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1. Introduction 

The introduction of electric vehicles (EVs) and autonomous vehicles (AVs) is leading to 

transformative area and to a new conception of the automotive industry, but their diffusion is not 

happening without raising concerns.  

On one hand, electric vehicles promise to mitigate environmental concerns by reducing emissions 

and reliance on fossil fuels (Xu et al., 2020), with their adoption fostered by policies aimed at 

reducing carbon emissions and promoting sustainable transport (Faas & Baumann, 2021). However, 

their quietness may raise concerns to people on road, who are accustomed to the auditory cues of 

traditional vehicles and might not perceive EVs until they are dangerously close, thus heightening 

the risk of accidents. In their study, Edwards et al. (2024) indeed shows that electric or hybrid-

electric vehicle collisions with pedestrians is on average twice as likely as with traditional vehicles. 

It is thus evident how this has implications for the user-vehicle interaction, raising concerns and 

compromising a holistic sense of safety (Bazilinskyy et al., 2023), despite regulatory frameworks 

such as the Acoustic Vehicle Alert System (AVAS) mandating artificial sounds (Faas et al., 2020). 

At the same time, a wide range of stakeholders, including technology companies, automotive 

manufacturers, regulatory bodies, and research institutions, are investing in the AV industry. Key 

players in the industry, including tech firms like Google (Waymo), Tesla, Uber, and Baidu, strive to 

retain their position. Traditional automakers such as Ford, General Motors, and BMW are also 

advancing AV capabilities, often through partnerships or acquisitions. Additionally, research 

institutions and universities contribute by addressing technological challenges and public 

acceptance of AVs (Faas et al., 2020). 

Autonomous vehicles have yet to reach the same level of maturity of EVs. They rely on advanced 

sensors and algorithms for navigation with decision-making capabilities to function with little to no 

human involvement (Hensch et al., 2020). The deployment of AVs could reduce the number of 

accidents and save lives by removing human drivers’ mistake (Yuen et al., 2020), which is responsible 

for approximately 94% of traffic accidents (National Highway Traffic Safety Administration, 2019). 

However, the absence of a driver radically changes the way of interaction with these vehicles, with 

pedestrians experiencing heightened uncertainty and discomfort due to the impossibility of relying 

on explicit cues when making crossing decisions (Faas et al., 2020). This becomes even more 

concerning in traffic situations, such as at unsignalized intersections or crosswalks. 

Both vehicle concepts bring along interactions issues, and innovative technological solutions in 

external human-machine interfaces (eHMI) design may represent a new possibility for enhancing 

pedestrian safety and interaction with EVs and AVs. For this reason, various external human-

machine interfaces have been proposed that communicate the intent of vehicles to vulnerable road 

users (VRUs), such as pedestrians or cyclists. However, a consensus on which eHMI concept is the 

most suitable for intent communication remains elusive (Oudshoorn, et al., 2021). 

Research so far has been mainly focused on primary users (Driver/Passenger). However, it is also 

important to consider the vulnerable road users. These users do not choose to interact with such 
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vehicles but are often required to when they encounter them on the road. Since they may have 

limited knowledge about the new technologies these vehicles use, it is essential to ensure they can 

engage with them smoothly and safely (Faas & Baumann, 2021). 

Moreover, past research has mainly focused on either technological aspect of eHMIs or the 

psychological aspects of pedestrian behaviour in isolation. Integrating these perspectives instead 

could provide a more holistic understanding of how to design effective communication systems for 

EVs and AVs. 

Therefore, this research shifts its focus to pedestrians’ perspective. The research investigates the 

interaction between pedestrians and eHMIs, focusing on electric and autonomous vehicles. It 

addresses the communication challenges posed by EVs' silent operation and the autonomous 

decision-making nature of AVs. By combining qualitative and quantitative methodologies, it aims to 

gain a holistic understanding of pedestrian behaviour and communication preferences. Data was 

collected through two distinct surveys tailored separately for EVs and AVs, assessing various 

communication methods' effectiveness. This methodology contributes to existing research by 

evaluating multimodal communication strategies' combined impact on pedestrian safety and trust. 
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2. Societal Impacts of Autonomous and Electric Vehicles: 
A Contextual Overview  

2.1. Importance and potential impact on the society of 
Electric Vehicles 

The electric vehicle (EV) market has been growing rapidly, driven by technological advancements, 

environmental concerns, and regulatory policies promoting sustainable transportation. EVs, which 

include battery electric vehicles and plug-in hybrid electric vehicles (PHEVs), are pivotal in reducing 

greenhouse gas emissions and dependency on fossil fuels. The shift toward electrification is 

considered one of the three major revolutions in transportation, alongside vehicle automation and 

shared mobility (Guo et al., 2021).  

Global EV stock surpassing 14 million in 2021 with sales doubling over two years (IEA, 2022) is a 

great news to sustainable transportation. Figure 1 shows the forecast of sales for EVs until 2035, 

based on three different scenarios.  

 Stated Policies Scenario: Reflects current policies and commitments as implemented or 

officially announced by governments as of the time of analysis. 

 Announced Pledges Scenario: Assumes governments meet their announced climate and 

energy goals, including those not yet backed by specific policies. 

 Net Zero Emissions by 2050 Scenario: Aims for a pathway consistent with achieving net-

zero emissions globally by 2050, requiring ambitious changes and technological 

advancements. 

Figure 1 
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2.1.1. Technological Advancements 

Electric vehicle technology has seen significant advancements, particularly in battery technology, 

which is crucial for enhancing performance and reducing costs. Lithium-iron-phosphate batteries 

are gaining traction due to their lower cost and improved safety, especially in China, where they 

are becoming increasingly popular. These batteries are expected to capture a significant share of 

the global passenger EV market in the coming years (IEA, 2024; Current, 2024). Solid and semi-

solid-state batteries are also emerging, promising higher charging speeds and longer lifespans. 

Although these technologies receive considerable attention, they are still a few years from 

widespread adoption (Current, 2024). Table 1 provides a list of core technologies of EVs.  

Category Technology Description Advantages Disadvantages 

Energy Storage Lithium-Ion 
Batteries 

Rechargeable 
batteries that power 
the vehicle's electric 
motor. Variants 
include NMC (Nickel 
Manganese Cobalt), 
LFP (Lithium Iron 
Phosphate), and 
NCA (Nickel Cobalt 
Aluminium). 

High energy 
density, long 
cycle life, and 
established 
manufacturing 
processes. 

Potential safety 
risks if damaged 
or improperly 
charged; 
performance can 
degrade over 
time. Difficult of 
recycling. 

Energy Storage Solid-State 
Batteries 

Next-generation 
batteries using solid 
electrolytes instead 
of liquid, aiming for 
higher energy 
density and safety. 

Improved 
safety and 
potentially 
higher energy 
density. 

Currently in 
development; 
challenges with 
manufacturing 
scalability. 

Electric Propulsion Electric Motors Devices that convert 
electrical energy 
into mechanical 
energy to drive the 
vehicle. 

High efficiency, 
instant torque 
delivery, and 
fewer moving 
parts compared 
to internal 
combustion 
engines. 

Dependence on 
rare earth 
materials for 
some motor 
types. 

Electric Propulsion Motor Controllers Electronic units that 
manage the 
performance and 
behaviour of electric 
motors. 

Precise control 
over motor 
functions, 
enhancing 
efficiency and 
performance. 

Complexity in 
design and 
integration. 

Charging 
Technology 

Onboard Chargers Converters that 
allow EVs to charge 
from standard 
electrical outlets by 
converting AC to DC 
power. 

Convenience of 
charging from 
various power 
sources. 

Limited by the 
power capacity of 
the onboard 
charger. 
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Charging 
Technology 

Fast Charging 
Stations 

High-power external 
chargers that 
provide rapid 
charging capabilities. 

Significantly 
reduces 
charging time, 
enhancing 
convenience for 
long-distance 
travel. 

Requires 
substantial 
infrastructure 
investment and 
can impact grid 
stability. 

Vehicle 
Integration 

Battery 
Management 
Systems (BMS) 

Systems that 
monitor and manage 
battery health, 
performance, and 
safety. 

Ensures optimal 
battery 
performance 
and longevity. 

Adds complexity 
and cost to the 
vehicle's electrical 
system. 

Vehicle 
Integration 

Thermal 
Management 
Systems 

Regulate the 
temperature of the 
battery and other 
components to 
maintain efficiency 
and safety. 

Prevents 
overheating 
and extends 
component 
lifespan. 

Requires 
additional 
components and 
energy 
consumption. 

Connectivity Telematics 
Systems 

Enable remote 
monitoring, 
diagnostics, and 
software updates. 

Facilitates over-
the-air updates 
and real-time 
data analysis. 

Raises concerns 
about data 
security and 
privacy. 

Table 1 - Main technologies of EVs 

Globally, the EV market is experiencing robust growth, though the pace varies across regions. 

China, India, and France are leading in EV adoption, while growth in the United States and 

Germany is slower (Atlas EV Hub, 2024). BYD and Tesla are the dominant players in the market, 

accounting for a significant portion of global sales, with BYD recently surpassing Tesla as the 

leading EV brand (IEA, 2024). The intense competition, particularly in China, has led to price 

reductions for electric vehicles, making them more accessible to consumers (IEA, 2024). 

Despite these positive trends, several barriers still hinder widespread adoption. Range anxiety, the 

fear of running out of battery power without access to charging stations, remains a significant 

concern for potential buyers (Rezvani et al., 2015). One of the main challenges is the development 

of more efficient and durable batteries that can provide an autonomy comparable to that of 

gasoline vehicles. Currently, most electric vehicles have a limited range, which may discourage 

potential buyers. Investment in research and development is necessary to improve battery 

performance and reduce costs. Another crucial challenge is the creation of a widespread and 

accessible charging infrastructure. Without a comprehensive network of charging points, both 

public and private, the adoption of electric vehicles will remain limited. Many countries are 

investing in charging infrastructure projects, but international coordination is needed to ensure 

interoperability and accessibility for all users. Although electric vehicles are considered more 

environmentally friendly during use, the production of batteries and the generation of electricity 

can have a significant environmental impact. It is essential to evaluate the entire life cycle of 

electric vehicles to fully understand their ecological footprint. Some studies have shown that, 
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depending on the energy mix used for electricity production, electric vehicles may not always be 

more environmentally friendly than internal combustion vehicles (Sottile, 2023) 

However, the long-term outlook for EV adoption is optimistic, with projections indicating that 

electric vehicles could account for 45% of global passenger vehicle sales by 2030 and 73% by 2040 

(Atlas EV Hub, 2024). Continued advancements in battery technology and charging infrastructure, 

along with supportive government policies, are essential to maintaining this growth trajectory and 

overcoming current barriers (Atlas EV Hub, 2024; Current, 2024). Efforts to simplify charging 

solutions and integrate payment systems are expected to make EV ownership more convenient, 

further encouraging adoption (Current, 2024). 

2.1.2. Economic and Environmental impact 

The economic factors influencing the adoption of electric vehicles (EVs) are complex, involving the 

upfront purchase cost, operating expenses, and the impact of government incentives. While 

general EVs may typically come with a higher upfront cost versus standard internal combustion 

engine vehicles (ICEVs), the long-term savings with EV are undeniable and many consumers are 

attracted to this aspect. 

The purchase price is still an obstacle to reconciling with the world of EVs. Nevertheless, since EVs 

have lower fuel and maintenance costs, studies have supported that TCO for EVs can be lower 

than ICEVs. A report by the International Council on Clean Transportation (ICCT) pointed out that, 

because of lower operating costs, especially when fuel prices are high, EVs may lead to significant 

savings over a five-year period. Also, the cost of electric energy is always lower than the cost of 

fuel. This is highlighted in a study by Bloomberg New Energy Finance (BNEF) found that, in many 

markets, the fuel cost savings for EVs can offset the higher purchase price within a few years of 

ownership. Government incentives play a crucial role in reducing the effective purchase price and 

encouraging adoption. These incentives include tax credits, rebates, and exemptions from 

registration fees.  

The cost of lithium-ion batteries, a major component of EV costs, has been decreasing rapidly. 

According to BloombergNEF, battery prices have dropped by 89% from 2010 to 2020, which is 

expected to continue driving down the overall cost of EVs, making them more competitive with 

ICEVs without subsidies. 

From an environmental perspective, EVs offer a smaller carbon footprint over their lifetime 

compared to traditional vehicles, even when accounting for the emissions from manufacturing and 

electricity generation for charging (Autoblog, 2024). However, the production of EV batteries 

involves significant environmental challenges, including the extraction and processing of raw 

materials like lithium, cobalt, and nickel. The demand for these materials has increased 

substantially, driving up production but also resulting in overcapacity, which has helped reduce 

material prices (IEA, 2024). Additionally, the disposal of batteries at the end of their life poses an 

environmental challenge. 
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One of the most significant environmental benefits of EVs is their ability to reduce emissions. The 

transportation sector is a major contributor to greenhouse gas emissions, and the shift to EVs 

powered by renewable energy can significantly lower these emissions. Unlike ICEVs, which rely on 

fossil fuels and produce emissions throughout their lifecycle, EVs offer a cleaner alternative when 

powered by renewable sources such as wind or solar energy. This transition supports global efforts 

to reduce reliance on fossil fuels and lower carbon footprints, making EVs a crucial component of 

sustainable transportation strategies. EVs also contribute to improved air quality by eliminating 

tailpipe emissions, which are a major source of urban air pollution. This is particularly important in 

densely populated areas, where ICEVs contribute to smog and other harmful pollutants. By 

reducing these emissions, EVs help decrease the incidence of respiratory diseases and other health 

problems associated with poor air quality (Zhang et al., 2020). The environmental benefits of EVs 

are further amplified by advancements in energy storage and battery technologies. These 

improvements enhance the efficiency and sustainability of EVs, allowing for greater integration 

with renewable energy grids. Controlled charging strategies can optimize EV energy use, aligning 

charging times with periods of low grid demand and high renewable energy availability. This not 

only improves the efficiency of the electricity grid but also maximizes the environmental benefits 

of using renewable energy to power EVs. While the initial production of EVs may involve higher 

emissions compared to ICEVs due to battery manufacturing, the overall lifecycle emissions of EVs 

are typically lower. This is especially true when EVs are powered by clean energy sources 

throughout their use. As renewable energy becomes more prevalent, the environmental 

advantages of EVs over ICEVs are expected to increase, further supporting the transition to a more 

sustainable transportation system 

2.1.3. Societal Impact: Pedestrian’s perspective on EVs 

Traditional vehicles rely on driver cues such as eye contact and gestures, necessitating new 

communication methods to convey vehicle intentions to pedestrians (Faas & Baumann, 2021). 

EVs, while similar to conventional vehicles, pose unique challenges due to their quieter operation, 

making it difficult for pedestrians to detect them, thereby raising safety concerns (Xu et al., 2020).  

Electric vehicles (EVs) are distinct from ICEVs primarily due to their quiet operation, which is both 

an advantage and a challenge. The absence of engine noise is beneficial for reducing noise 

pollution in urban areas but poses significant risks for pedestrian safety. The quietness of EVs can 

lead to increased difficulty for pedestrians in detecting approaching vehicles, thereby increasing 

the potential for accidents. This is particularly important in environments where visual cues might 

be insufficient, such as in areas with limited visibility or where pedestrians are distracted 

(Bergman et al., 2017). The reduced noise from EVs can lead to situations where pedestrians are 

unaware of an approaching vehicle, especially at low speeds, which are common in pedestrian-

heavy areas. Research by Faas and Baumann (2021) highlights the critical role of Acoustic Vehicle 

Alerting Systems (AVAS) in bridging this communication gap. These systems, which emit artificial 

sounds to mimic the noise of traditional vehicles, have been found to significantly improve 

pedestrian awareness and safety. The integration of AVAS has been mandated in many regions. 
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These systems aim to mimic the noise produced by traditional vehicles, thereby providing the 

necessary auditory signals to pedestrians. The introduction of AVAS is intended to restore the 

critical sound cues that pedestrians use to assess the presence and movement of vehicles, 

effectively bridging the communication gap caused by the inherent silence of EVs. Rezvani, et al. 

(2015) provide further evidence supporting the effectiveness of AVAS by examining consumer 

perceptions and safety outcomes related to EV adoption. They highlight that the presence of 

sound-emitting systems not only enhances pedestrian safety but also improves the general 

acceptance of EVs by addressing concerns related to silent operation. This research underscores 

the necessity for manufacturers to prioritize pedestrian communication strategies in EV design to 

facilitate safer urban environments. 

The adoption of electric vehicles also raises ethical questions, such as economic accessibility for all 

segments of society and equity in access to charging infrastructure. Electric vehicles are currently 

more expensive than traditional cars, which may limit their accessibility to low-income 

populations. It is necessary to develop incentive and financing policies to make electric vehicles 

more accessible. Furthermore, the distribution of charging infrastructure could favour certain 

geographical areas at the expense of others, creating inequalities in access. It is crucial to ensure 

that investment policies in charging infrastructure consider the needs of all communities and 

promote equity. Another ethical issue concerns the geopolitical implications related to 

dependence on critical raw materials for battery production. The concentration of these resources 

in a few countries could create geopolitical tensions and influence global power balances. It is 

essential to diversify supply sources and promote recycling practices to reduce dependence on 

imports (Corzato, 2017). 
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2.2. Importance and potential impact on the society of 
Autonomous Vehicles 

The introduction of autonomous vehicles is expected to bring about substantial changes in various 

aspects of society. This section explores the diverse implications of AVs, emphasizing their 

potential benefits and challenges. The potential impact of autonomous vehicles on society is 

profound and multifaceted. AVs offer significant benefits in terms of safety, efficiency, economic 

growth, and inclusivity. They have the potential to transform transportation, making it safer, more 

efficient, and more accessible. However, the adoption of AVs also poses challenges that require 

careful consideration and proactive management. Issues related to job displacement, ethical 

decision-making, data privacy, and cybersecurity must be addressed to ensure a smooth transition 

to an autonomous future (Kettles & Wang, 2020). The AV technology evolution is accelerating, 

with investments from automotive design giants and tech companies looking to produce solutions 

that will enhance traffic efficiency, safety, and accessibility for the non-driver (Yuen et al., 2020). 

Worldwide, in 2023 it is estimated that more than 30 million vehicles (Figure 2) with at least some 

form of automation on the roads (Statista, 2023).  

 

2.2.1. Technological Advancements 

Autonomous vehicles, often referred to as self-driving or driverless cars, are vehicles that are 

capable of navigating and operating without the direct involvement of a human driver. These 

vehicles use a combination of sensors, software, and advanced algorithms to perceive their 

surroundings, make decisions, and control the vehicle's movements. The development of 

autonomous vehicle technology has been driven by the potential to enhance safety, improve 

transportation efficiency, and provide mobility solutions for individuals who may be unable to 

operate a traditional vehicle, such as the elderly or those with disabilities. Their development 

Figure 2 Number of autonomous vehicles globally in 2022, with a forecast through 2030 (in 

1,000 units) 
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involves utilize advanced technologies such as artificial intelligence, machine learning, and 

sophisticated sensor systems to navigate and operate without human intervention, promise 

numerous societal benefits (Maeng and Cho, 2021). Autonomous vehicles (AVs) rely on a 

combination of advanced technologies, including sensors, artificial intelligence (AI), and machine 

learning algorithms. Key sensor technologies include LiDAR, which provides high-resolution 3D 

maps of the environment by measuring distances with laser pulses, radar, which detects objects 

and measures their speed and distance, functioning effectively in various weather conditions, 

ultrasonic sensors, used for close-range detection such as parking assistance and obstacle 

detection at low speeds, and cameras, which provide visual data for object recognition, lane 

detection, traffic sign recognition, and other critical functions. AI and machine learning play crucial 

roles in processing the data collected by these sensors. Perception algorithms process sensor data 

to identify objects, interpret traffic signals, detect lane markings, and understand the vehicle’s 

surroundings. Decision-making algorithms make real-time decisions based on the processed data, 

determining the vehicle’s path, speed, and responses to dynamic changes in the environment. 

Path planning algorithms calculate the optimal route and navigation paths for the vehicle, taking 

into account traffic, road conditions, and other factors. The Global Positioning System (GPS) 

provides accurate location data to help the vehicle navigate and stay on course. Vehicle-to-

Everything (V2X) communication enables the AV to communicate with other vehicles (V2V), 

infrastructure (V2I), pedestrians (V2P), and networks (V2N) to share information and enhance 

situational awareness. High-Definition (HD) maps offer detailed and precise mapping of the 

environment, including road layouts, traffic signals, and other essential information that supports 

navigation and localization. Computer vision uses cameras and AI to interpret visual data for tasks 

like identifying pedestrians, vehicles, road signs, and traffic lights. These technologies work 

together to enable AVs to perceive their environment, make informed decisions, and navigate 

safely without human intervention. Table 2 provides a schematic list of core technologies of AVs 

Category Technology Description Advantages Disadvantages 

Data Processing ECU (Electronic 
Control Units) 

Electronic control 
units that manage 
multiple aspects 
of the vehicle, 
including engine, 
chassis, safety, 
and accessories. 

High precision, 
efficiency, 
advanced 
diagnostics (OBD), 
future real-time 
updates support. 

Increasing 
complexity with 
the number of 
ECUs. 

Digital Control Drive-by-wire Replaces 
mechanical 
connections (e.g., 
brakes, 
accelerator) with 
electronic signals 
processed by 
control units. 

Greater precision, 
reliability, 
durability, and 
safety. 

Dependence on 
complex 
electronic 
systems. 
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Sensors Lidar Detects distances 
and maps the 
environment 
using light pulses, 
creating 2D or 3D 
maps in real-time. 

High precision in 
object 
recognition. 

High cost, 
sensitive to 
adverse weather 
conditions. 

Sensors Radar Uses radio waves 
to detect 
distances and 
speeds of 
surrounding 
objects. 

Economical, 
performs well in 
adverse weather 
conditions. 

Lower resolution 
compared to 
Lidar. 

Sensors Ultrasound Measures short-
range distances 
using ultrasonic 
waves, useful for 
parking 
manoeuvres. 

Economical, 
resistant to 
adverse weather 
conditions. 

Limited to short 
range. 

Sensors Cameras Provides high-
resolution images, 
enabled by AI and 
computer vision 
algorithms to 
recognize road 
signs, objects, and 
obstacles. 

High resolution, 
supports systems 
like lane keeping 
and emergency 
braking. 

Sensitive to low 
light and adverse 
weather 
conditions. 

Connectivity In-vehicle 
connectivity 

Internet 
connectivity for 
functions such as 
navigation, 
communication, 
and real-time 
updates. 

More 
customization 
opportunities, 
continuous 
updates, 
integration with 
the digital 
ecosystem. 

Potential risks to 
data privacy and 
security. 

Advanced Systems Artificial 
Intelligence (AI) 

Supports 
functions like 
computer vision, 
sensor data 
processing, and 
autonomous 
decision-making. 

Advanced 
automation, 
improved safety 
and performance. 

Requires 
sophisticated 
hardware and 
software. 

Table 2 - Main technologies of AVs 

AVs are designed to perform all driving tasks, from navigating through city streets to highway 

driving, using a combination of technologies. The concept of autonomous vehicles has been in 

development for several decades, but recent advancements in technology have accelerated their 

progress towards becoming a practical reality. AVs promise numerous benefits, including 

enhanced road safety by reducing human error, increased mobility for individuals unable to drive, 

improved traffic flow, and environmental benefits through optimized driving patterns and reduced 

emissions. 
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The Society of Automotive Engineers (SAE) defines six levels of driving automation, ranging from 

Level 0 (no automation) to Level 5 (full automation): 

 Level 0 (No Automation): The human driver is responsible for all driving tasks. 

 Level 1 (Driver Assistance): The vehicle can assist with either steering or 

acceleration/deceleration, but not both simultaneously. 

 Level 2 (Partial Automation): The vehicle can control both steering and 

acceleration/deceleration, but the human driver must remain engaged and monitor the 

driving environment. 

 Level 3 (Conditional Automation): The vehicle can handle all driving tasks under certain 

conditions, but the human driver must be ready to take control when requested. 

 Level 4 (High Automation): The vehicle can perform all driving tasks and monitor the 

driving environment in specific scenarios without human intervention. 

 Level 5 (Full Automation): The vehicle can perform all driving tasks under all conditions 

without any human intervention. 

Their rapid advancement has captured the attention of researchers, industry leaders, and the 

public alike, as these innovative solutions hold the promise of transforming the way we approach 

transportation. The deployment of AV technology varies across different regions. In North 

America, companies like Waymo and Tesla are leading the development and testing of AVs. 

Waymo has been testing its autonomous vehicles in multiple states and has even launched a 

limited commercial ride-hailing service using AVs in Arizona. In Europe, several countries have 

established testing grounds and regulatory frameworks to facilitate AV testing. Germany, for 

example, has allowed Level 4 AVs to operate on public roads under specific conditions. In Asia, 

China is rapidly advancing in the AV sector with companies like Baidu and AutoX conducting 

extensive road tests. The Chinese government is also supporting AV development through 

favourable policies and infrastructure investments (Rahman and Thill, 2023; Guo et al., 2021). 

2.2.2. Economic and Environmental Impact 

The integration of AVs into the transportation ecosystem is poised to stimulate economic growth 

by creating new industries and job opportunities. The development, production, and maintenance 

of AVs will generate employment in high-tech sectors, contributing to economic diversification and 

resilience. Furthermore, AVs are expected to drive the emergence of new business models such as 

ridesharing and mobility-as-a-service (MaaS). These models will foster innovation and 

entrepreneurship, providing additional economic benefits (Yuen et al., 2020). 

The economic impact of AVs is multifaceted. On one hand, the production and maintenance of 

AVs will create jobs in manufacturing, software development, and infrastructure. On the other 

hand, the shift towards AVs will stimulate the growth of ancillary industries, including data 

management, cybersecurity, and urban planning. Moreover, the efficiency gains from AVs can lead 

to cost savings for businesses and consumers alike, further driving economic growth (Maeng and 

Cho, 2021). 
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Additionally, AVs have the potential to reduce the costs associated with road accidents, including 

healthcare expenses, legal fees, and property damage. By enhancing road safety, AVs can 

contribute to significant economic savings, which can be redirected towards other critical areas 

such as education and healthcare (Kettles and Wang, 2020). 

AVs have the potential to significantly reduce the environmental footprint of transportation. By 

optimizing driving behaviours and enabling more efficient traffic management, AVs can lower fuel 

consumption and emissions. This reduction in emissions is particularly important in the context of 

global efforts to combat climate change. Additionally, the adoption of electric AVs can further 

enhance environmental benefits by reducing reliance on fossil fuels and decreasing greenhouse 

gas emissions (Yuen et al., 2020). Is important to remember though, that the environmental 

impact of AVs also depends on the broader energy grid and the sources of electricity used to 

charge electric AVs. For AVs to realize their full environmental potential, it is crucial that the 

electricity used to power them comes from renewable sources. Thus, the environmental benefits 

of AVs are intrinsically linked to the adoption of renewable energy sources at a societal level. 

Optimized driving patterns and reduced emissions from AVs can contribute to a more sustainable 

transportation system. A significant body of research has explored consumer attitudes, 

acceptance, and expectations regarding autonomous vehicles. Studies have examined factors such 

as perceived benefits, concerns, and the willingness to adopt this technology. Numerous studies 

have found that consumers generally express a positive attitude towards autonomous vehicles, 

recognizing the potential benefits in terms of improved safety, reduced traffic congestion, and 

increased accessibility for those who may have difficulty driving. However, concerns have also 

been raised regarding issues such as privacy, cybersecurity, liability, and the potential impact on 

employment in the transportation industry (Faas, Mathis, and Baumann, 2020). Autonomous 

vehicles can optimize driving patterns, reduce traffic congestion, and lower fuel consumption and 

emissions through smoother acceleration and braking. 

Furthermore, AVs can contribute to more sustainable urban development. By reducing the need 

for parking spaces and enabling more efficient use of road infrastructure, AVs can help cities 

reclaim valuable land for green spaces, residential areas, and commercial development. This shift 

can lead to more liveable and sustainable urban environments (Maeng and Cho, 2021). 

2.2.3. Societal Impact: Pedestrian perspective on AVs 

One of the most significant advantages is the potential reduction in traffic accidents. Human error 

is a leading cause of road accidents, and AVs can significantly enhance road safety by eliminating 

this variable. This improvement could result in fewer fatalities and injuries both for passengers and 

pedestrians, leading to lower healthcare costs and a better overall quality of life (Yuen et al., 

2020). In addition to enhancing safety, AVs can contribute to improved traffic flow and reduced 

congestion. Through optimized driving patterns and vehicle-to-vehicle communication, AVs can 

make more efficient use of road infrastructure, decreasing travel times and reducing the stress 

associated with traffic jams. This efficiency not only saves time but also translates into economic 
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benefits, including lower fuel consumption and reduced emissions, which are crucial for 

environmental sustainability (Maeng and Cho, 2021). According to recent studies, human error is 

responsible for approximately 94% of traffic crashes, highlighting the potential for AVs to improve 

safety significantly (National Highway Traffic Safety Administration, 2019). Figure 3 shows that the 

deployment of AVs could reduce the number of accidents and save lives by removing human 

drivers ‘mistake (Yuen et al., 2020).  

AVs have the potential to transform the travel experience by allowing passengers to engage in 

other activities, such as working, reading, or relaxing, during their commute. Researchers have 

also investigated the factors that influence consumer acceptance of autonomous vehicles. These 

factors include trust in the technology, perceived usefulness, perceived ease of use, and social 

influence. Studies have shown that consumers who perceive autonomous vehicles as useful and 

easy to use are more likely to be willing to adopt the technology. Additionally, the level of trust 

consumers has in the safety and reliability of the technology has been identified as a key factor in 

determining their acceptance. In terms of inclusivity, AVs can provide mobility solutions for 

individuals who are unable to drive, such as the elderly, disabled, and those without a driver's 

license.  

The potential of AVs extends beyond individual benefits to societal advantages. For instance, AVs 

can provide reliable transportation options for individuals who are unable to drive, such as the 

elderly and disabled. This inclusivity aspect highlights the broader social benefits of AV technology, 

as it enhances mobility and independence for these populations, thereby improving their quality 

of life (Kettles and Wang, 2020). 

Despite their numerous advantages, the widespread adoption of AVs also presents several 

challenges that must be addressed. Their deployment on the streets presents challenges involving 

all parties. From VRU’s point of view, traditional cues such as eye contact, gestures, or even driver 

intent (often conveyed informally through body language) are absent in AVs, creating a 

communication gap that must be covered. This gap becomes even more concerning in traffic 

Figure 3 



18 
 

situations, such as at unsignalized intersections or crosswalks. Studies have shown that 

pedestrians often rely on visual cues and intuitions, such as vehicle speed or trajectory, to make 

crossing decisions. However, these implicit cues are not always sufficient or clear when dealing 

with AVs. Pedestrians report increased uncertainty and discomfort, particularly when the vehicle's 

intent is not explicitly communicated, leading to hesitancy or risky crossing behaviours (Faas et al., 

2020). 

Zhao et al. (2023) involved analysing how the presence and behaviour of other pedestrians 

influence an individual's interaction with AVs. This study highlighted that social cues play a crucial 

role in decision-making processes, suggesting that AVs equipped with external human-machine 

interfaces (eHMIs) could benefit from mimicking or reacting to social behaviours to enhance 

communication effectiveness. Additionally, the role of secondary tasks in pedestrian distraction 

was investigated, revealing that eHMIs need to be designed to capture attention even when 

pedestrians are engaged in other activities. The role of social context in pedestrian behaviour 

when interacting with AVs has been relatively underexplored. They also examined how the 

behaviours of others influence individual pedestrians' interactions with AVs, suggesting that social 

learning can either enhance or impair pedestrian safety depending on the behaviour being 

modelled. 

Moreover, there are concerns related to data privacy and cybersecurity. AVs rely on vast amounts 

of data to operate efficiently, raising questions about how this data is collected, stored, and used. 

Ensuring that AV systems are secure from cyber threats is essential to prevent malicious attacks 

that could compromise safety and privacy (Yuen et al., 2020). 

From a social perspective, one major concern is the potential displacement of jobs, particularly for 

drivers in the transportation industry. The transition to AVs could lead to significant job losses, 

affecting livelihoods and prompting socioeconomic disruptions. Policymakers and industry 

stakeholders must proactively address these issues by implementing retraining programs and 

social safety nets to support workers transitioning to new roles (Kettles and Wang, 2020). Ethical 

considerations are also paramount in the deployment of AVs. Decisions made by autonomous 

systems in critical situations, such as unavoidable accidents, raise moral questions about 

accountability and the value of human life. For instance, if an AV must choose between two 

harmful outcomes, how should it decide which action to take? Establishing robust regulatory 

frameworks and ethical guidelines is crucial to navigate these complexities and build public trust in 

AV technology (Maeng and Cho, 2021). 
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3. Pedestrian Concerns in the Context of EVs and AVs 

3.1. Importance of Trust and Safety in AV and EV Systems 

Trust is a foundational element in the societal acceptance and adoption of AVs and EVs. It transcends 

the technical functionality of these vehicles, encompassing a broader sense of reliability and safety 

in diverse, real-world environments. 

Trust in EVs is shaped by their unique operational characteristics, particularly their quietness. While 

the reduced noise of EVs provides environmental benefits, it also presents significant safety 

challenges. Pedestrians, especially those who rely on auditory cues, such as visually impaired 

individuals, may find it difficult to detect approaching EVs at low speeds. This issue heightens the 

potential for safety risks in urban environments. To mitigate this, artificial sound systems have been 

implemented, simulating traditional engine noises to enhance the detectability of EVs. Koh and Yuen 

(2023) argue that such auditory enhancements are not only critical for safety but also essential in 

cultivating trust, ensuring pedestrians feel secure when sharing spaces with EVs. 

On the other hand, for AVs trust is closely tied to the vehicle's ability to effectively communicate its 

intentions, a requirement that becomes essential in the absence of traditional human interaction 

cues. Conventional non-verbal signals such as eye contact or hand gestures, which establish mutual 

understanding between drivers and pedestrians, are absent in AVs, potentially creating a trust 

deficit. To address this, eHMIs have been developed to convey the vehicle’s intent through visual, 

auditory, or combined signals. For instance, eHMIs can indicate whether the vehicle intends to stop, 

yield, or proceed, offering clarity in ambiguous traffic scenarios. Research by Zhao et al. (2024) 

underscores the importance of eHMIs in reducing pedestrian hesitation and anxiety, thereby 

fostering trust. Importantly, this trust is cultivated through consistent positive experiences, where 

the AV operates as expected, reinforcing the pedestrian’s belief in the system's safety and 

predictability. 

The perception of trust and perceived safety is multifaceted, involving both cognitive and affective 

dimensions that shape pedestrian interactions with AVs and EVs. Perceived safety significantly 

influences pedestrian decision-making, particularly when navigating complex urban environments. 

Pedestrians must feel confident that AVs will act predictably and prioritize their safety. EHMIs 

contribute to this by reducing ambiguity, thereby improving perceived safety and facilitating more 

confident pedestrian behaviour (Zhao et al., 2024). 

As AVs and EVs become more prevalent, pedestrian behaviour is likely to evolve through a process 

of adaptation. Repeated exposure to AVs and their communication signals fosters familiarity, 

allowing pedestrians to better interpret eHMI cues and make more informed decisions. Over time, 

this adaptation can lead to safer and more predictable interactions. Zhao et al. (2024) highlight that 

frequent exposure to AVs reduces uncertainty in crossing decisions, promoting a gradual alignment 

of pedestrian behaviours with the operational norms of autonomous systems. 



20 
 

Risk perception and trust remain central to pedestrian-vehicle interactions. The dynamic nature of 

trust means it can fluctuate based on contextual factors such as traffic complexity and mental 

workload. For example, in high-stress environments, pedestrians may rely more heavily on trust due 

to cognitive overload, potentially leading to risky behaviours (Zhao et al., 2023). Consequently, 

maintaining trust requires EVs and AVs to consistently exhibit safe and transparent behaviour across 

varied scenarios. 

Trust and perceived safety are interdependent constructs critical to pedestrian interactions with 

AVs and EVs. Establishing this trust demands a combination of technological innovation, such as 

eHMIs and artificial sound systems, and consistent, reliable vehicle behaviour. These elements 

collectively enable pedestrians to feel secure and confident, fostering the broader societal 

acceptance of these advanced transportation technologies. 

3.2. Demographic Variations in Pedestrian Safety and Trust Levels 

Demographic factors play a crucial role in shaping the trust and acceptance of electric vehicles 

among vulnerable road users, including pedestrians, cyclists, and older adults. 

Age emerges as one of the determinants, with older individuals often perceiving EVs as less safe due 

to their reliance on auditory cues for detecting vehicles, which are diminished in quieter EVs. This 

contrasts with younger populations, who are generally more adaptable to new technologies and 

urban infrastructures that accommodate EVs (Vladimir & Grdinić-Rakonjac, 2021). Tao et al. (2024) 

highlighted that older individuals and women demonstrate lower likelihoods of adopting EVs, which 

could derive from conservative outlooks and reduced trust in novel technologies. These groups may 

perceive higher risks in interactions with quieter vehicles like EVs, especially in pedestrian scenarios 

where auditory cues are critical. 

The distinction between urban and rural residents also shapes perceptions, as those in urban areas, 

with higher exposure to EVs and related infrastructure, typically report greater acceptance and trust 

compared to rural residents, who may be less familiar with the technology and harbour scepticism 

about its safety or utility.(Arif Devi et al., 2023) Cultural norms and regional differences further 

influence acceptance; in countries with strong pedestrian rights and advanced urban planning, such 

as the Netherlands, trust and acceptance of EVs are higher, reflecting a combination of supportive 

infrastructure and societal attitudes toward innovation and sustainability. This disparity in 

perceptions highlights the need for targeted education and outreach programs to address rural 

concerns and increase awareness of EV benefits, potentially bridging the urban-rural divide in EV 

adoption rates (Arif Devi et al., 2023). 

Social context and environmental factors shape pedestrian decision-making processes, and the 

neighbourhood of residence significantly influences perceptions of Electric Vehicles. Zhao et al. 

(2023) highlight that pedestrians often take cues from the behaviour of others, such as group 

crossing dynamics, which can influence individual decisions. Urban environments, characterized by 

higher population density and complex traffic systems, are often at the forefront of technological 
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adoption. In these areas, residents frequently encounter challenges such as high traffic volumes, 

congestion, and parking scarcity, which amplify the perceived benefits of EVs. The promise of EVs 

to reduce emissions, offer cost savings, and contribute to sustainability resonates more strongly in 

cities, where concerns about air pollution and climate change are more prominent (Koh and Yuen, 

2023). Additionally, urban areas typically offer greater access to the necessary infrastructure for 

EVs, including charging stations, well-maintained roads, and smart traffic management systems. 

Urban populations, being more accustomed to technological advancements, are also more likely to 

embrace EV innovations (Rahman and Thill, 2023). 

On the other hand, rural areas present different circumstances that shape attitudes toward EV 

adoption. In these regions, driving environments are typically less congested, and the need for 

alternatives to fossil-fuel-based transportation may not seem as pressing. Limited exposure to EVs 

and other cutting-edge automotive technologies often leads to a lack of familiarity and trust in these 

innovations (Zhao et al., 2024). Furthermore, infrastructure limitations in rural settings, such as 

fewer charging stations and poorly maintained roads, pose practical challenges for EV adoption. 

Socioeconomic factors also play a significant role, as lower population density and longer travel 

distances make concerns about battery range and charging accessibility more pronounced. Rural 

residents may also have cultural preferences that emphasize self-reliance and traditional modes of 

transportation, making the adoption of EVs slower. The higher initial cost of EVs compared to 

conventional gasoline vehicles is another significant barrier in rural areas, where disposable income 

may be lower, and practical considerations often outweigh sustainability concerns (Koh and Yuen, 

2023). 

Individual differences such as age, technological experience, and cultural background play a crucial 

role in shaping pedestrian behaviour and preferences also toward autonomous vehicles. Faas and 

Baumann (2021) highlight that younger individual, often more adept with technology, are generally 

more receptive to eHMI cues compared to older pedestrians. Also, Lee et al. (2017) emphasised 

how from older people’s perspective AVs are frequently associated with decreased safety and 

control. Older persons, who frequently have lower confidence in technology and are more sceptical 

of automation, are less likely to adopt fully automated systems. However, Abraham et.al (2017) also 

stated that, while older adults appear resistant to fully automated vehicles, they are more receptive 

to semi-automated in-vehicle technologies. This indicates that partial automation may act as a 

bridge to acceptance for older generations. 

Research indicates that perceived usefulness, price, social support, lifestyle fit, and conceptual 

compatibility all have a significant impact on AVs acceptability across age groups. Furthermore, 

technological familiarity is strongly related to AV acceptability. Individuals with more experience 

and trust in new technologies are more likely to embrace self-driving cars, however these variables 

are usually inversely associated with age. Research is needed to explore the nuanced relationships 

between age, prior technology experience, perceived risks, and trust in AVs. Such studies could 

examine how these factors affect acceptance across varying levels of vehicular automation, from 

partially automated (AV3) to fully automated (AV5) systems (Lee et al., 2017; Abraham et al., 2017). 
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Furthermore, Abdullah and Sipos (2024) identified key factors, including age, gender, mobility 

habits, and driving license possession, that influence preferences for partially automated (AV3) and 

fully automated (AV5) vehicles. Older individuals, familiar with traditional driving practices, often 

prefer partially automated systems, whereas younger individuals exhibit greater openness to full 

automation. Gender differences also emerge, with men demonstrating a stronger preference for 

fully automated vehicles compared to women. Additionally, lifestyle factors, such as reliance on 

bicycles and frequent daily trips, align with a higher preference for AV5 systems, suggesting that 

automation could complement active transportation habits. 

The acceptance of Autonomous Vehicles (AVs) among pedestrians is also closely tied to their 

neighbourhood of residence. Urban environments, with their dense traffic conditions and advanced 

infrastructure, create a setting where the potential benefits of AVs—such as accident reduction, 

optimized traffic flow, and parking alleviation—are more pronounced (Koh and Yuen, 2023). The 

higher frequency of road accidents in urban areas further underscores the appeal of AVs, which 

promise to enhance road safety through automation and real-time traffic management. 

Additionally, urban residents have greater exposure to AV pilot programs and testing initiatives, 

fostering familiarity and trust in the technology (Rahman and Thill, 2023). Urban infrastructure, 

including well-maintained roads, high-speed internet, and sophisticated traffic control systems, 

supports the effective operation of AVs. Urban populations are also generally more accustomed to 

technological advancements and innovation, making them more likely to adopt AV technology. 

These conditions make city dwellers more receptive to AVs as they perceive them as a viable 

solution to urban mobility challenges. 

In contrast, rural areas pose significant obstacles to AV acceptance. With lower traffic congestion 

and fewer frequent road interactions, the immediate benefits of AVs, such as accident prevention 

and congestion management, may not seem as relevant. The lack of exposure to AV technology 

contributes to scepticism and distrust among rural residents, who may view AVs as unproven and 

less suited for unpredictable rural road conditions, including unpaved roads and adverse weather 

(Zhao et al., 2024). 

Infrastructure limitations further complicate AV adoption in rural areas. Many rural roads are less 

maintained and lack the advanced traffic management systems necessary for AVs to function 

optimally. Wali and Khattak (2022) note that rural residents often question the reliability of AVs in 

these environments, particularly in terms of handling variable terrain and unexpected obstacles. 

Additionally, the slower rate of technological adoption in rural communities means that many 

residents may prioritize traditional, manually driven vehicles over autonomous options. 

Overcoming these barriers will require targeted education and training strategies tailored to older 

adults' learning preferences. Educational tools, such as dealership demonstrations or online 

resources, can enhance understanding of system functionalities, reduce reliance on trial-and-error 

learning, and foster comfort with automation. Transparent and user-cantered design in EV and AV 

systems is equally critical to maintaining trust, as negative experiences can quickly undermine 

confidence and slow adoption. 
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3.3. The Role of Effective Communication on Safety and Trust  

Pedestrians depend on non-verbal cues, like eye contact, gestures, and vehicle sounds, to cross 

streets safely. Electric vehicles complicate this by being quieter, benefiting noise reduction but 

increasing collision risk, especially for visually impaired individuals. Research shows artificial engine 

sounds improve EV detectability and trust. Meanwhile, autonomous vehicles lose vital driver–

pedestrian communication cues; without eye contact or gestures, uncertainty at crosswalks can rise, 

prompting either hesitation or unsafe behaviour. Additionally, inattentional blindness (e.g., texting 

or listening to music) hinders pedestrians from noticing key signals, emphasizing the need for robust 

eHMIs that capture pedestrians’ attention despite distractions. 

Pedestrian decision-making is often characterized by assessing risks and uncertainties associated 

with crossing streets. The presence of AVs adds a layer of complexity to this decision-making 

process, as pedestrians must gauge the capabilities and intentions of a vehicle without a human 

driver. Studies by Faas and Baumann (2021) suggest that pedestrians use a combination of explicit 

and implicit (vehicle movement patterns) cues to make these assessments. However, 

inconsistencies in explicit signals design and functionality can lead to confusion, potentially 

increasing the risk of unsafe crossing behaviours. 

To bridge these communication gaps, external Human-Machine Interfaces (eHMIs) have been 

proposed as a solution. These systems utilize visual, auditory, and occasionally haptic signals to 

communicate the vehicle’s state, intent, and awareness of pedestrians, significantly improving the 

predictability of vehicle behaviour. Research has shown that well-designed eHMIs can enhance both 

trust and safety. For example, Faas et al. (2020) found that eHMIs providing clear signals, such as 

whether a vehicle is in autonomous mode or preparing to stop, lead to safer and more confident 

crossing decisions by pedestrians. These systems reduce the ambiguity of interactions and foster a 

greater sense of security in pedestrians (Hensch et al., 2020). 

The type of information conveyed by eHMIs is crucial to their effectiveness. Studies suggest that 

minimalistic and intuitive signals, such as visual cues indicating a vehicle is stopping or yielding, are 

the most effective in fostering trust. Overly complex signals or displays that require interpretation 

risk overwhelming pedestrians and diminishing their confidence. Moreover, pedestrians show a 

clear preference for simple visual signals, as these are perceived as more intuitive compared to 

auditory or movement-based cues, which often require more active interpretation (Hensch et al., 

2020; Faas et al., 2020). 

The size of autonomous and electric vehicles plays a significant role in how pedestrians perceive 

safety and react emotionally. Larger vehicles tend to trigger stronger negative emotions, such as 

worry and stress, while also diminishing feelings of trust and security. This highlights the need for 

communication strategies that take vehicle size into account, as bigger vehicles can make 

pedestrians feel more vulnerable (Faas et al., 2020; Zhao et al., 2024). 
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Successfully integrating AVs and EVs into pedestrian environments requires thoughtful 

communication strategies to address the unique challenges these technologies present. External 

Human-Machine Interfaces have become essential in helping AVs communicate with pedestrians, 

while they may help in fostering adoption and acceptance of EVs, compensating for their near-silent 

nature. 

3.3.1. Alternative Communication Technologies 

Auditory and visual signals are not the only options that have been explored for communicating the 

intent of vehicles to pedestrians. Due to the limitations of traditional methods, such as the potential 

for auditory signals to contribute to noise pollution or visual cues being misinterpreted or missed in 

complex urban environments, researchers have increasingly focused on alternative methods for 

improving vehicle-pedestrians communication. These efforts are motivated by the need for systems 

that are more intuitive, effective, and capable of ensuring pedestrian safety in diverse traffic 

scenarios. Two such alternative approaches are bio-inspired communication methods and 

augmented reality (AR) interfaces, both of which offer unique ways to convey messages that 

traditional signals may fail to address adequately. By exploring these innovative systems, 

researchers aim to bridge the gap in vehicle-pedestrian interactions, enhancing both clarity and 

trust in autonomous technologies. Research so far has focused on experiments and studies focused 

on communication between autonomous vehicles and pedestrians, due to the lower maturity of 

this vehicles and the impossibility by pedestrians to rely on human contact and gestures. 

The bio-inspired methodology, presented by Oudshoorn et al. (2021), sought to apply natural 

signalling mechanisms, using posture, gesture, and colour to communicate an AV's intentions. This 

approach was tested through an online crowdsourcing experiment involving 1,141 participants who 

viewed videos of an AV equipped with different eHMI systems approaching a crosswalk. The 

participants were tasked with pressing a key when they felt it was safe to cross and provided ratings 

on each eHMI’s intuitiveness, clarity, and effectiveness. The bio-inspired eHMIs included a posture-

based system (where the AV raises or lowers its body), a gesture-based system (with mechanical 

flaps signalling intent), and a colour-based system (changing colour to signal yielding or non-yielding 

behaviours). These systems were compared to more traditional lightbar and text-based eHMIs. 

The findings indicated that the bio-inspired methods were generally less intuitive and effective than 

traditional visual systems. While the colour-based eHMI performed comparably to text displays in 

non-yielding scenarios, the posture and gesture systems were more difficult for pedestrians to 

interpret, likely due to their unfamiliarity in urban traffic settings. The effectiveness of the bio-

inspired systems was identified through a combination of participant responses (e.g., when they 

pressed the key to signal crossing safety) and self-reported ratings, with traditional methods like 

lightbars receiving higher scores for both effectiveness and intuitiveness. 

A second technology that has been investigated is the AR methodology explored by Tabone et al. 

(2023), which uses augmented reality interfaces to project virtual elements into the pedestrian's 

field of view, such as virtual crosswalks and stoplights. This study employed an online experiment 
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with 992 participants from five European countries. The participants were shown nine different AR 

interfaces and asked to rate them based on factors such as clarity, intuitiveness, and aesthetic 

appeal. The AR designs ranged from simple projections of traditional traffic signals to more complex 

and immersive designs that introduced new communication methods. 

The findings revealed that AR interfaces that mimicked traditional traffic signals, such as virtual 

stoplights or crosswalks, were rated as the most effective and intuitive. These AR interfaces were 

easy for pedestrians to understand because they built upon established visual conventions. On the 

other hand, more complex or abstract AR designs were found to be confusing or less clear, 

suggesting that AR's effectiveness depends heavily on maintaining familiarity with existing traffic 

communication methods. These findings were identified through participant ratings, which directly 

compared the clarity and usability of AR designs with their traditional counterparts. 

When comparing bio-inspired and AR methods with traditional visual (e.g., light and text displays) 

and auditory signals (e.g., beeping or spoken commands), several key differences in methodology 

and effectiveness emerge. 

- Visual methods, such as lightbar and text-based eHMIs, are already well-established in traffic 

systems and they remain the most effective and intuitive methods due to their wide 

recognition. For example, red and green lights are universally understood, and text displays 

like "Walk" or "Don't Walk" are unambiguous. In both studies, these traditional systems 

consistently received the highest ratings for intuitiveness and effectiveness. Pedestrians can 

quickly and accurately interpret these signals without the need for additional training. 

- Traditional auditory signals, such as beeping or voice commands, can be effective in 

attracting attention, especially in noisy or visually distracting environments. However, these 

signals may not always be effective for all users, such as those with hearing impairments, 

and can contribute to noise pollution in urban areas. While neither study focused specifically 

on auditory signals, the lack of auditory feedback in both bio-inspired and AR methods 

highlights a potential limitation, as visual signals alone may not always be sufficient in 

complex environments. 

Both methodologies (bio-inspired communication and AR) offer alternative approaches to 

traditional visual and auditory systems, but they face challenges in terms of intuitiveness and 

effectiveness. Traditional visual cues, like lightbars and text displays, remain the most reliable and 

intuitive methods for signalling AV intent, while auditory signals play an important, albeit sometimes 

limited, role in enhancing awareness. Bio-inspired methods, particularly those involving colour 

changes, show potential but generally require more refinement. AR interfaces, when designed to 

mirror familiar traffic systems, can be just as effective as traditional methods but risk losing clarity 

when introducing complex or unfamiliar designs. 
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4. Research Design and Methodology 

4.1. Hypothesis 
In this research, the communication between pedestrians and EVs or AVs has been analysed 
separately, and specific hypothesis have been developed for each vehicle concept. However, the 
majority of the hypotheses attempt to study the same factors in order to perform cross-comparison 
of the results for EVs and AVs. Table 3 shows the hypothesis that will be tested through the analysis 
for each vehicle concept. 

Hypothesis N° Electric Vehicles Autonomous Vehicles 

1 People who don’t perceive the 
low-level noise as a safety issue 
will perceive auditory signals as 
the least effective 

People who don’t think of crossing in 
front an AV as a danger, will show 
lower level of perceived effectiveness 
all signals' categories (visuals, auditory 
and movement-based) compared to 
those who think of it as a safety issue 

2 Different age clusters will show 
different preferences for the 
signals categories (visuals, 
auditory and movement-based) 

Favourite mean of transportation 
affects preferences for the signals 
categories (visuals, auditory and 
movement-based) 

3 Neighbourhood of residence 
affects preferences for the 
signals categories (visuals, 
auditory and movement-based) 

Pedestrians who possess a driver's 
license will report higher levels of 
understanding (less Confusion) and 
trust in AV compared to those without 
a driver's license. 

4 Pedestrians who are also 
experienced drivers are likely to 
trust Electric Vehicles more, 
reporting higher level of Trust 
and Safety when crossing in 
front of them compared to non-
drivers. 

Different age clusters will show 
different preferences for the signals 
categories (visuals, auditory and 
movement-based) 

5 Pedestrians with higher study 
degree are more likely to show 
more confidence (higher values 
of Trust and Safety) towards EV 

Neighbourhood of residence affects 
preferences for the signals categories 
(visuals, auditory and movement-
based) 

6 Favourite mean of 
transportation affects 
preferences for the signals 
categories (visuals, auditory and 
movement-based) 

Female pedestrians will report lower 
levels of perceived safety and trust 
(and consequently higher in worry and 
stress) in interactions with AVs 
compared to male pedestrians. 
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7 As the size of the vehicle 
increases, so increase intensity 
levels for negative emotions 
(Worry, Stress, Confusion, Fear). 

Pedestrians with higher study degree 
are more likely to show more 
confidence (higher values of Trust and 
Safety) towards AV 

8 Prior experience of pedestrians 
with EV has an effect on their 
trust. Those with experience 
onboard will show highest scores 
in positive emotions (Trust and 
Safety) 

Pedestrians with prior experience or 
interaction with AVs will report higher 
levels of perceived safety and trust 
when interacting with AVs compared 
to those with no prior experience. 

9 Implementation of signals 
(visual, acoustic and Movement 
based) is positively correlated 
with positive emotions (Trust, 
Safety, Adrenaline) and 
negatively correlated with 
negative emotions (Fear, Stress, 
Worry, Confusion) 

As the size of the vehicle increases, so 
increase intensity levels for negative 
emotions (Worry, Stress, Confusion, 
Fear). 

10 Those who perceive crossing in 
front of an EV as a threat are 
more likely to consider the low 
noise of EV’s as a danger 

Implementation of signals (visual, 
acoustic and Movement based) is 
positively correlated with positive 
emotions (Trust, Safety, Adrenaline) 
and negatively correlated with 
negative emotions (Fear, Stress, 
Worry, Confusion) 

11 People who don’t think of 
crossing in front an EV as a 
danger, will show lower level of 
perceived effectiveness all 
signals' categories (visuals, 
auditory and movement-based) 
compared to those who think of 
it as a safety issue 

 

Table 3  

 

4.2. Design of the questionnaires 

Separate questionnaires for AVs and EVs were designed to capture pedestrian perceptions of three 
key signal categories (Visual, Acoustic and Movement-based) and their emotional responses. 
Demographic variables, prior experiences with EVs and AVs, and contextual factors, such as vehicle 
size, are analysed to understand their influence on perceived signal effectiveness and emotional 
intensity. The two surveys have the same structure, as follows: 
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Section 1: Demographic information (Age, Gender, Study Degree, Driver license ownership, Most 
frequent mean of transport, Neighbourhood) 

Section 2: Investigation preferences regarding communication methods between EV/AV and 
pedestrians. In this section we have gathered data regarding: 

• Perceived effectiveness of three signals (Visual, Acoustic, Movement-based), measured with 
a Likert Scale from 1 to 5 

• Emotion intensity when crossing in front of an EV/AV (Worry, Trust, Indifference, Stress, 
Fear, Safety, Adrenaline, Confusion), measured with a Likert Scale from 1 to 5 

• Preferred method of communication for each signal category (multiple responses were 
allowed). 

• Prior experience with EV/AV as drivers, passengers, or pedestrians, in order to understand 
the correlation between perceived effectiveness of signals and emotional response. 

• The impact of vehicle size, to understand its role in shaping emotional responses, particularly 
fear, stress, and safety perception. 

The major focus of the questionnaires is to assess the perceived utility and effectiveness of various 
eHMIs designed to communicate an EV or AV's actions and intentions to pedestrians. As mentioned, 
three distinct signal categories are explored: visual signals, auditory signals and movement-based 
signals. These categories include both traditional and innovative methods, providing a 
comprehensive evaluation of pedestrian preferences. Participants were asked to rate the 
effectiveness of each category and select their preferred methodologies within these groups. This 
approach aims to highlight which signals are deemed most useful but also reveal whether certain 
designs may align better with specific characteristics of pedestrians.  

4.2.2. Design of Experiment - EV 

The sample size for this study has been set at a minimum of 180 participants. This threshold 
aligns with similar university studies that have employed comparable sample sizes to ensure 
statistical validity. The sample is designed to maintain an equal gender distribution (50% male, 
50% female) to mitigate gender-related biases in perception and decision-making processes 
concerning vehicle interaction. Participants must be at least 16 years old, as individuals in this 
age group and older are more likely to engage independently in pedestrian activities, making 
their insights more relevant to real-world interactions. Furthermore, participants must be of 
Italian nationality. No constraints are imposed regarding participants’ professional or academic 
backgrounds, allowing for a diverse range of perspectives that reflect varying levels of 
familiarity with technological advancements in mobility. However, participants must reside in 
urban areas with populations exceeding 50,000 inhabitants. This criterion is justified by the 
fact that EVs are primarily introduced and tested in urban environments where pedestrian-
vehicle interactions are more frequent and complex. These constraints have been imposed to 
have a sample representative of the population. The questionnaire is distributed via multiple 
online channels, including LinkedIn, Instagram, WhatsApp, Telegram, and Facebook. 

4.2.3. Design of Experiment – AV 

For the same reasons mentioned for the EV sample, the study targets a sample size of at least 180 
participants, with a gender distribution of 40% male and 60% female. A higher proportion of female 
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participants has been included, as existing literature suggests that women tend to be more hesitant 
toward AVs. The minimum age requirement is 16 years, with at least 10% of respondents being over 
60 years old, since previous research indicates that individuals above this age tend to be more 
sceptical about AVs. The study includes participants from various nationalities, since reducing the 
location to Italy would have been a limitation due to the low diffusion of AV in the country. 
Specifically, sample includes European (excluding Italians, with a focus on German, English, and 
French respondents), Asian (mainly Chinese, Japanese, and Indian), and American participants. 
These countries were selected based on the diffusion rate of AVs in their specific continents, 
ensuring that respondents are more likely to have encountered these vehicles. There are no 
restrictions regarding professional or academic background in order to grant wider representation 
of individuals; however, all participants must reside in urban areas with populations exceeding 
50,000 inhabitants since, as for EVs, urban environments is where is more likely to encounter AVs. 
Same channels have been used: the questionnaire is distributed through multiple online platforms, 
including LinkedIn, Instagram, WhatsApp, Telegram, and Facebook, ensuring broad accessibility and 
engagement. 
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4.3. Performed Analysis 

After the data collection, the datasets have been codified in order to conduct statistical analysis.  

Then, descriptive and statistical analysis are performed to investigate the correlation between the 
variables. In the following section the analysis delves into each hypothesis punctually. The process 
used to verify the hypothesis is composed by these steps: 

1. Descriptive analysis, by analysing the graphs showing the values of the dependent variable, 
clustered by independent variables in order to detect possible differences between groups 
and determine preliminary insights 

2. Statistical test to check the correlation between the independent and dependent variables. 
Following rules explain the rationales for the employment of statistical tests: 

a. Kruskal-Wallis Test is employed when investigating correlation between categorical 
and Likert scale variables. When necessary, it has been used also the Dunn’s Test as 
post-hoc. 

b. Chi-squared Test employed when investigating correlation between binary and/or 
categorical variables 

c. Logistic Linear Regression when investigating correlation between variables on Likert 
scale. 

d. Wilcoxon Test when making comparisons between responses on the same variables 
but in different conditions. 

e. Kendall’s Tau when investigating ordinal and nominal relationship between variables 
on Likert scale. 

Table 4 illustrates the statistical analysis performed for each variable explored in both the 
questionnaires (the variables marked with “*” have been considered for the EV analysis exclusively). 
Based on results of the appropriate test, determination of the outcome (Hypothesis Supported/Not 
Supported). 
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Statistical Test Independent variable Dependent variable 

Kruskal-Wallis 

 Age 

 Means of transport 

 Neighbourhood 

 Perception of danger when crossing 

 Effectiveness of signal 
categories 

 Study Degree 

 Perception of danger when crossing 

 

 Emotional responses 

Chi-squared 

 Age 

 Means of transport 

 Neighbourhood 
 

 Choice of the preferred 
method of communication 

 Perception of danger when crossing  Low noise perception* 

 Effectiveness of signal 
categories 

Logistic Linear Regression 

 Prior experience 

 Driver license ownership 

 Emotional Responses 

 Low noise perception*  Effectiveness of signal 
categories* 

Wilcoxon 
 Size of the vehicle  Emotional responses 

Kendall’s Tau 
 Effectiveness of signal categories  Emotional responses 

Table 4  
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5. Findings and insights 

5.1. Electric Vehicles 

To provide a descriptive explanation of the sample involved in the research, the analysis will start 
by showing the distribution of the demographic variables. The key variables include:  

 Age (In years) 

 Gender 

 Study Degree 

 Neighbourhood of residence 

 Ownership of a driver’s license 

 Most frequent means of transportation used 

5.1.1. Sample Description 

This section aims to provide a descriptive overview of the sample involved in the EVs research. 

For the EV survey, 187 responses have been gathered. An operation of data cleaning has been 
done, resulting in 8 responses due to the lack of logical correctness, meaning that analysis has 
been done using 179 responses. The survey has been distributed exclusively among Italian 
participants 

The charts below show graphically the distribution of each of the key demographic variables. 

 

 

1.12%

64.80%6.70%

12.29%

15.08%

AGE

Less than 18

18-30

31-45

46-60

Over 60

41.90%

56.42%

1.68%

GENDER

Female

Male

Prefer not to say

Figure 4 – Percentage of participants based on age clusters Figure 5 – Percentage of participants based on gender 
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It is important to provide a comparison with the Italian population in order to understand the degree 
of representation of the sample. Tables 5, 6, 7 and 8 below show the percentages for the distribution 
of four demographic variables, specifically Age (Table 5), Gender (Table 6), Study Degree (Table 7) 
and Driver License Ownership (Table 8). 

 

Age Italian Population Sample Notes 

Less than 18 16,8% 1,1% The sample over represents the age group 18-30. 
Individuals with less than 18 years are not 
represented because not in the scope of the 
analysis. 

18-30 13,8% 64,8% 

31-45 22,6% 6,7% 

46-60 20,8% 12,3% 

Over 60 25,9% 15,1% 

Table 5 – Comparison between sample and Italian population for age clusters 

 

 

 

3.35%

21.23%

68.16%

7.26%

STUDY DEGREE

Less than High
School Degree

High School Degree

Bachelor/Master's
Degree

Above Master's
Degree

8.94%

12.29%

78.77%

NEIGHBOURHOOD

Rural

Suburban

Urban

9.50%

90.50%

DRIVER LICENSE OWNERSHIP

No

Yes

6.78%

55.37%
10.17%

20.90%

6.78%

MOST FREQUENT MEAN OF 
TRANSPORT

Walking

Car

Bicycle/Electric
Scooter
Public Transport

Motorcycle

Figure 6 – Percentage of participants based on study degree 

Figure 8 - Percentage of participants based on driver license 
ownership 

Figure 7 – Percentage of participants based on 
neighbourhood of residence 

Figure 9 - Percentage of participants based on transport 
habits 
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Gender Italian Population Sample Notes 

Male 48,4% 56,4% The sample is representative of the Italian 
population. The missing 1,7% in the sample is due 
to respondents who did not disclose their gender 

 
Female 51,6% 41,9% 

Table 6- Comparison between sample and Italian population for gender 

 

Study Degree Italian Population Sample Notes 

Less than High School 
Diploma 

58.5% 3,4% A larger proportion of the sample has a university-
level education or higher. Under-representation of 
people with low educational qualifications may be 
due to the exclusion of individuals younger than 18 
from the scope of the analysis. This may result in a 
bias the results towards greater acceptance or 
understanding of new vehicle technologies. 

 

High School Diploma 30,1% 21,2% 

Bachelor/master’s 
Degree 

11,1% 68,2% 

Higher than master’s 
degree 

0,3% 7,3% 

Table 7 - Comparison between sample and Italian population for study degree 

 

Driver License 
Ownership 

Italian Population Sample Notes 

Yes 65,1% 90,5% The sample under-represents people without a 
driving license. Excluding individuals with less than 
18 years old from the scope of the analysis may 
have contributed to this under representation. 

 

No 34,9% 9,5% 

Table 8 - Comparison between sample and Italian population for driver license ownership 

5.1.2. Findings 

Each of the hypotheses will be tested according to the methodology described before. This section 
aims to delve into a punctual analysis of the hypothesis in order to gather the findings and draw 
conclusions about the perception and emotional responses of pedestrians when interacting with 
EVs. 

H1: People who don’t perceive the low-level noise as a safety issue will perceive auditory signals 
as the least effective 

 Method: Logistic Linear Regression 

 Outcome: Not Supported 

Data concerning pedestrians' perception of low noise as a potential hazard were collected through 
Question 8 of the survey. Figure 10 presents the average scores of perceived effectiveness for each 
signal category, based on respondents' views regarding the low noise of EVs as a danger. Across all 
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clusters, individuals who perceive low noise as a threat generally attribute higher effectiveness 
scores to the signals, indicating a perception that these signals are more useful. However, no 
significant differences can be noticed between these clusters by observing the chart. 

 To examine the relationship between a Likert-scale variable (perceived effectiveness) and a 
categorical variable (perception of low noise as dangerous), logistic linear regression was employed. 
The results, summarized in Table 9, indicate a positive correlation for all signal categories, suggesting 
that those who perceive low noise as a hazard tend to rate the signals as more effective. 
Nonetheless, the p-values for all categories exceeded 0.05, demonstrating that the observed 
correlation is weak and lacks statistical significance. 

Categories Value P-value 

Visual Signals 0,56 0,07 

Acoustic Signals 0,49 0,11 

Movement Based Signals 0,5 0,12 

Table 9 – Results of a logistic linear regression between low noise perception and signals categories 

The hypothesis must be rejected, the perception of the noise of EV does not influence the 
effectiveness perceived of signals. 

 

 

H2: Different age clusters will show different preferences for the signals categories (visuals, 
auditory and movement-based) 

Visual Signals Acoustic Signals Movement based

Do not perceive low noise as a threat 3.48 3.17 1.89

Perceive low noise as a threat 3.84 3.50 2.12

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

Average score of perceived effectiveness for signals families, by perception of low 
noise

Figure 10 
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 Method: Kruskal-Wallis, Chi-Squared 

 Outcome: Not Supported 

Figure 11 shows the average score for the different signals’ families, divided by age cluster: 

Visual signals are those perceived with highest effectiveness for every age cluster, slightly higher 
than acoustics. Movement based signals are those with the lowest perceived effectiveness for each 
age cluster. From the chart there is no particular difference in trends among clusters than can be 
noticed. 

 
Figure 11 

To test the correlation of a variable on a Likert scale between groups, a Kruskal-Wallis test has been 
employed. However, the results confirm the impression of no statistical correlation between the 
variables (Table 10).  

Categories Chi-Squared P-value 

Visual Signals 3,58 0,47 

Acoustic Signals 4,24 0,38 

Movement based Signals 3,01 0,56 

Table 10 – Results of the Kruskal-Wallis test between age clusters and signal categories 

 

Additional Analysis 

To go further in the analysis, it has been deemed appropriate to investigate the possible differences 
among age clusters on the choice of favourite signal methodology. The charts below show the 
percentage of responses for visual (Figure 11), acoustic (Figure 12) and Movement-based (Figure 
13) signals within age cluster. 

18-30 31-45 46-60 Over 60

Visual Signals 3.72 3.67 3.77 3.96

Acoustic Signals 3.34 3.42 3.55 3.74

Movement based 2.13 1.92 1.91 2.04

0

1

1

2

2

3

3

4

4

5

Average score of perceived effectiveness for each type of signal, by age cluster
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Figure 11 

 
Figure 12 

18-30 31-45 46-60 Over 60

Images 19% 22% 27% 19%

Text 5% 9% 10% 9%

Colours 46% 39% 24% 51%

Ground Projections 29% 26% 39% 21%

Eye contact with driver 1% 4% 0% 0%

Turn signals 0% 0% 0% 0%

0%

10%

20%

30%

40%

50%

60%

Percentage of responses for visual signals within age cluster

18-30 31-45 46-60 Over 60

Warning Sounds 61% 43% 48% 46%

Spoken Messages 24% 43% 34% 23%

Musical Tones 14% 14% 17% 31%

0%

10%

20%

30%

40%

50%

60%

70%

Percentage of responses for acoustic signals within age cluster
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Figure 13 

 

Visual signals: For visual signals “Colours” is by far the favourite methodology by respondents. 

Figure 11 does not show any significant differences in trends between clusters, except for the 
methodology Ground Projections, which have more popularity among participants of age between 
46-60. To investigate the statistical correlation between the variables, when dealing with binary 
variables the most suitable test is the Chi-squared. Table 11 shows the results of the test. 

 

Visual Images Text Colours Projections on 
the ground 

Eye-contact 
with driver 

Turn signals 

Chi-squared 
Value 

3,7 3,72 22,66 5,34 3,27 0,55 

P-value 0,45 0,45 0,15e-03 0,25 0,51 0,97 

Table 11 – Results of the chi-squared test between age clusters and visual signals 

The results confirm the first impression, among visual signals, age seems to be correlated with the 
choice of “Colours” as methodology. It is necessary to read the residual values (Table 12) to delve 
into how age clusters influence the variable. 

 

 

 

 

 

 

18-30 31-45 46-60 Over 60

Rearview Mirrors 26.5% 38.9% 29.4% 39.5%

Chassis Movement 15.4% 22.2% 26.5% 21.1%

Appendages 56.6% 38.9% 44.1% 39.5%

Turn Signals 0.7% 0.0% 0.0% 0.0%

Colour inside front light 0.7% 0.0% 0.0% 0.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

Percentage of responses for movement-based signals within age cluster
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Colours No Yes 

18-30 -0,33 0,17 

31-45 0,28 -0,15 

46-60 3,39 -1,76 

Over 60 -2,39 1,24 

    Table 12 – Residual values for “Colours” 

The 46-60 age group shows a significant tendency to not choose “Colours" (positive residual for 0) 
compared to other groups, while over 60 age group is less likely to not choose "Colours" (negative 
residual for 0) and shows a moderate tendency to choose it. 

 For the remaining age groups, the residuals are close to zero, suggesting no significant deviation 
from the expected patterns of behaviour. 

 

Acoustic Signals: From Figure 12 it can be noticed that, across all age clusters, "Warning Sounds" 
are the most preferred acoustic methodology. However, preference decreases with age. The 
"Musical Tones" category shows a clear upward trend with age. This suggests that older individuals 
may find musical tones more intuitive or less intrusive compared to younger age groups. A peak in 
the preference for "Spoken Messages" is observed in the 31-45 age group, where it ties with 
Warning Sounds. This preference declines in both younger (24%) and older groups (23%), indicating 
a middle-age preference for verbal communication. 

Results of Chi-squared test (Table 13) indicate a correlation with the choice of “Musical Tones”. 

 

Acoustic Warning 
Sound 

Musical Tones Spoken 
Messages 

Chi-squared 
Value 

6,66 9,70 4,14 

P-value 0,16 0,046 0,39 

         Table 13 - Results of the chi-squared test between age clusters and acoustic signals 

By looking at residual values (Table 14), it can be noticed that the Over 60 age group shows a 
significant preference for musical tones, as indicated by the large positive residual for 1, while other 
age groups do not show any significant deviation in their choices, with residuals close to zero. Finally, 
the 46-60 age group aligns almost perfectly with the expected behaviour, showing no meaningful 
deviation in either choice.  

 



40 
 

Musical 
Tones 

No Yes 

18-30 0,59 -1,08 

31-45 0,25 -0,54 

46-60 0,01 -0,02 

Over 60 -1,28 2,34 

    Table 14 – Residual values for “Musical Tones” 

Movement-based signals: Figure 13 clearly indicates “Appendages" as the most preferred in the 18-
30 age group, showing a strong preference compared to other movement-based signals. However, 
this preference declines significantly in older age clusters. 
This suggests younger pedestrians may find dynamic, noticeable features like appendages more 
intuitive. The preference for "Rearview Mirrors" steadily increases across age clusters. Turn Signals 
and Colour inside the front light were nearly non-existent across all age groups, with percentages 
close to 0%. 

However, the Chi-squared test (Table 15) shows that the choice of these signals is not correlated 
with age.  

 

 

Movement 
based 

Rearview 
Movement 

Chassis 
Movement 

Appendages 
Movement 

Turn Signals Colour in the 
front lights 

Chi-squared 
Value 

8,60 7,42 1,63 0,55 0,55 

P-value 0,072 0,12 0,80 0,97 0,97 

Table 15 - Results of the chi-squared test between age clusters and movement-based signals 

Hypothesis 3: Neighbourhood of residence affects preferences for the signals categories 
(visuals, auditory and movement-based) 

 Method: Kruskal-Wallis, Chi-Squared 

 Outcome: Not Supported 

Figure 14 shows the average score for the different signals’ families, divided by neighbourhood. The 
hierarchy is the same as previous clusters: Visual signals are those with the highest perceived 
effectiveness, followed by acoustic and last the movement-based. No particular correlation can be 
detected from the chart. 
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Figure 14 

Results of the Kruskal-Wallis test confirm the impression, neighbourhood of residence cannot be 
proven to be correlated with the perceived effectiveness of signals’ families. 

Additional Analysis 

To go further in the analysis, we have investigated also the presence of possible correlation between 
the neighbourhood of residence and choice of signal methodology (Table 16-17-18). However, after 
the chi-squared test, results clearly indicate the absence of correlation between neighbourhood of 
residence and the choice of the favourite signal methodology. 

 

VISUAL Images Text Colours Projections on 
the ground 

Eye-contact 
with driver 

Turn signals 

Chi-squared 
Value 

3,68 0,17 0,99 0,46 1,10 0,27 

P-value 0,16 0,92 0,61 0,80 0,58 0,87 

Table 16 – Results of a chi-squared test between neighbourhood of residence and visual signals 

ACOUSTIC Warning 
Sound 

Musical Tones Spoken 
Messages 

Chi-squared 
Value 

1,506 0,044 1,417 

P-value 0,471 0,978 0,492 

Table 17 – Results of a chi-squared test between neighbourhood of residence and acoustic signals 

 

 

Rural Sub-Urban Urban

Visual Signals 3.81 3.82 3.73

Acoustic Signals 3.56 3.27 3.43

Movement based 2.44 2.00 2.03

0

1

2

3

4

5

Average score of perceived effectiveness for each signal family, by neighbourhood
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MOVEMENT 
BASED 

Rearview 
Movement 

Chassis 
Movement 

Appendages 
Movement 

Turn Signals Colour in the 
front lights 

Chi-squared 
Value 

1,391 0,685 1,071 0,271 0,271 

P-value 0,499 0,71 0,586 0,873 0,873 

Table 18 – Results of a chi-squared test between neighbourhood of residence and movement-based signals 

H4: Pedestrians who are also experienced drivers are likely to trust Electric Vehicles more, 
reporting higher level of Trust and Safety when crossing in front of them compared to non-drivers. 

 Method: Logistic Linear Regression 

 Outcome: Not Supported 

The hypothesis aims to investigate if the ownership of a driver license may affect the emotional 
response of pedestrians when approaching an EV. According to literature, drivers are less 
intimidated due to their knowledge of road dynamics, while people who don’t know how to drive 
may show higher diffidence. Figure 15 shows the average scores for each emotion perception, by 
ownership of driver license  

Contrary to expectations, for Stress, Fear, Worry people who owns a driver license present higher 
scores. However, they are quite low compared to those of positive and neutral emotions (Trust, 
Safety, Indifference). For the latter emotions, the trend is the opposite: people with a driver license 
have lower score compared to those who do not possess one. It can be noticed that the differences 
between clusters are minimal, suggesting absence of correlation. 

 
Figure 15 

To check on statistic correlation, a logistic linear regression has been performed. Table 19 shows 
that there is no correlation between not only Trust and Safety, but also for the other emotions. The 
hypothesis has to be rejected, ownership of a driver license does not have an effect on emotions 

 

Worry Trust
Indifferen

ce
Stress Safety Fear

Adrenalin
e

Confusion

Do not own a driver license 1.35 3.65 3.00 1.29 3.47 1.29 1.18 1.71

Own a driver license 1.76 3.41 3.22 1.52 3.39 1.46 1.25 1.59

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Average score of emotions perception, by ownership of driver license
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 Value P-value 

Worry 0,94 0,09 

Trust -0,29 0,52 

Indifference 0,25 0,58 

Stress 0,26 0,63 

Safety -0,13 0,77 

Fear 0,26 0,64 

Adrenaline 0,31 0,69 

Confusion -0,24 0,64 

       Table 19 – Results of a logistic linear regression between driver license ownership and emotional responses 

H5: Pedestrians with higher study degree are more likely to show more confidence (higher values 
of Trust and Safety) towards EV 

 Method: Kruskal-Wallis 

 Outcome: Not Supported 

Figure below shows the average scores for emotions perception, divided by study degree. By looking 
at figure 16, it can be noticed that higher education levels are associated with lower trust and safety 
perception, higher stress and fear, and reduced indifference, indicating greater engagement but 
also higher caution. In contrast, lower education levels show higher worry, confusion, and 
indifference, reflecting greater uncertainty and disengagement. 

However, differences between clusters are minimal, indicating probably absence of correlation.  

 
Figure 16 

To check on correlation a Kruskal-Wallis test has been performed. Based on the results in Table 20, 
the impression seems correct: study degree cannot be proven to influence the intensity of emotions 
perception. 

Worry Trust
Indifferen

ce
Stress Safety Fear

Adrenalin
e

Confusion

Inferior to High Scool 2.17 3.17 3.33 1.50 3.67 1.33 1.33 2.17

High Scool Diploma 1.53 3.61 3.00 1.42 3.76 1.29 1.13 1.55

Bachelor's/Master's Degree 1.72 3.43 3.28 1.52 3.29 1.49 1.27 1.59

Superior to Master's Degree 2.08 3.15 2.92 1.62 3.23 1.54 1.23 1.54

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Average score of emotions perception, by study degree



44 
 

 

 Value P-value 

Worry 5,95 0,11 

Trust 2,05 0,56 

Indifference 1,79 0,61 

Stress 1,57 0,67 

Safety 5,67 0,13 

Fear 2,82 0,47 

Adrenaline 1,55 0,67 

Confusion 2,68 0,44 

      Table 20 – Results of Kruskal-Wallis test between study degree and emotional responses 

Hypothesis 6: Favourite mean of transportation affects preferences for the signals categories 
(visuals, auditory and movement-based) 

Method: Kruskal-Wallis 

Outcome: Supported 

Figure 17 presents the average score for the different signals’ families, divided by the most frequent 
means of transport. It can be noticed that all clusters show similar scores for all signal signals. The 
only cluster that deviates from others is “Walking”, which shows higher values for visual and 
movement-based signals. 

 
Figure 17 

The results of the Kruskal-Wallis test (Table 21) prove the presence of a correlation between most 
frequent means of transportation and visual signals (p-value <0,05) 

 

Walking Car
Bycicle/Electric

Scooter
Public Transports

Motorcycle/Scoote
r

Visual Signals 4.75 3.70 3.50 3.76 3.42

Acoustic Signals 3.67 3.33 3.39 3.65 3.33

Movement based 2.50 2.17 1.83 1.92 1.50

0

1

2

3

4

5

Average score of perceived effectiveness for signals families, by most frequent mean of 
transport
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Categories Chi-value P-value 

Visual Signals 13,44 0,037 

Acoustic Signals 2,86 0,82 

Movement based Signals 12,02 0,06 

Table 21 – Results of the Kruskal-Wallis test between transport habits and signal categories 

The post-hoc Dunn’s is used to have a better understanding of the differences between groups for 
visual signals. Results reveals that there is a significant difference between participants who usually 
walk compared to those who uses a car, indicating the latter as perceiving these signals less effective 
(Z value is >0). Table 22 shows only the results that have been proven to be significant. 

 

Comparison Z P unadj. P adj 

Walking - Car 3,09 0,20e-02 0,04 

Table 22 - Results of the Dunn's Test for visual signals 

Additional Analysis 

It was deemed appropriate to investigate also if the means of transportation has an influence on 
the choice of a favourite methodology for each signal category. The tables below show the 
results of the Chi-squared test. They suggest the presence of correlation with “Spoken 
Messages” (Table 24) and “Rearview Movements” (Table 25), while it appears there is no 
correlation with any of the visual signals (Table 23). 

 

Visual Images Text Colours 
Projections on 
the ground 

Eye-contact 
with driver 

Turn signals 

Chi-squared 
Value 

10,646 3,226 2,56 5,388 12,87 3,859 

P-value 0,1 0,767 0,8167 0,495 0,0451 0,6957 

Table 23 – Results of chi-squared test between transport habits and visual signals’ signals. The method “Eye-contact with the driver” is 
not considered due to the very low number of respondents who indicated it as a choice. 
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Acoustic 
Warning 
Sound 

Musical Tones 
Spoken 
Messages 

Chi-squared 
Value 

6,40 6,49 14,45 

P-value 0,38 0,37 0,02 

Table 24 – Results of chi-squared test between transport habits and acoustic signals’ signals 

Movement 
based 

Rearview 
Movement 

Chassis 
Movement 

Appendages 
Movement 

Turn Signals Colour in the 
front lights 

Chi-squared 
Value 

12,95 2,73 5,07 3,86 0,83 

P-value 0,04 0,84 0,53 0,69 0,99 

Table 25 - Results of chi-squared test between transport habits and movement-based signals’ signals 

By looking at the residual values (Table 26-27) is possible to understand the type of correlation that 
binds the variables. 

 

 

 

 

 

Spoken Messages No Yes 

Walking -0,68 0,95 

Car 0,92 -1,28 

Bicycle/ 
electric scooter 

-1,41 1,96 

Public transports -0,48 0,67 

Motorcycle/scooter 0,74 -1,03 

Rearview Movement No Yes 

Walking 0,60 -0,76 

Car -1,06 1,34 

Bicycle/ 
electric scooter 

0,28 -0,36 

Public transports 1,52 -1,92 

Motorcycle/scooter -0,51 0,64 

Table 26 – Residual values for “Spoken Messages” 

 

Table 27 – Residual values for “Rearview Movements” 
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 The “Bicycle/electric scooter” group shows a potential tendency towards more "Yes" 
responses (residual = 1.9647). All other transportation modes show deviations that are small 
and not meaningful 

 The results do not show any statistically significant deviations. However, the Public Transport 
group displays a notable pattern. It is close to being over-represented in "No" responses and 
under-represented in "Yes" responses for "Rearview Movement." 

 

H7: As the size of the vehicle increases, so increase intensity levels for negative emotions (Worry, 
Stress, Confusion, Fear). 

Method: Wilcoxon-Test 

Outcome: Supported 

Figure 18 shows the difference in average of the scores for the intensity of the emotions as the size 
of the vehicles increases. 

• It can be noted that for negative emotions (Worry, Stress, Confusion, Fear) the difference is 
> 0, meaning that the intensity tends to be higher as the size of the vehicle increases. 

• For positive emotions (Trust, Safety) difference is <0, meaning that people feel less secure 
at the increasing of the vehicle size 

 
Figure 18 

Through the Wilcoxon test it has been analysed the possible influence of vehicle size on emotional 
responses (Table 28). Results indicate correlation with almost all of the emotions under 
consideration in this research.  
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 Emotions P-value 

Worry 
1,61e-05 

Stress 
0,000803 

Fear 
1,38e-07 

Confusion 
0,03423 

Safety 
1,13e-05 

Trust 
4,46e-08 

Indifference 
1,41e-07 

Adrenaline 
0,07412 

                                                               Table 28 – P-values of Wilcoxon test on emotional responses 

According to the results shown, size influences all emotions except for adrenaline. Looking at the 
differences in results of the chart, it is safe to assume that as the size of the vehicle increases, people 
tend to feel less secure and more intimidated. 

H8: Prior experience of pedestrians with EV has an effect on their trust. Those with experience on 
board will show highest scores in positive emotions (Trust and Safety) 

Method: Logistic Linear Regression 

Outcome: Supported 

Figure 19 shows the average score for different emotions, divided by prior experience with EVs. It 
can be noticed that people with both experiences have a higher score for positive and neutral 
emotions (Trust, Safety, Indifference) compared to other clusters and lower for negative emotions 
(Worry, Stress, Fear, Confusion). People with no experience, instead have a lower score for positive 
and neutral emotions (Trust, Safety, Indifference) compared to other clusters and higher for 
negative emotions (Worry, Stress, Fear, Confusion). They also have a higher score for Adrenaline. 
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Figure 19 

Due to the nature of the variables, Logistic Linear Regression is the most suitable method. Tables 
below show results of the test for “Trust” (Table 29) and “Safety” (Table 30). Results indicate that 
for trust, single experiences are not relevant, while the combination of the two is more significant 
but only marginally, while for safety, experience from the inside of the EV is almost significant, even 
if negatively correlated (Value <0), Also, combination of both experiences is strongly correlated with 
an increase in the perceived emotions. 

The impressions from the chart are partially correct: prior experience with EV help pedestrians to 
feel safer when interacting with them.  

 

 

 

 

 

 

 

 

 

 

Additional Analysis 

It has been deemed appropriate to test the correlation also between other emotions 8(from Table 
31 to 36). The same method has been applied. P-values of tables below indicate only adrenaline as 
emotion influenced by prior experience. Specifically, Experience from inside and from outside seems 
to be associated with a decrease in perceived adrenaline, meaning that people who already know 

Worry Trust
Indifferen

ce
Stress Safety Fear

Adrenalin
e

Confusion

Experience from inside 1.61 3.46 3.35 1.37 3.41 1.39 1.18 1.51

Experience from outside 1.71 3.66 3.46 1.53 3.54 1.41 1.14 1.66

Both experiences 1.52 3.86 3.73 1.32 3.82 1.32 1.14 1.57

No experience 1.89 3.39 2.64 1.71 3.61 1.61 1.61 1.75

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

Average score for emotions perception, by prior experience

TRUST Value P-value 

 Experience from 
inside 

-0,35 0,4 

Experience from 
outside 

-0,07 0,89 

Both experiences 1,06 0,07 

SAFETY Value P-value 

Experience from 
inside 

-0,84 0,05 

Experience from 
outside 

-0,87 0,07 

Both experiences 1,86 1,84e-03 

Table 29 – Results of logistic linear regression between 
prior experience and “Safety” 

Table 30 - Results of logistic linear regression between 
prior experience and “Trust” 
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EVs are calmer. However, the combination of the two is irrelevant, meaning that one type of 
experience is enough. 

 

 

 

 

 

 

 

WORRY Value P-value 

Experience from 
inside 

-0,66 0,11 

Experience from 
outside 

0,10 0,84 

Both experiences -0,31 0,61 

INDIFFERENCE Value P-value 

Experience from 
inside 

0,69 0,08 

Experience from 
outside 

0,66 0,14 

Both experiences 0,21 0,71 

STRESS Value P-value 

Experience from 
inside 

-0,50 0,28 

Experience from 
outside 

0,46 0,36 

Both experiences -0,77 0,26 

FEAR Value P-value 

Experience from 
inside 

-0,61 0,18 

Experience from 
outside 

-0,22 0,67 

Both experiences 0,19 0,78 

CONFUSION Value P-value 

Experience from 
inside 

-0,82 0,06 

Experience from 
outside 

0,05 0,92 

Both experiences 0,31 0,62 

ADRENALINE Value P-value 

Experience from 
inside 

-1,16 2,7e-02 

Experience from 
outside 

-1,53 3,47e-02 

Both experiences 1,33 0,15 

Table 31 – Results of logistic linear regression between 
prior experience and “Worry” 

Table 32 – Results of logistic linear regression between 
prior experience and “Indifference” 

Table 33 – Results of logistic linear regression between 
prior experience and “Stress” 

Table 34 – Results of logistic linear regression between 
prior experience and “Fear” 

Table 35 – Results of logistic linear regression between 
prior experience and “Confusion” 

Table 36 – Results of logistic linear regression between 
prior experience and “Adrenaline” 



51 
 

H9: Implementation of signals (visual, acoustic and movement based) is positively correlated with 
positive emotions (Trust, Safety, Adrenaline) and negatively correlated with negative emotions 
(Fear, Stress, Worry, Confusion) 

Method: Kendall’s Tau 

Outcome: Supported 

The aim of the hypothesis is to understand how emotional responses change at the increase of 
perceived effectiveness of signal categories. To test the correlation between variables on Likert 
scale, it has been employed the Kendall’s Tau Test to determine on which emotions the perceived 
effectiveness is significant. According to the results: 

 visual signals (Table 37) are those which impacts the most emotions. Surprisingly, the tau 
value is slightly >0 both for positive and negative emotions, indicating a weak positive 
correlation. 

 

Worry Trust Indifference Stress Safety Fear Adrenaline Confusion 

Tau 0,15 0,1 0,14 0,13 0,13 0,03 0,02 0,09 

P-Value 0,02 0,1 0,02 0,04 0,03 0,7 0,74 0,15 

Table 37 – Results of Kendall’s Tau test between visual signals’ perceived effectiveness and emotional responses 

 acoustic signals (Table 38) have an effect only on worry of participants. Same as visual 
signals, the correlation is weak and positive. 

 
 

Worry Trust Indifference Stress Safety Fear Adrenaline Confusion 

Tau 0,14 0,09 0,08 0,12 0,06 0,07 0,12 0,12 

P-Value 0,02 0,16 0,22 0,07 0,36 0,28 0,07 0,07 

Table 38 - Results of Kendall’s Tau test between acoustic signals’ perceived effectiveness and emotional responses 

 movement-based (Table 39) signals do not affect negative emotions, while seems to be 
positively correlated with trust. 

 Worry Trust Indifference Stress Safety Fear Adrenaline Confusion 

Tau -0,02 0,16 0,12 0,07 0,09 0,06 0,08 0,12 

P-Value 0,8 0,01 0,06 0,3 0,17 0,35 0,22 0,07 

Table 39 - Results of Kendall’s Tau test between movement-based signals’ perceived effectiveness and emotional responses 

By looking at the occurrences matrixes it is possible to have a deeper understanding of the 
correlation that binds the variables. Following figures are the occurrences matrixes for the emotions 
that are influences by signals: 
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 Visual: All the significant values in Visual Signals are weakly and positively correlated. That 
means that as the perceived effectiveness of signals increases, also the intensity of Worry 
(Figure 20), Stress (Figure 21), Indifference (Figure 22) and Safety (Figure 23) increases. For 
Worry and Stress there is similar trend, high values of perceived effectiveness of visual 
signals are concentrated in correspondence of low values of emotion perception, meaning 
that even if the presence of signal may increase the intensity of these emotions, the intensity 
remains low enough to be not concerning. For Indifference and Safety there is similar trend, 
high values of perceived effectiveness of visual signals are concentrated in correspondence 
of mid/high values of emotion perception, meaning that the presence of signal helps 
increasing even the intensity of these emotions. 

 

 

Acoustic: For Acoustic Signals, it appears to be a correlation with the emotion “Worry” (Figure 24). 
Correlation is positive but weak. As for visual signals, values for intensity of worry are generally low, 
but since this is the only emotion that seems to be affected, acoustic signals may create a sense of 
worry in pedestrian without affecting the safety perceived 

Figure 20 Figure 21 

Figure 22 Figure 23 



53 
 

 

Movement-based: it appears to be a correlation with the emotion “Trust” (Figure 25). Correlation 
is positive but weak. However, values are focused on the bottom-left corner of the matrix, meaning 
that even if the correlation is positive, general perceived effectiveness for these signal categories is 
low. If these signals will be perceived as more effective, they could help to increase Trust in EV, but 
at the actual state the effect is weak. 

 

Hypothesis 10: Those who perceive crossing in front of an EV as a threat are more likely to consider 
the low noise of EV’s as a danger. 

Method: Chi-squared 

Outcome: Supported 

The aim of the hypothesis is to verify the reason of the perception of danger associated with EV. 
Figure 26 shows the number of respondents who consider dangerous crossing in front of an EV, by 
the perception of low noise. Among people who consider the crossing dangerous, only a minority 
do not feel as a threat the low noise of EVs. Most of the people who do not consider low noise as a 
threat also don’t perceive the crossing as a danger. However, most of respondents consider the low 
noise as a threat, indicating a general concern. 

Figure 24 

Figure 25 
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Figure 26 

Results suggest the presence of a correlation. To verify it, Table 40 shows the results of a chi-squared 
test. Numbers clearly indicate the presence of a strong correlation between the two variables (P-
value <<0,05). 

Chi-squared P-value 

29,47 3,98e-07 

                   Table 40 – Results of the chi-squared test between perception of danger when crossing and perception of low noise 

Through the analysis of residual values (Table 41), it is possible to understand the type of correlation. 
For those who do not consider low noise as a threat, are more likely not to consider dangerous the 
crossing (residuals for «NO» >+2). Consistently, those who consider low noise as a threat are not 
likely to not consider dangerous the crossing. 

 

Low noise 
perception 

No Yes, always Yes, only when the 
crossing is not 

regulated 

Do not consider as a 
threat 

3,65 -2,43 -1,63 

Consider as a threat -2,14 1,43 0,96 

Table 41 – Residuals values of the chi-squared test for perception of low noise 

Hypothesis cannot be rejected; noise perception is correlated with the feeling of dangerous during 
the crossing 

 

 

No Yes, always
Yes, only when the

crossing is not regulated

Do not consider low noise as a threat 29 17

Consider low noise as a threat 29 23 81
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N° of respondents who consider dangerous crossing in front of an EV, by the 
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H11: People who don’t think of crossing in front an EV as a danger, will show lower level of 
perceived effectiveness all signals' categories (visuals, auditory and movement-based) compared 
to those who think of it as a safety issue 

Method: Kruskal-Wallis 

Outcome: Supported 

Figure 27 shows the average score perceived effectiveness for signals’ families, by perception of 
danger when crossing in front of an EV. While it seems there is no difference between those who 
answered “No” and those who answered “Yes, only in absence of regulations”, those who consider 
the crossing always a threat considers visual and acoustic signals as more effective. For the 
movement-based signals, there is no clear difference between the different responses. 

 
Figure 27 

To investigate correlation, it has been employed a Kruskal-Wallis test, the results of which can be 
seen in Table 42. The numbers confirm the impressions, perception of danger has an influence on 
the perceived effectiveness of visual and acoustic signals (p-value >0), specifically, those who 
consider always the crossing as a threat tend to rate these signals as more effective. Movement-
based signals instead are not affected. 

 

Categories Chi-Squared P-value 

Visual Signals 15,57 4,1e-03 

Acoustic Signals 14,9 5,8e-03 

Movement based Signals 1,4 0,49 

Table 42 – Results of a Kruskal-Wallis test between perception of danger when crossing and signals’ effectiveness 

 

Visual Signals Acoustic Signals Movement based

No 3.41 3.22 1.90

Yes, always 4.57 4.26 2.17

Yes, only in absence of regulations 3.76 3.34 2.13

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

Average score perceived effectiveness for signals’ families, by perception of danger when 
crossing in front of an EV
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Additional analysis 

It has been deemed appropriate to investigate the influence of the same independent variable on 
emotional responses of participants. The same test has been used, considering as dependent 
variables the emotions in scope of this research. 

Figure 28 presents the average score of emotion intensity, by perception of danger when crossing 
in front of an EV: 

• People who don’t perceive danger show lower intensity for Worry, Stress, Fear and 
Confusion, similarly to those who are afraid only in absence of regulations. 

• Those who always consider the crossing a danger shows way higher scores in negative 
emotions compared to other clusters 

• Consistently with expectations, participants who answered “NO” presents higher values for 
positive emotions such as trust and safety. 

• Adrenaline is the emotion with the least difference between clusters 

 
Figure 28 

Through the Kruskal-Wallis test it is possible to determine which emotions are influenced by the 
perception of danger when crossing. Table 43 below show the results of the test and confirm the 
preliminary insights: perception of danger when crossing is significant and has an effect on most of 
negative emotions analysed, but not on the positive emotions. 

 

 

 

 

 

 

Worry Trust
Indiffere

nce
Stress Safety Fear

Adrenali
ne

Confusio
n

No 1.38 3.69 3.76 1.26 3.64 1.22 1.03 1.31

Yes, Always 2.96 3.00 3.04 2.13 3.17 2.09 1.39 2.00

Yes, only in absence of regulations 1.63 3.39 2.90 1.50 3.31 1.43 1.33 1.67

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00

Average score of emotion intensity, by perception of danger when crossing in front of 
an EV
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Value P-value 

Worry 35,67 1,79e-08 

Trust 5,78 0,056 

Indifference 15,9 3,4e-04 

Stress 10,01 6,6e-03 

Safety 3,37 0,18 

Fear 12,7 1,7e-03 

Adrenaline 9,34 9,4e-03 

Confusion 9,99 6,7e-03 

                     Table 43 - Results of a Kruskal-Wallis test between perception of danger when crossing and emotional responses 

5.1.3. Discussion of Results 
The effectiveness of communication signals used by electric vehicles varies across different 

modalities, with visual signals consistently ranking as the most effective in terms of clarity and 

trustworthiness. Acoustic signals and movement-based cues, while beneficial in specific contexts, 

are often perceived as less intuitive, leading to reduced pedestrian confidence. This aligns with 

findings from Bazilinskyy et al. (2023), who highlight the importance of synthetic vehicle sounds in 

enhancing pedestrian safety, especially at lower speeds where EVs are virtually silent. The study 

also emphasizes that continuous high-frequency tones are more effective in deterring pedestrians 

from crossing compared to intermittent beeps, which provide less information during inter-pulse 

intervals. However, these preferences are not universal; they are shaped by demographic 

characteristics, prior experience, and situational factors. 
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Demographic in Signal Preferences 

Older individuals, particularly those aged 46–60 and 60+, show a clear preference for 

communication modalities such as colour-coded signals and musical tones. This finding is consistent 

with research on pedestrian behaviour in relation to eHMIs for automated vehicles, where colour 

and auditory tones enhance perceived safety (Faas & Baumann, 2021). Furthermore, transportation 

modes influence signal preferences; motorcyclists show a stronger inclination toward acoustic 

signals, particularly spoken messages, while public transportation users tend to perceive 

movement-based signals as less effective. This suggests that personal mobility habits shape 

expectations regarding vehicular communication. 

A demographic divide in the study was observed between urban and rural residents. Urban 

pedestrians, who encounter EVs more frequently, reported higher levels of trust in EV 

communication signals and found spoken and movement-based cues more intuitive. This aligns the 

literature, which finds that urban populations are more exposed to EV infrastructure, such as 

charging stations and smart traffic systems, leading to greater acceptance of EVs (Rahman & Thill, 

2023). Koh and Yuen (2023) also emphasize that urban areas experience higher traffic congestion, 

air pollution, and technological integration, making EV adoption more desirable and increasing 

pedestrian confidence in EV safety and benefits. 

In contrast, rural pedestrians in the study expressed greater hesitancy toward spoken messages as 

a form of communication and preferred high-visibility signals such as LED panels or colour-coded 

indicators. This aligns with Zhao et al. (2024), who found that rural residents generally display more 

scepticism toward EVs due to lower exposure to the technology and infrastructural limitations. 

Furthermore, limited access to EV-friendly infrastructure, such as charging stations and well-

maintained roads, contributes to the perceived impracticality of EV adoption in rural areas (Koh & 

Yuen, 2023). These findings reinforce the necessity of customizable eHMI solutions that cater to 

different environmental and demographic contexts. For urban settings, integrating auditory and 

movement-based signals may be effective, whereas in rural areas, visual signals with stronger 

emphasis on colour contrast and large displays could be more appropriate. 

Influence of Experience on Trust and Safety Perceptions 

Prior experience with EVs significantly influences pedestrians' trust and safety perceptions during 

interactions. Studies indicate that hands-on experience with EVs leads to increased comfort and 

confidence in navigating interactions with these vehicles (Rezvani et al., 2015). Both in-vehicle and 

external experiences contribute to improved safety perceptions, reinforcing the need for public 

exposure to EVs through education and urban planning initiatives. Additionally, Zhao et al. (2024) 

found that pedestrians tend to develop their trust in vehicles through direct and indirect 

experiences, emphasizing the role of repeated exposure in shaping behaviour. The results also 

highlight that individuals with exposure to EV simulations exhibit greater confidence in engaging 

with EVs compared to those with only on-road experience. This suggests that structured, controlled 

exposure to EV interactions (such as public demonstrations or virtual reality simulations) could be 

effective in reducing uncertainty and improving public trust in EV communication signals. 

 

The Role of Noise in Perceived Danger 
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The quiet nature of EVs affects pedestrians' subjective perception of risk, underscoring the need for 

auditory cues in urban traffic. Faas & Baumann (2021) found that pedestrians feel notably less 

secure in the absence of traditional engine sounds, a concern that has led to regulatory mandates 

requiring EVs to emit artificial sounds at low speeds. Similarly, Bazilinskyy et al. (2023) demonstrated 

that continuous high-frequency sounds are more effective in deterring pedestrians from crossing 

than intermittent beeps. This evidence supports the argument that auditory signals should be 

carefully designed to balance safety and annoyance. Notably, research suggests that sound pitch, 

modulation, and frequency should be tailored to urban versus suburban contexts, as different 

environmental conditions affect auditory perception. Pedestrian safety research has also 

highlighted that missing auditory cues in EVs pose a risk particularly in scenarios with limited 

visibility or high background noise, making auditory enhancements crucial for pedestrian 

interaction. The effectiveness of communication signals is highly situational. Still Faas & Baumann 

(2021) confirms that traffic density and vehicle speed play crucial roles in determining the success 

of eHMI interventions. Interestingly, contrary to expectations, residential neighbourhoods do not 

significantly impact perceptions of communication effectiveness. This could be due to an urban-

skewed sample in the study, as prior literature suggests that quieter environments generally 

heighten the reliance on auditory cues. 

Vehicle Size as a Psychological Factor 

Increasing vehicle size elicits stronger emotional reactions, including fear and concern, which 

underscores the need for tailored eHMI designs that consider vehicle size as a psychological 

determinant in pedestrian-vehicle interactions. The study’s findings align with existing literature 

indicating that pedestrians exhibit greater hesitation when encountering larger AVs or EVs due to 

the increased perceived risk of injury (Faas & Baumann, 2021).  

Practical Implications of the Findings 

The findings of this study have several important practical implications for EV design, urban 

planning, and regulatory policies: 

The varying preferences for communication signals across demographics and transportation modes 

indicate the need for customizable eHMI designs. For instance, urban environments may benefit 

from a combination of visual and acoustic signals, while rural areas might require enhancements in 

non-verbal visual indicators such as LED panels or colour-coded light signals. Research suggests that 

multimodal eHMI solutions combining light and sound may be particularly effective in reducing 

ambiguity in pedestrian-vehicle interactions (Dey et al., 2024). 

Policymakers should consider adapting current regulations on EV auditory signals to better reflect 

pedestrian preferences. Instead of a one-size-fits-all approach, allowing manufacturers to fine-tune 

sound characteristics, such as frequency or tone, based on environmental factors and pedestrian 

feedback, may enhance safety without increasing noise pollution. Current legislation mandates 

synthetic sounds for EVs at low speeds, but researchers emphasize the importance of optimizing 

sound characteristics for better pedestrian engagement (Bazilinskyy et al., 2023). 

Given the positive correlation between experience and trust in EVs, public awareness campaigns 

and interactive demonstrations can significantly improve safety outcomes. Municipalities could 

introduce VR-based EV crossing simulations in traffic education programs to familiarize pedestrians 
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with EV behaviour. Research indicates that pedestrian familiarity with eHMI systems, whether 

through direct or observational experience, plays a crucial role in trust development (Zhao et al., 

2024). 

As larger vehicles cause greater pedestrian hesitation, city planners and automakers should ensure 

that larger EVs (e.g., electric buses or delivery trucks) incorporate more pronounced visual signals 

and slower approach speeds in high-footfall areas. Deploying augmented reality projections or road 

surface indicators in smart crosswalks could further mitigate pedestrian apprehension (Tabone et 

al., 2023). 
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5.2. Autonomous Vehicles 

The methodology will follow the same approach used for the EV section. The analysis will start by 
showing the distribution of the demographic variables. The key variables include:  

 Age (In years) 

 Gender 

 Study Degree 

 Neighbourhood of residence 

 Ownership of a driver’s license 

 Most frequent means of transportation used 

However, the AV survey was delivered without strict geographical constraints, therefore is not 
possible to do a comparison with the population. 

5.2.1. Sample Description 

This section aims to provide a descriptive overview of the sample involved for the AVs research. 

For the AV survey 183 responses have been gathered. An operation of data cleaning has been done, 
resulting in 4 responses deleted, meaning that analysis has been done using 179 responses. Contrary 
to the survey for EV, the sample pool was international, not restricted to Italy. Participants are very 
widespread from all over the globe, making impossible to do a cluster based on nationality. 

Figures 29-30-31-32-33-34 show graphically the distribution of each of the key demographic 
variables. 

 

48.31%

19.10%

7.30%

25.28%

AGE

18 - 30

31 - 45

46 - 60

Over 60

61.24%

36.52%

0.56%

1.69% GENDER

Female

Male

Non binary

Prefer not to say

Figure 29 Figure 30 
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5.2.2. Findings 

Each of the hypothesis will be tested according to the methodology described before. This section 
aims to delve into a punctual analysis of the hypothesis in order to gather the findings and draw 
conclusions about the perception and emotional responses of pedestrians when interacting with 
AVs 

H1: People who don’t think of crossing in front an AV as a danger, will show lower level of 
perceived effectiveness all signals' categories (visuals, auditory and movement-based) compared 
to those who think of it as a safety issue 

Method: Kruskal-Wallis 

Outcome: Not Supported 

Figure 35 shows the average score perceived effectiveness for signals’ families, by perception of 
danger when crossing in front of an AV, both graphically and quantitively. It can be noted that visual 
signals are those with highest perceived effectiveness independently from the cluster, while the 
difference between acoustic and movement based is less significative. However, from the chart 
looks like there is no other significant difference between the three clusters in terms of perceived 
effectiveness.  

1.69%

79.78%

13.48%

5.06%
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school diploma
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r's degree

High school
diploma
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Figure 35 

To test the correlation between variables, the most appropriate test is the non-parametric Kruskal-
Wallis. Table 44 shows the results of the test: 

Signal Category Chi-squared P-value 

Visual 0,67 0,71 

Acoustic 3,67 0,13 

Movement Based 0,73 0,69 

Table 44 – Results of Kruskal-Wallis test between signal categories and perception of danger when crossing in front of an AV 

All p-values observed are >0,05, meaning that the test does not have statistic relevance, therefore 
there is no proof of correlation between the perceived effectiveness of signals and the perception 
of danger when crossing in front of an AV. 

 

Additional analysis 

However, during the analysis it has been deemed appropriate to test the emotional response of 
pedestrians as well. Figure 36 shows the average score of emotion intensity, by perception of danger 
when crossing in front of an AV: 

Visual signals Acoustic Signals Movement based

No 4.43 2.95 2.57

Yes, always 4.36 3.20 2.76

Yes, only when the crossing is not
regulated (absence of traffic lights)

4.48 3.42 2.77

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Average score perceived effectiveness for signals’ families, by perception of danger 
when crossing in front of an AV
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Figure 36 

From the chart we can see significant differences: 

• People who don’t perceive danger show lower intensity for Worry, Stress, Fear and 
Confusion 

• Opposite trend is for Trust, Safety and indifference 

• Adrenaline is the emotion with the least difference between clusters 

To test the statistic correlation, the most suitable test is the non-parametric Kruskal-Wallis. Table 
45 shows the results: 

 

Signal Category Chi-squared P-value 

Worry 29,75 3.46e-07 

Trust 18,22 1,11e-03 

Indifference 11,84 2,6e-02 

Stress 11,9 2,6e-02 

Safety 22,63 1,22e-05 

Fear 10,49 5,2e-02 

Adrenaline 3,29 0,19 

Confusion 12,1 2,3e-02 

Table 45 – Results of Kruskal-Wallis test between emotional responses and perception of danger when crossing in front of an AV 

The values of “Chi-squared” are quite high, indicating significant differences between groups. 
Looking at the p-values obtained, most are <0,05, meaning that perception of danger when crossing 
is significant and influences all emotions analysed, except for adrenaline and fear (even if for the 
latter is almost significant). 

This insight is relevant even if out of the perimeter of the hypothesis. 

Worry Trust
Indiffere

nce
Stress Safety Fear

Adrenali
ne

Confusio
n

No 1.57 3.62 3.48 1.52 3.95 1.52 1.67 1.81

Yes, always 2.95 2.65 2.68 2.12 2.82 1.98 1.65 2.64

Yes, only when the crossing is not
regulated (absence of traffic lights)

3.00 2.47 2.40 2.33 2.64 2.22 1.93 2.78

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

Average score of emotion intensity, by perception of danger when crossing in front of 
an AV
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H2: Favourite mean of transportation affects preferences for the signals categories (visuals, 
auditory and movement-based) 

Method: Kruskal-Wallis 

Outcome: Supported 

Figure 37 shows the average score for the different signals’ families, divided by the most frequent 
means of transport.  

 
Figure 37 

It can be noticed that: 

• Visual signals are perceived as highly effective in general 

• People who usually walk show lower average scores for visual signals compared to other 
clusters. 

To test the correlation between variables, the most appropriate test is the non-parametric Kruskal-
Wallis. Table 46 the results of the test: 

Signal Category Chi-squared P-value 

Visual 18,07 0,12e-02 

Acoustic 3,33 0,5 

Movement Based 0,73 0,95 

Table 46 – Results of Kruskal-Wallis test between signal categories and transport habits 

According to the results, the signal category influenced by the most frequent mean of transport is 
the visual, as already detected from the chart. However, this test does not explain the type of 
correlation. To achieve this, is necessary to run a post-hoc test. The most suited choice is the Dunn’s 
test, which gives information regarding the type of correlation between groups. Table 47 shows 
results for the categories that has proven to be significant. 

 

 

Walking Car
Bicycle/Electric

scooter
Public transport

Motorcycle/Scoot
er

Visual signals 3.64 4.58 4.44 4.20 4.57

Acoustic Signals 3.00 3.41 3.06 3.14 3.32

Movement based 2.73 2.69 2.67 2.89 2.79

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Average score of perceived effectiveness for signals families, by most frequent mean of 
transport
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Comparison Z P unadj. P adj 

Car - Walking 3,64 0,27e-03 0,27e-03 

Motorcycle/Scooter - 
Walking 

3,27 0,11e-02 0,11e-02 

Table 47 – Dunn’s test results between transport habits for visual signals 

There is a significative difference in the choices between the two clusters. High values of “Z” suggest 
that people who walk tend to show lower level of perceived effectiveness compared to the other 
clusters (“Car” and “Motorcycle/Scooter”), as detected previously from the chart. 

Additional analysis 

The next step involves an investigation regarding the influence that the most frequent means of 
transport may have on the preference of signals methodology. The following histograms show the 
percentages of responses for Visual, acoustic and movement-based signals, within transport cluster. 

VISUAL 

For visual signals “Colours” is by far the favourite methodology by respondents, independently from 
the cluster (Figure 38) 

 
Figure 38 

The chart does not show any significant differences in trends between clusters. To investigate the 
statistic correlation between the variables, Chi-squared is the most suitable when dealing with 
binary variables. Table 48 shows the results of the test 

 

 

 

Visual Images Text Colours Projections on 
the ground 

Turn signals Side light 

Walking Car
Bicycle/Electric

scooter
Public transport

Motorcycle/Scoot
er

Images 27% 18% 18% 24% 16%

Text 23% 18% 18% 19% 9%

Colours 42% 50% 44% 41% 49%

Ground Projections 8% 13% 18% 16% 27%

Turn Signals 0% 0% 3% 0% 0%

Side Light 0% 1% 0% 0% 0%
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40%

50%

60%

Percentage of responses for visual methodologies within transport cluster
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Chi-squared 
Value 

7,86 7,21 2,92 5,53 8,94 1,08 

P-value 0,09 0,13 0,57 0,24 0,16 0,9 

Table 48 – Results of Chi-squared test between visual signal signals and transport habits 

The results confirm the first impression, means of transport does not influence the choice of 
favourite visual methodology, there is no significant difference between groups. 

ACOUSTIC 

For acoustic signals, “Warning Sounds” is the favourite methodology among clusters, which show a 
very similar trend for other signals as well. The only cluster that differs significantly from others is 
“Walking”, which shows a preference for “Spoken Messages” (Figure 39) 

 

 
Figure 39 

From the chart a possible correlation between the cluster “Walking” and the acoustic signals can be 
noticed. This is confirmed by the results of the Chi-squared test (Table 49). 

 

Acoustic Warning Sound Musical Tones Spoken 
Messages 

Chi-squared 
Value 

7,05 4,67 12,41 

P-value 0,13 0,32 0,02 

Table 49 - Results of Chi-squared test between acoustic signal signals and transport habits 

The p-value for the methodology “Spoken Messages” is <0,05. The analysis of residual values 
explains further the correlation between the variables (Table 50). 

Walking Car
Bicycle/Electric

scooter
Public transport

Motorcycle/Scoot
er

Warning Sounds 43% 58% 65% 49% 49%

Spoken Messages 50% 24% 17% 36% 24%

Musical Tones 7% 18% 17% 15% 27%
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30%

40%
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Percentage of responses for acoustic methodologies within transport cluster
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 The "Public Transport" cluster shows a high residual for the response "Yes" (1.81), suggesting 
that participants in this group respond "Yes" more frequently than expected. This residual is 
close to the threshold for significance. 

 Participants who walk have a positive residual for the response "Yes" (1.365), indicating a 
slight tendency toward a higher number of "Yes" responses. 

 

 

Spoken Messages No Yes 

Walking -1,07 1,36 

Car 0,8 -1,02 

Bicycle/electric scooter 0,86 -1,1 

Public transports -1,43 1,81 

Motorcycle/scooter 0,17 -0,21 

Table 50 – Residual values of the Chi-squared test between “Spoken messages” and transport habits 

MOVEMENT-BASED 

For movement-based signals, "Rearview Mirrors" emerges as the preferred approach across all 
clusters, which exhibit a consistent trend in their preferences for other signals. The only notable 
variation is observed with "Public Transport", although these differences do not appear to be 
statistically significant (Figure 40). 

 
Figure 40 

Walking Car
Bicycle/Electric

scooter
Public transport

Motorcycle/Scoot
er

Rearview Mirrors 47% 53% 52% 38% 45%

Appendages 33% 27% 33% 38% 39%

Chassis Movements 20% 20% 15% 24% 16%
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Percentage of responses for movement-based methodologies within transport cluster



69 
 

 

After the Chi-squared test, the first impression is confirmed: among Movement based signals, 
means of transport seems to have no correlation with any methodology (Table 51). 

 

 

Movement 
based 

Rearview 
Movement 

Chassis 
Movement 

Appendages 
Movement 

Chi-squared 
Value 

8,79 0,62 5,27 

P-value 6,6e-02 0,97 0,26 

Table 51 - Results of Chi-squared test between movement-based signal signals and transport habits 

H3: Pedestrians who possess a driver's license will report higher levels of understanding (less 
Confusion) and trust in AV compared to those without a driver's license. 

Method: Kruskal-Wallis 

Outcome: Not Supported 

The goal of the hypothesis is to understand if the knowledge of road rules and behaviour may 
influence the emotional responses of participants. Figure 41 shows the average score of emotion 
intensity, divided by ownership of driver license. From the chart it is noticed: 

• Ownership of driver license seems to have a small positive effect on positive emotions, since 
owners show higher scores for trust and safety 

• It also has positive effect on negative emotions, reducing their intensity (Worry, Fear, Stress) 

• The only exception is Confusion: results between the two clusters are similar, however those 
who do not own a driver license show slightly less confusion perceived 

 
Figure 41 

Worry Trust
Indifferen

ce
Stress Safety Fear

Adrenalin
e

Confusion

Do not own a driver license 2.88 2.47 2.94 2.53 2.59 2.53 2.24 2.47

Own a driver license 2.81 2.70 2.60 2.12 2.89 2.00 1.75 2.63
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Average score of emotion intensity, by ownership of driver license
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To check on statistical significance, a Kruskal-Wallis test has been performed between the gender 
and the emotions. According to results in Table 52, ownership of a driver license is significant solely 
on fear perception, meaning that the hypothesis is partially correct: ownership does not influence 
the understanding, but it has an effect on fear, which is less intense for those who have a driver 
license. 
 

 

Value P-value 

Worry 0,06 0,81 

Trust 0,46 0,5 

Indifference 1,72 0,19 

Stress 2,39 0,12 

Safety 0,7 0,4 

Fear 4,34 3,7e-02 

Adrenaline 2,66 0,1 

Confusion 0,25 0,62 

Table 52 – Results of Kruskal-Wallis between emotional responses and driver license ownership 

H4: Different age clusters will show different preferences for the signals categories 
(visuals, auditory and movement-based) 

Method: Kruskal-Wallis 

Outcome: Not Supported 

The figure below shows the average score for the different signals’ families, divided by age cluster: 

 Visual signals are those perceived with highest effectiveness for every age cluster, way 
higher than acoustics (more accentuated than EVs). 

 Movement based signals are those with the lowest perceived effectiveness for each age 
cluster 

 From the chart there is no particular difference in trends among clusters than can be noticed 

From Figure 42 we can assume the absence of correlation between the variables. 
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Figure 62 

To check on statistic correlation, a Kruskal-Wallis test has been performed on signals for each age 
group. Results in Table 53 indicate that the preliminary impression is correct: age does not influence 
the perceived effectiveness of signals categories (all p-values >0). 

 

Categories Chi-Squared P-value 

Visual Signals 4,75 0,19 

Acoustic Signals 0,88 0,83 

Movement based 5,02 0,17 

Table 53 – Results of Kruskal-Wallis test between signal categories and age clusters. 

Additional analysis 

The goal is to investigate the possible preferences of age groups on the choice of each signal 
methodology. The chart below shows the percentage of responses for visual signals within age 
cluster. 

Visual signals: Colours are by far the most preferred choice for all clusters. Participants over 60 years 
of age are those who present some minimum differences, showing slightly higher preference for the 
methodology “Text” and lower preference for “Ground Projections”. The methodology “Turn 
Signals” and “Side Light” are negligible (Figure 43). 

 

18 - 30 31 - 45 46 - 60 Over 60

Visual signals 4.35 4.62 4.23 4.51

Acousti Signals 3.33 3.24 3.00 3.31

Movement based 2.92 2.65 2.54 2.53
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Average score of perceived effectiveness for each type of signal, by age cluster
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Figure 43 

Acoustic Signals: Warning sounds are the most preferred methodology among clusters. Participants 
over 60 present the same degree of preference for voice messages and musical tones (Figure 44). 

 
Figure 44 

 

Movement-based signals: Participants prefer movement of rearview mirrors, independently from 
the age cluster. This is even more enhanced among over 60 (Figure 45). 

18 - 30 31 - 45 46 - 60 Over 60

Images 21.66% 18.03% 16.67% 17.33%

Text 17.83% 13.11% 12.50% 21.33%

Colours 43.95% 50.82% 45.83% 49.33%

Ground Projections 15.29% 18.03% 25.00% 12.00%

Turn Signals 0.64% 0.00% 0.00% 0.00%

Side Light 0.64% 0.00% 0.00% 0.00%
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Percentage of responses for visual methodologies within age cluster

18 - 30 31 - 45 46 - 60 Over 60

Warning Sounds 52.59% 55.10% 47.37% 58.73%

Voice Message 30.17% 28.57% 31.58% 20.63%

Musical Tones 17.24% 16.33% 21.05% 20.63%
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50.00%
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Figure 45 

The correlation it has been investigated through a Chi-squared test. However, results of Tables 54-
55-56 indicate that age groups do not have any influence on the choice of signal signals (all p-values 
are <0).  

VISUAL Images Text Colours Projections on 
the ground 

Turn signals Side light 

Chi-squared 
Value 

1,72 1,81 2,13 3,87 1,08 1,08 

P-value 0,63 0,61 0,54 0,27 0,78 0,78 

Table 54 – Results of Chi-squared test between visual signal signals and age clusters 

ACOUSTIC Warning Sound Musical Tones Spoken 
Messages 

Chi-squared 
Value 

2,61 2,36 0,76 

P-value 0,47 0,5 0,86 

Table 55 - Results of Chi-squared test between acoustic signal signals and age clusters 

MOVEMENT 
BASED 

Rearview 
Movement 

Chassis 
Movement 

Appendages 
Movement 

Chi-squared 
Value 

5,39 4,64 3,81 

P-value 0,14 0,2 0,28 

Table 56 - Results of Chi-squared test between movement-based signal signals and age clusters 

18 - 30 31 - 45 46 - 60 Over 60

Rerview Mirrors 44.44% 43.75% 44.44% 62.71%

Appendages 34.92% 31.25% 33.33% 25.42%

Chassis Movements 20.63% 25.00% 22.22% 11.86%
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10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

Percentage of responses for acoustic methodologies within age cluster
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H5: Neighbourhood of residence affects preferences for the signals categories (visuals, auditory 
and movement-based) 

Method: Kruskal-Wallis 

Outcome: Not Supported 

Figure 46 shows the average score for the different signals’ families, divided by neighbourhood. 

• Visual signals are those with highest perceived effectiveness, followed by acoustic and for 
last the movement based. 

• Rural clusters show a slightly higher score for visual signals and lower for acoustic and 
movement-based, compared to other clusters 

• Overall, the behaviour of the three clusters is similar between one another 

 
Figure 46 

Table 57 show the outcome of the Kruskal-Wallis test. Results indicate that there is no influence of 
neighbourhood on the perceived effectiveness of signal categories. 

Categories Chi-Squared P-value 

Visual Signals 2,54 0,28 

Acoustic Signals 2,62 0,27 

Movement based Signals 1,58 0,45 

Table 57 – Results of Kruskal-Wallis test between signal categories and neighbourhood of residence 

 

Additional analysis 

It has been deemed appropriate to investigate also the possible influence of neighbourhood of 
residence on choice of signal signals.  

Rural (outside the city) Suburban (outside city center)
Urban (city center/near city

center)

Visual signals 4.75 4.32 4.43

Acoustic Signals 2.92 3.10 3.36

Movement based 2.33 2.74 2.78

0
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3

4

5

Average score of perceived effectiveness for each signal family, by neighbourhood
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Visual signals: According to Figure 47, rural areas show a slightly stronger preference for colours 
and text compared to other visual signals, while urban areas exhibit a balanced but slightly lower 
preference for colours compared to rural and suburban areas. Colours are the most chosen 
methodology across all neighbourhoods, suggesting they are widely perceived as effective visual 
signals. 

 
Figure 47 

Acoustic signals: Figure 48 shows that warning sounds are the most preferred acoustic methodology 
across all neighbourhoods, particularly in rural areas, where they dominate with over 90% 
preference, while the other two areas have moderate preferences for voice messages and musical 
tones, suggesting a m 

ore balanced reliance on diverse acoustic signals. Rural areas completely lack interest in voice 
messages (0%), possibly due to environmental or cultural factors favouring simpler auditory cues. 

 
Figure 48 

 

Rural (outside the city) Suburban (outside city center)
Urban (city center/near city

center)

Images 14% 19% 20%

Text 19% 13% 18%

Colours 52% 48% 46%

Ground Projections 14% 20% 15%

Turn Signals 0% 0% 0%

Side Light 0% 0% 0%
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Percentage of responses for visual methodologies within neighbourhood

Rural (outside the city)
Suburban (outside city

center)
Urban (city center/near

city center)

Sum of Warning_sounds 92.31% 50.00% 52.60%

Sum of Voice_message 0.00% 28.57% 29.17%

Sum of Musical_tones 7.69% 21.43% 18.23%
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Movement-based signals: Figure 49 shows that across all neighbourhoods, review mirrors are 
consistently the most chosen method for movement-based signals, particularly in suburban areas. 

Rural areas favour appendages stronger compared to suburban and urban areas. Chassis 
movements are generally less preferred across all neighbourhoods but show slightly higher 
acceptance in urban settings. 

 
Figure 49 

The correlation it has been investigated through a Chi-squared test (Table 58-59-60). The results 
indicate that neighbourhood of residence has an influence solely on the choice of “Spoken 
Messages”.  

 

 

VISUAL Images Text Colours Projections 
on the 
ground 

Turn signals Side light 

Chi-squared 
Value 

0,73 1,22 0,72 1,03 0,32 0,32 

P-value 0,69 0,54 0,7 0,6 0,85 0,85 

Table 58 – Results of Chi-squared test between visual signal signals and neighbourhood of residence 

Acoustic Warning Sound Musical Tones Spoken 
Messages 

Chi-squared 
Value 

4,9 2,09 8,03 

P-value 0,09 0,35 1,7e-02 

Table 59 - Results of Chi-squared test between acoustic signal signals and neighbourhood of residence 

Rearview Mirrors Appendages Chassis Movement

Rural (outside the city) 50.00% 37.50% 12.50%

Suburban (outside city center) 56.10% 26.83% 17.07%

Urban (city center/near city center) 46.91% 32.47% 20.62%
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Movement 
based 

Rearview 
Movement 

Chassis 
Movement 

Appendages 
Movement 

Chi-squared 
Value 

0,56 1,39 1,4 

P-value 0,76 0,5 0,5 

Table 60 - Results of Chi-squared test between movement-based signal signals and neighbourhood of residence 

To understand the type of correlation, the table below shows the residual values of the Chi-squared 
test (Table 61). Deviations for clusters “Suburban” and “Rural” are quite low, meaning that the 
answers’ distribution is close to the expected values. For “Rural”, deviation is wider, indicating that 
people of this cluster are way less likely to consider “Spoken messages” as their preferred method 
of communication 

 

Spoken 
Messages 

No Yes 

Rural 1,68 -2,14 

Suburban -0,04 0,04 

Urban -0,48 0,61 

Table 61 – Residual values of Chi-squared test between “Spoken messages” and neighbourhood of residence 

H6: Female pedestrians will report lower levels of perceived safety and trust (and consequently 
higher in worry and stress) in interactions with AVs compared to male pedestrians. 

Method: Kruskal-Wallis 

Outcome: Not Supported 

Figure 50 shows the average for each emotion, clustered by gender. The differences between 
clusters are minimal, since the scores are similar for all the emotions. Only for confusion it can be 
noticed a slight increase in the score for female participants. Overall, the chart does not suggest the 
presence of a possible correlation between the variables. 
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Figure 50 

Table 62 shows the result of the Kruskal-Wallis test, indicating that, consistently with the preliminary 
insight, gender is not correlated with emotional responses of participants.  

 
 

Chi-squared P-value 

Worry 0,34 0,95 

Trust 1,11 0,77 

Indifference 1,12 0,77 

Stress 0,45 0,93 

Safety 0,97 0,81 

Fear 0,49 0,82 

Adrenaline 2,27 0,52 

Confusion 3,99 0,26 

Table 62 – Results of Kruskal-Wallis test between emotional responses and gender 

H7: Pedestrians with higher study degree are more likely to show more confidence (higher values 
of Trust and Safety) towards AV 

Method: Kruskal-Wallis 

Worry Trust Indifference Stress Safety Fear Adrenaline Confusion

Female 2.85 2.70 2.61 2.12 2.87 2.07 1.80 2.73

Male 2.75 2.62 2.68 2.22 2.85 2.03 1.77 2.40
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Average score of emotion intensity, by gender
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Outcome: Not Supported 

Figure 51 shows the Average score of emotion intensity, divided by study degree. From the chart 
following insight can be drawn: 

 Trust and safety increase with education, particularly for those with a master’s degree or 
higher. 

 Fear and worry tend to decrease as education levels rise. 

 Indifference, stress, and confusion remain relatively stable across all groups. 

 

 
Figure 51 

However, the results of the Kruskal-Wallis test (Table 63) do not support the insights, indicating 
instead the absence of correlation between study degree and emotional responses.  

 

 

 

 
 

Chi-squared P-value 

Worry 2,80 0,42 

Trust 3,99 0,26 

Indifference 1,18 0,76 

Worry Trust
Indiffer

ence
Stress Safety Fear

Adrenali
ne

Confusi
on

Less than a high school diploma 2.33 2.00 3.00 2.00 2.67 2.00 1.67 2.00

High school diploma 3.08 2.46 2.46 2.46 2.54 2.25 1.33 2.67

Bachelor's/Master's degree 2.80 2.70 2.65 2.12 2.87 2.04 1.87 2.62

Higher than a Master's degree 2.56 3.11 2.67 2.00 3.67 1.78 2.00 2.56
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0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Average Score of emotion intensity, by degree
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Stress 2,87 0,41 

Safety 5,69 0,13 

Fear 1,37 0,41 

Adrenaline 5,26 0,15 

Confusion 1,10 0,80 

Table 63 – Results of Kruskal-Wallis test between emotional responses and study degree 

 

H8: Pedestrians with prior experience or interaction with AVs will report higher levels of perceived 
safety and trust when interacting with AVs compared to those with no prior experience. 

Method: Linear Logistic Regression 

Outcome: Supported 

Figure 52 shows the average score for the different emotions, divided by prior experience with AVs: 

• Simulation experience seems to have the most positive effect, increasing trust and safety 
while reducing negative emotions like worry and fear. 

• No experience is associated with higher negative emotions (worry, fear, confusion) and 
lower trust and safety, indicating that prior exposure helps mitigate uncertainty. 

• Experience on road and outside shows higher indifference and adrenaline scores, indicates 
slightly increased stress and worry compared to specific experiences. 

 

 
Figure 72 

Worry Trust
Indifferen

ce
Stress Safety Fear

Adrenalin
e

Confusion

Experience_inside_road 2.0 2.0 2.8 2.4 2.9 2.3 2.4 2.9

Experience_inside_simulation 2.4 3.1 3.0 2.0 3.3 1.8 1.7 2.3

Experience_outside 2.3 2.9 3.1 1.8 3.2 1.8 2.4 2.4

Experience_road_and_outside 2.7 1.7 3.7 2.7 3.0 3.0 3.0 4.3

No experience 3.0 2.6 2.5 2.2 2.7 2.1 1.7 2.7

0.0
0.5
1.0
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2.0
2.5
3.0
3.5
4.0
4.5
5.0

Average Score for emotion perception, by prior experience
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Other combinations of experiences have been excluded from the analysis because of the very low 
number of respondents who have 2 or more type of experiences (Less than 4 respondents).   

To check on statistical significance, a Linear Logistic Regression has been performed between the 
type of prior experience and the emotions. The results of Table 64-65 indicate that for trust and 
safety, only experience with a simulation appears to be significant, with a positive effect. 

Surprisingly, experience with a simulation appears to be the only one significant being positively 
correlated (Value >0), instead of the experience on the road. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Additional analysis 

It has been deemed appropriate to check the correlation also with the other emotions in the scope 
of the research. According to the results of the Table from 66 to 71 fear, confusion worry, and 
adrenaline have been proved to be correlated to prior experience, while the other emotions are 
not. Surprisingly, experience on the road is significant only for worry, while for the other emotions 
experience on simulation is the crucial factor. 

Single experiences tend to have positive effects (reducing intensity of negative emotions), while 
surprisingly the mixed experience, which is significative for fear, worry and confusion, tends to have 
a negative effect. This may be due to varied exposure leading to mixed perceptions. 

 

 

 

 

TRUST Value P-value 

Experience from 
inside 

-1,13 0,21 

Experience on a 
simulation 

0,86 2,6e-02 

External 
experience 

0,61 0,16 

Experience from 
inside and 
outside 

-1,57 0,28 

SAFETY Value P-value 

Experience from 
inside 

-0,36 0,69 

Experience on a 
simulation 

0,90 0,02 

External 
experience 

0,52 0,23 

Experience from 
inside and 
outside 

0,08 0,95 

Table 64 – Results of Logistic Linear Regression between 
“Trust” and prior experience with an AV 

Table 65 – Results of Logistic Linear Regression between 
“Safety” and prior experience with an AV 
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WORRY Value P-value 

Experience from 
inside 

-2,49 7,63e-0,3 

Experience on a 
simulation 

-0,63 0,10 

External 
experience 

-0,99 0,02 

Experience from 
inside and 
outside 

3,13 0,02 

INDIFFERENCE Value P-value 

Experience from 
inside 

-0,52 0,46 

Experience on a 
simulation 

0,54 0,16 

External 
experience 

0,55 0,19 

Experience from 
inside and 
outside 

1,48 0,22 

STRESS Value P-value 

Experience from 
inside 

0,14 0,85 

Experience on a 
simulation 

-0,46 0,27 

External 
experience 

-0,82 0,06 

Experience from 
inside and 
outside 

1,67 0,23 

CONFUSION Value P-value 

Experience from 
inside 

-0,92 0,21 

Experience on a 
simulation 

-0,49 0,2 

External 
experience 

-0,9 0,038 

Experience from 
inside and 
outside 

4,9 3,75e-04 

Table 66 – Results of Logistic Linear Regression between 
“Worry” and prior experience with an AV 

 

Table 67 – Results of Logistic Linear Regression between 
“Indifference” and prior experience with an AV 

 

Table 68 – Results of Logistic Linear Regression between 
“Stress” and prior experience with an AV 

 

Table 69 – Results of Logistic Linear Regression between 
“Confusion” and prior experience with an AV 
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H9: As the size of the vehicle increases, so increase intensity levels for negative emotions (Worry, 
Stress, Confusion, Fear). 

Method: Wilcoxon 

Outcome: Supported 

Figure 53 shows the difference in average of the scores for the intensity of the emotions as the size 
of the vehicles increases. 

It can be noted that for negative emotions (Worry, Stress, Confusion, Fear) the difference is >0, 
meaning that the intensity tends to be higher as the size of the vehicle increases, while for positive 
emotions (Trust, Safety) difference is <0, meaning that people feel less secure at the increasing of 
the vehicle size. The only emotion that seems to be not influenced is Adrenaline. 

ADRENALINE Value P-value 

Experience from 
inside 

0,61 0,45 

Experience on a 
simulation 

-0,53 0,23 

External 
experience 

1,09 0,015 

Experience from 
inside and 
outside 

0,45 0,77 

FEAR Value P-value 

Experience from 
inside 

-0,43 0,61 

Experience on a 
simulation 

-0,91 3,46e-02 

External 
experience 

-1,04 1,97e-02 

Experience from 
inside and 
outside 

3,35 1,46e-02 

Table 70 – Results of Logistic Linear Regression between 
“Fear” and prior experience with an AV 

 

Table 71 – Results of Logistic Linear Regression between 
“Adrenaline” and prior experience with an AV 
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Figure 53 

Overall, results are similar to those encountered for EVs. Through the Wilcoxon test the correlation 
it has been investigated (Table 72). Similarly to EVs, size of the vehicle is a factor that influences 
most of the emotions in scope of this research. Those which are not impacted are confusion, 
indifference and adrenaline. 

 

 Emotions P-value 

Worry 
3,33e-08 

Stress 
2,84e-06 

Fear 
4,80e-03 

Confusion 
0,07 

Safety 
5,37e-06 

Trust 
1,30e-0,3 

Indifference 
0,1 

Adrenaline 
0,94 

Table 72 – P-values of Wilcoxon test on emotional responses 

H10: Implementation of signals (visual, acoustic and Movement based) is positively correlated 
with positive emotions (Trust, Safety, Adrenaline) and negatively correlated with negative 
emotions (Fear, Stress, Worry, Confusion) 

Method: Kendall’s Tau 

Outcome: Supported 

-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40

Worry

Trust

Indifference

Stress

Safety

Fear

Adrenaline

Confusion

Difference in average scores on the perception of each emotion as the size of the 
vehicle increases
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The aim of the hypothesis is to understand how emotional responses change at the increase of 
perceived effectiveness of signal categories. To test the correlation between variables on Likert 
scale, it has been employed the Kendall’s Tau Test to determine on which emotions the perceived 
effectiveness is significant. According to the results of Tables 73-74-75: 

 Visual signals appear to be significant only in relation with trust, presenting a positive 
correlation (Tau >0). 

 

Worry Trust Indifference Stress Safety Fear Adrenaline Confusion 

Tau 0,07 0,14 0,65 -0,06 0,13 -0,08 0,01 0,06 

P-Value 0,27 0,04 0,32 0,33 0,055 0,22 0,85 0,33 

Table 73 – Results of Kendall’s Tau test between emotional responses and perceived intensity of visual signal category 

 Surprisingly, acoustic signals are not correlated with any of the emotions in scope.   
 

Worry Trust Indifference Stress Safety Fear Adrenaline Confusion 

Tau 0,02 0,05 -0,02 0,1 0,06 0,1 0,12 0,05 

P-Value 0,73 0,4 0,79 0,12 0,3 0,12 0,06 0,46 

Table 74 - Results of Kendall’s Tau test between emotional responses and perceived intensity of acoustic signal category 

 Movement-based signals are positively correlated with worry, even if the correlation is 
weak. All other emotions seem to be unimpacted.  

 

Worry Trust Indifference Stress Safety Fear Adrenaline Confusion 

Tau 0,14 -0,06 0,04 0,12 -0,04 0,11 0,1 0,08 

P-Value 0,03 0,33 0,54 0,06 0,53 0,09 0,1 0,22 

Table 75 - Results of Kendall’s Tau test between emotional responses and perceived intensity of movement-based signal category 

By looking at the occurrence’s matrixes (Figures 54-55) it is possible to have a deeper understanding 
of the correlation that binds the variables. Following figures are the occurrences matrixes for the 
emotions that are influences by signals: 
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 Visual: Trust Levels 4 and 5 correspond predominantly to the highest visual signal 
effectiveness ratings (Levels 4-5), showing a strong positive relationship between the two. 
Specifically, the highest count (42 occurrences) is observed for Visual Signal Level 5 and Trust 
Level 2. This indicates that the perception of highly effective signals significantly boosts trust. 
Very few respondents report Trust Level 1, regardless of the perceived effectiveness of visual 
signals. This suggests that even minimally effective visual signals help to prevent very low 
trust levels. 

 Movement based: There is a clear trend that as the perceived effectiveness of movement-
based signals increases, worry levels generally decrease. However, most responses for 
effectiveness are 2 and 3, meaning that generally the perceived effectiveness for these 
signals is low. The highest perceived effectiveness (Level 5) corresponds to lower worry 
levels. However, a very small number of respondents rated signals as highly effective. 

 

5.2.3. Discussion of Results 

The findings contribute to a deeper understanding of the factors influencing the effectiveness of 
autonomous vehicle (AV) signal communication and pedestrian trust in AV technology. These 
results align with and expand upon existing literature, revealing that visual signals are consistently 

Figure 54 

Figure 55 
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the preferred communication modality, while demographic variables play a nuanced role in 
shaping pedestrian interactions with AVs. 

The study confirms that visual signals, particularly colour-coded eHMIs, are the most effective 
communication method for AVs. This aligns with previous research showing that pedestrians 
primarily rely on visual cues to interpret AV intent and movement (Faas & Baumann, 2021). Light-
based eHMIs, such as LED strips or display panels, have been found to enhance pedestrian 
comprehension and increase perceived safety, a trend supported by recent findings on multimodal 
eHMIs (Dey et al., 2024). 

While visual signals are dominant, acoustic signals rank second in effectiveness. This reflects prior 
research by Bazilinskyy et al. (2023), who emphasize the role of sound-based warnings in 
increasing pedestrian awareness, especially at night or in heavy traffic conditions. However, the 
study findings suggest that movement-based signals (e.g., vehicle tilting or adjusting its trajectory) 
are the least effective, which is consistent with previous literature indicating that such cues can be 
ambiguous and difficult to interpret quickly in real-world traffic situations (Zhao et al., 2024). 

Demographic in Signal Preferences 

While demographic factors do not significantly impact the overall preference for visual signals, 
they do influence specific modality preferences. 

 Rural vs. Urban Differences: 
The study found that rural pedestrians exhibit lower trust in spoken auditory signals, which 
aligns with research suggesting that rural residents have less exposure to AV technology 
and are less familiar with voice-based vehicular communication cues (Rezvani et al., 2015). 
In contrast, urban pedestrians, who frequently interact with AV testing programs and 
smart infrastructure, report greater confidence in spoken eHMI signals, likely due to 
familiarity and technological adaptation (Rahman & Thill, 2023). 

 Age-Based Variations: 
The study found that age does not significantly impact overall signal rankings; however, 
older pedestrians tend to prefer structured, highly visible visual signals over spoken 
messages or movement-based cues. This is supported by Faas & Baumann (2021), who 
found that older pedestrians struggle with auditory-based eHMIs and prefer predictable, 
colour-coded visual cues. 

 Gender Differences in AV Trust and Interaction: 
While the study found that gender does not significantly influence emotional responses to 
AV interactions, prior research suggests that women tend to be more cautious and express 
greater safety concerns regarding AVs, especially in environments where visual or auditory 
cues are ambiguous (Tao et al., 2024). 

Influence of Experience on Trust and Safety Perceptions 

Prior exposure to AVs plays a critical role in shaping trust and safety perceptions. The study found 
that simulation-based experiences significantly improve pedestrian trust in AVs and reduce fear, 
while real-world exposure does not yield the same level of confidence. This aligns with previous 
literature, which highlights that controlled, structured AV interactions (such as VR-based 
simulations) can be more effective than spontaneous on-road encounters in building trust (Pires 
Abdullah & Sipos, 2024). 
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Interestingly, the study also found that repeated exposure to AVs does not produce cumulative 
emotional benefits, suggesting that a single, well-structured introduction to AV behavior may be 
as effective as multiple interactions. This supports findings by Zhao et al. (2024), who argue that 
familiarity with AV technology is a key determinant of trust, but that trust development plateaus 
after an initial period of adjustment. 

The Psychological and Emotional Impact of AVs on Pedestrians 

The study reveals that trust and stress levels are strongly influenced by the perceived risk 
associated with crossing in front of an AV. Pedestrians who view AVs as reliable and predictable 
report lower stress and fear levels, a finding that supports previous research on pedestrian 
comfort in AV interactions (Faas & Baumann, 2021). 

Another critical determinant of pedestrian trust is driving experience. The study found that 
individuals who hold a driver's license exhibit lower fear levels and greater confidence when 
interacting with AVs. This is consistent with Rezvani et al. (2015), who found that understanding 
vehicular behaviour from a driver’s perspective reduces anxiety in AV interactions. 

Vehicle Size as a Psychological Factor 

A major finding of the study is that larger AVs evoke stronger negative emotions, such as fear and 
distrust, compared to smaller AVs. This aligns with literature showing that pedestrians perceive 
larger vehicles as more intimidating, leading to heightened caution (Faas & Baumann, 2021). 

However, the study also indicates that despite stronger cognitive recognition of risk, larger AVs do 
not significantly increase physiological stress responses (e.g., adrenaline spikes). This suggests that 
while pedestrians consciously acknowledge the increased danger posed by larger AVs, their 
subconscious fear responses remain relatively stable. This finding is novel and warrants further 
investigation into how vehicle size influences pedestrian decision-making and behavioural 
adaptation in AV interactions. 

Practical Implications for AV Design and Policy 

One of the most important takeaways is the need for specific eHMI design that accounts for the 
varying preferences and trust levels among pedestrians. Visual signals, particularly colour-coded 
and light-based eHMIs, emerge as the most universally effective means of communication. Given 
that older pedestrians and individuals with limited AV exposure exhibit a preference for 
structured, high-contrast visual cues, AV manufacturers should prioritize universally recognizable 
LED indicators that clearly convey the vehicle’s intent. For urban settings, dynamic lighting 
systems, such as pulsating LED strips or surface projections on crosswalks, could further enhance 
the visibility and predictability of AVs. However, movement-based cues, which were ranked as the 
least effective in this study, should not be relied upon in isolation but rather supplemented with 
visual and auditory signals to improve their clarity. 

Beyond the design of eHMIs, the study reinforces the importance of structured exposure 
programs in shaping pedestrian trust and safety perceptions. Simulation-based experiences have 
proven to be particularly effective in boosting confidence in AVs, suggesting that virtual reality 
(VR) and augmented reality (AR) technologies could play a pivotal role in public education. 
Municipalities and technology firms should collaborate to introduce VR-based pedestrian training 
modules that allow individuals to experience AV interactions in controlled settings. Similarly, 
interactive public demonstrations, where pedestrians can engage with AVs in controlled 
environments, could enhance familiarity and mitigate concerns about AV unpredictability. Public 
engagement efforts should also extend beyond urban centres, as the study highlights the 
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pronounced scepticism towards AVs in rural areas. Lack of exposure, coupled with infrastructure 
limitations, contributes to hesitation among rural pedestrians, necessitating targeted outreach 
initiatives. Informational campaigns that address common misconceptions, combined with hands-
on exposure to AV technology, could help bridge the acceptance gap between urban and rural 
communities 

Urban infrastructure should also evolve alongside AV technology to facilitate safer interactions. 
The integration of smart crosswalks that communicate AV intentions through visual indicators 
could significantly improve pedestrian confidence. Similarly, dedicated AV-pedestrian interaction 
zones in high-footfall areas, where AVs adhere to stricter yielding protocols, may help ease 
concerns about AV unpredictability. In cities experimenting with large-scale AV deployment, 
redesigning intersections to accommodate AV-specific lanes or pedestrian-priority signals could 
further enhance safety and efficiency. 

The emotional and psychological impact of AVs on pedestrians also warrants closer attention. The 
study reinforces prior research that larger AVs evoke stronger negative emotions, leading to 
increased hesitation and perceived risk. However, while pedestrians cognitively recognize the 
greater danger posed by larger vehicles, physiological stress responses such as adrenaline spikes 
appear not to escalate proportionally. This suggests that while pedestrians may be wary of AVs, 
their reactions remain measured and calculated rather than instinctively fearful. Nevertheless, AV 
designers should take these perceptions into account, perhaps by incorporating more pronounced 
safety signals in larger vehicles to reassure pedestrians of their intent. 
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6. Conclusions and Future Research 

6.1. Conclusions 

This research aimed to contribute to the existing literature on pedestrian interactions with 
autonomous and electric vehicles in crossing scenarios. A key focus was the role of eHMIs in 
facilitating clear communication, enhancing pedestrian trust, and promoting acceptance of these 
vehicles. Both AVs and EVs present challenges in pedestrian interaction, but their communication 
gaps differ significantly: EVs raise safety concerns due to their quietness, requiring artificial sound 
solutions to improve detectability during motion or manoeuvring, whereas AVs introduce 
uncertainty in pedestrian trust due to the absence of a human driver. Moreover, the adoption rates 
of AVs and EVs vary considerably across EU countries and globally, further justifying the need for 
separate analyses. Given these differences in both technological characteristics and diffusion, this 
study examined EVs and AVs separately to address their specific pedestrian interaction challenges 
more effectively. 

Specifically, this research explored pedestrian preferences regarding different categories of 
communication signals, the role of emotions and human factors, and the influence of vehicle size 
on perceived safety for both EVs and AVs. These preferences were then analysed in relation to 
sociodemographic factors, providing a comprehensive understanding of methodologies to enable 
the pedestrians-vehicle communication and consequently the diffusion of such emerging mobility 
technologies. 

The findings for electric vehicles highlighted a consistent trend: visual signals (such as colour-coded 
lights) emerged as the most clearly and positively perceived modality, offering pedestrians a 
heightened sense of clarity and reassurance. This preference is consistently observed across 
different age groups, neighbourhoods, and levels of formal education. Interestingly, an individual's 
primary mode of transport also influences their perceptions. For example, habitual walkers tend to 
prioritize visual and movement-based cues more than those who primarily drive. 

. Another key finding concerns the perceived quietness of EVs. It is primarily pedestrians who 
already perceive EVs as unsafe that consider external alerts, including sounds, especially necessary 
for feeling secure. Across all these dimensions, prior experience proves to have a significant 
influence: individuals who have experience in riding in or interacting with EVs report to be more 
confident and less anxious about crossing the road in front of them. Furthermore, vehicle size also 
plays a significant role on perceptions: as the perceived bulk of an EV increases, participants’ 
negative emotions (like worry or fear) tend to intensify, coupled with a decline in safety and trust. 

A similar emphasis on visual signals characterizes the autonomous vehicle findings, where lights, 
screens, or projected cues consistently appear to foster the highest pedestrian confidence. In 
contrast to EVs, however, acoustic signals do not seem to significantly alter participants’ emotions: 
people did not strongly connect specific sounds with a reduction in fear or worry. Furthermore, 
having prior direct experience with AVs, especially through controlled simulations, often translates 
into reduced wariness and greater trust. General demographic variables (age, gender, urban or rural 
background) do not systematically predict a pedestrian’s readiness to embrace movement-based 
signals or, for that matter, how they respond to AVs on the street. Instead, familiarity with the 
technology consistently leads to more positive attitudes. In short, while autonomous vehicles share 
many of the same communication challenges seen with EVs, it appears that well-crafted visual 
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interfaces and constructive exposure, particularly simulation-based, can substantially alleviate 
public concerns and provide a stronger sense of security in encounters with AVs. Even for AVs, 
vehicle size heightens negative emotions. Larger AVs evoke more apprehension especially in 
pedestrians that may instinctively hesitate when confronted with an imposing, driverless vehicle.   

6.2. Limitations and Future Research 

This study has provided useful insights into pedestrian interactions with AVs and EVs, however 
significant limitations must be acknowledged in order to interpret the findings. 

First, the data was based only on self-reported replies obtained using a standardized questionnaire. 
While self-reported data is an effective method of obtaining subjective perceptions and attitudes, 
it is prone to bias. Participants' responses may have been influenced by recall bias, which is the 
inability to accurately recollect relevant past experiences, or social desirability bias, in which they 
altered their comments to comply with perceived expectations or norms. These factors may have 
caused disparities between participants' reported behaviours and their actual reactions in real-
world situations. 

In addition, the two questionnaires were administered to two different samples. The EV 
questionnaire was filled by only Italian participants, while the AV one did not have any geographic 
limitation. This may have nuanced the possible differences related to culture and demographics. 
Cultural factors tied to the country of residence can influence risk perceptions, trust in technological 
progress, and individual mobility habits. Such cultural variables make more challenging the direct 
comparisons between research carried out in different countries. 

Moreover, this study evaluated three signal categories (visual, acoustic, and movement-based) to 
determine their usefulness in improving pedestrian safety and trust. While these categories are 
fundamental, they only cover a portion of the possible communication modalities. Future research 
could widen the scope by looking into additional signal kinds, such as haptic feedback or augmented 
reality systems, to gain a better understanding of their impact on pedestrian interactions. 

Finally, the study's dependence on hypothetical circumstances presents a significant weakness. 
Participants did not have the opportunity to interact with AVs and EVs in real-world settings. This 
lack of direct, experiential interaction may have resulted in a mismatch between what participants 
expected and how they behaved when confronted with a moving vehicle in a real-world setting. The 
lack of situational reality may limit the findings' applicability to complex and unpredictable urban 
traffic conditions. 

Recommendations for Future studies 

Based on the results, several areas for future research emerge. Given the notably high effectiveness 
of visual signals in promoting trust and clarity, it is recommended to focus future investigations on 
deepening different forms of visual communication, such as colour-coded lights, ground projections, 
dynamic LED panels, or text-based and icon-based displays—and how they can be optimized for 
various pedestrian profiles. Field experiments in real urban and suburban settings could then assess 
how this variety of visual signals, alongside acoustic (continuous tones, voice messages, intermittent 
alerts) and movement-based cues (dynamic indicators, moving appendages), influences actual 
pedestrian behaviour, including reaction times and hesitation at crosswalks. 
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Furthermore, it is recommended to implement more structured forms of exposure to these vehicles: 
immersive training or gradual familiarization programs (for instance, VR experiences or live 
demonstrations) may help researchers examine how trust and perceived safety evolve across 
different demographics.  
It would also be beneficial to analyse mobility habits and varying levels of digital or technological 
awareness among pedestrians, with a view to customizing signals for specific user needs and 
thereby enhancing overall safety and acceptance. 
Finally, cultural variations may shape attitudes toward mobility and technology, complicating cross-
national comparisons, thus calling for more in-depth local analyses and, where possible, tailored 
investigations that reflect socio-cultural, regulatory, and infrastructural differences. 

  



93 
 

7. Appendix 

7.1. Questionnaire – EV (Translated in English)  
This questionnaire has been distributed in Italian language. Here is the translated version in English. 

Questionnaire on Interaction Between Pedestrians and Electric Vehicles 

Section 1: Demographic Information 

1. Age (years): 

 Under 18 

 18-30 

 31-45 

 46-60 

 61 and over 

2. Gender: 

 Male 

 Female 

 Non-binary/Third gender 

 Prefer not to say 

3. What is your highest level of education? 
(If you are a student, select the level you are currently attending): 

 Less than a high school diploma 

 High school diploma 

 Bachelor's/Master's degree 

 Higher than a Master's degree 

4. In what type of neighbourhood do you live? 

 Urban (city centre/near city centre) 

 Suburban (outside city centre) 

 Rural (outside the city) 

5. Do you have a driver's license? 

 Yes 

 No 

6. What is the means of transport you use the most? 

 Car 
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 Motorcycle/Scooter 

 Bicycle/Electric scooter 

 Public transport 

 Walking 

 Other (please specify) 

 

Section 2: Electric Vehicles with Traditional Driving 

This section investigates preferences regarding communication methods between electric vehicles 
(EVs) and pedestrians. Electric vehicles are powered by rechargeable batteries, offering numerous 
advantages such as reducing greenhouse gas emissions and increasing energy efficiency. A 
distinguishing aspect of EVs is their quietness during operation, which, while improving urban quality 
of life, also presents unique challenges. 

7. Have you ever experienced/interacted with an electric vehicle (EV)? 
(You may select multiple options): 

 Yes, I have driven an EV at least once 
 Yes, I have been a passenger in an EV but never a driver 
 Yes, I have seen an EV on the road 
 No, I have never had any experience with an EV 
 Other (please specify) 

8. Do you consider the low noise of electric vehicles a possible safety problem? 

 Yes 

 No 

9. Do you think crossing in front of electric vehicles is a safety problem? 

 Yes, always 

 Yes, only when the crossing is not regulated (e.g., absence of traffic lights) 

 No 

10. On a scale from 1 to 5 (1 = not at all and 5 = very intense), how intense do you think the 
following emotions are when crossing the road/a junction in front of an electric vehicle? 

 1 2 3 4 5 

Worry      

Trust      

Indifference      

Stress      

Safety      

Fear      

Adrenaline      
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Confusion      

Other (please specify)      

11. On a scale from 1 to 5 (1 = not at all and 5 = very intense), how intense do you think the 
following emotions are when crossing the road/a junction as the size of the electric vehicle 
increases (e.g., motorcycles, SUVs, buses, etc.)? 

 1 2 3 4 5 

Worry      

Trust      

Indifference      

Stress      

Safety      

Fear      

Adrenaline      

Confusion      

Other (please specify)      

12. On a scale from 1 to 5 (1 = not important at all and 5 = very important), how important do 
you think it is for an electric vehicle to communicate its actions and intentions (e.g., giving 
way, resuming motion, etc.) to pedestrians? 

 1 

 2 

 3 

 4 

 5 

13. On a scale from 1 to 5 (1 = least effective and 5 = most effective), rate the following methods 
of communication to understand the intentions of an electric vehicle: 

 1 2 3 4 5 

Visual signals (e.g., lights, displays, text, colour 

changes on the chassis) 

     

Acoustic signals (e.g., sounds, voice messages) 

 

     

Movements of vehicle components (e.g., movement 

of dedicated flaps/appendages, rearview mirrors) 

     

14. Among visual signals, which types do you find most effective for understanding the 
intentions of an electric vehicle? (You may select multiple options): 

 Coloured lights placed on the roof and/or side doors (e.g., green to give way, red to 
stop) 

 Displays with text on the front hood 
 Displays with animated images (e.g., arrows, symbols) 
 Light projections on the ground (e.g., pedestrian crossing patterns) 
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 Other (please specify) 

15. Among acoustic signals, which types do you find most effective for understanding the 
intentions of an electric vehicle? (You may select multiple options): 

 Warning sounds (e.g., alarm) 
 Voice messages (e.g., "I'm stopping," "Please, cross") 
 Musical tones 
 Other (please specify) 

16. Among signals involving movements of vehicle components, which types do you find most 
effective for understanding the intentions of an electric vehicle? 
(You may select multiple options): 

 Movement of rearview mirrors 
 Movement of dedicated appendages 
 Change in the height of the vehicle's body relative to the road 
 Other (please specify) 
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7.2. Questionnaire - AVSurvey on Interaction Between Pedestrians 
and Autonomous Vehicles 

Section 1: Demographic Information 

1. Age (years): 

Under 18 

18-30 

31-45 

46-60 

61 and over 

2. Gender: 

Male 

Female 

Non-binary/Third gender 

Prefer not to say 

 

3. Nationality: 

[To be written in a text box here] 

4. What is your highest level of education? (If you are a student, select the level you are currently 

attending): 

Less than a high school diploma 

High school diploma 

Bachelor's/Master's degree 

Higher than a Master's degree 

5. In what type of neighborhood do you live? 

Urban (city center/near city center) 

Suburban (outside city center) 

Rural (outside the city) 

6. Do you have a driver's license? 

Yes 

No 

7. What is the means of transport you use the most? 

Car 

Motorcycle/Scooter 

Bicycle/Electric scooter 

Public transport 

Walking 

Other (please specify) 

 

Section 2: Interaction with Autonomous Vehicles 

This section aims to investigate preferences regarding communication methods between 
autonomous vehicles and pedestrians. Below is the definition of autonomous driving according to 
Sae International Standards: 
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Fully autonomous vehicles: These vehicles are fully autonomous and capable of performing all 
driving tasks under all conditions. They do not require any human intervention at any time. They can 
handle all types of roads and weather conditions autonomously; the vehicle is completely self-
sufficient. 

8. Have you ever experienced or interacted with an autonomous vehicle (AV)? (You may select 

multiple options) 

 Yes, I have experienced an AV on the road at least once 

 Yes, I have experienced an AV in a simulation at least once 

 Yes, I have seen AV on the road 

 Yes, I have seen an AV in a simulation 

 No, I have never had any experience with an AV 

 Other (please specify) 

9. Do you think pedestrian crossing in front of autonomous vehicles is a problem in terms of 

safety? 

Yes, always 

Yes, only when the crossing is not regulated (absence of traffic lights) 

No 

10. On a scale from 1 to 5 (1 = not at all and 5 = very intense), how intense do you think the 

following emotions are when crossing the road/a junction in front of an autonomous vehicle? 

 

 

 1 2 3 4 5 

Worry      

Trust      

Indifference      

Stress      

Safety      

Fear      

Adrenaline      

Confusion      

Other (please specify)      

 

11. On a scale from 1 to 5 (1 = not at all and 5 = very intense), how intense do you think the 

following emotions are when crossing the road/a junction as the size of the autonomous vehicle 

increases (e.g., motorcycles, SUVs, buses, etc.)? 

 1 2 3 4 5 

Worry      

Trust      

Indifference      

Stress      

Safety      
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Fear      

Adrenaline      

Confusion      

Other (please specify)      

 

12. On a scale from 1 to 5 (1 = Not important at all and 5 = Very important), how important do 

you think it is for an autonomous vehicle to communicate its actions and intentions (e.g., giving 

way, resuming motion, etc.) to pedestrians? 

1 

2 

3 

4 

5 

13. On a scale from 1 to 5 (1 = Least effective and 5 = Most effective), rate the following methods 

of communication to understand the intentions of an autonomous vehicle: 

 

 1 2 3 4 5 

Visual signals (e.g., lights, displays, text, colour 

changes on the chassis) 

     

Acoustic signals (e.g., sounds, voice messages) 

 

     

Movements of vehicle components (e.g., 

movement of dedicated flaps/appendages, 

rearview mirrors) 

     

 

14. Among visual signals, which types do you find most effective for understanding the 

intentions of an autonomous vehicle? (You may select multiple options) 

 Coloured lights placed on the roof and/or side doors (e.g., green to give way, red to stop) 

 Display with text positioned on the front hood of the car 

 Display with animated images positioned on the front hood of the car (e.g., arrows, 

symbols) 

 Light projections on the ground (e.g., pedestrian crossing patterns) 

 Other (please specify) 

15. Among acoustic signals, which types do you find most effective for understanding the 

intentions of an autonomous vehicle? (You may select multiple options) 

 Warning sounds (e.g., alarm) 

 Voice messages (e.g., "I'm stopping," "Please, cross") 

 Musical tones 

 Other (please specify) 

16. Among signals involving movements of vehicle components, which types do you find most 

effective for understanding the intentions of an autonomous vehicle? (You may select multiple 

options) 
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 Movement of rearview mirrors 

 Movement of dedicated appendages 

 Change in the height of the vehicle's body relative to the road (e.g., lifting or lowering 

the vehicle) 

 Other (please specify) 
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