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Chapter 1

Introduction

Atomic clocks can be considered as the cornerstone of the development of GNSS
(Global Navigation Satellite System), aerospace and telecommunication technolo-
gies. Without the usage of proper timekeeping devices location services would not
be possible. The accuracy of location services relies on precise timekeeping, since
GNSS satellites determine position by measuring the time it takes for signals to
travel between the satellite and the receiver. Without highly stable clocks, errors
in time measurement would translate into significant errors in positioning. The
functionality of tracking satellite constellations, including GPS, GALILEO, and
COMPASS, relies on the same technological innovation: rubidium vapor-cell clocks
[1]. The rubidium vapor-cell is the beating heart of this kind of atomic clock,
ensuring superior short-term frequency stability. Unlike quartz oscillators, which
gradually lose accuracy due to drift, rubidium clocks utilize atomic transitions to
sustain a highly stable reference frequency [2] [3].
Atomic clocks function by exploiting the natural oscillations of atoms as a highly
stable frequency reference. In a rubidium vapor-cell clock, a laser tuned to a specific
frequency interacts with rubidium atoms, exciting them to a higher energy state.
The system then locks onto the precise frequency of this atomic transition, ensuring
an exceptionally stable time reference. Any fluctuations in atomic behavior, such as
movement within the vapor cell, can introduce noise and affect the clock’s accuracy.
Given the critical role of frequency stability in atomic clocks, understanding and
mitigating noise sources is essential. In this context, precise characterization of
atomic noise becomes a fundamental step in improving clock performance.
Cross-correlation techniques are used to separate intrinsic atomic noise from other
noise sources, such as electronic or optical fluctuations. By comparing signals from
multiple independent detection channels, it is possible to isolate the common atomic
noise while suppressing uncorrelated background noise. This method enhances the
accuracy of noise characterization and contributes to the overall stability of atomic
clocks.
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1 – Introduction

This thesis was conducted in collaboration with the National Institute of Metrolog-
ical Research (INRIM). The institute hosts the Scientific Department of Time and
Frequency, specialized in time references and the development of atomic clocks.
INRIM is also the Italian authority responsible for distributing the UTC(IT), the
legal time reference for Italy.

The subject of this thesis work is the definition of a method that allows the
measurement of the atomic noise of a vapor cell. This noise contribution can
be measured analyzing the intensity spectrum of the light passing through the
atomic medium. The proposed set-up achieved this goal using a differential setup,
where the measurement of cross-correlated channels is used to enhance the atomic
noise signal. The definition of an effective methodology is based on the theoretical
knowledge of the mathematical methods used and the physical phenomena involved.
At a later stage, the actual measurement of the intensity noise will be approached
and processed in order to obtain the desired result.

A brief list of the topics that will be covered:

• In section 1.1 atomic clocks and rubidium vapor-cell clocks working principles
are described, with a focus on the relation between absorption intensity noise
and clock uncertainty.

• Chapter 2 offers an overview to the different types of noise contributions
that constitutes the total intensity noise that affects a vapor cell absorption
measurement.

• Chapter 3 is a mathematical description of the cross-correlation in his theoret-
ical and statistical characteristics. As a natural consequence, the integration
between this processing technique and the optical circuit is also investigated.

• In Chapter 4 every electronic devices is thoroughly examined in order to list
main characteristics of the instruments involved for the subsequent measures.

• In Chapter 5 a preliminary set of measures are performed with the aim of
estimating the laser technical noise and the shot noise of the system.

• In Chapter 6 a final measurement setup and a custom method are implemented
for the atomic noise detection.

2



1 – Introduction

1.1 Rubidium Vapor-cell clocks

Atomic clocks were designed and imagined since the beginning of the World War
II, at that time, the USA still relied on quartz oscillators as its time standard. In
1939, the physicist Isidor Isaac Rabi proposed, at the National Bureau of Standards
(NBS) [4], the introduction of a new timekeeping devices which relies on a new
magnetic resonance technique. In 1944 Rabi was awarded with the Nobel Prize.
One of the most significant consequences of his work was the redefinition of the
second (still used today), based not on astronomical observations but on the natural
frequency of cesium, approximately 9.1914 billion oscillations per second. This
shift from using Earth’s rotation to measure time to relying on the stable atomic
properties of cesium marked a transformative moment in the history of timekeeping,
laying the foundation for the precise atomic clocks that we rely on today. Among
the various types of atomic clocks, rubidium vapor-cell clocks (also called an Rb
oscillator) are a type of atomic clock that relies on the hyperfine transition of
rubidium atoms. Unlike cesium atomic clocks, which use a beam of atoms in a
vacuum, rubidium clocks operate using a small glass vapor cell containing rubidium
gas mixed with an inert buffer gas. Due to its characteristics, it was initially
developed as a laboratory instrument and soon after adopted for tactical military
communications. In 1977, the USA GPS program was launched with both cesium
and rubidium-based clocks. Nowadays rubidium vapor-cell clocks play a big role
in the Global Navigation Satellite Systems (GNSS), the 31 active GPS satellites
embed four rubidium-based atomic clocks updated daily [1] [5].

Figure 1.1: Example of triangulation in a 2-D world. Satellites S1, S2 , S3 are
necessary to estimate the position of the point P.

3



1 – Introduction

GPS systems determine their location by measuring the time it takes for signals to
travel from multiple satellites. Since radio waves move at the speed of light, even a
nanosecond-level error in timekeeping could introduce significant positioning errors,
potentially several meters in location accuracy. To determine a user’s position, a
GPS receiver relies on a technique called trilateration. In order to determine the
position of a point in a n-dimensional space, n+1 measurement are needed. This
concept in a 2-D space is called triangulation because only 3 detectors are needed
to evaluate the position (fig.1.1). In a 3-D world at least 4 satellite are needed
to determine position which can be expressed by the triple: latitude, longitude
and altitude [6]. GNSS engineer evaluates the advantages of a frequency Standard
using as primary thumb rule three distinct parameters: its size, weight and power
requirements (SWaP). The correct trade-off between these characteristics makes the
best design solution. The working principle of satellite atomic clocks is substantially
unchanged overtime and it consists in a space-qualified OCXO (ovenized crystal
oscillators) frequency-locked to an atomic hyperfine transition [7].
The Rb resonant frequency, 6.835 GHz, can be revealed by a photodiode but in
order to trigger this transition engineers must create a compact space-compatible
radiating source. Using an electrodeless Rb discharge lamp the correct nominal
wavelength was naturally emitted by the rubidium plasma.The lifespan of an RF-
discharge lamp is limited primarily due to the gradual depletion of rubidium atoms
and the degradation of the glass enclosure caused by prolonged exposure to plasma
emissions. If the rubidium quantity is too high, it can generate excessive noise.
Conversely, if the amount of rubidium is too low, a significant percentage of atoms
diffuse into the glass, causing the remaining rubidium concentration to be too low
to produce sufficient plasma emission. The discharge lamp clock is a technology
that needs maintenance of 20 years, it was the first light source introduced for this
kind of devices.

Figure 1.2: Airbus RAFS clock, taken from [8]

Unlike RF-discharge lamps, lasers provide an ideal light source thanks to their

4



1 – Introduction

narrower bandwidth and higher efficiency. The introduction of laser sources changes
the approach of timekeeping devices and introduces new laser clocks like the
Coherent Population Trapping (CPT) clock or the pulsed optical pumping (POP)
scheme. The introduction of the CPT technique unlocks a new category of chip-
scale atomic clocks (CSAC) [9], smaller size, lower power consumption, and lower
cost. CPT clocks presents two phase-coherent lasers interact with the atomic vapor-
cell with a certain difference in frequency but equal intensities for the purpose of
containing the light-shift effect. CSACs can reach a physical dimension of 20 cm3.

Figure 1.3: NIST chip scale atomic clock developed in 2011, taken from [10]

1.2 POP Clock

Starting from 2012, INRIM has developed and characterized a specific frequency
standard working in a pulsed regime named rubidium vapor-cell called Pulsed
Optically Pumped (POP) clock [2]. The working principle of this device is based
on three time slotted phases: preparation, interrogation, and detection.
First the laser, passing through the Rb cell at a specific resonance frequency, pumps
atom from the level 52S1/2 to the energy level 52P3/2 (see figure 1.4). This transition
called D2 makes atom going back, if power is enough, to the initial ground state.
Due to hyper-fine structure atoms can populate the energy level 52S1/2 F = 2 but
also the level 52S1/2 F = 1. After this step of preparation, if the pumping rate was
sufficiently high, a population imbalance between the two ground states is achieved.

5



1 – Introduction

Figure 1.4: Energy levels of 87Rb

The next phase, called interrogation, involves microwave power and it is independent
from the "optical" domain. Microwave power is divided into two time pulses so
that the transition F=2 -> F=1 is probed (blue curve figure 1.5). This is the
phase during which the local oscillator frequency is compared to the atomic clock
frequency by means of Ramsey interferometry [11].

Figure 1.5: Ramsey scheme

After the interrogation a distribution of atoms in level F=2 is generated; it depends
on the characteristic of the microwave pulses, it is called Ramsey pattern. In order

6



1 – Introduction

to obtain a pattern with narrow fringes, Ramsey time (fig. 1.5) between pulses
should be chosen as large as possible [12]. In figure 1.6 a Ramsey fringe curve is
presented, centered at the resonance frequency of the rubidium.
In the last phase, detection, the population of atoms in the level F=2 of the ground
state is probed by observing the light absorption. The laser intensity will be a point
of the curve 1.6, which means that by changing microwave detuning value, detection
operation allows the control system to detect the central natural frequency. This
phase is responsible for the correction that should be applied to local oscillator
which generates the microwave frequency pulse during the Ramsey interaction time.
The corrections to the quartz oscillator in a closed feedback-loop system results in
the final output frequency of 10 MHz.

Figure 1.6: Example of a Ramsey-fringe patterns dependent on the microwave
detuning, calculation follows the theory developed in [13]. This plot is centered at
the natural frequency of the rubidium shifted due to the buffer gas.

POP clocks are an relatively complex system that for simplicity can be organized
in 3 fundamental subsystems: optics, physics, electronics (1.7).

7



1 – Introduction

Figure 1.7: POP schematic, taken from [14]. Dashed frames include optics (OP),
physics (PP) and electronics (EP) subsystem

The precision of this complex device relies on the tuning of the local oscillator
after the interrogation phase of the vapor cell. There are some measurable physical
quantities that affects with unwanted noise the clock frequency such as temperature,
relative humidity, barometric pressure, laser noise ecc [15].
Vapor cells are filled with the target atom (rubidium) and a buffer gas used to
narrow the resonance line by confining the Rb atoms in order to reduce wall
collisions [1]. Typical gases are Ne, Ar, Kr. Atoms perform a Brownian motion,
as they collide with the buffer gas. This reduces the average speed, effectively
eliminating the Doppler effect, a mechanism known as Dicke narrowing [16]. Atoms
can undergo thousands of elastic collisions with the buffer gas before loosing their
internal state coherence. In this way, the atomic clock cycle can be increased
by orders of magnitude, from microseconds to milliseconds. However, buffer-gas
collision also have a drawback: the introduction of an average net shift in the clock
transition, that is dependent on the pressure and temperature of the buffer gas.
This enhances the environmental sensitivity of vapor-cell clocks. The shift can be
either positive or negative, depending o the buffer-gas species [17]. Therefore, a
mitigation strategy is to use a mixture of two buffer gases with opposite sign, to
transforming the temperature sensitivity from linear to quadratic. The POP clock
uses a mixture of Ar (positive pressure shift) and N2 (negative pressure shift), with
a total pressure of 25 Torr.

8



1 – Introduction

1.3 Error Signal Generation

The tuning process of the local oscillator νs to the center frequency of resonance
ν0 is achieved by the usage of a proper error function. The picture 1.8 presents
a simplified version of a vapor-cell clock, where the feedback loop of the control
system is controlled by the servo processing block and an acousto-optic modulator
creates two windows of preparation and detection.

Figure 1.8: Simplification of a complete vapor-cell clock schematic. PD1 is
the photodiode that detects the atomic signal, which is used to detect the clock
transition, image was taken from [18]

The intensity of the laser observed by the photodiode in the detection phase is
distributed (like showed in the previews section) on a the Ramsey fringe figure 1.6
[19]. The figure 1.9 represent a magnification of the central lobe of the fringes. By
using a modulated wave, the microwave frequency is periodically shifted between
νs + δν and νs − δν , with νs equal to the oscillator frequency. This operation
enables the collection of two absorption signal which contributes to the creation of
error function.

9



1 – Introduction

Figure 1.9: absorption function I(ν)

By subtracting the intensities of the two received absorption samples in this
modulation scheme makes possible to minimize the error function defined as
∆I = I(νs + δν) − I(νs − δν). In the figure 1.10 ∆I is represented as function
of the difference between the resonance frequency and the frequency of the local
oscillator. Maximum slope is reached when the clock is in tune.

Figure 1.10: error function of ∆I, ∆I = I(νs + δν)- I(νs − δν)

A well-known result related to the previews considerations is the equation 1.1 [19]
which links the Allan variance (Appendix C) of the error to the intensity measured
signal I(ν). For this relation it has been proved that the ADEV (σy(τ)) has an
inverse proportionality with the quality factor (Q). The factor σI is referred to the
fluctuation of the signal.

10



1 – Introduction

σy(τ) ∝ 1
Q

σI(τ = 1s)
I0

1ñ
τ/s

(1.1)

A typical clock stability behavior σy(τ) is presented in the figure 1.11 [20].

Figure 1.11: Clock stability of a POP clock (black line), taken from [20]
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Chapter 2

Noise Contributions

This chapter presents a theoretical analysis of the possible noise contributions
in an atomic vapor cell designed for absorption measurements. The focus is on
identifying and characterizing the main noise sources that can affect the precision
of the measurement, without considering direct experimental aspects. The signal
of interest is the laser beam propagating through the atomic vapor cell, whose
behavior is influenced by various physical processes fig. 2.1.

Figure 2.1: lateral view of the cell illuminated by a laser beam

The noise contributions can be categorized into four main types:

• Laser technical noise: This includes amplitude fluctuation due to instabilities
in the laser source itself, this fluctuations can introduce correlated noise that
affects the measurement process.

• Shot noise: This fundamental noise source arises from the discrete nature of
photons. It sets a lower limit on the precision of optical measurements and is
directly related to the intensity of the detected signal.

• Atomic Brownian noise: This noise originates from the thermal motion of
atoms in the vapor cell. The random movement of atoms affects the absorption
profile and can introduce fluctuations in the measured signal.

12



2 – Noise Contributions

• PM-AM noise: This refers to noise arising from the coupling between phase
modulation (PM) and amplitude modulation (AM) of the laser field. Even
in the absence of intentional modulation, intrinsic noise in the laser system
can lead to phase-amplitude conversion, contributing to unwanted signal
fluctuations.

In this chapter,a theoretical discussion is provided for this noises contribution
related their fundamental origins and their impact on absorption measurements in
atomic vapor cells.

2.1 Relative Tntensity Noise of the Laser
The optical power of a laser is a crucial parameter that influences its performance.
This power can be separated into two components: a constant average power,
denoted as <P>, and a fluctuating term, α, which varies over time during mea-
surement. The fluctuating term, α, represents the relative intensity fluctuations.
Thus, the optical power of the laser P can be expressed by the following formula:

P =< P > (1 + α) (2.1)

As described in the equation, the laser’s intensity spectrum is proportional to the
square of the optical power. Therefore, it is possible to write the intensity spectrum
as shown in equation 2.2:

SP (f) =< P >2 Sα(f) (2.2)

Here, Sα(f) refers to the power spectral density of the relative intensity fluctuations,α.
For a laser diode, the optical power is directly proportional to the photocurrent I
received by a photodiode. By defining I as the photocurrent and I0 as its DC value,
the laser’s Relative Intensity Noise (RIN) can be introduced. The relationship
between the optical intensity spectrum and the Laser RIN is expressed by the
following equation:

RIN = SI(f)
I2

0
= SP (f)

< P >2 = Sα(f) (2.3)

Like most semiconductor devices, laser diodes exhibit a flicker amplitude noise.
When properly biased above the threshold current, this noise becomes independent
of the laser’s emitted optical power. This 1/f noise is generally most significant
at lower frequencies (below 100 kHz) [21], and it can be mitigated by using a
modulator. In GaAlAs lasers, the origin of 1/f noise is often linked to fluctuations
in spontaneous emission or variations in the laser gain within the cavity, contributing
to the overall noise characteristics of the laser [22].

13



2 – Noise Contributions

2.2 Shot Noise
Shot noise is caused by the discrete nature of photons which causes a random
fluctuation on the surface of the photodiode. This noise is detected together with
other contribution and by his nature its a power dependent factor.
This noise contribution can be modeled by the product of the energy of a photon
and the optical power.

Sshot = 2hν < P > (2.4)

In the equation 2.4, ν is the frequency, <P> is the mean optical power and h is
the Plank constant. The equation of the photocurrent is the following.

I = ηP (2.5)

The factor η is the Responsitivy. of the photodiode and "I" is the photocurrent
corresponding to the specific optical power. Typical responsitivy for silicon detectors
in the visible and near-infrared (NIR) laser are in the range 0.5 to 0.8 A/W. For
the current application NIR laser will be used which have the lowest responsitivy.

2.3 Brownian Noise
Brownian noise, also known as Brownian motion noise, refers to a specific type of
noise signal originally introduced to describe the random movement of particles
suspended in a fluid. First observed by Robert Brown in 1827 while studying the
motion of pollen grains in water, this model can also be applied to various other
physical phenomena.

Figure 2.2: Simulation of three pollen particles suspended in water that covers a
Brownian motion; initial position (x,y) = (0,0); initial speed (vx,vy)=(0,0)

14



2 – Noise Contributions

Rubidium atoms behave like any small particles suspended in a fluid when they
are confined in a cell with a buffer gas. Atomic motion is the cause of an intensity
noise for laser signal which transit in the atomic medium.

Figure 2.3: Laser intensity distribution for w = 0.34 mm

In the figure 2.3 is showed a Gaussian graphical representation of the intensity
profile of a laser beam. By introducing the factor w for the beam radius, the
relationship between position and light intensity I(x, y) is expressed in equation
2.6.

I(x, y) = I0e
−2 x2+y2

W 2 (2.6)

The optical power of a laser which shines an atomic vapor is function of the
electrical power E(x, y) and the Lorentzian function like expressed by formula 2.8.
The relation presents ω which is fixed to the resonance frequency of the rubidium
for the D2 transition, µRb instead is the dipole moment of the atom [23].

P(t) = µ2
Rbω

4ℏ |E(x, y)|2 Γ
(∆ω + kνz)2 + Γ2 (2.7)

In the equation 2.7 it is present a Lorentzian multiplicative coefficient which is
related to the absorption of the atomic medium at different frequencies. The
relationship between E(x, y) and laser intensity I(x, y) is presented in the equation
2.8, 2.9.

E(x, y) = E0e
jkz−iωt (2.8)
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2 – Noise Contributions

I0 = 1
2cϵ0E2

0 (2.9)

If the laser perfectly centered in the peak of the rubidium absorption curve the
power has a negligible Lorentzian behavior simplifying the general description.

P(t) ≈ σI(x, y) , σ = 2µ2
Rbω

cϵ0ℏΓ (2.10)

P(t) ≈
nØ
j

σI(xj(t), yj(t)) (2.11)

The formula 2.10 isolates the two main contribution of the power, σ, the standard
formula for the photon absorption cross section and I, laser intensity. Every atom
of the vapor cell has the same σ and shone with the same laser intensity so that
a summation of every power contribution is needed to estimate the total power.
The equation 2.11 shows the result of the superposition of n (atoms per volume)
atoms using letter j as atomic index. Linking the definition of the power spectrum
(SBr(f)) to the simplified P(t) equation 2.12 is obtained [23].

SBr(f) = 1
Tmeas

Ú Tmeas

0
|P(t)|e−jωtdt =

= 1
Tmeas

------
nØ
j

Ú Tmeas

0
σI(xj(t), yj(t))e−jωtdt

------
(2.12)

The equation 2.12 contains like before the atomic index j where every atom perform
a random walk in free space independently. By using the property of random walk
the final approximate expression is obtained.

SBr(f) ≈ 2nσ2LP 2D

π3w4
1
f 2 (2.13)

In the equation 2.13 [23] the PSD of the Brownian Noise is presented; its main
contributions are: σ2 absorption cross-section, L length of the cell, w diameter of a
beam, P optical power , D diffusion coefficient, n atoms per volume. The main
consequences of this formula is that Brownian noise has a spectrum of f−2 and it
is constant in a controlled environment (stable temperature).
Due to the inverse proportionality with the laser beam diameter the Brownian
noise is also called transit noise [24] because, the effect of absorption of a beam
more concentrated has a higher impact on the absorption measure. A smaller beam
(lower w) causes effect of atomic interruption of the laser beam which increases the
atomic noise (SBr(f) ∝ 1/w4).
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2.4 PM-AM Noise
Generally, lasers are manufactured with a narrow bandwidth to ensure stable
operation. However, the emitted frequency can be affected by various noise sources,
leading to fluctuations in phase and amplitude. One of the main consequences
of phase noise is its potential conversion into intensity noise, known as PM-AM
noise conversion. The phase instability of the laser beam causes a frequency
fluctuation that, when passing through an absorbing medium such as an atomic
vapor cell, can be converted into amplitude modulation. This occurs because the
laser’s frequency noise interacts with the medium’s absorption profile, leading to
variations in transmitted intensity. Defining ηL as the laser frequency and ηL0
as the frequency at which the absorption curve is centered, the absorption line
shape of the atomic medium through which the laser is passing can be expressed
as L(νL − νL0) = I(νL)/I0 [25]. Furthermore, if δνL represents the laser frequency
fluctuation, the PM noise can be converted into AM noise with the heuristic
formula 2.14. This equation expresses how the intensity noise is proportional to
the frequency noise weighted by the slope of the absorption profile.

δI(νL)
I0

= δνL ·
----- dL

dνL

----- (2.14)

Like showed in the Figure 2.4 the maximum output noise can be reached if the
laser is tuned in the maximum slope points of the absorption curve. Consequently,
operating a laser near these regions can significantly impact the stability of the
optical system.

Figure 2.4: Phase noise example in a generic rubidium absorption profile, y-axis
represents relative absorption L = I(νL)/I0
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Chapter 3

Cross-correlation

Cross-correlation is a fundamental mathematical operation used to quantify the
similarity between two signals. This technique is particularly valuable in scenarios
where identifying correlated fluctuations between datasets is crucial, such as in
noise analysis. In optical systems designed for atomic noise measurements, cross-
correlation methods play a key role in enhancing signal detection and filtering
out unwanted disturbances.This chapter provides a comprehensive mathematical
overview of the cross-correlation operation, followed by an exploration of its im-
plementation in optical schemes for atomic noise measurement. Specifically, it is
structured as follows:

• Section 3.1 and Section 3.2 introduce the fundamental mathematical aspects
of cross-correlation and the statistical tools associated with it.

• Section 3.3 explores the different types of cross-correlation estimators that
can be implemented.

• Section 3.4 presents optical schemes inside which cross-correlation techniques
are applied with the purpose of detecting atomic noise of a rubidium vapor-cell
in order to distinguishes it from spurious contribution.
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3 – Cross-correlation

3.1 Basics
A powerful method for characterizing amplitude modulation (AM) noise allows
the measurement of the power spectral density (PSD) of a specific device under
test (DUT), even in the presence of additional additive noise contributions. Unlike
traditional PSD measurements that typically involve single-channel acquisition, this
method uses two channels and applies cross-spectral processing after acquisition.
The experimental setup is illustrated in Figure 3.1. The DUT presents a common-
mode noise, c(t), which is measured by two channels, A and B. These channels also
capture the instrument’s front-end additive noise contributions, a(t) and b(t)

Figure 3.1: Basic cross-spectrum measurement

The figure 3.1 is a representation of the experimental setup. The DUT presents a
common-mode noise c(t) measured with two channels A and B of an instrument
that offers its front-end analog noise additive contribution a(t) and b(t).

x(t) = c(t) + a(t) (3.1)
y(t) = c(t) + b(t) (3.2)

The signals x(t) and y(t) are the final inputs to the measurement system. After
simultaneous acquisition from both channels, the cross-spectrum of the two channels
can be computed as follows:

< Syx(f) >m= 2
T

< Y (f)X(f)∗ >m=

= 2
T

< [C(f) + B(f)][C(f) + A(f)]∗ >m=
(3.3)

Expanding this expression it is obtained:
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3 – Cross-correlation

= 2
T

[< C(f)C(f)∗ >m + < C(f)A(f)∗ >m +

< B(f)C(f)∗ >m + < B(f)A(f)∗ >m] =
(3.4)

< Syx(f) >m=< Sc(f) >m +O(
ñ

1/m) (3.5)

Here, m represents the number of averaged spectral samples used in the computation
of the cross-spectrum. As m increases (i.e., as more samples are taken), the noise
contributions from uncorrelated sources become progressively smaller, following
a 1/m convergence rate. This means that, to obtain a reliable and accurate
measurement of the PSD, a large number of samples (m) is required. The term
< C(f)C(f)∗ >m corresponds to < Sc(f) >m, which represents the power spectral
density of the common-mode noise (Wiener-Khinchin theorem). The other terms
in the equation are uncorrelated, and their contributions decrease with a

ñ
1/m

trend as m increases, making them progressively less significant.
However, two main issues arise in this measurement setup ([26]):

• convergence follow the
ñ

1/m trend, which means that a large number of
samples is required to effectively reduce the impact of uncorrelated noise and
obtain high-quality measurements.

• Correlated noise sources, such as cross-talk and environmental fluctuations,
cannot completely been eliminated by this method. These sources may still
affect the accuracy of the results and must be carefully managed or mitigated
in the experimental setup.
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3.2 Statistical Tools
The cross-spectrum of two signals is equal to the Fourier transform of the cross-
correlation between them [27].

Syx(f) = F{Ryx(τ)} (3.6)

The equivalence rules of convolution allows a further simplification with correlation
because the Fourier transform of a cross-correlation Ryx(τ) is equal to Y (f)X∗(f).
Usually signals are acquired in a huge number of windows to estimate the Expected
value of the DUT and it’s standard deviation.

E{Syx(f)} = E{Y (f)X∗(f)} (3.7)

Frequency for the purposes of this analysis can be considered fixed at a specific
value, in order to consider Syx(f = f0) a random variable (3.2).

Figure 3.2: 3D visualization of the selection of a specific frequency in the sequence
of ⟨Syx⟩i
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The expected value can be estimated performing the average on a selected group
of m samples, for the specific frequency. This procedure can be easily performed
assuming that this process is ergodic. It is possible to interchange time statistics
and ensemble statistics.

E{Syx(f)} = ⟨Syx⟩m = ⟨Y X∗⟩m (3.8)

After the isolation of real and imaginary parts (eq. 3.9) it is possible to obtain the
modulus of the product of the two Fourier transforms (eq. 3.10).

⟨Syx⟩m = ⟨(YRXR + YIXI) + i(YIXR − YIXR)⟩m (3.9)

|⟨Syx⟩m| =
ñ

[⟨YRXR + YIXI⟩m]2 + [⟨YIXR − YIXR⟩m]2 (3.10)

|⟨Syx⟩m| =
ñ

[⟨ZR⟩m]2 + [⟨ZI⟩m]2 (3.11)

The equivalence showed in the equation 3.11 is particularly important because there
is an important property of statistics that can be used to obtain the distribution of
the random variable |⟨Syx⟩m|. Given a R(σ) a Rayleigh distribution it is possible
to define the following property:

R(σ) =
√

X2 + Y 2

Assuming that X and Y are two independent zero-mean Gaussian random processes
with the same variance equals to σ2. The random process |⟨Syx⟩m| has a Rayleigh
distribution if the following assumptions are true:

1. The real and the imaginary part ZI and ZR are random variables with Gaussian
distribution.

2. ZI and ZR are statistically independent with the same variance.

3. The random variables ZI and ZR evaluated in different frequency slots are
statistically independent form the current one.

After the imposition of a normalization on X and Y in order to obtain a variance
equal to one (VAR{X} = VAR{Y} = 1) and the assumption of their Gaussian
distribution (for the central limit theorem), it is possible to build a table of all
parameters (tab. 3.1).
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VAR{X} 1 VAR{YRXI} 1/4
VAR{Y } 1 VAR{YIXI} 1/4

VAR{YRXR} 1/4 VAR{YIXR} 1/4

Table 3.1: Table of values of the variances referred to the random process X and
Y

ZI and ZR are two Gaussian distribution with σ2 = 1/2m. The equation 3.11
proves that |⟨Syx⟩m| has a Rayleigh distribution with an expected value equals to
σ
ñ

π/2 and variance equals to σ2(2 − π/2). Substituting the σ2 = 1/2m in the
Rayleigh equations retrieves the following values:

Standard deviation of |⟨Syx⟩m|
ñ

(1 − π
4 ) 1

m

Average of |⟨Syx⟩m|
ñ

π
4m

Figure 3.3: Average and standard deviation at the increasing of "m", averaging
factor

Only in absence of DUT noise the reduction of Average follows this trend this
means that after the suppression of noise of interest is will be stable.
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3.3 Cross-spectrum Estimators
Common estimation of cross-correlation spectrum involves the absolute value of
the complex quantity ⟨Syx⟩m. This kind of estimator is commonly implemented
by instruments and computational tools. The risk of the usage of the absolute
value is the waste of information of the complex spectrum function in frequency
domain. Cross-spectrum (CSD) differently from power spectrum (PSD) hides more
information in the real and imaginary component and their signs.
Starting from the usual set of equations (eq. 3.12, 3.13) x(t) and y(t) are of two
input signals and c(t) is the DUT that cross-correlation should allow to emerge.

x(t) = c(t) + a(t) (3.12)

y(t) = c(t) + b(t) (3.13)

The Fourier transform of x(t) and y(t) is divided into a real and an imaginary part
(eq. 3.14) in order to observe cross-correlation operation in the complex space.

X = (A′′ + iA′′) + (C ′ + iC ′′) and Y = (B′ + iB′′) + (C ′ + iC ′′) (3.14)

In fact, the mean of the cross-spectrum with index m (number of averages) (3.15)
can be splitted into his real (eq.3.16) and imaginary part (eq.3.17) because both,
Fourier and average operation, are linear operators.

⟨Syx⟩m = 2
T

⟨Y X∗⟩m = 2
T

⟨(Y ′ + iY ′′) × (X ′ − iX ′′)⟩m (3.15)

Re{⟨Syx⟩m} = 2
T

{⟨B′A′ + B′′A′′⟩m + ⟨B′C ′ + B′′C ′′⟩m+

⟨C ′A′ + C ′′A′′⟩m + ⟨(C ′)2 + (C ′′)2⟩m}
(3.16)

Im{⟨Syx⟩m} = 2
T

{⟨B′′A′ + B′A′′⟩m + ⟨B′′C ′ − B′C ′′⟩m+

⟨C ′′A′ − C ′A′′⟩m}
(3.17)

The easiest cross-spectrum estimator, expressed with äSyx, the magnitude of ⟨Syx⟩m

presents some limitations.

äSyx = |{⟨Syx⟩m| =
ñ
Re{⟨Syx⟩m}2 + Im{⟨Syx⟩m}2 (3.18)
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Like showed in the equation 3.17, the imaginary part of ⟨Syx⟩m does not contribute
in estimating the PSD (Sc,c) of a correlated noise contribution(c(t)). For this
reason the magnitude of ⟨Syx⟩m is not considered the optimum estimator [28] . The
real part of the average measured cross-spectrum (eq. 3.19) is instead a powerful
method which contains more information with some manageable drawbacks.

äSyx = Re{⟨Syx⟩m} (3.19)

This estimator can reach negative values which can be a problem if the y-axis is in
a logarithmic scale (dB). In this case understanding the portion of the spectrum
which satisfy the relation Re{⟨Syx⟩m} < 0 is necessary and, furthermore, very
interesting. In presence of negative spectrum values in order to plot them in a
decibel chart is necessary to invert their sign. These strange ranges should also be
considered as warning points because they reveal the presence of an anticorrelated
noise contribution.
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3.3.1 Artifacts in the Cross-correlation Spectrum
Sometimes the cross-spectrum profile contains some interesting artifact which
reflects particular characteristic of the noise contributions [29] ∗. Considering this
two channel acquisition with x(t) and y(t) as input in time domain

x(t) = a(t) + c(t) + d(t)
y(t) = b(t) + c(t) + d(t)

(3.20)

Where a(t),b(t) and c(t) are White Gaussian noises instead d(t) is a flicker noise.
Their single PSD is presented in the figure 3.4. Another composition of noise
can be introduced now, ỹ(t). This noise (eq.3.21) is similar to y(t) but has an
anticorrelation for what involves d(t) (the sign is changed).

ỹ(t) = b(t) + c(t) − d(t) (3.21)

Figure 3.4: Single spectrum contribution for a(t), b(t), c(t), d(t) of the equation
3.20

∗plot and diagram showed in this section are results of the python code in appendix B
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Figure 3.5 present the real part of the cross-spectrum between x(t) and y(t) (blue
curve) and the real part of the cross-spectrum between x(t) and ỹ(t) (orange and
red curve). The two cross-correlation spectrum are similar each other but for what
concerns Re{⟨Sx,ỹ}⟩m it is possible to notice a "notch" [30] at the frequency of 1
kHz. This artifact separates the range of the spectrum in which the Real part is
positive from the negative one. This behavior is linked to the inversion of the phase
caused by the anticorrelated noise component d(t) which is consistent in the lower
frequency ([1-103] Hz), this phenomena caused the "notch".

Figure 3.5: Cross-correlation between x and y compared with x and the version
of y which contains an anticorrelated contribution ỹ (eq. 3.21)

The behavior presented here is a proof of concept of what happen when the optimum
estimator is employed and what kind of information it holds.
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3.4 Experimental Test Bench for Measuring the
Intensity Noise Contributions

It is possible to utilize the cross-correlation block, described in the previous sec-
tions, to selectively isolate noise contributions in the context of atomic absorption
measurements. The noise contributions, previously analyzed in detail in Chapter 2,
will now be categorized as follows:

• SA: Atomic noise originating from the interaction between the laser beam and
the atomic medium, which represents the primary signal of interest in these
measurements.

• SP M/AM : Noise due to phase-to-amplitude (PM/AM) conversion.
• ST : Amplitude technical noise introduced by the laser.
• N : Shot noise, originating from quantum fluctuations in the photon number.
• E: Electronic noise generated by the acquisition system and photodiodes

front-end.

The single channel absorption measure exhibit a combination of all noise con-
tribution distributed along the measurement chain like depicted in the image
3.6.

Figure 3.6: Noise contribution in a simple acquisition absorption setup. In the
figure: arrow represents a laser beam, PD1 is a photodiode, ADC is a analog to
digital converter.

Figure 3.7 illustrates a typical acquisition schematic. The laser beam is split into
two paths, with each path affected by shot noise (N1 and N2) and electronic noise
(E1 and E2). The laser’s technical noise, represented by ST , is common to both
channels. As a result, the cross-correlation block allows this noise to be separated
from the other noise contributions [26].
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Figure 3.7: measurement setup for laser technical noise. In the figure: arrow
represents a laser beam, PD1 ans PD2 are photodiodes, ADCs are the channels of
th analog to digital converter.

In the picture 3.8, like the previews example, every channel presents its own
electronic noise (E) and shot noise (N). Common mode noise is made of two
contributions: laser technical noise (ST ), atomic noise (SA) and PM/AM noise
conversion (SP M/AM). The cross-correlation between the acquired signals coming
from the two photodiodes PD1 and PD2 decrements the uncorrelated contributions
of electronic and shot noises. This setup estimate the spectrum of the composition
of noise of common mode contribution: ST +SA+SP M/AM .

Figure 3.8: measurement setup for rubidium atomic noise and technical laser
noise. In the figure: arrow represents a laser beam, PD1 ans PD2 are photodiodes,
ADCs are the channels of th analog to digital converter.

As shown in Figure 3.7, using a shared laser source inherently results in common-
mode laser noise. The standard approach to rejecting common-mode noise is the
use of differential amplifiers, a well-established electronic principle that is extended
to optical setups. This principle is applied in the schematic shown in Figure 3.9[31].
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Figure 3.9: measurement setup for rubidium atomic noise. In the figure: arrow
represents a laser beam, PD1-PD4 are 4 photodiodes, ADCs are the channels of th
analog to digital converter.

Laser technical noise and its PM/AM conversion are suppressed thanks the two
operational amplifiers. In order to avoid the subtraction of Brownian noise, the
atomic contribution is divided into two independent path; two parallel laser rays illu-
minate the vapor-cell. These two independent paths bring two uncorrelated atomic
contributions, their difference emerges from the cross-correlation block. Moreover,
by subtracting the signals from the two channels, PM/AM noise conversion is also
mitigated, as it primarily affects both paths in a correlated manner. Finally, as
in the previous setups, the cross-correlation technique is applied to further reduce
uncorrelated noise contributions, specifically electronic noise and shot noise, leading
to an overall improvement in measurement sensitivity and accuracy.
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Chapter 4

Instruments
Characterization

This chapter presents the technical and functional characteristics of the instruments
employed for the experimental measurements. In particular, the analysis focuses on
the data logger, photodiodes and laser diode. The relevant parameters have been
extracted from the datasheets to highlight the key characteristics and provide a
clearer understanding of the instruments’ performance. Every tool used in chapter
5 and 6 for observation is here presented.

4.1 DAQ

Heavy data processing operations usually rely on fast and high-resolution acquisition
tools. Fundamental specification for the scope of this work is the possibility of a
Multichannel acquisition. The selected instrument, Keysight DAQ970A (fig. 4.1),
presents desired specifications and a low quantization noise. Furthermore due to
its high data-rate it’s possible to exchange data with the PC by the means of the
SCPI (Standard Commands for Programmable Instruments) protocol thanks to the
commonly used library PYVISA available for the Python programming language.
This Data logger has 4 independent slots that can mount different modules in
order to extend the instrument elaboration and acquisition features. The selected
expansion board is the DAQM909A (fig. 4.1) a module with a 24 bit Delta-Sigma
A/D converter and a maximum of 4 channels (tab. 4.1).
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Figure 4.1: Keysight DAQ970A instrument, photo taken from [32]

ADC per channel 800 kSa/s @ 24-bit
Range (Hi, Lo Input to Earth) 0.3 Vpk, 1 Vpk, 3 Vpk, 18 Vpk

Range (Differential input) 0.6 Vpk, 2 Vpk, 6 Vpk, 36 Vpk
Input impedance (Hi or Lo to Earth) 1 MW || 400 pF

Analog bandwidth (-3 dB) 125 kHz (measured)
THD (1 kHz) -103 dB

THD (20 Hz-20 kHz) -83 dB
Channel to Channel cross-talk (1 kHz) -100 dB

Table 4.1: DAQM909A module features

The analog bandwidth is measured by observing the frequency response of the
logger by means of a signal generator. The signal generator, connected to the
instrument, provides sine waves at the various frequencies. The amplitude of the
sinusoidal signal collected by the DAQ is showed creating the complete analog
bandwidth plot (fig. 4.2). The y-axis in the figure (dB) is computed with a
normalized logarithmic equation 20 ∗ log10( Vin

300mV
) assuming that for the chosen

input range the maximum amplitude of the sinusoidal signal is 300mV.
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Figure 4.2: Keysight DAQ970A input gain bandwidth

Like shown in table 4.1, the producer declares a bandwidth of 125 kHz and this
is confirmed also by the signal generator observations. The module DAQM909A
is capable of changing its sample frequency without any aliasing protection for
frequency lower than 125 kHz. Testing the absence of anti-aliasing filters on the
analog front end it is an opportunity to better characterize the system. It is possible
to define a procedure to detect the presence of an anti-aliasing filter with following
steps:

• Sampling frequency is fixed to values lower than the input bandwidth declared
by datasheet (e.g. 20kHz or 50 kHz).

• Input, a waveform generator, generates sines in the frequency range [1-100
kHz].

• Detection of the actual frequency of the incoming signal is performed by the
means of the FFT through which is observed the position of the maximum
peak in the frequency axis.

The figures 4.3 and 4.4 prove the point, no aliasing filter is provided by the
instrument. X-axis (input frequency) represents the frequency of the input wave;
y-axis (detected frequency) is the detected frequency of the signal.
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Figure 4.3: Aliasing effect when the sampling frequency is 20 kHz

Results show that if spectral contribution are not limited inside the selected
bandwidth they can affect the signal and disturb it inside the measured frequency
window. A way to avoid the aliasing input noise is the usage of an analog input
filter. This solution is generally avoided to reduce an additive noise contribution
offered by active input components.

Figure 4.4: Aliasing effect when the sampling frequency is 50 kHz

Despite this limitation, sampling frequency can be increased beyond the maximum
analog bandwidth so that the 3dB cut-off frequency will naturally filter away the
undesired harmonics. The minimum sampling frequency for the future observation
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should be equal or higher than 200 kHz because for the Nyquist sampling theorem
it is about the double of the analog bandwidth.
A first measure, that can corroborate future observation, is an input noise acquisition
with a reference resistance of 50 Ω. The instrument, terminated with an impedance
of 50 Ω acquires 200 ksamples with the sampling frequency of 200 kHz. Complete
condition of measure are showed in the table 4.2.

bits number (Nbits) 24
sample frequency (fs) 200 kHz

Number of samples (N) 20 M
Number of samples in a Window (W) 200000

Full scale range (FSR) ± 300 mV

Table 4.2: Default condition of measures

Figure 4.5: 50 Ω termination measure (blue line), noise mean was performed
between [103 − 104] Hz (orange line)

In the figure 4.5 is depicted the PSD (Power spectral density, Appendix A.1) of
the acquired samples when the termination is connected (Blue curve). Input noise
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shows AC line noise at a frequency of 50 Hz and its multiples. The following
calculation allows the theoretical estimation of quantization noise starting from
the formula of SNR (Signal Noise Ratio).

SNRDAC = 6.02 · Nbits dB + 1.76 dB = 146.2 dB (4.1)

Quantization Noise|dB = Signal|dB − SNRDAC (4.2)

The "Signal" factor that is included in the SNR calculation is the Full-scale value,
in this particular case the selected input range is ± 300 mV which means that a
sine wave with 600 mV peak-to-peak can be applied to the input. Therefore RMS
of the incoming signal is 0.3√

2 V. The "Quantization Noise" factor is the theoretical
minimum noise floor reachable by technology.

Quantization Noise|dB = −146.2 dB + 10 · log10

A
0.32

2

B
= −159.7 dB = 14.6 nV

(4.3)

The PSD of the theoretical quantization noise is its normalized version in the half
of the sampling frequency

PSDQuantization Noise = Quantization Noise|dB − 10 · log10

A
fs

2

B
(4.4)

So the theoretical PSD of the quantization noise can be finally computed:

PSDQuantization Noise = −159.7 − 10 · log10

A
200 kHz

2

B
= (4.5)

−209.6 dB V2/Hz (4.6)

In the figure 4.6 the mean value of the noise acquired by DAQ is compared with
the theoretical Noise floor .
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Figure 4.6: 50 Ω Noise vs Theoretical quantization noise. The theoretical value
of the quantization noise in red dashed line (-209.6 dB V2/Hz) compared with the
input noise in orange line (-152 dB V2/Hz)

Starting from the mean of the PSD of the detected noise ( fig. 4.6, orange line) it
is possible to compute the maximum SNR of the signal.

SNRMAX = PSDnoise floor + 10 · log10

A
200 kHz

2

B
− 10 · log10

A
0.32

2

B
= 88 dB

(4.7)

Using as input the maximum SNR the ENOB (Effective Number Of Bits) is
calculated as follows:

ENOB = SNRMAX − 1.76
6.02 ≈ 15 bits (4.8)

The instrument presents a huge discrepancy between effective number of bits and
the declared one.
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4.2 DFB (Distributed Feedback) Laser Diode

The laser diode is the key component of this optical system and for this reason there
are some features to be met. The first characteristic is related to the linewidth
which is desired to be narrow to maximize pumping efficiency and frequency
resolution useful for absorption measures. DFB (Distributed Feedback) Lasers are
solid state photonic devices mostly used because of the presence Bragg grating
in the active area of the device which allows laser cavity to resonate at a specific
modal frequency. This category of emitter has a strong sidemode suppression ratio
and a small linewidth. The Eagleyard Company manufactures DFB Tunable 780
nm Lasers it is particularly suitable for spectroscopy and has temperature control
capability. Lasers of this typology are generally 8 pins models which is typical for
devices controlled by TECs (temperature control devices).

Figure 4.7: EYP-DFB Eagleyard Photonics Distributed Feedback Laser

TEC performs tuning by observing temperature of a Thermistor (NTC, negative
temperature coefficient) and cooling back with a Thermoelectric Cooler. This closed
loop increases the laser frequency stability. A summary of laser characteristic are
reported in the table 4.3.

linewidth 2 MHz
Center wavelength 779-781 nm

Output power 20 - 80 mW
Threshold Current 70 mA

Table 4.3: Eagleyard EYP-DFB Laser characteristics
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4.3 Photodiode
Photodiodes are essential components in optical detection systems, converting
incident light into an electrical signal through the photoelectric effect. Their high
sensitivity, fast response time, and low noise make them particularly suitable for
precision optical measurements. In this experiment, photodiodes were employed to
measure the absorption of a 750 nm laser interacting with rubidium atoms. The
chosen wavelength corresponds to a key transition in rubidium’s atomic spectrum,
making accurate optical power detection crucial for analyzing the interaction.

Two different types of silicon photodiodes were used and analyzed:
• Single photodiode: Measures the laser intensity directly and is useful for basic

power detection.

• Balanced photodiode: Composed of two matched photodiodes in a differential
configuration, allowing for common-mode noise suppression and improved
signal-to-noise ratio. This is particularly advantageous when dealing with
fluctuations in laser intensity or environmental noise.

4.3.1 Single Photodiode
Thorlabs PDA36A2 is a Silicon switchable gain photodiode (fig. 4.8a). The
chosen model has a working wavelength range that covers the interval 400-1100
nm compliant to the wavelength of the laser (λ=780 nm).

(a) (b)

Figure 4.8: Thorlabs PDA36A2 Si Switchable Gain Detector: (a) Physical package,
(b) Responsiviy, taken from [33]

The table 4.4 shows the main features of the photodiode and some useful information
about the interface of the detector in order to connect it inside the complete system.
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Gain values 0 - 70 dB (10 dB step)
Output impedence 50 Ω

Output Range 0 - 10 V
Active Area 3.6 mm x 3.6 mm ( 13 mm2)

Table 4.4: Thorlabs PDA36A2 Photodiode features

The so called scaling factor (SF ) is caused by the voltage divider formed by the
diode output impedance (RS) and the DAQ input impedance (RLoad). The voltage
divider is the following:

SF = Rload

Rload + RS

(4.9)

By imposing RLoad equal to 1 MΩ and RS equal to 50 Ω, the total scaling factor
is 0,99. Observing the picture 4.8b, taken from the photodiode’s datasheet it’s
possible to compute the responsivity by selecting the proper wavelength. By the
means of a curve fitter (python tool) the value of responsivity = 0.47 A/W was
found fixing λ = 780 nm. The formula that describes how output voltage is linked
to photodide characteristics is displayed below (eqn. 4.10) linking the photodiode
responsivity (R(λ) ,lambda dependent) with the transimpedance gain (G) (possible
gain is showed in the tab. 4.4), the scaling factor and the input power (Pin).

Vout = R(λ) · G · SF · Pin (4.10)

The picture below (figure 4.9) represents a plot of the so called dark noise of the
photodiode when no lasering power shines on it. A preliminary consideration about
the spikes in the figure reveals two interference phenomena: laboratory neon lights
interferes with the detection; 50 Hz power supply frequency and its sub-carriers
are responsible for the internal operational amplifiers distortions.
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Figure 4.9: Dark noise of a single photodiode with variable gain 0 dB (blue curve),
10 dB (green curve), 30 dB (red curve).

The choice of a photodide gain equal to 30 dB is related to the maximization of the
input range which means that for weaker lasering power gain is higher. Another
good motivation that influences this decision is the higher SNR reachable (in the
measurement chain) with an increased gain.

4.3.2 Balanced Photodiode

Balanced photodiodes are a specialized type of photodiode that integrate an
operational amplifier circuit within them. These devices are particularly useful
when attenuation of common-mode noise is required. They consist of a differential
amplification system with two silicon photodiodes. The specific model used, the
Thorlabs PDB250A, ensures a common-mode noise reduction of more than 35 dB.

41



4 – Instruments Characterization

(a) (b)

Figure 4.10: Thorlabs PDB250A Si Switchable Gain Balanced Detector: (a)
Physical package , (b) Responsiviy, taken from [34].

The responsivity plot of the differential photodiode is shown in Figure 4.10b. The
plot indicates that, at a fixed wavelength of λ=780 nm (laser wavelength), the
responsivity reaches 0.55 A/W.

Output RF
Output impedance 100 Ω
Bandwidth (3 dB) DC to 1 MHz

Conversion Gain [min − max] 2.25 · 103-300 · 103 V/W
Output Monitor

Output impedance 200 Ω
Bandwidth (3 dB) DC to 10 kHz
Conversion Gain 10 · 103 V/W

Table 4.5: Thorlabs PDB250A Photodiode features.

Like observed in the picture 4.10a this device present three outputs: one called RF
port and two Monitor probes. Monitor outputs has a fixed conversion gain (tab.
4.5) independent from the gain lateral knob, in fact this is channel was used only to
monitor the incident power. RF output presents a larger bandwidth and a variable
conversion gain. The RF port is the output of a transimpedance amplifier, 8
variable steps are used to modify its conversion gain (GRF ). It can reach, observing
the table 4.5, the value of 300 · 103 V/W. Voltage of the RF channel is expressed
by the following equation:

VRF = (PM+ − PM−) · R(λ) · GRF (4.11)
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The monitor power contributions offered by the two channels (PM+ and PM−) are
subtracted and multiplied by the usual resistivity factor R(λ) and GRF , the RF
conversion gain selected by user.
The voltage equation for a single monitor channel is given by equation 4.12, where
the monitor’s conversion gain differs from that of the RF channel.

VM+ = PM+ · R(λ) · GM (4.12)

Differential photodiodes are used when it is necessary to suppress common mode
noise contributions on two distinct laser path in order to isolate component of noise
not correlated between them. Recalling the RIN definition and its link with the α
(fluctuation of the signal) factor:

P = ⟨P ⟩(1 + α)
RIN = Sα

(4.13)

Using the values collected by RF and Monitor ports, α can be computed as follows.

α = (PM+ − PM−)√
2⟨PM+⟩

= VRF√
2VM+

GM

GRF

(4.14)

The term
√

2 is used to normalize the α factor, assuming that PM+ and PM−
are uncorrelated. This assumption is justified by the fact that, in a differential
measurement, the power spectral density of uncorrelated contributions doubles.
The selected gain step in order to guarantee a better resolution for the fixed input
range is the gain step 8. This consideration is a direct consequence of the collected
data of dark noise at different gain steps of the detector. "Dark noise" refers to
the noise generated by the photodetector when no laser power is incident on it. In
particular, figure 4.11 presents RINRF with the highest gain as possible and the
minimum one showing that maximum gain means also a lower RINRF spectrum.
It is possible to represent a view of the minimum RIN that the RF output can
reach with a variable normalization factor.
Figure 4.12 shows how the hypothetical input power variation affects the RIN level,
revealing that higher power leads to a lower RIN.
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Figure 4.11: Measured differential Gain steps vs the RIN of the RF channel
following the definition of 4.14 with no input power. The RIN is performed assuming
a monitor power of 100 µW

Figure 4.12: RIN of the dark noise with varying normalization power levels (100
µW, 20 µW, 2 µW)

.
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Chapter 5

Measurement Technique for
Relative Intensity Noise

This chapter focuses on determining the main noise contributions of the laser to
assess the proper functioning of the measurement system. The analyzed setup
consists of photodiodes, a data acquisition board, and local signal processing
program written in python language. All information about the code are reported
in the appendix A.

• In Section 5.1, the shot noise of the laser is analyzed using a balanced photo-
diode. This configuration inherently removes common-mode noise, isolating
the fundamental shot noise limit of the laser. By comparing the measured
noise with theoretical predictions, it is possible to confirm whether the system
is operating as expected.

• In Section 5.2, the Relative Intensity Noise (RIN) of the laser is evaluated
using two single photodiodes. The method is based on the cross-correlation of
the signals acquired from two independent detectors, allowing the extraction
of the laser’s intrinsic noise while minimizing uncorrelated contributions.

The results obtained in both sections provide a comprehensive evaluation of the
system’s performance, ensuring that the measurement setup is reliable and it can
be expanded in order to detect other kinds of noise contribution.
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5.1 Laser Shot Noise Measurement with Bal-
anced Acquisition

Differential measures are usually used to increase the resolution of a measure
suppressing a common mode noise offered by a system. The following test bench is
used to quantify the laser shot noise employing a balanced photodiode thus in the
RF output laser technical noise is subtracted.

Figure 5.1: Simplified double photodetector setup. In the scheme are presented a
polarizing beam splitter, a mirror and a balanced Thorlabs photodide (red box),
see section 4.3.2.

The figure 5.1 is a very simple optical circuit with one laser source and a beam
splitter which allows the light to be divided into two equal powered signals with
orthogonal polarization. The beam splitter separates the s and p-polarization
into two contributions reaching the two photodetectors connected to the DAQ. By
performing a differential measurement, the common-mode noise is canceled out
through signal subtraction, leaving only uncorrelated contributions in this case,
the two shot noise components N1 and N2.
The Laser power is detected with a power meter and the collected values are used
to plot the expected shot-noise level. As observed in section 4.3.2, the RIN of the
shot noise can be obtained by the RF Output thanks to the α (relative fluctuation)
of the balanced photodiode normalized with the average input power (<P>) of
the monitor. The equation below represents this computation:

Sα = N1 − N2

2 < P >2 = 2hν < P >

< P >2 = RINN (5.1)

To verify this setup in practice, two different scenario are tested with two operative
laser power conditions: 20 µW and 4.6 µW.
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First case is showed by the figure 5.2, a plot of the ideal shot noise (orange line)
compared with the RF output (blue line) and the photodiode dark noise floor (green
line). It is possible to observe that the ideal value is reached by the blue curve in
the region [0.5 kHz - 10 kHz] where orange line and blue line are overlapped.

Figure 5.2: Double photodetector setup results, data are collected for a laser
power of 20 uW. In the image: theoretical shot noise (orange curve), dark noise
when laser power is not present (green curve) and the RINN of the differential
measure.

In the second case (Figure 5.3) the average input power (<P>) is lower which
reflects an higher RIN shot noise. In addition to that, the electronic contribution
in the second case, is closer to the input power value. The main consequence of
this behavior is that the blue line has an higher mean value respect to the orange
one in the reference range [0.5 kHz - 10 kHz].
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Figure 5.3: Double photodetector setup results, data are collected for a laser
power of 4.6 uW. In the image: theoretical shot noise (orange curve), dark noise
when laser power is not present (green curve) and the RINN of the differential
measure.
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5.2 Laser Technical Noise
This section introduces a basic test of the cross-correlation block to validate its
operating principle. Cross-correlation enables the measurement of laser technical
noise, represented by the factor ST , while isolating it from unwanted contributions
such as shot noise N . When a laser beam is split by a beam splitter, both resulting
beams are influenced by two types of noise: shot noise and technical noise. However,
while shot noise remains uncorrelated between the two beams, the laser’s technical
noise is correlated. The block diagram in Figure 5.4 illustrates the acquisition
setup. The recorded signals are processed using a Python script that applies
cross-correlation functions (see appendix A).

Figure 5.4: Simplified RIN measurement optical setup (PD1 and PD2 are two
photodiodes while PBS a polarizing beam splitter).

Equation 5.2 expresses the relationship between the cross-spectrum of the channels
and the laser’s Relative Intensity Noise (RIN).

RINL = CSD( PD1

< PD1 >
,

PD2

< PD2 >
) = ST (f)

< P >2 (5.2)

Following plots proves the independence between the RIN of the laser noise and
the power in three power scenario: 20 µW , 160 µW , 470 µW . The green curves,
representing the real part of the cross-correlation, has the expected trend of the
RIN which decreases with the law f−1. The f−1 dashed fitting green curve is
always the same in every situation proposed totally independent from input laser
power.
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Figure 5.5: Thecnical noise setup results fixing the input power detected by
photodiodes at 20 µW .

Figure 5.6: Technical noise setup results fixing the input power detected by
photodiodes at 160 µW .
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Figure 5.7: Technical noise setup results fixing the input power detected by
photodiodes at 470 µW .

Like showed in figure 5.5 the case with input power of 20 µW is the case with the
highest shot noise. Three power case scenarios confirmed expectations on the RIN
technical noise which presents the expected slope f−1 as seen in the chapter 2.
The plots shown in this section, as explained in section 3.3, is a representation
of the real part of XY* as the best estimator of the cross-spectrum. In order to
improve the number of averages, a method that treats the high and low-frequency
part of the spectrum differently is implemented: for computing the high-frequency
FFT, shorter averaging windows were chosen, increasing the number of averages at
the cost of lower spectral resolution. the number of averages for each decade are
shown with different background colors in Fig.5.5 - 5.7. More details on the data
analysis can be found in appendix A.3. As evident from the comparison with the
PSD obtained with the single photodiodes (blue curves) and with the theoretical
shot noise levels (red curves), the cross-correlation method allowed us to measure
the laser RIN at levels below these unwanted noise sources. This is especially true
at high Fourier frequencies, were the laser diode RIN is lowest.
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Chapter 6

Measurement Technique for
Atomic noise

This chapter contains the description of the technique used to measure the Brownian
atomic noise using the experimental setup (see figure 3.9) described in chapter 3.
The measurement of the relative intensity noise due to the atomic motion has been
taken with the laser resonant with the D2 atomic line, at different detunings from
the atomic resonance. In Section 6.1, a brief introduction of the atomic absorption
spectra is given, in order to better contextualize the experimental conditions at
which the noise measurements were performed.
The spectra of a reference cell, with pure rubidium, was used as laser frequency
calibration, this phase is described in Section 6.2; it allows an easy positioning
along rubidium absorption curve. Thanks to this calibration process it is possible
to relate the measured atomic noise with laser detuning.
The final experimental setup and a discussion of the most promising results are
presented in Section 6.4.
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6.1 Introduction on Atomic Absorption

Figure 6.1: Figurative description of the extinction law 6.2 with a laser (red
arrow) crossing an atomic medium (blue dots).

When a laser beam propagates through a diluted atomic sample its attenuation in
intensity, I, is described by the differential equation 6.1. The attenuation coefficient
k depends on the laser tuning frequency ωL.

dI

dz
= −k(ωL)I (6.1)

Assuming that the beam propagates along the z-axis, like showed in the figure
6.1, the solution of the previews equation 6.1 is the following extinction law [13],
an exponential decreasing trend along the propagation axis called Lambert-Beer
equation:

I(ωL, z) = I(ωL,0)e−k(ωL)z (6.2)

The same equation can be defined fixing a specific z value: the length of the cell
inside which the atomic vapor is confined, L.

I(ωL, L) = I(ωL,0)e−k(ωL)L (6.3)

Every orthogonal section of the cell can be seen as a parallelepiped with a thickness
of ∆z (fig. 6.2).
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Figure 6.2: ∆z vertical section of a cell containing an atomic medium (blue dots).

The differential equation is transformed into a finite difference relation 6.4; the
coefficient k is proportional to n, the number of atoms per unit volume. The factor
nσ∆z is the fraction of the target area that is covered by the atoms (the "obstacle"
that light encounters) where σ is the atomic cross-section.

∆I

I
= −k∆z = −nσ∆z (6.4)

One strategy to measure k(ωL, L) indirectly is to measure the normalized power
and apply the natural logarithm in order to resolve the exponential equation 6.3.

k(ωL, L)L = −ln(I(ωL, L)
I(ωL,0) ) (6.5)

This general formula will be used in the following sections to convert the exponential
dependence between the intensity and the absorption coefficient.

6.1.1 Doppler Broadening
If the laser shine a vapor cell, every atoms perceive a different frequency due to
their relative motion respect to the incident light. This Doppler effect is generated
by each rubidium atom because they have different directions and speed inside the
cell.

ω′
L = ωL − k⃗ · v⃗ (6.6)

The shifted frequency ω′
L (eq. 6.6) is composed by the laser frequency ωL subtracted

with the scalar product between the atomic velocity v⃗ and k⃗, the wave-vector which
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propagates orthogonal with a magnitude of ωL/c. The Boltzmann distribution
(equation 6.7) is used to describe how velocity is distributed

f(v) =
ó

M

2πKBT
e

− Mv2
2KBT = 1√

πu
e− v2

u2 (6.7)

This equation depends on the atomic mass M , Boltzmann constant kB, temperature
T. The standard deviation of the Gaussian distribution of velocity is u which
multiplied with the magnitude of k retrieves the standard deviation σD of the
Gaussian that represents atomic absorption.

σD =
ó

2πKBT

Mc2 ω12 (6.8)

Doppler effect creates a broadening for every hyperfine level creating a Gaussian
absorption profile with the parameter σD [13].
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6.2 Calibration: Rb cell saturated absorption
spectroscopy

This section describe how the calibration procedure was guided starting from
tracing the absorption profile of the reference cell, with pure rubidium which was
used as a frequency marker. Results of this section strongly rely on equations
described in sections 6.1 and 6.1.1. The figure 6.3 represents the calibration setup,
it is possible to observe both cells: reference cell with pure 87Rb used for calibration
and the cell used for future measurements with 87Rb diluted in buffer gas.

Figure 6.3: Block diagram representation of measurement circuit used for absorp-
tion profile

In order to describe calibration phase is necessary to introduce the Saturated ab-
sorption spectroscopy, an highly sensitive technique used to measure the absorption
properties of atoms or molecules. It avoids the broadening effects caused by Doppler
shifts thanks to two counter-propagating laser beams. The laser is tuned close to
the rubidium transition 5S1/2 → 5P3/2, so that, the reference cell, which contains
pure rubidium atoms is shone with the light source twice by means of a mirror.
The second reflected beam is orthogonal polarized thanks to a λ/4 filter which, due
to its position, crossed twice, making possible the rotation in polarization.
These two distinct laser rays defined as Pump and Probe allow the detection of
energy levels in the absorption profile normally obfuscated by the Doppler broad-
ening effect. The pump beam is responsible for creating a population imbalance
in resonant atoms, while the counter-propagating wave detects the excited atoms.
When beams interact with atoms that have almost zero velocity, vz = 0 (the
component of velocity parallel with beams) probing results in a "dip" in the final
absorption spectrum. This phenomenon is called hole burning.
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Figure 6.4: Rubidium atoms (blue dots) and their velocity (green vectors),
magenta vectors highlights the condition vz = 0.

The group of atoms that creates the holes in the final absorption spectrum are
showed in the figure 6.4. Their velocity vectors are orthogonal to the two counter-
propagating beams (magenta atoms). The waveform generator in the figure 6.3
creates a triangular shape voltage sweep which controls the laser frequency. The
waveform generator sweep is acquired also by the DAQ with the photodiode in
order to synchronize the acquisition with a proper python script. In figure 6.5 the
relative absorption profile of the rubidium is plotted, K(f)L.

Figure 6.5: 87Rb absorption spectrum red dots highlights the reference calibration
"dips": cross-over CO13, CO23 and the energy level F’= 3.

Observing the Doppler-resolved dips it is possible to observe dips where no resonance
lines are present. These new peaks are called cross-over resonances, a phenomena
that involves multi-level atoms like alkali metals. Observing a generic two energy
level system with the hyper-fine structure F’=1 and F’=2 with ω1 > ω2 with the
imposition of laser frequency to be ωL = (ω1+ω2)

2 . If a group of atoms present
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vz = (ω1+ω2)
2

c
ωL

an intermediate dip is created. For the multilevel case of the 87Rb
this phenomenon creates consistent dips for cross-over levels CO23, CO13, CO12
[35]. These new resonance levels are showed in the energy level image 6.6 with red
dots.

Figure 6.6: 87Rb energy levels, cross-over levels are represented with red dashed
lines.

The energy transition of interest for this analysis involves the ground level F=2
and the excited levels in the hyperfine structure and a first absorption model for
this transition is the Gaussian one (eq. 6.9).

k(f) = −A

σ
e

−(f−f0)2

2σ2 (6.9)

The equation 6.9 is insufficient for the complete mathematical description of the
phenomenon because there is a transition for every energy level of the hyperfine
structure so that a Gaussian distrubution associated to absorption. The admitted
energy transitions starting from the ground level F=2 are the excited levels F’= 2,
3, 1. The table 6.1 contains the frequency offset for each gaussian distribution and
their relative strength factors C2

F (The maximum absorption rate for each level)
that describes transition to the three hyperfine levels[36].

F’ offset frequency /MHz C2
F

1 0 1/18
2 156.95 5/18
3 423.59 7/9

Table 6.1: Strength factors and frequency offset for 87Rb, taken from [36]
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Formula 6.9 can be extended as follows:

k(f) = −A · C12
F

σ
e

−(f−f0)2

2σ2 − A · C22
F

σ
e

−(f−(f0+f1))2

2σ2 − A · C32
F

σ
e

−(f−(f0+f2))2

2σ2 (6.10)

Using the formula 6.10 as a fitting equation a plot is traced (fig. 6.7) in order to
compare the model and the actual observations.

Figure 6.7: 87Rb absorption spectrum with triple gaussian fit; dashed lines
highlights: the complete absorption curve of the formula 6.10 (green curve), F’=1
gaussian (magenta), F’=2 gaussian (cyan), F’=3 gaussian (yellow).

Post-fitting parameters are extracted and showed in the box below.

A 0.065
f0 /MHz -392
σ /MHz 206

Table 6.2: Fitting results of the triple Gaussian fit

Confronting the experimental result with the theoretical one is possible to observe
that the sigma σD (eq. 6.8) caused by doppler effect (σD=

ñ
kBT
Mc2 ωL=2π × 215 MHz)

is closer to the observed sigma (×206 MHz).
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6.3 Absorption Profile of the Rubidium Cell with
Buffer Gas

Section 6.2 describes the process of laser tuning and relies on the cross-over dips
of a pure rubidium cell fixing a voltage swipe with the signal generator. The
absorption profile of a cell with buffer gas has no cross-over dips which highlights
the importance the calibration setup 6.3.
After the determination of laser frequency range the buffer gas absorption measure
can take place. To accurately measure atomic absorption the lineshape function
is constructed by acquiring discrete DC measurements at fixed frequency points.
Starting from this fitted resulting profile like shown in figure 6.8 the two collected
profile can be compared on the common frequency axis.

Figure 6.8: Calibration figure: reference frequency based on the pure rubidium
absorption profile (Blue curve); the DC absorption profile of the cell diluted in
buffer gas (Green curve).

The green curve represents the absorption profile of the broadened buffer gas cell
and it is always measured overlapping a reference rubidium saturated absorption
spectrum for comparison, blue curve, which is measured with the same modulation
parameters for frequency axis reference. Buffer gas is a common solution to avoid
wall collision, it creates a broadening effect in the final absorption curve that
is summed up with the simple Doppler broadening. If Doppler effect implies a
Gaussian profile the buffer gas contribution makes the profile a convolution between
a Gaussian profile and a Lorentzian one [37] [38].
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The equation 6.11 shows the definition of the Lorentzian profile.

L(Γ, A, f0) = A
(Γ/2)2

(f − f0)2 + (Γ/2)2 (6.11)

The parameter Γ describes the broadening of the absorption profile which is a
fundamental information to understand the frequency range inside which atoms are
resonant. After a fitting of the absorption curve with the buffer gas (see appendix
D for Python code) the Γ parameter was extracted, Γ = 4.97 GHz.
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6.4 AM Noise Atom Interaction
This section presents the measurements of the atomic noise performed on the Rb
cell under test, filled with Rb and a mixture of Nitrogen and Ar buffer gases. The
measurement setup follows the scheme of Fig. 3.9. The selected optical scheme
used for characterizing atomic spectrum (see fig 6.9a) is composed by two laser
beams that illuminate the rubidium cell, where they interact with the atomic
medium. After exiting the cell, the beams are split by BS2 and BS3 that allow
both paths to reach two balanced photodetectors. Photodetector are responsible
of common-mode suppression which makes possible thanks to the cross-spectrum
between the signal RF1 and RF2 (photodetectors’ outputs) to obtain the noise
generated by the interaction between the two lasers and rubidium atoms, SA(f).

(a) (b)

Figure 6.9: Final configuration: (a) Optical schematic of the acquisition setup,
showing balanced photodiodes (highlighted in red), three beam splitters (BS1 -
BS3) and a rubidium cell (gray box). (b) Physical implementation of the system.
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Using the calibration procedure that allows the reconstruction of a DC absorption
curve (section 6.3) it is possible to tune the laser to the center of the absorption
profile. The figure 6.10 is the cross-spectrum in this particular tuning condition.

Figure 6.10: Figure shows the cross-correlation plot of the two differential
photodiodes RF channels in correspondence of the maximum absorption coefficient,
(Tuning the laser in the center of Lorentzian). The blue spectrum in the picture,
the RF1 channel is compared with the two estimator or cross correlation Re{SA}
(green and red line) and |SA| (dashed orange line).

In the upper picture the two kinds of cross-correlation estimators are compared:
|SA| and Re{SA}. Observing the magnitude of SA (blue curve) in the low frequency
range it presents some ripples multiples of the line frequency 50 Hz. In order to
investigate deeply the reason of this spectrum profile the real part of SA is splitted
into its real and positive part (orange curve) and the negative one (green curve).
In the low frequency range, the real part of the cross correlation is negative which
suggest (like exposed in the chapter 3) that an anticorrelated contribution has an
higher impact in this region. The spectral region, inside which the real part is
positive, is concentrated in the range [103 − 104] Hz.
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In order to compute the high-frequency FFT (like showed in section 5.2) short
averaging windows are chosen, increasing the number of possible averages (see
appendix A.3). Moreover the performances of the measurement system are heavily
sensible to the environmental neon light; mitigation of this effect was accomplished
with a black plexiglass optical system cover.
Observations confirmed that the real part of the cross-spectrum for the region
[103 − 104] Hz is always positive independently from the laser tuning frequency.
The measurement was then repeated at different detunings from the absorption
profile minimum. In the figure 6.11, 5 points are selected on the absorption curve
in order to use them as operative working points.

Figure 6.11: Colored points: MIN, P2, P3, P4, P5; they represent the operational
points at which the intensity noise spectrum was measured.

For each tuning frequency across the absorption curve a spectrum of atomic noise
was measured. Like observed previously the useful frequency range is [103 −104] Hz.
The picture 6.12 represents cross spectrum in the condition of maximum absorption
and in other two particular reference conditions: "2Γ" (black curve) and "electronic
noise" (magenta curve).
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Figure 6.12: A zoomed portion of the cross-spectrum in the [103−105] Hz spectrum
range comparing the cross-spectrum measured in the maximum absorption point
(blue curve) with the value obtained obscuring photodiodes (magenta line). The
values of the cross-spectrum when the laser is tuned at 2Γ (black line).

First curve called "2Γ" represents the response of the atomic medium at a frequency
greater than 2Γ, where Γ denotes the frequency broadening of the Lorentzian
absorption curve (see section 6.3). This operative condition was used to test the
noise magnitude when the laser is tuned far from the center of the absorption curve.
In this case, the laser was set to a detuning of -11.5 GHz, ensuring operation in a
regime where absorption effects are significantly reduced.
The second "electronic noise" curve, is the spectrum of the cross-correlation in
absence of illumination for both the balanced photodiodes. For this reason the
"electronic noise" curve represents the noise contribution due to the measurement
chain (differential photodiodes and data acquisition system).
In order to better visualize the dependence of the measured intensity noise with
the laser detuning from the atomic resonance, we focused on the RIN value at a
fixed Fourier frequency of interest. The choice of the frequency is limited in the
range [1 kHz - 10 kHz], where the estimate of the cross-spectrum gave physically
meaningful results.
The diagram, depicted in the figure 6.13, proves that the measured atomic noise is
maximum when the absorption rate is the highest.
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Figure 6.13: The image displays the magnitude of the measured atomic noise at a
fixed Fourier frequency of 2 kHz. The x-axis represents the laser frequency, vertical
bars are instead a visual representation of the uncertainty of the measurement.

Vertical bars are computed taking into account two main contribution of uncertainty
which consists in: a type A contribution, given by the imaginary part of the cross-
spectrum and a type B contribution, given by the accuracy of the DAQ. Statistical
analyses presented in chapter 3 demonstrate that the imaginary part accounts only
for uncorrelated noise sources. As the number of averages increases, this terms
diminishes, as the CSD converges to the PSD of the correlated noise.
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Chapter 7

Conclusions and
Perspectives

This work demonstrated the effectiveness of the use of cross-correlation in noise
isolation contribution. The first steps of the analysis involved the complete char-
acterization of the instrumentation and optical components (chapter 4). Cross-
correlation of two channels was performed first acquiring the laser technical noise
(chapter 5) and only afterwards the atomic noise of a rubidium vapor-cell (chapter
6). The system used to measure the atomic noise of a rubidium vapor cell was
ultimately composed of the following elements:

• A differential acquisition schematic: two signals which share a correlated
noise contribution are splitted into two different path.

• A fast data logger: The acquisition device is responsible for the maxi-
mum bandwidth that is possible to acquire. Fast DAQ guarantees an higher
bandwidth window.

• Post-acquisition software: A scripts which perform the cross-correlation
of the acquired channel allowing the buried spectrum to emerges from the
thermal noise floor.

Acquired data suggest that it is possible to measure a physical quantity even if
it is corrupted by shot and electronic noises. This result highlights an important
lesson: the usage of powerful and expensive instruments is not always a good choice
to improve a measurement setup. Optimization can involve, in the digital era,
post-acquisition algorithms which keep the total cost of the system unaltered and
results more promising.
As a natural consequence of this work another experimental setup was tested
facilitating the measurement of a different noise contribution which shares the same
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detection difficulties of an low atomic noise. The same setup, presented in the
previews chapters, was used to estimate the PM/AM conversion noise. A summary
of this last experiment will be presented at the European Frequency and Time
Forum (EFTF) [39].
The current observations represent an initial step for further research and provide a
strong foundation for confirming new theoretical atomic models which are the basis
for improving the performances of state-of-the art atomic clocks. The challenge
presented by this experience was related to the limitations of the components used.
New frontiers can be achieved by focusing on these two areas:

• Hardware. the usage of an instrument with an higher data-rate could increase
performances and reduces the waiting time between subsequent acquisition.
Higher data-rate means that fixing a certain time period more samples can be
processed which means an higher number of averages.

• Optical. The substitution of inappropriate optical components can improve
performances. In fact, PBS (polarizing beam splitter) could be substituted with
non polarizing ones. Polarizing beam splitters separate incoming light into two
orthogonal polarization components. If the input laser has polarization noise,
it will affect the intensity noise of the two output beams. Furthermore, the
two output beams will exhibit opposite intensity over time so that substitution
of PBS prevents the formation of anti-correlated laser beams.
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Appendix A

Python Spectrum Functions
(Spectra_lib.py)

This appendix provides detailed information on the definition of each mathematical
function used throughout this work. Each section is structured into two main parts:
the theoretical background and its corresponding Python implementation. The
theoretical part explains the mathematical principles and formulas behind each
function, while the implementation part demonstrates how these functions are
coded and utilized in Python. All the functions described in the following sections
have been consolidated into a single, unified Python library called Spectra_lib.py,
which is available on GitHub [40]. This library has been integrated into every
processing script used for data acquisition, ensuring consistency and ease of use
across the project.

A.1 PSD

The PSD (Power Spectral Density), usually described as the distribution of
power across individual frequency components of a measured signal, is a mathe-
matical tool strongly used in mechanical, electrical, and electronic systems as well
as across numerous engineering disciplines. Harmonic analysis is a complete and
exhaustive method in order to evaluate the Power distribution of a specific source
of noise.
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Definition

Given x(t) a stochastic physical quantity and its time windowed version xT (t)
such as:

xT (t) =
x(t), if |t| < T,

0, if |t| > T.

The PSD of x(t) is

PSDx(f) = lim
T →∞

E[|XT (f)|2]
2T

The definition of an algorithm to estimate the Power Spectral Density has two
main goals: Speed up the computation, display clear plots. There are two main
methods of estimation:

1. Bartlett’s Method, a general purpose Method
2. Welch’s Method, an efficient variation of the Bartlett’s Method

A.1.1 Bartlett’s Method
Bartlett’s Method consists in computing the DFT (Discrete fourier transform)
several times over contiguous and non overlapping time windows. It is possible the
FFT computation in the first window of M samples such as,

X0(k) = F{x[0], x[1], x[2], ..., x[M − 1]} (A.1)

The second window will be,

X2(k) = F{x[M ], x[M + 1], x[M + 2], ..., x[2M ]} (A.2)

If N time windows are available a number of N FFTs of distinct time portions can
be obtained. The computation of the average of these FFTs is a good estimation
of the PSD as follows

Sx(k) = 1
N

NØ
j=0

|Xj(k)|2 (A.3)

A.1.2 Welch’s Method
Welch’s Method is computed over 50 % overlapping windows instead of the consec-
utive and distinct time windows. The overlap mechanism is clearer in the following
equations.

X0(k) = F{x[0], x[1], x[2], ..., x[M − 1]} (A.4)
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X1(k) = F{x[M/2], x[1], x[2], ..., x[3/2M − 1]} (A.5)

X2(k) = F{x[M ], x[1], x[2], ..., x[2M − 1]} (A.6)

If the number of samples is fixed the Welch’s Method has a double number of FFT
which means that the equation that estimate PSD (A.7) will obtain a smoother
trace.

Sx(k) = 1
N

NØ
j=0

|Xj(k)|2 (A.7)

This method is not a good choice if samples are acquired in different time slots
with a conspicuous idle time between measures. In the case of a long pulse train of
samples or short acquisition this method is perfect because it doubles the number
of possible windows of the same input signal. By Fixing the duration of a generic
data stream, chopped into m possible windows, the application of Welch method
makes the number of windows equal to 2m-1 .
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A.1.3 Python Code
The code below follows the mathematical notes already exposed. This minimum
form can be considered a minimum form of the final algorithm, a small brick.
Psd_basic has x as input value, fs as sampling frequency and finally N as number
of samples. By looking in the box it’s possible to observe computational constants
in the final formula. Note that:

1. The PSD is divided by N · fs the resolution of the FFT because it is a density
by definition

2. The PSD is multiplied by 2 because it is the right part of the spectrum and
the total power must be always the same the 2 factor can compensate the lost
contribution.

Psd_basic

import numpy as np
import scipy .fft as fft

def Psd_basic (x,fs ,N):

X = fft.fft(x) # fft of the input
PSD = 2*(1/ fs)*X*np.conj(X)/(N)
freq = np. linspace (0,fs ,N)

return freq [0: int(N/2)], PSD [0: int(N/2)]

Two fundamental features are still missing to a proper PSD estimator:

1. Windowing: Without a windowing method the discontinuity at the bound-
aries of the acquired samples can not be mitigated.

2. Averaging: A good PSD estimator should include an averaging mechanism
like shows the Welsh and the Bartlett’s methods.

In order to solve the first problem the window generator functions
(windows.get_windows)of the scipy library can be used as a mask for x samples.
The window can be represented as a train of pulses with the following discrete
summation:

W (n) =
NØ

j=0
wj × δ(n − j) (A.8)
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The S factor is defined as the summation of the coefficients of the previous discrete
windowing function [41].

S =
NØ

j=0
w2

j (A.9)

The new generic definition of the PSD which is totally independent from the shape
of the window is now complete:

PSDx = 2 × |X|2

S × fs

(A.10)

Mathematical equations allows a new function definition:

Psd_windowed

import numpy as np
from scipy import signal
import scipy .fft as fft

def Psd_windowed (self ,x,fs ,N, window = 'hann '):

win = signal . windows . get_window (window ,N)
X = fft.fft(x*win)
PSD = 2*(1/ fs)*X*np.conj(X)/( (win* win).sum ())
freq = np. linspace (0,fs ,N)

return freq [0: int(N/2)], PSD [0: int(N/2)]

Previous operations create a good basis to write a complete usable function com-
prehensive of an averaging operation and windowing function.
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Psd_bartlett

import numpy as np
import scipy . signal as signal
import scipy .fft as fft

def Psd_bartlett (x, fs , avg , window , N):

# window genaration
win = signal . windows . get_window (window ,N)

if (len(x)/N >= avg):

psd_buff = []

for i in range(avg):

X = fft.fft(x[i*N:i*N+N]* win)
app = (2/ fs)*X*np.conj(X)/(( win*win).sum ())
psd_buff . append (app)

buff = np.array( psd_buff )
PSD = (np.sum(buff , axis =0)/avg)

else:

X = fft.fft(x)
PSD = (2/ fs)*X*np.conj(X)/(( win*win).sum ())
freq = np. linspace (0,fs ,N)

return freq [0: int(N/2)], PSD [0: int(N/2)]

A.2 CSD

The CSD (Cross-Spectral Density) expand possibility unlocked by PSD, the
concept of single channel power distribution is substituted with the research of
a relationship between two signals. This "relationship" is commonly measured
with the cross-correlation function Ryx(t) which is an integral method to enhance
common characteristic of two signals.

74



A – Python Spectrum Functions (Spectra_lib.py)

Definition

Given x(t) and y(t), two stochastic physical quantities,
the CSD of x(t) and y(t) is

CSDyx(f) = lim
T →∞

E{F [Ry,x(t)]}
2T

It is possible to prove an equivalence between the Fourier transform of the cross-
correlation function Ryx(t) and the product of the two signals X(f)* (conjugate)
and Y(f) in the frequency domain.

F [Ry,x(t)] = X(f)∗Y (f) (A.11)
By observing this property of cross-correlation (eqn. A.11) the equation that link
PSD and CSD is the following one:

PSDx(f) = CSDyx(f) if y(t) = x(t) (A.12)

A.2.1 Python Code
Like seen in the previous section new features are necessary in order to improve
the functionality of the python library exploiting such as windowing and averaging.
By following previous tips and definitions the implementation is really easy to
understand.

Csd_basic

import numpy as np
import scipy . signal as signal
import scipy .fft as fourier

def Csd_basic (x, y, fs , avg , window , N):

# window genaration
win = signal . windows . get_window (window ,N)

if (len(x)/N >= avg):

csd_buff = []

for i in range(avg):
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X = fourier .fft(x[i*N:i*N+N]* win)
Y = fourier .fft(y[i*N:i*N+N]* win)
app = (2/ fs)*Y*np.conj(X)/(( win*win).sum ())
csd_buff . append (app)

buff = np.array( csd_buff )
CSD = (np.sum(buff , axis =0)/avg)

else:

X = fourier .fft(x)
CSD = (2/ fs)*X*np.conj(X)/(( win*win).sum ())
freq = np. linspace (0,fs ,N)

return freq [0: int(N/2)], CSD [0: int(N/2)]

Notice that CSD has an imaginary part and a real part ; PSD, instead, can reach
only real values. The real part and an imaginary part of the cross-spectrum have
two different meaning that should not be confused. The absolute value of CSD has
a simpler and straight forward meaning as it is the measure of how much the two
channel are correlated each other.

A.3 Advanced Averaging Methods

Observing logarithmic plots it is possible to notice that higher frequencies doesn’t
need the same resolution of the lowest one. It is possible to store a store a smaller
amount of frequency points to observe similar quality of an higher resolution one.
Resolution is linked to the windowing technique. Final resolution of a FFT plot will
be the ratio between the sample frequency and the number of samples per windows.
Assuming that the final spectrum plot will be divided into decades, higher decades
can use smaller window instead lower decades uses the higher one (figure A.1).
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Figure A.1: Two possibility of window framing are showed bigger windows used
for lower Fourier bins, smaller one for higher Fourier bins

Starting from the idea of a variable windowing system two new algorithms of PDS
or CSD are possible:

• Maximum average The number of averages decreases for every decades
starting from the higher decades with the maximum averaging-factor going
downwards to the last decade where the averaging-factor is 1.

• Minimum-Maximum average The number of averages has a minimum and
maximum point starting from the lower decades with smaller averaging-factors
going upwards to higher decades with bigger averaging-factors.

A.3.1 Python Code with Maximum Averages
Csd_MA

def Csd_MA (x, y, fs , Max_avg , N, win_type ):

# Power Specral Density Bertlett with Maximum Average
CSD = []
fr = []
j=0
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averages =[]
decades =[]

while (True):

Window =int(N/( Max_avg /(10** j)))
win = signal . windows . get_window (win_type , Window )

buff = []
buff2 = []
csd_cross = []

averages . append (( Max_avg /(10** j)))

for i in range(int( Max_avg /(10** j))):

X = fourier .fft(x[i* Window :i* Window + Window ]*
win)

Y = fourier .fft(y[i* Window :i* Window + Window ]*
win)

app= 2*(1/ fs)*Y*np.conj(X)/(( win*win).sum ())
csd_cross . append (app)

buff = np.array( csd_cross )
buff2 = (np.sum(buff , axis =0) /( Max_avg /(10** j)))
freq =[]

freq = np. linspace (0,fs ,int(len(x)/( Max_avg /(10**
j))))

f_min = (fs /2) /(10**( j+1))
f_max = (fs /2) /(10**( j))

decades . append (f_max)

j=j+1

if Window == N:

f_min = 0
mask = (freq >= f_min) & (freq <= f_max)

CSD. extend (buff2[mask ])
fr. extend (freq[mask ])

# append the last frequncy value when the
maximum is reached
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decades . append (0)

#final index sorting
sorted_indices = np. argsort (fr)
fr = np.array(fr)[ sorted_indices ]
CSD = np.array(CSD)[ sorted_indices ]

return fr [0: int(N/2)], np.array(CSD [0: int(N
/2) ]), np. array( averages ), np.array( decades )

mask = (freq >= f_min) & (freq <= f_max)

CSD. extend (buff2[mask ])
fr. extend (freq[mask ])

# final index sorting
sorted_indices = np. argsort (fr)
fr = np.array(fr)[ sorted_indices ]
CSD = np. array(CSD)[ sorted_indices ]

return fr [0: int(N/2)], np.array(CSD [0: int(N/2) ]), np.
array ( averages ), np.array( decades )

A.3.2 Python Code with Minimum-Maximum Averages
Csd_Min_Max

def Csd_Min_Max (x, y, fs , Min_avg , Max_avg , N, win_type ):

CSD = []
fr = []
j=0
averages =[]
decades =[]

while (True):

Window =int(len(x)/( Max_avg /(10** j)))
win = signal . windows . get_window (win_type , Window )

buff = []
buff2 = []
csd_cross = []
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averages . append (( Max_avg /(10** j)))

for i in range(int( Max_avg /(10** j))):

X = fourier .fft(x[i* Window :i* Window + Window ]* win)
Y = fourier .fft(y[i* Window :i* Window + Window ]* win)
app= 2*(1/ fs)*Y*np.conj(X)/(( win*win).sum ())
csd_cross . append (app)

buff = np.array( csd_cross )
buff2 = (np.sum(buff , axis =0) /( Max_avg /(10** j)))
freq =[]

freq = np. linspace (0,fs ,int(len(x)/( Max_avg /(10** j)))
)

f_min = (fs /2) /(10**( j+1))
f_max = (fs /2) /(10**( j))

decades . append (f_max)

j=j+1

if Window == int(len(x)/( Min_avg )):

f_min = 0
mask = (freq >= f_min) & (freq <= f_max)

CSD. extend (buff2[mask ])
fr. extend (freq[mask ])

# append the last frequncy value when the maximum
is reached

decades . append (0)

#final index sorting
sorted_indices = np. argsort (fr)
fr = np. array(fr)[ sorted_indices ]
CSD = np.array(CSD)[ sorted_indices ]

return fr [0: int(N/2)], np.array(CSD [0: int(N/2) ]),
np.array ( averages ), np.array( decades )

mask = (freq >= f_min) & (freq <= f_max)

CSD. extend ( buff2[mask ])
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fr. extend (freq[mask ])

#final index sorting
sorted_indices = np. argsort (fr)
fr = np.array (fr)[ sorted_indices ]
CSD = np.array (CSD)[ sorted_indices ]

return fr [0: int(N/2)], np.array(CSD [0: int(N/2) ]), np.
array ( averages ), np.array( decades )

81



Appendix B

Example of Cross-correlation
Estimation

Code referred to the example presented in the chapter section that analyse the
impact of the optimum cross-spectrum estimator. This code is functional to prove
some obervation about the imprudent usage of the magnitude of the cross-spectrum
as cross-correlation estimator [30].

estimation example

from Spectra_lib import Spectra
import numpy as np
import matplotlib . pyplot as plt
spec = Spectra ()

plt. figure (1)

# Number of samples
num_samples = 20000000

# white noise with a normal distribution
a = np. random . normal (loc =0.0 , scale =0.04 , size= num_samples )
b = np. random . normal (loc =0.0 , scale =0.04 , size= num_samples )
c = np. random . normal (loc =0.0 , scale =0.02 , size= num_samples )

# flicker noise
d = np. random . normal (0, 2, num_samples )
d = np. cumsum (d)
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d = d / np.std(d)

f, fft , avgerages , decades =
spec. Csd_MA (d,d ,200000 ,10000 , num_samples /10)
plt. semilogx (f ,10* np.log10(abs(fft)),label = r'$S_d$ ')

f, fft , avgerages , decades =
spec. Csd_MA (c,c ,200000 ,10000 , num_samples /10)
plt. semilogx (f ,10* np.log10(abs(fft)),label = r'$S_c$ ')

f, fft , avgerages , decades =
spec. Csd_MA (b,b ,200000 ,10000 , num_samples /10)
plt. semilogx (f ,10* np.log10(abs(fft)),label = r'$S_a$ ')

f, fft , avgerages , decades =
spec. Csd_MA (a,a ,200000 ,10000 , num_samples /10)
plt. semilogx (f ,10* np.log10(abs(fft)),label = r'$S_b$ ')

spec. marker_plotter_MA (avgerages , decades )
plt.xlim (1, max( decades ))

plt. xlabel ('Frequency [Hz]')
plt. ylabel ('PSD [dB]')
plt. legend ()
plt.grid ()
plt.show ()

plt. figure (2)

f, fft , avgerages , decades =
spec. Csd_MA (a+c+d,b+c+d ,200000 ,10000 , num_samples /10)
plt. semilogx (f ,10* np.log10(abs(fft)),label = r'$S_{x,y}$')

f, fft , avgerages , decades =
spec. Csd_MA (a+c+d,b+c-d ,200000 ,10000 , num_samples /10)

plt. semilogx (f ,10* np.log10(np.real(fft)),label =
r'$Re \{ S_{x,\ tilde{y}}\}$ (real part positive )',
color='orange ')

plt. semilogx (f ,10* np.log10(-np.real(fft)),label =
r'$-Re\{S_{x ,\ tilde {y}}\}$ (real part negative )',
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color='red ')

spec. marker_plotter_MA (avgerages , decades )

plt.xlim (1, max( decades ))
plt. xlabel ('Frequency [Hz]')
plt. ylabel ('CSD [dB]')
plt. legend ( fontsize = 15)
plt.grid ()
plt.show ()
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Appendix C

Allan Variance

Allan variance, also known as two-sample variance, is a statistical tool used to
evaluate the stability of frequency signals over time. Traditional variance measures,
such as standard deviation, are not well suited for analyzing time-dependent
fluctuations in frequency signals, as they tend to diverge for many types of noise
processes commonly found in oscillators and clocks. In contrast, Allan variance is
specifically designed to capture both short-term and long-term variation [42].

Definition

The Allan VARiance (AVAR) is defined as the mean square value of the
differences of M contiguous couple of samples acquired at the frequency 1/τ .
Mathematically, it is expressed as:

σ2
y(τ) = 1

2(M − 1)

M−1Ø
k=1

(xi+1 − xi)2 (C.1)

The Allan DEV iation (ADEV) is the square root of Allan variance.

σy(τ) (C.2)

A typical clock signal can be represented as:

v(t) = V0[1 + α]cos(2πν0t + ϕ(t)) (C.3)

where :

• V0 is the nominal amplitude of the signal,

• α represents small amplitude fluctuations,

• ν0 is the nominal frequency,
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• ϕ(t) is the phase noise, which encapsulates the instability in the phase of the
signal.

In high-precision applications, phase noise ϕ(t) plays a crucial role in determining
the overall performance of the frequency source. The frequency deviation from the
nominal frequency y(t) is obtained by differentiating this phase fluctuations:

y(t) = 1
2πν0

dϕ(t))
dt

(C.4)

An alternative representation of the Allan variance can be derived by the
frequency error signal. It is expressed as an integral over the power spectral density
Sy(f), which characterizes the distribution of frequency fluctuations over different
frequency components [43]:

σ2
y(τ) =

Ú ∞

0
Sy(f)sin4(2fτ)

(2fτ)2 df (C.5)

This equation provides a bridge between time-domain and frequency-domain
analysis, allowing researchers to infer the types of noise present in the system by
examining the behavior of Sy(f). Different types of noise, such as white frequency
noise, flicker frequency noise, and random walk frequency noise, exhibit distinct
dependencies on τ , which makes Allan variance a powerful diagnostic tool.
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Appendix D

Fitting Models

The python library "curve_fit" is used inn order to plot absorption curves of
rubidium. The code snippet below introduces the definition of the used functions.

from scipy . optimize import curve_fit
from scipy . special import voigt_profile

The functions that approximate the measured plots are a combination of func-
tions like explained in the theoretical chapters. The approximated behavior is
extracted by the following representation only to extract the linear modulation
caused by power increment or decrement.

def lorentzian_plus_rect (x, slope ,intercept , A, x0 , gamma):
y = slope *x + intercept -
A* (( gamma /2) **2) / ((x - x0)**2 + (( gamma /2) **2))
return y

def lorentzian (x, A, x0 , gamma):
y = 1
- A* (( gamma /2) **2) /((x - x0)**2 + (( gamma /2) **2))
return y

def gaussian_plus_rect (x, slope ,intercept ,A,x0 ,sigma):
y = slope *x + intercept
- A*np.exp (-(x-x0) **2/(2* sigma **2))
return y
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def gaussian (x,A,x0 ,sigma):
y = 1 - A*np.exp (-(x-x0) **2/(2* sigma **2))
return y

After the linear compensation offered by upper functions the function is fitted
by a more accurate model, an example of Vogit and Gaussian models is offered in
the blue box below.

def triple_gaussian (x, slope ,intercept ,A,x0 ,sigma):

C_F1 = A/18
C_F2 = (5*A)/18
C_F3 = (7*A)/9

y = - C_F1/sigma*np.exp (-(x-x0) **2/(2* sigma **2))
- C_F2/sigma *np.exp (-(x-x0 -0.15695) **2/(2* sigma **2))
- C_F3/sigma *np.exp (-(x-x0 -0.4236) **2/(2* sigma **2))

return y

The usage of the fitting function is the following:

# initial parameters
initial_guess =
[ -0.04 ,0.9 ,0.2 , -0.5 ,2.5]

# function interrogation
params , covariance =
curve_fit ( lorentzian_plus_rect , x, y, p0 = initial_guess )

# parameter extraction
slope ,intercept , A, x0 , gamma =
parameters

Like seen up-above three step are performed in a recursive usage method. The user
inserts an initial parameter attempt, the curve_fit function perform a fit and after
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that parameter are extracted and the user can plot them and compare the fitted
and the real function. If the two functions don’t overlap perfectly the parameter
mus be changed a bit to allow the convergence of the method.
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