operating costs

Technologies

Matural language processing for interacting with robots | Cycle time

Intelligent smart wearables (1S\Ws) and exoskeletons | Cycle time, Level of energy consumption
. . Cobots Cycle time
MEles bending ol Natural userinterfaces (NUIs) Cycle time
Sensors Cycle time
_Internet of Things (loT) Cycle ime

Table 48: Relationship between human-centricity approaches/technologies and parameters that did not
receive strong acceptance in the three intralogistics systems

Regarding sustainability instead, the relationships between technologies and design

and performance parameters, are more strongly supported than those between

approaches and design and performance parameters (Table 49). This happens

because technologies provide concrete and measurable solutions to reduce the

environmental impacts, while approaches often remain conceptual and generic and

therefore, their effectiveness depends on organisational, regulatory and cultural

factors, that makes them less immediate and standardised.

Approaches

SUSTAINABILITY

Type of intra-logistics system

Picking Systems

|Renewable sources
|Remanufacturing

ApproachesiTechnologies

Parameters for which no strong consensus

Operating costs
Operating costs

Storage Systems

fCircuIarprocesses
Reduction of climate change
Renewable sources

| Predictive maintenance

Operating costs
Investment costs
Operating costs
Investment costs

Material Handling Systems

Remanufacturing

Investment costs

Technologies

Picking Systems

|Intelligent Energy Management Systems (IEMS)

Operating costs

Storage Systems

|Big Data
|Internet of Things (loT)

Scalability
Scalability

Material Handling Systems

Intelligent Energy Management Systems (IEMS)

Operating costs

Table 49: Relationship between sustainability approaches/technologies and parameters that did not
receive strong acceptance in the three intralogistics systems
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With regard to resilience, a different dynamic can be observed in relation to the

other pillars, as shown in the table (Table 50):

1. Picking systems: the number of reports that do not reach a strong
consensus is the same for both technologies and approaches. In fact, both
present an obstacle related to the evaluation of the cost-benefit ratio of
implementing and managing advanced adaptive systems.

2. Storage systems: all relationships between technologies and design and
performance parameters are strongly supported, unlike those related to
approaches. This is because technologies allow faster and more effective
responses to disturbances and variations in demand.

3. Material Handling systems: only one relationship between approaches did
not receive full consensus, while technologies were more criticised. This is
due to the ongoing operating costs associated with digital infrastructure,
maintenance and data management. In contrast, renewable resources require
a higher initial investment, but offer more stable and predictable operating

costs over time.

RESILIENCE

Type of intra-logistics system Approaches/Technologies Parameters for which no strong consensus
Picking Systems ' Organizational resilience Operating costs
|Cognitive resilience Scalability
Approaches Storage Systems |Human-machine systems resilience Investment costs
|Renewable sources Investment costs, Operating costs
Material Handling Systems Renewable sources Investment costs
Picking Systems Cloud computing Operating costs
Storage Systems - -
- 'Big Data Operating costs
Trsmgod s y : Internet of Things (1aT’ Operating costs
Material Handiing Systems MextG wirelessgnetwo Eks (MGWHNs) OEerating costs
(Cloud computing Investment costs, Operating costs

Table 50: Relationship between resilience approaches/technologies and parameters that did not receive
strong acceptance in the three intralogistics systems

In general, the three tables above (from Table 48 to Table 50) show that most of the
moderate consensus or lack of consensus concerns investment and operating costs.
This is particularly evident for storage and material handling systems, which
require more complex and expensive technological infrastructures. Instead, for
order picking systems, lack of full consensus results is spread across a wider range
of parameters, suggesting that critical issues are not related only on costs, but also

on other aspects of the technology implementation and integration.
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3.6.2 Median results

We can make a more detailed analysis by considering the results of the second

round, as shown in the tables (from Table 51 to Table 68).

From the defined format (Table 29), we can identify, for each dimension of
Industry 5.0, the main design and performance parameters whose value has
improved in picking, material handling and storage systems. We have summarised
these parameters in the table (Table 69), a more detailed analysis regarding each

storage system can be found in Appendices 3A, 3B and 3C.
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PICKING SYSTEMS

DESIGN PARAMETERS l PERFORMANCE PARAMETERS
Picking RrE T
Pick Piek | t t
Level of automation productivity (N. “:_ mg- - T Operating costs
s operation time accuracy costs
picking lines/h)

- Decentralized decision making 2 3 4 2 3 3
=
? Human-robot co-werking 4 4 2 4 4 3
3
5 Tracking-as-a-Semnvice (NTaaS) 4 4 3 4 3.5 3

Table 51: DMM between human-centricity approaches and parameters median results of picking systems

B PICKING SYSTEMS
DESIGN PARAMETERS PERFORMANCE PARAMETERS
Picking e e
Level of automation productivity (N. Plc_l(mg_ Picking Inveshnent Operating costs
A operation time accuracy costs
picking lines/h)
Artificial Intelligence (Al) 4 4 2 4 3 2
Matural language processing for

interacting with robots 4 2 3 4 3.5 3

Intelligent smart wearables (I5Ws)
and exoskeletons 4 4 25 4 4 35
Cobots 4 4 4 4 4 3
= Matural userinterfaces (NUls) 4 4 2 4 4 3

% Human interaction and recognition
2 technologies (HIRT) 4 4 3 4 4 3
E Gesture-tracking devices 4 4 2 4 3.5 3
= Augmented Reality (AR) A 4 5 A A a
Sensors 4 4 25 4 4 3
Internet of Everything (I0E) 4 3 3 4 4 3

Clothing industrialsmart

wearables 3 3 3 4 4 3
Internet of Things (loT) 4 4 3 4 3.5 3
Edge computing 4 3 3 3 4 3

Table 52: DMM between human-centricity technologies and parameters median results of picking systems
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STORAGE SYSTEMS
DESIGN PARAMETERS PERFORMANCE PARAMETERS
. Selectivity - .
Si depth {t lifeti Lif
Lomene _ept Lsing e_, . Storage {direct Storage Level of Productivity (N. Scalability Bystem life |me_l 3 Utilisation | Investement | Operating
double, triple, or multi-| Storage height Speed = = & ¥ T cycle, useful life,
density accessto capacity automation orderlines/ h} (Flexibility) e rate costs costs
deepsystems) i service life}
items)
.PE} Decentralized decision making 3 a3 3 a3 a 2| a 2| a3 2 2 25 3
a - e
s Human-robot co-working 3 3 3 a 3 3 4 A 4 4 4 4 35
E: Tracking-as-a-Service (NTaaS) i a 4 5 3 a 95 4 2 a 4 a5 a
Table 53: DMM between human-centricity approaches and parameters median results of storage systems
STORAGE SYSTEMS
DESIGN PARAMETERS PERFORMANCE PARAMETERS
. Selectivity S
Stonre d,er [smg[ej ~ Storage {direct Storage Level of Productivity (N. Scalability Systemirletumertirfe Utilisation | Investement | Operating
double, triple, or multi-| Storage height Speed ; = # i i cycle, useful life,
density accessto capacity automation orderlines/ h} (Flexibility) Rl rate costs costs
deep systems) & service life)
items)
Artificial Intelligence (Al)
4 3 4 4 4 4 4 4 4 4 4 4 3
Naturallanguage processing for
interacting with robots 3 3 3 3| 3 3 4 4 4 3| 4 4 3
Intelligent smart wearables {IS5Ws)
and exoskeletons 3 3 3 3 3 3 35 4 4 3 3 4 4
" Cobots 3 3 3.5 3 3 3 4 4 4 3 4 4 3
5: Matural userinterfaces (NUls) 3 3 3.5 3| 3 3 4 4 4 3 4 4 3
'E Human interaction and
-E recognition technologies (HIRT) 3 3 3 3 3 3 4 4 4 3 3 4 4
i Gesture-tracking devices 3 2 3 3 3 3 4 4 4 3 3 4 &
Augmented Reality (AR) 3.5 3 3.5 3 3 3 4 4 4 3 4 4 3
Sensors 3 3 4 4 3 3 4 4 4 3 4 4 3
Internet of Everything (loE) 3 3 3 3 3 3 4 4 4 3,5 4 4 3
Clothing industrial smart
wearables 3 3 3 3 3 3 35 3 4 3 3 4 3
Internet of Things (1oT) 3 3 3 3 3 a 4 4 4 3 4 4 30
Edge computing 3 3 3 2 3 3 3.5 3 3 3 3 4
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MATERIAL HANDLING SYSTEMS

DESIGN PARAMETERS

PERFORMANCE PARAMETERS

stem lifetime __ 2
Load capacity Eieny Speed Cycle time ke ek ‘ff kevetate n?rgy {?:g cycle, useful Utilization rate Sﬁi?h_li_“ Investment costs S viting
autonomy automation | consumption i e {Flexibility) costs
life, service life}
%’- Decentralized decision making 3 a oz 25 a a g 4 35 a 7
% Human-robot co-warking a 3 4 a 4 35 ) 4 4 4 3
< Tracking-as-a-Semnice (NTaaS) 3 3 3 a a5 a 5 4 4 4 3
Table 55: DMM between human-centricity approaches and parameters median results of material handling systems
MATERIAL HANDLING SYSTEMS
DESIGN PARAMETERS PERFORMANCE PARAMETERS
stem lifetime - 5
Load capacity Bathety Speed Cycle time bebet ‘?f kevekate m_argy [:lfvg cycle, useful Utilization rate Smhlm’ Investment costs Qpeiatng
autonomy automation | consumption : i {Flexibility} costs
life, service life}
Artificial Intelligence (Al)
3 4 4 3 3.5 3 4 4 4 4 2
MNatural language processing for
interacting with robots 3 3 35 3 3 3 3 4 4 3 3
Intelligent smart wearables (15Ws)
and exoskeletons 3.5 3 3 3 4 3 3 3 3,9 4 3
n Cobots 4 3 4 3 4 3 3 4 4 4 3
‘gn Matural userinterfaces (NUls) 3 3 4 25 3 3 3 4 4 a 3
'E Human interaction and
-5 recognition technologies (HIRT) &0 4 4 2 4 2 3 4 4 4 3
= Gesture-tracking devices 3 3 3 3 3 3 3 3.9 3 4 3
Augmented Reality (AR) 3 3 3 3 3 3 3 3.5 4 L 3
Sensors 3 4 3 3 35 3 3.5 3 35 3 3
Internet of Everything (loE) 3 3 3 1 3 3 3 4 3 4 25
Clothing industrial smart

wearables 3 3 3 3 3 3 3 3 3 4 3
Internet of Things {loT) 3 3 3 3 4 3 3 4 3 3.5 3
Edge computing 3 3 3 3 3.5 3 3 3 3 a5 3

Table 56: DMM between human-centricity technologies and parameters median results of material handling systems
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PICKING SYSTEMS

DESIGN PARAMETERS PERFORMANCE PARAMETERS
Picking
Level of aulomation produ.cti':rity Pil:-king- Picking | Investment | Operating
(N. picking |operation time|accuracy costs costs
lines/h)
Circular processes
3 3 3 3 3 3
ﬁ Reduction of climate
change 3 3 3 3 3 3
5 Renewable sources 3 3 3 3 3 3
= Remanufacturing 3 2 3 3 a3 2,5
e B6Rs policy 3 3 3 3 3 2,5
Predictive maintenance 3 3 3 3 3 2
Bioeconomy 3 3 3 3 3 3

Table 57: DMM between sustainability approaches and parameters median results of picking systems

PICKING SYSTEMS
DESIGMN PARAMETERS PERFORMANCE PARAMETERS
Picking
SEveti ntas R pmdlfdiv.mily Pi:‘kirrg: Picking |Investment | Operating
(N. picking |operation time|accuracy costs costs
lines/h)
Machine Learning 4 4 i 4 4 3
Intelligent Energy
Management Systems
g [IEMS) 4 3 3 3 4 28
E Big Data 4 3 3 4 3 3
2 Artificial Intelligence (Al) 4 4 2 3 = 3
'E Computational
= Intelligence (Cl) 4 4 2 3 4 3
Internet of Things (loT) 4 3 3 4 3,9 3
Internet of Personalized
Products (loP*2} 4 4 2,5 3 4 3

Table 58: DMM between sustainability technologies and parameters median results of picking systems
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STORAGE SYSTEMS

DESIGN PARAMETERS

PERFORMANCE PARAMETERS

= Selectivity s i 7
S dept_l‘l (single, Storage Storage (direct Storage Level of Salal Scalability S met.l S {m? Utilisation | Investment | Operating
CELL R LA height SEEse density | accessto capacity |automation LS (Flexibility) =l Al e Tty rate costs costs
multi-deep systems) 2 lines/ h) life)
items
Circular processes 3 3 3 3 3 5 3 3 3 3 3 3 3
" Reduction of climate
-E change 3 3 3 3 3 3 3 3 3 3 3 3 3
E Renewable sources 3 3 3 3 3 3 3 3 3 3 3 3 3
2 Remanufacturing 3 3 3 3 3 3 3 3 3 3 3 3 3
= BRs policy 3 3 3 3 3 3 3 3 3 3 3 3 3
Predictive maintenance 3 3 3 3 3 3 3 3 3 3 3.9 2.5 2
Bioeconomy 3 3 3 3 3 3 3 3 3 3 3 3 3
Table 59: DMM between sustainability approaches and parameters median results of storage systems
STORAGE SYSTEMS
DESIGN PARAMETERS PERFORMANCE PARAMETERS
T Selectivity ol e 3
Storage r.lept‘h [single, Storage Storage (direct Storage Level of Ahmt Scalability System llfethlme um? Utilisation | Investment | Operating
dot! bie, tiple, oy height SHESS density | accessto capacity | automation "j" ordes (Flexibility) cycle, I.ISETI.!I ife, service rate costs costs
multi-deep systems) 3 lines/ h) life)
items
Machine Learning 4 3 4 4 3 4 4 4 4 4 4 4 2
Intelligent Energy
Management Systems
- [IEMS) 3 3 3.5 3 3 3 4 3 3 4 4 3.5 2
o Big Data 3 3 3 3.5 3 3 4 35 4 3 4 3 3
? Artificial Intelligence {Al} 4 3 4 4 3.5 4 4 4 4 4 4 4 2
E Computational
E Intelligence (Cl) 3 3 3 3 3 3 4 3 3 3 4 4 3
Internet of Things (loT) 3 3 3 3 3 3 4 4 4 3 3 3.5 3
Internet of Personalized
Products {loP*2)
4 3 4 3 3 3 4 3 4 3 3 3 2.5

Table 60: DMM between sustainability technologies and parameters median results of storage systems
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MATERIAL HANDLING SYSTEMS

DESIGN PARAMETERS PERFORMANCE PARAMETERS
System
Level of lifetime — e .
Load capacity Saters Speed C?CIE Lowal rflf energy [life cycle, isters e smi‘h.li.ny Investment costs Opeiime
autonomy time |automation . _ rate {Flexibility) costs
consumption | useful life,
service life)
Circular processes 3 5 a 3 g q a a g 3 a
n Reduction of climate
+ change 3 3 3 3 3 2.8 4 3 3 3 3
E Renewable sources 3 3 3 3 3 3 3 3 3 3 3
3 Remanufacturing 3 3 3 3 3 3 4 3 3 3 3
GRs policy 3 3 3 3 3 25 4 3 3 3 3
Predictive maintenance 3 3.3 3 3 3 3 4 4 3 3 3
Bioeconomy 3 3 3 2 3 2 23 3 3 3 23
Table 61: DMM between sustainability approaches and parameters median results of material handling systems
MATERIAL HANDLING SYSTEMS
DESIGN PARAMETERS PERFORMANCE PARAMETERS
System
Battery Cycle Level of S ot dhing Utitization | Scalabitity Operating
Load capacity Speed : i ENergy (life cycle, Bt Investment costs
autonomy time |automation : i rate {Flexibility) costs
consumption | useful life,
service life)
Machine Learning 3 4 4 3 4 25 4 4 4 3 2
Intelligent Energy
Management Systems
i (IEMS) 3 4 4 3 4 2 4 = 4 3 2
&u Big Data 3 3 4 3 3.5 3 3 3.5 4 3 3
.g Artificial Intelligence [Al) 3 4 4 3 4 2 4 4 4 4 2
£ Computational
-,ﬁ, Intelligence (Cl} 3 3 4 3 4 3 3 3 3 3 3
= Internet of Things (loT) 3 3 4 3 3 3 3 3 4 3.9 3
Internet of Personalized
Products (loP*2)
3 4 3 3 4 3 3 3 3.5 4 3

Table 62: DMM between sustainability technologies and parameters median results of material handling systems
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PICKING SYSTEMS

DESIGN PARAMETERS PERFORMANCE PARAMETERS
fickme Picking o )
Ceval of sirtoriston pmdu_mr-\my i Picking |Investment| Operating
(N. picking T accuracy costs costs
lines/h)
Organizational
resilience 4 4 3 3 = 3
Cognitive resilience 2.5 4 2 4 4 3
Psycological resilience 3 4 3 4 3.5 3
Operator safety
strategies 4 4 3 4 3.8 3
Biological resilience 3 4 3 3 3 3
Human-machine
systems resilience 4 4 <] 4 3.5 3
Renewable sources 3 3 3 3 3 3
Physical resilience 3 4 2 3 3 3

Table 63: DMM between resilience approaches and parameters median results of picking systems

PICKING SYSTEMS
DESIGN PARAMETERS PERFORMANCE PARAMETERS
Picking o
y productivity Plchlfg Picking |Investment| Operating
Level of automation L operation
(N. picking 2 accuracy costs costs
lines/h) i
Big Data
4 4 3 ] 3 3
Machine Learning 4 4 2 4 3 2
Artificial Intelligence 4 4 2 4 3 2
Internet of Things (loT) 4 3 3 4 3 3
Cyber-physical systems 4 4 3 4 3,5 3
NextGwireless
netwaorks (NGWNs) 4 4 3 3 3 3
Cloud computing 4 3 3 4 3 2
Internet of Everything
{IoE} 4 4 2 39 3 3

Table 64: DMM between resilience technologies and parameters median results of picking systems
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STORAGE SYSTEMS
DESIGN PARAMETERS PERFORMAMNCE PARAMETERS
. Selectivity - I .
Storaged?pth Ismgte,_ Storage Storage [direct Storage Level of FomaRiE o Scalabitity SyEem hletlmeltl.rle G e Investemen | Operating
double, triple, or multi 5 Speed : 3 = y{N. order S cycle, useful life, Utilisation rate
dien satems) height density at_:ce ssto capacity automation lines/ h) [Flexibility) Senacs Hig) tcosts costs
items)
Organizational
resilience 3 3 3 3 3 3 3 3 4 3 3 3 3
Cognitive resilience 3 3 3 3 3 3 3 3 4 3 4 3 3
Psycological resilisnce a g a a a a 3 5 a5 9 a q 9
Operator safety
strategies 3 3 3 3 3 3 3 3 3 3 3 3 3
Biological resilience 3 3 3 3 3 ) 3 3 3 3 3 3 3
Human-machine
systems resilience 3 3 3 3 3 3 3.9 4 3 3 3 3
Renewable sources 3 3 3 3 3 3 3 3 3 3 3 3 3
Physical resilience 3 3 3 3 3 3 3 3 3 3 ) 3 3
Table 65: DMM between resilience approaches and parameters median results of storage systems
STORAGE SYSTEMS
DESIGN PARAMETERS PERFORMAMNCE PARAMETERS
y Selectivity i g :
Storsge d?pth [smgie,_ Storage Storage {direct Storage Level of Lot Scalability Syem illetlme_[l'.ﬂe b Investemen | Operating
double, triple, or multiq i Speed T 5 : y(N. order T cycle, useful life, Utilisation rate
height density | accessto capacity automation : [Flexibility) CASE tcosts costs
deep systems) iems) lines/ h) semvice life)
Big Data 3 3 3,5 2 3 3 4 3.5 4 3 4 3 25
Machine Learning 4 3 4 4 4 4 4 4 4 4 4 3 2
Artificial Intelligence 4 3 4 4 4 3 4 4 4 4 4 3 2
Internet of Things (laT) 3 3 3 3 3 3 4 3 4 3 4 3.5 25
Cyber-physical 3 3 3 3 4 3 4 4 4 3 4 3. 3
MNextG wireless
pEnvaTks NG 3 3 4 3 3 3 4 4 4 3 4 35 25
Cloud computing 3 3 3 3 3 3 4 3 4 3 3 3 2
Internet of Everything
(laE) 3 3 3 3 3 3 4 a 4 3 3 4 25

Table 66: DMM between resilience technologies and parameters median results of storage systems
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MATERIAL HANDLING SYSTEMS

DESIGN PARAMETERS PERFORMANCE PARAMETERS
System
Level of lifetime (life I e
Load capacity Rastery Speed C.\_‘rc-le s Eflf Energy cycle, useful Ufleatinn Scai.:sh_li_ny Investment costs Operating costs
autonomy time |automation " 2 = rate [Flexibility)
consumption | life, service
life)
Organizational
resilience 3 3 2 3 3 3 3 3 4 4 3
Cognitive resilience 3 2 2 3 3 3 3 4 3 3 3
Pzycological resilience 3 3 a 3 3 a 3 5 3 3 3
Operator safety
strategies 3 3 3 3 3 3 3 3 3 3 3
Biological resilience 3 3 2 3 3 3 3 3 3 2 3
Human-machine
systems resilience 3 3 4 3 3.5 3 3 4 3 3 3
Renewable sources 3 3 3 3 3 3 3 3 3 3.4 3
Physical resilience 3 2 2 3 3 2 3 4 3.0 3 3
Table 67: DMM between resilience approaches and parameters median results of material handling systems
MATERIAL HANDLING SYSTEMS
DESIGN PARAMETERS PERFORMAMNCE PARAMETERS
System
! Battery Oile | Levetaf | orEich | Mietmellfle |y o | Scalubding ;
Load capacity Speed 2 : energy cycle, useful L Investment costs Operating costs
autonomy time |automation d 2 - rate (Flexibility)
consumption | life, service
life)
Big Data 3 3 3 2 4 2 3.5 4 4 3 2
Machine Learning 4 4 4 2 4 2 4 4 4 3 2
Artificial Intelligence 3 4 4 2 4 2 4 4 4 3 2
Internet of Things (loT) 3 <] 3.0 3 3 3 <] 4 4 3 25
Cyber-physical 2 3 2 3 4 3 2 4 4 3 2
MNextG wireless
netwarks (NGWHs) 3 3 4 3 4 3 3 4 4 3 3
Cloud computing 3 3 3.5 3 3,5 3 3 4 4 3 2
Internet of Everything
{loE) 3 3 3 2 3 2 3 3 4 4 2

Table 68: DMM between resilience technologies and parameters median results of material handling systems
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Target dimension

Type of intra-logistics system

Parameters improved by both
approaches and technologies

Human centricity

Picking Systems

- Picking productivity

- Picking accuracy

- Level of automation

- Picking operation time

Storage Systems

- Utilisation rate

- Level of automation
- Productivity

- Scalability

- Speed

Material Handling Systems

- Scalability

- Speed

- Cycle time

- Level of automation

- Level of energy consumption
- Operating costs

- Utilisation rate

Sustainability

Picking Systems

- Level of automation

- Picking productivity

- Picking operation time
- Picking accuracy

- Operating costs

Storage Systems

- Utilisation rate

- Operating costs

- Speed

- Storage depth

- Scalability

- Level of automation

Material Handling Systems

- Battery life

- System lifetime

- Utilisation rate

- Level of energy consumption
- Level of automation

- Scalability

- Speed

- Operating costs

Resilience

Picking Systems

- Picking productivity

- Picking accuracy

- Level of automation

- Picking operation time
- Operating costs

Storage Systems

- Scalability

- Level of automation
- Productivity

- Utilisation rate

- Operating costs

Material Handling Systems

- Level of automation
- Speed

- Utilisation rate

- Scalability

- Operating costs

Table 69: Improved parameters of both approaches and technologies for each storage system
considering all pillars of Industry 5.0
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3.7 PRATICAL SUGGESTIONS FOR DEVELOPERS AND
USERS

Some practical suggestions for storage system developers, based on the analysis,
could relate to human-centric technologies. In particular, it is recommended to
focus on Artificial Intelligence (AI), which not only enables the development of
more sophisticated warehouse systems, but also improves fundamental parameters
such as the level of automation and speed. Indeed, Al makes it possible to automate
complex decisions such as resource allocation and material flow management,
reducing human intervention and speeding up the entire process.

Next, the most relevant technologies for warehouse systems that emerged from the
study are augmented reality (AR) and sensors. AR can provide operators with real-
time information about warehouse operations, improving efficiency and reducing
errors. Sensors, on the other hand, allow continuous monitoring of conditions and
movements within the warehouse, gathering critical data to optimise space
management and material flow.

A suggestion for users the human-centric approach to adopt picking systems is
essential to ensure a more efficient and intuitive user experience. By integrating
collaborative robots with human operators, operations can be streamlined by
increasing accuracy and decrease operation time. Cobots assist operators with the
most tiring and repetitive tasks, allowing them to focus on more complex and value-
added tasks. This will not only increase efficiency, but also reduces the margin for
errors and improves the overall working conditions. Another important aspect for
the users, is the traceability of products during picking. Real-time tracking of
picked items ensures more accurate inventory management, minimises errors and
provides a clear and transparent view of the workflow. Thanks to these innovations,
users can work in a more organised, safe and efficient environment, with greater

control over operations.

A proposal for the developers, concerning sustainable technologies, could be the
use of the Internet of Personalized Products (IoP”2), which is based on the
exchange of information via the Internet and connected systems, and that can bring

numerous benefits. By linking the three intra-logistics systems, design and
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performance parameters are optimised, and therefore improving the overall
efficiency of the system.

A proposal for users of intra-logistic systems concerning sustainability, is the use
of predictive maintenance and the 6R policy since they directly contribute to
operational efficiency by reducing wastes, consumptions and mitigate the impact

on the environment of the three intra-logistic system.

It is critical for storage system designers to invest in technologies based on Machine
Learning and Artificial Intelligence, the pillars of resilience. These solutions
improve operational efficiency, increase accuracy and enhance process automation,
making storage systems more adaptable and efficient.

Finally, a resilience-related suggestion for users is the adoption of the human-
machine systems resilience approach. This approach aims to develop a production
system that can quickly react to failures, variations and unforeseen events, resulting
in reducing downtime and optimising the use of resources. By implementing this
model, developers could create more robust and responsive internal intralogistics

systems.
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4 CONCLUSIONS

This final chapter illustrates the innovative contribution and limitations of this

work, and it also outlines future research developments.

4.1 INNOVATIVE CONTRIBUTION

The innovative contribution of this work lies in the fact that, in the current literature
can be found researches mainly focused on a single (Yu and Sun, 2024) or multiple
(Passalacqua et al., 2024) target dimension of Industry 5.0 without including intra-
logistics systems. Some research associates one, or at most two, target dimensions
with one (Chivild and Meneghetti, 2023) or two intra-logistics systems (Ashta et
al, 2023 a) but there are no articles in literature that simultaneously address all
Industry 5.0 target dimensions and the three considered intra-logistics systems.
Therefore, the integration of these elements in this paper represents a significant

contribution to the current state of the art.

In addition to that, it provides insights of what characteristics internal logistics
systems should have in order to effectively implement the target dimensions of
Industry 5.0. It can also help to define guidelines for the implementation of
approaches and technologies in the design and implementation of future internal
logistics systems, by integrating features in line with the target dimensions and key

concepts of this industrial evolution.

4.2 LIMITS

This thesis has some limitations that it is important to highlight.

The first limitation concerns the number of intra-logistics systems that were
analysed. We only considered automated systems, excluding manual systems,
which are still widely used in several sectors. This limitation makes it difficult to
apply the results to all manufacturing companies, as many still rely on manual

solutions.
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Another limitation is related to the Delphi method that was used to conduct the
questionnaire. The sample consisted of only eight participants (Kumar and
Anbanandam, 2019), which is a small number. The small number of participants
increased the risk that the opinions of a few individuals would significantly
influence the results. If the sample had been larger and included more users and
producers of intra-logistics systems, the results would have been more balanced. In
addition, the variety of roles played by the participants could have contributed to a
more comprehensive view, as each role may bring a different perspective to the
topic.

Another critical aspect is the composition of the sample. Although the participants
belonged to different categories, there was a numerical imbalance between them.
This imbalance could have influenced the final consensus and reduced impartiality
and fairness in the processing of the results. A more balanced representation of the
different categories would have ensured greater fairness in the processing of

opinions.

The results of the two rounds of the Delphi study confirm what emerged from the
literature review at the beginning of the thesis. The three target dimensions are
indeed understood differently. Human-centricity, being a more tangible concept, is
easier to apply to order picking processes rather than material handling and storage

Processes.

The last limitation concerns the information available at the time of writing this
thesis. This work focuses exclusively on the current knowledge related to Industry
5.0 and internal intra-logistics systems. However, Industry 5.0 is still developing
and evolving, and as technologies and practices advance, new information that has
not been considered in this research, might emerge. Therefore, as the understanding
of the topic and future developments increase, the results of this thesis may be
incomplete or partial in the short term, as the evolution of the industry may lead to

significant changes in the models and practices analysed.
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4.3 NEXT STEPS

The next steps should focus on the fourth and final stage of the DRM: the evaluation
of the usability, applicability and effectiveness of the developed framework. This

evaluation will be based on the results obtained in this thesis.

The most efficient way to evaluate the impact of the developed framework is its
implementation in reality. This means that it needs to test the framework on an
appropriate number of developers and users companies. In particular, the
developers of intra-logistics system should apply the developed framework to
identify, evaluate and adopt the technologies that may make their systems more
consistent with Industry 5.0 principles. In addition, by applying the proposed
framework, they could and should understand which design and performance
parameters will benefit the most from the implementation of those technologies.
On the side, the company-users of the intra-logistics system should apply the
framework to understand which managerial approaches could complement their
picking, storage, or material handling systems in order to be coherent with Industry
5.0 target dimensions and principles. Plus, the application of the framework might
suggest them what technologies they should invest in and integrate in their intra-
logistics systems. The guide-line will drive both developers and users in the
accomplishment of these tasks. The outcome of the test campaign so performed,
will help evaluate the usability and the effectiveness of the proposed framework as

well as its capability to be adapted to different business environments

Finally, although Industry 5.0 is still an evolving field and future research could
explore aspects that are not yet fully understood or addressed, this work represents

anyway a comprehensive and useful base when applied to real-world contexts.

90



REFERENCES

Abdullah, M., & Rahman, M. (2024). Human Factors Issues in Augmented Reality-
Assisted Manual Order Picking: A Systematic Literature Review. In IISE Annual

Conference. Proceedings (pp. 1-6). Institute of Industrial and Systems Engineers
(TIISE).

Ashta, G., Finco, S., Battini, D., & Persona, A. (2023 a). Investigating the efficiency
of a passive back-support exoskeleton in manual picking tasks. In Proocedings

Summer School Francesco Turco.

Ashta, G., Finco, S., Battini, D., & Persona, A. (2023 b). Passive exoskeletons to
enhance workforce sustainability: Literature review and future research

agenda. Sustainability, 15(9), 7339.

Blessing, L. T. & Chakrabarti, A. (2009). DRM: A design reseach
methodology (pp. 13-42). Springer London.

Bottazzi, R. (2024). Impact of Industry 5.0 target dimensions on the performance
of intra-logistic systems: A proposed assessment framework (Master’s thesis).
Master program in Management Engineering, Politecnico di Torino. Retrieved

from https://webthesis.biblio.polito.it/32825/1/tesi.pdf

Calderon M.L. (2010). The Design Research Methodology as a framework for the
development of a tool for engineering design education”, DS 62: Proceedings of E
and PDE 2010, the 12th International Conference on Engineering and Product
Design Education - When Design Education and Design Research
Meet, Trondheim, Norway, 02.-03.09. 2010.

Chen, Y., & Li, Y. (2024). Storage Location Assignment for Improving Human—
Robot Collaborative Order-Picking Efficiency in Robotic Mobile Fulfillment
Systems. Sustainability, 16(5), 1742.

Cheng, D., Hu, B., Feng, Y., Song, X., Zhang, Z., Song, J., ... & Tan, J. (2024).
Industrial exoskeletons for secure human-robot interaction: a review. International

Journal of Intelligent Robotics and Applications, 1-28.

91



Chivilo, M., & Meneghetti, A. (2023). An industry 5.0 perspective on feeding
production lines. Sustainability, 15(22), 16088.

Dacre, N., Yan, J., Frei, R., Al-Mhdawi, M. K. S., & Dong, H. (2024). Advancing
sustainable manufacturing: a systematic exploration of industry 5.0 supply chains for

sustainability, human-centricity, and resilience. Production Planning & Control, 1-30.

Danilovic, M., & Browning, T. R. (2007). Managing complex product development
projects with design structure matrices and domain mapping matrices. International

Jjournal of project management, 25(3), 300-314.

De Lombaert, T., Braekers, K., De Koster, R., & Ramackers, K. (2023). In pursuit of
humanised order picking planning: methodological review, literature classification
and input from practice. International Journal of Production Research, 61(10), 3300-

3330.

Diamond, I. R., Grant, R. C., Feldman, B. M., Pencharz, P. B., Ling, S. C., Moore, A.
M., & Wales, P. W. (2014). Defining consensus: a systematic review recommends

methodologic criteria for reporting of Delphi studies. Journal of clinical

epidemiology, 67(4), 401-409.

Diefenbach, H., Grosse, E. H., & Glock, C. H. (2024). Human-and-cost-centric
storage assignment optimization in picker-to-parts warehouses. European Journal of

Operational Research, 315(3), 1049-1068.

Dillinger, F., Bernhard, O., Kagerer, M., & Reinhart, G. (2022). Industry 4.0
implementation sequence for manufacturing companies. Production

Engineering, 16(5), 705-718.

Doyle-Kent, M., & Kopacek, P. (2022). Collaborative robotics making a difference
in the global pandemic. In Digitizing Production Systems: Selected Papers from
ISPR2021, October 07-09, 2021 Online, Turkey (pp. 161-169). Springer

International Publishing.

Flores-Garcia, E., Hoon Kwak, D., Jeong, Y., & Wiktorsson, M. (2025). Machine
learning in smart production logistics: a review of technological

capabilities. International Journal of Production Research, 63(5), 1898-1932.

92



Fiichtenhans, M., Grosse, E. H., & Glock, C. H. (2021). Smart lighting systems:
state-of-the-art ~and  potential  applications in  warehouse  order

picking. International Journal of Production Research, 59(12), 3817-3839.

Gob, R., McCollin, C., & Ramalhoto, M. F. (2007). Ordinal methodology in the
analysis of Likert scales. Quality & Quantity, 41, 601-626.

Grime, M. M., & Wright, G. (2016). Delphi Method. Wiley StatsRef: Statistics
Reference Online,© 2014-2016.

Grosse, E. H. (2024). Application of supportive and substitutive technologies in
manual warehouse order picking: a content analysis. International Journal of

Production Research, 62(3), 685-704.

Haidar, A., Guimon, J., & Alon, 1. (2024). Can graphene fuel a transformative
change in energy storage technologies? A scenario analysis for the next two

decades. Technological Forecasting and Social Change, 202, 123278.

Keeney, S., McKenna, H. A., & Hasson, F. (2011). The Delphi technique in nursing
and health research. John Wiley & Sons.

Koreis, J. (2025). Human—robot vs. human—manual teams: Understanding the
dynamics of experience and performance variability in picker-to-parts order

picking. Computers & Industrial Engineering, 200, 110750.

Kucera, T., & Suk, A. (2019). The application of ABC analysis in the logistic

warehousing processes.

Kumar, S., & Anbanandam, R. (2019). An integrated Delphi—fuzzy logic approach
for measuring supply chain resilience: an illustrative case from manufacturing

industry. Measuring Business Excellence, 23(3), 350-375.

Kusmaryono, 1., Wijayanti, D., & Maharani, H. R. (2022). Number of Response
Options, Reliability, Validity, and Potential Bias in the Use of the Likert Scale
Education and Social Science Research: A Literature Review. International

Journal of Educational Methodology, 8(4), 625-637.

Jaghbeer, Y., Hanson, R., & Johansson, M. L. (2020). Automated order picking
systems and the links between design and performance: a systematic literature

review. International Journal of Production Research, 58(15), 4489-4505.

93



Jefroy, N., Azarian, M., & Yu, H. (2022). Moving from Industry 4.0 to Industry 5.0:

what are the implications for smart logistics?. Logistics, 6(2), 26.

Li, K. W., Khaday, S., & Peng, L. (2023). Assessments of Order-Picking Tasks
Using a Paper List and Augmented Reality Glasses with Different Order
Information Displays. Applied Sciences, 13(22), 12222.

Loftler, M., Boysen, N., & Schneider, M. (2022). Picker routing in AGV-assisted
order picking systems. INFORMS Journal on Computing, 34(1), 440-462.

Loske, D. (2022). Empirical evidence on human learning and work characteristics
in the transition to automated order picking. Journal of Business Logistics, 43(3),

302-342.

Loske, D., Grosse, E. H., Glock, C. H., & Klumpp, M. (2024). Towards human-
centric warehousing: the impact of rack configuration and cognitive demands on

order picking performance. International Journal of Production Research, 1-17.

Nair, S., Viri, R., Mikinen, J., P6lldnen, M., Liimatainen, H., & O’Hern, S. (2024).
Effect of Policies to Accelerate the Adoption of Battery Electric Vehicles in
Finland—A Delphi Study. Future Transportation, 4(1), 67-91.

O'Neill, T. A. (2017). An overview of interrater agreement on Likert scales for

researchers and practitioners. Frontiers in psychology, 8, 777.

Passalacqua, M., Pellerin, R., Magnani, F., Doyon-Poulin, P., Del-Aguila, L.,
Boasen, J., & Léger, P. M. (2024). Human-centred Al in industry 5.0: a systematic

review. International Journal of Production Research, 1-32.

Pereira, A. C., Alves, A. C., & Arezes, P. (2023). Augmented reality in a lean
workplace at smart factories: a case study. Applied sciences, 13(16), 9120.

Pinto, A. R. F., Nagano, M. S., & Boz, E. (2023). A classification approach to order
picking systems and policies: Integrating automation and optimization for future

research. Results in Control and Optimization, 12, 100281.

Sedrakyan, A., Marinac-Dabic, D., Campbell, B., Aryal, S., Baird, C. E., Goodney,
P, ... & Pappas, G. (2022). Advancing the real-world evidence for medical devices

through coordinated registry networks. BMJ surgery, interventions, & health
technologies, 4(Suppl 1), €000123.

94



Setayesh, A., Grosse, E. H., Glock, C. H., & Neumann, W. P. (2022). Determining
the source of human-system errors in manual order picking with respect to human

factors. International journal of production research, 60(20), 6350-6372.

Silva, A., Coelho, L. C., Darvish, M., & Renaud, J. (2024). Manual and robotic
storage and picking systems: a literature review. INFOR: Information Systems and

Operational Research, 62(3), 313-343.

Trstenjak, M., Mustapi¢, M., Greguri¢, P., & Opetuk, T. (2023). Use of green
industry 5.0 technologies in logistics activities. Tehnicki glasnik, 17(3), 471-477.

van de Wijdeven, B., Visser, B., & Kuijer, P. P. F. (2024). Evaluating the
categorisation of interventions in individual working practice aimed at preventing
work-related  musculoskeletal  disorders: An  international  experts

consultation. Applied Ergonomics, 120, 104338.

Vijayakumar, V., & Sobhani, A. (2023). Performance optimisation of pick and
transport robot in a picker to parts order picking system: a human-centric

approach. International Journal of Production Research, 61(22), 7791-7808.

Von Der Gracht, H. A. (2012). Consensus measurement in Delphi studies: review
and implications for future quality assurance. Technological forecasting and social

change, 79(8), 1525-1536.

Wan, X., Wang, W., Liu, J., & Tong, T. (2014). Estimating the sample mean and
standard deviation from the sample size, median, range and/or interquartile

range. BMC medical research methodology, 14, 1-13.

Winkelhaus, S., Zhang, M., Grosse, E. H., & Glock, C. H. (2022). Hybrid order
picking: A simulation model of a joint manual and autonomous order picking

system. Computers & Industrial Engineering, 167, 107981.

Wohlin, C. (2014, May). Guidelines for snowballing in systematic literature studies
and a replication in software engineering. In Proceedings of the 18th international

conference on evaluation and assessment in software engineering (pp. 1-10).

Xu, J., Cheung, C., Manu, P., Ejohwomu, O., & Too, J. (2023). Implementing safety
leading indicators in construction: Toward a proactive approach to safety

management. Safety science, 157, 105929.

95



Yu, H., & Sun, X. (2024). Uncertain remanufacturing reverse logistics network
design in industry 5.0: Opportunities and challenges of digitalization. Engineering

Applications of Artificial Intelligence, 133, 108578.

Zenezini, G., Mangano, G., & De Marco, A. (2022). Experts' opinions about lasting
innovative technologies in City Logistics. Research in Transportation Business &

Management, 45, 100865.

96



LIST OF VISITED WEBSITES

https://toppy.it/it/picking/picking-di-magazzino/

https://warehouseoptimizers.com/pallet-racking/amr-warehouse-

robots-the-labor-shortage-solution/

https://www.therobotreport.com/the-future-is-agv/

https://www.mecalux.it/blog/aziende-magazzini-automatici

https://www.linkedin.com/pulse/industria-40-vs-50-fabrizio-da-ronch-

yfqaf/

https://www.logisticamente.it/articoli/13056/sorter-logistici-cosa-

sono-e-come-funzionano/

97



ACKNOWLEDGMENTS

I would like to express my sincere gratitude to Professor Anna Corinna Cagliano for
giving me the opportunity to develop this thesis under her guidance over the past few
months. Her support, advice and availability have been crucial to the success of this
project and I am deeply grateful to her for always ensuring that everything went smoothly.
My sincere thanks also go to Olivia Bernhard for her valuable suggestions during our

meetings, which made a significant contribution to this work.

Special thanks to my parents, whose unconditional support has enabled me to face every
challenge of the past years with determination and serenity. Without them, none of this

would have been possible.

My heartfelt thanks also go to my younger brother, whose lightness and affection made
even the most difficult moments more bearable, always reminding me of the importance

of smiling and never losing sight of what really matters.

Finally, I would like to dedicate a thought to myself. For the perseverance, determination
and passion that have accompanied me on this journey. For the sleepless nights, the
moments of doubt overcome and the goals achieved. For always believing in my abilities
and for never stopping working hard. This achievement is also the result of my willpower

and I am proud of it.

98



APPENDIX 1A

Performance of Logistic System

ﬁ‘\u%ckl;Zr Title Authors Keyword Aim ofthe paper Human centricity Sustainability Resilience Picking system | Storage system | Material Handling system
Passive Exoskeletons to Ashta, G, Finco, 5., exoskeletons; human factor; The article discusses the potential of passive exoskeletons to
Enhance Workforce Battini, O, Persona, A manufacturing; logistics systems; |improve performance in manufacturing and logistics settings
1 Sustainability: Literature social sustainability, X X X X
Review and Future Research
Agenda
In pursuit of humanised order|De Lombaert, T, human factors; Industry 4.0 and The primary aim of the article is to enhance the understanding
picking planning: Braekers, K., 5.0; literature review; Logistics; and integration of human factors in order picking planning within
2 methodological review, De Koster, R, multimethod approach, warehouse|warehouse operations x x
literature classification and  [Ramaekers, K. operations management
input from practice
Application of supportive and [Grosse, EH. assistive devices; human- The primary aim is to explore the integration and impact of
substitutive technologies in centricity; human—technology various technologies on manual order picking processes in
3 manual warehouse order interaction; Order picking; warehouses considering also human factors, literature content X X
picking: a content analysis technologies; warehousing analysis, future research opportunities
Human-Centric Assistive Lucchese, A, Order Picking Tasks, Assembly The article aims to provide insights into the role of assistive
Technologies in Manual Mummolo, G. Tasks, Industry 5.0, technologies in manual tasks, focusing on their human-centric
4 Picking and Assembly Tasks: Human-centric, Assistive design, impact on operator well-peing, and the identification of X X
A Literature Review Technologies, Literature Review  |potential drawbacks
Augmented Reality in a Lean [Pereira, A.C., Alves, AC., |augmented reality, ergonomics; The main aim was to reduce human effort during task
‘Workplace at Smart Arezes, P. human augmentation; human performance. Furthermore, the potential for creating waste-free
Factories: A Case Study factors; human-centric systems; and more efficient workspaces was explored, as well as the
5 Industry 4.0; Industry 5.0; lean possibility of Human Augmentation to enhance workers' X X X
thinking; musculoskeletal capabilities and senses.
disorders; occupational safety and
health
Collaborative Robotics Doyle-Kent, M., Collaborative Robotics; Covid-19; | This paper look atthese flexible robots and discuss the benefits
5 Making a Difference in the Kopacek, P. Global pandemic; Human centred |they brought to manufacturing in a time of global crisis. X X
Global Pandemic {abstract) systems; Industry 4.0; Industry 5.0
An Industry 5.0 Perspective Chivild, M., Meneghetti, A [AMR; assembly lines; human the study aims to provide a comprehensive approach for
on Feeding Production Lines centricity, Industry 5.0; resilience; |companies to adopt Industry 5.0 principles in their production
7 sustainability lines, focusing on human-centricity, sustainability, and resilience X X X X
through a structured framework and practical checklists.
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APPENDIX 1B

Article

get dimension of 15.0

Performance of L

stic System

number Title Authors Keyword Aim of the paper Human centricity Sustainability Resilience Picking system | Storage system | Material Handling system
Automated order p\'cking systems and the J'aghbeer. Y automati'on‘ Iogi'stics; materials The aims to bridge the gap between design and performance in
links between design andperformance: a |Hanson, R, handling; Order picking, automated order picking systems, offering valuable insights for
8 systematic literature review Johanssaon, M.1. warehouse operations both researchers and industry practitioners. X X X
Picker Routing in AGYV-Assisted Order Laffler, M., AGV, automated guided vehicles, |The aim is to enhance the efficiency of order-picking systems
Picking Systems Boysen, N., order picking; routing; through the strategic use of AGVs, thereby reducing unproductive
9 Schneider, M. Warehousing walking and impraving overall productivity in warehousing X X
operations.
Hybrid order picking: A simulation model of [Winkelhaus, 5., Agent-based simulation; This study presents a simulation model that considers various
a joint manual and Zhang, M., Autonomous picking robot, system characteristics and parameters of hybrid order picking
10 autonomous order picking system Grosse, EH., Collaborative order picking; Picker |systems X X
Glock, CH blocking; Warehousing
Smart lighting systems: state-ofthe-art and |Fiichtenhans, M., Intelligent lighting; light, order the paper aims to provide a comprehensive overview of smart
potential applications in warehouse order  [Grosse, EH., picking; systematic literature lighting systems, focusing on their current state, potential
11 picking Glock, CH review; warehousing applications in warehouse order picking, and their overall impact X X
onwork environments
Empirical Evidence on Human Learning Loske, D data envelopment analysis; the study aims to bridge the gap in empirical research regarding
and Work Characteristics in the Transition efficiency; human factors; learning |the interplay between human learning and work characteristics in
12 to Automated Order Picking progress; order picking the context of automated order picking, with a focus on improving X X
outcomes for both workers and organizations.
Determining the source of human-system  |Setayesh, A, ergonomics; Human system error; |the study aims to systematically identify human factors that
errors in manual order picking with respect |Grosse, EH., order picking systems; pick errors; |contribute to errors in manual order picking, with the ultimate
13 to human factors Glock, CH., qualitative interviews; quality goal of improving operational quality and efficiency in this critical X X

Meumann, W.P.

area of logistics.
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APPENDIX 1C

Target dimension of 15.0 Performance of Logistic System
ﬁﬁ?ﬁ: Title Authors Keyword Aim of the paper Human centricity Sustainability Resilience Picking system | Storage system | Material Handling system
Investigating the efficiency of a passive Ashta G.; Finco S, Exoskeletons; Industry 5.0; Picking; |this paper, it proposes a methodological approach for evaluating
back-support exoskeleton in manual Battini O; Persona A Rest Allowance the time effectiveness of exoskeleton deployment for picking
14 picking tasks tasks based on its effects on picking times and rest allowance X
(RA)
Industrial exoskeletons for secure Cheng, Dinghao; Hu, Bingtao; [Human-centric; Human—robot the key factors and challenges affecting industrial exoskeletons
human-robot interaction: a review Feng, Yixiong; Song, Xiuju, interaction; Industrial exoskeleton; |are analyzed, and the research progress is summarized. It also
Zhang, Zhifeng; Song, Junjie; |Industry 5.0; Research progress analyzes the industrial exoskeleton technology in five aspects:
15 Wang, Fei; Tan, Jianrong mechanism design, control system design, interactive X
information perception, variable stiffness drive and interactive
interface design.
Performance optimisation of pick and Vijayakumar, V., Sobhani, A. human factors; optimisation; Crder [This research develops a mathematical model to optimise the
transport robot in a picker to parts order picking; pick and transportrobot,  [performance of a picker to parts OP (order picking) system using
16 picking system: a human-centric approach warehouse zoning PTRs (pick and transport X X
robots)in terms of productivity, quality, and the well-being of the
order pickers.
Assessments of Order-Picking Tasks Li, KW, Khaday, ., Peng, L. [augmented reality, the study aimed to enhance the understanding of how AR
Using a Paper List and Augmented Reality comfortdiscomfort; order technology can be optimized for order-picking tasks by focusing
17 Glasses with Different Order Information information display, warehousing |on both performance outcomes and user comfort, ultimately X
Displays management contributing to the design of more effective and user-friendly AR
systems.
Human—robotvs. human—-manual teams:  [Koreis, J. Automation technologies; Human  (This study analyzed a pilottest of a novel industrial cart deployed
Understanding the dynamics of experience factors; Human-robot as an AGY that automatically follows order pickers as they move
18 and performance variability in picker-to- collaboration; Intralogistics through a brick-and-mortar grocery retailer's warehouse. X
parts order picking operations; Learning; Order
picking; Picking performance
Human-and-cost-centric storage Diefenbach, H., Grosse, EH., |Efficiency; Ergonomics; Order the aim of the paperis to develop strategies thatimprove
assignment optimization in pickerto-parts |Glock, C.H. picking; Routing; Storage warehouse operations by balancing efficiency with the health and
19 warehouses S

assignment

safety of workers, thereby contributing to a more sustainable and
effective warehousing environment
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Target dimension of 15.0 Performance of Logistic System
ﬁﬁ%ﬂzr Title Authors Keyword Aim of the paper Human centricity Sustainability Resilience Picking system | Storage system | Material Handling system
Storage Location .i\ssignmenf for Improving |(Chen, Y., Li.Y. behavioral factors; human—robot  [the Sfudy aims to opti'rnize storage location assi'gnment':s in
Human-Robot Collaborative Order-Picking collaboration; order picking; parts- |robotic mobile fulfillment (RMF) systems to improve the
Efficiency in Robotic Mobile Fulfillment to-picker warehousing system; collaborative efficiency of human and robot order picking, while
20 Systems robotic mobile fulfillment (RMF) also considering the behavioral aspects of human workers. X
system; storage location
assignment, sustainable
technology
Towards human-centric warehousing: the |Loske, D., Grosse, EH,, cognitive human demands; The article aims to explore how warehouse design and cognitive
impact of rack configuration and cognitive  |Glock, CH., Klumpp, M. Human factors; order picking demands affect the efficiency of order pickers
21 demands on order picking performance performance; order picking system X
design; writing system direction
Machine learning in smart production Flores-Garcia, E., Hoon Kwak, |dynamic environments; machine  |The aim of the systematic literature review is to explore and
logistics: a review of technological D., Jeong, Y., Wiktorsson, M. |learning; manufacturing; Smart describe the technological capabilities of smart production
2z capabilities production logistics; technological (logistics (SPL)when applying machine learning (ML) X
capabilities
Manual and robotic storage and picking Silva, A, Coelho, L.C., Darvish,|integrated warehousing problems; |the paper aims to provide a comprehensive overview of the
systems: a literature review M., Renaud, J. manual; research directions; challenges and advancements in warehousing systems,
23 robotic; Warehousing particularly in the context of e-commerce, while also suggesting X X
future research avenues to enhance these systems’ efficiency
and effectiveness
Human Factors Issues in Augmented Abdullah, Md., Rahman, M. Augmented Reality; Human The aim is to investigate and analyze the human factors involved
24 Reality-Assisted Manual Order Picking: A Factors; Order Picking in augmented reality (AR}-assisted manual order picking. X
Systematic Literature Review
A classification approach to order picking  |Pinto, ARF., - the aim of the paper is to create a structured approach to
systems and policies: Magano, M.5., classifying picking systems, which will ultimately lead to
25 Integrating automation and optimization for |Boz, E. improved practices in warehouse management and picking X X
future research efficiency.
Use of Green Industry 5.0 Technologies in | Trstenjak, M., ergonomics; green industry; green |the paper's aim is to investigate the current state of awareness
Logistics Activities Mustapié, M., logistics; Industry 4.0; Industry 5.0; |and implementation of Industry 5.0 technologies in logistics
26 Greguric, P., logistics 4.0; sustainability amang Croatian manufacturing companies, focusing on their X X X
Opetuk, T. openness to adopting green practices over digital ones.
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APPENDIX 2
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STORAGE SYSTEMS

Storage depth System lifetime
[si.ngle.duuhl.?, Stewase height Pmduc?ivity (N. Sneed Stora_ge Sel.ectivily‘[direm S::aiilh_ii.ily Smlage Investement Operatingcnsts (life c‘yc_te. Utilisation Level ‘ff
triple, or multi- order lines/ h) density accesstoitems) [Flexibility) capacity costs useful life, rate automation
deep systems) sermvice life)

@ Decentralized decision making

T

- Human-robot co-working

a

o

= Tracking-as-a-Semvice (NTaaS)

STORAGE SYSTEMS
Storage depth System lifetime
[single,double, - Productivity {N. Storage Selectivity (direct Scalability Storage Investement - [life cycle, Utilisation Level of
Speed
triple, or multi- Statsss hesent order lines/ h) £Es density accessto items) [Flexibility) capacity costs Speatisscosts useful life, rate automation
deep systems) semvice life)
Artificial Intelligence (Al)
Naturallanguage processing for
interacting with robots
Intelligent smart wearables (ISWs)
and exoskeletons

i Cobots

:én MNatural userinterfaces (NUls)

E Human interaction and recognition

i technologies (HIRT)

P

Gesture-tracking devices

Augmented Reality (AR)

Sensors

Internet of Everything (loE)

Clothing industrial smart wearables

Internet of Things (loT)

Edge computing

104




MATERIAL HANDLING SYSTEMS
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APPENDIX 3A

PICKING SYSTEMS

Target dimension

Human centricity

Approaches

Human-robot co-working results in an increase in picking productivity, picking accuracy, and the level of automation, as it combines elements
of automation with human work, improving the automation of the overall picking process. Picking time tends to decrease: a partial process
autornation makes it possible to eptimise picking operations, thus improving overall efficiency.

Decentralised control decreases picking accuracy. In the absence of a centralised coordination, communication errors and information
mismatches can occur, affecting the accuracy of picking operations.

Investment and operational costs do not change significantly with the selected human cantric approaches.

Technologies

Almost all technologies improve design and operational performance parameters (g.g. reduce picking time), with the exception of industrial smart wearables,
which by their nature have no impact, especially on:

‘. Level of automation, as they do not automate the picking process.

2. Picking productivity, as they do not directly increase the speed of picking

3. Picking operation time, since, while they help reduce the risk of errors and improve information management, they have no direct impact on the time required to
complete a picking operation.

Exoskeletons help to improve all operational and economic parameters, optimising operator performance and reducing physical fatigue.

In addition to exoskeletons, other technologies bring significant benefits:

Augmented Reality (AR). improves picking accuracy and speed by providing reaHime visual instructions for locating products, reducing errors and increasing
productivity.

Sensors: monitor the location and status of products in real ime, optimising the workflow and reducing the risk of errors.

Gesture-tracking devices: allow intuitive interaction with picking systems, improving the speed and efficiency of operations without the need for manual commands.

Sustainability

Only the 8Rs policy and predictive maintenance impact design and performance parameters

The 6Rs policy helps to reduce operating costs because, by definition, it
‘1. Reduces waste by optimising the use of resources.

2. Maximises the use of available resources, improving efficiency.

3 Increases safety, reducing operational risk.

Predictive maintenance reduces operating costs by reducing the likelinood of system faults, preventing unexpected failures and optimising
maintenance.

All sustainability technologies aim to combine technological innovation with social and environmental responsibility, creating more efficient, safer and
environmentally friendly processes. These technologies help to increase the level of automation in picking systems because automation optimises the use of
resources, reduces waste and improves energy efficiency, and, and most of them improve productivity and reduce picking times, optimising operations in a
sustainable way.

Machine Learning (ML) is the technology that optimises the most parameters in picking systems, as it analyses data and predicts inefficiencies, improving
accuracy and reducing waste. This is followed by Artificial Intelligence (Al), which is more comprehensive than ML, and Computational Intelligence {Cl), which has
less impact on operational optimisation. In general, the integration of these technolegies into order picking systems leads to greater business efficiency, reducing
waste and improving overall performance.

According to the experts, the integration of into picking systems leads to an increase in investment costs, but this is compensated by the factthat in the medium to
long term, operating costs do not increase compared to the situation where Industry 5.0 was not integrated into the systems.
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PICKING SYSTEMS

Target dimension

Resilience

Approaches

'Resilience approaches firstimprove picking productivity and then increase the level of automation and picking accuracy by allowing the

system to effectively adapt to unforeseen events and operate autonomously -accurately and productively. The anly approach that does not affect
operational parameters is the use of renewable sources, as it has no directimpact on the design and performance parameters of picking

The main impacting approaches are
1. Operator Safety Strategies, which improve worker safety and promote greater flexibility and reliability in human-robot interaction.
2 Human-Machine Systems Resilience, which represents the ability of human and mechanical systems to adapt the level of autonomy to ensure

| practicality, comfort and continuity of operations

'Drganisational resilience does not directly affect order picking, as it focuses on the ability of the organisation to adapt to unforeseen events by
|rerganising resources, processes and strategies.

'Increaaing the resilience of picking systems leads to higher investment costs, but operating costs remain the same as resilience approaches

improve the efficiency of day-by-day activities, does notincreasing the related costs.

Technologies

All technologies increase the level of automation and most increase picking productivity and accuracy by reducing picking time.

The technology that has the greatestimpact on performance and design parameters is the cyber-physical system, as it effectively integrates the physical and
digital worlds to optimise picking operations. For example, if a rebot is about to malfunction or deviate frem its path, the cyber-physical system can predict the
problem and activate predictive maintenance or automatically redefine the robot's path without interrupting operations. This level of integration between the physical
and the digital significantly improves system efficiency and reliability, optimising operations in real time

Subsequently, technologies such as Machine Learning (ML), Artificial Intelligence (Al) and Internet of Everything {loE) make it possible to adapt, predict and
optimise resources in real ime by analysing data. These tools ensure business continuity and improve all the design and performance parameters

In terms of costs, we can say that

- The only investment cost that increases is the technology for cyber-physical systems, as these systems require complex infrastructure and greater integration
between physical and digital technology, while other investment costs remain unchanged

- Operating costs will remain the same or decrease due to efficiency improvements and resource optimisation resulting from the use of advanced technologies
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APPENDIX 3B

STORAGE SYSTEMS

Target dimension

Human centricity

Approaches

For many parameters, such as storage density and capacity, human centricity approaches do not have a significant impact. However, for
other aspects, most approaches favour a direct increase in utilisation, scalability, productivity and level of automation.

Speed only increases with NTaa$, as greater product traceability speeds up the system, eliminating delays associated with manual searches
and improving the overall efficiency of the process

Investment costs tend to increase because the approaches considered for storage systems are generally expensive. An obvious example is the
impact of human-robaot collaboration: e.g. a vertical storage system with a cobot integrated into the picking station is more expensive than a
vertical storage system without a cobot

However, this increase in capital cost is partly offset by operating costs, which experts say do not change significantly with the integration of
human-centric approaches

Technologies

All technologies improve:

1. Level of automation, with the aim of increasing the speed of operations within the storage system.

2. Productivity, allowing more products per hour to be taken from the storage system.

3. Scalability, to efficiently and effectively manage variations in workload, adapting quickly to operational needs

The impact of the technologies on the utilisation rate is limited, as the improvement in this parameter is only from the impact of certain technologies, such as
Artificial Intelligence (Al) is mainly influenced by natural language processing, which improves interaction with robots. . Similarly, the design parameters are only
marginally affected by these technologies. However, despite the small impact, itis clear that Artificial Intelligence (Al) contributes to the improvement of all design
and performance parameters, with the exception of the height of the storage system. This is because Al, by its very nature, focuses on information acquisition
and processing processes and is particularly effective in improving design and performance parameters closely related to information processes

All approaches have no impact on the parameters considered, with the exception of predictive maintenance.

Predictive maintenance confributes to increased uptime and reduced operating costs, because it
- Reduces the need for urgent and costly repairs
- Improves equipment longevity, optimising utilisation over time.

Sustainability technologies increase the level of automation, speed and utilisation of warehouse systems by optimising the use of resources and improving
operational efficiency. For example, intelligent menitoring of environmental conditions reduces waste, minimises errors and optimises material flow.

In the storage system, Al and machine learning improve sustainability by optimising space, reducing waste and predicting demand. Machine leaming analyses
data to optimise allocations and movements, while Al automates decisions by using intelligent algorithms to analyse reak-time data from operating systems,

Sustainability - Reduces unplanned downtime, ensuring greater operational continuity. improving resource management.

In addition, the Internet of Personalised Products {loP"2) technology has an impact on several parameters (storage depth, speed, level of automation and
scalability) because it enables the of products through efficient data exchange that considers customer needs and specific product requirements
Investment costs increase while operating costs decrease, with a more pronounced effect compared to order picking systems. This is due to the greater
complexity and scope of the technologies implemented, which require a higher initial investment but generate greater operational savings in the long term

The scalability of a system is improved by a combination of organisational and psychological resilience because both contribute to making the |All resilience technologies in storage systems increase the level of automation and scalability by enabling systems to quickly adapt to unexpected changes, such

system more adapiable to change and challenges without compromising efficiency. as changes in workload or failures. As a result, utilisation rates increase as the system is able to betier manage available resources, optimising efficiency and
reducing downtime.

Human-machine system resilience improves both the level of automation and productivity, because it enables more effective integration

between operators and advanced technologies, thus allowing warehouse systems to be more automous and processes to be optimised for The technolegy with the greatest impact on operational parameters is machine learning, as it improves operational efficiency. This is followed by Al, which makes

greater efficiency and reliability the storage system more adaptable and responsive to operational conditions.

Resilience

Cognitive resilience has a positive impact on uptime in particular. Operators’ mental clarity in imes of high stress enables them to maintain
high operational efficiency, significantly reducing errors and downtime.

Storage system resilience delivers long-term benefits without increasing investmnent and operational costs.

Cost side:

- Only half of the resilience technologies (Internet of Things (loT), Cyber-physical systems, NextG wireless networks (NGWNs) and Internet of Everything (loE})}
involve an increase in investment costs, as they require the purchase and implementation of advanced solutions. The other half, however, keep costs flat
because they rely on optimising existing processes or less expensive technologies that do not require large up-front investments

- The majority of operational costs are reduced by optimising workflows, automating processes and proactively managing resources, all of which help to reduce
inefliciencies, downtime and waste and improve overall system efficiency.
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APPENDIX 3C

MATERIAL HANDLING SYSTEMS

Target
dimension

Human centricity

Approaches

Human centricity approaches (such as decentralised decision making and human-robot co-working) helps to increase utilisation rates, optimise the use of
resources and improve overall productivity.

The human-robot co-working approach brings several benefits, including

1. Increased scalability as it allows operations to easily adapt to changes in demand.

2. Greater speed and reduced cycle time, optimising workflow and making the whole process faster and more efficient

3. Increased level of automation, enabling more automated management of operations, reducing human intervention and improving system efficiency and
reliability.

4. Reducing the level of consumption by using more efficient and optimised robots that minimise the waste of resources (for example the use of intelligent
conveyors that can adjust speed according to load and demand contributes to more efficient energy use) compared to manual or less automated solutions

| While:

- Tracking-as-a-Service (NTaa$) increases the level of automation as it allows companies to monitor and manage their assets, in real time, reducing the need
for manual intervention in material handling systems.

|- Decentralised decision making improves material handling systems This reduces cycle times and minimises bottlenecks.

However, these positive effects are offset by increased investment costs, which must be compensated for by reducing or maintaining operating costs

Technologies

Human interaction and recognition technologies {(HIRT) support the material handling system by integrating digital elements that simplify the transfer of
commands and information. This allows the material handling system to operate more efficiently and perform assigned tasks with greater precision and
responsiveness.

Another key technology is Al, which improves system efficiency, flexibility and utilisation rate through advanced data processing.

Wosttechnologies contribute to increasing utilisation, as solutions such as Al enable smarter management of workflows, optimising the use of
resources. They also improve . as Al enables companies to flexibly adapt to changes in demand by dynamically adjusting operations as
needed.

Sustainability

Most approaches do not affect design and performance parameters, with the exception of predictive maintenance, which makes it possible to predict the
future cendition of equipment and determine the optimal ime to perform maintenance. This approach allows.

1. Increase battery autonomy through more efficient energy use.

2. Extended life of the equipment, as continuous monitoring optimises the performance and life of the equipment by assessing its condition in real time.

3. Improve uptime by increasing the ratio of actual system uptime to available uptime

|Some approaches influence the level of energy consumption and contribute to its reduction. This is done through

- Climate change mitigation, which encourages a more responsible and reduced overall energy consumption

|- The BRs policy, which aims to minimise waste, including energy waste, by promoting more efficient use of resources

System lifetime is extended through a number of approaches, including climate change mitigation and remanufacturing
- Remanufacturing regenerates components that can be used for replacement, thus extending the life of the system.

- Reduction of Climate Change limits the wear and degradation of materials.

Most of the technologies increase:

1. Level of automation, as reducing errors and increasing efficiency improves operational sustainability.

2. Scalability, because the integration of sustainable technelogies allows companies to flexibly adapt to changes in demand and workflows, dynamically
reducing resource consumption.

3. Speed, because they (for example Machine Learning, Big Data e loT) improve operational speed while minimising waste of time and resources.

The key sustainable technologies for material handling systems are M Learning, Al, Intelligent Energy M 1ent Systems {IEMS) and the
Internet of Personalised Products {loP*2), as they all aim to optimise operational efficiency while reducing environmental impact. Machine Learning and
Al analyse and predict workflows, improving automation, resource management and energy efficiency. IEMS optimise energy use, reducing consumption
and emissions.

Sustainable technologies for materials handling systems increase initial investment costs due to the purchase and implementation of advanced
technologies. However, operating costs remain the same or decrease as these technologies improve efficiency, optimise resource use and reduce
energy consumption, downtime and waste, leading to savings in the long term
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MATERIAL HANDLING SYSTEMS

Target
dimension

Resilience

Approaches

Human-machine system resilience allows system autonomy to be adapted to ensure operational continuity even in unforeseen situations. It therefore has a

|positive impact on

1. Speed, because it allows the operational speed to be kept high

| 2. Level of automation, because it allows the system to dynamically change the level of automation according to the specific situation

3. Utilisation rate, because it promotes optimal utilization of resources, both human and automated, avoiding waste and ensuring that all resources are used
efficiently to maintain high productivity.

The performance parameter that changes the most is the utilisation rate due fo:

1. Cognitive resilience, as it affects the mental clarity of the operator

2. Human-machine system resilience, as it ensures the operational continuity of the system

3. Physical resilience, as it affects the ability to maintain consistent pedformance under variable working conditions.

The parameter that follows the utilisation rate is scalability, which is mainly affected by organisational resilience, as it relates to the flexibility of the system, and
physical resilience, as operators must be able to adapt and respond effectively depending on demand.

All investment costs for material handling systems remain unchanged, except for those related to organisational resilience, which involve an initial increase to
improve organisational flexibility. However, this increase has no impact on operating costs, as organisational resilience optimises resources and reduces
inefficiencies, leaving operating costs unchanged in the long term

Technologies

The performance parameter that changes the most is scalability, followed by utilisation. This is because resilience allows the inira-logistics system to
dynamically adapt to fluctuations in demand. As a result, the ability to flexibly scale operations increases, while the utilisation rate adapts according to the
resources deployed, i.e. it is dynamically adjusted to maximise operational efficiency by adapting to the needs of the moment.

Again, as with the storage system, the technologies that have the greatest impact on operational parameters are machine learning, followed by Al, as
they enable material handling systems to be more responsive through the use of advanced algorithms. These algorithms oplimise processes, allowing
the system to adapt quickly to changes and improving the overall resilience of the system.

On the cost side:
1. investment costs: the situation is similar to that of the picking system, in fact only the loE investment increases, while the others remain unchanged.
2. operating costs: all of them decrease
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