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Abstract
The present study focuses on the modelling and design of a reconfigurable Au-

tonomous Underwater Vehicle (AUV), intended for survey and hovering operations.
The research activity is divided in two main areas of study: the control of the
vehicle in survey configuration and the design of a mechanical assistance system
for the reconfiguration process.
The first part involves the development of a dynamic model for the system, with em-
phasis on kinematics expressed in quaternions, ensuring an efficient and singularity-
free representation of rotations. Vehicle control is implemented through a PID
controller for trajectory tracking, in order to evaluate the stability and precision
of the system along predefined paths. The model validation is carried out via
numerical simulations, incorporating the effects of hydrodynamic forces and ocean
currents.
The second part addresses a critical issue during configuration changes, focusing
on the design of a system based on pulleys’ mechanism. Specifically, the study
examines the material properties of the rope, the geometry of the pulley to be
designed and the structural parameters of the system. Experimental tests on
prototypes were conducted to validate the behaviour of the mechanism, with results
compared to Finite Element Method (FEM) simulations. Finally, two distinct
ratchet systems for cable tensioning and final component production are presented.
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Chapter 1

Introduction

The exploration and study of the underwater world have always presented signif-
icant challenges due to the inhospitable nature of these environments. However,
advancements in technology have opened up new frontiers, allowing humans to
venture into the depths of the ocean without physically entering the water. One
remarkable innovation in this field is the development of Autonomous Underwater
Vehicles (AUVs) [[Figure 1.2], which have significantly expanded the capabilities of
underwater operations.

1.1 State of the Art of AUVs
Over the past few decades, the field of underwater robotics has witnessed significant
growth, driven by the need for autonomous solutions capable of replacing human
operators in complex and hazardous underwater environments. Initially developed
for military applications, AUVs have progressively expanded into scientific, indus-
trial, and commercial domains. The offshore oil and gas industry, for example,
relies on AUVs for seabed inspections, maintenance, and environmental monitoring,
reducing operational costs compared to traditional Remotely Operated Vehicles
(ROVs) [Figure 1.1].
Most conventional AUVs are designed with a torpedo-like shape to optimize hy-
drodynamic performance, enabling long-distance navigation with minimal energy
consumption. However, these vehicles often lack the maneuverability required
for detailed inspections and intervention tasks, which are better suited to stocky,
multi-degree-of-freedom ROVs. This trade-off has led to an increasing interest in
hybrid solutions, such as Autonomous Underwater Reconfigurable Vehicles (AURVs),
which can transition between survey-oriented and intervention-focused configura-
tions. Recent advancements in modular marine robotics have introduced promising
solutions, such as the AQUANAUT by Houston Mechatronics, both capable of

1
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Figure 1.1: ROV Hercules

Figure 1.2: AUV Sabertooth

Figure 1.3: Shape-shifting AUV AQUANAUT

autonomously altering their configurations to perform a variety of underwater tasks
[Figure 1.3].

1.2 Overall Framework
The development of AUV technology has been supported by various research groups
and institutions worldwide, each contributing to different aspects of marine robotics.
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This section introduces two research entities involved in the study of underwater
robotic systems: the PoliTOcean team and the MDM Lab. Although these two
groups operate independently, their research efforts align with the broader objective
of advancing ROVs and AUVs capabilities.

1.2.1 Team PoliTOcean
PoliTOcean is a student-led research group from the Polytechnic University of Turin
[Figure 1.4], actively involved in the development of underwater ROVs. The team
participates annually in the Marine Advanced Technology Education (MATE) ROV
Competition, an international event focused on fostering innovation in underwater
robotics. Over the years, PoliTOcean has developed several prototypes, including
the EVA ROV [Figure 1.5], designed for manipulation tasks at various depths.

Figure 1.4: PoliTOcean Student Team

The EVA prototype is equipped with eight thrusters (T200 by BlueRobotics),
allowing for precise maneuverability. Its control system integrates an Inertial
Measurement Unit (IMU) with a Kalman Filter, a barometer for depth estimation,
and two camera modules for real-time visual feedback. The vehicle’s mechanical
structure is composed of high-density polyethylene (HDPE) and aluminum alloys,
ensuring robustness and water resistance up to depths of 300 meters.
PoliTOcean’s multidisciplinary approach involves divisions dedicated to mechanics,
electronics, firmware, hydrodynamics and control systems, working collaboratively
to enhance the performance and stability of their underwater vehicles.

3
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Figure 1.5: EVA and the float designed for the Mate ROV Competition 2024

1.2.2 MDM Lab

The Mechatronics and Dynamic Modelling Laboratory (MDM Lab) at the University
of Florence (UNIFI DIEF) has been a leading research center in underwater robotics
since 2010, specializing in Autonomous Underwater Vehicles (AUVs). Over the
years, the laboratory has actively participated in numerous regional, national, and
European research projects, significantly advancing the development of autonomous
marine systems.
MDM Lab has been involved in several innovative AUV projects, including the
development of the Typhoon class AUVs and the MArine Robotic Tool for Archae-
ology (MARTA), which was specifically designed for underwater archaeological
exploration. The laboratory also contributed to the European FP7 ARROWS
project, focused on providing low-cost and reliable solutions for marine archaeology.
In recent years, MDM Lab has expanded its research to include Autonomous
Underwater Reconfigurable Vehicles (AURVs), which are capable of dynamically
reconfiguring their structure to optimize performance in different operational sce-
narios. Among the laboratory’s notable contributions is the development of the
FeelHippo AUV [Figure 1.6], a lightweight, low-cost vehicle designed to be a versatile
platform for a variety of research tasks. This vehicle, which is part of the lab’s
AUV fleet, exemplifies MDM Lab’s commitment to creating efficient and flexible
robotic systems capable of addressing a broad range of underwater exploration
challenges.
In 2014, MDM Lab became a member of the Interuniversity Center of Integrated
Systems for the Marine Environment (ISME) [Figure 1.7], a consortium of Italian
academic institutions dedicated to advancing marine robotics. This collaboration
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has allowed MDM Lab to carry out large-scale experimental campaigns in part-
nership with industrial entities such as the Naval Support and Experimentation
Center (CSSN) of the Italian Navy. Moreover, MDM Lab’s involvement in the
H2020 EU Marine Robots (EUMR) initiative has further strengthened European
research infrastructures in the field of marine robotics.

Figure 1.6: AUV FeelHippo

Figure 1.7: The logo of the ISME consortium

1.3 Thesis Motivation
In this study, I will apply the knowledge gained during my time at PoliTOcean
to work on a new prototype of an AURV patented by the MDM Lab, namely
RUVIFIST [1] [2] [3] [4] [5]. The primary objective of this thesis is to explore new
methodologies for enhancing the versatility of AUVs through reconfigurable designs.
The motivation comes from the increasing demand for adaptable underwater vehicles
capable of performing both survey and hovering tasks within a single mission.
Traditional AUVs are often optimized for either long-range navigation or precision

5
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maneuvering, leading to operational constraints. By investigating reconfigurable
architectures, this research aims to bridge the gap between these two operational
modes, offering a solution that maximizes both efficiency and maneuverability
in diverse underwater environments. This thesis aims to contribute to the field
of underwater robotics by focusing on the design and control of a reconfigurable
AUV capable of transitioning between survey and hovering configurations. By
leveraging advanced modelling techniques and control strategies, this study seeks
to enhance the adaptability and efficiency of AUVs in diverse underwater missions.
The collaboration between different research entities, such as PoliTOcean and
MDM Lab, highlights the multidisciplinary nature of this field, where innovative
solutions emerge from the intersection of mechanical design, control theory, and
marine engineering.
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Figure 1.8: RUVIFIST prototype survey configuration

Figure 1.9: RUVIFIST prototype hovering configuration
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Chapter 2

Modelling of the AURV

In this chapter we will derive a model of the RUVIFIST in its “survey” configuration,
according to the procedure outlined by Fossen. Being the modelling of rigid bodies
moving in a fluid widely studied in literature, please refer to [6] for more details.
Since it describes exactly the dynamic behaviour of the AURV to be controlled,
this model will be used exclusively for simulation purposes, serving as a virtual
experimentation platform. Specifically, it enables testing of the implemented
controller as well as potential future ones. This approach helps mitigate the
significant costs associated with transporting the AUV to sea for physical testing.

Figure 2.1: Closed-loop AURV model system simulator scheme

With reference to Figure 2.1, the process begins with the generation of a series of
waypoints, referred to as the Path Input. These waypoints are provided only in
terms of X and Y coordinates, defining the desired positions that the RUVIFIST
should reach during its operation.
From these waypoints, a trajectory is generated: this trajectory is always two-
dimensional, confined to the XY plane, and serves as the input to our model,
denoted as the Trajectory Generation. The trajectory provides a continuous

9
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reference path for the AURV to follow, ensuring smooth navigation between the
predefined waypoints.
The control system, composed of a Line-of-Sight (LOS) guidance algorithm and a
Proportional-Integral-Derivative (PID) controller, plays a crucial role in tracking the
trajectory: the controller continuously determines the closest point on the trajectory
to the current AURV position, which is obtained through feedback mechanisms.
This ensures that the AURV remains on the intended path and corrects deviations
in real-time.
Once the controller identifies the nearest point on the trajectory, it generates
control signals in the form of Pulse Width Modulation (PWM) commands, which
are then sent to the propulsion system. Specifically, the PID controller calculates
the necessary thrust and torque required to minimize the error between the desired
and actual trajectory, signals that then are converted into PWM signals that
adjust the thrust levels of the AURV’s propulsion system, including thrusters and
actuators. The propulsion system translates these PWM signals into physical forces
and moments applied to the AURV, allowing it to maneuver accordingly.
Upon receiving the control inputs, the AURV’s dynamic and kinematic model
processes these forces and moments to determine the vehicle’s resulting motion.
This model simulates the interactions between the control efforts and the AURV’s
physical behavior, taking into account hydrodynamic forces, mass properties, and
environmental disturbances that will be discussed in the following sections. The
computed outputs, labeled as AURV Data in the figure, include acceleration,
velocity, position, actuation states and the resulting forces and moments acting
on the vehicle. These data are visualized in the block referred to as Visualization,
providing a comprehensive representation of the AURV’s behavior, which will be
further analyzed in chapter 4.

2.1 Notation

The motion of an underwater AUV in 6 DOF can be represented in a vectorial form
using the SNAME notation (Society of Naval Architects and Marine Engineers,
1950), as shown in table 2.1: position and orientation are described by six generalized
coordinates, while their time derivatives describe the linear and angular velocities
of the vehicle.
According to the SNAME notation, it is possible to refer to the generalized pose,
velocity and forces and moments coordinates by (2.1), (2.2) and (2.3) vectors,
respectively:

10
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Degree of Freedom Forces and
moments

Linear and
angular

velocities

Positions
and

orientation
Surge - motion in the x

direction X u x

Sway - motion in the y
direction Y v y

Heave - motion in the z
direction Z w z

Roll - rotation about the x
axis K p ϕ

Pitch - rotation about the y
axis M q θ

Yaw - rotation about the z
axis N r ψ

Table 2.1: SNAME notation for marine vessels

η =
è
x y z ϕ θ ψ

éT
(2.1)

ν =
è
u v w p q r

éT
(2.2)

τ =
è
X Y Z K M N

éT
(2.3)

Their sub-vectors are given by using the following vector notations:

• Position:
p =

è
x y z

éT
∈ R3

• Orientation (in Euler angles):

Θ =
è
ϕ θ ψ

éT
∈ SO(3)

• Linear velocity:
v =

è
u v w

éT
∈ R3

• Angular velocity:
ω =

è
p q r

éT
∈ R3

• Force on AUV:
f =

è
X Y Z

éT
∈ R3

11
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• Moment on AUV:
m =

è
K M N

éT
∈ R3

where:

• R3 denotes the three dimensional of Euclidean space

• SO(3) indicates the three dimensional sphere in which three angles are defined
on the interval of [−π, π] for ϕ and ψ, and the interval of [−π/2, π/2] for θ

Therefore, the general motion of an underwater vehicle in 6 DOF can be described
by the following vectors:

η =
C

p
Θ

D
∈ R3 × SO(3) (2.4)

ν =
C

v
ω

D
∈ R6 (2.5)

τ =
C

f
m

D
∈ R6 (2.6)

where:

• η is the position and orientation (pose) vector

• ν is the linear and angular velocity screw

• τ is the force and moment screw

The representation of ν and τ in R6 is adopted for convenience; however, this is
not an exact formulation, as these quantities are screws rather than vectors.

2.2 Equations of motion
The study of RUVIFIST’s model can be divided into two parts: kinematics, which
treats only geometrical aspects of motion, and dynamics, which is the analysis of
the forces causing the motion.
The overall 6 DOF marine craft equation of motion can be written in a vectorial
form as follows:

η̇ = JΘ(η)ν (2.7)

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ (2.8)
where:
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• JΘ is the Jacobian matrix

• M is the sum of the rigid body mass matrix MCG
RB and the added mass matrix

MA

• C(ν) is the sum of the rigid body Coriolis and centrifugal contribution CCG
RB

and added mass Coriolis and centrifugal contribution CA(ν)

• D(ν) includes all damping effects

• g(η) is the hydrostatic term

These terms and their respective properties will be further analyzed in the forth-
coming sections.

2.3 Rigid Body’s Kinematics

2.3.1 Reference Frames
When analysing the motion of a marine vehicle in 6 DOF, it is convenient to define
two reference frames, as shown in [Figure 2.2] and [Figure 2.3]:

NED (North-East-Down frame), with coordinate system {n} = (xn, yn, zn) and
origin on

This is usually defined as the tangent plane on the surface of the Earth,
fixed in the vicinity of the vehicle. It is the coordinate system we refer to
in our everyday life, with the x axis pointing towards the true North, the
y axis pointing towards East and the z axis pointing downwards normal
to the Earth surface.

BODY (Body-fixed frame), with coordinate system {b} = (xb, yb, zb) and origin ob

This is a moving frame that is fixed to the vehicle. Position and orientation
of the craft are usually described relative to the inertial frame, {n} for the
marine case, while linear and angular velocities are usually expressed in
the body-fixed frame. The axes are chosen to coincide with the principal
axes of inertia of the vehicle and are called longitudinal, transversal and
normal axis, respectively the x, y, and z axes.

13
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Figure 2.2: Reference frames

Figure 2.3: NED and BODY frames of RUVIFIST
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2.3.2 Transformation Between BODY and NED
It is possible to describe the orientation of the AUV with different representations,
such as Euler angles and quaternions. Euler angles are known to suffer from
singularities, commonly referred to as gimbal lock, where the representation becomes
ambiguous and loses a degree of freedom. Quaternions, being four-dimensional, do
not have this issue and can represent all orientations without singular points. For
this reason, in this work the quaternion kinematics model will be used.

Quaternion Transformation

According to the study of quaternion kinematics (Chou - 1992) [7], a quaternion q
is defined as a complex number formed by four units:

q =
è
η ε1 ε2 ε3

éT
(2.9)

where q0 is a real parameter and the other three units are imaginary parameters.
It is possible to compute these parameters using a rotation θ around a unit vector
u =

è
u1 u2 u3

éT
(i.e. |u| = 1) in the following way:

• Real part
η = cos θ2 (2.10)

• Imaginary part ϵ1
ϵ2
ϵ3

 =

u1 sin θ
2

u2 sin θ
2

u3 sin θ
2

 (2.11)

As a consequence, the quaternion can be represented by the following structure:

q =


η
ϵ1
ϵ2
ϵ3

 =


cos θ

2
u1 sin θ

2
u2 sin θ

2
u3 sin θ

2

 =
C

cos θ
2

u sin θ
2

D
(2.12)

Since the unit quaternion satisfies qT q = 1, the transformation between the linear
velocity expressed in body frame and the linear velocity expressed in NED frame
results:

ṗ = Rn
b (q)vb (2.13)

where

15



Modelling of the AURV

Rn
b (q) =

1 − 2(ε2
2 + ε2

3) 2(ε1ε2 − ε3η) 2(ε1ε3 − ε2η)
2(ε1ε2 − ε3η) 1 − 2(ε2

1 + ε2
3) 2(ε2ε3 − ε1η)

2(ε1ε3 − ε2η) 2(ε2ε3 − ε1η) 1 − 2(ε2
1 + ε2

2)

 (2.14)

while the transformation matrix between the angular velocity expressed in body
frame and the time derivative of the unit quaternion is given by:

q̇ = Tq(q)wb (2.15)

where

Tq(q) =


−ε1 −ε2 −ε3
η −ε3 ε2
ε3 η −ε1

−ε2 ε1 η

 . (2.16)

It is useful to collect the kinematic equations in 6-dimensional matrix forms.
Recalling equations (2.4), (2.5), (2.13) and (2.15) we can thus write (2.7) as:

ξ̇ = J(q)ν ⇐⇒
C
ṗ
q̇

D
=
C
Rn

b (q) 03×3
04×3 Tq(q)

D C
vb

ωb

D
(2.17)

2.4 Rigid Body’s Dynamics
We now begin analyzing the terms of formula (2.8). In this section we focus
specifically on rigid-body dynamics, expressed as follows:

MRBν̇ + CRB(ν)ν = τRB (2.18)

where:

• MRB is the rigid-body mass matrix

• CRB is the rigid-body Coriolis and centripetal matrix due to the rotation of
{b} about the inertial frame {n}

• ν = [u, v, w, p, q, r]T is the generalized velocity vector expressed in {b}

• τRB = [X, Y, Z,K,M,N ]T is a generalized vector of external forces and mo-
ments expressed in {b}

The rigid-body equation of motion are derived using the Newton-Euler formulation
and are usually represented in two Body-fixed reference points: the origin on of
{b}, CO (i.e., the geometric center) and the center of gravity, CG (i.e., the center

16



Modelling of the AURV

of mass).

In the study of rigid-body dynamics, computations are initially performed around
the center of gravity CG, due to its simplicity in deriving translational motion
equations and defining the inertia matrix; once the motion equations are established,
they are then transformed to the geometric center CO, which is often chosen
in marine craft to facilitate more effective control system design and optimize
performance.

MCO
RB =

 m13×3 −mS
1
pb

C

2
mS

1
pb

C

2
Io



=



m 0 0 0 mzC −myC

0 m 0 −mzC 0 mxC

0 0 m myC −mxC 0
0 −mzC myC Ix −Ixy −Ixz

mzC 0 −mxC −Iyx Iy −Iyz

−myC mxC 0 −Izx −Izy Iz


(2.19)

CCO
RB =

 mS
1
ωb
2

−mS
1
ωb
2

S
1
pb

C

2
mS

1
pb

C

2
S
1
ωb
2

−S
1
Ioω

b
2  (2.20)

For more information about the computations, please refer to appendix A.

2.5 Hydrostatics
When submerged in a fluid, a rigid body is under the effect of both the gravitational
force and the buoyancy [Figure 2.4].
Buoyancy is not a function of a relative movement between body and fluid, thus it
is considered as an hydrostatic effect, expressed by the term gRB(q), with reference
to formula (2.8).

Let’s consider the acceleration of gravity gn =

 0
0

9.81

 m/s2, the volume of the

body ∆ and its mass m. The submerged weight of the body is defined as:

W = m∥gn∥ (2.21)

while its buoyancy, considering the water density ρw, is defined as:

B = ρw∆∥gn∥ (2.22)
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Figure 2.4: Gravitational and buoyancy forces acting on the center of gravity CG
and on the center of buoyancy CB of RUVIFIST

The gravity force, acting in the center of mass pb
C =

è
xC yC zC

éT
is represented

in Body-fixed frame by:

f b
G

1
Rb

n

2
= Rb

n

 0
0
W

 (2.23)

while the buoyancy force, acting in the center of buoyancy pb
B =

è
xB yB zB

éT
is

represented in Body-fixed frame by:

f b
B

1
Rb

n

2
= −Rb

n

 0
0
B

 (2.24)

The (6 × 1) vector of forces and moments due to gravity and buoyancy in the
Body-fixed frame is represented by:

gRB

1
Rb

n

2
= −

 f b
G

1
Rb

n

2
+ f b

B

1
Rb

n

2
pb

C × f b
G

1
Rb

n

2
+ pb

B × f b
B

1
Rb

n

2 (2.25)

In terms of quaternions, it is represented by:

g (q) =



2(ε2η − ε1ε3) (W −B)
−2(ε1η + ε2ε3) (W −B)

(−η2 + ε2
1 + ε2

2 − ε2
3) (W −B)

(−η2 + ε2
1 + ε2

2 − ε2
3) (yCW − yBB) + 2(ε1η + ε2ε3) (zCW − zBB)

−(−η2 + ε2
1 + ε2

2 − ε2
3) (xCW − xBB) + 2(ε2η − ε1ε3) (zCW − zBB)

−2(ε1η + ε2ε3) (xCW − xBB) − 2(ε2η − ε1ε3) (yCW − yBB)


(2.26)
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Buoyancy and maneuverability

The relationship between buoyancy and maneuverability plays a key role in the
design of underwater vehicles.
A neutrally buoyant underwater vehicle will satisfy W = B.
It is convenient to design underwater vehicles with B > W (positive buoyancy)
such that the vehicle will surface automatically in emergency situations, such as
power failure.
The buoyancy magnitude B should be slightly greater than W : if the vehicle is
designed such that B ≫ W , too much control energy is required to keep the vehicle
submerged.

2.6 Hydrodynamics
In this section we will discuss the main hydrodynamic effects involved in our dy-
namical system. In particular, the following terms of formula (2.8) will be analyzed:
the added mass and inertia,MAν̇ and CA(ν), and the damping effect, DRB(ν).

It is essential to note that in fluid dynamics it is difficult to develop a reliable
model for most of the hydrodynamic effects. A rigorous analysis for incompressible
fluids would need to resort to the Navier-Stokes equations. For more details please
refer to [6], [8] and [9].

2.6.1 Added Mass and Inertia
When a rigid body is moving through a fluid, the surrounding fluid’s inertia is
influenced by the motion of the body, leading to an acceleration of the adjacent
fluid mass.
The additional inertia of the fluid surrounding the body is accelerated by the
movement of the body. In industrial robotics, this presence has no effect, since the
density of the air is much smaller than the density of a moving mechanical system.
However, in underwater applications, where the density of water ρ ≃ 1000kg/m3
is comparable to that of the vehicle, this effect becomes substantial and directly
impacts the moving body.

As the body moves, the surrounding fluid is accelerated along with it, requiring an
external force to sustain this acceleration. In response, the fluid exerts an equal
and opposite reaction force on the body. This reaction force is known as the added
mass effect.

It is important to note that the added mass does not represent a physical mass of
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fluid being incorporated into the system. Instead, as the marine craft moves, it
induces motion in the otherwise stationary fluid. The fluid must displace to allow
the craft to pass and subsequently close in behind it [Figure 2.5]. As a consequence,
the fluid acquires kinetic energy that it would not possess otherwise.

Figure 2.5: Rigid-body and fluid kinetic energy

The expression for the fluid kinetic energy TA is written as a quadratic form (Lamb,
1932):

TA = 1
2νT MAν, ṀA = 0 (2.27)

where MA = MT
A ≥ 0 is the 6 × 6 system inertia matrix of added mass terms:

MA = −



Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ


(2.28)

The notation of SNAME (1950) for the hydrodynamic derivatives is used in this
expression.

The added mass has also an added Coriolis and centripetal contribution. It can be
demonstrated that the matrix expression can always be parameterized such that:
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CA (ν) =



0 0 0 0 −a3 a2
0 0 0 a3 0 −a1
0 0 0 −a2 a1 0
0 −a3 a2 0 −b3 b2
a3 0 −a1 b3 0 −b1

−a2 a1 0 −b2 b1 0


(2.29)

where:

a1 = Xu̇u+Xv̇v +Xẇw +Xṗp+Xq̇q +Xṙr

a2 = Yu̇u+ Yv̇v + Yẇw + Yṗp+ Yq̇q + Yṙr

a3 = Zu̇u+ Zv̇v + Zẇw + Zṗp+ Zq̇q + Zṙr

b1 = Ku̇u+Kv̇v +Kẇw +Kṗp+Kq̇q +Kṙr

b2 = Mu̇u+Mv̇v +Mẇw +Mṗp+Mq̇q +Mṙr

b3 = Nu̇u+Nv̇v +Nẇw +Nṗp+Nq̇q +Nṙr

In general, the motion of an underwater vehicle moving in 6 DOF at high speed
exhibits significant non-linearity and coupling; however, in many applications the
vehicle’s movement is restricted to low speed. In addition, if the vehicle has three
planes of symmetry, it implies that the contribution from the off-diagonal elements
in the matrix MA can be neglected.
It is thus possible to simplify the equations (2.28) and (2.29) as follows:

MA = MT
A = −diag {Xu̇, Yv̇, Zẇ, Kṗ,Mq̇, Nṙ} (2.30)

CA (ν) = CT
A (ν) =



0 0 0 0 −Zẇw Yv̇v
0 0 0 Zẇw 0 −Xu̇u
0 0 0 −Yv̇v Xu̇u 0
0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗp
−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0


(2.31)

2.6.2 Damping Effects
The damping effects are related to the presence of fluid viscosity that leads to the
generation of dissipative drag and lift forces acting on the body.
A common simplification is to consider only linear and quadratic damping terms
and group these terms in a matrix DRB such that DRB (ν) > 0, ∀ν ∈ R6.
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DRB (ν) = −diag {Xu, Yv, Zw, Kp,Mq, Nr} +
− diag

î
Xu|u||u|, Yv|v||v|, Zw|w||w|, Kp|p||p|,Mq|q||q|, Nr|r||r|

ï
(2.32)

The following observations can be made:

• The coefficients of this matrix are considered to be constant

• Assuming a diagonal structure for the damping matrix implies neglecting the
coupling dissipative terms

The viscous effects can be considered as the sum of two forces, the drag and the
lift forces. The former are parallel to the relative velocity between the body and
the fluid, while the latter are normal to it. Both drag and lift forces are supposed
to act on the center of mass of the body.
Considering the rigid body as a sphere moving in a fluid, the drag force can be
modeled as:

Fdrag = 1
2ρwU

2SCd (Rn) , (2.33)

where:

• ρw is the fluid density

• U is the velocity of the sphere

• Cd is the drag coefficient

• S is the frontal area of the sphere

• Rn is the Reynolds number

The lift forces can be represented as:

Flift = 1
2ρwU

2SCl (Rn, α) , (2.34)

where:

• ρw is the fluid density

• U is the velocity of the sphere

• Cl is the lift coefficient, depending on the angle of attack α

• S is the frontal area of the sphere

• Rn is the Reynolds number
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2.7 Ocean Current Forces and Moments
The control of marine vehicles must consider environmental disturbances like waves,
wind, and ocean currents, which significantly impact motion dynamics, especially in
shallow waters. Understanding these forces is crucial for ensuring precise navigation
and stability in marine vehicle operations.
In this section, we will focus on the effect of ocean currents, as they play a dominant
role in long-term vehicle drift, energy consumption, and maneuverability, making
their impact particularly critical for autonomous marine systems [10] [11].

The influence of ocean currents on a marine craft can be accounted for by modifying
the generalized velocity vector in the hydrodynamic terms to reflect relative velocity
νr:

νr = ν − νc (2.35)
where νc ∈ R6 represents the velocity of the ocean current expressed in the Body-
fixed frame.

Definition: irrotational fluid

In the case of an irrotational fluid, the generalized ocean current velocity is given
by:

νc =
è
uc vc wc 0 0 0

éT
(2.36)

where vb
c =

è
uc vc wc

éT
represents the linear velocity component.

The relationship between the ocean current linear velocity vector in the NED and
Body-fixed frames is expressed as:

vn
c = Rn

b (Θnb)vb
c (2.37)

where Θnb =
è
ϕ θ ψ

éT
represents the Euler angles defining the transformation

between the BODY and NED frames and Rn
b (Θnb) ∈ SO(3) is the associated

rotation matrix.

Definition: irrotational constant ocean current

For an irrotational constant ocean current in the NED frame, the following condi-
tions must hold:

ν̇n
c = Ṙn

b (Θnb)vb
c +Rn

b (Θnb)v̇b
c = 0 (2.38)
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2.7.1 Equation of motion including Ocean Currents
In order to effectively model the influence of irrotational ocean currents on marine
craft dynamics, the equation (2.8) is formulated as follows:

MRB ν̇ + CRB(ν)ν + g(q) +MAν̇r + CA(νr)νr +D(νr)νr = τ (2.39)

where the relative velocity vector is defined as:

νr =
C
vb − vb

c

ωb
b/n

D
(2.40)

It is important to note that the rigid-body dynamics remain unaffected by ocean
currents.

Theorem: Coriolis and Centripetal matrix property

If the Coriolis and centripetal matrix CRB(νr) is independent of the linear velocity
νl =

è
u v w

éT
, and the ocean current is irrotational and constant, then the

rigid-body dynamics satisfy (Hegrenaes, 2010):

MRB ν̇ + CRB(ν)ν ≡ MRB ν̇r + CRB(νr)νr (2.41)

Since the Coriolis and centripetal matrix is independent of the linear velocity νl, it
follows that:

CRB(νr) = CRB(ν) (2.42)

Additionally, the property:

MRB ν̇c + CRB(νr)νc = 0 (2.43)

is established by expanding the matrices MRB and CRB(νr) along with their
respective acceleration and velocity vectors:

C
mI3x3 −mS(rb

g)
mS(rb

g) Ib

D C
−S(ωb

b/n)vb
c

03x1

D
+
C

mS(ωb
b/n) −mS(rb

g)S(ωb
b/n)

mS(rb
g)S(ωb

b/n) S(Ibω
b
b/n)

D C
vb

c

03x1

D
= 0

(2.44)
Finally, it follows that:

MRB ν̇+CRB(ν)ν = MRB(ν̇r + ν̇c)+CRB(νr)(νr +νc) = MRB ν̇r +CRB(νr)νr (2.45)

Applying this theorem to the equations of motion (2.7) and (2.8), we obtain the
following differential equations:
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ξ̇ = J(q)νr +
C
vn

c

0

D
(2.46)

Mν̇r + C(νr)νr +D(νr)νr + g(q) = τ (2.47)

where M = MRB +MA and C(νr) = CRB(νr) + CA(νr).
It is important to note that in formula (2.47) only νr is used instead of ν. This
model incorporates the bias ν̇n

c = 0 at the kinematic level, whereas the model of
formula (2.39) accounts for ocean current drift at the dynamic level using νr = ν−νc.

2.8 Dynamic parameters of the system
For simulation purposes, the high fidelity model discussed in section 2.1 was im-
plemented in MATLAB Simulink to test the dynamic behaviour of RUVIFIST.
In order to do this, the numerical values for all the system parameters discussed
before are needed.

All the parameters, along with their corresponding values and units of measurement,
are listed in table 3.1. These parameters were previously estimated by the MdM
Lab team, so for more details on how they were obtained, please refer to [12].

2.8.1 Thruster dynamics and Control allocation
Since RUVIFIST has 8 thrusters, the thruster forces can be represented using the
following vector:

F =
è
F1 F2 F3 F4 F5 F6 F7 F8

éT
(2.48)

while the control inputs can be represented using the following one:

u =
è
u1 u2 u3 u4 u5 u6 u7 u8

éT
(2.49)

Given the force vector f =
è
Fx Fy Fz

éT
and the moment arms r =

è
lx ly lz

éT
,

the forces and moments in 6 DOF can be determined by:
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Symbol Description Value
m mass 90.00 kg
W weight 882.90 N
B buoyancy 895.10 N
Ix moment of inertia 3.85 kg m2

Iy moment of inertia 20.95 kg m2

Iz moment of inertia 23.51 kg m2

Ixy products of inertia 0.00 kg m2

Ixz products of inertia 0.00 kg m2

Iyz products of inertia 0.00 kg m2

|Xu̇| added mass 0.50 kg
|Yv̇| added mass 0.50 kg
|Zẇ| added mass 0.50 kg
|Kṗ| added mass 0.50 kg m2 rad−1

|Mq̇| added mass 0.50 kg m2 rad−1

|Nṙ| added mass 0.50 kg m2 rad−1

|Xu| linear damping 13.10 N s m−1

|Yv| linear damping 24.60 N s m−1

|Zw| linear damping 653.80 N s m−1

|Kp| linear damping 55.30 N s rad−1

|Mq| linear damping 418.40 N s rad−1

|Nr| linear damping 29.40 N s rad−1

|Xu|u|| quadratic damping 130.76 N s2 m−2

|Yv|v|| quadratic damping 245.90 N s2 m−2

|Zw|w|| quadratic damping 6537.90 N s2 m−2

|Kp|p|| quadratic damping 553.30 N s2 rad−2

|Mq|q|| quadratic damping 4184.20 N s2 rad−2

|Nr|r|| quadratic damping 294.20 N s2 rad−2

pC
B coordinates of the CoB [0.00; 0.00; 0.00] m

pC
C coordinates of the CoM [0.00; 0.00; 0.00] m

Table 2.2: RUVIFIST’s parameters
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τ =
C

f
r × f

D
=



Fx

Fy

Fz

Fzly − Fylz
Fxlz − Fzlx
Fylx − Fxly


(2.50)

Hence, the generalised forces and moments in 6 DOF τ ∈ R6 due to 8 thrusters
F ∈ R8 can be then modelled as:

τ = T (α)F (2.51)

where T =
è
t1 t2 t3 t4 t5 t6 t7 t8

éT
∈ R6×8 is the thrust configuration

matrix and α ∈ R8 is the thrust rotation angle vector.

Figure 2.6: RUVIFIST schematic of thrust forces w.r.t. CG

Considering the schematics of [Figure 3.1], the thrust configuration matrix T for
RUVIFIST is given by:
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T =



1.0 1.0 −1.0 −1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
0.0 0.0 0.0 0.0 −0.3 0.3 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 −0.8 0.8
0.4 −0.4 0.4 −0.4 0.0 0.0 0.0 0.0


(2.52)

The control allocation problem computes the control input signal u to apply
to the thrusters such that the overall desired control forces τ can be generalised.
First of all, we need to find a relationship between the input signal u and the
thrust forces F . Since RUVIFIST uses BlueRobotics T200 Thrusters both for the
horizontal and vertical thrusts, it is possible to exploit the following relationship
shown in [Figure 2.7]:

Figure 2.7: T200 BlueRobotics Thrust (kgf) w.r.t. the ESC PWM Input Value
(µs)

For more information about the BlueRobotics T200 Thrusters, please refer to [13].

We can now derive the inverse of equation (2.51) as:

F = T −1τ (2.53)
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However, since the thrust configuration matrix T for RUVIFIST is non-square, the
Moore-Penrose pseudo-inverse T + is applied given by:

T + = T T
1
T T T

2−1
(2.54)

Hence, the thrust forces vector F can be calculated as:

F = T +τ (2.55)

In this way we can give as input the forces and moments vector τ and get as output
the relative thrust forces vector F . Finally, we can apply to each motor a PWM
signal as shown in Figure 2.7 depending on the value of F .
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Chapter 3

Trajectory Tracking

Trajectory tracking is a control approach that ensures a system, such as a robot,
vehicle, or marine craft, follows a predefined path while meeting both spatial and
temporal constraints. This means the system must reach specific positions at
precise times, requiring a guidance mechanism that generates both heading and
velocity reference trajectories.
One widely used method for heading control, particularly in marine applications,
is the Line of Sight (LOS) guidance law. LOS guidance is effective in generating
smooth reference trajectories, improving stability, and compensating for distur-
bances.
Control algorithms like PID controllers, Model Predictive Control (MPC), or
adaptive methods work alongside LOS guidance to continuously adjust the system’s
movement based on real-time sensor feedback [Figure 3.1].

Figure 3.1: Block diagram of the LOS guidance for the horizontal plane
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3.1 LOS - Line of Sight
We begin by deriving the kinematic models associated with equation (2.7), using
Euler angles [14] [15].
The first model considers only absolute velocities:

ẋ = u cos(ψ) cos(θ) − v sin(ψ) + w cos(ψ) sin(θ), (3.1)
ẏ = u sin(ψ) cos(θ) + v cos(ψ) + w cos(ψ) sin(θ), (3.2)
ż = −u sin(θ) + w cos(θ), (3.3)
θ̇ = q, (3.4)

ψ̇ = r

cos(θ) , cos(θ) /= 0. (3.5)

The second model incorporates relative velocities:

ẋ = ur cos(ψ) cos(θ) − vr sin(ψ) + wr cos(ψ) sin(θ) + un
c , (3.6)

ẏ = ur sin(ψ) cos(θ) + vr cos(ψ) + wr cos(ψ) sin(θ) + vn
c , (3.7)

ż = −ur sin(θ) + wr cos(θ) + wn
c , (3.8)

θ̇ = q, (3.9)

ψ̇ = r

cos(θ) , cos(θ) /= 0. (3.10)

where:

ur = u− ub
c, (3.11)

vr = v − vb
c, (3.12)

wr = w − wb
c, (3.13)

with (ub
c, v

b
c, w

b
c) representing the ocean current velocities in the Body-fixed frame,

and (un
c , v

n
c , w

n
c ) denoting the ocean current velocities in the NED frame.

We consider a 2D continuous path, composed of N waypoints in the xy-plane.
Assuming that the motion is constrained to a horizontal plane, where θ = 0, the
kinematic equations reduce to:

ẋ = u cos(ψ) − v sin(ψ), (3.14)
ẏ = u sin(ψ) + v cos(ψ), (3.15)
ψ̇ = r. (3.16)

For a straight-line path between two consecutive waypoints WPk and WPk+1, the
vehicle is required to converge to this trajectory. In the horizontal plane, the
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along-track and cross-track errors of the vehicle position (x, y) are defined as:C
xe

ye

D
= RT (γp)

C
x− xk

y − yk

D
, (3.17)

where:

• (xk, yk) represents the position of the k-th waypoint in the NED frame,

• R(γp) is the rotation matrix from the inertial frame to the path-fixed reference
frame, given by:

R(γp) =
C
cos(γp) − sin(γp)
sin(γp) cos(γp)

D
, (3.18)

where γp denotes the horizontal path-tangential angle, defined as:

γp = atan2(yk+1 − yk, xk+1 − xk). (3.19)

Consequently, we obtain:

xe = (x− xk) cos(γp) + (y − yk) sin(γp), (3.20)
ye = −(x− xk) sin(γp) + (y − yk) cos(γp). (3.21)

In marine guidance applications, the LOS vector originates from a reference point
(the vehicle) and extends to a point (xlos, ylos) on the path-tangential line, located
at a lookahead distance ∆h > 0 from the direct projection of the vehicle position
p(x, y) onto the path. The geometry of the guidance system is illustrated in [Figure
3.2], together with the key variables involved.
The choice of ∆h significantly influences the vehicle’s maneuverability: a smaller ∆h

results in sharper steering, while a larger ∆h leads to smoother trajectories. While
adaptive strategies for dynamically adjusting ∆h have been explored in previous
studies, this work assumes a constant ∆h = 0.05m to simplify analysis and enable
a more consistent performance comparison across different guidance laws.
The lookahead-based guidance law is expressed as:

ψd = γd + arctan
3−ye

∆h

4
. (3.22)

In the presence of external disturbances such as ocean currents, the heading angle
ψd and the course angle χd are related as follows:

χd = ψd + β, (3.23)
β = atan2(u, v). (3.24)
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Figure 3.2: LOS geometry for straight lines in the xy plane

Thus, the desired heading angle is given by:

ψd = γd + arctan
3−ye

∆h

4
− atan2(u, v). (3.25)

Finally, the heading error is computed as:

δr = ψd − ψ. (3.26)

This error is then provided as input to the PID controller, which will be detailed
in the following chapter.

3.2 PID controller
The control strategy adopted for our system is based on a PID (Proportional-
Integral-Derivative) controller, whose main objective is to minimize the error e(t)
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between a desired value and the actual value of the controlled system. The PID is
widely used in engineering due to its ability to ensure stability and an adequate
dynamic response in a wide range of applications.

A PID controller consists of three main components:

• Proportional Control (P ): the proportional action is directly proportional
to the current error. If the error is large, the control action will be strong,
whereas if it is small, the action will be more contained. This helps to react
quickly to errors, but alone it may not completely eliminate steady-state error.
The coefficient Kp regulates this action:

u(t) = Kpe(t)

• Integral Control (I): the integral action considers the accumulation of error
over time, reducing the steady-state error. However, an excessive value of Ki

may lead to instability and undesirable oscillations.
The coefficient Ki regulates this action:

u(t) = Ki

Ú t

0
xe(τ)dτ

• Derivative Control (D): the derivative action considers the rate of change
of the error, improving response to sudden changes and reducing the risk
of oscillations. This component helps predict the system’s future behaviour,
enhancing overall stability.
The coefficient Kd regulates this action:

u(t) = Kd
de(t)
dt

The overall PID control action is obtained by summing the contributions of the
three previous components:

u(t) = Kpe(t) +Ki

Ú t

0
e(τ)dτ +Kd

de(t)
dt

(3.27)

Formula (3.27) describes the control signal u(t), which will be sent to the system
actuators in order to correct the trajectory or position. In the case of a robotic
system or an autonomous vehicle, the control signal is converted into mechanical
actions, such as adjusting motor speed or changing direction, ensuring that the
system follows the desired trajectory as precisely as possible.

In order to control a system with multiple DOF, a separate PID controller is
required for each independent movement. In the case of horizontal LOS control,
two primary PIDs are required:
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• PID for position control along the X-axis

• PID for Yaw-angle control

A PID for position control along the Y-axis is not possible, due to the configuration
of the motors of RUVIFIST.

The parameters Kp, Ki, and Kd are generally determined using tuning techniques,
which may include empirical methods such as trial and error, or more sophisticated
algorithms like model-based optimization.
For horizontal LOS control, the chosen PID parameters are summarized in table 3.1.

PID Controller Kp Ki Kd

X Position Control 35.00 0.10 20.00
Yaw Control 80.00 0.15 35.00

Table 3.1: PID gains for position and yaw control

These values were selected to ensure a stable and efficient system response, minimiz-
ing error and limiting undesirable oscillations. In addition, proper PID parameter
tuning optimizes system performance, improving both reference tracking accuracy
and robustness against external disturbances.
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Chapter 4

Simulations and results

In this chapter, we will analyze the performance of RUVIFIST in executing different
trajectories, using the simulation model (Fossen model) presented in chapter 2. The
study will be structured around four trajectories of increasing complexity, allowing
us to evaluate the effectiveness of the PID controller and LOS driving strategy
described in sections 3.2 and 3.1.
Our analysis will focus on overall performance, considering factors such as trajectory
precision, motion fluidity and engine response; we will also examine the effects of
waypoint density and motor saturation when relevant, along with the forces acting
on the system, including drag and inertia.
The objective is to evaluate the vehicle’s dynamic response to the controller
configuration and its ability to follow predefined paths and potential improvements
in navigation accuracy and control.

4.1 First trajectory: straight line
The first trajectory analyzed is a diagonal straight line. The results of this simula-
tion are shown in [Figure 4.1], [Figure 4.2] and [Figure 4.5].
Given that the TCM is designed in such a way that the vehicle cannot move purely
along the Y-axis, the AUV first rotates to align with the desired heading and then
proceeds along that direction.
Regarding propulsion, the evolution of forces and moments follows this principle:
in the force graph, the Yaw moment initially increases rapidly as the vehicle begins
to rotate, then gradually decreases to zero once the desired orientation is reached.
Simultaneously, the force in the X direction increases until it stabilizes at a constant
value, allowing the AUV to move forward at a steady velocity.
For motor actuation, we observe that initially, the motors on the left side (Motor
1 and Motor 3) generate a stronger thrust compared to those on the right side
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(Motor 2 and Motor 4) to enable the vehicle to change its orientation. Once the
desired heading is achieved, all four motors adjust to a constant thrust level to
maintain a uniform forward velocity.

4.2 Second trajectory: L-shape
The second trajectory analyzed is an L-shaped path. The results of this simulation
are shown in [Figure 4.3], [Figure 4.4] and [Figure 4.6].
As observed in the straight-line trajectory, the TCM does not allow the vehicle to
move purely along the Y-axis. Consequently, the AUV first moves straight along
the X-axis. Upon reaching the waypoint at the corner, it rotates 90° to the right
and then proceeds along the new heading. This behavior is consistent with the
propulsion data shown in the graph: initially, the motors operate at a constant
thrust to cover the forward segment along the X-axis. Then, similar to the previous
trajectory, the motors on the left side (Motor 1 and Motor 3) are actuated in the
opposite direction to those on the right side (Motor 2 and Motor 4) to enable
the 90° rotation. Once the turn is complete, the motors return to the previous
configuration to continue along the final segment of the trajectory. The principle
of first rotating and then moving is beneficial because drag is minimized when the
vehicle moves frontally, leading to more efficient energy consumption.
One notable aspect of this trajectory is the slight uncertainty at the corner:
during the rotation around the Z-axis, the vehicle momentarily loses precision in
maintaining the target waypoint. This is also evident in the force and moment
graphs, where the X-direction force briefly drops to a negative value near the
point at which the AUV changes orientation. However, this deviation is minimal
(approximately 0.25 m on a 2 m vehicle) and is therefore negligible for our analysis.
Nonetheless, a more refined PID controller could further reduce this error.

4.3 Third trajectory: smooth curve
The third trajectory analyzed consists of a straight segment followed by a leftward
curve. The results of this simulation are shown in [Figure 4.7], [Figure 4.8] and
[Figure 4.11].
While the general principles from the previous trajectories still apply, it is possibile
to see an important difference: the AUV’s executed path does not perfectly aligned
with the input trajectory. This discrepancy occurs because, during the straight
segment, the vehicle gains significant kinetic energy due to its forward velocity.
The vehicle’s high inertia, caused by its long and slender shape, leads to resistance
when attempting to change direction as it enters the curve. This resistance results
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in drift, or derapage, causing the AUV to deviate from the intended trajectory
during the turn.
This drift is evident in the propulsion data, where the controller generates corrective
forces to realign the vehicle. However, due to the high inertia and momentum carried
over from the straight segment, the corrections are not instantaneous, leading to
oscillations or overshoot. In order to mitigate this issue, more advanced control
strategies, such as feedforward control or model predictive control (MPC), could
better anticipate the vehicle’s dynamic behavior and smooth out the corrective
efforts.

4.4 Fourth trajectory: S-path
The fourth trajectory analyzed is an S-path, generated using a cubic function,
which presents a more complex path compared to the previous ones. This maneuver
is not typically performed by our AUV; however, we simulate it to represent an
obstacle avoidance scenario and evaluate the trajectory tracking accordingly. The
results of this simulation are shown in [Figure 4.9] and [Figure 4.10].
Despite the PID controller not being highly precise, the achieved trajectory remains
closely aligned with the reference path. The vehicle effectively follows the intended
course, demonstrating the robustness of the control approach in managing complex
maneuvers. With further refinement, particularly through parameter optimization,
trajectory tracking could be further enhanced, leading to even greater accuracy
and responsiveness in real-world applications.
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Figure 4.1: First trajectory: evolution of X and Y

Figure 4.2: First trajectory: trajectories comparison
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Figure 4.3: Second trajectory: evolution of X and Y

Figure 4.4: Second trajectory: trajectories comparison
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Figure 4.5: First trajectory: propulsion

Figure 4.6: Second trajectory: propulsion
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Figure 4.7: Third trajectory: evolution of X and Y

Figure 4.8: Third trajectory: trajectories comparison
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Figure 4.9: Fourth trajectory: evolution of X and Y

Figure 4.10: Fourth trajectory: trajectories comparison
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Figure 4.11: Third trajectory: propulsion
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Chapter 5

Problem definition

As previously outlined, RUVIFIST is an AURV designed to efficiently reconfigure its
shape according to the task at hand, spanning from a survey slender configuration
[Figure 5.1] to a hovering sturdy layout [Figure 5.2].

The transformation is made possible due to the presence of six joints: two active
ones, which use a worm drive system paired with a M200 motor, and four passive
ones, which allow for flexibility and movement without actuation.
In order to perform this transformation correctly, the system of joints must ensure
its proper functioning. More specifically, it is essential that the passive joints
maintain symmetry in opening and closing of the layout, even in the presence of
external disturbances. At present, the rotation of the passive joints is limited by
mechanical end-stop systems, both in opening and closing; however, the joint is
free in the intermediate position, compromising the symmetry of the AURV.

Therefore, a positioning system is required to control the position of the joints.
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Figure 5.1: Survey configuration

Figure 5.2: Hovering configuration
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Chapter 6

Pulley design

We will consider a parallel-axis belt drive, in which the belt wraps continuously
around curved sections of the pulleys, ensuring contact over a certain angle. How-
ever, in this system, the pulleys do not actively drive the belt but only serve to
maintain a defined relative position with respect to each other. The tension exerted
on one of the two branches of the belt, as a result of the application of a driving
force, helps maintain the correct alignment between the pulleys. To ensure proper
system operation, the belt must be pre-tensioned, ensuring adequate grip between
the belt and the pulleys.
The designed pulley adopts a cross configuration [Figure 6.1], chosen to ensure
that two joints open and close synchronously, even in the presence of external
disturbances. In this configuration, the two branches of the belt experience al-
ternating variations in tensile load relative to the initial pre-tension: while one
branch undergoes an increase in tension, the other experiences a reduction. Unlike
a system with a parallel belt arrangement, which maintains the same direction of
rotation for the pulleys, the cross configuration reverses the direction of rotation
between the two pulleys, generating a mirrored movement essential for the correct
functioning of our system.

6.1 Rope Material
After choosing the cross-configuration type of pulley it was decided to optimise
the transmission mechanism by using two ropes wrapped in a spiral hollow, in
order to further improve the efficiency of the system. This solution allows for
better distribution of forces and ensures greater synchronization of movement, thus
increasing the reliability and accuracy of the system as a whole.
The chosen ropes are made of Dyneema SK78 [16] for their strength and lightness,
which helps to reduce the overall weight without compromising the load capacity
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Figure 6.1: Cross configuration

of the system. The characteristics of the rope are shown in table 6.1:

Construction Single braid
Diameter Ø [mm] 4

SWL [kg] 600
NBL [kg] 1500

Weigth per meter [g] 8.8
Elastic modulus [GPa] 33.45

Table 6.1: Dyneema SK78 characteristics

6.2 Pulley groove
We choose a trapezoidal groove for the following reasons:

• Improved grip and torque transmission: the trapezoidal shape allows the belt
to have a larger contact surface with the pulley than a flat hollow. This
ensures more efficient torque transfer and reduces the risk of slipping

• Better distribution of forces: the trapezoidal section of the belt evenly dis-
tributes forces along the inclined sides, reducing stress concentration and
increasing the life of both the belt and pulley

• Automatic alignment and centering: the trapezoidal shape makes the belt stay
centered in the groove during operation, reducing the risk of misalignment
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In addition, a spiral shaft [Figure 6.4] was chosen instead of a straight one for
several advantages: firstly, it allows a more even distribution of the tension along
the whole length of the rope, thus reducing the risk of slipping and improving the
transmission of the movement. In addition, the spiral hollow allows a greater angle
of winding of the rope around the pulley, increasing grip and thus the ability to
transmit torque without excessive wear.

The parameters of the groove will now be determined.

Given the diameter of the rope d = 4 mm, the following formulae are applied, with
reference to [Figure 6.2]:

Figure 6.2: Groove parameters scheme

• Depth of the groove

h = 1.5d to 2d (6.1)

• Radius of the groove

r ≈ 1.05 · d2 (6.2)

We choose a depth of the groove h = 1.75d = 7 mm according to (6.1), thus
obtaining a radius of r = 2.1 mm.
This configuration ensures optimal force distribution and enhances the longevity of
the system.
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6.3 Rope parameters
In order to proceed with the pulley design, it is useful to determine the minimum
usable length of the rope L, as a function of the center-to-center distance l and the
pulleys’ radii R1 and R2 [17].
From the data provided by the SolidWorks model, we know that l = 570 mm
[Figure 6.3].

The pulley to be designed must be rigidly connected to the passive joint; we
consider an external diameter of D = 100 mm.

Figure 6.3: CAD model for the beta test

With reference to the geometry of [Figure 6.1], the angles of the belt’s embrace are
given by:

θ1 = θ2 = π + 2α (6.3)

where, recalling that l = 570 mm is the center-to-center distance between the two
pulleys:

51



Pulley design

α ≈ sinα = R2 +R1

l
(6.4)

We determine the radius of the pulley by reference to [Figure 6.2]: given the
external diameter D = 100 mm, the depth of the groove h = 7 mm and the rope
diameter d = 4 mm, it is possible to compute the radius RR around which the rope
is wrapped on the pulley as follows:

RR = D

2 − h+ d

2 = 45 mm (6.5)

In our case study, the designed pulleys will have the same dimensions, thus:

R2 = R1 = RR = 45 mm (6.6)

and the equation (6.4) becomes:

α ≈ sinα = R +R

l
= 2R

l
= 0.158 rad = 9.05◦ (6.7)

By summing the lengths of the two circular and straight sections of the belt, we
obtain:

L = θ1R1 + θ2R2 + 2l cosα (6.8)

Taking into account that:

cosα ≈ 1 − α2

2 = 1 − (R2 +R1)2

2l2 (6.9)

α ≈ sinα = R2 +R1

l
(6.10)

Equation (6.8) simplifies as follows:

L = (π+2α)RR +(π+2α)RR +2l
A

1 − (RR +RR)2

2l2

B
= 2πRR +2l+ 4R2

R

l
(6.11)

The minimum total length of the rope to be used is:

L = 1437 mm (6.12)

The actual length of the rope will be significantly longer because, as will be shown
in the following chapters, the configuration of the tensioning system requires that
the rope can wrap at least twice around the pulley.
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6.4 Pulley body
A beta version of the pulley was designed for testing purposes [Figure 6.4]. This
pulley consists of three main sections, each with a specific function to ensure
stability, efficiency and safety in the transmission system.

• Upper cover: it has a cross structure designed for the pulley hub to the bottom
of the passive joint, which is firmly fixed by four threaded bars.

• Central body: rigidly attached to the top, it is characterized by the presence
of six turns, designed to allow double winding of each of the two ropes, as
shown in the scheme of [Figure 6.5]. The ropes are firmly locked inside the
pulley, Ensuring a secure anchorage and preventing accidental slippage.

• Lower cover: equipped with a lid, which if open allows the inspection of the
internal layout. The ropes are secured by a safety node [Figure 6.6], designed
to prevent the risk of derailment and ensure reliable operation of the system.

Figure 6.4: Beta pulley
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Figure 6.5: Rope configuration scheme

Figure 6.6: Safety node
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Chapter 7

Beta pulley experimental
testing

7.1 Dry testing
In order to test the system’s efficiency, dry tests were conducted. In these tests, the
right joint [Figure 7.1] was kept still while an external disturbance was simulated,
with the help of a load cell [Figure 7.2], on the other joint by applying a force Fd

at a distance bd = 115 mm from the rotation axis, as shown in [Figure 7.3]. The
force was applied at different intervals and the joint opening was measured using
an encoder integrated into the joint. The rope tension was measured before and
after each test using a load cell, with the expectation of detecting any failure of
the rope.

Figure 7.1: Beta pulleys testing Figure 7.2: Load cell simulating the
external disturbance Fd
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Figure 7.3: Joint configuration

Three tests were conducted: the system was preloaded before each measurement,
with a different preload applied for each test.

In order to determine the force applied on the rope, we consider bd = 115 mm as
the lever arm relative to the rotation axis of the joint and bc = 45 mm as the lever
arm where the rope experiences the force Fc [Figure 7.3]. The force applied on the
rope was calculated using the equilibrium of moments as follows:

Fc = Fd · bd

bc

(7.1)

The results of these measurements are reported in tables 7.1, 7.2, and 7.3.
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Force to open
the joint [kg]

Force applied on
the rope [kg] Joint opening [°]

0.00 0.00 0.272
4.50 11.50 0.272
9.50 24.28 2.469
14.00 35.78 4.149
18.50 47.28 6.864
23.00 58.78 9.413
28.00 71.56 10.083

Table 7.1: First test

Force to open
the joint [kg]

Force applied on
the rope [kg] Joint opening [°]

0.00 0.00 0.272
4.20 10.73 0.272
8.50 21.72 1.041
14.00 35.78 3.085
18.00 46.00 4.491
23.00 58.78 5.809
29.00 74.11 10.028

Table 7.2: Second test

Force to open
the joint [kg]

Force applied on
the rope [kg] Joint opening [°]

0.00 0.00 0.272
3.90 9.97 0.272
8.90 22.74 0.799
13.30 33.99 2.909
18.00 46.00 3.964
23.00 58.78 5.809
27.50 70.28 8.023

Table 7.3: Third test
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Preload [kg] Before the test After the test
Test 1 6.00 3.20
Test 2 11.80 5.20
Test 3 14.20 10.60

Table 7.4: Preload values of the rope

Based on the results obtained, the following considerations can be made:

• In the design of the pulley, a tie-down knot on the ropes was provided for
safety reasons [Figure 7.7], with the aim of avoiding the risk of derailment.
However, during the experimental tests, it was observed that this node does
not come into tension during operation, due to friction between pulley and
rope.

• The failure behaviour of the joint, in degrees, is illustrated in [Figure 7.4],
showing the progressive variation of the opening angle as a function of the
torque applied during the experimental tests.
As shown in table 7.4, after each test it was necessary to increase the preload
of the rope. This is due to a loss of rope tension caused by micro-sliding of
the rope on the pulley grooves, which occurs at each load iteration.

The experimental results will now be compared with a FEM (Finite Elements
Method) simulation on SolidWorks, using data from both the test and the material
datasheet. This allow to assess the consistency of the model and validate its
behaviour.

7.2 Validation on FEM simulation studies
In absence of specific tensile tests to characterize the actual rope, the system will
be validated using an elastic modulus value found from the data obtained from the
experimental test, being compared with an ideal system considering the data of a
Dyneema SK78 rope, with a module of Young E = 33.45 GPa, as shown in table
6.1.
Since it was not possible to measure the micro-sliding between the rope and the
pulley cavity, these were included in a comprehensive evaluation of the behaviour
of the rope, representing the latter as a rigid rod. This approach allowed the devel-
opment of a CAD model with characteristics equivalent to the real configuration,
which was used for FEM analysis. This choice represents a significant simplification
of the model, made necessary by the limitations of the available software in the
accurate modelling of the rope.
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Figure 7.4: Failure behaviour of the joint during beta testing

In real-world applications, the use of a rope instead of a rigid rod is justified by its
ability to provide damping, reducing impacts and shocks on joints and preventing
potential damage. In addition, the rope is lighter and more cost-effective compared
to a rigid shaft.

7.2.1 Simulation with experimental parameters
In order to perform the FEM simulation, it is necessary to determine a value of
the elastic module to be applied to the rigid rod. This value is obtained from the
experimental data of the third test.

The elastic module E is defined as:

E = σ

ε
(7.2)

where:

• σ is the stress computed as the ratio between the applied force and the section
area of the rope.

• ε is the strain defined as the ratio between the elongation ∆L and the initial
length of the rope L0.

Computation of stress σ
Stress σ is defined as:

σ = F

A
(7.3)
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Considering the force applied to the rope, as reported in table 7.3:

F = 70.28 kg = 689.45 N (7.4)

The cross-sectional area of the rope, given a diameter d = 4 mm, is:

A = π

4d
2 = 12.57 mm2 (7.5)

From these values, the value of the stress applied is computed:

σ = F

A
= 689.45

12.57 = 54.86 MPa (7.6)

Computation of strain ε

Figure 7.5: Pulley scheme no.1

Strain ε is defined as:
ε = ∆L

L0
(7.7)

The initial length of the rope consists of the segment that connects the two pulleys
and the wrap angles α, as shown in [Figure 7.5].

Considering the rope segment wrapped around the pulley:

Lα = C

360 · α = 7.1 mm (7.8)

where, with reference to chapter 6.3:

• α = 9.05◦

• C is the circumference of the pulley, defined as: C = 2πRR with RR = 45 mm
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The portion of the rope connecting the two pulleys, as shown in [Figure 7.6], is
given by:

Ll/2 = 2 ·
ó
R2

R + l2

4 = 577.06 mm (7.9)

Combining equations (7.4) and (7.5), the initial belt length before load application
is:

L0 = Ll/2 + 2Lα = 591.27 mm (7.10)

Considering additional rope sections wrapped around the pulleys and the internal
segment, as shown in [Figure 7.6], the final approximated initial rope length is
obtained by multiplying by 2.5:

L0 approx = 1478.17 mm (7.11)

Figure 7.6: Pulley scheme no.2

We now compute the elongation ∆L. From table 7.3, the joint undergoes a rotation
of:

β = 98.023◦ − 90.272◦ = 7.75◦ (7.12)

The elongation ∆Lex of the test is computed as the arc length corresponding to
this angular variation:

∆Lex = C

360 · β = 6.1 mm (7.13)

Thus, from equation (7.7) the experimental strain is:

εex = ∆Lex

L0
= 6.1

1478.17 = 0.0041 (7.14)

And from equation (7.2), the experimental elastic modulus is:

Eex = σ

εex

= 13.38 GPa (7.15)
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Figure 7.7: Experimental parameters - displacement along the y direction [mm]

This value will be used in the FEM simulation to verify the consistency of the
model with experimental data. The simulation will be performed with a load of 31
Nm, consistent with the maximum force applied during experimental tests.

From the FEM analysis results [Figure 7.7], a displacement along the y - axis of
31.04 mm is observed.
Using trigonometry, the maximum failure angle of the test γex is computed as:

y = a · sin(γex) (7.16)

γex = arcsin
3
y

a

4
= 7.76◦ (7.17)

Where a = 230 mm is the fork length, as indicated in [Figure 7.3].

These values demonstrate a high degree of consistency with the experimental
measurements (7.75◦), confirming the validity of the adopted model and its ability
to accurately reproduce the real behaviour of the system.

7.2.2 Simulation with theoretical parameters
We now compare the maximum strain obtained in the previous chapter, εex = 0.0041,
with the strain obtained from the simulation of the ideal system, εth, using the
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elastic modulus from the datasheet in table 6.1, given as Eth = 33.45 GPa.
The applied stress is equivalent to the value found in equation (7.6):

σ = F

A
= 54.86 MPa (7.18)

The strain, obtained from equation (7.7), is:

εth = σ

Eth

= 54.86 MPa
33.45 GPa = 0.0016 (7.19)

The elongation of the rope is given by:

∆Lth = L0 · εth = 2.91 mm (7.20)

Thus, the final length of the rope is:

L = L0 + ∆Lth = 1776.7 mm (7.21)

It is observed that the elongation of approximately 3 mm is primarily due to the
material’s compliance.

We now perform an FEM simulation with a load of 31 Nm, consistent with
the maximum applied force during experimental tests.

Figure 7.8: Theoretical parameters - displacement along the y direction [mm]

From the analysis of the FEM simulation results [Figure 7.8], a displacement along
the y - axis of 21.27 mm is observed.
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Using equation (7.17), the maximum failure angle γth is computed as:

γth = arcsin
3
y

a

4
= 4.99◦ (7.22)

where a = 230 mm is the fork length, as indicated in [Figure 7.3].

As expected, the calculated strain is significantly lower than the experimental
value since the considered elastic modulus is nearly twice the previous one, confirm-
ing the validity of the adopted approach. Additionally, the failure angle observed
in the numerical model is indeed lower than the one measured in the real system.
Both in the theoretical analysis and experimental conditions, a progressive loss
of rope tension is observed, attributed to micro-slippages of the rope within the
pulley groove.

It is observed that the elongation measured in the experimental analysis is ∆Lex =
6.1 mm, whereas the theoretical calculation yields ∆Lth = 2.91 mm. This discrep-
ancy can be explained by the fact that the theoretical model considers only the
material’s deformation, while during the experimental test we considered also the
sliding between the rope and the pulley grooves.

This phenomenon highlights the necessity for a dynamic tensioning system, capable
of compensating for such variations and ensuring a stable and reliable system setup
after each cycle of use.
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Chapter 8

Tensioning system

In order to ensure an effective tensioning of the rope, a ratchet system has been
chosen. This mechanism allows rotation in only one direction, preventing the
reverse movement thanks to a locking pawl.
The system consists of:

• Ratchet wheel: equipped with inclined teeth that allow rotation in one direction.
The tooth profile is designed to optimize grip and reduce wear.

• Pawl: moving element that fits in the teeth of the wheel, preventing the
rotation in the opposite direction and ensuring the maintenance of tension
in the system It can be spring-loaded or gravity-actuated, depending on the
application. In our case, a spring-loaded pawl will be designed.

• Release system: a mechanism that allows the pawl to be disengaged to release
tension, allowing reverse rotation when necessary. In our case, it is rigidly
connected to the pawl.

• Central shaft: it is used as a pivot for the rotation of the ratchet wheel. In
some cases, it can be hollow to allow the passage of a rope or a cable to be
tensioned.

The two systems considered for this configuration are described below.

8.1 External ratchet system
The first version of the ratchet pulley [Figure 8.1] considered an external ratchet
system.
The pulley has a hollow internal structure, designed to accommodate the ratchet
mechanism. Inside the pulley, the top cover is rigidly connected with a housing
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for rotating the central shaft [Figure 8.2]. The lower cover, fixed to the pulley by
means of M4 threaded rods, is equipped with a special housing for the lever of the
release system.
The ratchet system [Figure 8.3] consists of:

• Ratchet wheel: made of AISI 316 steel, rigidly connected to the central shaft
and equipped with eight teeth.

• Spring-loaded pawl: also made of AISI 316 steel, it prevents clockwise rotation.
The release is made by a plug integral to the pawl, which extends through a
dedicated housing in the lower cover.

• Central shaft: it is designed with a hole for the passage of the tensioning rope,
accessible through dedicated openings in the lower cover.
These openings facilitate precise manipulation of the shaft using a lever inserted
into the hole.

However, the static friction discussed in chapter 7.1 prevents the rope from sliding
along the pulley grooves. As a result, the system is ineffective, since the cable
cannot be tensioned correctly, thus compromising the overall functioning of the
mechanism.

Figure 8.1: Exploded
view of the pulley

Figure 8.2: Internal
view of the pulley

Figure 8.3: Ratchet sys-
tem

67



Tensioning system

8.2 Internal ratchet system

The pulley consists of two separate sections: a moving part and a fixed part.

• Moving part: attached to a AISI 316 steel band, to which the ratchet teeth,
also made of AISI 316 steel, are fixed. This section acts as a dynamic element
around which the rope to be tensioned is wrapped.

• Fixed part: it is the static support of the system and is the anchor point for
the other rope, wrapped around it.

The configuration of the pulley varies between the right and left side, thus ensuring
the correct tension of both ropes, as shown in [Figure 8.4]. With reference to the
figure, we will call the pulley on the left Pulley A and the one on the right Pulley
B.

Figure 8.4: In orange, the moving part and the allowed rotation
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8.2.1 Pulley A
Pulley A is designed to allow the upper rope to be tensioned clockwise and consists
of:

• Moving part [Figure 8.5]: it has a hollow structure and is rigidly connected to
the ratchet system described above, which allows the locking and controlled
release of the rope.

• Upper cover [Figure 8.6]: rigidly connected to the shaft that connects the
moving part to the fixed section of the pulley. It includes a dedicated housing
for the rotation of the moving part, ensuring its correct operation.

• Lower cover [Figure 8.7]: rigidly connected to the fixed part of the pulley and
equipped with a housing for the release system lever, necessary for releasing
the tension of the rope.

Figure 8.5: Ratchet sys-
tem of Pulley A

Figure 8.6: Upper view
of of Pulley A

Figure 8.7: Lower view
of of Pulley A

8.2.2 Pulley B
Pulley B is designed for tensioning the cable in a counter-clockwise direction and
has a different structural configuration than Pulley A:

• Moving part [Figure 8.8]: characterised by a hollow lower structure and is
rigidly connected to the ratchet system, similar to the one of Pulley A.

• Upper cover [Figure 8.9]: rigidly connected to the fixed part of the pulley and
equipped with a housing for the lever of the release system.
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• Lower cover [Figure 8.10]: rigidly connected to the shaft that the movable
part to the fixed pulley section. It has a specific housing for the rotation of
the moving part, ensuring its correct movement.

Figure 8.8: Exploded
view of the pulley

Figure 8.9: Internal
view of the pulley

Figure 8.10: Ratchet
system

Unlike Pulley A, in Pulley B the fixed part of the pulley and the upper cover do
not form a single body: this separation is necessary to ease the assembly of the
tensioning system. This configuration involves the integration of a central shaft to
connect the two sections, resulting in a significant increase in weight compared to
Pulley A.

8.2.3 Design of the ratchet system
The number of teeth has been chosen based on the rope’s tensioning arc. Since the
system operates in a discrete manner, we can easily assume that more teeth allow
for a smaller pitch, improving tensioning accuracy and reducing the effort required
to drive the ratchet.
In order to optimize these aspects, 20 teeth were selected.
The pawl was designed according to the tooth geometry, ensuring proper contact
with the radial surface of the tooth to prevent unintended rotation.

It is assumed that a tensile load of 40 kg is applied to the rope. The force acting
on the rope, considering gravitational acceleration, is:

FR = 40 · 9.81 = 392.4 N (8.1)
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Figure 8.11: CAD scheme of the ratchet system

This force acts at a radius of RR = 45 mm, while the force applied to a single
tooth of the ratchet system acts at a smaller radius rD = 33.61 mm. This value is
obtained from the CAD model shown in [Figure 8.11].
By applying the principle of moment equilibrium:

FD · rD = FR ·RR (8.2)

FD = FR ·RR

rD

= 525.38 N (8.3)

This is the force transmitted to the pawl, which must oppose an equal and opposite
force to prevent the rotation of the ratchet wheel.

In addition to this force, the pawl is subjected to a second force, FL, gener-
ated by the constraint reaction between the pawl itself and the housing in which it
is seated. This force can be considered as the normal component of the constraint
reaction between the contact surfaces of the tooth and the pawl.
With reference to [Figure 8.12], the distances from the centre of rotation of the
pawl are obtained from the CAD model:
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Figure 8.12: Pawl scheme

bD = 10.09 mm, bL = 10.07 mm (8.4)

By applying again the principle of moment equilibrium:

FL · bL = FD · bD (4b.3.4) (8.5)

FL = FD · bD

bL

= 526.42 N (4b.3.5) (8.6)

This force represents the constraint reaction that the pawl must withstand within
its housing to prevent the rotation of the system.

The verification of the pawl was carried out through FEM analysis on SolidWorks,
applying the forces FD and FL just computed.

The stress analysis shown in [Figure 8.13] highlights that the maximum stress is
concentrated at the tip of the pawl, with a value of 112.7 MPa. This value is
significantly lower than the yield strength of AISI 316 steel, confirming that the
pawl is structurally capable of withstanding the load without the risk of failure.

The displacement analysis in [Figure 8.14] shows a maximum displacement of
2.14 × 10−3 mm along the radial direction of the tooth. This extremely small value
indicates that the pawl maintains a stable position during operation, with negligible
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Figure 8.13: Stress analysis of the pawl [MPa]

Figure 8.14: Displacement of the pawl along the radial direction of the tooth
[mm]
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deformations that do not compromise its ability to lock the pulley’s rotation.

The FEM analysis thus confirms that the designed ratchet system is effective and
reliable. The pawl can easily support the applied stresses, ensuring the locking
of the pulley’s rotation with minimal deformations. These results validate the
component’s design and confirm its suitability for the intended application.
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Chapter 9

Final considerations

9.1 Pulley manufacturing
The metal components of the pulleys [Figure 9.1] are manufactured using laser
cutting and drilling. In order to realize the pawl of the tensioning system, welding
and bending operations were included. The material used is AISI 316 stainless
steel, known for its high corrosion resistance, making it particularly efficient in
humid and marine environments.
All fastening elements, including screws, washers, nuts and threaded rods, are also
made of AISI 316 stainless steel.

The remaining parts [Figure 9.2] are produced using 3D printing with Fused
Deposition Modelling (FDM) technology, utilizing ABS CF100, which provides an
excellent combination of lightweight properties and mechanical strength.

The final result can be seen in [Figure 9.3] and [Figure 9.4].

9.2 Final testing
We repeated the test from chapter 7.1: the joint fixed to Pulley A (on the left in
[Figure 9.5]) was held still while simulating the presence of an external disturbance
by applying a force Fd at distance bd = 115 mm from the rotation axis of the other
joint, as illustrated in [Figure 7.3]. The force was applied at different intervals and
the joint opening was measured in degrees using an encoder. The purpose of this
test was to evaluate the failure behaviour of the rope and pulleys.
The results are shown in table 9.1.
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Figure 9.1: Metal components
of the pulleys

Figure 9.2: 3D printing of the
components of the pulleys

Force to open
the joint [kg]

Force applied on
the rope [kg] Joint opening [°]

0.00 0.00 0.272
3.80 9.71 1.503
8.20 20.95 6.513
12.90 32.97 10.380
17.00 43.44 13.368
23.70 60.57 17.059
28.30 72.32 19.257
28.10 71.80 13.104

Table 9.1: Final test

The tests were conducted without a specific preload, as it could not be accurately
quantified.

• The first six tests were performed using a loading and unloading cycle, revealing
significant joint displacement (18.985◦), which made it necessary to re-tension
the rope. The preload decreased considerably, although it could not be precisely

76



Final considerations

Figure 9.3: Assembled Pulley A
(on the right) and Pulley B (on
the left)

Figure 9.4: Pulley A assembled
on RUVIFIST for the final test

quantified in the current setup.

• In the seventh and final test, conducted by directly applying the maximum
load of approximately 31 Nm, a significant improvement in joint stability was
observed (12.832◦), confirming that the joint is highly sensitive to loading and
unloading cycles.

It is important to emphasize that this test represents an extreme scenario, where
one joint is locked while the other is free. In a real operational setting, the impact
would be dampened by the symmetric opening of the opposite joint, ensuring a
quick restoration of the initial symmetry.
Therefore, while the test highlights a temporary loss of symmetry, it is quickly
restored, and this behavior is not typically expected under standard operating
conditions. However, there remains a potential risk of derailment, due to the
significant slack that the rope may experience in working conditions.

This issue can be mitigated by performing a series of tests as shown in chap-
ter 7.1, where after each test cycle, the cable was further tensioned, reducing its
slack.
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During marine environment tests, it is essential to ensure proper rope tensioning,
which can be manually verified, to guarantee optimal performance and minimize
the risk of system malfunctions.

Figure 9.5: Final configuration of Pulley A and Pulley B
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Chapter 10

Conclusions

This study has provided a comprehensive analysis of RUVIFIST’s trajectory track-
ing performance using the Fossen simulation model. The evaluation of four different
trajectories has offered key insights into the effectiveness of the PID controller
and LOS driving strategy modelled, revealing strengths and weaknesses requiring
improvement.
The results from the straight-line trajectory demonstrated that the controller influ-
ences force application as it corrects positional errors. Real-world implementation
would benefit from motor inertia effects, which naturally smooth out sudden force
changes.
In a similar way, the L-shaped trajectory highlighted the necessity of proper vehi-
cle alignment before movement, due to the constraints imposed by the TCM. A
small loss of trajectory precision was observed at the 90° turn due to rotational
momentum, but this deviation could be mitigated with a more refined PID tuning.
The analysis of the curved trajectory highlights the challenges posed by vehicle
inertia: high kinetic energy from the straight segment resulted in trajectory drift
during the turn, requiring corrective forces that led to deviations. This suggests
that more sophisticated control strategies, such as feedforward compensation or
MPC, could enhance path-following accuracy by anticipating dynamic effects.
The S-path trajectory, being the most complex, revealed a slight loss of tracking
precision due to the compounded effects of inertia and control response limitations.
However, the achieved trajectory remained closely aligned with the reference path,
demonstrating the robustness of the control approach. Further refinement through
optimized PID parameters and predictive control methods could enhance trajectory
tracking accuracy and responsiveness.
Overall, while RUVIFIST demonstrated the ability to follow predefined paths with
reasonable accuracy, the study highlights key areas for improvement. Future work
should focus on implementing advanced control methodologies to refine force appli-
cation and ensure optimal performance under real-world operational conditions.
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Conclusions

The second part of this research focused on evaluating the mechanical resilience
of the designed reconfiguration system, particularly the behaviour of the pulley
mechanism under external disturbances. Experimental tests were conducted by
applying a force at a specific distance while keeping one joint fixed, simulating
extreme operating conditions.

The results showed that repeated loading and unloading cycles caused signifi-
cant joint displacement, leading to rope slack that required re-tensioning. However,
when the maximum load was applied in a single step, joint stability improved
significantly. These findings emphasize the importance of maintaining optimal
rope tension to prevent excessive slack and ensure the structural efficiency of the
system. Although the test conditions were extreme, real-world operations would
likely mitigate these effects due to the symmetric opening of the opposite joint,
which naturally helps restore balance.
A crucial future development involves modifying the pulley design to serve a dual
function: in addition to their primary role in the mechanism, the pulleys will also
act as new structural supports for RUVIFIST. This adaptation is necessary due to
the integration of additional downward-protruding sensors, which require a stable
base to prevent interference during operations. Additionally, these modifications
will accommodate the potential installation of robotic arms or other appendages
that could enhance the vehicle’s operational versatility.
Future testing should also include real-world assessments of the fully assembled
vehicle under different intermediate configurations. By introducing controlled dis-
turbances, these tests will help evaluate the system’s true resilience and effectiveness
in maintaining stability during reconfiguration. This step is essential to validate the
mechanism’s performance in realistic marine environments and ensure its reliability
in practical applications.
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Appendix A

Rigid-Body dynamics

A.1 Newton-Euler formulation
Linear dynamics

Given ρ as the density of a particle of volume dV of a rigid body B, ρdV is the
corresponding mass denoted by the position vector p in an inertial frame O − xyz.
Given VB as the body volume, the total mass is expressed as:

m =
Ú

VB
ρdV (A.1)

While the center of mass of B and the linear momentum of the body B can be
defined as follows:

pC = 1
m

Ú
VB

pρdV (A.2)

l =
Ú

VB
ṗρdV = mṗC (A.3)

Being the force the derivative of linear momentum, for a system with constant mass,
it is possible to simplify the Newton’s law of motion into the Newton’s equations
of motions:

f = l̇ = m
d

dt
ṗC (A.4)

f = mp̈C (A.5)
where:

• f is the resultant of the external forces expressed in the Body frame {b}

• p̈C is the acceleration of the center of gravity (CG)
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Attitude dynamics

Consider now a rigid body rotating with respect to an inertial reference frame,
with angular velocity ω = ω1b1 + ω2b2 + ω3b3.
With reference to [Figure A.1], for a particle of mass mi of the body it is possible
to write the followings:

pi = X î1 + Y î2 + Z î3 (A.6)

pC = Xoî1 + Yoî2 + Zoî3 (A.7)

ri = xb̂1 + yb̂2 + zb̂3 (A.8)

ṙB
i = ẋb̂1 + ẏb̂2 + żb̂3 (A.9)

pi = pC + ri (A.10)

where:

• îj, j = 1,2,3 are the unit vectors of the Inertial frame (IF)

• b̂j, j = 1,2,3 are the unit vectors of the Body-fixed frame (BF)

In order to get the velocity of the particle in the Inertial frame, the computation of
the derivative of (A.10) is needed.
The derivative of the first term pC is just ṗC as it is expressed in the Inertial frame,
while the derivative of the second term ri is computed as:

dri

dt
=
A
dx

dt
b̂1 + dy

dt
b̂2 + dz

dt
b̂3

B
+
xdb̂1

dt
+ y

db̂2

dt
+ z

db̂3

dt

 (A.11)

where:

• the first bracket represents the variation of velocity in time

• the second bracket is the variation of velocity due to the axes rotation, accord-
ing to the Coriolis’s Theorem

It is worth noting that, since we are referring to the Inertial Frame, the unit vectors
b̂j, j = 1,2,3 are considered non constants during the derivation as the Body-fixed
frame moves with respect to the Inertial frame.
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Figure A.1: Kinematics of a particle of the rigid body

Recalling the Poisson’s Theorem, there exists one and only one vector ω for
which the following equations hold:

db̂1

dt
= ω × b̂1,

db̂2

dt
= ω × b̂2,

db̂3

dt
= ω × b̂3 (A.12)

Thus, combining these equations into equation (A.11), it is possible to write the
derivative of equation (A.10) as:

ṗi = ṗC + ṙb
i + ω × ri (A.13)

Consider the rigid body as a system of N particles with a total mass m =
Nq
i
mi.

The center of mass CG is defined as:

pC = 1
m

NØ
i=1

mipi (A.14)

This equation can be rearranged to obtain the following property:

NØ
i=1

mi (pi − pC) =
NØ

i=1
miri = 0 (A.15)

83



Rigid-Body dynamics

We now compute the Angular momentum (i.e. moment of momentum) of a particle
i as follows:

Hi
.= ri ×miṗi = ri ×mi

1
ṗC + ṙb

i + ω × ri

2
(A.16)

Being ṙB
i = 0 for the rigid body and remembering the property of the cross product

a × b = −b × a, it is possible to rewrite the Angular momentum:

Hi = ri ×mi (ṗC + ω × ri)
= −ṗC ×miri + ri ×mi (ω × ri) (A.17)

The Angular momentum of the entire body is:

H = −
NØ

i=1
ṗC ×miri +

NØ
i=1

ri ×mi (ω × ri)

= −ṗC ×
NØ

i=1
miri +

NØ
i=1

ri ×mi (ω × ri) (A.18)

According to the property of equation (A.15) it is possible to rewrite (A.18) as:

H =
NØ

i=1
ri × (ω × ri)mi (A.19)

and in continuous form:

H =
Ú

VB
r × (ω × r) dm. (A.20)

Remembering the property of the cross product a × (b × c) = (a · c) b − (a · b) c,
we have that:

r × (ω × r) = (r · r) ω − (r · ω) r =
1
1r2 − rrT

2
ω (A.21)

It is then possible to rewrite equation (A.20) as follows:

H =

 Ix Ixy Ixz

Iyx Iy Iyz

Izx Izy Iz


ω1
ω2
ω3

 = Iω (A.22)

where I is the Inertia matrix (or Inertia tensor). Its terms are computed as shown
below:
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Moments of Inertia Products of Inertia
Ix =

s
VB

(y2 + z2) dm Ixy = Iyx = −
s

VB
xy dm

Iy =
s

VB
(x2 + z2) dm Ixz = Izx = −

s
VB
xz dm

Iz =
s

VB
(x2 + y2) dm Iyz = Izy = −

s
VB
yz dm

Now let’s suppose that a moment m is acting on the body B. The second law of
dynamics for a rotating body is:

Ḣ = m. (A.23)

A derivation of A.22 is then needed.
The Inertia matrix is considered as a constant matrix, while the derivative of ω in
the Inertial frame is given by:

ω̇ = ω̇b + ω × ωb (A.24)

The derivative of the Angular momentum (A.18) is thus computed as:

Ḣ = Iω̇b + ω × Iωb. (A.25)

Replacing (A.25) in (A.23), it is possible to get the Euler’s moment equation:

Iω̇b + ω × Iωb = m. (A.26)

The Euler’s moment equation is expressed in the Body-fixed frame {b}, while the
inertia matrix is computed about CG (i.e. in the Inertial frame).

A.2 Equation of Motion
In the study of rigid-body dynamics, computations are initially performed around
the center of gravity CG, due to its simplicity in deriving translational motion
equations and defining the inertia matrix. This approach simplifies the analysis
and application of the Newton’s laws discussed in the previous section.
Once the motion equations are established, they are then transformed to the
geometric center CO, which is often chosen in marine craft to facilitate more
effective control system design and optimize performance.

Motion about CG

From equation (A.5) it follows that:

f b = d

dt

1
mvb

C

2
= m

1
v̇b

C + ωb × vb
C

2
(A.27)
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Now, remember the cross product operator, defined by:

λ × a
.= S(λ)a (A.28)

where S is a skew-symmetric matrix
1
S = −ST

2
defined as:

S(λ) = −ST (λ) =

 0 −λ3 λ2
λ3 0 −λ1

−λ2 λ1 0

 (A.29)

It is possible to rewrite equations (A.28) and (A.29) as:

m
è
v̇b

C + S
1
ωb
2

vb
C

é
= f b (A.30)

Iω̇b − S (Iω) ωb = mb (A.31)
The Newton–Euler equations (A.30) and (A.31) can be represented in matrix form
according to:

MCG
RB ν̇ + CCG

RB ν = τ (A.32)

C
m13×3 03×3
03×3 I

D C
v̇b

C

ω̇b

D
+
C
mS

1
ωb
2

03×3

03×3 −S (Iω)

D C
vb

C

ωb

D
=
C

f b

mb

D
(A.33)

Motion about CO

The equations of motion about CG need to be transformed into equations about
CO using a coordinate transformation:

vb
C = vb

O + ωb × pb
C

= vb
C − pb

C × ωb

= vb
C + ST

1
pb

C

2
ωb (A.34)

It follows that: C
vb

C

ωb

D
= H

1
pb

C

2 Cvb
O

ωb

D
(A.35)

where H
1
pb

C

2
∈ R3×3 is a transformation matrix, given by:

H
1
pb

C

2 .=
C
13×3 ST

1
pb

C

2
03×3 13×3

D
(A.36)
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It should be noted that the angular velocity remains unchanged during this trans-
formation.
The next step is to transform (A.33) from CG to CO using (A.35):

HT
1
pb

C

2
MCG

RB H
1
pb

C

2 Cv̇b
O

ω̇b

D
+ HT

1
pb

C

2
CCG

RB H
1
pb

C

2 Cvb
O

ωb

D
= HT

1
pb

C

2 C f b

mb

D
(A.37)

We now define two new matrices in CO according to the following:

MCO
RB

.= HT
1
pb

C

2
MCG

RB H
1
pb

C

2
(A.38)
(A.39)

CCO
RB

.= HT
1
pb

C

2
CCG

RB H
1
pb

C

2
(A.40)

Expanding these expressions gives the following results:

MCO
RB =

 m13×3 −mS
1
pb

C

2
mS

1
pb

C

2
Io



=



m 0 0 0 mzC −myC

0 m 0 −mzC 0 mxC

0 0 m myC −mxC 0
0 −mzC myC Ix −Ixy −Ixz

mzC 0 −mxC −Iyx Iy −Iyz

−myC mxC 0 −Izx −Izy Iz


(A.41)

CCO
RB =

 mS
1
ωb
2

−mS
1
ωb
2

S
1
pb

C

2
mS

1
pb

C

2
S
1
ωb
2

−S
1
Ioω

b
2  (A.42)
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